WO2020009137A1 - Coke dry quenching equipment - Google Patents

Coke dry quenching equipment Download PDF

Info

Publication number
WO2020009137A1
WO2020009137A1 PCT/JP2019/026407 JP2019026407W WO2020009137A1 WO 2020009137 A1 WO2020009137 A1 WO 2020009137A1 JP 2019026407 W JP2019026407 W JP 2019026407W WO 2020009137 A1 WO2020009137 A1 WO 2020009137A1
Authority
WO
WIPO (PCT)
Prior art keywords
coke
repose
sloping
exhaust gas
repose surface
Prior art date
Application number
PCT/JP2019/026407
Other languages
French (fr)
Japanese (ja)
Inventor
大原尚通
Original Assignee
大原尚通
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大原尚通 filed Critical 大原尚通
Publication of WO2020009137A1 publication Critical patent/WO2020009137A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B39/00Cooling or quenching coke
    • C10B39/02Dry cooling outside the oven

Definitions

  • the present invention relates to a coke dry fire extinguishing system for cooling coke.
  • FIG. 1 shows the entire equipment.
  • Coke dry fire extinguishing equipment is installed in steelworks, etc., and gradually cools and extinguishes red hot coke carbonized in a coke oven with circulating gas to improve coke quality and recover energy such as power generation.
  • the exhaust gas passes through the sloping flue 3 and is conveyed to the boiler side.
  • the exhaust gas is mainly a cooling gas passing through the cooling chamber 2, but also includes a combustion gas generated from coke in the pre-chamber 1.
  • the exhaust gas passes through a dust removal facility 9 to contain coke powder, and is circulated again to a lower portion of the cooling chamber 2 after energy recovery in a boiler facility 10.
  • the sloping flues 3 are arranged radially from the upper part of the cooling chamber 2 to the ring duct 8 in order to convey the exhaust gas to the boiler side.
  • the side surface of the sloping flew 3 is constituted by a partition wall 5 that supports the pre-chamber inner cylinder 4.
  • FIG. 2 is a cross section of the sloping flute.
  • the high-temperature coke introduced into the pre-chamber 1 gradually descends, and a part of the coke is deposited in the sloping flue 3. Then, it returns to the cooling chamber 2 and descends. Inside the sloping flue 3, the coke layer is gradually replaced to maintain a repose angle and form a slope (hereinafter referred to as a repose surface 6).
  • the sloping flute entrance 7 is at a height below the repose level 6.
  • the cooling gas After the cooling gas is blown into the lower part of the cooling chamber 2, it rises in the gap of the coke layer in the cooling chamber 2, further passes through the gap of the coke layer in the sloping flue 3, and then blows out from the resting surface 6.
  • the combustion gas generated from the coke in the pre-chamber 1 also blows out from the repose surface 6 together with the cooling gas.
  • a mixture of the cooling gas passing through the cooling chamber 2 and the combustion gas passing through the pre-chamber 1 is the exhaust gas passing through the sloping flue 3, and the total of the cooling gas amount and the combustion gas amount is the exhaust gas amount.
  • the amount of exhaust gas is also the amount of gas ejected from the repose surface 6.
  • the amount of exhaust gas passing through the sloping flue 3 tends to increase because combustion air or external combustion products are introduced into the pre-chamber 2 to promote dry distillation of coke or increase recovery energy. It is in.
  • Vent velocity of repose surface (exhaust gas flow rate) / (repose area)
  • the exhaust gas ejected from the repose surface 6 is deflected in the radial direction of the cooling chamber 2 by the wedge-shaped coke layer sandwiched between the partition walls 5.
  • the flow rate of the exhaust gas becomes smaller as the resting surface 6 becomes more outward from the furnace core. If the amount of exhaust gas is continuously increased, the sloping flue 3 will be blocked with coke at a certain level.
  • the process in which the sloping flue 3 is blocked by coke changes substantially as shown in FIG. (1) Fine powder blown up from the furnace core side of the repose surface 6 where the cooling gas flow rate is high accumulates on the outside of the furnace where the flow rate is low. (2) Coke is deposited on the outside of the furnace at a height exceeding the resting surface 6, and the drift increases. (3) The sloping flue 3 is blocked by vicious circulation of coke deposition and drift.
  • the particle size of coke scattered and conveyed toward the boiler also varies. If the sloping flue 3 is blocked by coke, it will be necessary to stop the equipment for recovery. If large-diameter coke is scattered and conveyed, boiler tubes, dust removal equipment, and other auxiliary equipment will also be damaged, and construction and maintenance costs must be excessive. Further, in order to prevent the above (1) to (3) from occurring during the operation of the facility, the amount of exhaust gas in which coke does not accumulate beyond the repose surface 6 must be suppressed in advance.
  • the repose surface length W (FIG. 2)
  • the average value of the repellent flow velocity at the repose surface can be reduced, but the area outside the furnace where the flow velocity is small increases, and the wind-up effect is small and the drift is increased.
  • Increasing the resting surface length W increases the size of the partition wall 5 and supports the pre-chamber inner cylinder 4. Since the structure is a tiled structure, the brittleness increases and the maintenance load increases. For example, the coke quality and the amount of recovered energy are reduced due to an increase in the stoppage time of the equipment, or the work load and the repair cost for reloading the partition wall and the tile every time the equipment is stopped.
  • Japanese Patent Publication No. 03-120536 describes a structure in which the sloping flue 3 is divided into a plurality of upper and lower stages to reduce the coke layer to rest.
  • PCT / JP2008 / 068582 discloses an invention in which the lower end of the entrance of the sloping flues 3 is arranged on the furnace core side to create a space where the coke in the sloping flues is discharged and filled.
  • the present invention is based on such a background, and a first object of the present invention is to eliminate the limitation of the exhaust gas flow rate of the sloping flute without increasing the construction cost and maintenance cost of the partition wall, and to reduce the gas emission amount. To increase coke cooling capacity and energy recovery capacity.
  • a second object is to control the particle size of coke scattered and conveyed while keeping the flow rate of exhaust gas stable, and to suppress the wear resistance cost on the boiler side.
  • An object of the present invention is to eliminate a resting surface from a sloping flu that is first restricted by a cooling gas flow rate. Eliminating the flow rate limitation of the sloping flue and preventing the blockage of coke will increase the amount of exhaust gas.
