WO2020009168A1 - Novel hydroxynitrile lyase mutant - Google Patents

Novel hydroxynitrile lyase mutant Download PDF

Info

Publication number
WO2020009168A1
WO2020009168A1 PCT/JP2019/026527 JP2019026527W WO2020009168A1 WO 2020009168 A1 WO2020009168 A1 WO 2020009168A1 JP 2019026527 W JP2019026527 W JP 2019026527W WO 2020009168 A1 WO2020009168 A1 WO 2020009168A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
hydroxynitrile lyase
hnl
constituting
Prior art date
Application number
PCT/JP2019/026527
Other languages
French (fr)
Japanese (ja)
Inventor
浅野 泰久
チャイケーヨ・シリポーン
ニュイラート・エム
史尋 元島
Original Assignee
公立大学法人 富山県立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人 富山県立大学 filed Critical 公立大学法人 富山県立大学
Priority to JP2020529040A priority Critical patent/JP7264354B2/en
Publication of WO2020009168A1 publication Critical patent/WO2020009168A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic

Definitions

  • the present invention relates to a modified hydroxynitrile lyase and use thereof.
  • HNL Hydroxynitrile lyase
  • the present inventors introduced various amino acid mutations into HNL and measured their activities. As a result, they have found that amino acid modification at a specific site results in an increase in activity common to millipede-derived HNL, thereby completing the present invention.
  • the present invention relates to a (R) -HNL mutant protein having one or more amino acid substitutions in a millipede-derived (R) -HNL protein and having (R) -HNL activity.
  • millipedes-derived (R) -hydroxynitrile lyase is an enzyme encoded by the millipede (Millipedes) gene, and is a compound having (R) -HNL activity.
  • millipede means an arthropod belonging to the polypod subdivision millipede (Diplopoda).
  • (R) -hydroxynitrile lyase activity means an activity of catalyzing the following reaction for synthesizing an optically active cyanohydrin from a ketone or aldehyde and a cyanide.
  • both a millipede-derived (R) -HNL and a millipede-derived (R) -HNL mutant have (R) -HNL activity.
  • Whether a protein has (R) -HNL activity or not can be determined by measuring the catalytic activity of the (R) -mandelonitrile synthesis reaction and the activity of the decomposition reaction of mandelonitrile to benzaldehyde. it can.
  • the catalytic activity of the (R) -mandelonitrile synthesis reaction can be determined by performing the following reaction using benzaldehyde as a substrate.
  • the benzaldehyde DMSO solution and the test protein solution are added to a citrate buffer (pH 4.2), mixed, and 1 M @KCN is added to start the synthesis reaction.
  • the reaction is performed at 15 to 25 ° C. for 5 minutes to 1 hour.
  • the obtained organic layer was analyzed using HPLC having a stationary phase in which a cellulose derivative (Cellulose @ tris (4-methylbenzoate)) was coated on a silica gel carrier, and (R) -mandelonitrile and (S) -mandelonitrile were analyzed. The peak detected at 254 nm at each retention time is observed.
  • the protein has (R) -HNL activity Can be determined.
  • the activity of the decomposition reaction of mandelonitrile to benzaldehyde can be determined by adding a test protein solution to a citrate buffer (5.0-5.5) containing racemic mandelonitrile and gently stirring. The reaction can be performed at 15 to 25 ° C. for 1 minute to 1 hour, and the amount of benzaldehyde produced can be confirmed by measuring the absorbance at 280 nm. When benzaldehyde is produced, the protein can be determined to have (R) -HNL activity.
  • the millipede-derived (R) -HNL preferably has eight back-equilibrium ⁇ -sheet structures as three-dimensional structures. More preferably, the amino acid sequences constituting the eight ⁇ sheet structures are X15X16FX17X18VL ( ⁇ 1) (SEQ ID NO: 1), TX19RX20YVX21P ( ⁇ 2) (SEQ ID NO: 2), TAX1DI ( ⁇ 3) (SEQ ID NO: 3), respectively.
  • X2X3X4 (X7) X2X3X3 (X7X3) X2X3X3 (X7) X3 (X7) X3 (X7) X3 (X7) X3 (X7) X3 (X7) X3 (X7) X3 (X7) X3 (X7) X3 (X7) X3 (X7) X3 (X7) X3 (X7) X3 (X7) X7X8) (X7X3X8) (X7X3X8) (X7X3X8) (X7X3X8X8) (SEQ ID NO: 8) is there.
  • X1 is L or F
  • X2 is Q, H or R
  • X3 is I or V
  • X4 is M
  • X5 is A
  • X6 is Y or N
  • X7 is V
  • X8 is G or I
  • X9 is G or A
  • X10 is P, A or S
  • X11 is S, L , M or I
  • X12 is T or absent
  • X13 is H, I, Y or F
  • X15 is F or L
  • X16 is E
  • X17 is E
  • X18 is Y or F
  • X19 is A or T
  • X20 is V or I
  • X21 is Q or R
  • X22 is G or D
  • X23 is E
  • X24 is Q
  • X25 is
  • the millipede-derived (R) -HNL herein may have one ⁇ -helix structure.
  • the amino acid sequence constituting the ⁇ -helix structure is preferably VPNX37KIH (SEQ ID NO: 9) (where X37 is D or Y).
  • the millipede-derived (R) -HNL herein may be classified as a protein belonging to the lipokine superfamily based on its structural characteristics.
  • (R) -HNL derived from a millipede in the present specification is ChuaHNL from Chamberlinius hualienensis (SEQ ID NO: 10, signal peptide 1-221, mature protein 22-183); NttHNL from Nedyopus tambanus tambanus (SEQ ID NO: 11, signal peptide 1-20, mature protein 21-182); NtmHNL from Nepodus tambanus mangaesinus (SEQ ID NO: 12, signal peptide 1-20, mature protein 21-182); OgraHNL derived from Oxidus gracilis (SEQ ID NO: 13, signal peptide 1-18; mature protein 19-184); PlamHNL (SEQ ID NO: 14, signal peptide 1-20, mature protein 21-183) derived from the yellow croaker (Parafontaria laminata armigera); Pton1HNL (Parafontaria tonominea species complex 1) derived from Parafantaria tonominea (SEQ ID NO:
  • the (R) -HNL or a mutant protein thereof in the present specification may be a protein having a signal sequence or a mature protein in which the signal sequence has been cleaved.
  • the mutant (R) -HNL protein of the present invention has one or more amino acid substitutions in the millipede-derived (R) -HNL protein.
  • Such amino acid substitutions can be the following amino acid substitutions: (A) substitution of another amino acid, A, which is the second amino acid in the amino acid sequence represented by TAX1DI (SEQ ID NO: 3) constituting the ⁇ sheet structure ( ⁇ 3) of the (R) -HNL, wherein , X1 is L or F; (B) substitution of another amino acid, X6, which is the fifth amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the ⁇ -sheet structure ( ⁇ 4) of (R) -HNL, wherein , X2 is Q, H or R, X3 is I or V, X4 is M, I, T or D, X5 is A, T or I, X6 is Y or N, X7
  • the amino acid substitution is one or more substitutions selected from the following (a) to (e): (A) substitution of C or H for the second amino acid A in the amino acid sequence represented by TAX1DI (SEQ ID NO: 3) constituting the ⁇ -sheet structure ( ⁇ 3) of the (R) -hydroxynitrile lyase; (B) H, Y, M, V of X6 which is the fifth amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the ⁇ -sheet structure ( ⁇ 4) of the (R) -hydroxynitrile lyase , L or W substitutions; (C) substitution of I, which is the seventh amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the ⁇ -sheet structure ( ⁇ 4) of the (R) -hydroxynitrile lyase
  • amino acid substitutions may be made in only one place, or may be made in two or more places, for example, two places, three places, four places, or five places.
  • substitution is a substitution in an OgraHNL mutant protein, and is selected from the following (i) to (iii): 1, 2, 3, 1-2, or One to three substitutions can be mentioned.
  • a cysteine residue at the 76th alanine residue in SEQ ID NO: 13 (corresponding to the 58th alanine residue in the OgraHNL mature protein (protein consisting of amino acids 19 to 184 of SEQ ID NO: 13; the same applies hereinafter)); Or substitution with a histidine residue (A76C or A76H) (A58C or A58H in the mature protein)
  • substitution of the phenylalanine residue at position 89 (corresponding to the phenylalanine residue at position 71 in the mature OgraHNL protein) with an isoleucine residue in SEQ ID NO: 13 (F89I) (F71I in the mature protein)
  • the substitution is a substitution in a PlamHNL mutant protein, and is selected from the following (iv) to (vi): 1, 2, 3, 1-2, or One to three substitutions can be mentioned.
  • N65H and T95A, N85Y and T95A, N85Y and I89G N65H and T75A, N65Y in PlamHNL mature protein (protein consisting of amino acids 21 to 183 of SEQ ID NO: 14; the same applies hereinafter)
  • T75A, N65Y and I69G T75A, N65Y and I69G.
  • the variant protein of the millipede-derived (R) -HNL of the present invention is characterized in that amino acids other than the above amino acid substitutions are derived from the original or wild type millipede (R) -HNL as long as it has (R) -HNL activity. ) -HNL protein may be substituted with a different amino acid.
  • a variant protein of a millipede-derived (R) -HNL of the present invention has 1 to 10 amino acids other than the above amino acid substitutions in the amino acid sequence of the original or wild type millipede-derived (R) -HNL protein. 1 to 8, 1 to 5, 1 to 4, 1 to 3, 1 to 2, or 1 may be substituted.
  • a variant of a millipede-derived (R) -HNL protein of the present invention is 60%, 70%, 80%, 85%, 90%, 95% of the original or wild type millipede-derived (R) -HNL protein. , 98%, or 99% identity.
  • the millipede-derived (R) -HNL protein has the amino acid sequence described in any one of SEQ ID NOS: 10 to 21 (or the amino acid sequence constituting the mature protein in the sequence)
  • the variant protein of the millipede-derived (R) -HNL is the same as the amino acid sequence described in any one of SEQ ID NOS: 10 to 21 (or the amino acid sequence constituting the mature protein in the sequence).
  • the variant protein of the millipede-derived (R) -HNL of the present invention comprises the amino acid sequence described in any one of SEQ ID NOS: 10 to 21 (or the amino acid sequence constituting a mature protein in the sequence). %, 70%, 80%, 85%, 90%, 95%, 98% or 99% identity and may be a protein having (R) -HNL activity. .
  • amino acids are represented by one-letter or three-letter codes commonly used in the art.
  • amino acid represented by “XN” (N is a natural number) means any one amino acid selected from a plurality of defined amino acids.
  • the notation represented by XaNuXb (Xa and Xb are single-letter amino acid codes, and Nu is a natural number) indicates that the Nuth amino acid is substituted from Xa to Xb.
  • A79M means that the alanine at position 79 is replaced with methionine.
  • A is an alanine residue
  • R is an arginine residue
  • N is an asparagine residue
  • D is an aspartic acid residue
  • C is a cysteine residue.
  • Q is a glutamine residue
  • E is a glutamic acid residue
  • G is a glycine residue
  • H is a histidine residue
  • I is an isoleucine residue
  • L is a leucine residue.
  • K is a lysine residue
  • M is a methionine residue
  • F is a phenylalanine residue
  • P is a proline residue
  • S is a serine residue
  • T is a threonine residue
  • W is Is a tryptophan residue
  • Y is a tyrosine residue
  • V is a valine residue.
  • the present invention relates to a nucleic acid molecule encoding the above-mentioned millipede-derived (R) -HNL mutant protein.
  • the nucleic acid molecule of the present specification is a nucleic acid molecule capable of expressing the variant protein of the millipede-derived (R) -HNL of the present invention in a target transformed cell.
  • the nucleic acid may be DNA, RNA, artificial nucleic acid or a modified product thereof.
  • the nucleic acid of the present invention may be an expression cassette containing a region necessary for expression (promoter, enhancer, terminator, etc.) as necessary.
  • the present invention relates to a vector having the nucleic acid molecule.
  • the vector of the present invention is not particularly limited as long as it is a vector capable of expressing a target protein in combination with a transformed cell to be used.
  • the vector may be a plasmid vector or a viral vector.
  • Escherichia coli is used as a host, a pET vector can be used.
  • the present invention further includes a transformed cell transformed with the vector.
  • a transformed cell transformed with the vector any cells such as Escherichia coli (for example, Escherichia coli SHuffle @ T7 strain), yeast (for example, Pichia @ pastoris), insect cells, and animal cells can be used.
  • the variant of the millipede-derived HNL of the present invention has excellent specific activity, enantioselectivity, and / or productivity, and thus is suitable for industrial production of optically active cyanohydrin utilizing HNL activity.
  • the mutants of the present invention show high enantioselectivity with less enzyme than before (150 U / ml). Also, for (R) -2-Cl-Man, Chua HNL and other reported HNLs showed only very low enantioselectivity in the buffer system (ee ⁇ 21%), but the mutants of the present invention Also shows high enantioselectivity for (R) -2-Cl-Man.
  • the mutant of the present invention has a high enantiopurity (96.3%) in a single-phase buffer system (96.3%).
  • An asymmetric synthesis of R) -2-Cl-Man is possible.
  • FIG. 3 is a diagram showing the active site of ChuaHNL conjugated with various ligands.
  • the active site amino acid residues and bound ligands are shown as sticks in the CPK color scheme (protein carbon atoms and ligands are shown in green and cyan, respectively).
  • Hydrogen bonding and electrostatic interactions between amino acid residues and ligands are indicated by dotted lines and bond lengths are indicated by ⁇ .
  • the ⁇ A -weighted omit map of the ligand and the water molecule is shown in mesh representation and is outlined at the 3.0 ⁇ level except for D (5.0 ⁇ ).
  • A is a view showing a wall-eye stereo view of an active site bound to acetate. The surface of the active site cavity is shown as a transparent gray surface. The lower part of the image is the entrance of the active site.
  • B is a diagram showing a ligand-free form. Water molecules bound to the active site are represented by spheres.
  • C A diagram showing a complex with cyanide ions.
  • D is a diagram showing a complex with iodoacetate. The anomalous difference map was shown as a mesh and outlined at the 4.0 ⁇ level.
  • FIG. 4 is a diagram showing the intended catalytic mechanism determined by the crystal structure of OgraHNL formed in a complex with (R) -2-Cl-Man impregnated with 2-chlorobenzaldehyde and KCN.
  • (A) Dimer model of OgraHNL is shown. Two ⁇ - helices shows two 3 10 helices and eight antiparallel ⁇ - sheet. C-terminal and N-terminal are indicated.
  • the ligand (R) -2-Cl-Man in the active site was shown as a yellow stick model.
  • B It is an enlarged view of a binding pocket. The entrance tunnel is indicated by the dotted blue circle. Residues exposed to the binding pocket containing hydrophobic residues (green) and hydrophobic residues (positive side chains: blue; negative side chains: pink; and uncharged side chains: light orange) It was shown as a stick model and displayed the amino acid type and number.
  • C Shows the active site of OgraHNL bound to (R) -2-Cl-Man. The hydrogen bond is indicated by a red dotted line, and the distance is indicated.
  • D Represents the desired catalytic mechanism of OgraHNL. (1) Standby state.
  • the catalyst two molecules of Arg42 and Lys121 are shown in blue.
  • the isolated electron pair at the nitrogen of Lys121 abstracts a proton from the hydroxyl group of (R) -Man, and the electron released from hydrogen is received by the carbon atom of the nitrile group, triggering the release of cyanide ion.
  • the released cyanide ions remove protons from Arg42 to generate hydrogen cyanide.
  • the aldehyde group of 2-chlorobenzaldehyde forms a hydrogen bond with Lys121 and Arg42. Subsequently, the generated 2-chlorobenzaldehyde and hydrogen cyanide are released, and the active residues return to the standby state (1).
  • (A) and (b) The binding mode of (R) -2-Cl-Man designed such that different ortho positions (a, b) of the phenyl ring in the binding pocket of OgraHNL are replaced by chlorine atoms.
  • (C) and (d) Open (c) and closed (d) structures of the substrate entry tunnel of the OgraHNL mutant.
  • the predicted structure of PlamHNL by (R) -2-chloromandelonitrile by docking simulation is shown.
  • a) Represents the overall structure of homology modeling prediction of PlamHNL (blue) using OgraHNL (violet) as template.
  • the millipede-derived hnl gene can be easily obtained from a millipede-derived gene using primers encoding a conserved amino acid sequence, as described in WO2017 / 150560. As an example, it can be obtained by performing a PCR reaction using a gene obtained from a millipede as a template and primers having the following sequences. By analyzing the base sequence of the obtained millipede hnl gene, the sequence of the wild-type millipede-derived hnl gene can be determined.
  • HNL-FW CTGCAACTGCATTGGAMATTCAAGG (SEQ ID NO: 76), HNL-RV: ATGAATCTTRTCRCCGTTTGGAAC (SEQ ID NO: 77) HNL-FW2: SSAACTGCATTGGAYATMMRMAGG (SEQ ID NO: 78) HNL-RV2: ATGAATCTRTCRCCRTTTGGRAC (SEQ ID NO: 79)
  • SEQ ID NOs: 10 to 21 of the present specification can be used as the wild-type millipede-derived hnl gene sequences.
  • the millipede-derived HNL protein is obtained by inserting the millipede hnl gene obtained above into an expression cassette suitable for expression in a host, if necessary, inserting it into a vector, transforming the host cell, and culturing the host cell. Thus, it can be obtained by being expressed.
  • an amino acid sequence encoded from the determined wild-type millipede hnl gene sequence can be obtained.
  • a mutant millipede-derived HNL protein can be obtained by the following procedure. First, the amino acid sequence constituting the wild-type millipede HNL protein determined as described above is aligned with the already obtained amino acid sequence of the millipede HNL (FIG. 4). From the alignment results, the amino acid sequences that make up the eight anti-equilibrium ⁇ sheets known for the other millipede HNL are determined. Further, the amino acid sequence constituting the ⁇ -sheet structure located at the third ( ⁇ 3), fourth ( ⁇ 4), and fifth ( ⁇ 5) counting from the N-terminal side is determined.
  • a primer containing the mutated amino acid is designed, and PCR is performed using the primer and the original wild-type hnl gene as a template, thereby obtaining a mutated millipede-derived hnl gene (mutated HNL protein Encoding nucleic acid molecule).
  • the vector having the nucleic acid molecule encoding the mutant HNL protein is obtained by inserting the obtained mutant millipede hnl gene into an expression cassette suitable for expression in a host, if necessary, and then inserting it into a vector. be able to.
  • a transformed cell transformed with the vector can be obtained.
  • a transformed HNL protein can be obtained by culturing the transformed cells to express the target protein.
  • the present invention relates to a method for producing cyanohydrin, comprising reacting a ketone or aldehyde with a cyanide compound in the presence of a (R) -HNL mutant protein.
  • the synthesis of cyanohydrins from aldehydes or ketones can be performed, for example, with reference to Dadashour et al. (2015) (supra).
  • the (R) -HNL mutant protein is added to a citrate buffer containing an aldehyde and a cyanide, mixed, reacted at 25 ° C. for 3 minutes, and mixed with n-hexane and 2-propanol.
  • cyanohydrin can be obtained in the organic phase.
  • an organic solvent may be added to a citrate buffer (pH 4.0) to cause a reaction.
  • organic solvents include ethyl acetate (EA), diethyl ether (DEE), methyl-t-butyl ether (MTBE), 2-isopropyl ether (DIPE), dibutyl ether (DBE), methanol (Met), and hexane.
  • EA ethyl acetate
  • DEE diethyl ether
  • MTBE methyl-t-butyl ether
  • DIPE 2-isopropyl ether
  • DBE dibutyl ether
  • Metal methanol
  • Hex hexane
  • the (R) -HNL mutant protein a purified protein can be used, or a crushed cell or a crude product thereof can also be used.
  • the amount of the enzyme used for cyanohydrin synthesis is not particularly limited as long as it is an enzyme capable of catalyzing the reaction.
  • the amount is 1 to 100 U, 1 to 50 U, 1 to 10 U, 2 to 8 U, and 3 to 5 U.
  • the pH of the citrate buffer can be, for example, 3 to 7, 3 to 6, 3 to 5, 3.5 to 5, and 3.5 to 4.
  • the reaction temperature is preferably a temperature suitable for the enzymatic reaction, in which the production of racemic cyanohydrin independent of the enzymatic reaction is suppressed, for example, 0 to 50 ° C, 15 to 35 ° C.
  • the aldehyde or ketone can be selected according to the structure of the cyanohydrin to be synthesized.
  • R 1 and R 2 are a hydrogen atom (however, only one of R 1 and R 2 ), an optionally substituted C1-18 linear or branched alkyl group, or an optionally substituted It may be a 5- to 22-membered aromatic group (including a heteroaromatic group having 1 to 4 atoms selected from N, O and S).
  • substituents which may be substituted include an amino group, an imino group, a hydroxyl group, a C1-22 linear or branched alkyl group (only in the case of an aromatic group substituent), a C1-8 alkoxy group, and a halogen atom.
  • Atom, allyloxy group, carboxyl group, C3-20 cycloalkyl group halogen atom, hydroxyl group, C1-8 linear or branched alkyl group, and / or C2-8 linear or branched alkenyl group
  • a 5- to 22-membered heteroaromatic group having at least one atom selected from N, O and S (a halogen atom, a hydroxyl group, a C1-8 straight-chain or branched Alkyl group and / or C2-8 linear or branched alkenyl group).
  • the number of substituents when they may be substituted may be one or more, and may be two, three, four, five or more.
  • aldehydes or ketones include formaldehyde, acetaldehyde, propionaldehyde, butanal, pentanal, hexanal, heptanal, octanal, nonanal, decanal, formic acid, vinyl aldehyde, benzaldehyde, 2-chlorobenzaldehyde, cinnamaldehyde, perylaldehyde, vanillin, glyoxal And the like.
  • the concentration of the aldehyde or ketone can be 0.01 mM to 5M, 0.1 mM to 1M, or 1 mM to 100 mM.
  • cyanide compound sodium cyanide and potassium cyanide can be used.
  • the amount of cyanide used can be, for example, 0.1 mM to 10 M, 0.2 mM to 2 M, or 2 mM to 200 mM.
  • the obtained cyanohydrin can be further purified by chiral HPLC or the like, if necessary.
  • Example 1 Structural analysis of Chua HNL (enzyme assay for synthesis of mandelonitrile (MAN)) Racemic MAN was purchased from Sigma-Aldrich (St. Louis, MO, USA). (R) -MAN synthesis activity by HNL was measured as previously reported (Dadashipour, M. et al., (2015) Proc. Natl. Acad. Sci. USA 112: 10605-10610. ). Briefly, enzyme samples were added to 1 ml of reaction buffer (400 mM citrate buffer (pH 4.2), 50 mM benzaldehyde and 100 mM potassium cyanide) and the mixture was incubated at 22 ° C. for 5 minutes.
  • reaction buffer 400 mM citrate buffer (pH 4.2), 50 mM benzaldehyde and 100 mM potassium cyanide
  • ChuaHNL cDNA was prepared by using KOD-Plus-DNA polymerase (TOYOBO, Osaka, Japan), His-ChuaHNL-Fw primer and His-ChuaHNL-Rv primer, and using ChuaHNL cDNA (Dadashipour et al., (2015)) as a template. Amplified by PCR. The resulting PCR product was digested with XhoI and XbaI (TaKaRa) and cloned under the AOX1 promoter of the Pichia expression vector pPICZ ⁇ A to obtain pPICZ ⁇ A-His-ChuaHNL.
  • P. Pastoris-derived protein disulfide isomerase (PDI) -encoding gene (PpPDI, Genbank ID: AJ302014) was obtained by combining a primer pair (PpPDI-InFu-Fw primer and PpPDI-InFu-Rv primer), and KOD-Plus-Neo DNA polymerase (PDI). TOYOBO)).
  • Pastoris genomic DNA was used as a template for amplification by PCR.
  • the obtained DNA fragment was cloned into an EcoRI (TaKaRa) site under the AOX1 promoter in pAO815 of the Pichia expression vector using an In-Fusion HD cloning kit (Clontech Laboratories, Palo Alto, CA, USA).
  • the obtained expression vector was linearized with StuI (TaKaRa), and the P.p. pastoris strain GS115.
  • the obtained expression vector was linearized with SacI (TaKaRa) and transformed into cells. Transformants were confirmed by colony PCR using 5'AOX1 and 3'AOX1 primers.
  • PpPDI-InFu-Fw primer (SEQ ID NO: 24): TCGAAACGAGGAATTCCATGCAATTCAACTGGGAATT PpPDI-InFu-Rv primer (SEQ ID NO: 25): TGTCTAAGGC GAATTCTTAAAGCTCGTGCGTGAGCCGTC 5'AOX1 primer (SEQ ID NO: 26): GACTGGTTCCAATTGACAAGC 3'AOX1 primer (SEQ ID NO: 27): GCAAATGGCATCTCTGACATCC
  • Pichia pastoris GS115 strain was added to a YPDS medium (2% glucose, 2% peptone, 1% yeast extract, 2% agar and 1M) supplemented with 100-2000 ⁇ g / ml zeocin (Invitrogen, Carlsbad, CA, USA) as required. (Sorbitol) at 28 ° C. and transformed.
  • Buffered minimal glycerol (BMG) medium (1.34% yeast nitrogen base without amino acids, 4 ⁇ 10 ⁇ 5 % biotin, 100 mM, supplemented with 0.004% histidine as needed for protein expression)
  • Potassium phosphate buffer (pH 7.0) and 1% glycerol) or BMM medium (BMG medium in which 1% glycerol was replaced with 1% methanol) was used.
  • Cultivation was performed at 28 ° C. under aerobic conditions with reciprocal shaking, and yeast growth was monitored by measuring optical density at a wavelength of 600 nm.
  • E. coli HST08 strain (TaKaRa Bio, Otsu, Japan) was used for plasmid amplification.
  • LB low salt Luria-Bertani
  • yeast extract 1% tryptone, 0.5% yeast extract and 0.5% NaCl
  • ampicillin 50 mg / ml
  • zeocin 25 mg / ml
  • Recombinant His-tagged ChuaHNL is a P.p. and expressed by the protein secretion system in P. pastoris. Initially, the medium after 6 days of incubation was adjusted to pH 7.5 by adding 2M sodium hydroxide. Next, the His-tag protein was purified using Ni Sepharose 6 FF resin (GE Healthcare), Mono Q 5/50 GL (GE Healthcare), and Superdex 200/10/300 GL (GE Healthcare). Finally, the active fraction was dialyzed against 10 mM citrate buffer (pH 5.5) and stored at ⁇ 20 ° C. until use.
  • native Chua HNL crystals were immersed in a storage solution containing 0.5 M sodium iodide at 20 ° C. for 30 minutes.
  • the resulting crystals were used directly for data collection.
  • the crystals obtained from the native protein were immersed in immersion solution-1 (32% (w / v) PEG monomethyl ether 2,000, 0.3 M @ NDSB-195, 50 mM bis-tris-propane, 50 mM
  • the solution was immersed in citric acid (pH 4.5) at 20 ° C. for 20 minutes to remove the acetate.
  • the ligand-free form was included in a dipping solution-1 containing 80 mM potassium thiocyanate, 10 mM sodium iodoacetate and 0.5 M potassium cyanide, respectively. The crystals were soaked.
  • X-ray diffraction data for the single anomalous dispersion (SAD) phase was collected on an X-ray generator and imaging plate (MicroMAX-007 and R-AXIS @ VII, Rigaku, Tokyo, Japan).
  • Other data include Photon Factory Beamline BL-1A and BL-5A (Tsukuba, Japan) silicon pixel detectors (Pilatus 2M-F, DECTRIS, Baden-Daettwil, Switzerland) and CCD detectors (Quantum 315r, Area Detector). , Poway, CA, USA).
  • ChuaHNL was found to be a lipocalin protein by a structural comparison search using a Dali server (Holm, L. et al., (2010) Nucleic Acids Res. $ 38, @ W545-549). It turned out to be similar. Many typical lipocalins give a Z score higher than 10, indicating significant structural similarity. The overall amino acid sequence identity of ChuaHNL to a typical lipocalin was less than 8%. Lipocalins are generally three structurally and sequencely conserved known as structurally-conserved regions (SCR) 1-3 (Flower DR (1996) Biochem. J. 318 (Pt1), 1-14). Including motifs. Despite the very low amino acid similarity in the SCR, the secondary structure of ChuaHNL overlapped well with that of human retinol binding protein 4.
  • SCR structurally-conserved regions
  • the crystal structure of ChuaHNL that formed a complex with cyanide ion-bonded cyanide ions was measured at a resolution of 2.1 ° (FIG. 2C).
  • the orientation of the cyanide ion was determined by the temperature coefficient and possible electrostatic interactions between the negatively charged carbon and Arg38.
  • the nitrogen atom of the cyanide ion formed a hydrogen bond with Try40-O ⁇ at a distance of 3.3 °.
  • the negatively charged carbon of the cyanide ion was electrostatically interacting with Arg38-N ⁇ 1 at a distance of 4.2 °.
  • Iodine atoms of iodoacetate may form weak ⁇ interactions with Phe67 at a distance of 4.3 °.
  • a strong anomalous difference map between Phe67 and Arg38 indicated the presence of an iodine atom.
  • two alternative binding modes were observed. The orientation of the two thiocyanate molecules in the crystal structure was determined by the lower B-factor value after structure refinement.
  • the sulfur atom of the thiocyanate formed a hydrogen bond with Tyr103-O ⁇ and Arg38-N ⁇ 1 at a distance of 3.0 ° and 3.2 °, respectively.
  • the sulfur atom of the thiocyanate formed a salt bridge with Arg38-N ⁇ 2 and Lys117-N ⁇ at a distance of 3.1 ° (FIG. 2E).
  • the interaction between the hydrophilic residue and (R) -MAN is shown in FIG. 3B.
  • the hydroxyl group of (R) -MAN formed a hydrogen bond with Lys117-N ⁇ and Arg38-N ⁇ 1 at a distance of 3.3 ° and 3.3 °, respectively.
  • the nitrile group formed hydrogen bonds with Arg38-N ⁇ 1, Arg38-N ⁇ 2 and Tyr103-O ⁇ at distances of 3.4, 3.3 and 3.3 °, respectively.
  • Asp56 forms a salt bridge with Arg38-N ⁇ 2, Arg38-N ⁇ and Lys117-N ⁇ .
  • Tyr40-O ⁇ forms a hydrogen bond with Arg38-N ⁇ 1 and Tyr103-O ⁇ .
  • the bond lengths and orientations of the residues containing ligand binding were nearly identical in the five ChuaHNL structures.
  • Example 2 Production of OgraHNL mutant and activity measurement (compound) All compounds were purchased commercially. Benzaldehyde and (R / S) -Man were purchased from Sigma-Aldrich. 2-chlorobenzaldehyde was purchased from Tokyo Chemical Industry. (R / S) -2-Cl-Man was synthesized according to the method of Alagoz et al. (Alagoz D et al., Enzymatic (2014) 101: 40-46).
  • OgraHNL was produced using a previously constructed transformant of the E. coli SHuffle T7 strain carrying the plasmid pET28a containing the ograhn1 gene (Yamaguchi T et al., Scientific Reports (2016) 8 (1): 3051).
  • the recombinant E. coli cells are inoculated into 5 ml of LB medium containing kanamycin (50 ⁇ g / ml), cultured at 30 ° C. for 16 to 18 hours while shaking at 250 rpm, and then cultured in LB medium containing kanamycin (50 ⁇ g / ml). Transferred to 500 ml.
  • IPTG isopropyl ⁇ -thiogalactoside
  • the protein was then loaded onto a Mono Q5 / 50GL column (GE Healthcare) and eluted with a 0-50% gradient of elution buffer (20 mM KPB and 500 mM NaCl, pH 7.4) running at a flow rate of 1 ml / min. All purification steps were performed at 0-4 ° C. Protein purity was assessed by 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The protein concentration was measured with a BCA assay kit (Thermo Fisher Scientific, MA, USA) using bovine serum albumin as a standard protein.
  • the crystals were then immersed in a 25% (v / v) glycerol cryoprotectant solution containing one drop of 2-chlorobenzaldehyde for 2 hours, immersed in potassium cyanide (KCN) for 5 minutes, and then flash-cooled in a stream of liquid nitrogen.
  • KCN potassium cyanide
  • Diffraction data was collected at cryogenic temperature using a Rigaku Micro-Max007CuK ⁇ rotating anode X-ray generator and a Rigaku R-AXISVII image plate detector. Indexing and integration of the diffraction data is performed by XDS (Kabsch W (2006) Crystallographic of biological macromolecules: 218-225), and scaling is performed by Scala (Evans P (2006) Acta crytal sig. 72-82) with the CCP4 program suite (Winn MD et al. (2011) Acta Crystallographic Section D: Biological Crystallography; 67 (4): 235-242). Data were treated as hexagonal in space group P63. The initial stage was determined by the Molrep (Vagin A et al.
  • the reaction mixture consisted of 1 ⁇ l of 10 ⁇ reaction buffer, 0.2 ⁇ l of dNTP mixture, 8.2 ⁇ l of distilled water, 0.5 U of PfuTurbo DNA polymerase, 10 ng / ⁇ l of sense and antisense primer 0.2 ⁇ l each, and 50 ng / ⁇ l of pET28a-OgraHNL vector (0.2 ⁇ l) was used as template DNA. Denaturation (95 ° C., 30 seconds), annealing (55 ° C., 1 minute), and extension (68 ° C., 6 minutes) were performed for 16 cycles. The product was treated with DpnI (10 U) for 1 hour at 37 ° C., and then transformed into E. coli SHuffle T7. Production and purification of all mutant enzymes were performed in the same manner as in the wild type described above.
  • R and S represent the concentrations of (R) -Man or (R) -2-Cl-Man and (S) -Man or (S) -2-Cl-Man, respectively.
  • reaction rate analysis For kinetic analysis, the initial rates of enzymatic conversion of benzaldehyde to (R) -Man and 2-chlorobenzaldehyde to (R) -2-Cl-Man were determined according to the method described above. Assays were performed using various concentrations of substrate (0-60 mM) and a total amount of 0.125 U of enzyme in each reaction in a salt buffer system.
  • the active site is located at the center of the beta barrel surrounded by all eight beta sheets.
  • the relatively large hydrophobic cavities within the active site of OgraHNL are: Val at position 15; Phe at positions 29, 71 and 94; Tyr at positions 44 and 107; Ala at positions 58, 79 and 109; Leu at position 81; It consisted of 11 hydrophobic residues of the 92nd Trp (FIG. 5b).
  • Four hydrophilic residues of Arg42, Asn69, Asp60 and Lys121 were also exposed on the active site surface. The substrate entry tunnel introducing the external solvent into the active site is clearly shown in FIG.
  • the tunnel entrance region was formed by eight residues Val15, Pro16, Phe21, Tyr44, Phe71, Ala79, Trp92, and Phe94.
  • Some hydrophobic residues in the active site appeared to form a hydrophobic interaction with the benzene moiety to recognize the benzene ring of (R) -2-Cl-Man.
  • Two of these residues, Phe71 and Phe94 are located near the phenyl ring of (R) -2-Cl-Man and have ⁇ - ⁇ in edge-to-face and face-to-face, respectively. Form stacking interactions.
  • ⁇ - ⁇ stacking interactions are stronger than general hydrophobic interactions and may play an important role in substrate binding (Yang ST et al., Nanotechnology (2008) 19 (39): 395101; and Nakano S). Et al., Biochim Biophys Acta (2014) 1844 (12): 2059-2067). The existence of a ⁇ - ⁇ stacking interaction has also been reported by Nakano et al. (2014) (supra) in (S) -HNL from Basospermum tantanum.
  • the side chains of Arg42 and Lys121 of OgraHNL form a hydrogen bond with a hydroxyl group of (R) -2-Cl-Man
  • Tyr107 is a nitrile group of (R) -2-Cl-Man.
  • Forms a hydrogen bond with Asp60 does not interact directly with (R) -2-Cl-Man, but forms a hydrogen bond with Arg42 and Lys121.
  • a series of reactions takes place in the opposite direction of cyanohydrin cleavage.
  • the cyanide ion attacks the carbonyl carbon of 2-chlorobenzaldehyde.
  • the carbonyl oxygen accepts electrons from cyanide and produces (R) -2-Cl-Man.
  • the hydrophobic cavity within the active site of OgraHNL is predicted to play a significant role in substrate selectivity, but away from the proton abstraction site, and its mobility is reported in (S) -HNL from Balospermum @ montanum. This allows the rearrangement of the phenyl group of the substrate in the catalyst (Nakano @ S et al. (2014) supra). This cavity binds to its phenyl group when (R)-and (S) -2-Cl-Man enter the active site and is split into (R) -specific and (S) -specific pockets, respectively.
  • ChuaHNL has broad substrate specificity (Dadasipour @ M et al. (2015) supra) due to the flexible structure of ChuaHNL that allows various substrates to bind to the substrate entry tunnel. .
  • the specific activity and enantioselectivity of A79M were significantly improved not only for (R) -2-Cl-Man but also for (R) -Man as compared to the wild type.
  • the specific activity of wild type was 2,780 ⁇ 80 U / mg and ee of 82.2 ⁇ 0.6%, while the specific activity of A79M was 3,310 ⁇ 78 U / mg. And 93.6 ⁇ 0.3% ee.
  • the ee values for (R) -Man were superior to those of the wild type in A58C, A58H, F71I, A79C, A79I, and A79M.
  • A79C and A79M were better in specific activity than the wild strain, and A79F, A79I, A79L, A79M, A79S, and A79V were better in productivity than the wild strain.
  • the ee values for (R) -2-Cl-Man were superior to the wild type in A79C, A79I, and A79M, and those having specific activity superior to the wild type were A79I.
  • A79M, A79M, A79S, and A79V which were superior in productivity to the wild type were A79M.
  • Example 3 Production of PlamHNL mutant and measurement of activity (docking simulation using MOE program)
  • OgraHNL complexed with (R) -2-chloromandelonitrile was used as a template for docking simulation using MOE analysis. The structure of was used.
  • the homology modeling of PlamHNL complexed with (R) -2-chloromandelonitrile calculates about 14 amino acid residues in the binding pocket using the Alanine and Residue Scanning function and assigns the other 19 amino acids an affinity. Important residues. Mutants with the lowest dAffinity were selected for validation.
  • PlamHNL mutants were prepared by site-directed mutagenesis using the Quick-Change site-directed mutagenesis kit using forward and reverse primers (Table 5) and pET28aPlamHNL as a template. In the PCR reaction, 18 cycles of denaturation (95 ° C., 20 seconds; first cycle: 95 ° C., 2 minutes) and annealing at 52 ° C. for 20 seconds were performed. The PCR product was treated with DpnI (10 U) at 37 ° C. for 1 hour, and then transformed into E. coli Shuffle T7 strain.
  • the reaction was monitored by taking an aliquot (100 ⁇ L) of the reaction mixture and extracting with 900 ⁇ L of organic solvent (94% n-hexane, 6% isopropanol, 0.2% TFA, v / v). After centrifuging the mixture at 15,000 ⁇ g at 4 ° C. for 10 minutes, an organic layer containing benzaldehyde, (R)-and (S) -2-chloromandelonitrile was obtained. Thereafter, an aliquot (10 ⁇ L) of the organic phase was analyzed using chiral HPLC as described above. One unit of HNL activity was defined as the amount of enzyme that produced 1 ⁇ mol / min of optically active (R) -2-chloromandelonitrile from 2-chlorobenzaldehyde and KCN under the assay conditions.
  • IPTG was added to a final concentration of 0.5 mM, and the cells were cultured at 18 ° C at the same shaking speed for 24 hours.
  • the cells were centrifuged (8500 ⁇ g; 15 minutes) and resuspended in potassium phosphate buffer (KPB; 20 mM, pH 7.0) containing sodium chloride (0.5 M) and imidazole (25 mM).
  • KPB potassium phosphate buffer
  • the resuspended cells were lysed by sonication, and the lysate was centrifuged (15000 ⁇ g; 4 ° C. for 15 minutes) to remove debris.
  • the supernatant was loaded onto a Ni Sepharose 6 Fast Flow (GE Healthcare, Little Chalfont, UK) column (25 mm ID, 20 mL column capacity), washed with 50 mM imidazole, and then KPB (20 mM) containing sodium chloride (0.5 M). Eluting with a linear gradient of 50-300 mM imidazole (pH 7.0) at a flow rate of 0.5 mL / min. Fractions showing the highest specific activity were pooled, dialyzed and loaded on a MonoQ 5/50 GL (GE Healthcare) column. Enzyme activity was measured as described above, active fractions were pooled, dialyzed, concentrated and tested for purity by SDS-PAGE.
  • the loop connecting ⁇ 4- ⁇ 5 of PlamHNL (residues 70-75) is longer than that of OgraHNL and is located at the entrance of the pocket.
  • This loop region (I69G) of PlamHNL is considered to greatly affect the activity of PlamHNL.
  • the 69th amino acid residue of ⁇ 4 at the entrance of the pocket is isoleucine in PlamHNL and glycine in OgraHNL. These residues are thought to affect the affinity for the substrate.
  • the HNL mutant derived from the millipede of the present invention can be industrially applied in the synthesis of cyanohydrin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The activity of the wild-type hydroxynitrile lyase (HNL) obtained to date is insufficient for industrial use, and HNL having better activity has been demanded. The present inventors introduced various amino acid mutations predicted on the basis of the three-dimensional structures of HNL and (R)-mandelonitrile into wild-type HNL and measured the activities of the resulting HNL. As a result, it was discovered that amino acid modification of specific sites brings about elevation of activity common to millipede-derived HNL. Therefore, the present invention pertains to an (R)-HNL mutant protein having one or more amino acid substitutions in a millipede-derived (R)-HNL protein and having (R)-HNL activity. More specifically, the present invention pertains to HNL having amino acid substitutions in the third β-sheet structure (β3), the fourth β-sheet structure (β4), and the fifth β-sheet structure (β5) of (R)-HNL.