  • a second problem is to suppress drift on the repose surface, which is a classification point of coke scattered and conveyed to the boiler side. If the drift can be suppressed, the particle size of coke scattered and conveyed to the boiler side can be controlled stably even if the exhaust gas is increased, the abrasion resistance costs of the boiler equipment and the dust removal equipment can be reduced, and the construction and maintenance costs can be reduced. Will be possible.
  • FIG. 1 A cross section of the structure of the present invention is shown in FIG. It is desirable that the area from the upper end 21 of the repose surface at the lower part of the pre-chamber inner cylinder to the lower end 22 of the repose surface on the inner side surface of the cooling chamber has a repose surface length W, and the repose surface is formed in a ring shape.
  • a space is provided between the partition wall and the resting surface, and the sloping flue entrance is located at the height from the repose surface upper end 21 to the repose surface lower end 22, and each sloping flue entrance is located between the repose surface and the partition wall. It is desirable to communicate in space.
  • the exhaust gas After passing through the gap of the coke layer in the pre-chamber or the cooling chamber, the exhaust gas blows out from the ring-shaped repose surface where drift is significantly suppressed, without receiving the ventilation resistance of the coke layer from the sloping flue. It is discharged to the boiler side.
  • the coke gradually descends from the pre-chamber, forms a ring-shaped repose surface without entering the sloping flue, and then descends from the cooling chamber.
  • the repose area of the present invention is desirably determined from the flow velocity of the gas discharged from the repose surface and the flow rate of the exhaust gas based on the large particle size of the coke scattered and conveyed to the boiler side. It is desirable that the repose area be large enough not to exceed the terminal velocity of the large particle size of the coke scattered and conveyed to the boiler side.
  • FIG. 6 shows a plan image of the ring-shaped repose surface of the present invention. It is desirable to secure the strength and durability of the partition wall while securing the necessary area as described above. Therefore, since there is no division by the partition wall and the drift of the repose surface is remarkably suppressed, it is desirable that the repose surface length W be significantly reduced as compared with the conventional art. It is desirable to shorten the length W of the repose surface while securing a repose area that does not exceed the terminal speed of the large particle size of the coke scattered and conveyed to the boiler side.
  • An effect of the present invention is that in a coke dry fire extinguishing system having a pre-chamber and a cooling chamber, the wind speed limitation of the sloping flue is eliminated, and the drift of the exhaust gas on the repose surface can be remarkably suppressed. As a result, the amount of exhaust gas can be increased, and the coke cooling capacity and the energy recovery capacity are improved.
  • shortening the resting surface length W also reduces the length L of the sloping flew, which can be expected to increase the volume of the pre-chamber and reduce the height of the entire equipment.
  • the terminal velocity ut of the large particle diameter d of the coke scattered and conveyed to the boiler side on the repose surface of the coke can be expressed by the following equation.
  • ut d ⁇ 2 ( ⁇ s ⁇ f) * gravity acceleration / (18 ⁇ f) (Re ⁇ 2)
  • ut ⁇ (4/225) * ( ⁇ s ⁇ f) ⁇ 2 * gravity acceleration ⁇ 2 / ( ⁇ f * ⁇ f) ⁇ ⁇ (1/3) * d (2 ⁇ Re ⁇ 500)
  • ut ⁇ (4/3 / 0.44) * ( ⁇ s ⁇ f) * gravity acceleration * d / ⁇ f ⁇ ⁇ (1/2) (500 ⁇ Re ⁇ 10 ⁇ 5)
  • Re (d * ut * ⁇ f) / ⁇ f ⁇ f: exhaust gas density
  • ⁇ s coke density
  • ⁇ f exhaust gas viscosity
  • the terminal speed ut is expressed by the above-mentioned third equation. Therefore, since the exhaust gas density ⁇ f and the coke density ⁇ s are determined by fixed values, the terminal velocity ut can be obtained by determining the large particle diameter d.
  • the resting surface may be arranged in a plurality of upper and lower stages.
  • the height of the sloping flute inlet be limited to the height of the upper end of the repose surface.
  • the lower end of the sloping flu inlet be limited to the height of the resting surface lower end.
  • a part or all of the thickness of the pre-chamber inner cylinder may be stacked directly above the cooling chamber and the tile thickness in the vertical direction. This can be expected to increase the volume of the pre-chamber or reduce the height of the entire equipment.
  • a plurality of partition walls may be extended below the repose surface and a ring-shaped repose surface may be divided into a plurality of portions as in the related art.
  • the upper and lower surfaces of the partition wall may be chamfered, and the inlet / outlet opening of the sloping flue may be bell-mouthed to reduce the pressure loss of the exhaust gas flow.
  • the arrangement of the cooling chamber inlet in the circumferential direction may be changed between the repose surface and the sloping flue inlet within a range in which the lifting of the coke powder due to the horizontal wind pressure of the exhaust gas on the repose surface can be ignored.
  • the resting surface and the sloping flue inlet need not be arranged evenly around the cooling chamber.
  • the present invention is applied to a coke dry fire extinguishing system, but in general, from any height of a powder packed bed in a tower, a fluid that has passed through a void in a powder is discharged out of the system from a repose surface.
  • the present invention can also be used for collecting generated gas accompanying scattering and transport of molded coal powder having a grain size smaller than or equal to the boundary particle size from the height of the middle stage of the shaft furnace of the molded coke making machine.
  • the present invention can be applied to a case where a fluid is discharged from a side surface of a powder packed bed and a large particle size of powder scattered and transported by the fluid is set.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Coke Industry (AREA)

Abstract

[Problem] To provide coke dry quenching equipment which increases the exhaust gas of a sloping flue and controls the particle diameter of coke that is scattered and transported toward a boiler, and which improves coke quality and performs energy recovery in a stable manner. [Solution] In the present invention, space is provided between a partition wall 5 and a repose surface 6 to exclude a coke repose surface from the sloping flue and to specially control the drift of exhaust gas spray at the repose surface, and an annular repose surface is formed along a wall inside a cooling chamber below a sloping flue entrance 7. In addition, the area of the annular repose surface is set on the basis of the maximum particle diameter of coke powder that is scattered and transported toward the boiler.