Description

新規ヒドロキシニトリルリアーゼ変異体Novel hydroxy nitrile lyase mutant
 本発明は、改変されたヒドロキシニトリルリアーゼ及びその利用に関する。 (4) The present invention relates to a modified hydroxynitrile lyase and use thereof.
 ヒドロキシニトリルリアーゼ(以下、「HNL」という)はシアノヒドリン化合物の合成に利用される酵素である。本発明者らは、既に様々なヤスデからHNL遺伝子をクローニングすることに成功している(特許文献1、特許文献2、非特許文献1及び非特許文献2)。 Hydroxynitrile lyase (hereinafter, referred to as “HNL”) is an enzyme used for synthesizing a cyanohydrin compound. The present inventors have already succeeded in cloning the HNL gene from various millipedes (Patent Document 1, Patent Document 2, Non-Patent Document 1, and Non-Patent Document 2).
国際公開WO2015/133462号International Publication WO2015 / 133462 国際公開WO2017/150560号International Publication WO2017 / 150560
 しかし、これらの天然のHNLの活性は産業用としては十分ではなく、更にすぐれた活性を有するHNLが求められていた。 However, the activity of these natural HNLs is not sufficient for industrial use, and HNLs having even better activities have been demanded.
 本発明者らは、HNLに種々のアミノ酸変異を導入し、その活性を測定した。その結果、特定の部位のアミノ酸改変がヤスデ由来のHNLに共通した活性上昇をもたらすことを見出し、本発明を完成させた。 The present inventors introduced various amino acid mutations into HNL and measured their activities. As a result, they have found that amino acid modification at a specific site results in an increase in activity common to millipede-derived HNL, thereby completing the present invention.
 一態様において、本発明は、ヤスデ由来の(R)-HNLタンパク質における1種類以上のアミノ酸置換を有し、かつ、(R)-HNL活性を有する、(R)-HNL変異体タンパク質に関する。 In one aspect, the present invention relates to a (R) -HNL mutant protein having one or more amino acid substitutions in a millipede-derived (R) -HNL protein and having (R) -HNL activity.
 本明細書において、「ヤスデ由来の(R)-ヒドロキシニトリルリアーゼ」とは、ヤスデ(Millipedes)の遺伝子がコードする酵素であって、(R)-HNL活性を有する化合物である。本明細書において「ヤスデ」とは、多足亜門ヤスデ綱(Diplopoda)に属する節足動物を意味する。ヤスデとしては、例えば、シノハラフサヤスデ、リュウキュウフサヤスデ、タマヤスデ、ネッタイタマヤスデ、オオタマヤスデ、ミコシヤスデ、エゾミコシヤスデ、クロイワヤスデ、フトケヤスゲ、ヤリヤスデ、タカネヤリヤスデ、オオトゲヤスデ、クラサワトゲヤスデ、ホラケヤスデ、ヒメケヤスデ、シロケヤスデ、ジヤスデ、ツクシヤスデ、イトヤスデ、ヒラタヤスデ、アカヒラタヤスデ、ヤマシナヒラタヤスデ、タマモヒラタヤスデ、ババヤスデ、ヤマンバヤスデ、ヘラババヤスデ、ミドリババヤスデ、アマビコヤスデ、ヤエタケヤスデ、タカクワヤスデ、アオヤスデ、コバアマビコヤスデ、ポコックアマビコヤスデ、ヤットコアマビコヤスデ、オビババヤスデ、トリデヤスデ、キシャヤスデ、タメトモヤスデ、ウチカケヤスデ、ヒラオヤスデ、ヤケヤスデ、マサキヤケヤスデ、ミイツヤスデ、ヤマトアカヤスデ、リュウキュウヤケヤスデ、ヤンバルトサカヤスデ、トサカサスデ、モリヤスデ、ネジアシヤスデ、アカヤスデ、ウマガエシアカヤスデ、ナンヨウヤケヤスデ、ハガヤスデ、コブヤスデ、ハダカヤスデ、オオギヤスデ、キレコミヤスデ、ヨロイヤスデ、ノコギリヤスデ、ツノノコギリヤスデ、イシイオビヤスデ、オビヤスデ、モトオビヤスデ、ヒガシオビヤスデ、フジオビヤスデ、シロハダヤスデ、マクラギヤスデ、チビヤスデ、ギボシヤスデ、パラオギボシヤスデ、ツメフジヤスデ、トガリフジヤスデ、エゾフジヤスデ、ミホトケフジヤスデ、ヘルヘフフジヤスデ、フジヤスデ、フジヤスデモドキ、ホタルヤスデ、イカホヒメヤスデ、ホタルヒメヤスデ、センブツヤスデ、ウエノヤスデ、リュウガヤスデ、オオセリュウガヤスデ、トリイリュウガヤスデ、タテウネホラヤスデ、イチハシヤスデ、ネンジュヤスデ、ヒロウミヤスデ ヨシダヒメヤスデ、クロヒメヤスデ、エゾヒメヤスデ、クダヤスデ、ミナミヤスデ、マガイマルヤスデ、カグヤヤスデ、マルヤスデ、ヒゲヤスデ、ヒモヤスデ、P. tokaiensis及びヤハズヤスデを挙げることができる。 に お い て In the present specification, “millipedes-derived (R) -hydroxynitrile lyase” is an enzyme encoded by the millipede (Millipedes) gene, and is a compound having (R) -HNL activity. As used herein, the term “millipede” means an arthropod belonging to the polypod subdivision millipede (Diplopoda). As the millipede, for example, Shinoharahusayasade, Ryukyufusayasde, Tamayasde, Anetaytamayasde, Otamayamasde, Mykosyasde, Ezomikoshyades, Kroiwayasde, Futkesayas, Yaryasde, Takanejashyde, Ookeshyde , Tsukiyasade, Itoyasude, Hiratayasde, Akahirathayasade, Yamashinahirathayasde, Tamamohiratayades, Babayasde, Yamambayasde, Herababayasde, Midoribayayasde, Amabicayas, Yakayakeyasde, Komaya, Maayakosaya Amabicoyasude, Obibabayasude, Torideyasude, Kishayasude, Tammetomoyasude, Uchikakeyasude, Hira Millipede, Yakeyasude, Masakiyayasuede, Miitsuyasuede, Yamato Akayasde, Ryukyu Yayasude, Yanbarto Sakayasde, Tosakasasade, Moriyasde, Nejiashiasude, Akayas, Umagaesiakayasade, Nayoyayasade, Nayoyasadeas Yoroyasde, Sawglyjasde, Tsunokogiyasude, Ishiiobiasde, Obiasde, Motoobiyasde, Higasiobiasde, Fuziobiasde, Shirohadayasde, Makuragiyasde, Tibijasde, Giboshejasde, Paraogibojade , Fujisade, Fujisademodoki, Firefly Yasude, Ikahohimesude, Firefly Himedesue, Senbu Millipede, Uenoyasude, Prince of Changyi millipedes, giant cell Prince of Changyi millipede, Torii Prince of Changyi millipedes, vertical Une Hora millipede, Ichihashiyasude, Nenjuyasude, Hiroumiyasude Yoshida Hime millipede, Kurohimeyasude, Ezohimeyasude, Kudayasude, Minamiyasude, Magaimaruyasude, Kaguyayasude, Maruyasude, Higeyasude, Himoyasude, P. Tokaiensis and P. japonica.
 本明細書において、「(R)-ヒドロキシニトリルリアーゼ活性((R)-HNL活性)」とは、ケトン又はアルデヒドとシアン化合物から光学活性シアノヒドリンを合成する以下の反応を触媒する活性を意味する。本明細書において、ヤスデ由来の(R)-HNL及びヤスデ由来の(R)-HNL変異体はいずれも、(R)-HNL活性を有する。 に お い て In the present specification, “(R) -hydroxynitrile lyase activity ((R) -HNL activity)” means an activity of catalyzing the following reaction for synthesizing an optically active cyanohydrin from a ketone or aldehyde and a cyanide. As used herein, both a millipede-derived (R) -HNL and a millipede-derived (R) -HNL mutant have (R) -HNL activity.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 あるタンパク質が(R)-HNL活性を有するか否かは、(R)-マンデロニトリル合成反応の触媒活性、及びマンデロニトリルからベンズアルデヒドへの分解反応の活性を測定することにより決定することができる。(R)-マンデロニトリル合成反応の触媒活性は、ベンズアルデヒドを基質として以下の反応を行うことにより判定することができる。ベンズアルデヒドのDMSO溶液と、被検タンパク質溶液をクエン酸緩衝液(pH4.2)に添加して混合し、1M KCNを加えて合成反応を開始し、15~25℃で5分~1時間後に反応液を回収し、n-ヘキサン:2-プロパノール=85:15の混合液を加えて激しく撹拌し、4℃、16,000gで3分間遠心分離して、有機層を回収する。得られた有機層をセルロース誘導体(Cellulose tris(4-methylbenzoate))をシリカゲル担体にコーティングした固定相を有するHPLCを用いて分析し、(R)-マンデロニトリル及び(S)-マンデロニトリルのそれぞれの保持時間における254nmで検出されるピークを観測する。(R)-マンデロニトリルの合成が確認でき、かつ、(S)-マンデロニトリルと比較して、(R)-マンデロニトリルの生産量が多い場合、当該タンパク質は(R)-HNL活性を有すると判定することができる。また、マンデロニトリルからベンズアルデヒドへの分解反応の活性は、ラセミ体マンデロニトリルを含むクエン酸緩衝液(5.0-5.5)に被検タンパク質タンパク質溶液を添加し、穏やかに撹拌して15~25℃で1分~1時間反応させ、ベンズアルデヒドの生成量を280nmの吸光度で測定することにより確認することができる。ベンズアルデヒドが生成された場合、当該タンパク質は(R)-HNL活性を有すると判定することができる。 Whether a protein has (R) -HNL activity or not can be determined by measuring the catalytic activity of the (R) -mandelonitrile synthesis reaction and the activity of the decomposition reaction of mandelonitrile to benzaldehyde. it can. The catalytic activity of the (R) -mandelonitrile synthesis reaction can be determined by performing the following reaction using benzaldehyde as a substrate. The benzaldehyde DMSO solution and the test protein solution are added to a citrate buffer (pH 4.2), mixed, and 1 M @KCN is added to start the synthesis reaction. The reaction is performed at 15 to 25 ° C. for 5 minutes to 1 hour. The liquid is collected, a mixed liquid of n-hexane: 2-propanol = 85: 15 is added, the mixture is vigorously stirred, and the mixture is centrifuged at 4 ° C. and 16,000 g for 3 minutes to collect an organic layer. The obtained organic layer was analyzed using HPLC having a stationary phase in which a cellulose derivative (Cellulose @ tris (4-methylbenzoate)) was coated on a silica gel carrier, and (R) -mandelonitrile and (S) -mandelonitrile were analyzed. The peak detected at 254 nm at each retention time is observed. When the synthesis of (R) -mandelonitrile can be confirmed and the production amount of (R) -mandelonitrile is larger than that of (S) -mandelonitrile, the protein has (R) -HNL activity Can be determined. The activity of the decomposition reaction of mandelonitrile to benzaldehyde can be determined by adding a test protein solution to a citrate buffer (5.0-5.5) containing racemic mandelonitrile and gently stirring. The reaction can be performed at 15 to 25 ° C. for 1 minute to 1 hour, and the amount of benzaldehyde produced can be confirmed by measuring the absorbance at 280 nm. When benzaldehyde is produced, the protein can be determined to have (R) -HNL activity.
 本明細書において、ヤスデ由来の(R)-HNLは、好ましくは、8個の逆平衡βシート構造を立体構造として有する。より好ましくは、前記8個のβシート構造を構成するアミノ酸配列は、それぞれ、X15X16FX17X18VL(β1)(配列番号1)、TX19RX20YVX21P(β2)(配列番号2)、TAX1DI(β3)(配列番号3)、X2X3X4X5X6DFX7X8X9X10(β4)(配列番号4)、X11X12AX13LX14(β5)(配列番号5)、X22X23KX24X25WX26FQYX27X28(β6)(配列番号6)、X29X30YCAYX31CX32(β7)(配列番号7)、X33IX34EYKCX35X36(β8)(配列番号8)である。ここで、X1はL又はFであり、X2はQ、H又はRであり、X3はI又はVであり、X4はM、I、T又はDであり、X5はA、T又はIであり、X6はY又はNであり、X7はV、T又はLであり、X8はG又はIであり、X9はG又はAであり、X10はP、A又はSであり、X11はS,L、M又はIであり,X12はT又は存在せず、X13はH、I、Y又はFであり、X14N又はTであり、X15はF又はLであり、X16はE、Q又はLであり、X17はE,A、S又はTであり、X18はY又はFであり、X19はA又はTであり、X20はV又はIであり、X21はQ又はRであり、X22はG又はDであり、X23はE、K、D又はAであり、X24はQ、T又はAであり、X25はV、I又はTであり、X26はY、H又はNであり、X27はT、V又はIであり、X28はN又はDであり、X29はA又はSであり、X30はN又はSであり、X31はR、T又はSであり、X32はN又はDであり、X33はE、A、Q、N又はSであり、X34はI、A又はVであり、X35はA又はTであり、X36はS、N又はTである。 に お い て In the present specification, the millipede-derived (R) -HNL preferably has eight back-equilibrium β-sheet structures as three-dimensional structures. More preferably, the amino acid sequences constituting the eight β sheet structures are X15X16FX17X18VL (β1) (SEQ ID NO: 1), TX19RX20YVX21P (β2) (SEQ ID NO: 2), TAX1DI (β3) (SEQ ID NO: 3), respectively. X2X3X4 (X7) X2X3X3 (X7X3) X2X3X3 (X7) X3 (X7) X3 (X7) X3 (X7) X3 (X7) X3 (X7) X3 (X7) X3 (X7X8) (X7X3X8) (X7X3X8) (X7X3X8) (X7X3X8X8) (SEQ ID NO: 8) is there. Where X1 is L or F, X2 is Q, H or R, X3 is I or V, X4 is M, I, T or D, and X5 is A, T or I , X6 is Y or N, X7 is V, T or L, X8 is G or I, X9 is G or A, X10 is P, A or S, X11 is S, L , M or I, X12 is T or absent, X13 is H, I, Y or F, X14N or T, X15 is F or L, X16 is E, Q or L , X17 is E, A, S or T, X18 is Y or F, X19 is A or T, X20 is V or I, X21 is Q or R, X22 is G or D X23 is E, K, D or A, X24 is Q, T or A, X25 is V, I or T, X26 is Y H or N, X27 is T, V or I, X28 is N or D, X29 is A or S, X30 is N or S, X31 is R, T or S; X32 is N or D, X33 is E, A, Q, N or S, X34 is I, A or V, X35 is A or T, and X36 is S, N or T.
 更に、本明細書におけるヤスデ由来の(R)-HNLは、1個のαヘリックス構造を有していてもよい。当該αヘリックス構造を構成するアミノ酸配列は、好ましくは、VPNGX37KIH(配列番号9)(ここで、X37はD又はYである)である。 Furthermore, the millipede-derived (R) -HNL herein may have one α-helix structure. The amino acid sequence constituting the α-helix structure is preferably VPNX37KIH (SEQ ID NO: 9) (where X37 is D or Y).
 一例において、本明細書におけるヤスデ由来の(R)-HNLは、その構造的特徴から、リポカインスーパーファミリーに属するタンパク質として分類されるものであってもよい。 In one example, the millipede-derived (R) -HNL herein may be classified as a protein belonging to the lipokine superfamily based on its structural characteristics.
 より具体的な例として、本明細書におけるヤスデ由来の(R)-HNLは、
ヤンバルトサカヤスデ(Chamberlinius hualienensis)由来のChuaHNL(配列番号10、シグナルペプチド1~21番目、成熟タンパク質22~183番目);
タンバアカヤスデ(Nedyopus tambanus tambanus)由来のNttHNL(配列番号11、シグナルペプチド1~20番目、成熟タンパク質21~182番目);
ウマガエシアカヤスデ(Nedyopus tambanus mangaesinus)由来のNtmHNL(配列番号12、シグナルペプチド1~20番目、成熟タンパク質21~182番目);
ヤケヤスデ(Oxidus gracilis)由来のOgraHNL(配列番号13、シグナルペプチド1~18番目;成熟タンパク質19~184番目);
キシャヤスデ(Parafontaria laminata armigera)由来のPlamHNL(配列番号14、シグナルペプチド1~20番目、成熟タンパク質21~183番目);
ミドリババヤスデ(Parafontaria tonominea)由来のPton1HNL(Parafontaria tonominea species complex 1)(配列番号15、シグナルペプチド1~26番目、成熟タンパク質27~189番目)、Pton2HNL(Parafontaria tonominea species complex 2)(配列番号16、シグナルペプチド1~25番目、成熟タンパク質26~188番目),及びPton3HNL(Parafontaria tonominea species complex 3)(配列番号17、シグナルペプチド1~26番目、成熟タンパク質27~189番目);
ヘラババヤスデ(Parafontaria falcifera)由来のPfalHNL(配列番号18、シグナルペプチド1~26番目、成熟タンパク質27~189番目);
Parafontaria tokaiensis由来のPtokHNL(配列番号19、シグナルペプチド1~25、成熟タンパク質26~188番目);
アマビコヤスデ(Riukiaria semicircularis semicircularis)由来のRssHNL(配列番号20、シグナルペプチド1~26番目、成熟タンパク質27~188番目);及び
アマビコヤスデの一種(Riukiaria sp.)に由来のRspHNL(配列番号21、シグナルペプチド1~26番目、成熟タンパク質27~189番目)であってもよい。
As a more specific example, (R) -HNL derived from a millipede in the present specification is
ChuaHNL from Chamberlinius hualienensis (SEQ ID NO: 10, signal peptide 1-221, mature protein 22-183);
NttHNL from Nedyopus tambanus tambanus (SEQ ID NO: 11, signal peptide 1-20, mature protein 21-182);
NtmHNL from Nepodus tambanus mangaesinus (SEQ ID NO: 12, signal peptide 1-20, mature protein 21-182);
OgraHNL derived from Oxidus gracilis (SEQ ID NO: 13, signal peptide 1-18; mature protein 19-184);
PlamHNL (SEQ ID NO: 14, signal peptide 1-20, mature protein 21-183) derived from the yellow croaker (Parafontaria laminata armigera);
Pton1HNL (Parafontaria tonominea species complex 1) derived from Parafantaria tonominea (SEQ ID NO: 15, signal peptide 1-26th, mature protein 27-189th), Pton2HNL ealone Signal peptide 1 to 25, mature protein 26 to 188), and Pton3HNL (Parafontaria tonominea species complex 3) (SEQ ID NO: 17, signal peptide 1 to 26, mature protein 27 to 189);
PfalHNL from Parafantaria falcipera (SEQ ID NO: 18, signal peptide 1-26, mature protein 27-189);
Ptok HNL from Parafontaria tokaiensis (SEQ ID NO: 19, signal peptide 1 to 25, mature protein 26 to 188);
RssHLN (SEQ ID NO: 20, signal peptide 1-26, mature protein 27-188) derived from Rubiaria millipede (Riukiaria semicircularis semicircularis); and RspHN1 peptide derived from one species of Rubiaria millipede (Riukiaria sp.) (26th, mature protein 27th to 189th).
 タンパク質はシグナル配列により輸送および局在化が制御される。本明細書における(R)-HNL又はその変異体タンパク質としては、シグナル配列を有するタンパク質であってもよいし、シグナル配列が切断された成熟タンパク質であってもよい。 輸送 Transport and localization of proteins are controlled by signal sequences. The (R) -HNL or a mutant protein thereof in the present specification may be a protein having a signal sequence or a mature protein in which the signal sequence has been cleaved.
 本発明の(R)-HNLの変異体タンパク質は、ヤスデ由来の(R)-HNLタンパク質において1種類以上のアミノ酸置換を有する。このようなアミノ酸置換は、以下のアミノ酸置換であることができる:
(a)当該(R)-HNLのβシート構造(β3)を構成するTAX1DI(配列番号3)で表されるアミノ酸配列中の2番目のアミノ酸であるAの他のアミノ酸への置換、ここで、X1はL又はFである;
(b)当該(R)-HNLのβシート構造(β4)を構成するX2X3X4X5X6DFX7X8X9X10(配列番号4)で表されるアミノ酸配列中の5番目のアミノ酸であるX6の他のアミノ酸への置換、ここで、X2はQ、H又はRであり、X3はI又はVであり、X4はM、I、T又はDであり、X5はA、T又はIであり、X6はY又はNであり、X7はV、T又はLであり、X8はG又はIであり、X9はG又はAであり、X10はP、A又はSである;
(c)当該(R)-HNLのβシート構造(β4)を構成するX2X3X4X5X6DFX7X8X9X10(配列番号4)で表されるアミノ酸配列中の7番目のアミノ酸であるFの他のアミノ酸への置換、ここで、X2~X10は(b)で定義されたとおりである;
(d)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β4)を構成するX2X3X4X5X6DFX7X8X9X10(配列番号4)で表されるアミノ酸配列中の9番目のアミノ酸であるX8の他のアミノ酸への置換、ここで、X2~X10は(b)で定義されたとおりである;
(e)当該(R)-HNLのβシート構造(β5)を構成するX11X12AX13LX14(配列番号5)で表されるアミノ酸配列中の2番目のアミノ酸であるX12の他のアミノ酸への置換、ここで、X11はS,L、M又はIであり,X12はT又は存在せず、X13はH、I、Y又はFであり、X14N又はTである;及び
(f)当該(R)-HNLのβシート構造(β5)を構成するX11X12AX13LX14(配列番号5)で表されるアミノ酸配列中の3番目のアミノ酸であるAの他のアミノ酸への置換、ここで、X11~X14は(d)で定義されたとおりである。
The mutant (R) -HNL protein of the present invention has one or more amino acid substitutions in the millipede-derived (R) -HNL protein. Such amino acid substitutions can be the following amino acid substitutions:
(A) substitution of another amino acid, A, which is the second amino acid in the amino acid sequence represented by TAX1DI (SEQ ID NO: 3) constituting the β sheet structure (β3) of the (R) -HNL, wherein , X1 is L or F;
(B) substitution of another amino acid, X6, which is the fifth amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the β-sheet structure (β4) of (R) -HNL, wherein , X2 is Q, H or R, X3 is I or V, X4 is M, I, T or D, X5 is A, T or I, X6 is Y or N, X7 Is V, T or L, X8 is G or I, X9 is G or A, and X10 is P, A or S;
(C) substitution of another amino acid F which is the seventh amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the β sheet structure (β4) of the (R) -HNL, wherein , X2 to X10 are as defined in (b);
(D) substitution of another amino acid, X8, which is the ninth amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the β-sheet structure (β4) of the (R) -hydroxynitrile lyase, Wherein X2 to X10 are as defined in (b);
(E) substitution of another amino acid, X12, which is the second amino acid in the amino acid sequence represented by X11X12AX13LX14 (SEQ ID NO: 5) constituting the β-sheet structure (β5) of the (R) -HNL, wherein , X11 is S, L, M or I, X12 is T or absent, X13 is H, I, Y or F and X14N or T; and (f) the (R) -HNL Substitution of another amino acid, A, which is the third amino acid in the amino acid sequence represented by X11X12AX13LX14 (SEQ ID NO: 5) constituting the β sheet structure (β5), wherein X11 to X14 are defined in (d) As it was done.
 好ましくは、前記アミノ酸置換は、以下の(a)~(e)から選択される1種類以上の置換である:
(a)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β3)を構成するTAX1DI(配列番号3)で表されるアミノ酸配列中の2番目のアミノ酸であるAのC又はHへの置換;
(b)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β4)を構成するX2X3X4X5X6DFX7X8X9X10(配列番号4)で表されるアミノ酸配列中の5番目のアミノ酸であるX6のH、Y、M、V、L又はWへの置換;
(c)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β4)を構成するX2X3X4X5X6DFX7X8X9X10(配列番号4)で表されるアミノ酸配列中の7番目のアミノ酸であるFのIへの置換;
(d)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β4)を構成するX2X3X4X5X6DFX7X8X9X10(配列番号4)で表されるアミノ酸配列中の9番目のアミノ酸であるX8のGへの置換;
(e)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β5)を構成するX11X12AX13LX14(配列番号5)で表されるアミノ酸配列中の2番目のアミノ酸であるX12のAへの置換;及び
(f)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β5)を構成するX11X12AX13LX14(配列番号5)で表されるアミノ酸配列中の3番目のアミノ酸であるAの疎水性残基(I、L、M、F、W、Y又はV)、C、T、E、Q又はS(好ましくは、I、L、M、F、V、C、T、E、Q又はS)への置換。
Preferably, the amino acid substitution is one or more substitutions selected from the following (a) to (e):
(A) substitution of C or H for the second amino acid A in the amino acid sequence represented by TAX1DI (SEQ ID NO: 3) constituting the β-sheet structure (β3) of the (R) -hydroxynitrile lyase;
(B) H, Y, M, V of X6 which is the fifth amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the β-sheet structure (β4) of the (R) -hydroxynitrile lyase , L or W substitutions;
(C) substitution of I, which is the seventh amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the β-sheet structure (β4) of the (R) -hydroxynitrile lyase;
(D) substitution of X8, which is the ninth amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the β-sheet structure (β4) of the (R) -hydroxynitrile lyase, with G;
(E) substitution of A for X12, which is the second amino acid in the amino acid sequence represented by X11X12AX13LX14 (SEQ ID NO: 5) constituting the β-sheet structure (β5) of the (R) -hydroxynitrile lyase; and f) The hydrophobic residue (I, L) of the third amino acid in the amino acid sequence represented by X11X12AX13LX14 (SEQ ID NO: 5) constituting the β-sheet structure (β5) of the (R) -hydroxynitrile lyase , M, F, W, Y or V), C, T, E, Q or S (preferably I, L, M, F, V, C, T, E, Q or S).
 これらのアミノ酸置換は、1か所のみにおいて行ってもよいし、2か所以上、例えば、2か所、3か所、4か所、又は5か所において行われてもよい。 These amino acid substitutions may be made in only one place, or may be made in two or more places, for example, two places, three places, four places, or five places.
 より具体的には、前記置換としては、OgraHNL変異体タンパク質における置換であって、以下の(i)~(iii)から選択される、1個、2個、3個、1~2個、又は1~3個の置換を挙げることができる。
(i)配列番号13における、76番目のアラニン残基(OgraHNL成熟タンパク質(配列番号13の19~184番目のアミノ酸からなるタンパク質、以下同様)における58番目のアラニン残基に対応)のシステイン残基又はヒスチジン残基への置換(A76C又はA76H)(成熟タンパク質におけるA58C又はA58H)
(ii)配列番号13における、89番目のフェニルアラニン残基(OgraHNL成熟タンパク質における71番目のフェニルアラニン残基に対応)のイソロイシン残基への置換(F89I)(成熟タンパク質におけるF71I)
(iii)配列番号13における、97番目のアラニン残基(OgraHNL成熟タンパク質における79番目のアラニン残基に対応)のシステイン残基、フェニルアラニン残基、イソロイシン残基、ロイシン残基、メチオニン残基、セリン残基、又はばリン残基への置換(A97C、A97F、A97I、A97L、A97M、A97S、又はA97V)(成熟タンパク質におけるA79C、A79F、A79I、A79L、A79M、A79S、又はA79V)
More specifically, the substitution is a substitution in an OgraHNL mutant protein, and is selected from the following (i) to (iii): 1, 2, 3, 1-2, or One to three substitutions can be mentioned.
(I) a cysteine residue at the 76th alanine residue in SEQ ID NO: 13 (corresponding to the 58th alanine residue in the OgraHNL mature protein (protein consisting of amino acids 19 to 184 of SEQ ID NO: 13; the same applies hereinafter)); Or substitution with a histidine residue (A76C or A76H) (A58C or A58H in the mature protein)
(Ii) Substitution of the phenylalanine residue at position 89 (corresponding to the phenylalanine residue at position 71 in the mature OgraHNL protein) with an isoleucine residue in SEQ ID NO: 13 (F89I) (F71I in the mature protein)
(Iii) cysteine residue, phenylalanine residue, isoleucine residue, leucine residue, methionine residue, serine at the 97th alanine residue (corresponding to the 79th alanine residue in the mature OgraHNL protein) in SEQ ID NO: 13 (A97C, A97F, A97I, A97L, A97M, A97S, or A97V) (A79C, A79F, A79I, A79L, A79M, A79S, or A79V in the mature protein)
 より具体的には、前記置換としては、PlamHNL変異体タンパク質における置換であって、以下の(iv)~(vi)から選択される、1個、2個、3個、1~2個、又は1~3個の置換を挙げることができる。例えば、2個の変異を有する場合、N85HとT95A,N85YとT95A、N85YとI89G(PlamHNL成熟タンパク質(配列番号14の21~183番目のアミノ酸からなるタンパク質、以下同様)におけるN65HとT75A,N65YとT75A、N65YとI69G)などの組み合わせが挙げられる。
(iv)配列番号14における、96番目のアラニン残基(PlamHNL成熟タンパク質における76番目のアラニン残基に対応)のシステイン残基、セリン残基、トレオニン残基、グルタミン酸残基、グルタミン残基、バリン残基、又はメチオニン残基への置換(A96C、A96S、A96T、A96E、A96Q、A96V、又はA96M)(成熟タンパク質におけるA76C、A76S、A76T、A76E、A76Q、A76V、又はA76M)
(v)配列番号14における、85番目のアスパラギン残基(PlamHNL成熟タンパク質における65番目のアスパラギン残基に対応)のヒスチジン残基、チロシン残基、メチオニン残基、バリン残基、ロイシン残基、又はトリプトファン残基への置換(N85H、N85Y、N85M、N85V、N85L、又はN85W)(成熟タンパク質におけるN65H、N65Y、N65M、N65V、N65L、又はN65W)
(vi)配列番号14における、89番目のイソロイシン残基(PlamHNL成熟タンパク質における69番目のイソロイシン残基に対応)のグリシン残基への置換(I89G)(成熟タンパク質におけるI69G)
More specifically, the substitution is a substitution in a PlamHNL mutant protein, and is selected from the following (iv) to (vi): 1, 2, 3, 1-2, or One to three substitutions can be mentioned. For example, in the case of having two mutations, N65H and T95A, N85Y and T95A, N85Y and I89G (N65H and T75A, N65Y in PlamHNL mature protein (protein consisting of amino acids 21 to 183 of SEQ ID NO: 14; the same applies hereinafter)) T75A, N65Y and I69G).
(Iv) Cysteine residue, serine residue, threonine residue, glutamic acid residue, glutamic acid residue, glutamine residue, valine at the 96th alanine residue (corresponding to the 76th alanine residue in the PlamHNL mature protein) in SEQ ID NO: 14 Residue or methionine residue (A96C, A96S, A96T, A96E, A96Q, A96V, or A96M) (A76C, A76S, A76T, A76E, A76Q, A76V, or A76M in mature protein)
(V) a histidine residue, a tyrosine residue, a methionine residue, a valine residue, a leucine residue, or the asparagine residue at position 85 in SEQ ID NO: 14 (corresponding to the asparagine residue at position 65 in the PlanHNL mature protein) Substitution to tryptophan residues (N85H, N85Y, N85M, N85V, N85L, or N85W) (N65H, N65Y, N65M, N65V, N65L, or N65W in mature protein)
(Vi) Substitution of glycine residue for isoleucine residue 89 (corresponding to isoleucine residue 69 in PlamHNL mature protein) in SEQ ID NO: 14 (I89G) (I69G in mature protein)
 また、本明細書において、本発明のヤスデ由来(R)-HNLの変異体タンパク質は、(R)-HNL活性を有する限り、上記アミノ酸置換以外のアミノ酸がオリジナルの又は野生型のヤスデ由来(R)-HNLタンパク質とは異なるアミノ酸に置換されていてもよい。例えば、本発明のヤスデ由来(R)-HNLの変異体タンパク質は、オリジナルの又は野生型のヤスデ由来(R)-HNLタンパク質のアミノ酸配列において、上記アミノ酸置換以外のアミノ酸が、1~10個、1~8個、1~5個、1~4個、1~3個、1~2個、又は1個置換されていてもよい。あるいは、本発明のヤスデ由来(R)-HNLの変異体タンパク質は、オリジナルの又は野生型のヤスデ由来(R)-HNLタンパク質と60%、70%、80%、85%、90%、95%、98%、又は99%の同一性を有していてもよい。よって、例えば、ヤスデ由来(R)-HNLタンパク質が配列番号10~21のいずれか1つの配列に記載のアミノ酸配列(又は、当該配列において成熟タンパク質を構成するアミノ酸配列)を有する場合、本発明のヤスデ由来(R)-HNLの変異体タンパク質は、前記アミノ酸置換以外に、配列番号10~21のいずれか1つの配列に記載のアミノ酸配列(又は、当該配列において成熟タンパク質を構成するアミノ酸配列)における、1~10個、1~8個、1~5個、1~4個、1~3個、1~2個、又は1個のアミノ酸が他のアミノ酸に置換された配列を有し、かつ、(R)-HNL活性を有するタンパク質であってもよい。あるいは、本発明のヤスデ由来(R)-HNLの変異体タンパク質は、配列番号10~21のいずれか1つの配列に記載のアミノ酸配列(又は、当該配列において成熟タンパク質を構成するアミノ酸配列)と60%、70%、80%、85%、90%、95%、98%、又は99%の同一性を有するアミノ酸配列を有し、かつ、(R)-HNL活性を有するタンパク質であってもよい。 Further, in the present specification, the variant protein of the millipede-derived (R) -HNL of the present invention is characterized in that amino acids other than the above amino acid substitutions are derived from the original or wild type millipede (R) -HNL as long as it has (R) -HNL activity. ) -HNL protein may be substituted with a different amino acid. For example, a variant protein of a millipede-derived (R) -HNL of the present invention has 1 to 10 amino acids other than the above amino acid substitutions in the amino acid sequence of the original or wild type millipede-derived (R) -HNL protein. 1 to 8, 1 to 5, 1 to 4, 1 to 3, 1 to 2, or 1 may be substituted. Alternatively, a variant of a millipede-derived (R) -HNL protein of the present invention is 60%, 70%, 80%, 85%, 90%, 95% of the original or wild type millipede-derived (R) -HNL protein. , 98%, or 99% identity. Thus, for example, when the millipede-derived (R) -HNL protein has the amino acid sequence described in any one of SEQ ID NOS: 10 to 21 (or the amino acid sequence constituting the mature protein in the sequence), the present invention In addition to the amino acid substitution, the variant protein of the millipede-derived (R) -HNL is the same as the amino acid sequence described in any one of SEQ ID NOS: 10 to 21 (or the amino acid sequence constituting the mature protein in the sequence). Has a sequence in which 1 to 10, 1 to 8, 1 to 5, 1 to 4, 1 to 3, 1 to 2, or 1 amino acid is substituted with another amino acid; and , (R) -HNL protein. Alternatively, the variant protein of the millipede-derived (R) -HNL of the present invention comprises the amino acid sequence described in any one of SEQ ID NOS: 10 to 21 (or the amino acid sequence constituting a mature protein in the sequence). %, 70%, 80%, 85%, 90%, 95%, 98% or 99% identity and may be a protein having (R) -HNL activity. .
 本明細書において、アミノ酸は本技術分野において慣用のアミノ酸一文字表記又は三文字表記により表される。また、「XN」(Nは自然数)で表されるアミノ酸は、それぞれ定義された複数のアミノ酸から選択されるいずれか1つのアミノ酸であることを意味する。また、XaNuXb(Xa,Xbはアミノ酸一文字表記、Nuは自然数)で表される表記は、Nu番目のアミノ酸がXaからXbに置換されていることを示す。例えば、A79Mは、79番目のアラニンがメチオニンに置換されていることを意味する。 ア ミ ノ 酸 As used herein, amino acids are represented by one-letter or three-letter codes commonly used in the art. Further, the amino acid represented by “XN” (N is a natural number) means any one amino acid selected from a plurality of defined amino acids. The notation represented by XaNuXb (Xa and Xb are single-letter amino acid codes, and Nu is a natural number) indicates that the Nuth amino acid is substituted from Xa to Xb. For example, A79M means that the alanine at position 79 is replaced with methionine.
本明明細書に記載されたアミノ酸配列において,Aはアラニン残基であり,Rはアルギニン残基であり,Nはアスパラギン残基であり,Dはアスパラギン酸残基であり,Cはシステイン残基であり,Qはグルタミン残基であり,Eはグルタミン酸残基であり,Gはグリシン残基であり,Hはヒスチジン残基であり,Iはイソロイシン残基であり,Lはロイシン残基であり,Kはリシン残基であり,Mはメチオニン残基であり,Fはフェニルアラニン残基であり,Pはプロリン残基であり,Sはセリン残基であり,Tはトレオニン残基であり,Wはトリプトファン残基であり,Yはチロシン残基であり,Vはバリン残基である。 In the amino acid sequences described herein, A is an alanine residue, R is an arginine residue, N is an asparagine residue, D is an aspartic acid residue, C is a cysteine residue. , Q is a glutamine residue, E is a glutamic acid residue, G is a glycine residue, H is a histidine residue, I is an isoleucine residue, L is a leucine residue. , K is a lysine residue, M is a methionine residue, F is a phenylalanine residue, P is a proline residue, S is a serine residue, T is a threonine residue, W is Is a tryptophan residue, Y is a tyrosine residue, and V is a valine residue.
 別の態様において、本発明は前記ヤスデ由来(R)-HNLの変異体タンパク質をコードする核酸分子に関する。本明細書の核酸分子は、目的の形質転換細胞内において本発明のヤスデ由来(R)-HNLの変異体タンパク質を発現可能な核酸分子である。核酸としては、DNA、RNA、人工核酸又はそれらの修飾物であってもよい。本発明の核酸は、必要に応じて発現に必要な領域(プロモーター、エンハンサー、ターミネーター等)を含む発現カセットであってもよい。 In another embodiment, the present invention relates to a nucleic acid molecule encoding the above-mentioned millipede-derived (R) -HNL mutant protein. The nucleic acid molecule of the present specification is a nucleic acid molecule capable of expressing the variant protein of the millipede-derived (R) -HNL of the present invention in a target transformed cell. The nucleic acid may be DNA, RNA, artificial nucleic acid or a modified product thereof. The nucleic acid of the present invention may be an expression cassette containing a region necessary for expression (promoter, enhancer, terminator, etc.) as necessary.
 さらに別の態様において、本発明は前記核酸分子を有するベクターに関する。本発明のベクターは、用いる形質転換細胞との組み合わせにより目的のタンパク質を発現させることができるベクターであれば特に制限されるものではない。ベクターとしては、プラスミドベクター、ウイルスベクターのいずれであってもよい。例えば、宿主として大腸菌を用いる場合、pETベクターを使用することができる。 に お い て In yet another aspect, the present invention relates to a vector having the nucleic acid molecule. The vector of the present invention is not particularly limited as long as it is a vector capable of expressing a target protein in combination with a transformed cell to be used. The vector may be a plasmid vector or a viral vector. For example, when Escherichia coli is used as a host, a pET vector can be used.
 本発明は、更に、前記ベクターにより形質転換された形質転換細胞を含む。形質転換細胞としては、大腸菌(例えば、大腸菌SHuffle T7株)、酵母(例えば、Pichia pastoris)、昆虫細胞、動物細胞など任意の細胞を使用することができる。 The present invention further includes a transformed cell transformed with the vector. As the transformed cells, any cells such as Escherichia coli (for example, Escherichia coli SHuffle @ T7 strain), yeast (for example, Pichia @ pastoris), insect cells, and animal cells can be used.
 本発明のヤスデ由来HNLの変異体は、優れた比活性、エナンチオ選択性、及び/又は生産性を有することから、HNL活性を利用した光学活性シアノヒドリンの工業生産に適している。本発明の変異体は、従来(150U/ml)より少ない酵素量で高いエナンチオ選択性を示す。また、(R)-2-Cl-Manについては、ChuaHNL及び他の報告されたHNLは、緩衝系において非常に低いエナンチオ選択性しか示さなかった(ee<21%)が、本発明の変異体は(R)-2-Cl-Manについても高いエナンチオ選択性を示す。また、本発明の変異体は、有機溶媒を含む二相系下で反応を触媒する従来の(R)-HNLとは異なり、単相緩衝系において高いエナンチオ純度(96.3%)を有する(R)-2-Cl-Manの非対称合成が可能である。 The variant of the millipede-derived HNL of the present invention has excellent specific activity, enantioselectivity, and / or productivity, and thus is suitable for industrial production of optically active cyanohydrin utilizing HNL activity. The mutants of the present invention show high enantioselectivity with less enzyme than before (150 U / ml). Also, for (R) -2-Cl-Man, Chua HNL and other reported HNLs showed only very low enantioselectivity in the buffer system (ee <21%), but the mutants of the present invention Also shows high enantioselectivity for (R) -2-Cl-Man. Also, unlike the conventional (R) -HNL, which catalyzes the reaction in a two-phase system containing an organic solvent, the mutant of the present invention has a high enantiopurity (96.3%) in a single-phase buffer system (96.3%). An asymmetric synthesis of R) -2-Cl-Man is possible.
ChuaHNLの全体構造を示す図である。(A)ChuaHNLのモノマー構造の立体像を絵で示す。ヘリックス(α-ヘリックスのα1-2及び310ヘリックスのη1,3)、βシート(β1-8)及びループ構造が示されている。「N」及び「C」の記号は、それぞれChuaHNLのN末端及びC末端を示す。(B)ChuaHNLの二量体構造を示す図である。ジスルフィド結合は残基番号と共に球体で表現されている。Asn109及びAsn123に結合するN-アセチルグルコサミン部分は、それぞれNAG1及びNAG2と示した。Asn109、Asn123、及び糖部分はスティックで示されている。(C)ChuaHNLの二量体界面を示す図である。界面におけるジスルフィド結合、水素結合、及び塩橋が示されている。界面残基及びβシートが示されている。It is a figure which shows the whole structure of ChuaHNL. (A) A stereoscopic image of the monomer structure of ChuaHNL is shown pictorially. Helices (alpha-of α1-2 and 3 10 helix helix η1,3), β sheets (β1-8) and loop structure is shown. The symbols “N” and “C” indicate the N-terminal and C-terminal of ChuaHNL, respectively. (B) shows the dimer structure of ChuaHNL. Disulfide bonds are represented as spheres with residue numbers. The N-acetylglucosamine moieties binding to Asn109 and Asn123 are designated NAG1 and NAG2, respectively. Asn109, Asn123, and the sugar moiety are shown as sticks. (C) Diagram showing the dimer interface of ChuaHNL. Disulfide bonds, hydrogen bonds, and salt bridges at the interface are shown. Interface residues and β-sheets are shown. 種々のリガンドと複合化したChuaHNLの活性部位を示す図である。活性部位のアミノ酸残基及び結合したリガンドは、CPK配色(タンパク質の炭素原子及びリガンドはそれぞれ緑色及びシアンで示されている)でスティック表示されている。アミノ酸残基とリガンドとの間の水素結合及び静電的相互作用は、点線で示され、結合長がÅで表示されている。リガンドと水分子のσ-weightedオミットマップは、メッシュ表示で示され、D(5.0σ)を除いて3.0σレベルで輪郭が描かれている。(A)アセテートに結合した活性部位のwall-eye stereo viewを示す図である。活性部位の空洞の表面は透明な灰色の表面として示す。画像の下部はアクティブサイトの入口である。(B)リガンド非含有形態を示す図である。活性部位に結合した水分子は、球体で表現されている。(C)シアン化物イオンとの複合体を示す図である。(D)ヨードアセテートとの複合体を示す図である。anomalous difference mapは、メッシュ示され、4.0σレベルで輪郭を描いた。(E)チオシアン酸塩との複合体を示す図である。チオシアネートの2つの代替結合形態が示されている(SCN1及びSCN2)。FIG. 3 is a diagram showing the active site of ChuaHNL conjugated with various ligands. The active site amino acid residues and bound ligands are shown as sticks in the CPK color scheme (protein carbon atoms and ligands are shown in green and cyan, respectively). Hydrogen bonding and electrostatic interactions between amino acid residues and ligands are indicated by dotted lines and bond lengths are indicated by Å. The σ A -weighted omit map of the ligand and the water molecule is shown in mesh representation and is outlined at the 3.0σ level except for D (5.0σ). (A) is a view showing a wall-eye stereo view of an active site bound to acetate. The surface of the active site cavity is shown as a transparent gray surface. The lower part of the image is the entrance of the active site. (B) is a diagram showing a ligand-free form. Water molecules bound to the active site are represented by spheres. (C) A diagram showing a complex with cyanide ions. (D) is a diagram showing a complex with iodoacetate. The anomalous difference map was shown as a mesh and outlined at the 4.0σ level. It is a figure which shows the complex with (E) thiocyanate. Two alternative binding forms of thiocyanate are shown (SCN1 and SCN2). ChuaHNLのドッキングシミュレーションの結果を示す図である。ChuaHNLの活性部位におけるドッキングされた(R)-MANの表面を示す。(R)-MAN及び活性部位の残基はCPK配色でスティック表現で示す。It is a figure showing the result of docking simulation of ChuaHNL. 2 shows the docked (R) -MAN surface at the active site of ChuaHNL. (R) -MAN and active site residues are shown in sticky representation in the CPK color scheme. 12種類のヤスデHNLの推定アミノ酸配列のアラインメントを示す(配列番号10~21)。アスタリスクは、ヤスデHNLの結合ポケットに関与していると考えられる保存領域を示す。下線はシグナル配列を示す。βn(nは1~8の自然数)で表される矢印は、それぞれ、逆平衡βシート構造を構成するアミノ酸を示す。この図において、アミノ酸番号はシグナル配列(下線部)を含む配列における番号で表される。The alignment of the deduced amino acid sequences of the twelve millipede HNL is shown (SEQ ID NOS: 10 to 21). Asterisks indicate conserved regions that are thought to be involved in the binding pocket of millipede HNL. Underlines indicate signal sequences. Arrows represented by βn (n is a natural number of 1 to 8) indicate amino acids constituting the inverse equilibrium β sheet structure, respectively. In this figure, amino acid numbers are represented by numbers in the sequence including the signal sequence (underlined). 2-クロロベンズアルデヒド及びKCNを含浸させた(R)-2-Cl-Manと複合体を形成したOgraHNLの結晶構造により目的の触媒メカニズムを調べた図である。(a)OgraHNLの二量体モデル示す。2つのα-ヘリックス、2つの310ヘリックス及び8つの逆平行β-シートを示す。C末端及びN末端を表示した。活性部位におけるリガンド(R)-2-Cl-Manは、黄色スティックモデルとして示した。(b)結合ポケットの拡大図である。入口トンネルを青い点線の円で示す。疎水性残基(緑色)及び疎水性残基(正電荷側鎖:青色;負電荷側鎖:ピンク色;及び荷電していない側鎖:淡橙色)を含む結合ポケットに暴露された残基はスティックモデルとして示され、アミノ酸の種類と番号を表示した。(c)(R)-2-Cl-Manに結合したOgraHNLの活性部位を示す。水素結合を赤い点線で示し、その距離を表示した。(d)OgraHNLの目的の触媒機構を表す。(1)待機状態。Arg42及びLys121の触媒二分子を青色で示す。(2)(R)-Manとの複合体形成。Lys121の窒素の孤立した電子対は、(R)-Manのヒドロキシル基からプロトンを引き抜き、水素から放出された電子はニトリル基の炭素原子によって受け取られ、シアン化物イオンの放出を誘発する。(3)シアン化物プロトン化。放出されたシアン化物イオンはArg42からプロトンを除去してシアン化水素を生成する。2-クロロベンズアルデヒドのアルデヒド基は、Lys121及びArg42と水素結合を形成する。続いて、生成された2-クロロベンズアルデヒド及びシアン化水素が放出され、活性残基が待機状態(1)に戻る。FIG. 4 is a diagram showing the intended catalytic mechanism determined by the crystal structure of OgraHNL formed in a complex with (R) -2-Cl-Man impregnated with 2-chlorobenzaldehyde and KCN. (A) Dimer model of OgraHNL is shown. Two α- helices shows two 3 10 helices and eight antiparallel β- sheet. C-terminal and N-terminal are indicated. The ligand (R) -2-Cl-Man in the active site was shown as a yellow stick model. (B) It is an enlarged view of a binding pocket. The entrance tunnel is indicated by the dotted blue circle. Residues exposed to the binding pocket containing hydrophobic residues (green) and hydrophobic residues (positive side chains: blue; negative side chains: pink; and uncharged side chains: light orange) It was shown as a stick model and displayed the amino acid type and number. (C) Shows the active site of OgraHNL bound to (R) -2-Cl-Man. The hydrogen bond is indicated by a red dotted line, and the distance is indicated. (D) Represents the desired catalytic mechanism of OgraHNL. (1) Standby state. The catalyst two molecules of Arg42 and Lys121 are shown in blue. (2) Complex formation with (R) -Man. The isolated electron pair at the nitrogen of Lys121 abstracts a proton from the hydroxyl group of (R) -Man, and the electron released from hydrogen is received by the carbon atom of the nitrile group, triggering the release of cyanide ion. (3) Cyanide protonation. The released cyanide ions remove protons from Arg42 to generate hydrogen cyanide. The aldehyde group of 2-chlorobenzaldehyde forms a hydrogen bond with Lys121 and Arg42. Subsequently, the generated 2-chlorobenzaldehyde and hydrogen cyanide are released, and the active residues return to the standby state (1). (a)及び(b)OgraHNLの結合ポケット内のフェニル環の異なるオルト位(a、b)が塩素原子に置換されるようにデザインされた(R)-2-Cl-Manの結合様式。(c)及び(d)OgraHNL変異体の基質侵入トンネルの開環構造(c)及び閉鎖構造(d)。(A) and (b) The binding mode of (R) -2-Cl-Man designed such that different ortho positions (a, b) of the phenyl ring in the binding pocket of OgraHNL are replaced by chlorine atoms. (C) and (d) Open (c) and closed (d) structures of the substrate entry tunnel of the OgraHNL mutant. ドッキングシミュレーションによる(R)-2-クロロマンデロニトリルによるPlamHNLの予測構造を示す。a)鋳型としてOgraHNL(バイオレット)を用いたPlamHNL(青色)の相同性モデリング予測の全体構造を表す。b)結合ポケットにおける2-クロロマンデロニトリル(緑色)に結合した側鎖残基の重ね合わせは、2つのタンパク質間の有意な類似性を示す。The predicted structure of PlamHNL by (R) -2-chloromandelonitrile by docking simulation is shown. a) Represents the overall structure of homology modeling prediction of PlamHNL (blue) using OgraHNL (violet) as template. b) Superposition of the side-chain residues linked to 2-chloromandelonitrile (green) in the binding pocket indicates significant similarity between the two proteins. (R)-2-クロロマンデロニトリルのエナンチオマー過剰率に対する酵素量(a)及びpH(b)の影響を示すグラフである。ソリッドバー:野生型;灰色のバー:T75A;クロスバー:N65Y;オープンバー:T75A/N65Y。4 is a graph showing the influence of the amount of enzyme (a) and pH (b) on the enantiomeric excess of (R) -2-chloromandelonitrile. Solid bar: wild type; gray bar: T75A; crossbar: N65Y; open bar: T75A / N65Y.
(野生型ヤスデ由来hnl遺伝子配列)
 ヤスデ由来のhnl遺伝子は、WO2017/150560の記載に従い、ヤスデ由来の遺伝子から保存アミノ酸配列をコードするプライマーを用いて容易に取得することができる。一例としては、ヤスデから得た遺伝子を鋳型として、以下の配列を有するプライマーを用いてPCR反応を行うことにより、得ることができる。得られたヤスデhnl遺伝子の塩基配列を解析することにより、野生型ヤスデ由来hnl遺伝子配列を決定することができる。
HNL-FW:CTGCAACTGCATTGGAMATTCAAGG(配列番号76)、
HNL-RV:ATGAATCTTRTCRCCGTTTGGAAC(配列番号77)
HNL-FW2:SSAACTGCATTGGAYATMMRAGG(配列番号78)
HNL-RV2:ATGAATCTTRTCRCCRTTTGGRAC(配列番号79)
 あるいは、本明細書に具体的に開示されたヤスデHNLを用いる場合には、本明細書の配列番号10~21を各野生型ヤスデ由来hnl遺伝子配列とすることができる。
(Wild-type millipede-derived hnl gene sequence)
The millipede-derived hnl gene can be easily obtained from a millipede-derived gene using primers encoding a conserved amino acid sequence, as described in WO2017 / 150560. As an example, it can be obtained by performing a PCR reaction using a gene obtained from a millipede as a template and primers having the following sequences. By analyzing the base sequence of the obtained millipede hnl gene, the sequence of the wild-type millipede-derived hnl gene can be determined.
HNL-FW: CTGCAACTGCATTGGAMATTCAAGG (SEQ ID NO: 76),
HNL-RV: ATGAATCTTRTCRCCGTTTGGAAC (SEQ ID NO: 77)
HNL-FW2: SSAACTGCATTGGAYATMMRMAGG (SEQ ID NO: 78)
HNL-RV2: ATGAATCTRTCRCCRTTTGGRAC (SEQ ID NO: 79)
Alternatively, when using the millipede HNL specifically disclosed in the present specification, SEQ ID NOs: 10 to 21 of the present specification can be used as the wild-type millipede-derived hnl gene sequences.
(野生型ヤスデ由来HNLタンパク質)
 ヤスデ由来のHNLタンパク質は、上述において得られたヤスデhnl遺伝子を必要に応じて宿主内での発現に適した発現カセット内に挿入した上でベクターに挿入し、宿主細胞に形質転換させて培養することにより発現させて得ることができる。また、決定された野生型ヤスデhnl遺伝子配列からコードされるアミノ酸配列を得ることができる。
(Wild type millipede-derived HNL protein)
The millipede-derived HNL protein is obtained by inserting the millipede hnl gene obtained above into an expression cassette suitable for expression in a host, if necessary, inserting it into a vector, transforming the host cell, and culturing the host cell. Thus, it can be obtained by being expressed. In addition, an amino acid sequence encoded from the determined wild-type millipede hnl gene sequence can be obtained.
(変異型ヤスデ由来hnl遺伝子及び変異型ヤスデ由来HNLタンパク質)
 変異型ヤスデ由来HNLタンパク質は、以下の手順で得ることができる。まず、上述により決定された野生型ヤスデHNLタンパク質を構成するアミノ酸配列を、既に得られているヤスデHNLのアミノ酸配列とアラインメントさせる(図4)。アラインメントの結果から、他のヤスデHNLについて知られている8つの逆平衡βシートを構成するアミノ酸配列を決定する。更に、N末端側から数えて、3番目(β3)、4番目(β4)、5番目(β5)に位置するβシート構造を構成するアミノ酸配列を決定する。β3を構成するアミノ酸配列中の2番目のアミノ酸、β4を構成するアミノ酸配列中の5番目及び7番目のアミノ酸、並びに、β5を構成するアミノ酸配列中の2番目及び3番目のアミノ酸から選択される1箇所以上のアミノ酸を他のアミノ酸に置換する構造を設計する。設計されたアミノ酸配列に基づき、当該変異アミノ酸を含むプライマーを設計し、当該プライマーを用いてオリジナルの野生型hnl遺伝子を鋳型としてPCRを行うことにより、変異型ヤスデ由来hnl遺伝子(変異型HNLタンパク質をコードする核酸分子)を得ることができる。得られた変異型ヤスデhnl遺伝子を必要に応じて宿主内での発現に適した発現カセット内に挿入した上でベクターに挿入することで、変異型HNLタンパク質をコードする核酸分子を有するベクターを得ることができる。得られたベクターを宿主細胞に形質転換させることにより、前記ベクターにより形質転換された形質転換細胞を得ることができる。形質転換細胞を培養して目的タンパク質を発現させて変異型HNLタンパク質を得ることができる。
(A mutant millipede-derived hnl gene and a mutant millipede-derived HNL protein)
A mutant millipede-derived HNL protein can be obtained by the following procedure. First, the amino acid sequence constituting the wild-type millipede HNL protein determined as described above is aligned with the already obtained amino acid sequence of the millipede HNL (FIG. 4). From the alignment results, the amino acid sequences that make up the eight anti-equilibrium β sheets known for the other millipede HNL are determined. Further, the amino acid sequence constituting the β-sheet structure located at the third (β3), fourth (β4), and fifth (β5) counting from the N-terminal side is determined. selected from the second amino acid in the amino acid sequence constituting β3, the fifth and seventh amino acids in the amino acid sequence constituting β4, and the second and third amino acids in the amino acid sequence constituting β5 Design a structure that replaces one or more amino acids with another amino acid. Based on the designed amino acid sequence, a primer containing the mutated amino acid is designed, and PCR is performed using the primer and the original wild-type hnl gene as a template, thereby obtaining a mutated millipede-derived hnl gene (mutated HNL protein Encoding nucleic acid molecule). The vector having the nucleic acid molecule encoding the mutant HNL protein is obtained by inserting the obtained mutant millipede hnl gene into an expression cassette suitable for expression in a host, if necessary, and then inserting it into a vector. be able to. By transforming the obtained vector into a host cell, a transformed cell transformed with the vector can be obtained. A transformed HNL protein can be obtained by culturing the transformed cells to express the target protein.
(シアノヒドリン合成方法)
 一態様において本発明は、(R)-HNL変異体タンパク質の存在下で、ケトン又はアルデヒドとシアン化合物とを反応させることを含む、シアノヒドリンの製造方法に関する。アルデヒド又はケトンからのシアノヒドリンの合成は、例えば、Dadashipourら(2015)(上掲)を参照して行うことができる。具体的には、(R)-HNL変異体タンパク質を、アルデヒド及びシアン化合物を含有する、クエン酸緩衝液に添加して混合し、25℃で3分間反応させ、n-ヘキサン及び2-プロパノールと激しく混合することにより有機相中にシアノヒドリンを得ることができる。
(Cyanohydrin synthesis method)
In one aspect, the present invention relates to a method for producing cyanohydrin, comprising reacting a ketone or aldehyde with a cyanide compound in the presence of a (R) -HNL mutant protein. The synthesis of cyanohydrins from aldehydes or ketones can be performed, for example, with reference to Dadashour et al. (2015) (supra). Specifically, the (R) -HNL mutant protein is added to a citrate buffer containing an aldehyde and a cyanide, mixed, reacted at 25 ° C. for 3 minutes, and mixed with n-hexane and 2-propanol. By vigorous mixing, cyanohydrin can be obtained in the organic phase.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 必要に応じてクエン酸緩衝液(pH4.0)中に有機溶媒を添加して反応させることもできる。このような有機溶媒としては、酢酸エチル(EA)、ジエチルエーテル(DEE)、メチル-t-ブチルエーテル(MTBE)、2-イソプロピルエーテル(DIPE)、ジブチルエーテル(DBE)、メタノール(Met)、及びヘキサン(Hex)を挙げることができ、好ましくは、DIPE、DEE、MTBE、DBE及びHexであり、より好ましくは、DIPE、DEE、MTBE、及びDBEEである。 有機 If necessary, an organic solvent may be added to a citrate buffer (pH 4.0) to cause a reaction. Such organic solvents include ethyl acetate (EA), diethyl ether (DEE), methyl-t-butyl ether (MTBE), 2-isopropyl ether (DIPE), dibutyl ether (DBE), methanol (Met), and hexane. (Hex), preferably DIPE, DEE, MTBE, DBE and Hex, more preferably DIPE, DEE, MTBE and DBEE.
 (R)-HNL変異体タンパク質は、精製したタンパク質を使用することもできるし、菌体粉砕物またはその粗生成物を使用することもできる。シアノヒドリン合成に用いる酵素量は、反応を触媒できる酵素量であれば特に制限されるものではないが、例えば、1~100U、1~50U、1~10U、2~8U、3~5Uとすることができる。また、クエン酸緩衝液のpHは、例えば、3~7、3~6、3~5、3.5~5、及び3.5~4とすることができる。また、反応温度は、酵素反応に依存しないラセミ体のシアノヒドリンの生成が抑制され、かつ、酵素反応に適した温度が好ましく、例えば、0~50℃、15~35℃とすることができる。 As the (R) -HNL mutant protein, a purified protein can be used, or a crushed cell or a crude product thereof can also be used. The amount of the enzyme used for cyanohydrin synthesis is not particularly limited as long as it is an enzyme capable of catalyzing the reaction. For example, the amount is 1 to 100 U, 1 to 50 U, 1 to 10 U, 2 to 8 U, and 3 to 5 U. Can be. Further, the pH of the citrate buffer can be, for example, 3 to 7, 3 to 6, 3 to 5, 3.5 to 5, and 3.5 to 4. Further, the reaction temperature is preferably a temperature suitable for the enzymatic reaction, in which the production of racemic cyanohydrin independent of the enzymatic reaction is suppressed, for example, 0 to 50 ° C, 15 to 35 ° C.
 アルデヒド又はケトンは合成したいシアノヒドリンの構造に応じて選択することができる。例えば、R及びRは、水素原子(ただし、RとRのいずれか1つのみ)、置換されていてもよいC1~18の直鎖又は分岐アルキル基、置換されていてもよい5~22員環の芳香族基(N,O及びSから選択される1~4個の原子を有するヘテロ芳香族基を含む)であり得る。置換されていてもよい場合の置換基としては、アミノ基、イミノ基、水酸基、C1~22の直鎖又は分岐アルキル基(芳香族基の置換基の場合のみ)、C1~8アルコキシ基、ハロゲン原子、アリルオキシ基、カルボキシル基、C3~20のシクロアルキル基(ハロゲン原子、水酸基、C1~8の直鎖又は分岐状のアルキル基、及び/又はC2~8の直鎖又は分岐状のアルケニル基で置換されていてもよい)、N,O及びSから選択される1つ以上の原子を有する5~22員環のヘテロ芳香族基(ハロゲン原子、水酸基、C1~8の直鎖又は分岐状のアルキル基、及び/又はC2~8の直鎖又は分岐状のアルケニル基で置換されていてもよい)を挙げることができる。置換されていてもよい場合の置換基の数としては、1個以上とすることができ、2個、3個、4個、5個またはそれ以上であってもよい。例えば、アルデヒド又はケトンとしては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブタナール、ペンタナール、ヘキサナール、ヘプタナール、オクタナール、ノナナール、デカナール、蟻酸、ビニルアルデヒド、ベンズアルデヒド、2-クロロベンズアルデヒド、シンナムアルデヒド、ペリルアルデヒド、バニリン、グリオキサールなどを挙げることができる。アルデヒド又はケトンの濃度は、0.01mM~5M,0.1mM~1M、又は1mM~100mMとすることができる。 The aldehyde or ketone can be selected according to the structure of the cyanohydrin to be synthesized. For example, R 1 and R 2 are a hydrogen atom (however, only one of R 1 and R 2 ), an optionally substituted C1-18 linear or branched alkyl group, or an optionally substituted It may be a 5- to 22-membered aromatic group (including a heteroaromatic group having 1 to 4 atoms selected from N, O and S). Examples of the substituent which may be substituted include an amino group, an imino group, a hydroxyl group, a C1-22 linear or branched alkyl group (only in the case of an aromatic group substituent), a C1-8 alkoxy group, and a halogen atom. Atom, allyloxy group, carboxyl group, C3-20 cycloalkyl group (halogen atom, hydroxyl group, C1-8 linear or branched alkyl group, and / or C2-8 linear or branched alkenyl group A 5- to 22-membered heteroaromatic group having at least one atom selected from N, O and S (a halogen atom, a hydroxyl group, a C1-8 straight-chain or branched Alkyl group and / or C2-8 linear or branched alkenyl group). The number of substituents when they may be substituted may be one or more, and may be two, three, four, five or more. For example, aldehydes or ketones include formaldehyde, acetaldehyde, propionaldehyde, butanal, pentanal, hexanal, heptanal, octanal, nonanal, decanal, formic acid, vinyl aldehyde, benzaldehyde, 2-chlorobenzaldehyde, cinnamaldehyde, perylaldehyde, vanillin, glyoxal And the like. The concentration of the aldehyde or ketone can be 0.01 mM to 5M, 0.1 mM to 1M, or 1 mM to 100 mM.