Description

コークス乾式消火設備Coke dry fire extinguishing equipment
本発明は、コークス冷却を行うコークス乾式消火設備に関する。 TECHNICAL FIELD The present invention relates to a coke dry fire extinguishing system for cooling coke.
図1に設備全体を示す。コークス乾式消火設備は製鉄所などに設置され、コークス炉で乾留された赤熱コークスを循環ガスで徐冷、消火しコークスの品質向上と発電などのエネルギー回収を行う設備である。 FIG. 1 shows the entire equipment. Coke dry fire extinguishing equipment is installed in steelworks, etc., and gradually cools and extinguishes red hot coke carbonized in a coke oven with circulating gas to improve coke quality and recover energy such as power generation.
コークスが充填される耐火物製 瓦積みの円筒形容器であり、上部に赤熱コークスの予備槽となるプレチャンバー1、下部にコークスを徐冷するクーリングチャンバー2、その間に円周方向に放射状に配列されたスローピングフリュー3を備えている。赤熱コークスは、プレチャンバー1上部から投入されクーリングチャンバー2下部から排出される。 A cylindrical container made of refractory made of refractory and filled with coke, a prechamber 1 serving as a preliminary tank for glowing coke at the top, a cooling chamber 2 for gradually cooling the coke at the bottom, and radial arrangement in the circumferential direction between them. Equipped with the sloping flew 3. The red hot coke is introduced from the upper part of the pre-chamber 1 and discharged from the lower part of the cooling chamber 2.
排出ガスはスローピングフリュー3を通過しボイラー側に搬送される。排出ガスはクーリングチャンバー2経由の冷却ガスが主体であるが、プレチャンバー1内のコークスから発生した燃焼ガスも含まれている。排出ガスはコークス粉を含むために除塵設備9を通り、ボイラー設備10でエネルギー回収された後に再びクーリングチャンバー2下部へ循環される。 The exhaust gas passes through the sloping flue 3 and is conveyed to the boiler side. The exhaust gas is mainly a cooling gas passing through the cooling chamber 2, but also includes a combustion gas generated from coke in the pre-chamber 1. The exhaust gas passes through a dust removal facility 9 to contain coke powder, and is circulated again to a lower portion of the cooling chamber 2 after energy recovery in a boiler facility 10.
スローピングフリュー3は、排出ガスをボイラー側に搬送するために、クーリングチャンバー2上部から放射状にリングダクト8まで配置されている。スローピングフリュー3の側面は、プレチャンバー内筒4を支える仕切壁5で構成されている。 The sloping flues 3 are arranged radially from the upper part of the cooling chamber 2 to the ring duct 8 in order to convey the exhaust gas to the boiler side. The side surface of the sloping flew 3 is constituted by a partition wall 5 that supports the pre-chamber inner cylinder 4.
図2はスローピングフリューの断面である。プレチャンバー1に投入された高温のコークスは漸次下降し、一部がスローピングフリュー3内に堆積する。その後、クーリングチャンバー2内に戻り下降する。スローピングフリュー3内は、コークス層が漸次入れ替わりながら安息角を保ち斜面(以降、安息面6という)を形成している。スローピングフリュー入口7は安息面6以下の高さにある。 FIG. 2 is a cross section of the sloping flute. The high-temperature coke introduced into the pre-chamber 1 gradually descends, and a part of the coke is deposited in the sloping flue 3. Then, it returns to the cooling chamber 2 and descends. Inside the sloping flue 3, the coke layer is gradually replaced to maintain a repose angle and form a slope (hereinafter referred to as a repose surface 6). The sloping flute entrance 7 is at a height below the repose level 6.
冷却ガスは、クーリングチャンバー2下部に吹き込まれた後、クーリングチャンバー2内のコークス層の空隙を上昇し、さらにスローピングフリュー3内のコークス層の空隙を通過したのち、安息面6から噴き出す。これに加えて、プレチャンバー1内のコークスから発生した燃焼ガスも冷却ガスとともに安息面6から噴き出す。クーリングチャンバー2経由の冷却ガスにプレチャンバー1経由の燃焼ガスが混合されたものがスローピングフリュー3を通過する排出ガスであり、冷却ガス量と燃焼ガス量の合計が排出ガス量である。また、排出ガス量は安息面6の噴き出し量でもある。 After the cooling gas is blown into the lower part of the cooling chamber 2, it rises in the gap of the coke layer in the cooling chamber 2, further passes through the gap of the coke layer in the sloping flue 3, and then blows out from the resting surface 6. In addition, the combustion gas generated from the coke in the pre-chamber 1 also blows out from the repose surface 6 together with the cooling gas. A mixture of the cooling gas passing through the cooling chamber 2 and the combustion gas passing through the pre-chamber 1 is the exhaust gas passing through the sloping flue 3, and the total of the cooling gas amount and the combustion gas amount is the exhaust gas amount. The amount of exhaust gas is also the amount of gas ejected from the repose surface 6.
さらに 最近の技術動向として、プレチャンバー2に燃焼空気または外部燃焼物を導入し、コークスの乾留促進または回収エネルギーの増加を図る傾向にあるため、スローピングフリュー3を通過する排出ガス量は増加する傾向にある。 Furthermore, as a recent technical trend, the amount of exhaust gas passing through the sloping flue 3 tends to increase because combustion air or external combustion products are introduced into the pre-chamber 2 to promote dry distillation of coke or increase recovery energy. It is in.
安息面6からは比較的小さな粒径のコークスが排ガスによってボイラー側に飛散搬送される。排出ガスの安息面の噴き出し流速はボイラー側に飛散搬送されるコークスの粒径に大きく影響する。  From the repose surface 6, coke having a relatively small particle size is scattered and conveyed to the boiler side by the exhaust gas. The flow velocity of the exhaust gas from the repose surface greatly affects the particle size of coke scattered and conveyed to the boiler side.