 シアン化合物としては、シアン化ナトリウム、シアン化カリウムを用いることができる。使用するシアン化合物の量は、例えば、0.1mM~10M、0.2mM~2M、又は2mM~200mMとすることができる。 ナ ト リ ウ ム As the cyanide compound, sodium cyanide and potassium cyanide can be used. The amount of cyanide used can be, for example, 0.1 mM to 10 M, 0.2 mM to 2 M, or 2 mM to 200 mM.
 得られたシアノヒドリンは、必要に応じてキラルHPLCなどにより更に精製することができる。 The obtained cyanohydrin can be further purified by chiral HPLC or the like, if necessary.
 形成された(R)-Man及び(R)-2-Cl-Manの変換及びeeをキラルHPLCによって分析することができる。対応する基質の標準曲線を用いて変換を計算することができる。eeは、以下の式(1)を用いて2つのエナンチオマーのピーク面積を計算することによって決定することができる。以下の式において、RはR体の濃度、SはS体の濃度を表す。 変 換 The formed (R) -Man and (R) -2-Cl-Man conversion and ee can be analyzed by chiral HPLC. The conversion can be calculated using the standard curve of the corresponding substrate. ee can be determined by calculating the peak area of the two enantiomers using equation (1) below. In the following formula, R represents the concentration of R-form and S represents the concentration of S-form.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 以下,実施例に基づいて本発明をより具体的に説明する。ただし,本発明はこれらの実施例に限定されるものではない。なお,本願全体を通して引用される全文献は参照によりそのまま本願に組み込まれる。また、以下の実施例においては、HNLのアミノ酸の番号はシグナル配列を含まない成熟タンパク質におけるアミノ酸の位置を示す。よって、図4及び配列表と以下の実施例とでは同じアミノ酸を表す番号が異なる。 Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to these examples. All documents cited throughout the application are incorporated herein by reference in their entirety. In the following examples, the amino acid numbers of HNL indicate amino acid positions in the mature protein not containing the signal sequence. Therefore, the numbers indicating the same amino acids are different between FIG. 4 and the sequence listing and the following examples.
(実施例1)ChuaHNLの構造解析
(マンデロニトリル(MAN)合成のための酵素アッセイ)
 ラセミ体MANは、Sigma-Aldrich(St.Louis、MO、USA)から購入した。HNLによる(R)-MANの合成活性を以前に報告されたように測定した(Dadashipour,M.ら,(2015)Proc.Natl.Acad.Sci.U.S.A.112:10605-10610.)。要約すると、酵素試料を1mlの反応緩衝液(400mMクエン酸緩衝液(pH4.2)、50mMベンズアルデヒド及び100mMシアン化カリウム)に加え、混合物を22℃で5分間インキュベートした。次いで、9倍量のn-ヘキサン:2-プロパノール(85:15)と混合することによって反応を停止させた。最後に、キラルカラム(CHIRALCEL OJ-H、Daicel、Tokyo、Japan)(内径4.6mm×200mm長、粒子サイズ5μm)を備えたHPLC装置(UFLC Prominence Liquid Chromatograph LC-20AD、Shimadzu、Kyoto、Japan)を用いて有機層を分析した。1ユニットの活性は、ベンズアルデヒド及びシアン化水素から1分間に1μmolの(R)-MANを合成する酵素の量として定義した。
(Example 1) Structural analysis of Chua HNL (enzyme assay for synthesis of mandelonitrile (MAN))
Racemic MAN was purchased from Sigma-Aldrich (St. Louis, MO, USA). (R) -MAN synthesis activity by HNL was measured as previously reported (Dadashipour, M. et al., (2015) Proc. Natl. Acad. Sci. USA 112: 10605-10610. ). Briefly, enzyme samples were added to 1 ml of reaction buffer (400 mM citrate buffer (pH 4.2), 50 mM benzaldehyde and 100 mM potassium cyanide) and the mixture was incubated at 22 ° C. for 5 minutes. The reaction was then stopped by mixing with 9 volumes of n-hexane: 2-propanol (85:15). Finally, an HPLC apparatus (UFLC Promence Liquid Chromatograph LC-20AD, Shimadzu, Kyoto, Kyoto) equipped with a chiral column (CHIRALCEL OJ-H, Daicel, Tokyo, Japan) (inner diameter 4.6 mm × 200 mm long, particle size 5 μm). Used to analyze the organic layer. One unit of activity was defined as the amount of enzyme that synthesizes 1 μmol of (R) -MAN per minute from benzaldehyde and hydrogen cyanide.
(Pichia pastoris発現系におけるChuaHNLの構築)
 ChuaHNL cDNAは、KOD-Plus-DNAポリメラーゼ(TOYOBO、Osaka、Japan)、His-ChuaHNL-Fwプライマー及びHis-ChuaHNL-Rvプライマーを用いて、ChuaHNL cDNA(Dadashipourら(2015)上掲)を鋳型としたPCRによって増幅した。得られたPCR産物をXhoI及びXbaI(TaKaRa)で消化し、ピキア(Pichia)発現ベクターpPICZαAのAOX1プロモーター下にクローニングし、pPICZαA-His-ChuaHNLを得た。
(Construction of ChuaHNL in Pichia pastoris expression system)
ChuaHNL cDNA was prepared by using KOD-Plus-DNA polymerase (TOYOBO, Osaka, Japan), His-ChuaHNL-Fw primer and His-ChuaHNL-Rv primer, and using ChuaHNL cDNA (Dadashipour et al., (2015)) as a template. Amplified by PCR. The resulting PCR product was digested with XhoI and XbaI (TaKaRa) and cloned under the AOX1 promoter of the Pichia expression vector pPICZαA to obtain pPICZαA-His-ChuaHNL.
His-ChuaHNL-Fwプライマー(配列番号22):
GCGCTCGAGAAAAGAGCACATCATCATCATCATCATCATCATGAAAATTTATACTTCCAAGGGTCACTGACTTGTGATCAACTTCCC
His-ChuaHNL-Rvプライマー(配列番号23):
CGCTCTAGATTAGTAAAAAGCAAAGCAACCGTGGGTTTC
His-ChuaHNL-Fw primer (SEQ ID NO: 22):
GCGCTCGAGAAAAGAGCACATCATCATCATCATCATCATCATCATGAAAATTTTACTTCCAAGGGTCACTGACTTGTGATCAACTTCCC
His-ChuaHNL-Rv primer (SEQ ID NO: 23):
CGCTCTAGATTAGTAAAAGCAAAGCAACCGTGGGTTTTC
 P.pastoris由来のタンパク質ジスルフィドイソメラーゼ(PDI)をコードする遺伝子(PpPDI、Genbank ID:AJ302014)を、プライマー対(PpPDI-InFu-Fwプライマー及びPpPDI-InFu-Rvプライマー)、及びKOD-Plus-Neo DNAポリメラーゼ(TOYOBO))を用いて、P.pastorisゲノムDNAを鋳型としてPCRにより増幅した。得られたDNA断片を、In-Fusion HDクローニングキット(Clontech Laboratories、Palo Alto、CA、USA)を用いて、Pichia発現ベクターのpAO815におけるAOX1プロモーター下のEcoRI(TaKaRa)部位にクローニングした。得られた発現ベクターをStuI(TaKaRa)で直線化し、エレクトロトランスフォーメーション法によりP.pastoris GS115株に形質転換した。 得られた発現ベクターをSacI(TaKaRa)により線状化し、細胞に形質転換した。形質転換体は、5’AOX1プライマー及び3’AOX1プライマーを用いたコロニーPCRによって確認した。 P. Pastoris-derived protein disulfide isomerase (PDI) -encoding gene (PpPDI, Genbank ID: AJ302014) was obtained by combining a primer pair (PpPDI-InFu-Fw primer and PpPDI-InFu-Rv primer), and KOD-Plus-Neo DNA polymerase (PDI). TOYOBO)). Pastoris genomic DNA was used as a template for amplification by PCR. The obtained DNA fragment was cloned into an EcoRI (TaKaRa) site under the AOX1 promoter in pAO815 of the Pichia expression vector using an In-Fusion HD cloning kit (Clontech Laboratories, Palo Alto, CA, USA). The obtained expression vector was linearized with StuI (TaKaRa), and the P.p. pastoris strain GS115. The obtained expression vector was linearized with SacI (TaKaRa) and transformed into cells. Transformants were confirmed by colony PCR using 5'AOX1 and 3'AOX1 primers.
PpPDI-InFu-Fwプライマー(配列番号24):
TCGAAACGAGGAATTCACCATGCAATTCAACTGGGATATT
PpPDI-InFu-Rvプライマー(配列番号25):
TGTCTAAGGC GAATTCTTAAAGCTCGTCGTGAGCGTC
5’AOX1プライマー(配列番号26):
GACTGGTTCCAATTGACAAGC
3’AOX1プライマー(配列番号27):
GCAAATGGCATTCTGACATCC
PpPDI-InFu-Fw primer (SEQ ID NO: 24):
TCGAAACGAGGAATTCCATGCAATTCAACTGGGAATT
PpPDI-InFu-Rv primer (SEQ ID NO: 25):
TGTCTAAGGC GAATTCTTAAAGCTCGTGCGTGAGCCGTC
5'AOX1 primer (SEQ ID NO: 26):
GACTGGTTCCAATTGACAAGC
3'AOX1 primer (SEQ ID NO: 27):
GCAAATGGCATCTCTGACATCC
(Pichia pastorisの培地及び培養条件)
 Pichia pastoris GS115株を、必要に応じて100~2000μg/mlのゼオシン(Invitrogen、Carlsbad、CA、USA)を添加したYPDS培地(2%グルコース、2%ペプトン、1%酵母エキス、2%寒天及び1Mソルビトール)中、28℃で増殖させ、形質転換させた。タンパク質発現のために、必要に応じて0.004%のヒスチジンを添加した、緩衝化最小グリセロール(BMG)培地(アミノ酸を含まない1.34%酵母窒素塩基、4×10-5%ビオチン、100mMリン酸カリウム緩衝液(pH 7.0)及び1%グリセロール)、又はBMM培地(1%グリセロールが1%メタノールに置き換えられたBMG培地)を使用した。培養は往復振盪しながら好気的条件下、28℃で行い、酵母の増殖は波長600nmでの光学濃度を測定することによってモニターした。大腸菌HST08株(TaKaRa Bio、Otsu、Japan)をプラスミド増幅に用いた。必要に応じてアンピシリン(50mg/ml)又はゼオシン(25mg/ml)を添加した低塩Luria-Bertani(LB)培地(1%トリプトン、0.5%酵母エキス及び0.5%NaCl)中、37℃で大腸菌を増殖させた。
(Pichia pastoris medium and culture conditions)
Pichia pastoris GS115 strain was added to a YPDS medium (2% glucose, 2% peptone, 1% yeast extract, 2% agar and 1M) supplemented with 100-2000 μg / ml zeocin (Invitrogen, Carlsbad, CA, USA) as required. (Sorbitol) at 28 ° C. and transformed. Buffered minimal glycerol (BMG) medium (1.34% yeast nitrogen base without amino acids, 4 × 10 −5 % biotin, 100 mM, supplemented with 0.004% histidine as needed for protein expression) Potassium phosphate buffer (pH 7.0) and 1% glycerol) or BMM medium (BMG medium in which 1% glycerol was replaced with 1% methanol) was used. Cultivation was performed at 28 ° C. under aerobic conditions with reciprocal shaking, and yeast growth was monitored by measuring optical density at a wavelength of 600 nm. E. coli HST08 strain (TaKaRa Bio, Otsu, Japan) was used for plasmid amplification. In low salt Luria-Bertani (LB) medium (1% tryptone, 0.5% yeast extract and 0.5% NaCl) supplemented with ampicillin (50 mg / ml) or zeocin (25 mg / ml) as needed, 37 E. coli was grown at ℃.
(ChuaHNLタンパク質の精製)
 天然のChuaHNLは以前に報告されたプロトコールにより精製した。要約すると、まず、緩衝液-A(20mMリン酸カリウム、pH7.0)に可溶化されたヤスデのホモジネートを硫酸アンモニウム沈殿法により分画した。次に、TOYOPEARL Butyl-650M(Tosoh、Tokyo、Japan)、TOYOPEARL DEAE-650M(Tosoh)、Q Sepharose FF(GE Healthcare、Chicago、IL、USA)及びSuperdex 75 10/300GL(GE Healthcare)を用いて天然のChuaHNLタンパク質を精製した。最後に、活性画分を集め、SDS-PAGEに供して純度を評価した。タンパク質の結晶化のために、緩衝液を50mMクエン酸緩衝液(pH5.0)と交換し、使用するまで4℃で保存した。
(Purification of Chua HNL protein)
Native ChuaHNL was purified by a previously reported protocol. Briefly, first, a millipede homogenate solubilized in buffer-A (20 mM potassium phosphate, pH 7.0) was fractionated by ammonium sulfate precipitation. Next, TOYOPEARL Butyl-650M (Tosoh, Tokyo, Japan), TOYOPEARL DEAE-650M (Tosoh), Q Sepharose FF (GE Healthcare, Chicago, IL, USA, Gazette, IL, USA) Of the ChuaHNL protein were purified. Finally, active fractions were collected and subjected to SDS-PAGE to evaluate purity. For protein crystallization, the buffer was replaced with 50 mM citrate buffer (pH 5.0) and stored at 4 ° C. until use.
 組換えHisタグ化ChuaHNLは、PpPDIを発現するP.pastorisにおけるタンパク質分泌系によって発現させた。最初に、6日間のインキュベーション後の培地を、2M水酸化ナトリウムを添加することによりpH7.5に調整した。 次に、His-tagタンパク質をNi Sepharose 6 FF樹脂(GE Healthcare)、Mono Q 5/50 GL(GE Healthcare)及びSuperdex 200 10/300 GL(GE Healthcare)を用いて精製した。 最後に、活性画分を10mMクエン酸緩衝液(pH5.5)に透析し、使用するまで-20℃で保存した。 Recombinant His-tagged ChuaHNL is a P.p. and expressed by the protein secretion system in P. pastoris. Initially, the medium after 6 days of incubation was adjusted to pH 7.5 by adding 2M sodium hydroxide. Next, the His-tag protein was purified using Ni Sepharose 6 FF resin (GE Healthcare), Mono Q 5/50 GL (GE Healthcare), and Superdex 200/10/300 GL (GE Healthcare). Finally, the active fraction was dialyzed against 10 mM citrate buffer (pH 5.5) and stored at −20 ° C. until use.
(結晶化、データ収集、構造決定)
 タンパク質結晶化のための全ての化学物質は、Hampton Research(Aliso Viejo、CA、USA)から購入した。天然及び組換えChuaHNLタンパク質溶液を、Amicon Ultra Centrifugal Filter Unites NMWL、10kDa(Merck Millipore、Billerica、MA、USA)を用いて10mg/mlまで濃縮した。標準物質としてウシ血清アルブミン(Sigma-Aldrich)を用いて、Quick Start Protein Assay(Bio-Rad Laboratories、Hercules、CA、USA)によりタンパク質濃度を測定した。 CrystalScreen I及びII(Hampton Research)を用いて初期結晶化条件をスクリーニングし、0.2Mの硫酸アンモニウム、0.1Mの酢酸ナトリウム(pH4.6)、30%(w/v)ポリエチレングリコール(PEG)モノメチルエーテル2,000の条件下で二面体結晶を得た。最後に、0.2M硫酸アンモニウム、0.1M酢酸ナトリウム(pH5.0)、28~32%(w/v)PEGモノメチルエーテル2000、及び0.3M NDSB-195の条件下、20℃で3日間ハンギングドロップ蒸気拡散法を用いて最良の結晶を得た。
(Crystallization, data collection, structure determination)
All chemicals for protein crystallization were purchased from Hampton Research (Aliso Viejo, CA, USA). Native and recombinant ChuaHNL protein solutions were concentrated to 10 mg / ml using Amicon Ultra Centrifugal Filter Units NMWL, 10 kDa (Merck Millipore, Billerica, MA, USA). The protein concentration was measured using Quick Start Protein Assay (Bio-Rad Laboratories, Hercules, CA, USA) using bovine serum albumin (Sigma-Aldrich) as a standard. Initial crystallization conditions were screened using CrystalScreen I and II (Hampton Research), 0.2 M ammonium sulfate, 0.1 M sodium acetate (pH 4.6), 30% (w / v) polyethylene glycol (PEG) monomethyl Dihedral crystals were obtained under ether 2,000 conditions. Finally, hanging at 20 ° C. for 3 days under the conditions of 0.2 M ammonium sulfate, 0.1 M sodium acetate (pH 5.0), 28-32% (w / v) PEG monomethyl ether 2000, and 0.3 M NDSB-195. The best crystals were obtained using the drop vapor diffusion method.
 相の決定のために、凍結及びデータ収集の前に、天然ChuaHNL結晶は0.5Mヨウ化ナトリウムを含有する貯蔵溶液中に20℃で30分間浸漬した。アセテートと複合体を形成した天然及び組換え構造については、得られた結晶を直接データ収集に使用した。リガンドを含まない形態については、天然タンパク質から得られた結晶を浸漬溶液-1(32%(w/v)PEGモノメチルエーテル2,000、0.3M NDSB-195,50mMビス-トリス-プロパン、50mMクエン酸、pH4.5)中に20℃で20分間浸し、アセテートを除去した。チオシアン酸塩、ヨードアセテート及びシアン化物イオンを有する複雑な構造の場合、それぞれ、80mMチオシアン酸カリウム、10mMのヨード酢酸ナトリウム及び0.5Mのシアン化カリウムを含む浸漬溶液-1中に、リガンド非含有形態の結晶を浸漬した。 For the determination of the phase, before freezing and data collection, native Chua HNL crystals were immersed in a storage solution containing 0.5 M sodium iodide at 20 ° C. for 30 minutes. For native and recombinant structures complexed with acetate, the resulting crystals were used directly for data collection. For the ligand-free form, the crystals obtained from the native protein were immersed in immersion solution-1 (32% (w / v) PEG monomethyl ether 2,000, 0.3 M @ NDSB-195, 50 mM bis-tris-propane, 50 mM The solution was immersed in citric acid (pH 4.5) at 20 ° C. for 20 minutes to remove the acetate. For complex structures with thiocyanate, iodoacetate and cyanide ions, the ligand-free form was included in a dipping solution-1 containing 80 mM potassium thiocyanate, 10 mM sodium iodoacetate and 0.5 M potassium cyanide, respectively. The crystals were soaked.
 すべての結晶をパーフルオロエーテルで凍結保護し、データセットを窒素流下100Kで収集した。単一異常分散(SAD)フェーズのX線回折データは、X線発生器及びイメージングプレート(MicroMAX-007及びR-AXIS VII、Rigaku、Tokyo、Japan)で収集した。他のデータは、Photon Factory beamline BL-1A及びBL-5A(つくば、日本)のシリコンピクセル検出器(Pilatus 2M-F、DECTRIS、Baden-Daettwil、スイス)及びCCD検出器(Quantum 315r、Area Detector Systems、Poway、CA,USA)を用いて収集した。 結晶 All crystals were cryoprotected with perfluoroether and the data set was collected at 100K under a stream of nitrogen. X-ray diffraction data for the single anomalous dispersion (SAD) phase was collected on an X-ray generator and imaging plate (MicroMAX-007 and R-AXIS @ VII, Rigaku, Tokyo, Japan). Other data include Photon Factory Beamline BL-1A and BL-5A (Tsukuba, Japan) silicon pixel detectors (Pilatus 2M-F, DECTRIS, Baden-Daettwil, Switzerland) and CCD detectors (Quantum 315r, Area Detector). , Poway, CA, USA).
 すべてのデータセットはXDS(Kabsch,W.(2010)Acta Crystallogr.D Biol.Crystallogr.66,125-132)を使用して統合され、SCALA(Winn,M.D.ら,(2011)Acta Crystallogr.D Biol.Crystallogr.67,235-242)によってスケーリングした。SHELX suite(Sheldrick,G.M.(2010)Acta Crystallographica Section D Biological Crystallography 66, 479-485)を用いて初期相を決定した。 全てのモデルはCOOT(Emsley,P.ら,Acta Crystallographica Section D Biological Crystallography 66,486-501)を用いて修正され、REFMAC5(Murshudov,G.N.ら,(1997)Acta Crystallogr. D Biol. Crystallogr. 53, 240-255)又はPHENIX(Afonine,P.V.ら,(2012)Acta Crystallogr. D Biol. Crystallogr.68,352-367)プログラムを用いて改良された。 All data sets were integrated using XDS (Kabsch, W. (2010) Acta Crystallogr. D Biol. Crystallogr. 66, 125-132) and SCALA (Winn, MD et al. (2011) Acta Crystallogr. .D @ Biol.Crystallogr. 67, 235-242). The initial phase was determined using SHELX suite (Sholdrick, GM (2010) Acta Crystalgraphica Section D D Biological Crystallography 66, 479-485). All models were modified using COOT (Emsley, P. et al., Acta Crystallographica Section D D Biological Crystallography 66, 486-501), and REFMAC5 (Murshudov, G.N. alt. $ 53, $ 240-255) or PHENIX (Afone, PV, et al., (2012) Acta Crystallogr. D D Biol. Crystallogr. 68, 352-367).
(構造解析)
 すべての構造は、MolProbity(Chen,V.B.ら,(2010)Acta Crystallographica Section D Biological Crystallography 66,12-21)を使用して検証され、Ramachandranプロットの不許可領域には残基は存在しなかった。相分析の統計を表1に、データ収集及び構造の改良の統計を表2に示す。構造分析はPISA(Krissinel,E.ら,(2007)J. Mol. Biol. 372, 774-797)を用いて行った。 タンパク質構造の図はPyMOLプログラム(http://www.pymol.org)を用いて作製した。
(Structural analysis)
All structures were verified using MolProbity (Chen, VB et al., (2010) Acta Crystallographic Section D Biological Crystallography 66, 12-21), and the presence of Ramachandran plots where residues were not permitted in Ramachandran plots. Did not. The statistics of the phase analysis are shown in Table 1 and the statistics of data collection and structure improvement are shown in Table 2. Structural analysis was performed using PISA (Krissinel, E. et al., (2007) J. Mol. Biol. 372, 774-797). A diagram of the protein structure was created using the PyMOL program (http://www.pymol.org).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(ChuaHNLの全体構造)
 ヤスデから精製された天然のChuaHNLの結晶構造は、ヨウ素含浸ChuaHNL結晶を用いてSAD法により内部X線源で2.1Åの分解能に回折することにより測定した(表1)。結晶はPユニットに1分子存在した(表2及び図1A)。 アミノ酸残基は、シグナルペプチドを除去した成熟ChuaHNLのN末端Leu残基から番号付けした。成熟したChuaHNLのN末端のLeu1及びC末端のTyr162の電子密度マップが明瞭に確認された。ChuaHNLは、2つのα-ヘリックス、3つの310ヘリックス、及び8つのβシートを含んでいた(図1)。8つのβシートは、中央活性部位空洞を含む逆平行βバレルを形成していた(図1B)。
(Overall structure of Chua HNL)
The crystal structure of native Chua HNL purified from millipede was determined by diffracting to an internal X-ray source with an iodine-impregnated Chua HNL crystal to a resolution of 2.1 ° by the SAD method (Table 1). One crystal was present in the P unit (Table 2 and FIG. 1A). Amino acid residues were numbered from the N-terminal Leu residue of mature ChuaHNL with the signal peptide removed. The electron density maps of Leu1 at the N-terminus and Tyr162 at the C-terminus of mature ChuaHNL were clearly confirmed. ChuaHNL contained two α- helices, three 3 10 helix, and eight β sheet (Figure 1). Eight β-sheets formed an anti-parallel β-barrel containing a central active site cavity (FIG. 1B).
 ChuaHNLと相同的な配列はBLAST検索では見つからなかったが、Daliサーバー(Holm,L.ら,(2010)Nucleic Acids Res. 38, W545-549)を用いた構造比較検索により、ChuaHNLがリポカリンタンパク質に似ていることを明らかとなった。多くの典型的なリポカリンは、10より高いZスコアを与え、有意な構造類似性を示す。典型的なリポカリンに対するChuaHNLの全体的なアミノ酸配列同一性は8%未満であった。 リポカリンは、一般に、structurally-conserved regions(SCR)1~3(Flower D.R.(1996)Biochem.J. 318(Pt1),1-14)として知られる3つの構造的及び配列的に保存されたモチーフを含む。SCRにおけるアミノ酸類似性が非常に低いにもかかわらず、ChuaHNLの二次構造はヒトレチノール結合タンパク質4の二次構造とよく重複していた。 Although a sequence homologous to ChuaHNL was not found by BLAST search, ChuaHNL was found to be a lipocalin protein by a structural comparison search using a Dali server (Holm, L. et al., (2010) Nucleic Acids Res. $ 38, @ W545-549). It turned out to be similar. Many typical lipocalins give a Z score higher than 10, indicating significant structural similarity. The overall amino acid sequence identity of ChuaHNL to a typical lipocalin was less than 8%. Lipocalins are generally three structurally and sequencely conserved known as structurally-conserved regions (SCR) 1-3 (Flower DR (1996) Biochem. J. 318 (Pt1), 1-14). Including motifs. Despite the very low amino acid similarity in the SCR, the secondary structure of ChuaHNL overlapped well with that of human retinol binding protein 4.
(ChuaHNLの活性部位へのリガンドの結合)
アセテート結合型
 ChuaHNL構造のアセテート結合形態を1.5Åの分解能で測定した。リザーバー溶液中に含まれるアセテートが活性部位に観察された。カルボキシ酸素は、Arg38及びTyr40と塩橋を形成していた(図2A)。
リガンドフリーの形態
 ChuaHNL構造のリガンドを含まない形態を1.6Åの分解能で測定した。 活性部位に結合した酢酸塩を除去するために、結晶をビス-トリスプロパン-クエン酸緩衝液を含む溶液に浸漬した。3つの水分子が活性部位に観察された(図2B)。これらはArg38、Tyr103、及びLys117と水素結合を形成していた。
シアン化物イオン結合型
 シアン化物イオンと複合体を形成したChuaHNLの結晶構造を2.1Åの分解能で測定した(図2C)。シアン化物イオンの配向は温度係数及び負に帯電した炭素とArg38との間に存在し得る静電相互作用によって決定した。シアン化物イオンの窒素原子は3.3Åの距離でTry40-Oηと水素結合を形成した。シアン化物イオンの負に帯電した炭素は、4.2Åの距離でArg38-Nη1と静電的に相互作用していた。
阻害剤結合型
 本発明者らは以前に、ヨードアセテート及びチオシアネートがChuaHNLによって触媒される(R)-MAN合成反応を阻害することを報告した(Dadashipourら(2015)上掲)。ヨードアセテートとチオシアン酸塩との複合体を形成したChuaHNLのそれぞれの構造を、1.55Åの分解能で測定した。ヨードアセテートとの複合体構造において、カルボキシ酸素は、3.1Å及び3.0Åの距離でArg38-N1η及びN2ηと、また、3.1Åの距離でLys117-Nεと塩橋を形成した(図2D)。ヨードアセテートのヨウ素原子は、4.3Åの距離でPhe67と弱いπ相互作用を形成することがある。Phe67とArg38との間の強いanomalous difference mapは、ヨウ素原子の存在を意味した。
 チオシアン酸塩との複合体構造において、2つの代替結合様式が観察された。結晶構造中の2つのチオシアネート分子の配向は、構造微細化後のより低いB因子値によって決定された。1つの結合様式(図2E、SCN1)において、チオシアネートの硫黄原子は、Tyr103-Oη及びArg38-Nη1と、それぞれ3.0Å及び3.2Åの距離で水素結合を形成していた。もう一つの結合様式(図2E、SCN2)では、チオシアン酸塩の硫黄原子は、3.1Åの距離でArg38-Nη2及びLys117-Nεと塩橋を形成していた(図2E)。
(Binding of ligand to the active site of Chua HNL)
The acetate-binding form of the acetate-binding ChuaHNL structure was measured at 1.5 ° resolution. Acetate contained in the reservoir solution was observed at the active site. The carboxy oxygen formed a salt bridge with Arg38 and Tyr40 (FIG. 2A).
Ligand-free form The ligand-free form of the ChuaHNL structure was measured at 1.6 ° resolution. The crystals were soaked in a solution containing bis-trispropane-citrate buffer to remove acetate bound to the active site. Three water molecules were observed at the active site (FIG. 2B). These had formed hydrogen bonds with Arg38, Tyr103, and Lys117.
The crystal structure of ChuaHNL that formed a complex with cyanide ion-bonded cyanide ions was measured at a resolution of 2.1 ° (FIG. 2C). The orientation of the cyanide ion was determined by the temperature coefficient and possible electrostatic interactions between the negatively charged carbon and Arg38. The nitrogen atom of the cyanide ion formed a hydrogen bond with Try40-Oη at a distance of 3.3 °. The negatively charged carbon of the cyanide ion was electrostatically interacting with Arg38-Nη1 at a distance of 4.2 °.
Inhibitor-bound We have previously reported that iodoacetate and thiocyanate inhibit the ChuaHNL-catalyzed (R) -MAN synthesis reaction (Dadashipour et al. (2015) supra). The structure of each of ChuaHNL in which a complex of iodoacetate and thiocyanate was formed was measured at a resolution of 1.55 °. In the complex structure with iodoacetate, the carboxy oxygen formed a salt bridge with Arg38-N1η and N2η at distances of 3.1 ° and 3.0 ° and Lys117-Nε at a distance of 3.1 ° (FIG. 2D). ). Iodine atoms of iodoacetate may form weak π interactions with Phe67 at a distance of 4.3 °. A strong anomalous difference map between Phe67 and Arg38 indicated the presence of an iodine atom.
In the complex structure with thiocyanate, two alternative binding modes were observed. The orientation of the two thiocyanate molecules in the crystal structure was determined by the lower B-factor value after structure refinement. In one bonding mode (FIG. 2E, SCN1), the sulfur atom of the thiocyanate formed a hydrogen bond with Tyr103-Oη and Arg38-Nη1 at a distance of 3.0 ° and 3.2 °, respectively. In another mode of attachment (FIG. 2E, SCN2), the sulfur atom of the thiocyanate formed a salt bridge with Arg38-Nη2 and Lys117-Nε at a distance of 3.1 ° (FIG. 2E).
((R)-MANのドッキングシミュレーション)
 ChuaHNLがシアノヒドリンの合成及び切断反応をどのように触媒するかを知るために、MOE(Molecular Operating Environment、バージョン2016.8;(hemical Computing Group、Montreal、カナダ)によりChuaHNLの活性部位への(R)-MANのドッキングシミュレーションを行った。最も顕著な親和性スコア(S =-5.44)を与えるモデルにおける、活性部位の空洞における(R)-MANの結合を図3に示す。(R)-MANの水酸基及びニトリル基は、活性部位の底でChuaHNLの親水性残基と相互作用していた。 (R)-MANのベンゼン基は、多くの疎水性及び芳香族残基(Ile11、Phe17、Phe25、Ala54、Phe67、Ala75、Leu77、Trp88、Phe90、Ala105及びAla119)によって取り囲まれていた。深い疎水性空洞は、以前に観察されたように(Dadashipourら(2015)上掲)、様々なかさ高いシアノヒドリンを受容するのに役立つと考えらえた。
(Docking simulation of (R) -MAN)
To find out how ChuaHNL catalyzes the synthesis and cleavage reactions of cyanohydrin, MOE (Molecular Operating Environment, version 2016.8; (Chemical Computing Group, Montreal, Canada) to the active site of ChuaHNL by ChuaHNL). -A docking simulation of MAN was performed, showing the binding of (R) -MAN in the cavity of the active site in the model giving the most prominent affinity score (S = -5.44) (R)- The hydroxyl and nitrile groups of MAN interacted with the hydrophilic residues of ChuaHNL at the bottom of the active site.The benzene group of (R) -MAN had many hydrophobic and aromatic residues (Ile11, Phe17, Phe25, Ala54, P e67, Ala75, Leu77, Trp88, Phe90, Ala105 and Ala119) The deep hydrophobic cavities accept various bulky cyanohydrins, as previously observed (Dadasipour et al. (2015) supra). Thought to be helpful.
 親水性残基と(R)-MANとの相互作用を図3Bに示す。(R)-MANの水酸基は、Lys117-Nε及びArg38-Nη1と、それぞれ3.3Å及び3.3Åの距離で水素結合を形成していた。ニトリル基は、Arg38-Nη1、Arg38-Nη2及びTyr103-Oηと、それぞれ3.4,3.3及び3.3Åの距離で水素結合を形成していた。Asp56は、Arg38-Nη2、Arg38-Nε及びLys117-Nεと塩橋を形成する。Tyr40-Oηは、Arg38-Nη1及びTyr103-Oηと水素結合を形成する。リガンド結合を含む残基の結合長さ及び配向は、5つのChuaHNL構造においてほぼ同一であった。 The interaction between the hydrophilic residue and (R) -MAN is shown in FIG. 3B. The hydroxyl group of (R) -MAN formed a hydrogen bond with Lys117-Nε and Arg38-Nη1 at a distance of 3.3 ° and 3.3 °, respectively. The nitrile group formed hydrogen bonds with Arg38-Nη1, Arg38-Nη2 and Tyr103-Oη at distances of 3.4, 3.3 and 3.3 °, respectively. Asp56 forms a salt bridge with Arg38-Nη2, Arg38-Nε and Lys117-Nε. Tyr40-Oη forms a hydrogen bond with Arg38-Nη1 and Tyr103-Oη. The bond lengths and orientations of the residues containing ligand binding were nearly identical in the five ChuaHNL structures.