安息面6の噴き出し流速は、次の式で表す。
安息面の噴き出し流速=(排出ガス流量)/(安息面積)
The jet velocity at the repose surface 6 is expressed by the following equation.
Vent velocity of repose surface = (exhaust gas flow rate) / (repose area)
図3から、安息面6の噴き出し流速を鉛直方向に分解した速度成分が、コークス粒の終末速度に等しいとき、コークス粉は安息面から離脱しボイラー側に飛散搬送されると考えられる。式で表すと、安息面の噴き出し流速*cos安息角=境界粒径の終末速度のときに境界粒径以下のコークスがボイラー側に飛散搬送される。 From FIG. 3, it is considered that when the velocity component obtained by vertically decomposing the jet flow velocity of the repose surface 6 is equal to the terminal velocity of the coke particles, the coke powder is separated from the repose surface and scattered and conveyed to the boiler side. When expressed by the equation, coke having a particle diameter equal to or smaller than the boundary particle diameter is scattered and conveyed to the boiler side when the ejection velocity of the repose surface * cos repose angle = terminal velocity of the boundary particle diameter.
安息面6から噴き出す排出ガスは、仕切壁5に挟まれた楔型のコークス層によってクーリングチャンバー2の半径方向で偏流している。安息面6は炉芯から外側になるほど排出ガス流量は小さくなる。排出ガス量を増加し続ければ、あるレベルでスローピングフリュー3がコークスで閉塞してしまう。 The exhaust gas ejected from the repose surface 6 is deflected in the radial direction of the cooling chamber 2 by the wedge-shaped coke layer sandwiched between the partition walls 5. The flow rate of the exhaust gas becomes smaller as the resting surface 6 becomes more outward from the furnace core. If the amount of exhaust gas is continuously increased, the sloping flue 3 will be blocked with coke at a certain level.
スローピングフリュー3がコークスで閉塞する過程は概ね図4のように変化する。
(1)冷却ガス流速が大きい安息面6の炉芯側から吹き上げられた微粉が流速の小さい炉外側へ堆積する。
(2)炉外側で安息面6を超える高さにコークスが堆積され偏流が増大する。
(3)コークス堆積と偏流の悪循環によりスローピングフリュー3が閉塞する。
The process in which the sloping flue 3 is blocked by coke changes substantially as shown in FIG.
(1) Fine powder blown up from the furnace core side of the repose surface 6 where the cooling gas flow rate is high accumulates on the outside of the furnace where the flow rate is low.
(2) Coke is deposited on the outside of the furnace at a height exceeding the resting surface 6, and the drift increases.
(3) The sloping flue 3 is blocked by vicious circulation of coke deposition and drift.
上記(1)~(3)の過程では、ボイラー側に飛散搬送されるコークス粒径も変動する。スローピングフリュー3がコークスで閉塞されれば復旧のために設備停止が必要になる。大粒径のコークスが飛散搬送されればボイラーチューブや除塵設備その他の付帯設備も損傷するため、建設コスト、保全コストは過剰にならざるを得ない。また設備稼働中に上記(1)~(3)を起こさせないためには、あらかじめコークスが安息面6を超えて堆積しない排出ガス量に抑制せざるを得ない。 In the processes (1) to (3), the particle size of coke scattered and conveyed toward the boiler also varies. If the sloping flue 3 is blocked by coke, it will be necessary to stop the equipment for recovery. If large-diameter coke is scattered and conveyed, boiler tubes, dust removal equipment, and other auxiliary equipment will also be damaged, and construction and maintenance costs must be excessive. Further, in order to prevent the above (1) to (3) from occurring during the operation of the facility, the amount of exhaust gas in which coke does not accumulate beyond the repose surface 6 must be suppressed in advance.
ところで、安息面長さW(図2)を大きくすれば安息面の噴き出し流速の平均値は低減できるが、流速の少ない炉外方向の面積が増えることになり増風効果は小さく偏流は増大する。また安息面長さWを大きくすることは仕切壁5の大型化になり、プレチャンバー内筒4を支える 瓦積み構造体であるゆえに脆弱さを増し保全負荷が増大する。例えば、設備の停止時間の増加によるコークス品質と回収エネルギー量の低下、あるいは設備停止毎の仕切壁 瓦の積み替え作業負荷と補修コストの増大である。 By the way, if the repose surface length W (FIG. 2) is increased, the average value of the repellent flow velocity at the repose surface can be reduced, but the area outside the furnace where the flow velocity is small increases, and the wind-up effect is small and the drift is increased. . Increasing the resting surface length W increases the size of the partition wall 5 and supports the pre-chamber inner cylinder 4. Since the structure is a tiled structure, the brittleness increases and the maintenance load increases. For example, the coke quality and the amount of recovered energy are reduced due to an increase in the stoppage time of the equipment, or the work load and the repair cost for reloading the partition wall and the tile every time the equipment is stopped.
このように、排出ガス量を増大させたうえでボイラー側に飛散搬送されるコークス粒径を制御することはコークス乾式消火設備の稼働当初からの課題であった。しかしながら従来のスローピングフリュー3の構造では、
(1)スローピングフリューでコークス閉塞を起こさないための風速制限があり、
(2)安息面6で排ガスの偏流があり、飛散搬送されるコークスの粒径が変動しやすい。
(3)安息面積を増大すると仕切壁を大型化し脆弱さを増し、建設コスト、保全コストが増大する。
という因果関係があるために困難であった。
As described above, controlling the particle size of coke scattered and conveyed to the boiler side after increasing the amount of exhaust gas has been a problem from the beginning of operation of the coke dry fire extinguishing equipment. However, in the structure of the conventional sloping flew 3,
(1) There is a wind speed limit to prevent the coke from being blocked by the sloping flue.
(2) The exhaust gas drifts on the repose surface 6, and the particle size of the coke scattered and conveyed is likely to fluctuate.
(3) Increasing the area of repose increases the size of the partition wall and increases its fragility, thereby increasing construction and maintenance costs.
It was difficult because of the causal relationship.
これに対し、従来からスローピングフリュー3の排出ガス量の増加対策がなされてきた。
例えば(特公平01-026396)では、プレチャンバー内筒4下端部の内側をリブ化することで安息面長さWを大きくし、また安息面6上部を部分的に連結させ、スローピングフリュー3内のコークス層を減ずる発明が開示されている。
On the other hand, conventionally, measures have been taken to increase the amount of exhaust gas of the sloping flue 3.
For example, in Japanese Patent Publication No. 01-026396, the inside of the lower end of the pre-chamber inner cylinder 4 is ribbed to increase the resting surface length W, and the upper part of the resting surface 6 is partially connected, so that the inside of the sloping flu 3 The invention which reduces the coke layer is disclosed.
また(特公平03-120536)には、スローピングフリュー3を上下複数段に分割することにより安息するコークス層を減少させる構造が記されている。 Further, Japanese Patent Publication No. 03-120536 describes a structure in which the sloping flue 3 is divided into a plurality of upper and lower stages to reduce the coke layer to rest.
さらに(PCT/JP2008/068582)では、スローピングフリュー3の入り口下端部を炉芯側に配置することによりスローピングフリュー内のコークスが排出され充填されるスペースを作り出す発明が開示されている。 Further, (PCT / JP2008 / 068582) discloses an invention in which the lower end of the entrance of the sloping flues 3 is arranged on the furnace core side to create a space where the coke in the sloping flues is discharged and filled.
特公平01-026396Tokuhei 01-026396 特公平03-120536Tokuhei 03-120536 PCT/JP2008/068582PCT / JP2008 / 068582
これらの発明は、ガス排出量の増加には実用的で効果を発揮している。しかしながら、スローピングフリュー3内から安息面4が排除されていないために、排出ガス量の一定幅の増加はできるものの、スローピングフリュー3のコークス閉塞を防止するための排出ガス流速制限は解消されない。また、安息面6からの排出ガス噴き出しの偏流も一定の改善にとどまるために、集塵設備とボイラー設備の耐摩耗コストの低減までは期待できない。さらに、チャンバー内の構造を複雑にすることは、設備停止時間や保全コストを増大させる要因でもある。 These inventions are practical and effective in increasing gas emissions. However, since the repose surface 4 is not removed from the sloping flu 3, the exhaust gas amount can be increased by a certain width, but the exhaust gas flow rate limitation for preventing the coke blocking of the sloping flu 3 remains. In addition, since the drift of the exhaust gas jet from the repose surface 6 is only improved to a certain extent, it cannot be expected to reduce the abrasion resistance costs of the dust collecting equipment and the boiler equipment. Further, the complexity of the structure inside the chamber is a factor that increases equipment downtime and maintenance costs.
本発明はこのような背景に基づいたものであり、その第一の目的は、仕切壁の建設コスト、保全コストを増大させることなく、スローピングフリューの排出ガス流速制限を解消し、ガス排出量を増加させコークス冷却能力とエネルギー回収能力を増強することにある。 The present invention is based on such a background, and a first object of the present invention is to eliminate the limitation of the exhaust gas flow rate of the sloping flute without increasing the construction cost and maintenance cost of the partition wall, and to reduce the gas emission amount. To increase coke cooling capacity and energy recovery capacity.
第二の目的は、排出ガス流量を安定的に確保しつつ、飛散搬送されるコークスの粒径を制御し、ボイラー側の耐摩耗コストを抑制することにある。 A second object is to control the particle size of coke scattered and conveyed while keeping the flow rate of exhaust gas stable, and to suppress the wear resistance cost on the boiler side.
本発明の課題は、第一に冷却ガス流速の制約となっているスローピングフリューから安息面を排除することにある。スローピングフリューの流速制限を解消しコークス閉塞を防止できれば、排出ガス量の増加が可能となる。 An object of the present invention is to eliminate a resting surface from a sloping flu that is first restricted by a cooling gas flow rate. Eliminating the flow rate limitation of the sloping flue and preventing the blockage of coke will increase the amount of exhaust gas.
第二の課題として、ボイラー側に飛散搬送されるコークスの分級点となる安息面の偏流を抑制することにある。偏流を抑制できれば、排出ガスを増加させてもボイラー側に飛散搬送されるコークス粒径を安定して制御でき、ボイラー設備と除塵設備の耐摩耗コストを低減でき、建設コストと保全コストの低減が可能になる。 A second problem is to suppress drift on the repose surface, which is a classification point of coke scattered and conveyed to the boiler side. If the drift can be suppressed, the particle size of coke scattered and conveyed to the boiler side can be controlled stably even if the exhaust gas is increased, the abrasion resistance costs of the boiler equipment and the dust removal equipment can be reduced, and the construction and maintenance costs can be reduced. Will be possible.