(実施例2)OgraHNL変異体の作製と活性測定
(化合物)
 全ての化合物は市販品を購入した。ベンズアルデヒド及び(R/S)-ManはSigma-Aldrichから購入した。2-クロロベンズアルデヒドは東京化成工業(Tokyo Chemical Industry)から購入した。(R/S)-2-Cl-ManはAlagozらの方法(Alagoz Dら,Enzymatic(2014)101:40-46)に従って合成した。
(Example 2) Production of OgraHNL mutant and activity measurement (compound)
All compounds were purchased commercially. Benzaldehyde and (R / S) -Man were purchased from Sigma-Aldrich. 2-chlorobenzaldehyde was purchased from Tokyo Chemical Industry. (R / S) -2-Cl-Man was synthesized according to the method of Alagoz et al. (Alagoz D et al., Enzymatic (2014) 101: 40-46).
(組換えOgraHNLの培養及び発現)
 以前に構築されたograhn1遺伝子を含有するプラスミドpET28a(Yamaguchi Tら,Scientific Reports(2018)8(1):3051)を保有する大腸菌SHuffle T7株の形質転換体を用いてOgraHNLを生産した。組換え大腸菌細胞を、カナマイシン(50μg/ml)を含有するLB培地5mlに接種し、250rpmで振とうしながら30℃で16~18時間培養し、次いでカナマイシン(50μg/ml)を含有するLB培地500mlに移した。150rpmで振とうしながら30℃で6時間培養した後(OD600=0.6-0.8)、最終濃度1mMとなるようにイソプロピルβ-チオガラクトシド(IPTG)を添加し、培養物を16℃で20時間さらに培養した。 4,500×g、4℃で10分間遠心分離して細胞を回収した。採取した細胞を、500mM塩化ナトリウム及び20mMイミダゾールを含有する20mMリン酸カリウム緩衝液(KPB、pH7.4)に再懸濁し、超音波処理により破壊した。4℃、15,000×gで10分間遠心分離した後に得られた上清を粗酵素として用いた。
(Culture and expression of recombinant OgraHNL)
OgraHNL was produced using a previously constructed transformant of the E. coli SHuffle T7 strain carrying the plasmid pET28a containing the ograhn1 gene (Yamaguchi T et al., Scientific Reports (2018) 8 (1): 3051). The recombinant E. coli cells are inoculated into 5 ml of LB medium containing kanamycin (50 μg / ml), cultured at 30 ° C. for 16 to 18 hours while shaking at 250 rpm, and then cultured in LB medium containing kanamycin (50 μg / ml). Transferred to 500 ml. After culturing at 30 ° C. for 6 hours with shaking at 150 rpm (OD600 = 0.6-0.8), isopropyl β-thiogalactoside (IPTG) was added to a final concentration of 1 mM, and the culture was cooled to 16 ° C. For 20 hours. The cells were collected by centrifugation at 4,500 × g at 4 ° C. for 10 minutes. Harvested cells were resuspended in 20 mM potassium phosphate buffer (KPB, pH 7.4) containing 500 mM sodium chloride and 20 mM imidazole and disrupted by sonication. The supernatant obtained after centrifugation at 15,000 × g for 10 minutes at 4 ° C. was used as a crude enzyme.
(組換えOgraHNLの精製)
 最初に、粗酵素をNi2+セファロース6 Fast Flowカラム(GE Healthcare社、ウプサラ、スウェーデン)上にロードし、500 mM塩化ナトリウム、及び300mMイミダゾールを含有する20mMのKPB(pH 7.4)で溶出した。活性画分を回収して濃縮し、リン酸緩衝生理食塩水(PBS、pH7.3)で交換してトロンビン消化(22℃、2Uトロンビン/100μgタグ-タンパク質で16時間)を行い、目的タンパク質からHisタグを除去した。次いで、タンパク質をモノQ5/50GLカラム(GEヘルスケア)にロードし、溶出緩衝液(20mM KPB及び500mM NaCl、pH7.4)の0-50%勾配を1ml/分の流速で流して溶出した。全ての精製工程は0~4℃で行った。タンパク質の純度は、12%ドデシル硫酸ナトリウムポリアクリルアミドゲル電気泳動(SDS-PAGE)によって評価した。タンパク質濃度は、標準タンパク質としてウシ血清アルブミンを用いて、BCAアッセイキット(Thermo Fisher Scientific、MA、USA)で測定した。
(Purification of recombinant OgraHNL)
First, the crude enzyme was loaded onto a Ni 2+ Sepharose 6 Fast Flow column (GE Healthcare, Uppsala, Sweden) and eluted with 20 mM KPB (pH 7.4) containing 500 mM sodium chloride and 300 mM imidazole. . The active fraction was collected, concentrated, exchanged with phosphate buffered saline (PBS, pH 7.3), and subjected to thrombin digestion (22 ° C., 2 U thrombin / 100 μg tag-protein for 16 hours). The His tag was removed. The protein was then loaded onto a Mono Q5 / 50GL column (GE Healthcare) and eluted with a 0-50% gradient of elution buffer (20 mM KPB and 500 mM NaCl, pH 7.4) running at a flow rate of 1 ml / min. All purification steps were performed at 0-4 ° C. Protein purity was assessed by 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The protein concentration was measured with a BCA assay kit (Thermo Fisher Scientific, MA, USA) using bovine serum albumin as a standard protein.
(結晶化及び構造決定)
 最適な結晶化条件のスクリーニングは、シッティングドロップ蒸気拡散法を用いて96ウェルIntelli-Plates(Art Robbins instruments、CA、USA)を用いて20℃で行った。等容量(1μL)のリザーバー溶液と10mg/mLのOgraHNLのタンパク質溶液とを混合することによって、液滴を調製した。スクリーニングは、IndexTM-HR2-144(Hampton Research、CA、USA)を用いて行った。単結晶は、2.0M硫酸アンモニウムを含有する0.1M BIS-TRIS(pH5.5)中で1日後に現れた。OgraHNLの結晶を、10%、20%及び25%(v/v)グリセロールを含む貯蔵溶液中にそれぞれ約30秒間連続的に浸漬した。次いで、結晶を2-クロロベンズアルデヒド1滴を添加した25%(v/v)グリセロール凍結保護剤溶液に2時間浸漬し、シアン化カリウム(KCN)で5分間浸漬した後、液体窒素流下でフラッシュ冷却した。
(Crystallization and structure determination)
Screening for optimal crystallization conditions was performed at 20 ° C. using 96-well Intelli-Plates (Art Robbins instruments, CA, USA) using the sitting drop vapor diffusion method. Droplets were prepared by mixing an equal volume (1 μL) of the reservoir solution with a 10 mg / mL protein solution of OgraHNL. Screening was performed using Index -HR2-144 (Hampton Research, CA, USA). Single crystals appeared after 1 day in 0.1 M BIS-TRIS (pH 5.5) containing 2.0 M ammonium sulfate. OgraHNL crystals were continuously immersed in stock solutions containing 10%, 20% and 25% (v / v) glycerol for approximately 30 seconds each. The crystals were then immersed in a 25% (v / v) glycerol cryoprotectant solution containing one drop of 2-chlorobenzaldehyde for 2 hours, immersed in potassium cyanide (KCN) for 5 minutes, and then flash-cooled in a stream of liquid nitrogen.
 Rigaku Micro-Max007CuKα回転陽極X線発生器及びRigaku R-AXISVII画像プレート検出器を使用して、極低温で回折データを収集した。回折データの索引付けと積分はXDS(Kabsch W(2006)Crystallography of biological macromolecules:218-225)によって行われ、スケーリングはScala(Evans P(2006) Acta Crystallographica Section D: Biological Crystallography;62(1):72-82)によってCCP4プログラムsuit(Winn MDら(2011) Acta Crystallographica Section D: Biological Crystallography;67(4):235-242)で実施した。データは空間群P63において六方(Hexagonal)として処理した。初期段階は、ChuaHNLで得られた結晶構造をテンプレートとして用いて、CCP4プログラムスーツのMolrep(Vagin Aら(2000)Acta Crystallographica Section D: Biological Crystallography;56(12):1622-1624)によって決定された。モデル構築と構造の改良は、それぞれCoot(Emsley P, Cowtan K(2004)Acta Crystallographica Section D: Biological Crystallography;60(12):2126-2132)とRefmac5(Murshudov GNら(1997)Acta Crystallographica Section D: Biological Crystallography;53(3):240-255)を用いて行った。 Rfree値は、精密化に使用されなかった無作為に選ばれた反射の5%から計算した(Kleywegt GJら(1996)Structure;4(8):897-904)。水分子は、手動及び自動の両方で異なる電子密度マップに配置され、幾何学的基準及びそれらの純化されたB因子(B <60Å)に基づいて保持されるか拒否された。すべての構造図はPyMol (Schrodinger L:The PyMOL molecular graphics system,version 1.3 r1. Schrodinger, LLC,Portland,OR.In.;2010.)によって作成した。 Diffraction data was collected at cryogenic temperature using a Rigaku Micro-Max007CuKα rotating anode X-ray generator and a Rigaku R-AXISVII image plate detector. Indexing and integration of the diffraction data is performed by XDS (Kabsch W (2006) Crystallographic of biological macromolecules: 218-225), and scaling is performed by Scala (Evans P (2006) Acta crytal sig. 72-82) with the CCP4 program suite (Winn MD et al. (2011) Acta Crystallographic Section D: Biological Crystallography; 67 (4): 235-242). Data were treated as hexagonal in space group P63. The initial stage was determined by the Molrep (Vagin A et al. (2000) Acta Crystallographic Section D: Biological Crystallography; 56 (12): 1622-1624) using the crystal structure obtained with Chua HNL as a template and the Molrep of the CCP4 program suite. . Model building and structural improvement were performed by Coot (Emsley P, Cowtan K (2004) Acta Crystallographica Section D: Biological Crystallogography; Biological Crystallography; 53 (3): 240-255). R free value was calculated from 5% of randomly selected that were not used for the refinement reflection (Kleywegt GJ et al (1996) Structure; 4 (8 ): 897-904). Water molecules are located in different electron density map in both manual and automatic, are rejected either retained on the basis of the geometrical criteria and Purified factor B thereof (B <60Å 2). All structural diagrams were prepared by PyMol (Schrodinger L: The PyMOL molecular graphics system, version 1.3 r1. Schrodinger, LLC, Portland, OR. In .; 2010.).
(MOEプログラムを用いたドッキングシミュレーション)
 (R)-2-Cl-Manと複合体化したOgraHNL変異体の構造を予測するために、(R)-2-Cl-Manと複合体化したOgraHNLの結晶構造を鋳型として、MOEを用いたドッキングシミュレーションを行った。タンパク質は剛性を保持した。(R)-2-Cl-Manの位置及び配向ならびにクロロフェニル基及びOH基を含む2つのねじれ角をシミュレーション中に変化可能とした。ドッキングシミュレーションは、Compute-Simulationドックプログラムで実行した。すべてのパラメータは、MOEソフトウェアのデフォルト設定に従った。
(Docking simulation using MOE program)
In order to predict the structure of the OgraHNL mutant complexed with (R) -2-Cl-Man, MOE was used using the crystal structure of OgraHNL complexed with (R) -2-Cl-Man as a template. Docking simulation was performed. The protein remained rigid. The position and orientation of (R) -2-Cl-Man and the two torsion angles including the chlorophenyl and OH groups were made variable during the simulation. The docking simulation was performed with a Compute-Simulation dock program. All parameters were according to MOE software default settings.
(OgraHNLの部位特異的突然変異誘発)
 全てのOgraHNL突然変異体を作製するために、テンプレートとしてpET28a-OgraHNLを用い、突然変異誘発プライマー(表3)及びQuikChange IIキット(Agilent Technologies、Santa Clara、CA、USA)を用いて目的部位に置換を導入して、部位特異的突然変異を行った。反応混合物は、10×反応緩衝液 1μl、dNTP混合物 0.2μl、蒸留水 8.2μl、PfuTurbo DNAポリメラーゼ 0.5U、10ng/μlのセンス及びアンチセンスプライマー 各0.2μlからなり、50ng/μlのpET28a-OgraHNLベクター(0.2μl)をテンプレートDNAとして使用した。変性(95℃、30秒)、アニーリング(55℃、1分)、及び伸長(68℃、6分)を16サイクル行った。生成物を37℃で1時間DpnI(10U)で処理し、次いで大腸菌SHuffle T7に形質転換した。すべての変異酵素の産生及び精製は、上述の野生型と同様の方法で行った。
(Site-directed mutagenesis of OgraHNL)
To generate all OgraHNL mutants, use pET28a-OgraHNL as a template and replace the site of interest with mutagenic primers (Table 3) and QuikChange II kit (Agilent Technologies, Santa Clara, CA, USA). Was introduced to perform site-directed mutagenesis. The reaction mixture consisted of 1 μl of 10 × reaction buffer, 0.2 μl of dNTP mixture, 8.2 μl of distilled water, 0.5 U of PfuTurbo DNA polymerase, 10 ng / μl of sense and antisense primer 0.2 μl each, and 50 ng / μl of pET28a-OgraHNL vector (0.2 μl) was used as template DNA. Denaturation (95 ° C., 30 seconds), annealing (55 ° C., 1 minute), and extension (68 ° C., 6 minutes) were performed for 16 cycles. The product was treated with DpnI (10 U) for 1 hour at 37 ° C., and then transformed into E. coli SHuffle T7. Production and purification of all mutant enzymes were performed in the same manner as in the wild type described above.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(HNL活性アッセイ)
 ベンズアルデヒドからのマンデロニトリルの合成は、わずかな改変を加えた以外は以前の報告(Dadashipourら(2015)上掲)に従ってキラルカラムを用いたHPLCで分析した。酵素サンプル(140μl)を、50mMベンズアルデヒド及び100mM KCNを含有する、300mMクエン酸緩衝液(pH4.0)110μlに添加し、混合し、25℃で3分間インキュベートした。反応を停止させるために、100μlの反応物を900μlのn-ヘキサン:2-プロパノール= 85:15と激しく混合して、得られた(R)-Manを抽出した。得られた有機相の10マイクロリットルを、Dadashipourら(2015)(上掲)に記載された方法に従って、CHIRALCEL OJ-Hカラム(粒径5μm、内径4.6mm×250mm、Daicel Corporation、東京。日本)を備えたProminence UV-Vis検出器SPD-20A(Shimadzu、Kyoto、Japan)に接続したUFLC Prominense液体クロマトグラフLC-20ADを用いて、以下の条件で分析した:
  移動相  n-ヘキサン:2-プロパノール(85:15)
  流速   1ml/分
  OJ-Hカラムのカラムオーブン温度  30℃
  吸光度  254nmの吸光度
最初の3分間、直線的に進行した反応を活性の計算に用いた。1単位の活性は、アッセイ条件下でベンズアルデヒドから1分間に1μmolの光学活性マンデロニトリルを産生する酵素の量として定義した。
(HNL activity assay)
The synthesis of mandelonitrile from benzaldehyde was analyzed by HPLC using a chiral column according to a previous report (Dadashipour et al. (2015) supra) with minor modifications. The enzyme sample (140 μl) was added to 110 μl of 300 mM citrate buffer (pH 4.0) containing 50 mM benzaldehyde and 100 mM KCN, mixed and incubated at 25 ° C. for 3 minutes. To stop the reaction, 100 μl of the reaction was mixed vigorously with 900 μl of n-hexane: 2-propanol = 85: 15 to extract the obtained (R) -Man. 10 microliters of the obtained organic phase was applied to a CHIRALCEL OJ-H column (particle size 5 μm, inner diameter 4.6 mm × 250 mm, Daicel Corporation, Tokyo, Japan) according to the method described in Dadashour et al. (2015) (supra). ) Were analyzed using a UFLC Prominence Liquid Chromatograph LC-20AD connected to a Prominence UV-Vis detector SPD-20A (Shimadzu, Kyoto, Japan) equipped with:
Mobile phase n-hexane: 2-propanol (85:15)
Flow rate 1 ml / min OJ-H column oven temperature 30 ° C
Absorbance Absorbance at 254 nm The reaction that proceeded linearly during the first 3 minutes was used for activity calculations. One unit of activity was defined as the amount of enzyme that produced 1 μmol of optically active mandelonitrile per minute from benzaldehyde under the assay conditions.
 2-クロロベンズアルデヒドから2-Cl-Manを合成するために、酵素試料(150μl)を50mM 2-クロロベンズアルデヒド及び60mM KCNを含む300mMクエン酸緩衝液(pH3.5)100μlに添加し、混合し、25℃で5分間インキュベートした。反応を停止させるために、n-ヘキサン:2-プロパノール(95:5)1mlを反応混合物に加え、次いで激しく混合し、15,000×gで5分間遠心分離した。5μlの有機相を、以下の条件下でCHIRALPAK ICカラム(粒径5μm;内径4.6mm×250mm;Daicel)を備えたHPLCにより、以下の条件で分析した:
  移動相  n-ヘキサン:2-プロパノール(95:5)
  流速  1ml/分
  カラムオーブン温度  30℃
  吸光度  220nm
酵素活性は、最初の5分間の反応から得られた線形曲線から計算した。1単位の合成活性は、アッセイ条件下で2-クロロベンズアルデヒドから1分あたり1μmolの光学活性2-クロロマンデロニトリルを産生する酵素の量として定義した。
To synthesize 2-Cl-Man from 2-chlorobenzaldehyde, add enzyme sample (150 μl) to 100 μl of 300 mM citrate buffer (pH 3.5) containing 50 mM 2-chlorobenzaldehyde and 60 mM KCN, mix, Incubate at 25 ° C for 5 minutes. To stop the reaction, 1 ml of n-hexane: 2-propanol (95: 5) was added to the reaction mixture, then mixed vigorously and centrifuged at 15,000 × g for 5 minutes. 5 μl of the organic phase were analyzed by HPLC equipped with a CHIRALPAK IC column (particle size 5 μm; inner diameter 4.6 mm × 250 mm; Daicel) under the following conditions:
Mobile phase n-hexane: 2-propanol (95: 5)
Flow rate 1ml / min Column oven temperature 30 ℃
Absorbance 220nm
Enzyme activity was calculated from the linear curve obtained from the first 5 minutes of the reaction. One unit of synthetic activity was defined as the amount of enzyme that produced 1 μmol of optically active 2-chloromandelonitrile per minute from 2-chlorobenzaldehyde under the assay conditions.
 形成された(R)-Man及び(R)-2-Cl-Manの変換及びeeをキラルHPLCによって分析した。対応する基質の標準曲線を用いて変換を計算した。eeは、以下の式を用いて2つのエナンチオマーのピーク面積を計算することによって決定した。 変 換 The formed (R) -Man and (R) -2-Cl-Man conversion and ee were analyzed by chiral HPLC. The conversion was calculated using the standard curve of the corresponding substrate. ee was determined by calculating the peak area of the two enantiomers using the following formula:
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
ここで、R及びSはそれぞれ(R)-Man又は(R)-2-Cl-Man及び(S)-Man又は(S)-2-Cl-Manの濃度を表す。 Here, R and S represent the concentrations of (R) -Man or (R) -2-Cl-Man and (S) -Man or (S) -2-Cl-Man, respectively.
(反応速度分析)
 反応速度分析のために、ベンズアルデヒドの(R)-Manへの酵素的変換、及び2-クロロベンズアルデヒドの(R)-2-Cl-Manへの酵素的変換の初期速度を、上記方法に従って、クエン酸塩緩衝系中、種々の濃度の基質(0~60mM)と0.125Uの総酵素量を各反応に使用してアッセイした。
(Reaction rate analysis)
For kinetic analysis, the initial rates of enzymatic conversion of benzaldehyde to (R) -Man and 2-chlorobenzaldehyde to (R) -2-Cl-Man were determined according to the method described above. Assays were performed using various concentrations of substrate (0-60 mM) and a total amount of 0.125 U of enzyme in each reaction in a salt buffer system.
(活性及びエナンチオ選択性への有機溶媒の影響)
 酢酸エチル(EA)、ジエチルエーテル(DEE)、メチル-t-ブチルエーテル(MTBE)、2-イソプロピルエーテル(DIPE)、ジブチルエーテル(DBE)、メタノール(Met)、及びヘキサン(Hex)の各有機溶媒0.5mlを等量のクエン酸塩緩衝液(50mM、pH7.0)と混合し、1,200rpm、10℃で60分間振とうして平衡化した。酵素(2.5U)をクエン酸緩衝液相に添加し、水性相と有機相との界面を乱すことなく穏やかに混合した。時間0及びインキュベーション12時間後に、上記のように、10℃、1,200rpmで振とうして酵素活性を測定した。
(Effect of organic solvent on activity and enantioselectivity)
Organic solvents of ethyl acetate (EA), diethyl ether (DEE), methyl-t-butyl ether (MTBE), 2-isopropyl ether (DIPE), dibutyl ether (DBE), methanol (Met), and hexane (Hex) 0.5 ml was mixed with an equal volume of citrate buffer (50 mM, pH 7.0) and equilibrated by shaking at 1200 rpm at 10 ° C. for 60 minutes. The enzyme (2.5 U) was added to the citrate buffer phase and mixed gently without disturbing the interface between the aqueous and organic phases. At time 0 and 12 hours after incubation, enzyme activity was measured by shaking at 1,200 rpm at 10 ° C. as described above.
(OgraHNLの結晶構造と反応メカニズム)
 OgraHNLの一次構造はChuaHNLと73%のアミノ酸同一性を有している(図4)。ChuaHNLを鋳型構造とし、(R)-2-Cl-Manと複合体化したOgraHNLの結晶構造を2.05Å分解能の分子置換法により決定した。この酵素はホモ二量体であり、サブユニットの折りたたみはChuaHNLのそれと同様であった(図5a)。各サブユニットの二次構造は、2つのαヘリックス、2つの310αヘリックス及び8つの逆平行βシートからなり、外側にアルファヘリックスを有するベータバレルを形成していた。3つの分子内及び2つの分子間ジスルフィド結合が結晶構造において観察された。各サブユニットにおいて、活性部位は、8つのβシート全てによって囲まれたβバレルの中心に位置する。OgraHNLの活性部位内の比較的大きな疎水性空洞は、15番目のVal;29,71及び94番目のPhe;44及び107番目のTyr;58,79及び109番目のAla;81番目のLeu;並びに92番目のTrpの11個の疎水性残基からなっていた(図5b)。Arg42、Asn69、Asp60及びLys121の4つの親水性残基も活性部位表面に露出していた。外部溶媒を活性部位に導入する基質侵入トンネルは図5bに明確に示されており、トンネル内に水に対応する2つの電子密度が確かに存在していた。トンネル入口領域は、Val15、Pro16、Phe21、Tyr44、Phe71、Ala79、Trp92、Phe94の8残基によって形成されていた。(R)-2-Cl-Manのベンゼン環を認識するために、活性部位のいくつかの疎水性残基がベンゼン部分と疎水性相互作用を形成しているようであった。これらの残基のうちPhe71及びPhe94の2つは、(R)-2-Cl-Manのフェニル環の近くに位置して、それぞれ、edge-to-face及びface-to-faceでπ-πスタッキング相互作用を形成する。π-πスタッキング相互作用は、一般的な疎水性相互作用よりも強く、基質結合において重要な役割を果たす可能性がある(Yang STら,Nanotechnology(2008)19(39):395101;及びNakano Sら,Biochim Biophys Acta(2014)1844(12):2059-2067)。π-πスタッキング相互作用の存在は、Nakanoら(2014)(上掲)によってBaliospermum montanum由来の(S)-HNLにおいても報告されている。
(Crystal structure and reaction mechanism of OgraHNL)
The primary structure of OgraHNL has 73% amino acid identity with ChuaHNL (FIG. 4). Using ChuaHNL as a template structure, the crystal structure of OgraHNL complexed with (R) -2-Cl-Man was determined by a molecular replacement method at 2.05 ° resolution. This enzyme was a homodimer and the subunit fold was similar to that of ChuaHNL (FIG. 5a). The secondary structure of each subunit consisted of two α helices, two 3 10 α helices, and eight antiparallel β sheets, forming a beta barrel with an outer alpha helix. Three intramolecular and two intermolecular disulfide bonds were observed in the crystal structure. In each subunit, the active site is located at the center of the beta barrel surrounded by all eight beta sheets. The relatively large hydrophobic cavities within the active site of OgraHNL are: Val at position 15; Phe at positions 29, 71 and 94; Tyr at positions 44 and 107; Ala at positions 58, 79 and 109; Leu at position 81; It consisted of 11 hydrophobic residues of the 92nd Trp (FIG. 5b). Four hydrophilic residues of Arg42, Asn69, Asp60 and Lys121 were also exposed on the active site surface. The substrate entry tunnel introducing the external solvent into the active site is clearly shown in FIG. 5b, and there were certainly two electron densities in the tunnel corresponding to water. The tunnel entrance region was formed by eight residues Val15, Pro16, Phe21, Tyr44, Phe71, Ala79, Trp92, and Phe94. Some hydrophobic residues in the active site appeared to form a hydrophobic interaction with the benzene moiety to recognize the benzene ring of (R) -2-Cl-Man. Two of these residues, Phe71 and Phe94, are located near the phenyl ring of (R) -2-Cl-Man and have π-π in edge-to-face and face-to-face, respectively. Form stacking interactions. π-π stacking interactions are stronger than general hydrophobic interactions and may play an important role in substrate binding (Yang ST et al., Nanotechnology (2008) 19 (39): 395101; and Nakano S). Et al., Biochim Biophys Acta (2014) 1844 (12): 2059-2067). The existence of a π-π stacking interaction has also been reported by Nakano et al. (2014) (supra) in (S) -HNL from Baliospermum tantanum.
 図5cに示すように、OgraHNLのArg42及びLys121の側鎖は、(R)-2-Cl-Manの水酸基と水素結合を形成し、Tyr107は、(R)-2-Cl-Manのニトリル基と水素結合を形成する。Asp60は(R)-2-Cl-Manと直接相互作用しないが、Arg42及びLys121と水素結合を形成する。この複合体構造分析により、保存されたヒスチジンが一般酸/塩基として作用して基質の水酸基を脱プロトン化させる他のR特異的HNL(Dreveny Iら,Protein Sci(2002)11(2):292-300;Zhu Wら,Proteins(2015)83(1):66-77;及びMotojima Fら,FEBS J(2018)285(2):313-324)とは異なり、Arg42及びLys121による一般酸/塩基触媒に依存する反応機構(図5d)が示唆された。開裂反応において、(R)-2-Cl-Manの水酸基のプロトンは、Lys121によって除去される。電子がリジンからニトリル脱離基に移動し、次いでシアン化物イオンがArg42からプロトンを引き抜いて、2-クロロベンズアルデヒド及びシアン化水素を放出する。合成反応では、一連の反応がシアノヒドリン開裂と反対の方向に起こる。シアン化水素がArg42により脱プロトン化された後、シアン化物イオンは2-クロロベンズアルデヒドのカルボニル炭素を攻撃する。カルボニル酸素は、シアン化物から電子を受け取り、(R)-2-Cl-Manを生成する。 As shown in FIG. 5c, the side chains of Arg42 and Lys121 of OgraHNL form a hydrogen bond with a hydroxyl group of (R) -2-Cl-Man, and Tyr107 is a nitrile group of (R) -2-Cl-Man. Forms a hydrogen bond with Asp60 does not interact directly with (R) -2-Cl-Man, but forms a hydrogen bond with Arg42 and Lys121. From this complex structure analysis, other R-specific HNLs in which the conserved histidine acts as a general acid / base to deprotonate the hydroxyl group of the substrate (Dreveny I et al., Protein Sci (2002) 11 (2): 292) -300; unlike Zhu W et al., Proteins (2015) 83 (1): 66-77; and Motojima F et al., FEBS J (2018) 285 (2): 313-324), and the general acids / by Arg42 and Lys121. A reaction mechanism dependent on the base catalyst (FIG. 5d) was suggested. In the cleavage reaction, the proton of the hydroxyl group of (R) -2-Cl-Man is removed by Lys121. Electrons transfer from the lysine to the nitrile leaving group, and the cyanide ion then abstracts a proton from Arg42, releasing 2-chlorobenzaldehyde and hydrogen cyanide. In a synthetic reaction, a series of reactions takes place in the opposite direction of cyanohydrin cleavage. After hydrogen cyanide has been deprotonated by Arg42, the cyanide ion attacks the carbonyl carbon of 2-chlorobenzaldehyde. The carbonyl oxygen accepts electrons from cyanide and produces (R) -2-Cl-Man.
 OgraHNLの活性部位内の疎水性空洞は、プロトン引き抜き部位から離れているが、基質選択性に重要な役割を果たすと予測され、その移動度は、Balospermum montanum由来の(S)-HNLにおいて報告されているものと同様に、触媒中の基質のフェニル基の転位を可能としている(Nakano Sら(2014)上掲)。この空洞は、(R)-及び(S)-2-Cl-Manが活性部位に入るとそのフェニル基と結合し、それぞれ、(R)特異的及び(S)特異的ポケットに分割される。報告されているとおり、ChuaHNLは広い基質特異性を有する(Dadashipour Mら(2015)上掲)が、これはChuaHNLが有する柔軟な構造により、様々な基質が基質侵入トンネルに結合することができることによる。 The hydrophobic cavity within the active site of OgraHNL is predicted to play a significant role in substrate selectivity, but away from the proton abstraction site, and its mobility is reported in (S) -HNL from Balospermum @ montanum. This allows the rearrangement of the phenyl group of the substrate in the catalyst (Nakano @ S et al. (2014) supra). This cavity binds to its phenyl group when (R)-and (S) -2-Cl-Man enter the active site and is split into (R) -specific and (S) -specific pockets, respectively. As reported, ChuaHNL has broad substrate specificity (Dadasipour @ M et al. (2015) supra) due to the flexible structure of ChuaHNL that allows various substrates to bind to the substrate entry tunnel. .
((R)-2-Cl-ManによるOgraHNLのドッキングシミュレーション)
 (R)-2-Cl-Manと複合体を形成したOgraHNLの結晶構造モデリングに基づいて、基質結合に影響を及ぼす可能性のあるアミノ酸を、MOEを用いた分子ドッキングシミュレーションによって同定した。ベンゼン環の異なるオルト位に塩素原子置換を有する(R)-2-Cl-Manの2つの分子構造をドッキングに使用して(図6a及びb)、それぞれのデザインについて合計300種類の結合構造を導き出した。基質ドッキング分析により、Ala58、Ala79、Phe71及びVal15が、結合親和性スコアに基づく最も潜在的な残基であることが見出された。これらの疎水性残基は活性部位の疎水性領域に位置し、その側鎖は基質に向いていた。したがって、この領域における動態は、OgraHNLの基質特異性に影響を及ぼすと予測される。Ala79、Phe71及びVal15は基質トンネル入口に位置し、基質に対する親和性において重要な役割を果たすことができる。一方、A58の側鎖は、(R)-2-Cl-Manの芳香族環のオルト位の塩素原子と密接に接触しており(図6b)、立体相互作用の可能性を示唆していた。この立体相互作用はおそらくこの基質で観察された酵素性能の低下の原因であると考えられた。したがって、酵素の構造解析は、これらの4つの残基が、OgraHNLの酵素的特性及び/又はエナンチオ選択性を改善するための重要なアミノ酸であり得ることを示唆していた。基質入口トンネル(図3c~d)が開いた好ましい3Dドッキング構造として得られた、A58C、A58H、A58R、A58V、A79M、F71A、F71I及びV15Wの8つの突然変異について、部位特異的突然変異誘発の検討を行った。
(Docking simulation of OgraHNL by (R) -2-Cl-Man)
Based on the crystal structure modeling of OgraHNL complexed with (R) -2-Cl-Man, amino acids that could affect substrate binding were identified by molecular docking simulation using MOE. Using two molecular structures of (R) -2-Cl-Man having chlorine atom substitution at different ortho positions of the benzene ring for docking (FIGS. 6a and b), a total of 300 kinds of bonding structures for each design were obtained. I derived. Substrate docking analysis found that Ala58, Ala79, Phe71 and Val15 were the most potential residues based on the binding affinity score. These hydrophobic residues were located in the hydrophobic region of the active site, with their side chains facing the substrate. Therefore, kinetics in this region is expected to affect the substrate specificity of OgraHNL. Ala79, Phe71 and Val15 are located at the substrate tunnel entrance and can play an important role in affinity for the substrate. On the other hand, the side chain of A58 was in close contact with the chlorine atom at the ortho position of the aromatic ring of (R) -2-Cl-Man (FIG. 6b), suggesting the possibility of steric interaction. . This steric interaction was probably responsible for the decrease in enzyme performance observed with this substrate. Thus, structural analysis of the enzyme suggested that these four residues could be important amino acids to improve the enzymatic properties and / or enantioselectivity of OgraHNL. Site-directed mutagenesis of the eight mutations A58C, A58H, A58R, A58V, A79M, F71A, F71I and V15W, obtained as preferred 3D docking structures with the substrate entrance tunnel (FIGS. 3c-d) open. Study was carried out.
(OgraHNLの部位特異的突然変異誘発)
 活性部位の疎水性空洞における変異は、OgraHNLの活性及びエナンチオ選択性に影響を及ぼした。精製した酵素を使用した場合には、Ala79のメチオニンへの突然変異(A79M)は、比活性及び選択性の両方において有意な増加をもたらした。突然変異体A79Mは、(R)-2-Cl-Manに対して、400±13U/mgの最も高い比活性と83.2±0.1%のee値を示し、野生型のOgraHNL(288±11U/mg、69.5±0.5%のee)よりも高い活性を示した(それぞれ、10及び1.2U/ml)(表4)。A79Mの比活性及びエナンチオ選択性は、(R)-2-Cl-Manのみならず(R)-Manについても野生型と比較して有意に改善された。(R)-Man合成に関しては、野生型では2,780±80U/mgの比活性と82.2±0.6%のeeであったが、A79Mでは3,310±78U/mgの比活性と93.6±0.3%のeeを示した。
(Site-directed mutagenesis of OgraHNL)
Mutations in the hydrophobic cavity of the active site affected the activity and enantioselectivity of OgraHNL. When using the purified enzyme, mutation of Ala79 to methionine (A79M) resulted in a significant increase in both specific activity and selectivity. Mutant A79M exhibited the highest specific activity of (400 ± 13 U / mg) and (ee) value of 83.2 ± 0.1% with respect to (R) -2-Cl-Man, and showed the wild-type OgraHNL (288 The activity was higher than ± 11 U / mg and 69.5 ± 0.5% ee) (10 and 1.2 U / ml, respectively) (Table 4). The specific activity and enantioselectivity of A79M were significantly improved not only for (R) -2-Cl-Man but also for (R) -Man as compared to the wild type. Regarding (R) -Man synthesis, the specific activity of wild type was 2,780 ± 80 U / mg and ee of 82.2 ± 0.6%, while the specific activity of A79M was 3,310 ± 78 U / mg. And 93.6 ± 0.3% ee.
(OgraHNLにおけるAla79の部位特異的突然変異誘発)
 OgraHNLの位置79が触媒活性及びエナンチオ選択性に及ぼす影響を検討するために、部位特異的突然変異誘発によりAla残基をさらに18アミノ酸に置換し、全ての突然変異体について、HNL生産性、比活性、エナンチオ選択性及び転換率を決定した。位置79におけるAlaを、Ile、Leu、Met、Phe、Val及びSerを含む大きな側鎖を有するほとんどの疎水性残基に置換する変異は、(R)-Manに対するOgraHNLの生産性を改善した。また、位置79におけるAlaを、Met、Val、Ser及びCysへ置換する変異は、(R)-2-Cl-Manの生産性を向上させた(表4)。(R)-Man及び(R)-2-Cl-Manの両方について、変異体A79C、A79I及びA79Mは、最も高い比活性、ee及び変換率を示した(表4)。
(Site-directed mutagenesis of Ala79 in OgraHNL)
To examine the effect of position 79 of OgraHNL on catalytic activity and enantioselectivity, an additional 18 amino acids were substituted for Ala residues by site-directed mutagenesis, and for all mutants, the HNL productivity, ratio Activity, enantioselectivity and conversion were determined. Mutation replacing Ala at position 79 with most hydrophobic residues with large side chains, including Ile, Leu, Met, Phe, Val and Ser, improved the productivity of OgraHNL for (R) -Man. In addition, the mutation replacing Ala at position 79 with Met, Val, Ser and Cys improved the productivity of (R) -2-Cl-Man (Table 4). For both (R) -Man and (R) -2-Cl-Man, mutants A79C, A79I and A79M showed the highest specific activity, ee and conversion (Table 4).
(OgraHNL変異体のエナンチオ選択性)
 Ala79における変異を有する酵素が高いエナンチオ選択性を有するか検討するために、ベンズアルデヒド及びKCNからの(R)-Manの合成と、2-クロロベンズアルデヒド及びKCNからの(R)-2-Cl-Manの合成を、精製した酵素(それぞれ10及び2U/ml)を用いて行った。ベンズアルデヒドと2-クロロベンズアルデヒドの転化率は野生型と変異体で同じであった(非図示)。3つの突然変異体の中で、A79Cは、(R)-Man及び(R)-2-Cl-Man合成についてそれぞれ97.1及び83.9%の最も高いeeを示した。(R)-Man及び(R)-2-Cl-Man合成のee値は、野生型がそれぞれ85.5及び69.0%であるのに対し、A79M及びA79Iでは、それぞれ、93.3-93.6及び83.5-83.6%に上昇した。これらの結果は、Ala79の変異が(R)-Man及び(R)-2-Cl-Man産生の両方においてeeを顕著に改善することに寄与することを示している。
(Enantioselectivity of OgraHNL mutant)
To determine if the enzyme with the mutation in Ala79 has high enantioselectivity, synthesis of (R) -Man from benzaldehyde and KCN and (R) -2-Cl-Man from 2-chlorobenzaldehyde and KCN Was synthesized using purified enzymes (10 and 2 U / ml, respectively). The conversion of benzaldehyde and 2-chlorobenzaldehyde was the same in the wild type and the mutant (not shown). Of the three mutants, A79C showed the highest ee of 97.1 and 83.9% for (R) -Man and (R) -2-Cl-Man synthesis, respectively. The ee values for (R) -Man and (R) -2-Cl-Man synthesis were 85.5 and 69.0% for the wild type, respectively, while 93.3 for the A79M and A79I, respectively. 93.6 and 83.5-83.6%. These results indicate that mutation of Ala79 contributes to significantly improving ee in both (R) -Man and (R) -2-Cl-Man production.
 (R)-Man及び(R)-2-Cl-Manの生産性及びee値は、酵素量を増加させると増加した。マンデロニトリル及び2-クロロマンデロニトリルの全生成量は、野生型及び変異体で類似しており、それぞれ約35~38及び24~26mMであった。すべての変異体は、98.4~98.7%の最大eeで(R)-Manの合成を触媒し、これは野生型(95.6%)より高かった。(R)-2-Cl-Man合成については、変異体A79Cが96.3%の最大eeを示し、次いでA79Mが95.5%及びA79Iが95.0%を示した。これらの値はいずれも野生型から得られた値(92.8%)より顕著に高かった。これは、変異体による(R)-Man及び(R)-2-Cl-Manの驚異的な改善を表す。これにより、Ala79における変異、特にはシステイン、イソロイシン、又はメチオニンへの変異が、(R)-Man及び(R)-2-Cl-Manの合成においてエナンチオマー過剰を増加させることができ、光学的に純粋なシアノヒドリンの産生を可能にすることが示された。以前に報告された最良の事例では、99%eeの(R)-Manがクエン酸緩衝液(pH2.7)中のChuaHNLにより得られている(Dadashipour Mら(2015)上掲)が、使用された酵素量はより多かった(150U/ml)。(R)-2-Cl-Manについて、ChuaHNL及び他の報告されたHNLは、緩衝系において非常に低いエナンチオ選択性しか示さない(ee<21%)(Dadashipour Mら(2015)上掲;Yildirim Dら,Biotechnol Prog(2014)30(4):818-827)。したがって、本発明は、通常は有機溶媒を含む二相系下でこれらの反応を触媒する他の(R)-HNLとは異なり、単相緩衝系において高いエナンチオ純度(96.3%)を有する(R)-2-Cl-Manの非対称合成を初めて実現した。 The productivity and ee value of (R) -Man and (R) -2-Cl-Man increased with increasing amount of enzyme. The total production of mandelonitrile and 2-chloromandelonitrile was similar for wild type and mutant, approximately 35-38 and 24-26 mM, respectively. All mutants catalyzed the synthesis of (R) -Man with a maximum ee of 98.4-98.7%, which was higher than the wild type (95.6%). For (R) -2-Cl-Man synthesis, variant A79C showed a maximum ee of 96.3%, followed by A79M at 95.5% and A79I at 95.0%. All of these values were significantly higher than those obtained from the wild type (92.8%). This represents a surprising improvement of (R) -Man and (R) -2-Cl-Man by the mutant. Thereby, mutations in Ala79, especially mutations to cysteine, isoleucine or methionine, can increase the enantiomeric excess in the synthesis of (R) -Man and (R) -2-Cl-Man, and It has been shown to enable the production of pure cyanohydrin. In the best case reported previously, 99% ee (R) -Man was obtained by ChuaHNL in citrate buffer (pH 2.7) (Dadasipour @ M et al. (2015) supra). The amount of enzyme performed was higher (150 U / ml). For (R) -2-Cl-Man, Chua HNL and other reported HNLs show very low enantioselectivity in buffer systems (ee <21%) (Dadashipour @ M et al. (2015) supra; Yildirim). D et al., Biotechnol @ Prog (2014) 30 (4): 818-827). Thus, the present invention has a high enantiopurity (96.3%) in a single-phase buffer system, unlike other (R) -HNL, which catalyzes these reactions under a two-phase system that usually contains an organic solvent. Asymmetric synthesis of (R) -2-Cl-Man was realized for the first time.
 以上より、部位特異的突然変異誘発を行った変異体のうち、(R)-Manについてのee値が野生株よりも優れていたのは、A58C、A58H、F71I、A79C、A79I、及びA79Mであり、比活性が野生株よりも優れていたものは、A79CとA79Mであり、生産性が野生株よりも優れていたものは、A79F、A79I、A79L、A79M、A79S、及びA79Vであった。また、(R)-2-Cl-Manについてのee値が野生株よりも優れていたのは、A79C、A79I、及びA79Mであり、比活性が野生株よりも優れていたものは、A79IとA79Mであり、生産性が野生株よりも優れていたものはA79M、A79S、及びA79Vであった。 As described above, among the mutants subjected to the site-directed mutagenesis, the ee values for (R) -Man were superior to those of the wild type in A58C, A58H, F71I, A79C, A79I, and A79M. In addition, A79C and A79M were better in specific activity than the wild strain, and A79F, A79I, A79L, A79M, A79S, and A79V were better in productivity than the wild strain. The ee values for (R) -2-Cl-Man were superior to the wild type in A79C, A79I, and A79M, and those having specific activity superior to the wild type were A79I. A79M, A79M, A79S, and A79V which were superior in productivity to the wild type were A79M.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(有機溶媒の活性及び鏡像異性体活性への影響)
 すべての野生型及び突然変異体について、ほとんどの有機溶媒は、酵素活性及びエナンチオ選択性に大きな影響を及ぼしたが、DIPEのみは、酵素活性にほとんど影響を及ぼさず、最も高い%eeを与えた(非図示)。A79C及びA79MはDEE、MTBE及びHexの条件下で野生型よりも安定であった。すべての野生型及び変異体の残存活性は、すべての有機溶媒において50%以上であった。すべての変異体は、DEE、MTBE、DIPE、DBE及びMetの条件下で50%より高いeeを示したが、EA及びHexの条件下では50%より低いeeを示した。EAとHexは分配係数の低い値を示したので、ベンズアルデヒドと2-クロロベンズアルデヒドは水相にほとんど溶解した(Ueatrongchit Tら,Journal of Molecular Catalysis B: Enzymatic(2009)56(4):208-21)。これが非酵素反応を促進し、(R)-Man及び(R)-2-Cl-Manのより低いeeを引き起こしたと考えられる。
(Effect on activity of organic solvent and enantiomeric activity)
For all wild-type and mutants, most organic solvents had a significant effect on enzyme activity and enantioselectivity, whereas DIPE alone had little effect on enzyme activity, giving the highest% ee. (Not shown). A79C and A79M were more stable than wild type under DEE, MTBE and Hex conditions. The residual activity of all wild-type and mutants was more than 50% in all organic solvents. All mutants showed more than 50% ee under DEE, MTBE, DIPE, DBE and Met conditions, but less than 50% ee under EA and Hex conditions. Since EA and Hex exhibited low values of the partition coefficient, benzaldehyde and 2-chlorobenzaldehyde were almost dissolved in the aqueous phase (Uetrongitch T et al., Journal of Molecular Catalysis B: Enzymatic (2009) 56 (4): 208-21). ). It is believed that this promoted the non-enzymatic reaction and caused the lower ee of (R) -Man and (R) -2-Cl-Man.
(実施例3)PlamHNL変異体の作製と活性測定
(MOEプログラムを用いたドッキングシミュレーション)
 (R)-2-クロロマンデロニトリルと複合体を形成したPlamHNLの構造を予測するために、MOE分析を用いたドッキングシミュレーションの鋳型として(R)-2-クロロマンデロニトリルと複合化したOgraHNLの構造を用いた。(R)-2-クロロマンデロニトリルと複合体化したPlamHNLの相同性モデリングは、結合ポケット内の約14アミノ酸残基をAlanine and Residue Scanning機能を用いて計算し、他の19アミノ酸を親和性に重要な残基として同定した。最も低いdAffinityを示した変異体を検証のために選択した。
(Example 3) Production of PlamHNL mutant and measurement of activity (docking simulation using MOE program)
In order to predict the structure of PlamHNL complexed with (R) -2-chloromandelonitrile, OgraHNL complexed with (R) -2-chloromandelonitrile was used as a template for docking simulation using MOE analysis. The structure of was used. The homology modeling of PlamHNL complexed with (R) -2-chloromandelonitrile calculates about 14 amino acid residues in the binding pocket using the Alanine and Residue Scanning function and assigns the other 19 amino acids an affinity. Important residues. Mutants with the lowest dAffinity were selected for validation.
(部位特異的突然変異誘発)
 PlamHNL突然変異体は、フォワード及びリバースプライマー(表5)を用い、pET28aPlamHNLを鋳型として、Quick-Change部位特異的突然変異誘発キットを用いた部位特異的突然変異誘発によって調製した。PCR反応は、変性(95℃、20秒;最初のサイクル:95℃、2分)とアニーリング52℃20秒を18サイクル行った。PCR産物を37℃で1時間DpnI(10U)処理し、次いで大腸菌Shuffle T7株に形質転換した。
(Site-directed mutagenesis)
PlamHNL mutants were prepared by site-directed mutagenesis using the Quick-Change site-directed mutagenesis kit using forward and reverse primers (Table 5) and pET28aPlamHNL as a template. In the PCR reaction, 18 cycles of denaturation (95 ° C., 20 seconds; first cycle: 95 ° C., 2 minutes) and annealing at 52 ° C. for 20 seconds were performed. The PCR product was treated with DpnI (10 U) at 37 ° C. for 1 hour, and then transformed into E. coli Shuffle T7 strain.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(HNL活性アッセイ)
 基質として2-クロロベンズアルデヒド及びシアン化カリウムを用いて、光学活性(R)-2-クロロマンデロニトリルの量を測定することにより酵素活性をアッセイした。反応混合物(0.5mL)をマイクロチューブ中で調製した。クエン酸ナトリウム緩衝液(400mM、pH4.0)に1.25Mの2-クロロベンズアルデヒド(メタノール中、20μL)を添加し、続いて酵素溶液及びKCN溶液(1.0M、50μL)を添加した。反応混合物のアリコート(100μL)をとり、900μLの有機溶媒(94%n-ヘキサン、6%イソプロパノール、0.2%TFA、v/v)で抽出することによって反応をモニターした。混合物を15,000×g、4℃で10分間遠心分離した後、ベンズアルデヒド、(R)-及び(S)-2-クロロマンデロニトリルを含有する有機層を得た。その後、有機相のアリコート(10μL)を、上述のキラルHPLCを用いて分析した。1単位のHNL活性は、アッセイ条件下で、2-クロロベンズアルデヒドとKCNから光学活性(R)-2-クロロマンデロニトリルを1分間あたり1μmol生成する酵素の量として定義した。
(HNL activity assay)
Enzyme activity was assayed by measuring the amount of optically active (R) -2-chloromandelonitrile using 2-chlorobenzaldehyde and potassium cyanide as substrates. A reaction mixture (0.5 mL) was prepared in a microtube. To a sodium citrate buffer (400 mM, pH 4.0) was added 1.25 M 2-chlorobenzaldehyde (20 μL in methanol), followed by an enzyme solution and a KCN solution (1.0 M, 50 μL). The reaction was monitored by taking an aliquot (100 μL) of the reaction mixture and extracting with 900 μL of organic solvent (94% n-hexane, 6% isopropanol, 0.2% TFA, v / v). After centrifuging the mixture at 15,000 × g at 4 ° C. for 10 minutes, an organic layer containing benzaldehyde, (R)-and (S) -2-chloromandelonitrile was obtained. Thereafter, an aliquot (10 μL) of the organic phase was analyzed using chiral HPLC as described above. One unit of HNL activity was defined as the amount of enzyme that produced 1 μmol / min of optically active (R) -2-chloromandelonitrile from 2-chlorobenzaldehyde and KCN under the assay conditions.
(組換えPlamHNLの発現及び精製)
 pET28a-PlamHNLを有する大腸菌Shuffle T7株 Expressの単一コロニーを、カナマイシン(80μg/mL)を含有する5mLのLB培地に接種し、30℃、300rpmの振盪速度で一晩培養した。スターター培養液5mLを、2リットルのErlenmeyerフラスコ中のカナマイシン(80μg/mL)を含むLB培地500mLに移し、30℃、150rpmの振盪速度で培養した。12時間後、IPTGを終濃度0.5mMとなるように加え、18℃、同じ振盪速度で24時間細胞を培養した。細胞を遠心分離(8500×g;15分)し、塩化ナトリウム(0.5M)及びイミダゾール(25mM)を含むリン酸カリウム緩衝液(KPB;20mM、pH7.0)に再懸濁させた。再懸濁させた細胞を超音波処理によって溶解させ、溶解物を遠心分離(15000×g;4℃で15分間)して破片を除去した。上清をNi Sepharose 6 Fast Flow(GE Healthcare、Little Chalfont、UK)カラム(内径25mm、カラム容量20mL)にロードし、50mMイミダゾールで洗浄し、次に塩化ナトリウム(0.5M)を含むKPB(20mM;pH7.0)中の50~300mMイミダゾールの直線勾配で、0.5mL/分の流速で溶出した。最高の比活性を示す画分をプールし、透析し、MonoQ 5/50 GL(GE Healthcare)カラムに負荷した。酵素活性を上記方法で測定し、活性画分をプールし、透析し、濃縮し、SDS-PAGEにより純度を調べた。
(Expression and purification of recombinant PlamHNL)
A single colony of Escherichia coli Shuffle T7 strain Express having pET28a-PlamHNL was inoculated into 5 mL of LB medium containing kanamycin (80 μg / mL) and cultured overnight at 30 ° C. and a shaking speed of 300 rpm. 5 mL of the starter culture was transferred to 500 mL of LB medium containing kanamycin (80 μg / mL) in a 2 L Erlenmeyer flask, and cultured at 30 ° C. at a shaking speed of 150 rpm. After 12 hours, IPTG was added to a final concentration of 0.5 mM, and the cells were cultured at 18 ° C at the same shaking speed for 24 hours. The cells were centrifuged (8500 × g; 15 minutes) and resuspended in potassium phosphate buffer (KPB; 20 mM, pH 7.0) containing sodium chloride (0.5 M) and imidazole (25 mM). The resuspended cells were lysed by sonication, and the lysate was centrifuged (15000 × g; 4 ° C. for 15 minutes) to remove debris. The supernatant was loaded onto a Ni Sepharose 6 Fast Flow (GE Healthcare, Little Chalfont, UK) column (25 mm ID, 20 mL column capacity), washed with 50 mM imidazole, and then KPB (20 mM) containing sodium chloride (0.5 M). Eluting with a linear gradient of 50-300 mM imidazole (pH 7.0) at a flow rate of 0.5 mL / min. Fractions showing the highest specific activity were pooled, dialyzed and loaded on a MonoQ 5/50 GL (GE Healthcare) column. Enzyme activity was measured as described above, active fractions were pooled, dialyzed, concentrated and tested for purity by SDS-PAGE.
(相同性モデリングPlamHNL構造)
 Parafonteria laminate由来のHNLはOxidus gracilis HNLと52%のアミノ酸配列相同性を有するため、(R)-2-クロロマンデロニトリルと複合体化したOgraHNL構造を鋳型として用いてPlamHNL構造のモデル相同性を計算した。PlamHNLの全体的な構造は、OregHNL(図7a)と非常によく似ており、結合ポケット及び活性部位において同じ10個の疎水性アミノ酸残基及び4個の親水性アミノ酸残基から構成されていた(表6)。結合ポケット及び活性部位上のこれらのすべての残基は、すべてのヤスデHNLにおいて保存されていた(図4)。PlamHNLの相同性モデリングは、OgraHNLにおけるLys121と同じように、Lys118が(R)-2-クロロマンデロニトリルのシアン化物領域との相互作用の重要な残基であることを示した(図7b)。
(Homology Modeling PlamHNL Structure)
Since HNL derived from Parafonteria laminate has 52% amino acid sequence homology to Oxidus gracilis HNL, the model homology of the PlamHNL structure using the OgraHNL structure complexed with (R) -2-chloromandelonitrile as a template is examined. Calculated. The overall structure of PlamHNL was very similar to OregHNL (FIG. 7a) and consisted of the same 10 hydrophobic and 4 hydrophilic amino acid residues in the binding pocket and active site. (Table 6). All these residues on the binding pocket and active site were conserved in all millipede HNLs (FIG. 4). Homology modeling of PlamHNL indicated that, similar to Lys121 in OgraHNL, Lys118 was a key residue in the interaction of the cyanide region of (R) -2-chloromandelonitrile (FIG. 7b). .
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(PlamHNLの(R)-2-クロロマンデロニトリルによるドッキングシミュレーションの検証)
 MOEプログラムは、結合ポケット内の約14アミノ酸残基をAlanine and Residue Scanning機能により突然変異体を生成し、親和性に重要な残基を同定した。選択された13のヒットについて変異体を作製したところ、N65、T75及びW89の3つの位置における、N65H、N65Y、W89H、N65E、N65Q及びT75Aの6種類の変異体について、2-クロロベンズアルデヒドに対する活性が確認された。対照的に、R38、Y40、L78及びY104の位置における突然変異体では活性が検出されなかったことから、これらの残基がPlamHNLの活性機構に関与している可能性が示唆された。アラニンスキャニング機能より得られた最良の変異体T75Aは、野生型より約1.5倍高い比活性を示したが、N65H、N65Y、W89H、N65E及びN65Qは野生型よりも低い比活性を示した。これらの結果は、Thr75における突然変異が2-クロロベンズアルデヒドに対する酵素活性の改善に寄与することを示している。(R)-2-クロロマンデロニトリルのエナンチオマー過剰率を改善する変異を調べるために、2-クロロベンズアルデヒド及びKCNからの合成反応を全ての精製された変異体1.0Uを用いて行った。(R)-2-クロロマンデロニトリルのエナンチオマー過剰率は、野生型が80%eeであるのに対し、N65Y、N65H、及びT75Aは、それぞれ、92%ee、85%ee、及び86%eeの増加したエナンチオマー過剰率を示した(表7)。したがって、Asn65及びThr75における変異、特にはAsn65のチロシン又はヒスチジンへの変異及びThr75のアラニンへの変異は、(R)-2-クロロマンデロニトリルの生成におけるエナンチオマー過剰率の増加に寄与する。また、N65H/T75A及びN65Y/T75Aのように、2種類の変異を組み合わせても、野生型と比較して(R)-2-クロロマンデロニトリルの比活性やエナンチオマー過剰を改善する効果が得られることが示された(非図示)。
(Verification of docking simulation with (R) -2-chloromandelonitrile of PlamHNL)
The MOE program generated a mutant of approximately 14 amino acid residues in the binding pocket by the Alanine and Residue Scanning function and identified residues that are important for affinity. Mutants were generated for the selected 13 hits. The activity of the six mutants N65H, N65Y, W89H, N65E, N65Q and T75A at the three positions N65, T75 and W89 on 2-chlorobenzaldehyde was evaluated. Was confirmed. In contrast, no activity was detected in mutants at positions R38, Y40, L78 and Y104, suggesting that these residues may be involved in the mechanism of PlamHNL activity. The best mutant T75A obtained from the alanine scanning function showed about 1.5 times higher specific activity than wild type, whereas N65H, N65Y, W89H, N65E and N65Q showed lower specific activity than wild type. . These results indicate that the mutation in Thr75 contributes to improved enzyme activity on 2-chlorobenzaldehyde. To investigate mutations that improve the enantiomeric excess of (R) -2-chloromandelonitrile, a synthetic reaction from 2-chlorobenzaldehyde and KCN was performed using 1.0 U of all purified variants. The enantiomeric excess of (R) -2-chloromandelonitrile was 80% ee for the wild type, whereas N65Y, N65H and T75A were 92% ee, 85% ee and 86% ee, respectively. Showed an increased enantiomeric excess (Table 7). Thus, mutations in Asn65 and Thr75, in particular, mutation of Asn65 to tyrosine or histidine and mutation of Thr75 to alanine contribute to an increased enantiomeric excess in the production of (R) -2-chloromandelonitrile. Further, even when two types of mutations are combined, such as N65H / T75A and N65Y / T75A, the effect of improving the specific activity and the enantiomeric excess of (R) -2-chloromandelonitrile as compared with the wild type can be obtained. (Not shown).
 また、PlamHNL(70-75残基)のβ4-β5を結ぶループは、OgraHNLのそれよりも長く、ポケットの入り口に位置する。PlamHNLの、このループ領域(I69G)は、PlamHNLの活性に大きく影響すると考えられる。さらに、ポケットの入り口にあるβ4の69番目のアミノ酸残基は、PlamHNLでは、イソロイシンであり、OgraHNLではグリシンである。これらの残基が基質との親和性に影響を与えると考えられる。そこで、この変異体を作製して検討したところ、野生型酵素PlamHNLの(R)-2-クロロマンデロニトリルに対するKm値が56.8mMであるのに対して、変異型酵素PlamHNL-I69Gの(R)-2-クロロマンデロニトリルに対するKm値は41.8mMと低く、変異型酵素では基質に対する親和性が増大していた(表8)。また、I69Gや、N65Y/I69Gを用いて合成した(R)-2-クロロマンデロニトリルのee(エナンチオマー過剰率)は、それぞれ、83%および91%であり、野生型酵素PlamHNLのそれが80%であるのに対して向上していた(表7)。これらのデータから、β4-β5領域での変異も酵素の性質を向上させるために、重要な役割を果たしていると判断される。 The loop connecting β4-β5 of PlamHNL (residues 70-75) is longer than that of OgraHNL and is located at the entrance of the pocket. This loop region (I69G) of PlamHNL is considered to greatly affect the activity of PlamHNL. Furthermore, the 69th amino acid residue of β4 at the entrance of the pocket is isoleucine in PlamHNL and glycine in OgraHNL. These residues are thought to affect the affinity for the substrate. Therefore, when this mutant was prepared and examined, the Km value of the wild-type enzyme PlamlNL for (R) -2-chloromandelonitrile was 56.8 mM, whereas the Km value of the mutant enzyme PlamlHNL-I69G was ( The Km value for R) -2-chloromandelonitrile was as low as 41.8 mM, and the mutant enzyme had an increased affinity for the substrate (Table 8). The ee (enantiomeric excess) of (R) -2-chloromandelonitrile synthesized using I69G and N65Y / I69G was 83% and 91%, respectively, and that of wild-type enzyme PlamHNL was 80%. % (Table 7). These data suggest that mutations in the β4-β5 region also play an important role in improving the properties of the enzyme.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(PlamHNL変異体のエナンチオ選択性)
 最良の候補変異体N65Y、T75A及び2点変異体N65Y/T75Aについて、(R)-2-クロロマンデロニトリル合成のための最適化条件を見出すためにさらに検討を行った。酵素量を増加し4Uとすると、N65Yによって産生された(R)-2-クロロマンデロニトリルの最大エナンチオマー過剰率は96.33%に増加した。同じ条件下で野生型を用いて生成した最大eeは87%であった(図8a)。さらに、pH3.5とすることにより、N65Y変異体は98.2%のe.e.を与えた(図8b)。精製された酵素N65Yによる(R)-2-クロロマンデロニトリルの製造は、pH3.5、25℃で30分間のインキュベーションにより、野生型(76%変換、90%ee)よりも高い変換率(91%、98.2%ee)を示した(非図示)。これらの結果は、(R)-2-クロロマンデロニトリル合成におけるPlamHNLのエナンチオ選択性が、Asn65突然変異によって顕著に改善されたことを示した。
(Enantioselectivity of PlamHNL mutant)
The best candidate mutants N65Y, T75A and the two-point mutant N65Y / T75A were further investigated to find the optimal conditions for (R) -2-chloromandelonitrile synthesis. Increasing the amount of enzyme to 4U increased the maximum enantiomeric excess of (R) -2-chloromandelonitrile produced by N65Y to 96.33%. The maximum ee produced using the wild type under the same conditions was 87% (FIG. 8a). Further, by adjusting the pH to 3.5, the N65Y mutant had a 98.2% e. e. (FIG. 8b). The production of (R) -2-chloromandelonitrile by the purified enzyme N65Y is higher than that of the wild type (76% conversion, 90% ee) by incubation at pH 3.5, 25 ° C. for 30 minutes (76% conversion, 90% ee). 91%, 98.2% ee) (not shown). These results indicated that the enantioselectivity of PlamHNL in (R) -2-chloromandelonitrile synthesis was significantly improved by the Asn65 mutation.
 本発明のヤスデ由来のHNL変異体は、シアノヒドリンの合成において産業応用することができる。 The HNL mutant derived from the millipede of the present invention can be industrially applied in the synthesis of cyanohydrin.