本発明の構造の断面を図5に示す。プレチャンバー内筒下部の安息面上端21からクーリングチャンバー内側面の安息面下端22までを安息面長さWとし、安息面をリング状に形成することが望ましい。仕切壁と安息面との間に空間を設け、スローピングフリュー入口を安息面上端21から安息面下端22までの高さに位置させ、それぞれのスローピングフリュー入口を、安息面と仕切壁との間の空間で連通することが望ましい。 A cross section of the structure of the present invention is shown in FIG. It is desirable that the area from the upper end 21 of the repose surface at the lower part of the pre-chamber inner cylinder to the lower end 22 of the repose surface on the inner side surface of the cooling chamber has a repose surface length W, and the repose surface is formed in a ring shape. A space is provided between the partition wall and the resting surface, and the sloping flue entrance is located at the height from the repose surface upper end 21 to the repose surface lower end 22, and each sloping flue entrance is located between the repose surface and the partition wall. It is desirable to communicate in space.
排出ガスは、プレチャンバー内またはクーリングチャンバー内のコークス層の空隙を通過した後、偏流が格段に抑制されたリング状の安息面から噴き出した後、スローピングフリューからコークス層の通気抵抗を受けることなくボイラー側に排出される。 After passing through the gap of the coke layer in the pre-chamber or the cooling chamber, the exhaust gas blows out from the ring-shaped repose surface where drift is significantly suppressed, without receiving the ventilation resistance of the coke layer from the sloping flue. It is discharged to the boiler side.
コークスはプレチャンバーから漸次降下し、スローピングフリュー内に入り込むことなく
、リング状の安息面を形成した後、クーリングチャンバーを降下する。
The coke gradually descends from the pre-chamber, forms a ring-shaped repose surface without entering the sloping flue, and then descends from the cooling chamber.
さらに、本発明の安息面積は、ボイラー側に飛散搬送されるコークスの 大粒径に基づいた安息面の噴き出し流速と、排出ガス流量から求めることが望ましい。安息面積は、ボイラー側に飛散搬送されるコークスの 大粒径の終末速度を超えないための大きさを確保することが望ましい。 Furthermore, the repose area of the present invention is desirably determined from the flow velocity of the gas discharged from the repose surface and the flow rate of the exhaust gas based on the large particle size of the coke scattered and conveyed to the boiler side. It is desirable that the repose area be large enough not to exceed the terminal velocity of the large particle size of the coke scattered and conveyed to the boiler side.
図6に本発明のリング状の安息面の平面イメージを示す。上記で必要な面積を確保する一方で、仕切壁の強度や耐久性を確保することが望ましい。そこで、仕切壁による分断がないことと、安息面の偏流が格段に抑制されることから、安息面長さWを、従来に比べ大幅に短縮することが望ましい。安息面の長さWは、ボイラー側に飛散搬送されるコークスの大粒径の終末速度を超えない安息面積を確保した上で、短くすることが望ましい。 FIG. 6 shows a plan image of the ring-shaped repose surface of the present invention. It is desirable to secure the strength and durability of the partition wall while securing the necessary area as described above. Therefore, since there is no division by the partition wall and the drift of the repose surface is remarkably suppressed, it is desirable that the repose surface length W be significantly reduced as compared with the conventional art. It is desirable to shorten the length W of the repose surface while securing a repose area that does not exceed the terminal speed of the large particle size of the coke scattered and conveyed to the boiler side.
本発明の効果は、プレチャンバーとクーリングチャンバーを有するコークス乾式消火設備において、スローピングフリューの風速制限が解消され、安息面上の排出ガスの偏流を格段に抑制できることにある。その結果、排出ガス量を増加することができ、コークス冷却能力とエネルギー回収能力が向上する。 An effect of the present invention is that in a coke dry fire extinguishing system having a pre-chamber and a cooling chamber, the wind speed limitation of the sloping flue is eliminated, and the drift of the exhaust gas on the repose surface can be remarkably suppressed. As a result, the amount of exhaust gas can be increased, and the coke cooling capacity and the energy recovery capacity are improved.
さらには、偏流が格段に抑制された安息面で、安息面積をコークス粉の終末速度に基づき設定することにより、精度よく 大粒径以下のコークス粉を選択的にボイラー側に飛散搬送することが可能になる。その結果、ボイラー設備と除塵設備の安定した稼働と建設コストと保全コストの低減も可能になる。 Furthermore, by setting the repose area based on the terminal speed of the coke powder on the repose surface where the drift is significantly suppressed, it is possible to accurately scatter and transport the coke powder having a large particle size or less to the boiler side with high accuracy. Will be possible. As a result, stable operation of the boiler equipment and dust removal equipment and reduction of construction costs and maintenance costs are also possible.
さらには、安息面長さWの短縮は、スローピングフリュー迫り出し長さLの短縮にもなり、プレチャンバー容積の拡大、さらには設備全体の高さの低減が期待できる。
 