Claims (15)

  1.  ヤスデ由来の(R)-ヒドロキシニトリルリアーゼの変異体タンパク質であって、以下の(a)~(e)から選択される1種類以上のアミノ酸置換を有し、かつ、(R)-ヒドロキシニトリルリアーゼ活性を有する、(R)-ヒドロキシニトリルリアーゼ変異体タンパク質:
    (a)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β3)を構成するTAX1DI(配列番号3)で表されるアミノ酸配列中の2番目のアミノ酸であるAの他のアミノ酸への置換、ここで、X1はL又はFである;
    (b)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β4)を構成するX2X3X4X5X6DFX7X8X9X10(配列番号4)で表されるアミノ酸配列中の5番目のアミノ酸であるX6の他のアミノ酸への置換、ここで、X2はQ、H又はRであり、X3はI又はVであり、X4はM、I、T又はDであり、X5はA、T又はIであり、X6はY又はNであり、X7はV、T又はLであり、X8はG又はIであり、X9はG又はAであり、X10はP、A又はSである;
    (c)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β4)を構成するX2X3X4X5X6DFX7X8X9X10(配列番号4)で表されるアミノ酸配列中の7番目のアミノ酸であるFの他のアミノ酸への置換、ここで、X2~X10は(b)で定義されたとおりである;
    (d)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β4)を構成するX2X3X4X5X6DFX7X8X9X10(配列番号4)で表されるアミノ酸配列中の9番目のアミノ酸であるX8の他のアミノ酸への置換、ここで、X2~X10は(b)で定義されたとおりである;
    (e)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β5)を構成するX11X12AX13LX14(配列番号5)で表されるアミノ酸配列中の2番目のアミノ酸であるX12の他のアミノ酸への置換、ここで、X11はS,L、M又はIであり,X12はT又は存在せず、X13はH、I、Y又はFであり、X14N又はTである;及び
    (f)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β5)を構成するX11X12AX13LX14(配列番号5)で表されるアミノ酸配列中の3番目のアミノ酸であるAの他のアミノ酸への置換、ここで、X11~X14は(d)で定義されたとおりである。
    A variant of (R) -hydroxynitrile lyase derived from a millipede, which has one or more amino acid substitutions selected from the following (a) to (e), and further comprises (R) -hydroxynitrile lyase: (R) -hydroxynitrile lyase mutant proteins having activity:
    (A) substitution of A, which is the second amino acid in the amino acid sequence represented by TAX1DI (SEQ ID NO: 3) constituting the β-sheet structure (β3) of the (R) -hydroxynitrile lyase, with another amino acid; Wherein X1 is L or F;
    (B) substitution of another amino acid, X6, which is the fifth amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the β-sheet structure (β4) of the (R) -hydroxynitrile lyase, Where X2 is Q, H or R, X3 is I or V, X4 is M, I, T or D, X5 is A, T or I, X6 is Y or N , X7 is V, T or L, X8 is G or I, X9 is G or A, and X10 is P, A or S;
    (C) substitution of another amino acid F, which is the seventh amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the β-sheet structure (β4) of the (R) -hydroxynitrile lyase, Wherein X2 to X10 are as defined in (b);
    (D) substitution of another amino acid, X8, which is the ninth amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the β-sheet structure (β4) of the (R) -hydroxynitrile lyase, Wherein X2 to X10 are as defined in (b);
    (E) substitution of another amino acid, X12, which is the second amino acid in the amino acid sequence represented by X11X12AX13LX14 (SEQ ID NO: 5) constituting the β-sheet structure (β5) of the (R) -hydroxynitrile lyase, Wherein X11 is S, L, M or I, X12 is T or absent, X13 is H, I, Y or F and X14N or T; and (f) the (R)- Substitution of A, which is the third amino acid in the amino acid sequence represented by X11X12AX13LX14 (SEQ ID NO: 5) constituting the β-sheet structure (β5) of hydroxynitrile lyase, wherein X11 to X14 are ( As defined in d).
  2.  前記ヤスデ由来の(R)-ヒドロキシニトリルリアーゼが、8個の逆平衡βシート構造を有することを特徴とする、請求項1に記載の変異体タンパク質。 変 異 The mutant protein according to claim 1, wherein the (R) -hydroxynitrile lyase derived from the millipede has eight reverse-equilibrium β-sheet structures.
  3.  前記8個のβシート構造を構成するアミノ酸配列が、それぞれ、X15X16FX17X18VL(β1)(配列番号1)、TX19RX20YVX21P(β2)(配列番号2)、TAX1DI(β3)(配列番号3)、X2X3X4X5X6DFX7X8X9X10(β4)(配列番号4)、X11X12AX13LX14(β5)(配列番号5)、X22X23KX24X25WX26FQYX27X28(β6)(配列番号6)、X29X30YCAYX31CX32(β7)(配列番号7)、及びX33IX34EYKCX35X36(β8)(配列番号8)である、請求項2に記載の変異体タンパク質、
     ここで、X1はL又はFであり、X2はQ、H又はRであり、X3はI又はVであり、X4はM、I、T又はDであり、X5はA、T又はIであり、X6はY又はNであり、X7はV、T又はLであり、X8はG又はIであり、X9はG又はAであり、X10はP、A又はSであり、X11はS,L、M又はIであり,X12はT又は存在せず、X13はH、I、Y又はFであり、X14N又はTであり、X15はF又はLであり、X16はE、Q又はLであり、X17はE,A、S又はTであり、X18はY又はFであり、X19はA又はTであり、X20はV又はIであり、X21はQ又はRであり、X22はG又はDであり、X23はE、K、D又はAであり、X24はQ、T又はAであり、X25はV、I又はTであり、X26はY、H又はNであり、X27はT、V又はIであり、X28はN又はDであり、X29はA又はSであり、X30はN又はSであり、X31はR、T又はSであり、X32はN又はDであり、X33はE、A、Q、N又はSであり、X34はI、A又はVであり、X35はA又はTであり、X36はS、N又はTである。
    The amino acid sequences constituting the eight β-sheet structures are X15X16FX17X18VL (β1) (SEQ ID NO: 1), TX19RX20YVX21P (β2) (SEQ ID NO: 2), TAX1DI (β3) (SEQ ID NO: 3), and X2X3X4X5X6DFX7X8X9X10 (β4), respectively. (SEQ ID NO: 4), X11X12AX13LX14 (β5) (SEQ ID NO: 5), X22X23KX24X25WX26FQYX27X28 (β6) (SEQ ID NO: 6), X29X30YCAYX31CX32 (β7) (SEQ ID NO: 7), and X33IX34EYKCX35X36 (β8). Item 7. The mutant protein according to Item 2,
    Where X1 is L or F, X2 is Q, H or R, X3 is I or V, X4 is M, I, T or D, and X5 is A, T or I , X6 is Y or N, X7 is V, T or L, X8 is G or I, X9 is G or A, X10 is P, A or S, X11 is S, L , M or I, X12 is T or absent, X13 is H, I, Y or F, X14N or T, X15 is F or L, X16 is E, Q or L , X17 is E, A, S or T, X18 is Y or F, X19 is A or T, X20 is V or I, X21 is Q or R, X22 is G or D X23 is E, K, D or A, X24 is Q, T or A, X25 is V, I or T, X26 is Y H or N, X27 is T, V or I, X28 is N or D, X29 is A or S, X30 is N or S, X31 is R, T or S; X32 is N or D, X33 is E, A, Q, N or S, X34 is I, A or V, X35 is A or T, and X36 is S, N or T.
  4.  前記ヤスデ由来の(R)-ヒドロキシニトリルリアーゼが、更に1個のαヘリックス構造を有することを特徴とする、請求項2又は請求項3に記載の変異体タンパク質。 (4) The mutant protein according to (2) or (3), wherein the (R) -hydroxynitrile lyase derived from the millipede further has one α-helix structure.
  5.  前記αヘリックス構造を構成するアミノ酸配列が、VPNGX37KIH(配列番号9)である、請求項4に記載の変異体タンパク質、ここで、X37はD又はYである。 変 異 The mutant protein according to claim 4, wherein the amino acid sequence constituting the α-helix structure is VPNX37KIH (SEQ ID NO: 9), wherein X37 is D or Y.
  6.  前記ヤスデ由来の(R)-ヒドロキシニトリルリアーゼが、リポカインスーパーファミリーに属するタンパク質である、請求項1~請求項5のいずれか1項に記載の変異体タンパク質。 変 異 The mutant protein according to any one of claims 1 to 5, wherein the (R) -hydroxynitrile lyase derived from the millipede is a protein belonging to the lipokine superfamily.
  7.  前記ヤスデ由来の(R)-ヒドロキシニトリルリアーゼが、ChuaHNL、NttHNL、NtmHNL、OgraHNL,PlamHNL、Pton1HNL、Pton2HNL,Pton3HNL、PfalHNL、PtokHNL、RspHNL、及びRssHNLから選択されるいずれか1種類である、請求項1~請求項6のいずれか1項に記載の変異体タンパク質。 The (R) -hydroxynitrile lyase derived from the millipede is ChuaHNL, NttHNL, NtmHNL, OgraHNL, PlamHNL, Pton1HNL, Pton2HNL, Pton3HNL, PfalHNL, PtokHNL, and any one of the following: The mutant protein according to any one of claims 1 to 6.
  8.  前記アミノ酸置換が、以下の(a)~(e)から選択される1種類以上の置換である、請求項1~請求項7のいずれか1項の記載の(R)-ヒドロキシニトリルリアーゼ変異体タンパク質:
    (a)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β3)を構成するTAX1DI(配列番号3)で表されるアミノ酸配列中の2番目のアミノ酸であるAのC又はHへの置換;
    (b)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β4)を構成するX2X3X4X5X6DFX7X8X9X10(配列番号4)で表されるアミノ酸配列中の5番目のアミノ酸であるX6のH,Y、M、V、L又はWへの置換;
    (c)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β4)を構成するX2X3X4X5X6DFX7X8X9X10(配列番号4)で表されるアミノ酸配列中の7番目のアミノ酸であるFのIへの置換;
    (d)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β4)を構成するX2X3X4X5X6DFX7X8X9X10(配列番号4)で表されるアミノ酸配列中の9番目のアミノ酸であるX8のGへの置換;
    (e)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β5)を構成するX11X12AX13LX14(配列番号5)で表されるアミノ酸配列中の2番目のアミノ酸であるX12のAへの置換;及び
    (f)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β5)を構成するX11X12AX13LX14(配列番号5)で表されるアミノ酸配列中の3番目のアミノ酸であるAの疎水性残基(I、L、M、F、W、Y又はV)、C、T、E、Q又はSへの置換。
    The (R) -hydroxynitrile lyase mutant according to any one of claims 1 to 7, wherein the amino acid substitution is one or more substitutions selected from the following (a) to (e). protein:
    (A) substitution of C or H for the second amino acid A in the amino acid sequence represented by TAX1DI (SEQ ID NO: 3) constituting the β-sheet structure (β3) of the (R) -hydroxynitrile lyase;
    (B) H, Y, M, V of X6 which is the fifth amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the β sheet structure (β4) of the (R) -hydroxynitrile lyase , L or W substitutions;
    (C) substitution of I, which is the seventh amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the β-sheet structure (β4) of the (R) -hydroxynitrile lyase;
    (D) substitution of X8, which is the ninth amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the β-sheet structure (β4) of the (R) -hydroxynitrile lyase, with G;
    (E) substitution of A for X12, which is the second amino acid in the amino acid sequence represented by X11X12AX13LX14 (SEQ ID NO: 5) constituting the β-sheet structure (β5) of the (R) -hydroxynitrile lyase; and f) The hydrophobic residue (I, L) of the third amino acid in the amino acid sequence represented by X11X12AX13LX14 (SEQ ID NO: 5) constituting the β-sheet structure (β5) of the (R) -hydroxynitrile lyase , M, F, W, Y or V), C, T, E, Q or S.
  9.  前記アミノ酸置換が、2か所以上に存在する、請求項1~請求項8のいずれか1項に記載の変異体タンパク質。 The mutant protein according to any one of claims 1 to 8, wherein the amino acid substitution is present at two or more positions.
  10.  前記2か所のアミノ酸置換が、以下の(b)、(d)、及び(e)から選択される2つの置換である、請求項9に記載の変異体タンパク質。
    (b)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β4)を構成するX2X3X4X5X6DFX7X8X9X10(配列番号4)で表されるアミノ酸配列中の5番目のアミノ酸であるX6のH,Y、M、V、L又はWへの置換;
    (d)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β4)を構成するX2X3X4X5X6DFX7X8X9X10(配列番号4)で表されるアミノ酸配列中の9番目のアミノ酸であるX8のGへの置換、
    (e)当該(R)-ヒドロキシニトリルリアーゼのβシート構造(β5)を構成するX11X12AX13LX14(配列番号5)で表されるアミノ酸配列中の2番目のアミノ酸であるX12のAへの置換、
     ここで、X2~X12は請求項1で定義されたとおりである。
    The mutant protein according to claim 9, wherein the two amino acid substitutions are two substitutions selected from the following (b), (d), and (e).
    (B) H, Y, M, V of X6 which is the fifth amino acid in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the β sheet structure (β4) of the (R) -hydroxynitrile lyase , L or W substitutions;
    (D) substitution of G for the ninth amino acid X8 in the amino acid sequence represented by X2X3X4X5X6DFX7X8X9X10 (SEQ ID NO: 4) constituting the β-sheet structure (β4) of the (R) -hydroxynitrile lyase;
    (E) substitution of A for X12, which is the second amino acid in the amino acid sequence represented by X11X12AX13LX14 (SEQ ID NO: 5) constituting the β-sheet structure (β5) of the (R) -hydroxynitrile lyase;
    Here, X2 to X12 are as defined in claim 1.
  11.  請求項1~請求項10のいずれか1項に記載の(R)-ヒドロキシニトリルリアーゼ変異体タンパク質をコードする核酸分子。 核酸 A nucleic acid molecule encoding the (R) -hydroxynitrile lyase mutant protein according to any one of claims 1 to 10.
  12.  請求項11に記載の核酸分子を含有するベクター。 A vector comprising the nucleic acid molecule according to claim 11.
  13.  請求項12に記載のベクターで形質転換された細胞。 A cell transformed with the vector according to claim 12.
  14.  請求項13に記載の細胞を培養することを含む、請求項1~請求項10のいずれか1項に記載の(R)-ヒドロキシニトリルリアーゼ変異体タンパク質の製造方法。 方法 The method for producing a (R) -hydroxynitrile lyase mutant protein according to any one of claims 1 to 10, comprising culturing the cell according to claim 13.
  15.  請求項1~請求項10のいずれか1項に記載の(R)-ヒドロキシニトリルリアーゼ変異体タンパク質の存在下で、ケトン又はアルデヒドとシアン化合物(R)とを反応させることを含む、シアノヒドリンの製造方法。 A method for producing cyanohydrin, comprising reacting a ketone or aldehyde with a cyanide compound (R) in the presence of the (R) -hydroxynitrile lyase mutant protein according to any one of claims 1 to 10. Method.
PCT/JP2019/026527 2018-07-03 2019-07-03 Novel hydroxynitrile lyase mutant WO2020009168A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020529040A JP7264354B2 (en) 2018-07-03 2019-07-03 Novel hydroxynitrile lyase mutant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-127105 2018-07-03
JP2018127105 2018-07-03