Furthermore, shortening the resting surface length W also reduces the length L of the sloping flew, which can be expected to increase the volume of the pre-chamber and reduce the height of the entire equipment.
コークス乾式消火設備の概略である。This is an outline of coke dry fire extinguishing equipment. 従来のスローピングフリューの鉛直断面と、炉芯側から見たスローピングフ  リュー入口である。The vertical section of the conventional sloping flue and the sloping flue inlet viewed from the core side. 安息面上の排ガス流速を説明している。Explains the exhaust gas flow rate on the resting surface. 従来のスローピングフリューのコークス閉塞までの過程である。This is the process of the conventional sloping flue until the coke is closed. 本発明のスローピングフリューの鉛直断面と、炉芯側から見たスローピング  フリュー入口である。1 shows a vertical section of a sloping flue of the present invention and a sloping flue inlet as viewed from the furnace core side. 安息面を上から見たイメージである。左側が本発明、右側が従来である。This is an image of the repose seen from above. The left side is the present invention, and the right side is the conventional. 本発明の実施形態の例を示す。1 shows an example of an embodiment of the present invention.
次に、本発明を適用する具体例を示す。 Next, a specific example to which the present invention is applied will be described.
コークスの安息面でのボイラー側に飛散搬送されるコークスの 大粒径dの終末速度ut は以下の式で表せる。
ut=d^2(ρs-ρf)*重力加速度/(18μf)  (Re<2)
ut={(4/225)*(ρs-ρf)^2*重力加速度^2/(ρf*μf)}^(1/3)*d  (2<Re<500)
ut={(4/3/0.44)*(ρs-ρf)*重力加速度*d/ρf}^(1/2)  (500<Re<10^5)
ここで、Re=(d*ut*ρf)/ μf   ρf:排出ガス密度  ρs:コークス密度  μf:排ガス粘度
The terminal velocity ut of the large particle diameter d of the coke scattered and conveyed to the boiler side on the repose surface of the coke can be expressed by the following equation.
ut = d ^ 2 (ρs−ρf) * gravity acceleration / (18μf) (Re <2)
ut = {(4/225) * (ρs−ρf) ^ 2 * gravity acceleration ^ 2 / (ρf * μf)} ^ (1/3) * d (2 <Re <500)
ut = {(4/3 / 0.44) * (ρs−ρf) * gravity acceleration * d / ρf} ^ (1/2) (500 <Re <10 ^ 5)
Here, Re = (d * ut * ρf) / μf ρf: exhaust gas density ρs: coke density μf: exhaust gas viscosity
スローピングフリューにおける排出ガスは通常500<Re<10^5であるため終末速度utは上記第3式で表される。そこで、排出ガス密度ρf、コークス密度ρs、は固定値で定められるから、 大粒径dを定めれば終末速度utは求まる。 Since the exhaust gas in the sloping flue usually satisfies 500 <Re <10 ^ 5, the terminal speed ut is expressed by the above-mentioned third equation. Therefore, since the exhaust gas density ρf and the coke density ρs are determined by fixed values, the terminal velocity ut can be obtained by determining the large particle diameter d.
安息面の噴き出し流速が、 大粒径dから求められた終末速度utを超えないように、安息面積を確保することが望ましい。 It is desirable to secure a resting area so that the jet velocity at the resting surface does not exceed the terminal speed ut obtained from the large diameter d.
一方で、スローピングフリュー迫り出し長さLが過大にならないために、例えば寸法Lが400mmを超えない範囲に収めるために必要なクーリングチャンバー内径を確保することが望ましい。あるいは、クーリングチャンバー内径を拡大せずに安息面積を確保するために、安息面を上下複数段に配置しても良い。 On the other hand, in order to prevent the length L of the sloping flew from protruding from becoming excessive, it is desirable to secure an inner diameter of the cooling chamber necessary for keeping the dimension L within a range not exceeding 400 mm, for example. Alternatively, in order to secure a resting area without increasing the inner diameter of the cooling chamber, the resting surface may be arranged in a plurality of upper and lower stages.
プレチャンバー内筒下部にぶら下がり部分を作らないために、スローピングフリュー入口の高さは、安息面上端高さを限度とすることが望ましい。また、スローピングフリュー内にコークス層を堆積させないために、スローピングフリュー入口下端を、安息面下端高さを限度とすることが望ましい。 In order not to form a hanging part at the lower part of the pre-chamber inner cylinder, it is desirable that the height of the sloping flute inlet be limited to the height of the upper end of the repose surface. In addition, in order to prevent the coke layer from accumulating in the sloping flu, it is desirable that the lower end of the sloping flu inlet be limited to the height of the resting surface lower end.
クーリングチャンバー 瓦厚さの鉛直方向真上にプレチャンバー内筒厚さの一部または全部を重ねても良い。これはプレチャンバー容積の拡大または設備全体の高さ低減が期待できる。 A part or all of the thickness of the pre-chamber inner cylinder may be stacked directly above the cooling chamber and the tile thickness in the vertical direction. This can be expected to increase the volume of the pre-chamber or reduce the height of the entire equipment.
プレチャンバー内筒を支えるために、仕切壁の複数を従来のように、安息面よりも下方に延長し、リング状の安息面を複数に分割しても良い。 In order to support the inner cylinder of the pre-chamber, a plurality of partition walls may be extended below the repose surface and a ring-shaped repose surface may be divided into a plurality of portions as in the related art.
仕切壁の上下面を面取りし、スローピングフリューの入出開口部をベルマウス状にし、排出ガス流の圧力損失を低減させても良い。 The upper and lower surfaces of the partition wall may be chamfered, and the inlet / outlet opening of the sloping flue may be bell-mouthed to reduce the pressure loss of the exhaust gas flow.
安息面とスローピングフリュー入口は、安息面上の排出ガスの水平方向の風圧によるコークス粉の巻き上げが無視できる範囲内で、クーリングチャンバー入口の円周方向の配置を変化させても良い。安息面とスローピングフリュー入口は、クーリングチャンバー全周に均等に配置されなくても良い。 The arrangement of the cooling chamber inlet in the circumferential direction may be changed between the repose surface and the sloping flue inlet within a range in which the lifting of the coke powder due to the horizontal wind pressure of the exhaust gas on the repose surface can be ignored. The resting surface and the sloping flue inlet need not be arranged evenly around the cooling chamber.
以上、本発明はコークス乾式消火設備への適応であるが、一般に塔内の粉体充填層の任意の高さから、粉体の空隙を通過してきた流体を安息面から系外へ排出する場合に適用できる。例えば成型コークス製造機のシャフト炉中段高さから、境界粒径以下の成型炭粉の飛散搬送を伴う発生ガスの採取等にも利用できる。 As described above, the present invention is applied to a coke dry fire extinguishing system, but in general, from any height of a powder packed bed in a tower, a fluid that has passed through a void in a powder is discharged out of the system from a repose surface. Applicable to For example, the present invention can also be used for collecting generated gas accompanying scattering and transport of molded coal powder having a grain size smaller than or equal to the boundary particle size from the height of the middle stage of the shaft furnace of the molded coke making machine.
本発明は、粉体充填層の側面から流体を排出する場合において、流体により飛散搬送される粉体の 大粒径を設定する場合に応用できる。
 