Publications (1)

Publication Number Publication Date
WO2020009168A1 true WO2020009168A1 (en) 2020-01-09

Family

ID=69060830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026527 WO2020009168A1 (en) 2018-07-03 2019-07-03 Novel hydroxynitrile lyase mutant

Country Status (2)

Country Link
JP (1) JP7264354B2 (en)
WO (1) WO2020009168A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006076965A1 (en) * 2005-01-20 2006-07-27 Dsm Fine Chemicals Austria Nfg Gmbh & Co Kg R-hydroxynitrile lyases having improved substrate acceptance and the use thereof
JP2006520201A (en) * 2003-03-20 2006-09-07 ディーエスエム ファイン ケミカルズ オーストリア エヌエフジー ゲーエムベーハー アンド コーポレイション カーゲー R-hydroxynitrile lyase having improved substrate acceptability and use thereof
WO2014202671A1 (en) * 2013-06-21 2014-12-24 Dsm Ip Assets B. V. Hnl mutants at low ph
WO2015133462A1 (en) * 2014-03-04 2015-09-11 富山県 Novel (r)-hydroxynitrile lyase
EP2955225A1 (en) * 2014-06-12 2015-12-16 ACIB GmbH (R)-selective hydroxynitrile lyase variants with a cupin fold having improved substrate scope and the use thereof
WO2017150560A1 (en) * 2016-03-01 2017-09-08 公立大学法人 富山県立大学 Hydroxynitrile lyase

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006520201A (en) * 2003-03-20 2006-09-07 ディーエスエム ファイン ケミカルズ オーストリア エヌエフジー ゲーエムベーハー アンド コーポレイション カーゲー R-hydroxynitrile lyase having improved substrate acceptability and use thereof
WO2006076965A1 (en) * 2005-01-20 2006-07-27 Dsm Fine Chemicals Austria Nfg Gmbh & Co Kg R-hydroxynitrile lyases having improved substrate acceptance and the use thereof
WO2014202671A1 (en) * 2013-06-21 2014-12-24 Dsm Ip Assets B. V. Hnl mutants at low ph
WO2015133462A1 (en) * 2014-03-04 2015-09-11 富山県 Novel (r)-hydroxynitrile lyase
EP2955225A1 (en) * 2014-06-12 2015-12-16 ACIB GmbH (R)-selective hydroxynitrile lyase variants with a cupin fold having improved substrate scope and the use thereof
WO2017150560A1 (en) * 2016-03-01 2017-09-08 公立大学法人 富山県立大学 Hydroxynitrile lyase

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GLIEDER, ANTON ET AL.: "Comprehensive Step-by-Step Engineering of an (R)-hydroxynitrile Lyase for Large-Scale Asymmetric Synthesis", ANGEW. CHEM. INT. ED., vol. 42, 2003, pages 4815 - 4818, XP002281488 *
WEIS, ROLAND ET AL.: "Carving the Active Site of Almond R-HNL for Increased Enantioselectivity", ANGEW. CHEM. INT. ED., vol. 44, 2005, pages 4700 - 4704, XP002382496, DOI: 10.1002/anie.200500435 *
WIEDNER, ROMANA ET AL.: "Improving the Properties of Bacterial R-Selective Hydroxynitrile Lyases for Industrial Applications", CHEMCATCHEM, vol. 7, 2015, pages 325 - 332, XP002741914, DOI: 10.1002/cctc.201402742 *

Also Published As

Publication number Publication date
JPWO2020009168A1 (en) 2021-08-19
JP7264354B2 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
Kawazoe et al. Crystal structure of human D‐amino acid oxidase: context‐dependent variability of the backbone conformation of the VAAGL hydrophobic stretch located at the si‐face of the flavin ring
Hajnal et al. Biochemical and structural characterization of a novel bacterial manganese‐dependent hydroxynitrile lyase
Kim et al. Gene engineering, purification, crystallization and preliminary X-ray diffraction of cytochrome P450 p-coumarate-3-hydroxylase (C3H), the Arabidopsis membrane protein
US10240170B2 (en) CO hydratase and method for producing formate using the same
Lanfranchi et al. Enzyme discovery beyond homology: a unique hydroxynitrile lyase in the Bet v1 superfamily
TW202024332A (en) Pyrrolysyl-tRNA synthetase
Shimekake et al. A novel thermostable d-amino acid oxidase of the thermophilic fungus Rasamsonia emersonii strain YA
Motojima et al. The crystal structure and catalytic mechanism of hydroxynitrile lyase from passion fruit, Passiflora edulis
Yamaguchi et al. Hydroxynitrile lyases from cyanogenic millipedes: molecular cloning, heterologous expression, and whole-cell biocatalysis for the production of (R)-mandelonitrile
Du et al. Specific ligation of two multimeric enzymes with native peptides and immobilization with controlled molar ratio
Sharon et al. A cryptic third active site in cyanophycin synthetase creates primers for polymerization
Wang et al. Discovery of a new NADPH-dependent aldo-keto reductase from Candida orthopsilosis catalyzing the stereospecific synthesis of (R)-pantolactone by genome mining
Motojima et al. R‐hydroxynitrile lyase from the cyanogenic millipede, Chamberlinius hualienensis—A new entry to the carrier protein family Lipocalines
Rodriguez-Zavala et al. Structural Aspects of Aldehyde Dehydrogenase that Influence Dimer− Tetramer Formation
Zhao et al. A recombinant L-threonine aldolase with high diastereoselectivity in the synthesis of L-threo-dihydroxyphenylserine
Sacchi et al. Modulating D-amino acid oxidase substrate specificity: production of an enzyme for analytical determination of all D-amino acids by directed evolution
WO2019224536A1 (en) Method for producing monoterpenoid compounds
Isobe et al. Characterization of a novel hydroxynitrile lyase from Nandina domestica Thunb
WO2020009168A1 (en) Novel hydroxynitrile lyase mutant
Bhagat et al. Genetically expanded reactive-oxygen-tolerant alcohol dehydrogenase II
Arai et al. Structure of human ubiquitin-conjugating enzyme E2 G2 (UBE2G2/UBC7)
US20100086958A1 (en) Novel enzyme
Zheng et al. Structural characterization of Linum usitatissimum hydroxynitrile lyase: A new cyanohydrin decomposition mechanism involving a cyano-zinc complex
Yu et al. The C-terminal aqueous-exposed domain of the 45 kDa subunit of the particulate methane monooxygenase in Methylococcus capsulatus (Bath) is a Cu (I) sponge
JP5540367B2 (en) Chaperonin mutant and DNA encoding the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830766

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020529040

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830766

Country of ref document: EP

Kind code of ref document: A1