INDUSTRIAL APPLICABILITY The present invention can be applied to a case where a fluid is discharged from a side surface of a powder packed bed and a large particle size of powder scattered and transported by the fluid is set.
1       プレチャンバー
2       クーリングチャンバー
3       スローピングフリュー
4       プレチャンバー内筒
5       仕切壁
6       安息面
7       スローピングフリュー入口
8       リングダクト
9       集塵設備

10    ボイラー設備
21    安息面上端
22    安息面下端
23     
 W 安息面長さ
L スローピングフリューの迫り出し長さ
 
DESCRIPTION OF SYMBOLS 1 Pre-chamber 2 Cooling chamber 3 Sloping flu 4 Pre-chamber inner cylinder 5 Partition wall 6 Resting surface 7 Sloping flu inlet 8 Ring duct 9 Dust collection equipment

10 Boiler equipment 21 Repose upper end 22 Repose lower end 23
W Resting surface length
L Sloping flew's protruding length

Claims (1)

  1.   コークスが充填された煉瓦積み構造体であり、上部にプレチャンバー、下部にクーリングチャンバー、その間の、クーリングチャンバー上部に放射状に設けられたスローピングフリューを備え、プレチャンバー上部から赤熱コークスを投入し、クーリングチャンバー下部から冷却したコークスを排出し、スローピングフリューから排出ガスをボイラー側に搬送するコークス乾式消火設備であって、
    プレチャンバー内筒下部の安息面上端からクーリングチャンバー内側面の安息面下端までを安息面長さとしたリング状の安息面を特徴とし、
    スローピングフリュー入口を安息面上端から安息面下端までの高さ内に設け、かつスローピングフリュー入口が安息面と仕切壁との間の空間で連通していることを特徴とし、
    さらに、スローピングフリュー迫り出し長さが400mmを超えないことを特徴とするコークス乾式消火設備
    It is a brickwork structure filled with coke, equipped with a pre-chamber at the top, a cooling chamber at the bottom, and a sloping flue provided radially at the top of the cooling chamber between them. A coke dry fire extinguishing system that discharges cooled coke from the lower part of the chamber and transports exhaust gas from the sloping flue to the boiler side,
    It features a ring-shaped repose surface with the repose surface length from the upper repose surface at the lower part of the prechamber inner cylinder to the lower repose surface on the inner surface of the cooling chamber,
    The sloping flew entrance is provided within the height from the upper end of the repose surface to the lower end of the repose surface, and the entrance of the sloping flew communicates with the space between the repose surface and the partition wall,
    In addition, the coke dry fire extinguishing equipment is characterized in that the protruding length of the sloping flew does not exceed 400 mm .
PCT/JP2019/026407 2018-07-06 2019-07-03 Coke dry quenching equipment WO2020009137A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-128938 2018-07-06
JP2018128938A JP6518860B1 (en) 2018-07-06 2018-07-06 Coke dry fire extinguishing equipment

Publications (1)

Publication Number Publication Date
WO2020009137A1 true WO2020009137A1 (en) 2020-01-09

Family

ID=66625588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026407 WO2020009137A1 (en) 2018-07-06 2019-07-03 Coke dry quenching equipment

Country Status (2)

Country Link
JP (1) JP6518860B1 (en)
WO (1) WO2020009137A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115546U (en) * 1989-03-02 1990-09-17
JPH02118734U (en) * 1989-03-10 1990-09-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115546U (en) * 1989-03-02 1990-09-17
JPH02118734U (en) * 1989-03-10 1990-09-25

Also Published As

Publication number Publication date
JP2020007439A (en) 2020-01-16
JP6518860B1 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
KR101605368B1 (en) Coke dry quenching equipment
US8707876B2 (en) Stepped floor for solid fuel boilers
CN102186947B (en) Coke dry type extinguishing facility, and coke dry type extinguishing method
CN107191925A (en) A kind of CFBB and its abnormal method of adjustment of returning charge
WO2020009137A1 (en) Coke dry quenching equipment
CN101378821B (en) Solid separator especially for a combustion facility
RU2735841C2 (en) Criterion of coke quenching plant extinguishing installation
CN109844435B (en) Exhaust gas treatment device and treatment method
KR100536877B1 (en) Structure of gas exit flue section of coke dry quenching equipment
WO2010119682A1 (en) Method for charging high-temperature coal
JP2011208010A (en) Method for charging coal into coke oven
CN101259453A (en) High-temperature cyclone dust extractor
JP5554607B2 (en) Coke dry fire extinguishing equipment
CN206637615U (en) CFBB N-type returning charge valve
JP4448476B2 (en) Adhesive carbon incinerator around the coke oven coal charge
CN109135775B (en) Dry quenching furnace with air cooling support frame and annular pre-chamber and working method thereof
JP2003183662A (en) Pre-chamber structure of coke dry quencher
JP5416101B2 (en) Coke dry fire extinguishing equipment
JP5886144B2 (en) Waste treatment equipment
US10035964B2 (en) Circulating fluidized bed gasification or combustion system
CN108317508A (en) A kind of cyclone separator of circulating fluidized bed boiler renovation and improving method
Cobo et al. Upgrade of an Existing Fume Treatment Plant at Aluar to Cope Higher Production in the New Open Type Anode Baking Furnaces
JP2010222538A (en) Method for preventing production of black smoke in coke oven
JP2018044732A (en) Fluidized bed dryer and fluidized bed drying system using the same
JP2005264129A (en) Door of coke carbonization oven burning gas generated in oven

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP