WO2020009076A1 - Polycarbonate resin composition - Google Patents

Polycarbonate resin composition Download PDF

Info

Publication number
WO2020009076A1
WO2020009076A1 PCT/JP2019/026180 JP2019026180W WO2020009076A1 WO 2020009076 A1 WO2020009076 A1 WO 2020009076A1 JP 2019026180 W JP2019026180 W JP 2019026180W WO 2020009076 A1 WO2020009076 A1 WO 2020009076A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
weight
parts
resin composition
bis
Prior art date
Application number
PCT/JP2019/026180
Other languages
French (fr)
Japanese (ja)
Inventor
泰規 稲澤
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to JP2020528989A priority Critical patent/JP6976438B2/en
Publication of WO2020009076A1 publication Critical patent/WO2020009076A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present disclosure relates to a polycarbonate resin composition and a molded product thereof. More specifically, the present disclosure relates to a composite rubber comprising a polycarbonate resin and a polyester resin, a component containing a polyorganosiloxane rubber and an alkyl (meth) acrylate rubber, and an aromatic alkenyl compound monomer unit and an alkyl (meth) ) Mechanical properties and chemical resistance by adding a graft copolymer having a core-shell structure in which at least one unit selected from the group consisting of acrylate compound monomer units is graft-polymerized, and an antifouling agent.
  • the present invention relates to a polycarbonate resin composition having improved antifouling properties and appearance.
  • the present disclosure further relates to flame-retardant polycarbonate resin compositions that have improved flame retardancy and thermal stability in addition to mechanical properties, chemical resistance, stain resistance, and appearance.
  • Aromatic polycarbonate resins are widely used industrially because of their excellent mechanical and thermal properties.
  • the aromatic polycarbonate resin is a non-crystalline resin, and therefore has a drawback of poor chemical resistance.
  • alloying with various polymers has been studied.
  • an aromatic polycarbonate is alloyed with a polyester resin represented by polyethylene terephthalate resin or polybutylene terephthalate resin (see Patent Document 1).
  • Resin's weakness in chemical resistance has been improved, and due to its well-balanced properties, its use is being studied not only in the fields of automobiles and electrical and electronic equipment, but also in the field of housing equipment and infrastructure. .
  • Patent Document 2 So far, examples have been reported in which a Si copolymerized PC is applied (see Patent Document 2) and an example in which a Si-based rubber is applied (see Patent Documents 3 and 4) to improve the impact strength particularly at low temperatures. ing. Further, examples have been reported in which a siloxane compound such as silicone oil or dialkyl silicone is added for the purpose of flow reforming and further improvement of chemical resistance (see Patent Documents 5, 6, and 7).
  • an object of the present disclosure is to provide a polycarbonate resin composition that satisfies mechanical properties, chemical resistance, antifouling properties, and appearance at a high level.
  • a polycarbonate resin composition having a polycarbonate-polydiorganosiloxane copolymer resin and a polyester-based resin has an antifouling agent and a specific composite rubber. It has been found that the above problem can be solved by further having a graft copolymer having a core-shell structure in which a specific monomer unit is grafted.
  • the polycarbonate resin composition according to aspect 1 or 2 wherein the content of the component B is 20 to 70 parts by weight based on 100 parts by weight of the total of the component A and the component B.
  • ⁇ Aspect 7> The polycarbonate resin composition according to any one of aspects 1 to 6, wherein the proportion of the polyorganosiloxane rubber component in the composite rubber of the component C is 15% or more.
  • ⁇ Aspect 9> The polycarbonate resin composition according to aspect 8, wherein the G component is a fluoropolymer having fibril-forming ability.
  • the polycarbonate resin composition of the present disclosure satisfies mechanical properties, chemical resistance, antifouling properties, and appearance at a high level, it is not limited to outdoors / indoors, but also for housing facilities, building materials, living materials, It is widely useful in infrastructure equipment applications, automotive applications, OA / EE applications, outdoor equipment applications, and other various fields. Therefore, the industrial effects of the invention according to the present disclosure are extremely large.
  • Polycarbonate resin composition Polycarbonate resin composition according to the present disclosure, (A) a polycarbonate-polydiorganosiloxane copolymer resin (component A) and (B) a polyester resin (component B), And for the total 100 parts by weight of the component A and the component B (C) a composite rubber comprising a component containing a polyorganosiloxane rubber and an alkyl (meth) acrylate rubber, wherein at least one selected from the group consisting of an aromatic alkenyl compound monomer unit and an alkyl (meth) acrylate compound monomer unit; 3 to 15 parts by weight of a graft copolymer having a core-shell structure in which one type of unit is graft-polymerized (component C), and 0.5 to 6 parts by weight of (D) an antifouling agent (component D) Includes parts.
  • composition of the present disclosure mechanical properties and antifouling properties are obtained by using (B) a polyester resin (B component) in addition to (A) a polycarbonate-polydiorganosiloxane copolymer resin (A component). It is believed that in addition to properties and appearance, excellent properties are also provided in chemical resistance.
  • Component A polycarbonate-polydiorganosiloxane copolymer resin
  • the resin composition of the present disclosure contains a polycarbonate-polydiorganosiloxane copolymer resin as the component A.
  • the polycarbonate-polydiorganosiloxane copolymer resin (component A) used in the present disclosure includes a polycarbonate block represented by the following general formula (2) and a polydiorganosiloxane block represented by the following general formula (4). Is preferred.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and 6 carbon atoms.
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 each independently represent a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, Represents a group selected from the group consisting of an aryl group having 6 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms, wherein R 19 and R 20 are each independently a hydrogen atom, a halogen atom, a C 1 to C 18 atom;
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or a substituted group having 6 to 12 carbon atoms.
  • R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and p is a natural number.
  • q is 0 or a natural number
  • p + q is a natural number of 10 to 300.
  • X is a divalent aliphatic group having 2 to 8 carbon atoms.
  • the polycarbonate-polydiorganosiloxane copolymer resin (component A) used in the present disclosure is preferably a dihydric phenol represented by the following general formula (5) and a hydroxyaryl terminal represented by the following general formula (6). It can be prepared by copolymerizing a polydiorganosiloxane.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and 6 carbon atoms.
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or a substituted group having 6 to 12 carbon atoms.
  • R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and p is a natural number.
  • q is 0 or a natural number
  • p + q is a natural number of 10 to 300.
  • X is a divalent aliphatic group having 2 to 8 carbon atoms.
  • dihydric phenol (I) represented by the general formula (5) examples include, for example, 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1 -Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3,3′-biphenyl) propane, 2,2-bis (4-hydroxy-3-isopropyl) Phenyl) propane, 2,2-bis (3-t-butyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2-bis (4-hydroxyphenyl) octane, 2,2-bis (3-bromo-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl
  • 1,1-bis (4-hydroxyphenyl) -1-phenylethane 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4′-sulfonyldiphenol, 2,2′-dimethyl- 4,4'-sulfonyldiphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,3-bis ⁇ 2- (4-hydroxyphenyl) propyl ⁇ benzene, 1,4-bis ⁇ 2- (4-Hydroxyphenyl) propyl ⁇ benzene is preferred, especially 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis ( - hydroxyphenyl) cyclohexane (BPZ), 4,4'-sulfonyl diphenol, 9,9-
  • hydroxyaryl-terminated polydiorganosiloxane represented by the general formula (6) for example, the following compounds are preferably used.
  • the hydroxyaryl-terminated polydiorganosiloxane (II) is a phenol having an olefinically unsaturated carbon-carbon bond, preferably vinylphenol, 2-allylphenol, isopropenylphenol or 2-methoxy-4-allylphenol. Can be easily produced by subjecting a polysiloxane chain terminal having a degree of polymerization to a hydrosilylation reaction. Among them, (2-allylphenol) -terminated polydiorganosiloxane and (2-methoxy-4-allylphenol) -terminated polydiorganosiloxane are preferred, and (2-allylphenol) -terminated polydimethylsiloxane and (2-methoxy-4) are particularly preferred.
  • the hydroxyaryl-terminated polydiorganosiloxane (II) preferably has a molecular weight distribution (Mw / Mn) of 3 or less.
  • Mw / Mn molecular weight distribution
  • Such molecular weight distribution (Mw / Mn) is more preferably 2.5 or less, still more preferably 2 or less, in order to exhibit more excellent low outgassing property and low-temperature impact property during high-temperature molding.
  • the amount of outgas generated during high-temperature molding may be suppressed, and the low-temperature impact resistance may be excellent.
  • the degree of polymerization (p + q) of diorganosiloxane of hydroxyaryl-terminated polydiorganosiloxane (II) is suitably from 10 to 300.
  • Such a diorganosiloxane polymerization degree (p + q) is preferably from 10 to 200, more preferably from 12 to 150, and still more preferably from 14 to 100.
  • the degree of polymerization (p + q) is sufficiently large, the impact resistance characteristic of the polycarbonate-polydiorganosiloxane copolymer is effectively exhibited, and the degree of polymerization (p + q) is not too large. , Good appearance.
  • the content of the polydiorganosiloxane in the total weight of the polycarbonate-polydiorganosiloxane copolymer resin used in the component A is preferably from 0.1% by weight to 50% by weight.
  • the content of the polydiorganosiloxane component is more preferably 0.5% by weight to 30% by weight, and still more preferably 1% by weight to 20% by weight. Above the lower limit of such a preferred range, excellent impact resistance and flame retardancy are obtained, and below the upper limit of such a preferred range, a stable appearance that is less affected by molding conditions is likely to be obtained.
  • Such polydiorganosiloxane polymerization degree and polydiorganosiloxane content can be calculated by 1 H-NMR measurement.
  • the hydroxyaryl-terminated polydiorganosiloxane (II) may be used alone or in combination of two or more.
  • a comonomer other than the dihydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) may be used in an amount of 10% by weight based on the total weight of the copolymer within a range not to hinder the invention according to the present disclosure. The following ranges can be used together.
  • a mixed solution containing an oligomer having a terminal chloroformate group is prepared by reacting a dihydric phenol (I) with a carbonate-forming compound in a mixed solution of an organic solvent insoluble in water and an aqueous alkali solution in advance. I do.
  • the whole amount of the dihydric phenol (I) used in the method of the present disclosure may be converted into an oligomer at a time, or a part of the oligomer may be used as a post-addition monomer in the subsequent interface.
  • You may add as a reaction raw material to a polycondensation reaction.
  • the post-addition monomer is added in order to promptly advance the subsequent polycondensation reaction, and it is not necessary to add the monomer when unnecessary.
  • the system for the oligomer formation reaction is not particularly limited, but a system which is usually carried out in a solvent in the presence of an acid binder is preferred.
  • the proportion of the carbonate-forming compound used may be appropriately adjusted in consideration of the stoichiometric ratio (equivalent) of the reaction.
  • a gaseous carbonate-forming compound such as phosgene
  • a method of blowing the compound into the reaction system can be suitably employed.
  • the acid binder for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof are used.
  • the ratio of the acid binder used may be appropriately determined in consideration of the stoichiometric ratio (equivalent) of the reaction. Specifically, it is preferable to use 2 equivalents or a slight excess of the acid binder relative to the number of moles of the dihydric phenol (I) used for the formation of the oligomer (1 mole usually corresponds to 2 equivalents). .
  • a solvent inert to various reactions such as those used in the production of known polycarbonates may be used alone or as a mixed solvent.
  • Representative examples include, for example, hydrocarbon solvents such as xylene, and halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene.
  • a halogenated hydrocarbon solvent such as methylene chloride is preferably used.
  • the reaction pressure for oligomer formation is not particularly limited and may be normal pressure, increased pressure, or reduced pressure, but it is generally advantageous to carry out the reaction under normal pressure.
  • the reaction temperature is selected from the range of ⁇ 20 ° C. to 50 ° C., and in many cases, heat is generated during the polymerization.
  • the reaction time depends on other conditions and cannot be specified unconditionally, but is usually 0.2 to 10 hours.
  • the pH range of the oligomer formation reaction is the same as known interface reaction conditions, and the pH is always adjusted to 10 or more.
  • the molecular weight distribution (Mw / Mn) is 3 Hydroxyaryl-terminated polydiorganosiloxane (II) represented by the above general formula (6) highly purified to the following is added to the mixed solution, and the hydroxyaryl-terminated polydiorganosiloxane (II) and the oligomer are interfacially polycondensed. Thereby, a polycarbonate-polydiorganosiloxane copolymer is obtained.
  • an acid binder may be appropriately added in consideration of the stoichiometric ratio (equivalent) of the reaction.
  • the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof.
  • the post-addition it is preferable to use 2 equivalents or an excess amount of alkali with respect to the total number of moles of the dihydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) (normally 1 mole corresponds to 2 equivalents).
  • the polycondensation of the oligomer of the dihydric phenol (I) with the hydroxyaryl-terminated polydiorganosiloxane (II) by the interfacial polycondensation reaction is carried out by vigorously stirring the mixture.
  • a terminal terminator or a molecular weight regulator is usually used.
  • the terminal stopper include compounds having a monovalent phenolic hydroxyl group.
  • the terminal stopper include compounds having a monovalent phenolic hydroxyl group.
  • examples thereof include chloride, aliphatic carboxylic acid, hydroxybenzoic acid alkyl ester, hydroxyphenylalkyl acid ester, and alkyl ether phenol.
  • the amount of use is in the range of 100 mol to 0.5 mol, preferably 50 mol to 2 mol, based on 100 mol of all the dihydric phenol compounds used. Naturally, two or more compounds can be used in combination. It is possible.
  • a catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt may be added to promote the polycondensation reaction.
  • the reaction time of such a polymerization reaction is preferably 30 minutes or more, more preferably 50 minutes or more. If desired, a small amount of an antioxidant such as sodium sulfite or hydrosulfide may be added.
  • a branching agent can be used in combination with the above-mentioned dihydric phenol compound to obtain a branched polycarbonate-polydiorganosiloxane.
  • Examples of the trifunctional or higher-functional polyfunctional aromatic compound used in the branched polycarbonate-polydiorganosiloxane copolymer resin include phloroglucin, phloroglucid, and 4,6-dimethyl-2,4,6-tris (4-hydrodiphenyl).
  • 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are exemplified.
  • Preferred is 1,1,1-tris (4-hydroxyphenyl) ethane.
  • the proportion of the polyfunctional compound in the branched polycarbonate-polydiorganosiloxane copolymer resin is preferably 0.001 mol% to 1 mol%, more preferably 0.005 mol%, based on the total amount of the aromatic polycarbonate-polydiorganosiloxane copolymer resin.
  • mol% to 0.9 mol% more preferably from 0.01 mol% to 0.8 mol%, particularly preferably from 0.05 mol% to 0.4 mol%. It should be noted that such a branched structure amount can be calculated by 1 H-NMR measurement.
  • the reaction pressure can be any of reduced pressure, normal pressure and pressurized pressure, but usually, it can be suitably performed at normal pressure or about the self-pressure of the reaction system.
  • the reaction temperature is selected from the range of ⁇ 20 ° C. to 50 ° C., and in many cases, heat is generated during the polymerization. Since the reaction time varies depending on other conditions such as the reaction temperature, the reaction time cannot be unconditionally specified, but is usually 0.5 to 10 hours.
  • the obtained polycarbonate-polydiorganosiloxane copolymer resin is subjected to appropriate physical treatment (mixing, fractionation, etc.) and / or chemical treatment (polymer reaction, cross-linking treatment, partial decomposition treatment, etc.) to obtain the desired reduction. It can also be obtained as a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity [ ⁇ SP / c].
  • the obtained reaction product (crude product) can be subjected to various post-treatments such as a known separation and purification method, and recovered as a polycarbonate-polydiorganosiloxane copolymer resin having a desired purity (purity).
  • the average size (average domain size) of the polydiorganosiloxane domains in the polycarbonate-polydiorganosiloxane copolymer resin molded product is preferably in the range of 1 nm to 40 nm. Such average size is more preferably from 1 nm to 30 nm, even more preferably from 5 nm to 25 nm. In such a preferable range, the impact resistance and the flame retardancy may be sufficiently exhibited by the average domain size being sufficiently large, and the impact resistance is stabilized by the average domain size not being too large. May be demonstrated. Thereby, a polycarbonate resin composition having particularly excellent impact resistance and appearance is provided.
  • the average domain size of the polydiorganosiloxane domain of the polycarbonate-polydiorganosiloxane copolymer resin molded article according to the present disclosure was evaluated by a small angle X-ray scattering method (SAXS).
  • SAXS small angle X-ray scattering method
  • the small-angle X-ray scattering method is a method of measuring diffuse scattering / diffraction occurring in a small-angle region within a scattering angle (2 ⁇ ) ⁇ 10 °.
  • 2 ⁇ 2 ⁇
  • diffuse scattering of X-rays is measured by the electron density difference.
  • the particle diameter of the object to be measured is determined based on the scattering angle and the scattering intensity.
  • diffuse scattering of X-rays occurs due to a difference in electron density between the polycarbonate matrix and the polydiorganosiloxane domains.
  • the scattering intensity (I) at each scattering angle (2 ⁇ ) in the range where the scattering angle (2 ⁇ ) is less than 10 ° is measured, the small-angle X-ray scattering profile is measured, and the polydiorganosiloxane domain is a spherical domain, and the particle size distribution varies. Is assumed, the simulation is performed using commercially available analysis software from the temporary particle size and the temporary particle size distribution model to determine the average size of the polydiorganosiloxane domain.
  • the small-angle X-ray scattering method it is possible to measure the average size of polydiorganosiloxane domains dispersed in a matrix of a polycarbonate polymer accurately, simply, and with good reproducibility, which cannot be accurately measured by observation with a transmission electron microscope. it can.
  • the average domain size means the number average of individual domain sizes.
  • average domain size refers to a measured value obtained by measuring a 1.0-mm-thick portion of a three-stage plate manufactured by the method described in the example by such a small-angle X-ray scattering method. Show. In addition, the analysis was performed using an isolated particle model without considering the interaction between particles (inter-particle interference).
  • the viscosity-average molecular weight (M) of the polycarbonate-polydiorganosiloxane copolymer resin is not particularly limited, but is preferably 1.8 ⁇ 10 4 to 4.0 ⁇ 10 4 , more preferably 2.0 ⁇ 10 4 . It is 3.5 ⁇ 10 4 , more preferably 2.2 ⁇ 10 4 to 3.0 ⁇ 10 4 .
  • M The viscosity-average molecular weight
  • a resin composition obtained from a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity average molecular weight of 4.0 ⁇ 10 4 or less may have excellent versatility in terms of excellent fluidity during injection molding.
  • the polycarbonate-polydiorganosiloxane copolymer resin may be obtained by mixing resins having a viscosity average molecular weight outside the above range.
  • a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity average molecular weight exceeding the above range (5 ⁇ 10 4 ) has improved entropic elasticity of the resin.
  • good moldability is exhibited in gas assist molding and foam molding that are sometimes used when molding a reinforced resin material into a structural member.
  • More preferable embodiments include a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity average molecular weight of 7 ⁇ 10 4 to 3 ⁇ 10 5 (component A-1-1-1), and a viscosity average molecular weight of 1 ⁇ 10 4 to 3 ⁇ .
  • polycarbonate - consists polydiorganosiloxane copolymer resin (a-1-1-2 component), a viscosity-average molecular weight of 1.6 ⁇ 10 4 ⁇ 3.5 ⁇ 10 polycarbonate of 4 - polydiorganosiloxane copolymer
  • a polymer resin (A-1-1 component) (hereinafter sometimes referred to as a “polycarbonate-polydiorganosiloxane copolymer resin containing a high molecular weight component”) may also be used.
  • the molecular weight of component A-1-1-1 is preferably from 7 ⁇ 10 4 to 2 ⁇ 10 5 , and more preferably from 8 ⁇ 10 4 to 2 ⁇ 10 5.
  • ⁇ 10 4 to 2 ⁇ 10 5 more preferably 1 ⁇ 10 5 to 2 ⁇ 10 5 , particularly preferably 1 ⁇ 10 5 to 1.6 ⁇ 10 5 .
  • the molecular weight of the component A-1-1-2 is preferably from 1 ⁇ 10 4 to 2.5 ⁇ 10 4 , more preferably from 1.1 ⁇ 10 4 to 2.4 ⁇ 10 4 , and even more preferably 1.2 ⁇ 10 4 . It is 10 4 to 2.4 ⁇ 10 4 , particularly preferably 1.2 ⁇ 10 4 to 2.3 ⁇ 10 4 .
  • the high molecular weight component-containing polycarbonate-polydiorganosiloxane copolymer resin is obtained by mixing the above-mentioned A-1-1-1 component and the A-1-1-2 component in various ratios, and preparing a mixture having a predetermined molecular weight. It can be obtained by adjusting to satisfy the range.
  • the amount of the A-1-1-1 component is 2% by weight to 40% by weight in 100% by weight of the A-1-1 component, and more preferably, the amount of the A-1-1-1 component is 3% by weight. %, More preferably 4% to 20% by weight of the A-1-1-1 component, and particularly preferably 5% to 20% by weight of the A-1-1-1 component. .
  • the method for preparing the A-1-1 component is as follows: (1) A method of independently polymerizing the A-1-1-1 component and the A-1-1-2 component and mixing them, (2) A method of producing an aromatic polycarbonate resin having a plurality of polymer peaks in a molecular weight distribution chart by the GPC method, which is represented by the method disclosed in JP-A-5-306336, in the same system, A method for producing a polycarbonate resin so as to satisfy the conditions of the component A-1-1 of the present disclosure; and (3) an aromatic polycarbonate resin obtained by the production method (the production method of (2)), And a method of mixing the A-1-1-1 component and / or A-1-1-2 component.
  • the viscosity average molecular weight referred to in the present disclosure is a specific viscosity ( ⁇ SP ) calculated from the following equation, which is determined by calculating the Ostwald viscosity from a solution obtained by dissolving 0.7 g of a polycarbonate-polydiorganosiloxane copolymer resin in 100 ml of methylene chloride at 20 ° C.
  • the calculation of the viscosity average molecular weight of the polycarbonate-polydiorganosiloxane copolymer resin in the polycarbonate resin composition of the present disclosure is performed in the following manner. That is, the composition is mixed with 20 to 30 times the weight of methylene chloride to dissolve soluble components in the composition. The soluble matter is collected by Celite filtration. Thereafter, the solvent in the obtained solution is removed. The solid after the removal of the solvent is sufficiently dried to obtain a solid component that is soluble in methylene chloride. From a solution in which 0.7 g of the solid is dissolved in 100 ml of methylene chloride, the specific viscosity at 20 ° C. is determined in the same manner as above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as above.
  • Component B polyester resin
  • the polyester resin used as the component B of the present disclosure is a polymer or copolymer obtained by a condensation reaction containing an aromatic dicarboxylic acid or a reactive derivative thereof and a diol or an ester derivative thereof as main components.
  • aromatic dicarboxylic acids referred to herein include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, and 4,4′-biphenyl ether Dicarboxylic acid, 4,4'-biphenylmethanedicarboxylic acid, 4,4'-biphenylsulfonedicarboxylic acid, 4,4'-biphenylisopropylidenedicarboxylic acid, 1,2-bis (phenoxy) ethane-4,4'-dicarboxylic acid Acids, aromatic dicarboxylic acids such as 2,5-anthracene dicarboxylic acid, 2,6-anthracene dicarboxylic acid, 4,4'-p-terphenylenedicarboxylic acid, 2,5-pyridine dicarboxylic acid, diphenylmethane
  • Two or more aromatic dicarboxylic acids may be used as a mixture. If the amount is small, it is also possible to use a mixture of one or more aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and dodecane diacid, and alicyclic dicarboxylic acids such as cyclohexane dicarboxylic acid together with the dicarboxylic acid. .
  • the diol which is a component of the polyester resin of the present disclosure includes ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, neopentyl glycol, pentamethylene glycol, hexamethylene glycol, decamethylene glycol, 2-methyl-1, Contains aromatic rings such as 2,2-bis ( ⁇ -hydroxyethoxyphenyl) propane and the like, aliphatic diols such as 3-propanediol, diethylene glycol and triethylene glycol, alicyclic diols such as 1,4-cyclohexanedimethanol and the like. Diols and mixtures thereof.
  • one or more long-chain diols having a molecular weight of 400 to 6,000 that is, polyethylene glycol, poly-1,3-propylene glycol, polytetramethylene glycol or the like may be copolymerized.
  • the polyester resin of the present disclosure can be branched by introducing a small amount of a branching agent.
  • the type of the branching agent is not limited, and examples thereof include trimesic acid, trimellitic acid, trimethylolethane, trimethylolpropane, and pentaerythritol.
  • polyester resins include polyethylene terephthalate (PET), polypropylene terephthalate, polybutylene terephthalate (PBT), polyhexylene terephthalate, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and polyethylene-1,2.
  • PET polyethylene terephthalate
  • PBT polypropylene terephthalate
  • PEN polyethylene naphthalate
  • PBN polybutylene naphthalate
  • copolymerized polyester resins such as polyethylene isophthalate / terephthalate, polybutylene terephthalate / isophthalate and the like can be mentioned.
  • polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and mixtures thereof, which are well balanced in mechanical properties and the like, can be preferably used.
  • the structure of the terminal group of the obtained polyester resin is not particularly limited, and may be a case where the ratio of the hydroxyl group and the carboxyl group in the terminal group is substantially equal to each other, or one of the ratios is large. Further, the terminal group may be sealed by reacting a compound having reactivity with the terminal group.
  • the dicarboxylic acid component and the diol component are polymerized while heating, and water or This is performed by discharging the lower alcohol out of the system.
  • a polymerization catalyst containing titanium, germanium, antimony, etc. examples include oxides, hydroxides, halides, alcoholates, and phenolates of germanium, and more specifically, germanium oxide, germanium hydroxide, germanium tetrachloride, tetramethoxygermanium, and the like. Can be exemplified.
  • Preferred examples of the polymerization catalyst for the organic titanium compound include titanium tetrabutoxide, titanium isopropoxide, titanium oxalate, titanium acetate, titanium benzoate, titanium trimellitate, and a reaction product of tetrabutyl titanate and trimellitic anhydride. Can be mentioned. Further, when produced using a specific titanium-based catalyst other than the above, a polyester-based resin having more excellent thermal stability can be obtained, so that it is more preferably used.
  • the above specific titanium-based catalyst contains a reaction product of the following titanium compound component (A) and phosphorus compound component (B).
  • the titanium compound component (A) includes a titanium compound (1) represented by the following general formula (I), and a titanium compound (1) and an aromatic polycarboxylic acid represented by the following general formula (II) or an anhydride thereof. And at least one titanium compound component selected from the group consisting of the titanium compounds (2) obtained by reacting the titanium compound with the compound.
  • R 1 , R 2 , R 3 and R 4 each independently represent an alkyl group having 2 to 10 carbon atoms, k represents an integer of 1 to 3, When k is 2 or 3, two or three R 2 and R 3 may be the same or different from each other. ]
  • the phosphorus compound component (B) is a phosphorus compound component comprising at least one phosphorus compound (3) represented by the following general formula (III).
  • R 5 represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms.
  • the polyester resin produced by using the above-mentioned specific titanium-based catalyst has better heat stability and wet heat resistance than the case where germanium, antimony and other titanium-based catalysts are used.
  • the quality is stable even when the amount of additives such as a hue stabilizer and a heat stabilizer during the production is smaller than when other catalysts are used. Since the decomposition of the additive under a thermal environment or a moist heat environment is reduced, it is presumed that the additive has excellent thermal stability and moist heat resistance.
  • the molar amount (mTi) of the titanium compound component (A) in terms of titanium atoms and the molar amount in terms of phosphorus atoms of the phosphorus compound component (B) is preferably in the range of 1/3 to 1/1, and more preferably in the range of 1/2 to 1/1.
  • the titanium atom converted molar amount of the titanium compound component (A) is the product of the product of the molar amount of each titanium compound contained in the titanium compound component (A) and the number of titanium atoms contained in one molecule of the titanium compound. It is a total value, and the molar amount of phosphorus compound component (B) in terms of phosphorus atom is the molar amount of each phosphorus compound contained in phosphorus compound component (B) and the phosphorus atom contained in one molecule of the phosphorus compound. This is the total value of the product with the number. However, since the phosphorus compound represented by the formula (III) contains one phosphorus atom per molecule, the molar amount of the phosphorus compound in terms of phosphorus atom is equal to the molar amount of the phosphorus compound.
  • reaction molar ratio (mTi / mP) is 1/1 or less, that is, when the amount of the titanium compound component (A) is not too large, the polyester-based resin obtained using the obtained catalyst has good properties. Color tone (b value is not too high), and the heat resistance may be good.
  • reaction molar ratio (mTi / mP) is 1/3 or more, that is, when the amount of the titanium compound component (A) is not too small, the catalyst activity of the obtained catalyst with respect to the polyester formation reaction is reduced. May be enough.
  • titanium compound (1) represented by the general formula (I) used in the titanium compound component (A) examples include titanium such as titanium tetrabutoxide, titanium tetraisopropoxide, titanium tetrapropoxide, and titanium tetraethoxide.
  • Tetraalkoxides, and alkyl titanates such as octaalkyltrititanates and hexaalkyldititanates can be mentioned.
  • titanium having good reactivity with the phosphorus compound component used in the present disclosure is exemplified. It is preferable to use tetraalkoxides, and it is more preferable to use titanium tetrabutoxide.
  • the titanium compound (2) used for the titanium compound component (A) is obtained by reacting the titanium compound (1) with the aromatic polycarboxylic acid represented by the general formula (II) or an anhydride thereof.
  • the aromatic polycarboxylic acid of the general formula (II) and its anhydride are preferably selected from the group consisting of phthalic acid, trimellitic acid, hemmellitic acid, pyromellitic acid and anhydrides thereof. In particular, it is more preferable to use trimellitic anhydride having good reactivity with the titanium compound (1) and high affinity with the polyester of the obtained polycondensation catalyst.
  • the reaction between the titanium compound (1) and the aromatic polycarboxylic acid of the general formula (II) or the anhydride thereof is performed by mixing the aromatic polycarboxylic acid or the anhydride with a solvent and partially or entirely mixing the solvent. Is dissolved in a solvent, the titanium compound (1) is added dropwise to the mixture, and the mixture is heated at a temperature of 0 ° C. to 200 ° C. for 30 minutes or more, preferably at a temperature of 30 ° C. to 150 ° C. for 40 minutes to 90 minutes. Done by The reaction pressure at this time is not particularly limited, and normal pressure is sufficient.
  • the catalyst can be appropriately selected from those capable of dissolving a required amount of the compound of the formula (II) or a part or all of its anhydride, and is preferably ethanol, ethylene glycol, trimethylene. Glycol, tetramethylene glycol, benzene, xylene and the like.
  • the reaction molar ratio of the titanium compound (1) to the compound represented by the formula (II) or its anhydride is not limited. However, when the proportion of the titanium compound (1) is not too high, the color tone of the obtained polyester resin becomes good, and a decrease in the softening point can be prevented. Conversely, if the proportion of the titanium compound (1) is not too low, the polycondensation reaction can proceed favorably. For this reason, the reaction molar ratio of the titanium compound (1) to the compound of the formula (II) or its anhydride is preferably controlled within the range of 2/1 to 2/5.
  • the reaction product obtained by this reaction may be directly used for the reaction with the above-mentioned phosphorus compound (3), or the product may be recrystallized using a solvent composed of acetone, methyl alcohol and / or ethyl acetate. After the purification, this may be reacted with the phosphorus compound (3).
  • an aryl group having 6 to 20 carbon atoms represented by R 5 or 1 to 20 carbon atoms represented by R 5 or 1 to 20 carbon atoms
  • the alkyl group may be unsubstituted or substituted with one or more substituents.
  • the substituent includes, for example, a carboxyl group, an alkyl group, a hydroxyl group and an amino group.
  • Examples of the phosphorus compound (3) of the general formula (III) include monomethyl phosphate, monoethyl phosphate, monotrimethyl phosphate, mono-n-butyl phosphate, monohexyl phosphate, monoheptyl phosphate, monooctyl phosphate, monononyl phosphate, Monodecyl phosphate, monododecyl phosphate, monolauryl phosphate, monooleyl phosphate, monotetradecyl phosphate, monophenyl phosphate, monobenzyl phosphate, mono (4-dodecyl) phenyl phosphate, mono (4-methylphenyl) phosphate, mono (4 -Ethylphenyl) phosphate, mono (4-propylphenyl) phosphate, mono (4-dodecylphenyl) phosphate, monotolylphosphate Monoalkyl phosphates and monoaryl phosphates such as monoxylyl
  • the above mixture may be used, for example, as a mixture of a monoalkyl phosphate and a monoaryl phosphate.
  • the proportion of the monoalkyl phosphate preferably accounts for 50% or more, more preferably 90% or more, and particularly preferably 100%. It is more preferable that
  • a phosphorus compound component (B) comprising at least one phosphorus compound (3) of the formula (III) and a solvent are used.
  • the reaction system is usually set to preferably 50 ° C to 200 ° C, more preferably 50 ° C to 200 ° C. Is carried out at a temperature of 70 ° C. to 150 ° C., preferably for 1 minute to 4 hours, more preferably 30 minutes to 2 hours.
  • the reaction pressure is not particularly limited, and may be any of under pressure (0.1 MPa to 0.5 MPa), under normal pressure, or under reduced pressure (0.001 MPa to 0.1 MPa). It is usually performed under normal pressure.
  • the solvent for the phosphorus compound component (B) of the formula (III) used in the catalyst preparation reaction is not particularly limited as long as at least a part of the phosphorus compound component (B) can be dissolved.
  • a solvent composed of at least one selected from glycol, trimethylene glycol, tetramethylene glycol, benzene, xylene and the like is preferably used. In particular, it is preferable to use the same compound as the glycol component constituting the polyester finally obtained as the solvent.
  • the reaction product of the titanium compound component (A) and the phosphorus compound component (B) is separated from the reaction system by means such as centrifugal sedimentation or filtration, and then purified without purification.
  • the separated reaction product may be used as a catalyst for resin production, or the separated reaction product may be purified by recrystallization with a recrystallization agent such as acetone, methyl alcohol and / or water.
  • the product may be used as a catalyst.
  • the reaction product-containing reaction mixture may be used as it is as a catalyst-containing mixture without separating the reaction product from the reaction system.
  • a titanium compound component (A) comprising at least one kind of a titanium compound (1) of the above formula (I) (where k represents 1), that is, a titanium tetraalkoxide;
  • a reaction product of at least one phosphorus compound with the phosphorus compound component (B) is used as a catalyst.
  • a compound represented by the following general formula (IV) is preferably used as a titanium-based catalyst.
  • R 6 and R 7 each independently represent an alkyl group having 2 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • the catalyst containing the titanium / phosphorus compound represented by the formula (IV) has high catalytic activity, and the polyester resin produced by using the catalyst has a good color tone (low b value), and It has a sufficiently low content of acetaldehyde, residual metal and cyclic trimer of an ester of an aromatic dicarboxylic acid and an alkylene glycol, and has practically sufficient polymer performance.
  • the titanium / phosphorus compound represented by the general formula (IV) is preferably contained in an amount of 50% by weight or more, more preferably 70% by weight or more.
  • the amount of the titanium-based catalyst to be used is preferably such that the molar amount of titanium in terms of titanium atoms is 2 to 40 milli% with respect to the total amount of aromatic dicarboxylic acid contained in the polymerization starting material. More preferably, it is 5 to 35 mm%, even more preferably 10 to 30 mm%.
  • the content is 2 milli% or more, the effect of promoting the catalyst for the polycondensation reaction of the polymerization starting material is sufficient, the polyester production efficiency is sufficient, and a polyester resin having a desired degree of polymerization can be obtained. There are cases.
  • the content is 40 mm% or less, the color tone (b value) of the obtained polyester-based resin becomes good, yellowing is suppressed, and its practicality can be ensured.
  • the method for producing the alkylene glycol ester of an aromatic dicarboxylic acid and / or a low polymer thereof is not limited, but usually, an aromatic dicarboxylic acid or an ester-forming derivative thereof and an alkylene glycol or an ester-forming derivative thereof are heated and heated. It is produced by reacting.
  • an ethylene glycol ester of terephthalic acid and / or a low polymer thereof used as a raw material of polyethylene terephthalate is obtained by directly subjecting terephthalic acid and ethylene glycol to an esterification reaction, or a lower alkyl ester of terephthalic acid and ethylene glycol.
  • the alkylene glycol ester of the aromatic dicarboxylic acid and / or the low polymer thereof may contain another dicarboxylic acid ester copolymerizable therewith as an additional component, thereby substantially impairing the effect of the method of the present disclosure. It may be contained in an amount within the range not present, specifically, 10 mol% or less, preferably 5 mol% or less based on the total molar amount of the acid component.
  • Said copolymerizable additional components are preferably as acid components, for example aliphatic and cycloaliphatic dicarboxylic acids such as adipic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, and hydroxycarboxylic acids, for example, at least one kind of ⁇ -hydroxyethoxybenzoic acid, p-oxybenzoic acid and the like, and as a glycol component, for example, an alkylene glycol having 2 or more constituent carbon atoms, 1,4-cyclohexanedimethanol, neopentyl glycol, bisphenol A And esters of at least one of aliphatic, alicyclic, and aromatic diol compounds such as bisphenol S and polyoxyalkylene glycol, or anhydrides thereof.
  • the above-mentioned additional component esters may be used alone or in combination of two or more. However, the copolymerization amount is preferably within the above range.
  • the recovered dimethyl terephthalate obtained by depolymerizing polyalkylene terephthalate or the recovered terephthalic acid obtained by hydrolyzing the same is converted into a polyester. It can be used in an amount of 70% by weight or more based on the weight of all the constituent acid components.
  • the target polyalkylene terephthalate is preferably polyethylene terephthalate, and in particular, recovered PET bottles, recovered fiber products, recovered polyester film products, and polymer waste generated in the manufacturing process of these products. It is preferable to use as a raw material source for polyester production from the viewpoint of effective utilization of resources.
  • the method for depolymerizing the recovered polyalkylene terephthalate to obtain dimethyl terephthalate is not particularly limited, and any conventionally known method can be employed.
  • the depolymerized product is subjected to a transesterification reaction with a lower alcohol, for example, methanol, and the reaction mixture is purified to recover a lower alkyl ester of terephthalic acid.
  • a transesterification reaction with an alkylene glycol
  • the obtained phthalic acid / alkylene glycol ester is polycondensed to obtain a polyester resin.
  • the method for recovering terephthalic acid from the recovered dimethyl terephthalate is not particularly limited, and any of the conventional methods may be used.
  • dimethyl terephthalate is recovered from a reaction mixture obtained by a transesterification reaction by a recrystallization method and / or a distillation method, and then heated with water at high temperature and high pressure to hydrolyze to recover terephthalic acid.
  • the total content of 4-carboxybenzaldehyde, paratoluic acid, benzoic acid and dimethyl hydroxyterephthalate is preferably 1 ppm or less.
  • a polyester resin can be produced by directly esterifying the terephthalic acid recovered by the above-described method with an alkylene glycol and subjecting the resulting ester to polycondensation.
  • the catalyst is added to the polymerization starting material at any stage before the start of the polycondensation reaction of the aromatic dicarboxylic acid alkylene glycol ester and / or its low polymer.
  • the addition method is not limited.
  • an aromatic dicarboxylic acid alkylene glycol ester may be prepared, and a polycondensation reaction may be started by adding a catalyst solution or slurry to the reaction system, or the aromatic dicarboxylic acid alkylene glycol ester may be used as a starting material.
  • a catalyst solution or slurry may be added to the reaction system together with the starting materials during the preparation, or after the preparation thereof.
  • reaction conditions for producing the polyester resin used in the present disclosure There is no particular limitation on the reaction conditions for producing the polyester resin used in the present disclosure. Generally, the polycondensation reaction is carried out at a temperature of 230 ° C. to 320 ° C. under normal pressure or reduced pressure (0.1 Pa to 0.1 MPa), or a combination of these conditions, for 15 minutes to 300 minutes. Is preferred.
  • a reaction stabilizer for example, trimethyl phosphate may be added to the reaction system as needed at any stage in the production of the polyester resin.
  • an additive an ultraviolet absorber, a flame retardant, a fluorescent whitening agent, a matting agent, a coloring agent, an antifoaming agent, and other additives may be blended.
  • the polyester resin contains an antioxidant containing at least one kind of hindered phenol compound, but the content is 1% by weight or less based on the weight of the polyester resin. Is preferred. When the content is 1% by weight or less, the quality of the obtained product can be ensured by preventing thermal degradation of the antioxidant itself.
  • the hindered phenol compound for an antioxidant used in the polyester resin used in the present disclosure is pentaerythritol-tetraextract [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3, 9-bis ⁇ 2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl ⁇ -2,4,8,10-tetraoxaspiro [5 , 5] undecane, etc., and it is also preferable to use these hindered phenol-based antioxidants in combination with thioether-based secondary antioxidants.
  • the method for adding the hindered phenolic antioxidant to the polyester resin is not particularly limited, but is preferably an arbitrary step from completion of the transesterification reaction or esterification reaction to completion of the polymerization reaction. Is added.
  • an organic blue pigment such as an azo-based, triphenylmethane-based, quinoline-based, anthraquinone-based, phthalocyanine-based, etc.
  • a tinting agent consisting of one or more inorganic blue pigments.
  • the polyester resin used in the present disclosure does not substantially contain cobalt.
  • the polyester resin used in the present disclosure preferably contains 0.001 ppm to 100 ppm of the above-mentioned catalyst-derived titanium element.
  • the content is more preferably from 0.001 ppm to 50 ppm, further preferably from 1 ppm to 50 ppm.
  • the content of the titanium element is more than 100 ppm, thermal stability and wet heat resistance may be deteriorated.
  • the content is less than 0.001 ppm, the residual amount of the catalyst of the polyester resin to be used is significantly lower. This means that good mechanical strength, thermal stability and wet heat stability characteristic of the present composition may not be obtained.
  • the L value obtained by a Hunter type color difference meter is 80.0 or more and the b value is in the range of ⁇ 2.0 to 5.0. If the L value of the polyester-based resin is less than 80.0, the whiteness of the obtained polyester-based resin will be low, and a high-whiteness molded product that can be practically used may not be obtained. When the b value is less than -2.0, the resulting polyester resin has a small yellowish tint, but has a bluish tint. When the b value exceeds 5.0, the resulting polyester resin has a yellow tint. , It may not be possible to produce a practically useful molded product.
  • the L value of the polyester resin obtained by the method of the present disclosure is more preferably 82 or more, particularly preferably 83 or more, and the b value is more preferably in the range of -1.0 to 4.5, and particularly preferably 0. 0.0 to 4.0.
  • the intrinsic viscosity of the polyester resin obtained according to the present disclosure is preferably 0.4 to 1.5.
  • a more preferable range of the intrinsic viscosity is 0.45 to 1.4, and further preferably 0.50 to 1.3. If the intrinsic viscosity of the polyester resin is 0.4 or more, sufficient impact characteristics and chemical resistance may be obtained. If the intrinsic viscosity is 1.5 or less, fluidity during injection molding is secured. Thus, appearance defects such as flow marks and coloring defects can be prevented from occurring.
  • the intrinsic viscosity of the polyester resin is measured at a temperature of 35 ° C. by dissolving the polyester resin in orthochlorophenol.
  • the polyester-based resin obtained by solid-phase polycondensation is often used for general bottles and the like, and is therefore contained in the polyester-based resin and has an intrinsic viscosity of 0.70 to 0.90.
  • the content of the cyclic trimer of the ester of the aromatic dicarboxylic acid and the alkylene glycol is 0.5 wt% or less, and the content of acetaldehyde is 5 ppm or less.
  • the cyclic trimers include alkylene terephthalates such as ethylene terephthalate, trimethylene terephthalate, tetramethylene terephthalate, and hexamethylene terephthalate, and alkylene naphthalates such as ethylene naphthalate, trimethylene naphthalate, tetramethylene naphthalate, and hexamethylene. Methylene naphthalate and the like.
  • a compound such as manganese, zinc, calcium, and magnesium used in a transesterification reaction that is a former stage of a conventionally known polycondensation can be used in combination, and phosphoric acid or phosphorus phosphite is used after the transesterification reaction is completed. It is also possible to deactivate such a catalyst with an acid compound or the like for polycondensation.
  • the method for producing the polyester resin can be any of a batch method and a continuous polymerization method.
  • the content of the component B is preferably 20 to 70 parts by weight, more preferably 30 to 70 parts by weight, and more preferably 35 to 65 parts by weight based on 100 parts by weight of the total of the components A and B. More preferably, it is particularly preferably 40 to 60 parts by weight.
  • the content of the B component is too small, the chemical resistance may not be exhibited, and when the content of the B component is too large, good mechanical properties, flame retardancy and antifouling properties are reduced. There is.
  • Component C a composite rubber comprising a component containing a polyorganosiloxane rubber and an alkyl (meth) acrylate rubber, selected from the group consisting of an aromatic alkenyl compound monomer unit and an alkyl (meth) acrylate compound monomer unit Graft copolymer having a core-shell structure in which at least one unit is graft-polymerized
  • the resin composition according to the present disclosure is characterized in that a compound rubber containing a polyorganosiloxane rubber and an alkyl (meth) acrylate rubber as a C component is added to an aromatic alkenyl compound monomer unit and an alkyl (meth) acrylate compound At least one selected from the group consisting of body units also contains a graft copolymer having a core-shell structure in which units are graft-polymerized.
  • the rubber component of the component C is a composite rubber component comprising a component containing a polyorganosiloxane rubber and an alkyl (meth) acrylate rubber.
  • the composite rubber refers to a rubber obtained by copolymerizing two types of rubber components or a rubber obtained by polymerizing so as to have an IPN structure entangled with each other so as to be inseparable.
  • the proportion of the polyorganosiloxane rubber in the rubber component is preferably 10% or more, and more preferably 15% or more.
  • the upper limit of the proportion of the polyorganosiloxane rubber in the rubber component is not particularly limited, but is preferably 95% or less, 90% or less, 80% or less, or 70% or less.
  • the core has a weight average particle diameter of preferably 0.05 ⁇ m to 0.8 ⁇ m, more preferably 0.1 ⁇ m to 0.6 ⁇ m, and still more preferably 0.15 ⁇ m to 0.5 ⁇ m.
  • the thickness is in the range of 0.05 ⁇ m to 0.8 ⁇ m, better impact resistance may be achieved, which is preferable.
  • Examples of the aromatic alkenyl compound to be graft-polymerized on the shell of the core-shell type graft polymer include styrene, ⁇ -methylstyrene, p-methylstyrene, alkoxystyrene, and halogenated styrene.
  • Examples of the alkyl (meth) acrylate compound include acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, and octyl acrylate; methyl methacrylate, ethyl methacrylate, butyl methacrylate, and methacrylic acid.
  • Methacrylic esters such as cyclohexyl and octyl methacrylate can be mentioned.
  • An elastic polymer containing a composite rubber comprising a component containing a polyorganosiloxane rubber and an alkyl (meth) acrylate rubber is produced by any one of bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.
  • the copolymerization method may be a single-stage graft or a multi-stage graft. Further, it may be a mixture with a copolymer of only a graft component which is by-produced during the production.
  • Examples of the polymerization method include a general emulsion polymerization method, a soap-free polymerization method using an initiator such as potassium persulfate, a seed polymerization method, and a two-step swelling polymerization method.
  • the suspension polymerization method a method in which an aqueous phase and a monomer phase are separately held, and both are accurately supplied to a continuous disperser, and the particle diameter is controlled by the number of revolutions of the disperser.
  • a method of supplying a monomer phase into an aqueous liquid having a dispersing ability by passing it through a small-diameter orifice having a diameter of several to several tens of ⁇ m or a porous filter to control the particle size may be employed.
  • the reaction may be performed in one stage or in multiple stages for both the core and the shell.
  • Such polymers are commercially available and can be easily obtained.
  • Examples thereof include those commercially available under the trade names SRK-200A and SX-200R, which are the main components.
  • the content of the component C is 3 parts by weight to 15 parts by weight, preferably 4 parts by weight to 12 parts by weight, more preferably 5 parts by weight to 10 parts by weight based on 100 parts by weight of the total of the components A and B. Department.
  • the addition of the C component further improves impact resistance, chemical resistance, and antifouling properties. When the amount is 15 parts by weight or less, a good appearance is secured.
  • the resin composition of the present disclosure contains, as a D component, an antifouling agent.
  • an antifouling agent include silicone oil, silicone gum, silicone resin fine particles, polyolefin, silicone-modified polyolefin, wax and the like. From the viewpoint, silicone gum and silicone-modified polyolefin are particularly desirable.
  • the silicone gum used in the present disclosure is preferably a gum-like polyorganosiloxane having a molecular weight of 100,000 or more.
  • Polyorganosiloxane is a polymer substance in which an organic group is added to a structure in which a silicon atom is bonded to another silicon atom via an oxygen atom.
  • the skeleton of the polyorganosiloxane may be linear, branched, cyclic, or a mixture thereof.
  • polyorganosiloxane examples include polydimethylsiloxane, polymethylphenylsiloxane, polymethylhydrogensiloxane, aralkyl-modified polydimethylsiloxane, polyether-modified polydimethylsiloxane, alkyl-modified polydimethylsiloxane, higher fatty acid-modified polydimethylsiloxane, and fluoropolysiloxane.
  • Examples include alkyl-modified polydimethylsiloxane, amino-modified polydimethylsiloxane, epoxy-modified polydimethylsiloxane, carbinol-modified polydimethylsiloxane, carboxyl-modified polydimethylsiloxane, phenol-modified polydimethylsiloxane, and silanol-modified polydimethylsiloxane. These may be used alone or in combination of two or more. Of these, polydimethylsiloxane is most preferably used in view of the balance between performance and cost.
  • a master batch product diluted with a thermoplastic resin is preferably used.
  • Such masterbatch products are commercially available and can be easily obtained.
  • trade names of MB50-315 which is a 50% masterbatch product of Toray Dow Corning Co., Ltd.
  • BY27-001 which is a masterbatch product of 50% polypropylene
  • BY27-009 which is a 50% masterbatch product of a polyester elastomer.
  • Commercially available ones can be mentioned.
  • a silicone-modified polyolefin can also be used.
  • the silicone-modified polyolefin is obtained by chemically bonding a polyorganosiloxane to a polyolefin resin.
  • examples of the silicone-modified polyolefin include a polyorganosiloxane-grafted polyolefin resin.
  • the polyolefin resin is a synthetic resin obtained by polymerizing or copolymerizing an olefin monomer having a radical polymerizable double bond.
  • the olefin-based monomer is not particularly limited, and examples thereof include ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, and 4-methyl-1-pentene. Examples include olefins and conjugated dienes such as butadiene and isoprene.
  • the olefin monomers may be used alone or in combination of two or more.
  • the polyolefin resin is not particularly limited, and examples thereof include a homopolymer of ethylene, a copolymer of ethylene and an ⁇ -olefin other than ethylene, a homopolymer of propylene, and a copolymer of propylene and an ⁇ -olefin other than propylene.
  • Preferred are propylene homopolymers and copolymers of propylene and ⁇ -olefins other than propylene. . More preferably, it is a homopolymer of propylene.
  • the polyolefin resins may be used alone or in combination of two or more. In the present disclosure, a polypropylene-based resin is more preferably used from the viewpoint of versatility and rigidity.
  • the skeleton of the polyorganosiloxane may be linear, branched, cyclic, or a mixture thereof.
  • Examples of the structure of polyorganosiloxane include polydimethylsiloxane, polymethylphenylsiloxane, polymethylhydrogensiloxane, aralkyl-modified polydimethylsiloxane, polyether-modified polydimethylsiloxane, alkyl-modified polydimethylsiloxane, higher fatty acid-modified polydimethylsiloxane, and fluoropolysiloxane.
  • Examples include alkyl-modified polydimethylsiloxane, amino-modified polydimethylsiloxane, epoxy-modified polydimethylsiloxane, carbinol-modified polydimethylsiloxane, carboxyl-modified polydimethylsiloxane, phenol-modified polydimethylsiloxane, and silanol-modified polydimethylsiloxane. These may be used alone or in combination of two or more. Of these, polydimethylsiloxane is most preferably used in view of the balance between performance and cost. Such polymers are commercially available and can be easily obtained. For example, those commercially available under the trade names BY27-201 and BY27-201C, which are polyorganosiloxane-grafted polypropylene manufactured by Toray Dow Corning Co., Ltd., may be mentioned.
  • the content of the component D is 0.5 to 6.0 parts by weight, preferably 1.0 to 5.0 parts by weight, based on 100 parts by weight of the total of the components A and B. Preferably it is 1.5 to 4.0 parts by weight.
  • the component D is 0.5 parts by weight or more, antifouling properties are exhibited.
  • the content of the D component is 4.0 parts by weight or less, appearance defects such as bleed-out do not occur.
  • the content of the D component indicates the amount of the antifouling agent included in the master batch product.
  • the polycarbonate resin composition further comprises the following flame retardant: (E) a halogen-based flame retardant (component E), and (F) a phosphorus-based flame retardant having a structure represented by the following formula (1) (component F)
  • component F a halogen-based flame retardant
  • X 1 and X 2 are the same or different and are an aromatic substituted alkyl group represented by the following general formula (I).
  • AL is a branched or linear aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • Ar is a phenyl group, a naphthyl group or an anthryl group
  • n represents an integer of 1 to 3
  • Ar can be attached to any carbon atom of AL.
  • the polycarbonate resin composition according to the embodiment of the present disclosure further includes the above-mentioned components E and F as a flame retardant, so that the polycarbonate resin composition has excellent mechanical properties, chemical resistance, antifouling properties, and appearance. Satisfies flame retardancy and thermal stability at a high level. Therefore, the present invention is widely and particularly useful not only in outdoor / indoor use, but also in various applications such as housing equipment, building materials, living materials, infrastructure equipment, automobiles, OA / EE, outdoor equipment, and the like.
  • the resin composition according to one embodiment of the present disclosure contains a halogen-based flame retardant as the E component.
  • a halogen-based flame retardant brominated polycarbonate (including oligomer) is particularly preferred. Brominated polycarbonate is excellent in heat resistance and can greatly improve flame retardancy.
  • the structural unit represented by the following formula (7) is preferably at least 60 mol%, more preferably at least 80 mol% of all the structural units, and particularly preferably substantially the following. It is a brominated polycarbonate compound comprising a structural unit represented by the formula (7).
  • X is a bromine atom
  • R is an alkylene group having 1 to 4 carbon atoms, an alkylidene group having 1 to 4 carbon atoms, or —SO 2 —.
  • R preferably represents a methylene group, an ethylene group, an isopropylidene group, —SO 2 —, and particularly preferably an isopropylidene group.
  • the brominated polycarbonate has few residual chloroformate group terminals, and the amount of terminal chlorine is preferably 0.3 ppm or less, more preferably 0.2 ppm or less.
  • the amount of terminal chlorine can be determined by dissolving a sample in methylene chloride, adding 4- (p-nitrobenzyl) pyridine and reacting with terminal chlorine (terminal chloroformate), and using an ultraviolet-visible spectrophotometer (manufactured by Hitachi, Ltd.). -3200).
  • the amount of terminal chlorine is 0.3 ppm or less, the thermal stability of the polycarbonate resin composition becomes better, and molding at a higher temperature becomes possible. As a result, a resin composition having more excellent moldability is provided.
  • the brominated polycarbonate preferably has a small number of remaining hydroxyl group terminals. More specifically, the amount of terminal hydroxyl groups is preferably 0.0005 mol or less, more preferably 0.0003 mol or less, per 1 mol of the structural unit of the brominated polycarbonate.
  • the amount of terminal hydroxyl groups can be determined by dissolving a sample in deuterated chloroform and measuring by 1 H-NMR method. Such an amount of terminal hydroxyl groups is preferable because the thermal stability of the polycarbonate resin composition is further improved.
  • the specific viscosity of the brominated polycarbonate is preferably in the range of 0.015 to 0.1, more preferably in the range of 0.015 to 0.08.
  • the specific viscosity of the brominated polycarbonate is calculated according to the above-mentioned specific viscosity calculation formula used in calculating the viscosity average molecular weight of the polycarbonate resin as the component A of the present disclosure.
  • the content of the component E is 5 parts by weight to 35 parts by weight, preferably 8 parts by weight to 30 parts by weight, more preferably 10 parts by weight to 25 parts by weight based on 100 parts by weight of the total of the components A and B. It is. When the content of the E component is 5 parts by weight or more, flame retardancy may be exhibited, and when the content is 35 parts by weight or less, good mechanical properties, appearance, and chemical resistance may be secured.
  • a halogen-based flame retardant can generally further increase the flame retardancy of a resin composition when used in combination with an antimony oxide compound, it is not desirable in the present disclosure because thermal stability is significantly reduced.
  • the phosphorus-based flame retardant of the present disclosure is an organic phosphorus compound represented by the following general formula (1).
  • X 1 and X 2 are the same or different and represent an aromatic-substituted alkyl group represented by the following general formula (I).
  • AL is a branched or straight-chain aliphatic hydrocarbon group having 1 to 5, preferably 1 or 2 carbon atoms.
  • AL is preferably an alkyl group represented by the following formula (8).
  • Ar is a phenyl group, a naphthyl group or an anthryl group, of which a phenyl group is preferable.
  • n represents an integer of 1 to 3, preferably 1 or 2.
  • Ar can be attached to any carbon of AL.
  • the organophosphorus flame retardant represented by the above formula (1) exhibits an extremely excellent flame retardant effect on an aromatic polyester resin.
  • the organophosphorous flame retardant is represented by the general formula (1), and the most preferred representative compound is at least one compound selected from the group consisting of the following formulas (Ba) to (Bd). is there. One or more of these compounds can be used.
  • the Ba component represented by the formula (Ba) or the Bc component represented by the formula (Bc) has a flame-retardant effect or It is suitable in terms of ease of synthesis and the like.
  • the flame retardancy does not appear if the amount is within the range of the present disclosure.
  • the method for synthesizing the organic phosphorus-based flame retardant in the present disclosure may be synthesized by a known method, and may be manufactured by a method other than the method described below.
  • the organic phosphorus-based flame retardant is obtained, for example, by reacting pentaerythritol with phosphorus trichloride, subsequently treating the oxidized reactant with an alkali metal compound such as sodium methoxide, and then reacting with aralkyl halide. Further, it can also be obtained by a method of reacting aralkylphosphonic dichloride with pentaerythritol or a method of reacting aralkyl alcohol with a compound obtained by reacting pentaerythritol with phosphorus trichloride and then performing Arbuzov transition at a high temperature. . The latter reaction is disclosed in, for example, US Pat. No. 3,141,032, JP-A-54-157156 and JP-A-53-39698.
  • the reaction product obtained by reacting pentaerythritol with phosphorus trichloride and subsequently oxidizing with tert-butanol can be obtained by treating with sodium methoxide and reacting with 1-bromoethylbenzene.
  • the organic phosphorus compound of (Bc) The reaction product obtained by reacting pentaerythritol with phosphorus trichloride and subsequently oxidizing with tert-butanol can be obtained by treating with sodium methoxide and reacting with 2-bromoethylbenzene.
  • the organic phosphorus compound of (Bd) It can be obtained by reacting pentaerythritol with diphenylmethylphosphonic acid dichloride.
  • the acid value of the organophosphorus flame retardant is preferably 0.7 mgKOH / g or less, more preferably 0.5 mgKOH / g or less.
  • the polyester resin hardly decomposes and the thermal stability becomes good, so that a composition having good processability is obtained.
  • the organic phosphorus-based flame retardant has an acid value of 0.4 mgKOH / g or less.
  • the acid value means the amount (mg) of KOH required to neutralize the acid component in 1 g of the sample.
  • the organophosphorus flame retardant those having an HPLC purity of preferably 90% or more, more preferably 95% or more are used. Such a high-purity product is preferable because of its excellent flame retardancy and hue.
  • the HPLC purity of the F component can be measured effectively by using the following method.
  • the column used was Develosil ⁇ ODS-7 ⁇ 300 mm ⁇ 4 mm ⁇ manufactured by Nomura Chemical Co., Ltd., and the column temperature was 40 ° C.
  • As a solvent a mixed solution of acetonitrile and water 6: 4 (volume ratio) was used, and 5 ⁇ l was injected.
  • the detector used was UV-260 nm.
  • the method of removing impurities in the F component is not particularly limited, but a method of performing repulp washing with a solvent such as water or methanol (washing with a solvent and repeating filtration several times) is most effective, It is also advantageous in terms of cost.
  • the content of the component F is 0.5 to 5 parts by weight, preferably 0.8 to 4 parts by weight, more preferably 1 part by weight, based on 100 parts by weight of the total of the components A and B. Parts to 3 parts by weight.
  • the content of the F component is 0.5 parts by weight or more, flame retardancy is exhibited, and when the content is 5 parts by weight or less, good mechanical properties, appearance, and chemical resistance may be ensured. is there.
  • the resin composition of the present disclosure may contain an anti-drip agent as a G component. By containing this anti-drip agent, good flame retardancy can be achieved without impairing the physical properties of the molded article.
  • Examples of the anti-drip agent of the G component include a fluorine-containing polymer having a fibril-forming ability.
  • examples of such a polymer include polytetrafluoroethylene and tetrafluoroethylene-based copolymers (for example, tetrafluoroethylene / hexafluoropropylene copolymer). Polymers, etc.), partially fluorinated polymers as shown in US Pat. No. 4,379,910, polycarbonate resins produced from fluorinated diphenols, and the like.
  • PTFE polytetrafluoroethylene
  • PTFE having a fibril-forming ability has a very high molecular weight, and has a tendency to combine with each other by an external action such as shearing force to form a fibrous form. Its molecular weight is 1,000,000 to 10,000,000, more preferably 2,000,000 to 9,000,000, in number average molecular weight determined from the standard specific gravity.
  • PTFE not only a solid form but also an aqueous dispersion form can be used.
  • PTFE having such fibril-forming ability can use a PTFE mixture in a mixed form with another resin in order to improve the dispersibility in the resin and to obtain better flame retardancy and mechanical properties. is there.
  • Examples of commercially available PTFE having such a fibril-forming ability include Teflon (registered trademark) 6J of DuPont-Mitsui Fluorochemicals Co., Ltd., and Polyflon MPA FA500 and F-201L of Daikin Industries, Ltd.
  • Commercially available PTFE aqueous dispersions include Fluon AD-1, AD-936 manufactured by Asahi ICI Fluoropolymers Co., Ltd., Fluon D-1 and D-2 manufactured by Daikin Industries, Ltd., and DuPont Mitsui Teflon (registered trademark) 30J manufactured by Chemical Co., Ltd. can be mentioned as a representative.
  • the proportion of PTFE in the mixed form is preferably 1% by weight to 60% by weight, more preferably 5% by weight to 55% by weight, based on 100% by weight of the PTFE mixture.
  • the proportion of PTFE is in such a range, good dispersibility of PTFE can be achieved.
  • the ratio of the G component indicates the net amount of the anti-drip agent, and in the case of PTFE in a mixed form, indicates the net amount of PTFE.
  • the content of the component G is preferably 0.05 to 2 parts by weight, more preferably 0.1 to 1.5 parts by weight, based on 100 parts by weight of the total of the components A and B. Preferably it is 0.2 to 1 part by weight. If the amount of the anti-drip agent is less than the above range, the flame retardancy may be insufficient. On the other hand, if the amount of the anti-drip agent is too large, exceeding the above range, not only may PTFE precipitate on the surface of the molded article, resulting in poor appearance, but also leads to an increase in the cost of the resin composition, which is not preferable.
  • the styrene-based monomer used in the organic polymer used in the polytetrafluoroethylene-based mixture of the present disclosure includes an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and halogen.
  • Styrene which may be substituted with one or more groups selected from the group consisting of, for example, ortho-methylstyrene, meta-methylstyrene, para-methylstyrene, dimethylstyrene, ethyl-styrene, para-tert-butylstyrene , Methoxystyrene, fluorostyrene, monobromostyrene, dibromostyrene, and tribromostyrene, vinylxylene, vinylnaphthalene, but are not limited thereto.
  • the styrene monomers may be used alone or in combination of two or more.
  • the acrylic monomer used in the organic polymer used in the polytetrafluoroethylene-based mixture of the present disclosure includes a (meth) acrylate derivative that may be substituted. Specifically, the acrylic monomer is substituted with at least one group selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group, and a glycidyl group.
  • (Meth) acrylate derivatives that may be used, such as (meth) acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, hexyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate and glycidyl (meth) acrylate; Alkyl having 1 to 6 carbon atoms , Or maleimide which may be substituted by an aryl group, for example, maleimide, N- methyl - maleimide and N- phenyl - maleimide, maleic acid,
  • the amount of the acrylic monomer-derived unit contained in the organic polymer used for the coating layer is preferably 8 parts by weight to 11 parts by weight, more preferably 8 parts by weight, based on 100 parts by weight of the styrene-based monomer-derived unit. Parts to 10 parts by weight, more preferably 8 to 9 parts by weight.
  • the coating strength may be ensured, and when it is at most 11 parts by weight, a good surface appearance of the molded article can be ensured.
  • the polytetrafluoroethylene-based mixture of the present disclosure preferably has a residual moisture content of 0.5% by weight or less, more preferably 0.2% to 0.4% by weight, and still more preferably 0.1% by weight. % To 0.3% by weight. When the residual water content is 0.5% by weight or less, adverse effects on flame retardancy can be avoided.
  • the initiator used in the polytetrafluoroethylene-based mixture of the present disclosure can be used without any limitation as long as it is used for the polymerization reaction of styrene-based and / or acrylic-based monomers.
  • examples of the initiator include, but are not limited to, cumyl hydroperoxide, di-tert-butyl peroxide, benzoyl peroxide, hydrogen peroxide, and potassium peroxide.
  • one or more of the above initiators can be used depending on reaction conditions.
  • the amount of the initiator is freely selected within the range used in consideration of the amount of polytetrafluoroethylene and the type / amount of the monomer, and is from 0.15 parts by weight based on the total amount of the composition. It is preferred to use 0.25 parts by weight.
  • the polytetrafluoroethylene-based mixture of the present disclosure was produced by a suspension polymerization method according to the following procedure.
  • the polytetrafluoroethylene-based mixture used in the present disclosure is manufactured by a suspension polymerization method, such an emulsifier and a sodium metal ion and a potassium metal ion in the mixture can be reduced since no electrolyte salt is used. To improve heat stability and hydrolysis resistance.
  • coated branched PTFE can be used as an anti-drip agent.
  • the coated branched PTFE is a polytetrafluoroethylene-based mixture composed of branched polytetrafluoroethylene particles and an organic polymer, and an organic polymer, preferably a styrene-based monomer, is provided outside the branched polytetrafluoroethylene. It has a coating layer made of a polymer containing units and / or units derived from an acrylic monomer. The coating layer is formed on the surface of the branched polytetrafluoroethylene.
  • the coating layer preferably contains a copolymer of a styrene monomer and an acrylic monomer.
  • the polytetrafluoroethylene contained in the coated branched PTFE is a branched polytetrafluoroethylene.
  • the branched polytetrafluoroethylene is in the form of particles, and preferably has a particle diameter of 0.1 ⁇ m to 0.6 ⁇ m, more preferably 0.3 ⁇ m to 0.5 ⁇ m, and still more preferably 0.3 ⁇ m to 0.4 ⁇ m.
  • the number average molecular weight of the polytetrafluoroethylene used in the present disclosure is preferably 1 ⁇ 10 4 to 1 ⁇ 10 7 , more preferably 2 ⁇ 10 6 to 9 ⁇ 10 6 , and generally polytetrafluoroethylene having a high molecular weight. Fluoroethylene is more preferred in terms of stability. Either in powder or dispersion form can be used.
  • the content of the branched polytetrafluoroethylene in the coated branched PTFE is preferably 20 parts by weight to 60 parts by weight, more preferably 40 parts by weight to 55 parts by weight, based on 100 parts by weight of the total weight of the coated branched PTFE. It is preferably from 47 to 53 parts by weight, particularly preferably from 48 to 52 parts by weight, most preferably from 49 to 51 parts by weight. When the proportion of the branched polytetrafluoroethylene is in such a range, good dispersibility of the branched polytetrafluoroethylene can be achieved.
  • Phosphorus-based stabilizer examples include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and tertiary phosphine.
  • examples of the phosphite compound include triphenyl phosphite, tris (nonylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, and dioctyl monophenyl.
  • Phosphite diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, tris (diethyl phenyl) phosphite, tris (di-iso-propyl phenyl) phosphite, tris (di -N-butylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, di Teaarylpentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl
  • phosphite compounds which react with dihydric phenols and have a cyclic structure can also be used.
  • 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2,4-di-tert-butylphenyl) phosphite 2,2′-methylenebis (4,6-di-tert-butyl) Butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite
  • 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite.
  • phosphate compound examples include tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenylcresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, and dioctyl phosphate.
  • examples thereof include diisopropyl phosphate, and preferred are triphenyl phosphate and trimethyl phosphate.
  • Examples of the phosphonite compound include tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite and tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenylenediene Phosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite , Tetrakis (2,6-di-tert-butylphenyl) -4,3′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, bis (2,4-di-tert-
  • Examples of the phosphonate compound include dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate.
  • tertiary phosphine examples include triethylphosphine, tripropylphosphine, tributylphosphine, trioctylphosphine, triamylphosphine, dimethylphenylphosphine, dibutylphenylphosphine, diphenylmethylphosphine, diphenyloctylphosphine, triphenylphosphine, and tri-p-tolyl. Examples include phosphine, trinaphthylphosphine, and diphenylbenzylphosphine. A particularly preferred tertiary phosphine is triphenylphosphine.
  • the above-mentioned phosphorus stabilizers can be used alone or in combination of two or more.
  • a phosphonite compound or a phosphite compound represented by the following general formula (9) is preferable.
  • R and R ′ represent an alkyl group having 6 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and may be the same or different.
  • tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite is preferred as the phosphonite compound
  • the stabilizer containing phosphonite as a main component is Sandostab @ P-EPQ (trademark, manufactured by Clariant).
  • Irgafos @ P-EPQ trademark, manufactured by CIBA SPECTIALTY CHEMICALS
  • more preferred phosphite compounds include distearylpentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, and bis (2,6-diphosphite).
  • Distearyl pentaerythritol diphosphite is commercially available as ADK STAB PEP-8 (trademark, manufactured by Asahi Denka Kogyo Co., Ltd.) and JPP681S (trademark, manufactured by Johoku Chemical Co., Ltd.), and any of them can be used.
  • Bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite is manufactured by ADK STAB PEP-24G (trademark, manufactured by Asahi Denka Kogyo Co., Ltd.), Alkanox P-24 (trademark, manufactured by Great Lakes), and Ultranox.
  • P626 (trademark, manufactured by GE Specialty Chemicals), Doverphos S-9432 (trademark, manufactured by Dover Chemical), and Irgaofos 126 and 126FF (trademark, manufactured by CIBA SPECTIALTY CHEMICALS) are commercially available.
  • Bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite is commercially available as ADK STAB PEP-36 (trademark, manufactured by Asahi Denka Kogyo KK) and can be easily used.
  • Bis ⁇ 2,4-bis (1-methyl-1-phenylethyl) phenyl ⁇ pentaerythritol diphosphite is available from ADK STAB PEP-45 (trademark, manufactured by Asahi Denka Kogyo KK) and Doverphos @ S-9228 (trademark). , Dover @ Chemical Co., Ltd.), and any of them can be used.
  • the above phosphorus-based stabilizers can be used alone or in combination of two or more.
  • the content of the phosphorus-based stabilizer is preferably from 0.01 to 1.0 part by weight, more preferably from 0.03 to 0 parts by weight, based on 100 parts by weight of the total of the component A and the component B. 0.8 parts by weight, more preferably 0.05 to 0.5 parts by weight.
  • the content is 0.01 part by weight or more, the effect of suppressing thermal decomposition during processing is exhibited, and good mechanical properties may be ensured. Even when the content is 1.0 part by weight or less, Good mechanical properties may be ensured.
  • Phenolic stabilizer The resin composition of the present disclosure may contain a phenol stabilizer.
  • Phenolic stabilizers generally include hindered phenols, semi-hindered phenols, and re-hindered phenol compounds, but hindered phenol compounds are more preferable in terms of applying a heat-stable formulation to a polypropylene resin.
  • hindered phenol compounds include ⁇ -tocopherol, butylhydroxytoluene, sinapyr alcohol, vitamin E, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2-tert -Butyl-6- (3'-tert-butyl-5'-methyl-2'-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethylamino Methyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-ethyl -6-tert-butylphenol), 4,4'-methylenebis (2.6 Di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-cyclohexy
  • tetrakis [methylene-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate] methane, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionate is preferably used, and as a material excellent in suppressing a decrease in mechanical properties due to thermal decomposition during processing, represented by the following formula (10): (3,3 ', 3'',5,5', 5 '' -Hexa-tert-butyl-a, a ', a''-(mesitylene-2,4,6-triyl) tri-p-cresol and 1,3,5 represented by the following formula (11) -Tris- (3,5-di-tert-butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione is more preferably used.
  • the above phenolic stabilizers can be used alone or in combination of two or more.
  • the content of the phenol stabilizer is preferably 0.05 to 1.0 part by weight, more preferably 0.07 to 0 parts by weight, based on 100 parts by weight of the total of the component A and the component B. 0.8 parts by weight, more preferably 0.1 to 0.5 parts by weight.
  • the content is 0.05 parts by weight or more, the effect of suppressing thermal decomposition during processing is exhibited, and good mechanical properties may be ensured. Even when the content is 1.0 parts by weight or less, Good mechanical properties may be ensured.
  • one of the phosphorus-based stabilizer and the phenol-based stabilizer is blended, and the combination of these is more preferred.
  • 0.01 to 0.5 parts by weight of a phosphorus-based stabilizer and 0.01 to 0.5 parts by weight of a phenol-based stabilizer based on 100 parts by weight of the total of the components A and B.
  • an agent is blended.
  • the polycarbonate resin composition of the present disclosure can contain an ultraviolet absorber.
  • the ultraviolet absorber include benzophenone-based compounds such as 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, Hydroxy-4-methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydrate benzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2 ′, 4,4 ′ -Tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4- Hydroxy-2-methoxyphenyl) Examples include methane, 2-hydroxy-4-n-dodec
  • benzotriazole type for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [4- (1,1,3 , 3-Tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- (2- Hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3, -Di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octyl
  • 2-hydroxyphenyl-2H-benzotriazole skeleton such as a copolymer or a copolymer of 2- (2'-hydroxy-5-acryloxyethylphenyl) -2H-benzotriazole and a vinyl monomer copolymerizable with the monomer. And the like.
  • Hydroxyphenyl triazines include, for example, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-hexyloxyphenol, 2- (4,6-diphenyl-1,3,5 -Triazin-2-yl) -5-methyloxyphenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-ethyloxyphenol, 2- (4,6-diphenyl -1,3,5-triazin-2-yl) -5-propyloxyphenol and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-butyloxyphenol Is exemplified.
  • the phenyl group of the above exemplified compound such as 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-hexyloxyphenol is 2,4-dimethyl
  • a compound having a phenyl group is exemplified.
  • cyclic iminoesters for example, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2′-m-phenylenebis (3,1-benzoxazin-4-one) And 2,2′-p, p′-diphenylenebis (3,1-benzoxazin-4-one).
  • cyanoacrylate system for example, 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2-cyano-3,3-diphenylacryloyl) oxy ] Methyl) propane and 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene.
  • the ultraviolet absorber has a structure of a monomer compound capable of radical polymerization, so that the ultraviolet absorber and / or the light-stable monomer can be combined with a monomer such as alkyl (meth) acrylate. It may be a polymer type ultraviolet absorber obtained by copolymerization with a body. Preferred examples of the ultraviolet absorbing monomer include compounds containing a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic imino ester skeleton, and a cyanoacrylate skeleton in an ester substituent of a (meth) acrylate. You.
  • a compound represented by any of the following formulas (12), (13) and (14) is more preferably used.
  • the above ultraviolet absorbers can be used alone or in combination of two or more.
  • the content of the ultraviolet absorbent is preferably from 0.1 to 2 parts by weight, more preferably from 0.12 to 1.5 parts by weight, based on 100 parts by weight of the total of the component A and the component B. Parts, more preferably 0.15 parts by weight to 1 part by weight.
  • the content of the ultraviolet absorber is 0.1 part by weight or more, sufficient light resistance may be exhibited, and when the content is 2 parts by weight or less, poor appearance or physical property deterioration due to gas generation may occur. It is preferable because it can be avoided.
  • Hindered amine light stabilizer The polycarbonate resin composition of the present disclosure may contain a hindered amine light stabilizer.
  • the hindered amine light stabilizer is generally called HALS (Hindered Amine Light Stabilizer) and is a compound having a 2,2,6,6-tetramethylpiperidine skeleton in its structure.
  • Hindered amine light stabilizers are broadly classified according to the bonding partner of the nitrogen atom in the piperidine skeleton, such as NH (hydrogen is bonded to a nitrogen atom), NR (alkyl group (R) is bonded to a nitrogen atom), There are three types of N-OR type (alkoxy group (OR) is bonded to the nitrogen atom), but when applied to a polycarbonate resin, from the viewpoint of basicity of the hindered amine-based light stabilizer, NR having low basicity is used. And N-OR type are more preferably used.
  • the hindered amine light stabilizers can be used alone or in combination of two or more.
  • the content of the hindered amine light stabilizer is preferably from 0 to 1 part by weight, more preferably from 0.05 to 1 part by weight, based on 100 parts by weight of the total of the component A and the component B. It is more preferably from 0.08 to 0.7 parts by weight, particularly preferably from 0.1 to 0.5 parts by weight.
  • the content of the hindered amine-based light stabilizer is 1 part by weight or less, poor appearance due to gas generation and deterioration in physical properties due to decomposition of the polycarbonate resin may be avoided, which is preferable.
  • the amount is 0.05 parts by weight or more, sufficient light resistance may be exhibited.
  • the polycarbonate resin composition of the present disclosure preferably further contains a release agent for the purpose of improving productivity during molding and reducing distortion of a molded product.
  • a release agent for the purpose of improving productivity during molding and reducing distortion of a molded product.
  • Known release agents can be used.
  • preferred release agents include fatty acid esters.
  • Such a fatty acid ester is an ester of an aliphatic alcohol and an aliphatic carboxylic acid.
  • Such an aliphatic alcohol may be a monohydric alcohol or a dihydric or higher polyhydric alcohol. Further, the carbon number of the alcohol is in the range of 3 to 32, more preferably 5 to 30. Examples of such a monohydric alcohol include dodecanol, tetradecanol, hexadecanol, octadecanol, eicosanol, tetracosanol, seryl alcohol, and triacontanol.
  • Such polyhydric alcohols include pentaerythritol, dipentaerythritol, tripentaerythritol, polyglycerol (triglycerol to hexaglycerol), ditrimethylolpropane, xylitol, sorbitol, mannitol and the like. Polyhydric alcohols are more preferred in the fatty acid esters of the present disclosure.
  • the aliphatic carboxylic acid preferably has 3 to 32 carbon atoms, particularly preferably an aliphatic carboxylic acid having 10 to 22 carbon atoms.
  • the aliphatic carboxylic acid include decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, octadecanoic acid (stearic acid), nonadecanoic acid, behenic acid, Mention may be made of saturated aliphatic carboxylic acids such as icosanoic acid, and docosanoic acid, and unsaturated aliphatic carboxylic acids such as palmitoleic acid, oleic acid, linoleic acid, linolenic acid, eicosenoic acid, eicosapentaenoic acid,
  • the above-mentioned aliphatic carboxylic acids such as stearic acid and palmitic acid are usually produced from natural fats and oils such as animal fats and fats such as tallow and lard and vegetable fats and fats such as palm oil and sunflower oil. Therefore, these aliphatic carboxylic acids are usually mixtures containing other carboxylic acid components having different numbers of carbon atoms. Accordingly, in the production of the fatty acid ester of the present disclosure, an aliphatic carboxylic acid, particularly stearic acid or palmitic acid, which is produced from such natural fats and oils and is in the form of a mixture containing other carboxylic acid components, is preferably used.
  • the fatty acid ester of the present disclosure may be either a partial ester or a whole ester (full ester). However, a partial ester is more preferably a full ester since the hydroxyl value is usually high and the resin is easily decomposed at a high temperature.
  • the acid value of the fatty acid ester of the present disclosure is preferably 20 or less, more preferably 4 to 20, and still more preferably 4 to 12, from the viewpoint of thermal stability. Incidentally, the acid value can take substantially zero. Further, the hydroxyl value of the fatty acid ester is more preferably in the range of 0.1 to 30. Further, the iodine value is preferably 10 or less. Incidentally, the iodine value can take substantially zero. These characteristics can be obtained by a method specified in JIS K 0070.
  • the content of the release agent is preferably 0.005 to 2 parts by weight, more preferably 0.01 to 1 part by weight, and still more preferably 100 parts by weight of the total of the component A and the component B. Is 0.05 to 0.5 parts by weight.
  • the polycarbonate resin composition has good release properties and roll release properties.
  • such an amount of the fatty acid ester provides a polycarbonate resin composition having a good releasing property and a good roll releasing property without impairing a good hue.
  • the polycarbonate resin composition of the present disclosure can further provide a molded article containing various dyes and pigments and exhibiting various design properties. By blending a fluorescent whitening agent or a fluorescent dye that emits other light, a better design effect utilizing the emitted color can be provided. It is also possible to provide a polycarbonate resin composition which is colored by a trace amount of dye and pigment and has vivid coloration.
  • Examples of the fluorescent dye (including a fluorescent whitening agent) used in the present disclosure include, for example, a coumarin fluorescent dye, a benzopyran fluorescent dye, a perylene fluorescent dye, an anthraquinone fluorescent dye, a thioindigo fluorescent dye, and a xanthene fluorescent dye. And xanthone fluorescent dyes, thioxanthene fluorescent dyes, thioxanthone fluorescent dyes, thiazine fluorescent dyes, and diaminostilbene fluorescent dyes. Of these, coumarin-based fluorescent dyes, benzopyran-based fluorescent dyes, and perylene-based fluorescent dyes, which have good heat resistance and are less likely to deteriorate during molding of the polycarbonate resin, are preferred.
  • the dyes other than the bluing agent and the fluorescent dye perylene dyes, coumarin dyes, thioindigo dyes, anthraquinone dyes, thioxanthone dyes, ferrocyanides such as navy blue, perinone dyes, quinoline dyes, quinacridone Dyes, dioxazine dyes, isoindolinone dyes, and phthalocyanine dyes.
  • the resin composition of the present disclosure can also obtain a better metallic color by blending a metallic pigment.
  • the metallic pigment those having a metal coating or a metal oxide coating on various plate-like fillers are preferable.
  • the content of the dye / pigment is preferably 0.00001 to 1 part by weight, more preferably 0.00005 to 0.5 part by weight, based on 100 parts by weight of the total of the component A and the component B. .
  • the polycarbonate resin composition of the present disclosure may also contain other heat stabilizers other than the above-mentioned phosphorus-based stabilizer and phenol-based stabilizer.
  • Such other heat stabilizers are preferably used in combination with any one of these stabilizers and antioxidants, and particularly preferably used in combination with both.
  • Such other heat stabilizers include, for example, lactone stabilizers represented by the reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one with o-xylene (such stabilizers) The details are described in JP-A-7-233160).
  • Such a compound is commercially available as Irganox HP-136 (trademark, manufactured by CIBA SPECIALTY CHEMICALS), and the compound can be used. Further, stabilizers obtained by mixing the compound with various phosphite compounds and hindered phenol compounds are commercially available. For example, Irganox HP-2921 manufactured by the above company is preferably exemplified. Such premixed stabilizers can also be utilized in the present disclosure.
  • the compounding amount of the lactone stabilizer is preferably 0.0005 to 0.05 part by weight, more preferably 0.001 to 0.03 part by weight, based on 100 parts by weight of the total of the component A and the component B. Department.
  • stabilizers include sulfur-containing stabilizers such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), and glycerol-3-stearylthiopropionate. Is exemplified. Such a stabilizer is particularly effective when the resin composition is applied to rotational molding.
  • the amount of the sulfur-containing stabilizer to be added is preferably 0.001 part by weight to 0.1 part by weight, more preferably 0.01 part by weight to 0.1 part by weight, based on 100 parts by weight of the total of the component A and the component B. 08 parts by weight.
  • (Viii) Filler in the polycarbonate resin composition of the present disclosure, various fillers can be blended as a reinforcing filler within a range in which the effects of the present disclosure are exhibited.
  • various fillers can be blended as a reinforcing filler within a range in which the effects of the present disclosure are exhibited.
  • whiskers such as potassium titanate whiskers, aluminum borate whiskers, and basic magnesium sulfate.
  • These reinforcing fillers may be used alone or in combination of two or more.
  • the content of these fillers is preferably from 0.1 to 60 parts by weight, more preferably from 0.5 to 50 parts by weight, based on 100 parts by weight of the total of the component A and the component B.
  • the polycarbonate resin composition of the present disclosure can be mixed with a high-reflection white pigment to impart a light reflection effect.
  • white pigments include titanium oxide, zinc sulfide, zinc oxide, barium sulfate, calcium carbonate, calcined kaolin and the like, and in particular, titanium oxide is publicly used.
  • titanium oxide to be used titanium oxide having an average particle diameter of 0.1 to 5.0 ⁇ m, which is surface-treated with an organic substance, is preferable.
  • TiO 2 has a crystal form of anatase type or rutile type. Any of these may be used, and they may be used as a mixture if necessary.
  • the rutile type is more preferable in terms of initial mechanical properties and long-term weather resistance.
  • the rutile-type crystal may contain an anatase-type crystal.
  • the method for producing TiO 2 those produced by various methods such as a sulfuric acid method and a chlorine method can be used, but the chlorine method is more preferable.
  • the titanium oxide of the present disclosure is not particularly limited in its shape, but is preferably in the form of particles. Titanium oxide is generally used for various coloring purposes, and the average particle diameter of titanium oxide used as the white pigment of the present disclosure is preferably 0.10 ⁇ m to 5.0 ⁇ m, and more preferably 0.15 ⁇ m to 2.0 ⁇ m. 0 ⁇ m is more preferred, and 0.18 ⁇ m to 1.5 ⁇ m is even more preferred.
  • the average particle diameter is calculated from the number average of individual single particle diameters measured by electron microscope observation.
  • the titanium oxide used in the present disclosure is preferably surface-treated with an organic compound.
  • an organic compound When using titanium oxide that has not been subjected to organic treatment, the appearance is deteriorated due to yellowing, and the reflectance of the molded article is significantly reduced, so that sufficient solar reflectance may not be obtained.
  • various treating agents such as polyol-based, amine-based, and silicone-based can be used.
  • the polyol-based surface treatment agent include pentaerythritol, trimethylolethane, and trimethylolpropane
  • examples of the amine-based surface treatment agent include triethanolamine acetate and trimethylolamine acetate.
  • silicone-based surface treatment agent examples include alkyl chlorosilane (such as trimethylchlorosilane), alkylalkoxysilane (such as methyltrimethoxysilane), and hydrogenpolysiloxane.
  • hydrogen polysiloxane examples include an alkyl hydrogen polysiloxane and an alkylphenyl hydrogen polysiloxane. As such an alkyl group, a methyl group and an ethyl group are preferable.
  • the titanium oxide surface-treated with such an alkylalkoxysilane and / or hydrogenpolysiloxane gives the resin composition of the present disclosure better light reflectivity.
  • the amount of the organic compound used for the surface treatment is preferably from 0.05 to 5 parts by weight, more preferably from 0.5 to 3 parts by weight, and still more preferably from 1.5 to 3 parts by weight, per 100 parts by weight of titanium oxide.
  • the range is from 2.5 parts by weight to 2.5 parts by weight.
  • the surface treatment amount is 0.05 parts by weight or more, sufficient thermal stability may be obtained, and when the surface treatment amount is 5 parts by weight or less, it is preferable because molding defects such as silver can be avoided.
  • the surface treatment agent of the organic compound is previously formed on titanium oxide (more preferably, titanium oxide coated with another metal oxide).
  • a method in which the surface treatment agent is separately added when the raw materials of the resin composition are melt-kneaded, and the surface treatment of titanium oxide is performed in the melt-kneading step may be employed.
  • the content of the white pigment for high light reflection is preferably from 0.1 to 10 parts by weight, and more preferably from 0.15 to 7.5 parts by weight, based on 100 parts by weight of the total of the component A and the component B. Parts by weight, more preferably 0.15 parts by weight to 5 parts by weight.
  • the content of the high-reflection white pigment is 0.1 part by weight or more, a sufficient white appearance or light-shielding property may be obtained.
  • the content is 10 parts by weight or less, molding of silver or the like is performed. This is preferable because defects and remarkable reduction in physical properties can be avoided.
  • two or more kinds of white pigments for high light reflection can be used in combination.
  • styrene resins such as ABS, polyamide resins, polyimide resins, polyetherimide resins, polyurethane resins, silicone resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, polymethacrylate resins, phenol resins
  • the resin include an epoxy resin.
  • examples of the elastomer include isobutylene / isoprene rubber, ethylene / propylene rubber, styrene-based elastomer, acrylic-based elastomer, polyester-based elastomer, and polyamide-based elastomer.
  • a polycarbonate resin other than the polycarbonate-polydiorganosiloxane copolymer resin (component A) used in the present disclosure is generally obtained by reacting a dihydric phenol with a carbonate precursor.
  • the reaction method include an interfacial polymerization method, a melt transesterification method, a solid-phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
  • dihydric phenol examples include hydroquinone, resorcinol, 4,4'-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, and 2,2-bis (4-hydroxyphenyl).
  • Propane commonly known as bisphenol A
  • 2,2-bis (4-hydroxy-3-methylphenyl) propane 2,2-bis (4-hydroxyphenyl) butane
  • 1,1-bis (4-hydroxyphenyl)- 1-phenylethane 1,1-bis (4-hydroxyphenyl) cyclohexane
  • 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane 2,2-bis (4-hydroxyphenyl) Pentane, 4,4 '-(p-phenylenediisopropylidene) diphenol, 4,4'-(m-phenylenediiso (Ropylidene) diphenol, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohex
  • ком ⁇ онент A besides bisphenol A-based polycarbonate which is a general-purpose polycarbonate, a special polycarbonate produced by using other dihydric phenols can be used as the component A.
  • BPM 4,4 ′-(m-phenylenediisopropylidene) diphenol
  • Bis-TMC 1,1-bis (4-hydroxy Phenyl) cyclohexane
  • Bis-TMC 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
  • BCF 9,9-bis (4-hydroxyphenyl)
  • BCF polycarbonate (homopolymer or copolymer) using fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene
  • dihydric phenols other than BPA are preferably used in an amount of 5 mol% or more, particularly 10 mol% or more of the entire dihydric phenol component constituting the polycarbonate.
  • a polycarbonate resin other than the component A constituting the resin composition is copolymerized with any of the following (1) to (3): Particularly preferred is polycarbonate: (1) 20 mol% to 80 mol% (more preferably 40 mol% to 75 mol%, more preferably 45 mol% to 65 mol%) of BPM in 100 mol% of the dihydric phenol component constituting the polycarbonate. ), And having a BCF of 20 mol% to 80 mol% (more preferably 25 mol% to 60 mol%, and still more preferably 35 mol% to 55 mol%).
  • BPA is 10 mol% to 95 mol% (more preferably 50 mol% to 90 mol%, more preferably 60 mol% to 85 mol%) in 100 mol% of the dihydric phenol component, and BCF Is from 5 mol% to 90 mol% (more preferably from 10 mol% to 50 mol%, and still more preferably from 15 mol% to 40 mol%).
  • BPM is 20 mol% to 80 mol% (more preferably 40 mol% to 75 mol%, still more preferably 45 mol% to 65 mol%) in 100 mol% of the dihydric phenol component, and Bis- A copolymerized polycarbonate having a TMC of 20 mol% to 80 mol% (more preferably 25 mol% to 60 mol%, and still more preferably 35 mol% to 55 mol%).
  • These special polycarbonates may be used alone or as a mixture of two or more. These can also be used by mixing with a commonly used bisphenol A type polycarbonate.
  • the water absorption of the polycarbonate is a value obtained by measuring a water content after immersing in water at 23 ° C. for 24 hours in accordance with ISO 62-1980 using a disk-shaped test piece having a diameter of 45 mm and a thickness of 3.0 mm. is there.
  • Tg glass transition temperature
  • DSC differential scanning calorimeter
  • carbonate precursor carbonyl halide, carbonic acid diester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate or dihaloformate of dihydric phenol.
  • the aromatic polycarbonate resin of the present disclosure is a branched polycarbonate resin obtained by copolymerizing a trifunctional or higher polyfunctional aromatic compound, or a polyester obtained by copolymerizing an aromatic or aliphatic (including alicyclic) difunctional carboxylic acid.
  • a branched polycarbonate resin can impart drip prevention performance and the like to the resin composition of the present disclosure.
  • the trifunctional or higher polyfunctional aromatic compound used in such a branched polycarbonate resin include phloroglucin, phloroglucid, and 4,6-dimethyl-2,4,6-tris (4-hydrodiphenyl) heptene-2,2.
  • the structural unit derived from the polyfunctional aromatic compound in the branched polycarbonate is preferably 100 mol% of the total of the structural unit derived from the dihydric phenol and the structural unit derived from the polyfunctional aromatic compound, and is preferably It is 0.01 mol% to 1 mol%, more preferably 0.05 mol% to 0.9 mol%, and still more preferably 0.05 mol% to 0.8 mol%.
  • a branched structural unit may be generated as a side reaction, and the amount of the branched structural unit is preferably in a total of 100 mol% with the structural unit derived from dihydric phenol. It is preferably 0.001 mol% to 1 mol%, more preferably 0.005 mol% to 0.9 mol%, and still more preferably 0.01 mol% to 0.8 mol%. It should be noted that the ratio of such a branched structure can be calculated by 1 H-NMR measurement.
  • the aliphatic bifunctional carboxylic acid is preferably ⁇ , ⁇ -dicarboxylic acid.
  • the aliphatic difunctional carboxylic acid include straight-chain saturated aliphatic dicarboxylic acids such as sebacic acid (decandioic acid), dodecandioic acid, tetradecandioic acid, icosandioic acid, and cyclohexanedicarboxylic acid.
  • alicyclic dicarboxylic acids As the bifunctional alcohol, an alicyclic diol is more preferable, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecanedimethanol.
  • Reaction methods such as an interfacial polymerization method, a melt transesterification method, a carbonate prepolymer solid-phase transesterification method, and a ring-opening polymerization method of a cyclic carbonate compound, which are production methods of the polycarbonate resin of the present disclosure, are disclosed in various literatures and patent publications. This is a well-known method.
  • the polycarbonate resin composition of the present disclosure may contain a small amount of additives known per se for imparting various functions to a molded article and improving properties. These additives are in a usual amount unless the purpose of the present disclosure is impaired.
  • additives examples include a sliding agent (for example, PTFE particles), a coloring agent (for example, pigments and dyes such as carbon black), and a light diffusing agent (for example, acrylic crosslinked particles, silicon crosslinked particles, ultrathin glass flakes, and calcium carbonate particles).
  • a sliding agent for example, PTFE particles
  • a coloring agent for example, pigments and dyes such as carbon black
  • a light diffusing agent for example, acrylic crosslinked particles, silicon crosslinked particles, ultrathin glass flakes, and calcium carbonate particles.
  • Fluorescent dyes for example, inorganic phosphors (for example, phosphors having an aluminate as a mother crystal), antistatic agents, crystal nucleating agents, inorganic and organic antibacterial agents, and photocatalyst-based antifouling agents (for example, fine particle titanium oxide, fine particle oxidation) Zinc), a radical generator, an infrared absorber (heat ray absorber), and a photochromic agent.
  • the components A to D or the components A to F excluding the component B and, optionally, other additives are sufficiently mixed by using a premixing means such as a V-type blender, a Henschel mixer, a mechanochemical device, and an extruder. After mixing, the premix is granulated by an extrusion granulator or briquetting machine as necessary, and then melt-kneaded by a melt kneader represented by a vented twin screw extruder, and then a pelletizer. To form pellets.
  • a premixing means such as a V-type blender, a Henschel mixer, a mechanochemical device, and an extruder.
  • the premix is granulated by an extrusion granulator or briquetting machine as necessary, and then melt-kneaded by a melt kneader represented by a vented twin screw extruder, and then a pelletizer. To form pellets.
  • each component may be independently supplied to a melt kneader typified by a vented twin-screw extruder, or after a part of each component is premixed, supplied to the melt kneader independently of the remaining components. And the like.
  • a method of premixing a part of each component for example, a method in which components other than the component A and the component B are preliminarily mixed and then mixed with the thermoplastic resin of the component A or directly supplied to an extruder can be mentioned.
  • a master batch of an additive diluted with powder is produced by blending a part of the powder and an additive to be blended, and There is a method using a master batch. Furthermore, a method in which one component is independently supplied from the middle of the melt extruder may be used. When there is a liquid component to be compounded, a so-called liquid injection device or liquid addition device can be used for supply to the melt extruder.
  • a extruder having a vent capable of degassing moisture in the raw material and volatile gas generated from the melt-kneaded resin can be preferably used.
  • a vacuum pump for efficiently discharging generated moisture and volatile gas from the vent to the outside of the extruder is preferably installed.
  • melt kneader examples include a Banbury mixer, a kneading roll, a single screw extruder, and a multi-screw extruder having three or more screws in addition to a twin-screw extruder.
  • the resin extruded as described above is directly cut into pellets, or after the strands are formed, the strands are cut with a pelletizer to be pelletized.
  • a pelletizer to be pelletized.
  • air bubbles generated inside the strands and pellets can be appropriately reduced.
  • the shape of the pellet may be a general shape such as a cylinder, a prism, and a sphere, but is more preferably a cylinder.
  • the diameter of such a cylinder is preferably 1 mm to 5 mm, more preferably 1.5 mm to 4 mm, and still more preferably 2 mm to 3.3 mm.
  • the length of the column is preferably 1 mm to 30 mm, more preferably 2 mm to 5 mm, and further preferably 2.5 mm to 3.5 mm.
  • the resin composition of the present disclosure can be used to produce various products by injection molding the pellets obtained by the above-described method.
  • injection molding not only ordinary molding methods but also, as appropriate, injection compression molding, injection press molding, gas assist injection molding, foam molding (including injection by supercritical fluid), insert molding,
  • a molded article can be obtained by using an injection molding method such as in-mold coating molding, heat-insulating mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, and ultra-high-speed injection molding.
  • an injection molding method such as in-mold coating molding, heat-insulating mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, and ultra-high-speed injection molding.
  • the advantages of these various molding methods are already widely known. For the molding, either a cold runner method or a hot runner method can be selected.
  • the resin composition of the present disclosure can also be used in the form of various shaped extruded products, sheets, films, etc. by extrusion.
  • an inflation method, a calendar method, a casting method, or the like can be used. It is also possible to form a heat-shrinkable tube by performing a specific stretching operation. Further, the resin composition of the present disclosure can be formed into a molded product by rotational molding, blow molding, or the like.
  • molded articles in which the resin composition of the present disclosure is used include those suitable for application to living materials, housing equipment materials, building materials, interior goods, OA equipment and internal components of electric home appliances, housings, and the like.
  • These products include, for example, personal computers, notebook computers, CRT displays, printers, mobile terminals, mobile phones, copiers, faxes, recording media (CD, CD-ROM, DVD, PD, FDD, etc.) drives, parabolic antennas, Tools, VTRs, TVs, irons, hair dryers, rice cookers, microwave ovens, audio equipment, audio equipment such as audio, laser disks (registered trademark) and compact disks, lighting equipment, refrigerators, air conditioners, typewriters, word processors, suitcases And living equipment such as cleaning tools, bathrooms, toiletries, housing equipment such as vanities, and the like.Resin products formed from the polycarbonate resin composition of the present disclosure in various parts such as these housings. Can be used.
  • Other resin products include vehicle parts such as deflector parts, car navigation parts
  • the mode for carrying out the invention according to the present disclosure is an aggregation of the preferred ranges of the above-described requirements. For example, representative examples are described in the following examples. Of course, the present disclosure is not limited to these modes.
  • Examples 1 to 33, Comparative Examples 1 to 11 Mixtures having the compositions shown in Tables 1 to 3 and excluding the polyester resin as the B component were supplied from the first supply port of the extruder.
  • the content of the D component in Examples 1 to 13, 15 to 29 and 31 to 33, and Comparative Examples 1 to 4, 6, 7, 10, and 11 was D-1 to D-3 shown in parentheses. (The numbers outside the parentheses indicate the amounts of master batches D-1 to D-3 having a concentration of 50%).
  • Such a mixture was obtained by mixing with a V-type blender.
  • the polyester resin of the component B was supplied from the second supply port using a side feeder.
  • Extrusion was carried out using a vent-type twin screw extruder with a diameter of 30 mm ⁇ (Nippon Steel Works TEX30 ⁇ -38.5BW-3V) at a screw rotation speed of 230 rpm, a discharge rate of 25 kg / h, and a degree of vacuum of the vent of 3 kPa.
  • a pellet was obtained.
  • the extrusion temperature was 260 ° C. from the first supply port to the die.
  • a part of the obtained pellets was dried at 80 ° C. for 6 hours by a hot air circulation type drier, and then, using an injection molding machine, a test piece for evaluation at a cylinder temperature of 260 ° C. and a mold temperature of 60 ° C.
  • (A component) A Polycarbonate-polydiorganosiloxane copolymer resin (viscosity average molecular weight: 25,000, PDMS amount: 8.4%, PDMS polymerization degree: 37, Panlite W-0111 manufactured by Teijin Limited)
  • B component B-1 Polybutylene terephthalate resin (1100-211MD (product name) manufactured by Changchun Man-made Resin Co., Ltd., intrinsic viscosity: 0.965 dl / g)
  • B-2 Polybutylene terephthalate resin (1100-211XG (product name) manufactured by Changchun Manufactured Resins Co., Ltd., intrinsic viscosity: 1.26 dl / g)
  • B-3 Polyethylene terephthalate resin (TRN-8550FF (product name) manufactured by Teijin Limited, intrinsic viscosity: 0.77 dl / g)
  • (C component) C-1 Silicone-based core-shell type graft polymer (graft copolymer having a core-shell structure in which a core is mainly composed of acryl-silicone composite rubber and a shell is mainly composed of methyl methacrylate, METABLEN S-2030 manufactured by Mitsubishi Rayon Co., Ltd.
  • C-2 Butadiene-based core-shell type graft polymer (graft copolymer having a core-shell structure in which a core is mainly composed of butadiene rubber and a shell is mainly composed of methyl methacrylate, Kaneace M-711 (product name) manufactured by Kaneka Corporation) )
  • C-3 Acrylic core-shell type graft polymer (graft copolymer having a core-shell structure having a core of butyl acrylate as a main component and a shell of methyl methacrylate as a main component, METABLEN W-600A manufactured by Mitsubishi Rayon Co., Ltd. (product name) ))
  • D component Silicone gum PC master (ultra high molecular weight polydimethylsiloxane polycarbonate 50% masterbatch product, MB50-315 (product name) manufactured by Toray Dow Corning Co., Ltd.)
  • D-2 Silicone gum PEst master (Master batch product of 50% polyester elastomer of ultra-high molecular weight polydimethylsiloxane, BY27-009 (product name) manufactured by Toray Dow Corning Co., Ltd.)
  • D-3 Silicone gum PP master (50% polypropylene masterbatch of ultra-high molecular weight polydimethylsiloxane, BY27-001 (product name) manufactured by Toray Dow Corning Co., Ltd.)
  • D-4 Silicone-modified polypropylene (polymer obtained by graft-polymerizing polypropylene with polyorganosiloxane, BY27-201 (product name) manufactured by Toray Dow Corning Co., Ltd.)
  • F-1 Phosphorus flame retardant (2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-dibenzyl-3,9-dioxide, FCX manufactured by Teijin Limited) -210 (product name))
  • G component (G component)
  • G-1 coated PTFE (polytetrafluoroethylene coated with a styrene-acrylonitrile copolymer (polytetrafluoroethylene content: 50% by weight), SN3307PF (trade name) manufactured by Shine Polymer)
  • G-2 coated PTFE (polytetrafluoroethylene coated with methyl methacrylate, butyl acrylate copolymer (polytetrafluoroethylene content: 50% by weight), METABLEN A3750 (trade name) manufactured by Mitsubishi Rayon Co., Ltd.)
  • PC aromatic polycarbonate resin (polycarbonate resin powder having a viscosity-average molecular weight of 25,100, produced from bisphenol A and phosgene by a conventional method, Panlite L-1250WQ (product name) manufactured by Teijin Limited)
  • STB-1 Phenolic heat stabilizer (octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, molecular weight 531, Irganox 1330 (product name) manufactured by BASF Japan Ltd.)
  • STB-2 phosphorus-based heat stabilizer (tris (2,4-di-tert-butylphenyl) phosphite, Irgafos 168 (product name) manufactured by BASF Japan Ltd.)
  • STB-3 phosphorus-based heat stabilizer (trimethyl phosphate, TMP (product name) manufactured by Daihachi Chemical Industry Co., Ltd.)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

Provided is a polycarbonate resin composition having excellent mechanical properties, chemical resistance, anti-fouling properties, and outward appearance. The polycarbonate resin composition is characterized by comprising, per 100 parts by weight of the total of (A) a polycarbonate-polydiorganosiloxane copolymer resin (A component) and (B) a polyester resin (B component), (C) 3-15 parts by weight of a graft copolymer (C component) having a core-shell structure in which at least one unit selected from the group consisting of aromatic alkenyl compound monomer units and alkyl (meth)acrylate compound monomer units is graft polymerized to a compositerubber comprising a component which includes a polyorganosiloxane rubber and an alkyl (meth) acrylate rubber, and (D) 0.5-6 parts by weight of an anti-fouling adhesive (D component).

Description

ポリカーボネート樹脂組成物Polycarbonate resin composition
 本開示はポリカーボネート樹脂組成物およびその成形品に関するものである。さらに詳細には、本開示は、ポリカーボネート系樹脂およびポリエステル系樹脂に、ポリオルガノシロキサンゴムおよびアルキル(メタ)アクリレ-トゴムを含む成分からなる複合ゴムに芳香族アルケニル化合物単量体単位およびアルキル(メタ)アクリレート化合物単量体単位からなる群より選ばれる少なくとも1種の単位がグラフト重合されたコアシェル構造を有するグラフト共重合体、並びに防汚性付与剤を添加することにより、機械特性、耐薬品性、防汚性および外観が改善されたポリカーボネート樹脂組成物に関するものである。本開示はさらに、機械特性、耐薬品性、防汚性および外観に加えて、難燃性および熱安定性も改善された難燃性ポリカーボネート樹脂組成物にも関する。 The present disclosure relates to a polycarbonate resin composition and a molded product thereof. More specifically, the present disclosure relates to a composite rubber comprising a polycarbonate resin and a polyester resin, a component containing a polyorganosiloxane rubber and an alkyl (meth) acrylate rubber, and an aromatic alkenyl compound monomer unit and an alkyl (meth) ) Mechanical properties and chemical resistance by adding a graft copolymer having a core-shell structure in which at least one unit selected from the group consisting of acrylate compound monomer units is graft-polymerized, and an antifouling agent. The present invention relates to a polycarbonate resin composition having improved antifouling properties and appearance. The present disclosure further relates to flame-retardant polycarbonate resin compositions that have improved flame retardancy and thermal stability in addition to mechanical properties, chemical resistance, stain resistance, and appearance.
 芳香族ポリカーボネート樹脂は、優れた機械特性、熱的性質を有しているため工業的に広く利用されている。しかしながら芳香族ポリカーボネート樹脂は非晶性樹脂であるため、耐薬品性が劣るという欠点がある。そのため、種々のポリマーとのアロイ化検討が実施されているが、中でもポリエチレンテレフタレート樹脂やポリブチレンテレフタレート樹脂を代表とするポリエステル系樹脂とアロイ化されることにより(特許文献1参照)、芳香族ポリカーボネート樹脂の弱点である耐薬品性が改良され、そのバランスに優れた特性から、自動車分野、電気電子機器分野だけでなく、住宅設備分野やインフラ分野での利用も検討されるようになってきている。 Aromatic polycarbonate resins are widely used industrially because of their excellent mechanical and thermal properties. However, the aromatic polycarbonate resin is a non-crystalline resin, and therefore has a drawback of poor chemical resistance. For this reason, alloying with various polymers has been studied. Among them, an aromatic polycarbonate is alloyed with a polyester resin represented by polyethylene terephthalate resin or polybutylene terephthalate resin (see Patent Document 1). Resin's weakness in chemical resistance has been improved, and due to its well-balanced properties, its use is being studied not only in the fields of automobiles and electrical and electronic equipment, but also in the field of housing equipment and infrastructure. .
 これまでに、特に低温での衝撃強度を改質するために、Si共重合PCを適用した例(特許文献2参照)やSi系ゴムを適用した例(特許文献3、4参照)が報告されている。また、流動改質や更なる耐薬品性の向上を目的として、シリコーンオイルやジアルキルシリコーンといったようなシロキサン化合物を添加した例(特許文献5、6、7参照)が報告されている。 So far, examples have been reported in which a Si copolymerized PC is applied (see Patent Document 2) and an example in which a Si-based rubber is applied (see Patent Documents 3 and 4) to improve the impact strength particularly at low temperatures. ing. Further, examples have been reported in which a siloxane compound such as silicone oil or dialkyl silicone is added for the purpose of flow reforming and further improvement of chemical resistance (see Patent Documents 5, 6, and 7).
 また、電気電子機器等の用途では難燃化の要求が高まっており、種々の難燃性樹脂組成物が提案されている。例えば、ポリカーボネート樹脂とポリエステル系樹脂にハロゲン系難燃剤とアンチモン化合物を併用する方法(特許文献8参照)があるが、アンチモン化合物による触媒作用により熱安定性が著しく低下する。また、難燃剤としてホウ素化合物(特許文献9参照)、赤燐(特許文献10参照)、リン酸エステル(特許文献11参照)を適用する方法がある。 要求 Further, the demand for flame retardancy is increasing for applications such as electric and electronic equipment, and various flame retardant resin compositions have been proposed. For example, there is a method in which a halogen-based flame retardant and an antimony compound are used in combination with a polycarbonate resin and a polyester-based resin (see Patent Document 8). However, thermal stability is significantly reduced due to the catalytic action of the antimony compound. Further, there is a method in which a boron compound (see Patent Document 9), red phosphorus (see Patent Document 10), and a phosphoric ester (see Patent Document 11) are used as flame retardants.
特開2012-36323号公報JP 2012-36323 A 特開平2-43255号公報JP-A-2-43255 特開平1-261454号公報JP-A 1-261454 特開2008-88334号公報JP 2008-88334 A 特開2004-162014号公報JP-A-2004-162014 特開平1-272661号公報JP-A-1-272661 特開2005-133087号公報JP 2005-133807 A 特開2015-081327号公報JP-A-2005-081327 特開2000-001610号公報JP 2000-001610 A 特開2000-136297号公報JP 2000-136297 A 特開平08-012864号公報JP-A-08-012864
 近年、主に屋外や水回り(浴室、トイレ、キッチンなど)用途といったような「製品が汚れやすい環境でも快適に製品を利用できる」ようにするために、樹脂に対して高い耐薬品性と防汚性が要求されるようになってきている。しかしながら、従来の報告では、防汚性に着眼されておらず、現状では、市場の要求を満たし得る機械特性、耐薬品性、防汚性および外観を併せ持つポリカーボネート樹脂組成物を提供するには至っていない。 In recent years, high chemical resistance and prevention of resin have been used in order to make it possible to use products comfortably even in environments where the products are easily contaminated, mainly for outdoor and water-use (bathrooms, toilets, kitchens, etc.) applications. Dirtyness is being required. However, conventional reports have not focused on antifouling properties, and at present have provided a polycarbonate resin composition having both mechanical properties, chemical resistance, antifouling properties and appearance that can satisfy market requirements. Not in.
 上記に鑑み、本開示の目的は、機械特性、耐薬品性、防汚性、および外観を高次元で満足するポリカーボネート樹脂組成物を提供することにある。 In view of the above, an object of the present disclosure is to provide a polycarbonate resin composition that satisfies mechanical properties, chemical resistance, antifouling properties, and appearance at a high level.
 本件発明者は、上記課題を解決すべく鋭意検討を行った結果、ポリカーボネート-ポリジオルガノシロキサン共重合樹脂およびポリエステル系樹脂を有するポリカーボネート樹脂組成物が、防汚性付与剤、および、特定の複合ゴムに特定の単量体単位がグラフトされたコアシェル構造を有するグラフト共重合体をさらに有していることによって、上記の課題が解決されることを見出した。 The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a polycarbonate resin composition having a polycarbonate-polydiorganosiloxane copolymer resin and a polyester-based resin has an antifouling agent and a specific composite rubber. It has been found that the above problem can be solved by further having a graft copolymer having a core-shell structure in which a specific monomer unit is grafted.
 すなわち、本件発明者は、上記課題が下記のポリカーボネート樹脂組成物によって達成されることを見出した。
〈態様1〉
 (A)ポリカーボネート-ポリジオルガノシロキサン共重合樹脂(A成分)および(B)ポリエステル系樹脂(B成分)の合計100重量部に対し、
 (C)ポリオルガノシロキサンゴムおよびアルキル(メタ)アクリレ-トゴムを含む成分からなる複合ゴムに、芳香族アルケニル化合物単量体単位およびアルキル(メタ)アクリレート化合物単量体単位からなる群より選ばれる少なくとも1種の単位がグラフト重合されたコアシェル構造を有するグラフト共重合体(C成分)3重量部~15重量部、並びに
 (D)防汚性付与剤(D成分)0.5重量部~6重量部
を含むことを特徴とする、ポリカーボネート樹脂組成物。
〈態様2〉
 (E)ハロゲン系難燃剤(E成分)5重量部~35重量部、および
 (F)下記式(1)で表される構造を有するリン系難燃剤(F成分)0.5重量部~5重量部、
をさらに含むことを特徴とする、態様1に記載のポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
(式中、XおよびXは、同一もしくは異なり、下記一般式(I)で表される芳香族置換アルキル基である。)
Figure JPOXMLDOC01-appb-C000004
(式中、ALは炭素数1~5の分岐状または直鎖状の脂肪族炭化水素基であり、Arはフェニル基、ナフチル基またはアントリル基であり、nは1~3の整数を示し、ArはALの任意の炭素原子に結合することができる。)
〈態様3〉
 B成分の含有量が、A成分とB成分との合計100重量部中、20重量部~70重量部であることを特徴とする、態様1又は2に記載のポリカーボネート樹脂組成物。
〈態様4〉
 B成分が、ポリエチレンテレフタレート樹脂およびポリブチレンテレフタレート樹脂のうち少なくとも一方を含むことを特徴とする、態様1~3のいずれかに記載のポリカーボネート樹脂組成物。
〈態様5〉
 D成分が、分子量10万以上のシリコーンガムであることを特徴とする、態様1~4のいずれかに記載のポリカーボネート樹脂組成物。
〈態様6〉
 D成分が、ポリオルガノシロキサングラフトポリオレフィン樹脂であることを特徴とする、態様1~5のいずれかに記載のポリカーボネート樹脂組成物。
〈態様7〉
 C成分の複合ゴム中のポリオルガノシロキサンゴム成分の割合が、15%以上であることを特徴とする、態様1~6のいずれかに記載のポリカーボネート樹脂組成物。
〈態様8〉
 A成分とB成分との合計100重量部に対し、(G)ドリップ防止剤(G成分)0.05重量部~2重量部を含むことを特徴とする、態様1~7のいずれかに記載のポリカーボネート樹脂組成物。
〈態様9〉
 G成分が、フィブリル形成能を有する含フッ素ポリマーであることを特徴とする、態様8に記載のポリカーボネート樹脂組成物。
That is, the present inventor has found that the above object is achieved by the following polycarbonate resin composition.
<Aspect 1>
(A) Polycarbonate-polydiorganosiloxane copolymer resin (A component) and (B) 100% by weight of polyester resin (B component) in total
(C) a composite rubber comprising a component containing a polyorganosiloxane rubber and an alkyl (meth) acrylate rubber, wherein at least one selected from the group consisting of an aromatic alkenyl compound monomer unit and an alkyl (meth) acrylate compound monomer unit; 3 to 15 parts by weight of a graft copolymer having a core-shell structure in which one type of unit is graft-polymerized (component C), and 0.5 to 6 parts by weight of (D) an antifouling agent (component D) A polycarbonate resin composition comprising:
<Aspect 2>
(E) 5 to 35 parts by weight of a halogen-based flame retardant (component E), and (F) 0.5 to 5 parts by weight of a phosphorus-based flame retardant (component F) having a structure represented by the following formula (1). Parts by weight,
The polycarbonate resin composition according to aspect 1, further comprising:
Figure JPOXMLDOC01-appb-C000003
(In the formula, X 1 and X 2 are the same or different and are each an aromatic substituted alkyl group represented by the following general formula (I).)
Figure JPOXMLDOC01-appb-C000004
(Wherein, AL is a branched or linear aliphatic hydrocarbon group having 1 to 5 carbon atoms, Ar is a phenyl group, a naphthyl group or an anthryl group, n represents an integer of 1 to 3, Ar can be attached to any carbon atom of AL.)
<Aspect 3>
3. The polycarbonate resin composition according to aspect 1 or 2, wherein the content of the component B is 20 to 70 parts by weight based on 100 parts by weight of the total of the component A and the component B.
<Aspect 4>
The polycarbonate resin composition according to any one of aspects 1 to 3, wherein the component B contains at least one of a polyethylene terephthalate resin and a polybutylene terephthalate resin.
<Aspect 5>
The polycarbonate resin composition according to any one of aspects 1 to 4, wherein the component D is a silicone gum having a molecular weight of 100,000 or more.
<Aspect 6>
The polycarbonate resin composition according to any one of aspects 1 to 5, wherein the component D is a polyorganosiloxane-grafted polyolefin resin.
<Aspect 7>
The polycarbonate resin composition according to any one of aspects 1 to 6, wherein the proportion of the polyorganosiloxane rubber component in the composite rubber of the component C is 15% or more.
<Aspect 8>
8. The method according to any one of aspects 1 to 7, wherein (G) an anti-drip agent (component G) is contained in an amount of 0.05 to 2 parts by weight based on 100 parts by weight in total of the component A and the component B. Polycarbonate resin composition.
<Aspect 9>
The polycarbonate resin composition according to aspect 8, wherein the G component is a fluoropolymer having fibril-forming ability.
 本開示のポリカーボネート樹脂組成物は、機械特性、耐薬品性、防汚性、および外観を高い次元で満たしていることから、屋外/屋内に限らず、住宅設備用途、建材用途、生活資材用途、インフラ設備用途、自動車用途、OA・EE用途、屋外機器用途、その他の各種分野において幅広く有用である。したがって本開示に係る発明の奏する産業上の効果は極めて大である。 Since the polycarbonate resin composition of the present disclosure satisfies mechanical properties, chemical resistance, antifouling properties, and appearance at a high level, it is not limited to outdoors / indoors, but also for housing facilities, building materials, living materials, It is widely useful in infrastructure equipment applications, automotive applications, OA / EE applications, outdoor equipment applications, and other various fields. Therefore, the industrial effects of the invention according to the present disclosure are extremely large.
 以下、本開示に係る発明の詳細について説明する。 Hereinafter, details of the invention according to the present disclosure will be described.
≪ポリカーボネート樹脂組成物≫
 本開示に係るポリカーボネート樹脂組成物は、
 (A)ポリカーボネート-ポリジオルガノシロキサン共重合樹脂(A成分)および
 (B)ポリエステル系樹脂(B成分)を含有しており、
かつA成分およびB成分の合計100重量部に対し、
 (C)ポリオルガノシロキサンゴムおよびアルキル(メタ)アクリレ-トゴムを含む成分からなる複合ゴムに、芳香族アルケニル化合物単量体単位およびアルキル(メタ)アクリレート化合物単量体単位からなる群より選ばれる少なくとも1種の単位がグラフト重合されたコアシェル構造を有するグラフト共重合体(C成分)3重量部~15重量部、並びに
 (D)防汚性付与剤(D成分)0.5重量部~6重量部
を含んでいる。
≪Polycarbonate resin composition≫
Polycarbonate resin composition according to the present disclosure,
(A) a polycarbonate-polydiorganosiloxane copolymer resin (component A) and (B) a polyester resin (component B),
And for the total 100 parts by weight of the component A and the component B
(C) a composite rubber comprising a component containing a polyorganosiloxane rubber and an alkyl (meth) acrylate rubber, wherein at least one selected from the group consisting of an aromatic alkenyl compound monomer unit and an alkyl (meth) acrylate compound monomer unit; 3 to 15 parts by weight of a graft copolymer having a core-shell structure in which one type of unit is graft-polymerized (component C), and 0.5 to 6 parts by weight of (D) an antifouling agent (component D) Includes parts.
 本願の樹脂組成物によれば、機械特性、耐薬品性および外観に加えて防汚性においても優れた性質が得られる。このような効果が得られる機構は必ずしも明らかではないが、下記のような機構が考えられる:すなわち、理論によって限定する意図はないが、(A)ポリカーボネート-ポリジオルガノシロキサン共重合樹脂(A成分)において該樹脂の表面に出ているポリジオルガノシロキサン、および(C)グラフト共重合体(C成分)において該共重合体の表面に出ているオルガノシロキサンゴム成分が、(D)防汚性付与剤(D成分)とともに、シロキサン部分によって防汚性を向上させていると考えられる。 According to the resin composition of the present invention, excellent properties in stain resistance are obtained in addition to mechanical properties, chemical resistance and appearance. The mechanism by which such an effect is obtained is not necessarily clear, but the following mechanism is conceivable: That is, although not intended to be limited by theory, (A) polycarbonate-polydiorganosiloxane copolymer resin (component A) The polydiorganosiloxane appearing on the surface of the resin and the organosiloxane rubber component appearing on the surface of the copolymer (C) in the graft copolymer (C) are (D) an antifouling agent It is considered that the antifouling property is improved by the siloxane portion together with the (D component).
 また、本開示の組成物によれば、(A)ポリカーボネート-ポリジオルガノシロキサン共重合樹脂(A成分)に加えて(B)ポリエステル系樹脂(B成分)が用いられることによって、機械特性、防汚性および外観に加えて、耐薬品性においても優れた性質がもたらされると考えられる。 Further, according to the composition of the present disclosure, mechanical properties and antifouling properties are obtained by using (B) a polyester resin (B component) in addition to (A) a polycarbonate-polydiorganosiloxane copolymer resin (A component). It is believed that in addition to properties and appearance, excellent properties are also provided in chemical resistance.
 (A成分:ポリカーボネート-ポリジオルガノシロキサン共重合樹脂)
 本開示の樹脂組成物は、A成分としてポリカーボネート-ポリジオルガノシロキサン共重合樹脂を含有する。
(Component A: polycarbonate-polydiorganosiloxane copolymer resin)
The resin composition of the present disclosure contains a polycarbonate-polydiorganosiloxane copolymer resin as the component A.
 A成分としてポリジオルガノシロキサンを含有しないポリカーボネート樹脂を使用した場合、耐衝撃性、防汚性および耐薬品性が改善されない。 (4) When a polycarbonate resin containing no polydiorganosiloxane is used as the component A, impact resistance, stain resistance and chemical resistance are not improved.
 本開示で使用されるポリカーボネート-ポリジオルガノシロキサン共重合樹脂(A成分)は、下記一般式(2)で表されるポリカーボネートブロック、および下記一般式(4)で表されるポリジオルガノシロキサンブロックから構成される共重合樹脂であることが好ましい。 The polycarbonate-polydiorganosiloxane copolymer resin (component A) used in the present disclosure includes a polycarbonate block represented by the following general formula (2) and a polydiorganosiloxane block represented by the following general formula (4). Is preferred.
Figure JPOXMLDOC01-appb-C000005
[(上記一般式(2)において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~18のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~14のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1~4の整数であり、Wは単結合もしくは下記一般式(3)で表される基からなる群より選ばれる少なくとも一つの基である。)
Figure JPOXMLDOC01-appb-C000005
[(In the general formula (2), R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and 6 carbon atoms. A cycloalkyl group having 20 to 20 carbon atoms, a cycloalkoxy group having 6 to 20 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 14 carbon atoms, an aryloxy group having 6 to 14 carbon atoms, carbon Represents an aralkyl group having 7 to 20 atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group, and a carboxyl group; E and f may each be an integer from 1 to 4, and W is a single bond or at least one group selected from the group consisting of groups represented by the following general formula (3). That.)
Figure JPOXMLDOC01-appb-C000006
[上記一般式(3)においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1~18のアルキル基、炭素原子数6~14のアリール基及び炭素原子数7~20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1~10の整数、hは4~7の整数である。]
Figure JPOXMLDOC01-appb-C000006
[In the above general formula (3), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 each independently represent a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, Represents a group selected from the group consisting of an aryl group having 6 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms, wherein R 19 and R 20 are each independently a hydrogen atom, a halogen atom, a C 1 to C 18 atom; An alkyl group, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, a cycloalkoxy group having 6 to 20 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, Aryl group having 6 to 10 carbon atoms, aralkyl group having 7 to 20 carbon atoms, aralkyloxy group having 7 to 20 carbon atoms, nitro group, aldehyde group, cyano group and Represents a group selected from the group consisting of a carboxyl group, and when there are plural groups, they may be the same or different; g is an integer of 1 to 10; h is an integer of 4 to 7; ]
Figure JPOXMLDOC01-appb-C000007
[上記一般式(4)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1~12のアルキル基又は炭素数6~12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10~300の自然数である。Xは炭素数2~8の二価脂肪族基である。]
Figure JPOXMLDOC01-appb-C000007
[In the above general formula (4), R 3 , R 4 , R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or a substituted group having 6 to 12 carbon atoms. Or an unsubstituted aryl group, R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and p is a natural number. And q is 0 or a natural number, and p + q is a natural number of 10 to 300. X is a divalent aliphatic group having 2 to 8 carbon atoms. ]
 本開示で使用されるポリカーボネート-ポリジオルガノシロキサン共重合樹脂(A成分)は、好ましくは、下記一般式(5)で表される二価フェノールおよび下記一般式(6)で表されるヒドロキシアリール末端ポリジオルガノシロキサンを共重合させることにより調製することができる。 The polycarbonate-polydiorganosiloxane copolymer resin (component A) used in the present disclosure is preferably a dihydric phenol represented by the following general formula (5) and a hydroxyaryl terminal represented by the following general formula (6). It can be prepared by copolymerizing a polydiorganosiloxane.
Figure JPOXMLDOC01-appb-C000008
[(上記一般式(5)において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~18のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~14のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1~4の整数であり、Wは単結合もしくは上記一般式(3)で表される基からなる群より選ばれる少なくとも一つの基である。)
Figure JPOXMLDOC01-appb-C000008
[(In the general formula (5), R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and 6 carbon atoms. A cycloalkyl group having 20 to 20 carbon atoms, a cycloalkoxy group having 6 to 20 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 14 carbon atoms, an aryloxy group having 6 to 14 carbon atoms, carbon Represents an aralkyl group having 7 to 20 atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group, and a carboxyl group; E and f may each be an integer of 1 to 4, and W is a single bond or at least one group selected from the group consisting of groups represented by the above general formula (3). That.)
Figure JPOXMLDOC01-appb-C000009
[上記一般式(6)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1~12のアルキル基又は炭素数6~12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10~300の自然数である。Xは炭素数2~8の二価脂肪族基である。]
Figure JPOXMLDOC01-appb-C000009
[In the above general formula (6), R 3 , R 4 , R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or a substituted group having 6 to 12 carbon atoms. Or an unsubstituted aryl group, R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and p is a natural number. And q is 0 or a natural number, and p + q is a natural number of 10 to 300. X is a divalent aliphatic group having 2 to 8 carbon atoms. ]
 一般式(5)で表される二価フェノール(I)としては、例えば、4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3,3’-ビフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、2,2-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、4,4’-ジヒドロキシジフェニルエ-テル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエ-テル、4,4’-スルホニルジフェノール、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、2,2’-ジメチル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド、2,2’-ジフェニル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルフィド、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,3-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,8-ビス(4-ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’-(1,3-アダマンタンジイル)ジフェノール、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等が挙げられる。 Examples of the dihydric phenol (I) represented by the general formula (5) include, for example, 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1 -Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3,3′-biphenyl) propane, 2,2-bis (4-hydroxy-3-isopropyl) Phenyl) propane, 2,2-bis (3-t-butyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2-bis (4-hydroxyphenyl) octane, 2,2-bis (3-bromo-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2 -Bis (3-cyclohexyl-4-hydroxyphenyl) propane, 1,1-bis (3-cyclohexyl-4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) diphenylmethane, 9,9-bis (4-hydroxyphenyl) ) Fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 4,4 '-Dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyl Phenyl ether, 4,4'-sulfonyldiphenol, 4,4'-dihydroxydiphenylsulfoxide, 4,4'-dihydroxydiphenylsulfide, 2,2'-dimethyl-4,4'-sulfonyldiphenol, 4,4 '-Dihydroxy-3,3'-dimethyldiphenylsulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenylsulfide, 2,2'-diphenyl-4,4'-sulfonyldiphenol, 4,4'- Dihydroxy-3,3'-diphenyldiphenylsulfoxide, 4,4'-dihydroxy-3,3'-diphenyldiphenylsulfide, 1,3-bis {2- (4-hydroxyphenyl) propyl} benzene, 1,4-bis {2- (4-hydroxyphenyl) propyl} benzene, 1,4-bis (4-hydr Loxyphenyl) cyclohexane, 1,3-bis (4-hydroxyphenyl) cyclohexane, 4,8-bis (4-hydroxyphenyl) tricyclo [5.2.1.02,6] decane, 4,4 ′-(1 , 3-adamantanediyl) diphenol and 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane.
 なかでも、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’-スルホニルジフェノール、2,2’-ジメチル-4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2-ビス(4-ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。 Among them, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4′-sulfonyldiphenol, 2,2′-dimethyl- 4,4'-sulfonyldiphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,3-bis {2- (4-hydroxyphenyl) propyl} benzene, 1,4-bis} 2- (4-Hydroxyphenyl) propyl} benzene is preferred, especially 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis ( - hydroxyphenyl) cyclohexane (BPZ), 4,4'-sulfonyl diphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene is preferred. Among them, 2,2-bis (4-hydroxyphenyl) propane, which has excellent strength and good durability, is most preferable. These may be used alone or in combination of two or more.
 上記一般式(6)で表されるヒドロキシアリール末端ポリジオルガノシロキサンとしては、例えば下記に示すような化合物が好適に用いられる。 As the hydroxyaryl-terminated polydiorganosiloxane represented by the general formula (6), for example, the following compounds are preferably used.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、オレフィン性の不飽和炭素-炭素結合を有するフェノール類、好適にはビニルフェノール、2-アリルフェノール、イソプロペニルフェノール、2-メトキシ-4-アリルフェノールを所定の重合度を有するポリシロキサン鎖の末端に、ハイドロシリレーション反応させることにより容易に製造される。なかでも、(2-アリルフェノール)末端ポリジオルガノシロキサン、(2-メトキシ-4-アリルフェノール)末端ポリジオルガノシロキサンが好ましく、殊に(2-アリルフェノール)末端ポリジメチルシロキサン、(2-メトキシ-4-アリルフェノール)末端ポリジメチルシロキサンが好ましい。ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、その分子量分布(Mw/Mn)が3以下であることが好ましい。さらに優れた高温成形時の低アウトガス性と低温衝撃性を発現させるために、かかる分子量分布(Mw/Mn)はより好ましくは2.5以下であり、さらに好ましくは2以下である。かかる好適な範囲である場合には、高温成形時のアウトガス発生量が抑制され、かつ低温衝撃性に優れる場合がある。 The hydroxyaryl-terminated polydiorganosiloxane (II) is a phenol having an olefinically unsaturated carbon-carbon bond, preferably vinylphenol, 2-allylphenol, isopropenylphenol or 2-methoxy-4-allylphenol. Can be easily produced by subjecting a polysiloxane chain terminal having a degree of polymerization to a hydrosilylation reaction. Among them, (2-allylphenol) -terminated polydiorganosiloxane and (2-methoxy-4-allylphenol) -terminated polydiorganosiloxane are preferred, and (2-allylphenol) -terminated polydimethylsiloxane and (2-methoxy-4) are particularly preferred. (-Allylphenol) terminal polydimethylsiloxane is preferred. The hydroxyaryl-terminated polydiorganosiloxane (II) preferably has a molecular weight distribution (Mw / Mn) of 3 or less. Such molecular weight distribution (Mw / Mn) is more preferably 2.5 or less, still more preferably 2 or less, in order to exhibit more excellent low outgassing property and low-temperature impact property during high-temperature molding. When it is within such a preferable range, the amount of outgas generated during high-temperature molding may be suppressed, and the low-temperature impact resistance may be excellent.
 また、高度な耐衝撃性を実現するためにヒドロキシアリール末端ポリジオルガノシロキサン(II)のジオルガノシロキサン重合度(p+q)は10~300が適切である。かかるジオルガノシロキサン重合度(p+q)は好ましくは10~200、より好ましくは12~150、更に好ましくは14~100である。かかる好適な範囲では、重合度(p+q)が十分大きいことによって、ポリカーボネート-ポリジオルガノシロキサン共重合体の特徴である耐衝撃性が有効に発現し、かつ重合度(p+q)が大きすぎないことによって、良好な外観がもたらされる。 た め Further, in order to realize high impact resistance, the degree of polymerization (p + q) of diorganosiloxane of hydroxyaryl-terminated polydiorganosiloxane (II) is suitably from 10 to 300. Such a diorganosiloxane polymerization degree (p + q) is preferably from 10 to 200, more preferably from 12 to 150, and still more preferably from 14 to 100. In such a preferable range, when the degree of polymerization (p + q) is sufficiently large, the impact resistance characteristic of the polycarbonate-polydiorganosiloxane copolymer is effectively exhibited, and the degree of polymerization (p + q) is not too large. , Good appearance.
 A成分で使用されるポリカーボネート-ポリジオルガノシロキサン共重合樹脂全重量に占めるポリジオルガノシロキサン含有量は、0.1重量%~50重量%が好ましい。かかるポリジオルガノシロキサン成分含有量は、より好ましくは0.5重量%~30重量%、さらに好ましくは1重量%~20重量%である。かかる好適な範囲の下限以上では、耐衝撃性や難燃性に優れ、かかる好適な範囲の上限以下では、成形条件の影響を受けにくい安定した外観が得られやすい。かかるポリジオルガノシロキサン重合度、ポリジオルガノシロキサン含有量は、H-NMR測定により算出することが可能である。 The content of the polydiorganosiloxane in the total weight of the polycarbonate-polydiorganosiloxane copolymer resin used in the component A is preferably from 0.1% by weight to 50% by weight. The content of the polydiorganosiloxane component is more preferably 0.5% by weight to 30% by weight, and still more preferably 1% by weight to 20% by weight. Above the lower limit of such a preferred range, excellent impact resistance and flame retardancy are obtained, and below the upper limit of such a preferred range, a stable appearance that is less affected by molding conditions is likely to be obtained. Such polydiorganosiloxane polymerization degree and polydiorganosiloxane content can be calculated by 1 H-NMR measurement.
 本開示において、ヒドロキシアリール末端ポリジオルガノシロキサン(II)は1種のみを用いてもよく、また、2種以上を用いてもよい。 に お い て In the present disclosure, the hydroxyaryl-terminated polydiorganosiloxane (II) may be used alone or in combination of two or more.
 また、本開示に係る発明の妨げにならない範囲で、上記二価フェノール(I)およびヒドロキシアリール末端ポリジオルガノシロキサン(II)以外の他のコモノマーを、共重合体の全重量に対して10重量%以下の範囲で、併用することもできる。 In addition, a comonomer other than the dihydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) may be used in an amount of 10% by weight based on the total weight of the copolymer within a range not to hinder the invention according to the present disclosure. The following ranges can be used together.
 本開示においては、あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中における二価フェノール(I)と炭酸エステル形成性化合物の反応により末端クロロホルメート基を有するオリゴマーを含む混合溶液を調製する。 In the present disclosure, a mixed solution containing an oligomer having a terminal chloroformate group is prepared by reacting a dihydric phenol (I) with a carbonate-forming compound in a mixed solution of an organic solvent insoluble in water and an aqueous alkali solution in advance. I do.
 二価フェノール(I)のオリゴマーを生成するにあたり、本開示の方法に用いられる二価フェノール(I)の全量を一度にオリゴマーにしてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。 In producing the oligomer of the dihydric phenol (I), the whole amount of the dihydric phenol (I) used in the method of the present disclosure may be converted into an oligomer at a time, or a part of the oligomer may be used as a post-addition monomer in the subsequent interface. You may add as a reaction raw material to a polycondensation reaction. The post-addition monomer is added in order to promptly advance the subsequent polycondensation reaction, and it is not necessary to add the monomer when unnecessary.
 このオリゴマー生成反応の方式は特に限定はされないが、通常、酸結合剤の存在下、溶媒中で行う方式が好適である。 方式 The system for the oligomer formation reaction is not particularly limited, but a system which is usually carried out in a solvent in the presence of an acid binder is preferred.
 炭酸エステル形成性化合物の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、ホスゲン等のガス状の炭酸エステル形成性化合物を使用する場合、これを反応系に吹き込む方法が好適に採用できる。 使用 The proportion of the carbonate-forming compound used may be appropriately adjusted in consideration of the stoichiometric ratio (equivalent) of the reaction. When a gaseous carbonate-forming compound such as phosgene is used, a method of blowing the compound into the reaction system can be suitably employed.
 前記酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、オリゴマーの形成に使用する二価フェノール(I)のモル数(通常1モルは2当量に相当)に対して2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。 酸 As the acid binder, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof are used. Similarly to the above, the ratio of the acid binder used may be appropriately determined in consideration of the stoichiometric ratio (equivalent) of the reaction. Specifically, it is preferable to use 2 equivalents or a slight excess of the acid binder relative to the number of moles of the dihydric phenol (I) used for the formation of the oligomer (1 mole usually corresponds to 2 equivalents). .
 前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレン等の炭化水素溶媒、塩化メチレン、クロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレン等のハロゲン化炭化水素溶媒が好適に用いられる。 は As the solvent, a solvent inert to various reactions such as those used in the production of known polycarbonates may be used alone or as a mixed solvent. Representative examples include, for example, hydrocarbon solvents such as xylene, and halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene. Particularly, a halogenated hydrocarbon solvent such as methylene chloride is preferably used.
 オリゴマー生成の反応圧力は特に制限はなく、常圧、加圧、減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は-20℃~50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2時間~10時間で行われる。オリゴマー生成反応のpH範囲は、公知の界面反応条件と同様であり、pHは常に10以上に調製される。 The reaction pressure for oligomer formation is not particularly limited and may be normal pressure, increased pressure, or reduced pressure, but it is generally advantageous to carry out the reaction under normal pressure. The reaction temperature is selected from the range of −20 ° C. to 50 ° C., and in many cases, heat is generated during the polymerization. The reaction time depends on other conditions and cannot be specified unconditionally, but is usually 0.2 to 10 hours. The pH range of the oligomer formation reaction is the same as known interface reaction conditions, and the pH is always adjusted to 10 or more.
 本開示では、このようにして、末端クロロホルメート基を有する二価フェノール(I)のオリゴマーを含む混合溶液を得た後、該混合溶液を攪拌しながら、分子量分布(Mw/Mn)が3以下まで高度に精製された上記一般式(6)で表わされるヒドロキシアリール末端ポリジオルガノシロキサン(II)を該混合溶液に加え、該ヒドロキシアリール末端ポリジオルガノシロキサン(II)と該オリゴマーを界面重縮合させることにより、ポリカーボネート-ポリジオルガノシロキサン共重合体を得る。 In the present disclosure, after obtaining a mixed solution containing an oligomer of dihydric phenol (I) having a terminal chloroformate group in this way, while stirring the mixed solution, the molecular weight distribution (Mw / Mn) is 3 Hydroxyaryl-terminated polydiorganosiloxane (II) represented by the above general formula (6) highly purified to the following is added to the mixed solution, and the hydroxyaryl-terminated polydiorganosiloxane (II) and the oligomer are interfacially polycondensed. Thereby, a polycarbonate-polydiorganosiloxane copolymer is obtained.
 界面重縮合反応を行うにあたり、酸結合剤を反応の化学量論比(当量)を考慮して適宜追加してもよい。酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。具体的には、使用するヒドロキシアリール末端ポリジオルガノシロキサン(II)、又は上記の如く二価フェノール(I)の一部を後添加モノマーとしてこの反応段階に添加する場合には、後添加分の二価フェノール(I)とヒドロキシアリール末端ポリジオルガノシロキサン(II)との合計モル数(通常1モルは2当量に相当)に対して2当量若しくはこれより過剰量のアルカリを用いることが好ましい。 In performing the interfacial polycondensation reaction, an acid binder may be appropriately added in consideration of the stoichiometric ratio (equivalent) of the reaction. Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof. Specifically, when a part of the hydroxyaryl-terminated polydiorganosiloxane (II) used or the dihydric phenol (I) is added as a post-addition monomer to the reaction step as described above, the post-addition It is preferable to use 2 equivalents or an excess amount of alkali with respect to the total number of moles of the dihydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) (normally 1 mole corresponds to 2 equivalents).
 二価フェノール(I)のオリゴマーとヒドロキシアリール末端ポリジオルガノシロキサン(II)との界面重縮合反応による重縮合は、上記混合液を激しく攪拌することにより行われる。 The polycondensation of the oligomer of the dihydric phenol (I) with the hydroxyaryl-terminated polydiorganosiloxane (II) by the interfacial polycondensation reaction is carried out by vigorously stirring the mixture.
 かかる重合反応においては、末端停止剤或いは分子量調節剤が通常使用される。末端停止剤としては一価のフェノール性水酸基を有する化合物が挙げられ、通常のフェノール、p-tert-ブチルフェノール、p-クミルフェノール、トリブロモフェノールなどの他に、長鎖アルキルフェノール、脂肪族カルボン酸クロライド、脂肪族カルボン酸、ヒドロキシ安息香酸アルキルエステル、ヒドロキシフェニルアルキル酸エステル、アルキルエーテルフェノールなどが例示される。その使用量は用いる全ての二価フェノール系化合物100モルに対して、100モル~0.5モル、好ましくは50モル~2モルの範囲であり、二種以上の化合物を併用することも当然に可能である。 末端 In such a polymerization reaction, a terminal terminator or a molecular weight regulator is usually used. Examples of the terminal stopper include compounds having a monovalent phenolic hydroxyl group. In addition to ordinary phenol, p-tert-butylphenol, p-cumylphenol, tribromophenol, etc., long-chain alkylphenols, aliphatic carboxylic acids Examples thereof include chloride, aliphatic carboxylic acid, hydroxybenzoic acid alkyl ester, hydroxyphenylalkyl acid ester, and alkyl ether phenol. The amount of use is in the range of 100 mol to 0.5 mol, preferably 50 mol to 2 mol, based on 100 mol of all the dihydric phenol compounds used. Naturally, two or more compounds can be used in combination. It is possible.
 重縮合反応を促進するために、トリエチルアミンのような第三級アミン又は第四級アンモニウム塩などの触媒を添加してもよい。 触媒 A catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt may be added to promote the polycondensation reaction.
 かかる重合反応の反応時間は、好ましくは30分以上、更に好ましくは50分以上である。所望に応じ、亜硫酸ナトリウム、ハイドロサルファイドなどの酸化防止剤を少量添加してもよい。 反 応 The reaction time of such a polymerization reaction is preferably 30 minutes or more, more preferably 50 minutes or more. If desired, a small amount of an antioxidant such as sodium sulfite or hydrosulfide may be added.
 分岐化剤を上記の二価フェノール系化合物と併用して分岐化ポリカーボネート-ポリジオルガノシロキサンとすることができる。かかる分岐ポリカーボネート-ポリジオルガノシロキサン共重合樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノール、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。分岐ポリカーボネート-ポリジオルガノシロキサン共重合樹脂中の多官能性化合物の割合は、芳香族ポリカーボネート-ポリジオルガノシロキサン共重合樹脂全量中、好ましくは0.001モル%~1モル%、より好ましくは0.005モル%~0.9モル%、さらに好ましくは0.01モル%~0.8モル%、特に好ましくは0.05モル%~0.4モル%である。なお、かかる分岐構造量についてはH-NMR測定により算出することが可能である。 A branching agent can be used in combination with the above-mentioned dihydric phenol compound to obtain a branched polycarbonate-polydiorganosiloxane. Examples of the trifunctional or higher-functional polyfunctional aromatic compound used in the branched polycarbonate-polydiorganosiloxane copolymer resin include phloroglucin, phloroglucid, and 4,6-dimethyl-2,4,6-tris (4-hydrodiphenyl). ) Heptene-2,2,4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol Lisphenol, tetra (4-hydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, or trimellitic acid, pyromellitic acid, benzophenone Examples thereof include tetracarboxylic acids and acid chlorides thereof. Among them, 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are exemplified. Preferred is 1,1,1-tris (4-hydroxyphenyl) ethane. The proportion of the polyfunctional compound in the branched polycarbonate-polydiorganosiloxane copolymer resin is preferably 0.001 mol% to 1 mol%, more preferably 0.005 mol%, based on the total amount of the aromatic polycarbonate-polydiorganosiloxane copolymer resin. It is from mol% to 0.9 mol%, more preferably from 0.01 mol% to 0.8 mol%, particularly preferably from 0.05 mol% to 0.4 mol%. It should be noted that such a branched structure amount can be calculated by 1 H-NMR measurement.
 反応圧力は、減圧、常圧、加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は-20℃~50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5時間~10時間で行われる。 The reaction pressure can be any of reduced pressure, normal pressure and pressurized pressure, but usually, it can be suitably performed at normal pressure or about the self-pressure of the reaction system. The reaction temperature is selected from the range of −20 ° C. to 50 ° C., and in many cases, heat is generated during the polymerization. Since the reaction time varies depending on other conditions such as the reaction temperature, the reaction time cannot be unconditionally specified, but is usually 0.5 to 10 hours.
 場合により、得られたポリカーボネート-ポリジオルガノシロキサン共重合樹脂に適宜物理的処理(混合、分画など)及び/又は化学的処理(ポリマー反応、架橋処理、部分分解処理など)を施して所望の還元粘度[ηSP/c]のポリカーボネート-ポリジオルガノシロキサン共重合樹脂として取得することもできる。 In some cases, the obtained polycarbonate-polydiorganosiloxane copolymer resin is subjected to appropriate physical treatment (mixing, fractionation, etc.) and / or chemical treatment (polymer reaction, cross-linking treatment, partial decomposition treatment, etc.) to obtain the desired reduction. It can also be obtained as a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity [η SP / c].
 得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート-ポリジオルガノシロキサン共重合樹脂として回収することができる。 (4) The obtained reaction product (crude product) can be subjected to various post-treatments such as a known separation and purification method, and recovered as a polycarbonate-polydiorganosiloxane copolymer resin having a desired purity (purity).
 ポリカーボネート-ポリジオルガノシロキサン共重合樹脂成形品中のポリジオルガノシロキサンドメインの平均サイズ(平均ドメインサイズ)は、1nm~40nmの範囲が好ましい。かかる平均サイズはより好ましくは1nm~30nm、更に好ましくは5nm~25nmである。かかる好適な範囲では、平均ドメインサイズが十分に大きいことによって、耐衝撃性や難燃性が十分に発揮される場合があり、かつ平均ドメインサイズが大きすぎないことによって、耐衝撃性が安定して発揮される場合がある。これにより、特に耐衝撃性および外観に優れたポリカーボネート樹脂組成物が提供される。 平均 The average size (average domain size) of the polydiorganosiloxane domains in the polycarbonate-polydiorganosiloxane copolymer resin molded product is preferably in the range of 1 nm to 40 nm. Such average size is more preferably from 1 nm to 30 nm, even more preferably from 5 nm to 25 nm. In such a preferable range, the impact resistance and the flame retardancy may be sufficiently exhibited by the average domain size being sufficiently large, and the impact resistance is stabilized by the average domain size not being too large. May be demonstrated. Thereby, a polycarbonate resin composition having particularly excellent impact resistance and appearance is provided.
 本開示におけるポリカーボネート-ポリジオルガノシロキサン共重合樹脂成形品のポリジオルガノシロキサンドメインの平均ドメインサイズは、小角エックス線散乱法(Small Angle X-ray Scattering:SAXS)により評価した。小角エックス線散乱法とは、散乱角(2θ)<10°以内の小角領域で生じる散漫な散乱・回折を測定する方法である。この小角エックス線散乱法では、物質中に1nm~100nm程度の大きさの電子密度の異なる領域があると、その電子密度差によりエックス線の散漫散乱が計測される。この散乱角と散乱強度に基づいて測定対象物の粒子径を求める。ポリカーボネートポリマーのマトリックス中にポリジオルガノシロキサンドメインが分散した凝集構造となるポリカーボネート-ポリジオルガノシロキサン共重合樹脂の場合、ポリカーボネートマトリックスとポリジオルガノシロキサンドメインの電子密度差により、エックス線の散漫散乱が生じる。散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度Iを測定して、小角エックス線散乱プロファイルを測定し、ポリジオルガノシロキサンドメインが球状ドメインであり、粒径分布のばらつきが存在すると仮定して、仮の粒径と仮の粒径分布モデルから、市販の解析ソフトウェアを用いてシミュレーションを行い、ポリジオルガノシロキサンドメインの平均サイズを求める。小角エックス線散乱法によれば、透過型電子顕微鏡による観察では正確に測定できない、ポリカーボネートポリマーのマトリックス中に分散したポリジオルガノシロキサンドメインの平均サイズを、精度よく、簡便に、再現性良く測定することができる。平均ドメインサイズとは個々のドメインサイズの数平均を意味する。 The average domain size of the polydiorganosiloxane domain of the polycarbonate-polydiorganosiloxane copolymer resin molded article according to the present disclosure was evaluated by a small angle X-ray scattering method (SAXS). The small-angle X-ray scattering method is a method of measuring diffuse scattering / diffraction occurring in a small-angle region within a scattering angle (2θ) <10 °. In the small-angle X-ray scattering method, when there is a region having a size of about 1 nm to 100 nm and different electron densities in a substance, diffuse scattering of X-rays is measured by the electron density difference. The particle diameter of the object to be measured is determined based on the scattering angle and the scattering intensity. In the case of a polycarbonate-polydiorganosiloxane copolymer resin having an aggregated structure in which polydiorganosiloxane domains are dispersed in a polycarbonate polymer matrix, diffuse scattering of X-rays occurs due to a difference in electron density between the polycarbonate matrix and the polydiorganosiloxane domains. The scattering intensity (I) at each scattering angle (2θ) in the range where the scattering angle (2θ) is less than 10 ° is measured, the small-angle X-ray scattering profile is measured, and the polydiorganosiloxane domain is a spherical domain, and the particle size distribution varies. Is assumed, the simulation is performed using commercially available analysis software from the temporary particle size and the temporary particle size distribution model to determine the average size of the polydiorganosiloxane domain. According to the small-angle X-ray scattering method, it is possible to measure the average size of polydiorganosiloxane domains dispersed in a matrix of a polycarbonate polymer accurately, simply, and with good reproducibility, which cannot be accurately measured by observation with a transmission electron microscope. it can. The average domain size means the number average of individual domain sizes.
 本開示に関連して用いる用語「平均ドメインサイズ」は、かかる小角エックス線散乱法により、実施例記載の方法で作製した3段型プレートの厚み1.0mm部を測定することにより得られる測定値を示す。また、粒子間相互作用(粒子間干渉)を考慮しない孤立粒子モデルにて解析を行った。 The term “average domain size” used in connection with the present disclosure refers to a measured value obtained by measuring a 1.0-mm-thick portion of a three-stage plate manufactured by the method described in the example by such a small-angle X-ray scattering method. Show. In addition, the analysis was performed using an isolated particle model without considering the interaction between particles (inter-particle interference).
 ポリカーボネート-ポリジオルガノシロキサン共重合樹脂の粘度平均分子量(M)は、特に限定されないが、好ましくは1.8×10~4.0×10であり、より好ましくは2.0×10~3.5×10、さらに好ましくは2.2×10~3.0×10である。粘度平均分子量が1.8×10以上のポリカーボネート-ポリジオルガノシロキサン共重合樹脂では、良好な機械的特性が得られる場合があり、また、ポリオレフィン樹脂との十分な溶融粘度差が確保されるため、外観および耐テープ剥離性が良好となる場合がある。一方、粘度平均分子量が4.0×10以下のポリカーボネート-ポリジオルガノシロキサン共重合樹脂から得られる樹脂組成物は、射出成形時の流動性に優れる点で汎用性に優れる場合がある。 The viscosity-average molecular weight (M) of the polycarbonate-polydiorganosiloxane copolymer resin is not particularly limited, but is preferably 1.8 × 10 4 to 4.0 × 10 4 , more preferably 2.0 × 10 4 . It is 3.5 × 10 4 , more preferably 2.2 × 10 4 to 3.0 × 10 4 . With a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity average molecular weight of 1.8 × 10 4 or more, good mechanical properties may be obtained, and a sufficient melt viscosity difference from the polyolefin resin is ensured. , Appearance and tape peeling resistance may be good. On the other hand, a resin composition obtained from a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity average molecular weight of 4.0 × 10 4 or less may have excellent versatility in terms of excellent fluidity during injection molding.
 なお、前記ポリカーボネート-ポリジオルガノシロキサン共重合樹脂は、その粘度平均分子量が前記範囲外のものを混合して得られたものであってもよい。殊に、前記範囲(5×10)を超える粘度平均分子量を有するポリカーボネート-ポリジオルガノシロキサン共重合樹脂は、樹脂のエントロピー弾性が向上する。その結果、強化樹脂材料を構造部材に成形する際に使用されることのあるガスアシスト成形、および発泡成形において、良好な成形加工性を発現する。より好適な態様としては、粘度平均分子量7×10~3×10のポリカーボネート-ポリジオルガノシロキサン共重合樹脂(A-1-1-1成分)、および粘度平均分子量1×10~3×10のポリカーボネート-ポリジオルガノシロキサン共重合樹脂(A-1-1-2成分)からなり、その粘度平均分子量が1.6×10~3.5×10であるポリカーボネート-ポリジオルガノシロキサン共重合樹脂(A-1-1成分)(以下、“高分子量成分含有ポリカーボネート-ポリジオルガノシロキサン共重合樹脂”と称することがある)も使用できる。 The polycarbonate-polydiorganosiloxane copolymer resin may be obtained by mixing resins having a viscosity average molecular weight outside the above range. In particular, a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity average molecular weight exceeding the above range (5 × 10 4 ) has improved entropic elasticity of the resin. As a result, good moldability is exhibited in gas assist molding and foam molding that are sometimes used when molding a reinforced resin material into a structural member. More preferable embodiments include a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity average molecular weight of 7 × 10 4 to 3 × 10 5 (component A-1-1-1), and a viscosity average molecular weight of 1 × 10 4 to 3 ×. 10 4 polycarbonate - consists polydiorganosiloxane copolymer resin (a-1-1-2 component), a viscosity-average molecular weight of 1.6 × 10 4 ~ 3.5 × 10 polycarbonate of 4 - polydiorganosiloxane copolymer A polymer resin (A-1-1 component) (hereinafter sometimes referred to as a “polycarbonate-polydiorganosiloxane copolymer resin containing a high molecular weight component”) may also be used.
 かかる高分子量成分含有ポリカーボネート-ポリジオルガノシロキサン共重合樹脂(A-1-1成分)において、A-1-1-1成分の分子量は7×10~2×10が好ましく、より好ましくは8×10~2×10、さらに好ましくは1×10~2×10、特に好ましくは1×10~1.6×10である。またA-1-1-2成分の分子量は1×10~2.5×10が好ましく、より好ましくは1.1×10~2.4×10、さらに好ましくは1.2×10~2.4×10、特に好ましくは1.2×10~2.3×10である。 In such a polycarbonate-polydiorganosiloxane copolymer resin containing a high molecular weight component (component A-1-1), the molecular weight of component A-1-1-1 is preferably from 7 × 10 4 to 2 × 10 5 , and more preferably from 8 × 10 4 to 2 × 10 5. × 10 4 to 2 × 10 5 , more preferably 1 × 10 5 to 2 × 10 5 , particularly preferably 1 × 10 5 to 1.6 × 10 5 . The molecular weight of the component A-1-1-2 is preferably from 1 × 10 4 to 2.5 × 10 4 , more preferably from 1.1 × 10 4 to 2.4 × 10 4 , and even more preferably 1.2 × 10 4 . It is 10 4 to 2.4 × 10 4 , particularly preferably 1.2 × 10 4 to 2.3 × 10 4 .
 高分子量成分含有ポリカーボネート-ポリジオルガノシロキサン共重合樹脂(A-1-1成分)は前記A-1-1-1成分とA-1-1-2成分を種々の割合で混合し、所定の分子量範囲を満足するよう調整して得ることができる。好ましくは、A-1-1成分100重量%中、A-1-1-1成分が2重量%~40重量%の場合であり、より好ましくはA-1-1-1成分が3重量%~30重量%であり、さらに好ましくはA-1-1-1成分が4重量%~20重量%であり、特に好ましくはA-1-1-1成分が5重量%~20重量%である。 The high molecular weight component-containing polycarbonate-polydiorganosiloxane copolymer resin (A-1-1 component) is obtained by mixing the above-mentioned A-1-1-1 component and the A-1-1-2 component in various ratios, and preparing a mixture having a predetermined molecular weight. It can be obtained by adjusting to satisfy the range. Preferably, the amount of the A-1-1-1 component is 2% by weight to 40% by weight in 100% by weight of the A-1-1 component, and more preferably, the amount of the A-1-1-1 component is 3% by weight. %, More preferably 4% to 20% by weight of the A-1-1-1 component, and particularly preferably 5% to 20% by weight of the A-1-1-1 component. .
 また、A-1-1成分の調製方法としては、
 (1)A-1-1-1成分とA-1-1-2成分とを、それぞれ独立に重合しこれらを混合する方法、
 (2)特開平5-306336号公報に示される方法に代表される、GPC法による分子量分布チャートにおいて複数のポリマーピークを示す芳香族ポリカーボネート樹脂を同一系内において製造する方法を用い、かかる芳香族ポリカーボネート樹脂を本開示のA-1-1成分の条件を満足するよう製造する方法、および
 (3)かかる製造方法((2)の製造法)により得られた芳香族ポリカーボネート樹脂と、別途製造されたA-1-1-1成分および/またはA-1-1-2成分とを混合する方法
などを挙げることができる。
The method for preparing the A-1-1 component is as follows:
(1) A method of independently polymerizing the A-1-1-1 component and the A-1-1-2 component and mixing them,
(2) A method of producing an aromatic polycarbonate resin having a plurality of polymer peaks in a molecular weight distribution chart by the GPC method, which is represented by the method disclosed in JP-A-5-306336, in the same system, A method for producing a polycarbonate resin so as to satisfy the conditions of the component A-1-1 of the present disclosure; and (3) an aromatic polycarbonate resin obtained by the production method (the production method of (2)), And a method of mixing the A-1-1-1 component and / or A-1-1-2 component.
 本開示でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート-ポリジオルガノシロキサン共重合樹脂0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
 比粘度(ηSP)=(t-t)/t
 [tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
 ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
 [η]=1.23×10-4M0.83
 c=0.7
First, the viscosity average molecular weight referred to in the present disclosure is a specific viscosity (η SP ) calculated from the following equation, which is determined by calculating the Ostwald viscosity from a solution obtained by dissolving 0.7 g of a polycarbonate-polydiorganosiloxane copolymer resin in 100 ml of methylene chloride at 20 ° C. Using the total
Specific viscosity (η SP ) = (t−t 0 ) / t 0
[T 0 is the number of seconds of falling methylene chloride, t is the number of seconds of falling of the sample solution]
From the obtained specific viscosity (η SP ), the viscosity average molecular weight M is calculated by the following equation.
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10−4M 0.83
c = 0.7
 尚、本開示のポリカーボネート樹脂組成物におけるポリカーボネート-ポリジオルガノシロキサン共重合樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20~30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。 The calculation of the viscosity average molecular weight of the polycarbonate-polydiorganosiloxane copolymer resin in the polycarbonate resin composition of the present disclosure is performed in the following manner. That is, the composition is mixed with 20 to 30 times the weight of methylene chloride to dissolve soluble components in the composition. The soluble matter is collected by Celite filtration. Thereafter, the solvent in the obtained solution is removed. The solid after the removal of the solvent is sufficiently dried to obtain a solid component that is soluble in methylene chloride. From a solution in which 0.7 g of the solid is dissolved in 100 ml of methylene chloride, the specific viscosity at 20 ° C. is determined in the same manner as above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as above.
 (B成分:ポリエステル系樹脂)
 本開示のB成分として使用するポリエステル系樹脂は、芳香族ジカルボン酸またはその反応性誘導体と、ジオール、またはそのエステル誘導体とを主成分とする縮合反応により得られる重合体ないしは共重合体である。
(Component B: polyester resin)
The polyester resin used as the component B of the present disclosure is a polymer or copolymer obtained by a condensation reaction containing an aromatic dicarboxylic acid or a reactive derivative thereof and a diol or an ester derivative thereof as main components.
 ここでいう芳香族ジカルボン酸としてはテレフタル酸、イソフタル酸、オルトフタル酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ビフェニルエーテルジカルボン酸、4,4’-ビフェニルメタンジカルボン酸、4,4’-ビフェニルスルホンジカルボン酸、4,4’-ビフェニルイソプロピリデンジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4’-ジカルボン酸、2,5-アントラセンジカルボン酸、2,6-アントラセンジカルボン酸、4,4’-p-ターフェニレンジカルボン酸、2,5-ピリジンジカルボン酸等の芳香族系ジカルボン酸、ジフェニルメタンジカルボン酸、ジフェニルエーテルジカルボン酸、及びβ-ヒドロキシエトキシ安息香酸から選ばれるものが好適に用いられ、特にテレフタル酸、2,6-ナフタレンジカルボン酸が好ましく使用できる。芳香族ジカルボン酸は二種以上を混合して使用してもよい。なお少量であれば、該ジカルボン酸と共にアジピン酸、アゼライン酸、セバシン酸、ドデカンジ酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸等を一種以上混合使用することも可能である。 The aromatic dicarboxylic acids referred to herein include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, and 4,4′-biphenyl ether Dicarboxylic acid, 4,4'-biphenylmethanedicarboxylic acid, 4,4'-biphenylsulfonedicarboxylic acid, 4,4'-biphenylisopropylidenedicarboxylic acid, 1,2-bis (phenoxy) ethane-4,4'-dicarboxylic acid Acids, aromatic dicarboxylic acids such as 2,5-anthracene dicarboxylic acid, 2,6-anthracene dicarboxylic acid, 4,4'-p-terphenylenedicarboxylic acid, 2,5-pyridine dicarboxylic acid, diphenylmethane dicarboxylic acid, diphenyl ether Dicarboxylic acid and β-hydroxyethoxy ammonium Those selected from incense acid are preferably used, in particular terephthalic acid, 2,6-naphthalenedicarboxylic acid can be preferably used. Two or more aromatic dicarboxylic acids may be used as a mixture. If the amount is small, it is also possible to use a mixture of one or more aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and dodecane diacid, and alicyclic dicarboxylic acids such as cyclohexane dicarboxylic acid together with the dicarboxylic acid. .
 また本開示のポリエステル系樹脂の成分であるジオールとしては、エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール、ネオペンチルグリコール、ペンタメチレングリコール、ヘキサメチレングリコール、デカメチレングリコール、2-メチル-1,3-プロパンジオール、ジエチレングリコール、トリエチレングリコール等の脂肪族ジオール、1,4-シクロヘキサンジメタノール等の脂環族ジオール等、2,2-ビス(β-ヒドロキシエトキシフェニル)プロパン等の芳香環を含有するジオール等及びそれらの混合物等が挙げられる。更に少量であれば、分子量400~6,000の長鎖ジオール、すなわちポリエチレングリコール、ポリ-1,3-プロピレングリコール、ポリテトラメチレングリコール等を1種以上共重合してもよい。 The diol which is a component of the polyester resin of the present disclosure includes ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, neopentyl glycol, pentamethylene glycol, hexamethylene glycol, decamethylene glycol, 2-methyl-1, Contains aromatic rings such as 2,2-bis (β-hydroxyethoxyphenyl) propane and the like, aliphatic diols such as 3-propanediol, diethylene glycol and triethylene glycol, alicyclic diols such as 1,4-cyclohexanedimethanol and the like. Diols and mixtures thereof. If the amount is further small, one or more long-chain diols having a molecular weight of 400 to 6,000, that is, polyethylene glycol, poly-1,3-propylene glycol, polytetramethylene glycol or the like may be copolymerized.
 また本開示のポリエステル系樹脂は少量の分岐剤を導入することにより分岐させることができる。分岐剤の種類に制限はないがトリメシン酸、トリメリチン酸、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。 ポ リ エ ス テ ル Further, the polyester resin of the present disclosure can be branched by introducing a small amount of a branching agent. The type of the branching agent is not limited, and examples thereof include trimesic acid, trimellitic acid, trimethylolethane, trimethylolpropane, and pentaerythritol.
 具体的なポリエステル系樹脂としては、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート、ポリブチレンテレフタレート(PBT)、ポリへキシレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリエチレン-1,2-ビス(フェノキシ)エタン-4,4’-ジカルボキシレート、等の他、ポリエチレンイソフタレート/テレフタレート、ポリブチレンテレフタレート/イソフタレート、等の共重合ポリエステル系樹脂が挙げられる。これらのうち、機械的性質等のバランスがとれたポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレートおよびこれらの混合物が好ましく使用できる。 Specific polyester resins include polyethylene terephthalate (PET), polypropylene terephthalate, polybutylene terephthalate (PBT), polyhexylene terephthalate, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and polyethylene-1,2. Other than -bis (phenoxy) ethane-4,4'-dicarboxylate and the like, copolymerized polyester resins such as polyethylene isophthalate / terephthalate, polybutylene terephthalate / isophthalate and the like can be mentioned. Of these, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and mixtures thereof, which are well balanced in mechanical properties and the like, can be preferably used.
 また得られたポリエステル系樹脂の末端基構造は特に限定されるものではなく、末端基における水酸基とカルボキシル基の割合がほぼ同量の場合以外に、一方の割合が多い場合であってもよい。またかかる末端基に対して反応性を有する化合物を反応させる等により、それらの末端基が封止されているものであってもよい。 The structure of the terminal group of the obtained polyester resin is not particularly limited, and may be a case where the ratio of the hydroxyl group and the carboxyl group in the terminal group is substantially equal to each other, or one of the ratios is large. Further, the terminal group may be sealed by reacting a compound having reactivity with the terminal group.
 かかるポリエステル系樹脂の製造方法については、常法に従い、チタン、ゲルマニウム、アンチモン等を含有する重合触媒の存在下に、加熱しながらジカルボン酸成分と前記ジオール成分とを重合させ、副生する水または低級アルコールを系外に排出することにより行われる。例えば、ゲルマニウム系重合触媒としては、ゲルマニウムの酸化物、水酸化物、ハロゲン化物、アルコラート、フェノラート等が例示でき、さらに具体的には、酸化ゲルマニウム、水酸化ゲルマニウム、四塩化ゲルマニウム、テトラメトキシゲルマニウム等が例示できる。 Regarding the method for producing such a polyester resin, according to a conventional method, in the presence of a polymerization catalyst containing titanium, germanium, antimony, etc., the dicarboxylic acid component and the diol component are polymerized while heating, and water or This is performed by discharging the lower alcohol out of the system. For example, examples of the germanium-based polymerization catalyst include oxides, hydroxides, halides, alcoholates, and phenolates of germanium, and more specifically, germanium oxide, germanium hydroxide, germanium tetrachloride, tetramethoxygermanium, and the like. Can be exemplified.
 有機チタン化合物の重合触媒としては、好ましい具体例としてチタンテトラブトキシド、チタンイソプロポキシド、蓚酸チタン、酢酸チタン、安息香酸チタン、トリメリット酸チタン、テトラブチルチタネートと無水トリメリット酸との反応物などを挙げることができる。また、上記以外の特定のチタン系触媒を使用して製造された際に、より熱安定性が優れたポリエステル系樹脂が得られるため、より好適に使用される。 Preferred examples of the polymerization catalyst for the organic titanium compound include titanium tetrabutoxide, titanium isopropoxide, titanium oxalate, titanium acetate, titanium benzoate, titanium trimellitate, and a reaction product of tetrabutyl titanate and trimellitic anhydride. Can be mentioned. Further, when produced using a specific titanium-based catalyst other than the above, a polyester-based resin having more excellent thermal stability can be obtained, so that it is more preferably used.
 上記の特定のチタン系触媒は、下記のチタン化合物成分(A)と、リン化合物成分(B)との反応生成物を含むものである。 The above specific titanium-based catalyst contains a reaction product of the following titanium compound component (A) and phosphorus compound component (B).
 チタン化合物成分(A)は、下記一般式(I)により表されるチタン化合物(1)及び、チタン化合物(1)と下記一般式(II)で表される芳香族多価カルボン酸またはその無水物とを反応させて得られたチタン化合物(2)からなる群より選ばれた少なくとも1種のチタン化合物成分である。 The titanium compound component (A) includes a titanium compound (1) represented by the following general formula (I), and a titanium compound (1) and an aromatic polycarboxylic acid represented by the following general formula (II) or an anhydride thereof. And at least one titanium compound component selected from the group consisting of the titanium compounds (2) obtained by reacting the titanium compound with the compound.
Figure JPOXMLDOC01-appb-C000011
〔但し、式(I)中、R、R、R及びRは、それぞれ互いに独立に2~10個の炭素原子を有するアルキル基を表し、kは1~3の整数を表し、かつkが2又は3の場合、2個又は3個のR及びRは、それぞれ互いに同一であってもよく、或いは異なっていてもよい。〕
Figure JPOXMLDOC01-appb-C000011
[Wherein, in the formula (I), R 1 , R 2 , R 3 and R 4 each independently represent an alkyl group having 2 to 10 carbon atoms, k represents an integer of 1 to 3, When k is 2 or 3, two or three R 2 and R 3 may be the same or different from each other. ]
Figure JPOXMLDOC01-appb-C000012
〔但し、式(II)中、mは2~4の整数を表す。〕
Figure JPOXMLDOC01-appb-C000012
[In the formula (II), m represents an integer of 2 to 4.] ]
 リン化合物成分(B)は、下記一般式(III)で表されるリン化合物(3)の少なくとも1種からなるリン化合物成分である。 The phosphorus compound component (B) is a phosphorus compound component comprising at least one phosphorus compound (3) represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000013
〔但し、式(III)中、Rは、未置換の又は置換された、6~20個の炭素原子を有するアリール基、又は1~20個の炭素原子を有するアルキル基を表す。〕
Figure JPOXMLDOC01-appb-C000013
[Wherein, in the formula (III), R 5 represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms. ]
 上記の特定のチタン系触媒を用いることにより製造されるポリエステル系樹脂は、ゲルマニウム、アンチモンおよび他のチタン系触媒を用いた場合に比べ、熱安定性と耐湿熱性に優れる。上記の特定のチタン系触媒を用いた場合、他の触媒を使用した場合よりも製造時の色相安定剤や熱安定剤等の添加剤の添加量が少なくても品質が安定しており、そのため熱環境下や湿熱環境下での添加剤の分解が低減されることから、熱安定性と耐湿熱性に優れたものとなると推定される。 (4) The polyester resin produced by using the above-mentioned specific titanium-based catalyst has better heat stability and wet heat resistance than the case where germanium, antimony and other titanium-based catalysts are used. When the above specific titanium-based catalyst is used, the quality is stable even when the amount of additives such as a hue stabilizer and a heat stabilizer during the production is smaller than when other catalysts are used. Since the decomposition of the additive under a thermal environment or a moist heat environment is reduced, it is presumed that the additive has excellent thermal stability and moist heat resistance.
 チタン化合物成分(A)と、リン化合物成分(B)との反応生成物において、チタン化合物成分(A)のチタン原子換算モル量(mTi)と、リン化合物成分(B)のリン原子換算モル量(mP)との反応モル比(mTi/mP)は、1/3~1/1の範囲内にあることが好ましく、1/2~1/1の範囲内にあることがより好ましい。 In the reaction product of the titanium compound component (A) and the phosphorus compound component (B), the molar amount (mTi) of the titanium compound component (A) in terms of titanium atoms and the molar amount in terms of phosphorus atoms of the phosphorus compound component (B) The molar ratio of reaction with (mP) (mTi / mP) is preferably in the range of 1/3 to 1/1, and more preferably in the range of 1/2 to 1/1.
 チタン化合物成分(A)のチタン原子換算モル量とは、チタン化合物成分(A)に含まれる各チタン化合物のモル量と、当該チタン化合物の1分子中に含まれるチタン原子の個数との積の合計値であり、リン化合物成分(B)のリン原子換算モル量とは、リン化合物成分(B)に含まれる各リン化合物のモル量と、当該リン化合物の1分子中に含まれるリン原子の個数との積の合計値である。但し、式(III)で表されるリン化合物は1分子当たり1個のリン原子を含むものであるから、リン化合物のリン原子換算モル量は当該リン化合物のモル量に等しい。 The titanium atom converted molar amount of the titanium compound component (A) is the product of the product of the molar amount of each titanium compound contained in the titanium compound component (A) and the number of titanium atoms contained in one molecule of the titanium compound. It is a total value, and the molar amount of phosphorus compound component (B) in terms of phosphorus atom is the molar amount of each phosphorus compound contained in phosphorus compound component (B) and the phosphorus atom contained in one molecule of the phosphorus compound. This is the total value of the product with the number. However, since the phosphorus compound represented by the formula (III) contains one phosphorus atom per molecule, the molar amount of the phosphorus compound in terms of phosphorus atom is equal to the molar amount of the phosphorus compound.
 反応モル比(mTi/mP)が1/1以下である場合には、すなわち、チタン化合物成分(A)の量が多すぎない場合には、得られる触媒を用いて得られるポリエステル系樹脂の良好な色調(b値が高すぎない)がもたらされ、かつその耐熱性が良好となる場合がある。また、反応モル比(mTi/mP)が、1/3以上である場合には、すなわちチタン化合物成分(A)の量が少なすぎない場合には、得られる触媒のポリエステル生成反応に対する触媒活性が十分になる場合がある。 When the reaction molar ratio (mTi / mP) is 1/1 or less, that is, when the amount of the titanium compound component (A) is not too large, the polyester-based resin obtained using the obtained catalyst has good properties. Color tone (b value is not too high), and the heat resistance may be good. In addition, when the reaction molar ratio (mTi / mP) is 1/3 or more, that is, when the amount of the titanium compound component (A) is not too small, the catalyst activity of the obtained catalyst with respect to the polyester formation reaction is reduced. May be enough.
 チタン化合物成分(A)に用いられる前記一般式(I)で表されるチタン化合物(1)としては、チタンテトラブトキシド、チタンテトライソプロポキシド、チタンテトラプロポキシド、及びチタンテトラエトキシドなどのチタンテトラアルコキシド類、並びにオクタアルキルトリチタネート類及びヘキサアルキルジチタネート類などのアルキルチタネート類を挙げることができるが、これらのなかでも、本開示において使用されるリン化合物成分との反応性の良好なチタンテトラアルコキシド類を用いることが好ましく、特にチタンテトラブトキシドを用いることがより好ましい。 Examples of the titanium compound (1) represented by the general formula (I) used in the titanium compound component (A) include titanium such as titanium tetrabutoxide, titanium tetraisopropoxide, titanium tetrapropoxide, and titanium tetraethoxide. Tetraalkoxides, and alkyl titanates such as octaalkyltrititanates and hexaalkyldititanates can be mentioned. Among them, titanium having good reactivity with the phosphorus compound component used in the present disclosure is exemplified. It is preferable to use tetraalkoxides, and it is more preferable to use titanium tetrabutoxide.
 チタン化合物成分(A)に用いられるチタン化合物(2)はチタン化合物(1)と、前記一般式(II)で表される芳香族多価カルボン酸又はその無水物との反応により得られる。前記一般式(II)の芳香族多価カルボン酸及びその無水物は、フタル酸、トリメリット酸、ヘミメリット酸、ピロメリット酸およびこれらの無水物からなる群より選ばれることが好ましい。特にチタン化合物(1)との反応性がよく、また得られる重縮合触媒のポリエステルとの親和性の高いトリメリット酸無水物を用いることがより好ましい。 チ タ ン The titanium compound (2) used for the titanium compound component (A) is obtained by reacting the titanium compound (1) with the aromatic polycarboxylic acid represented by the general formula (II) or an anhydride thereof. The aromatic polycarboxylic acid of the general formula (II) and its anhydride are preferably selected from the group consisting of phthalic acid, trimellitic acid, hemmellitic acid, pyromellitic acid and anhydrides thereof. In particular, it is more preferable to use trimellitic anhydride having good reactivity with the titanium compound (1) and high affinity with the polyester of the obtained polycondensation catalyst.
 チタン化合物(1)と前記一般式(II)の芳香族多価カルボン酸又はその無水物との反応は、前記芳香族多価カルボン酸又はその無水物を溶媒に混合してその一部または全部を溶媒中に溶解し、この混合液にチタン化合物(1)を滴下し、0℃~200℃の温度で30分間以上、好ましくは30℃~150℃の温度で40分間~90分間加熱することによって行われる。この際の反応圧力については特に制限はなく、常圧で充分である。なお、前記触媒としては、所要量の式(II)の化合物又はその無水物の一部または全部を溶解し得るものから適宜に選択することができるが、好ましくは、エタノール、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ベンゼン及びキシレン等から選ばれる。 The reaction between the titanium compound (1) and the aromatic polycarboxylic acid of the general formula (II) or the anhydride thereof is performed by mixing the aromatic polycarboxylic acid or the anhydride with a solvent and partially or entirely mixing the solvent. Is dissolved in a solvent, the titanium compound (1) is added dropwise to the mixture, and the mixture is heated at a temperature of 0 ° C. to 200 ° C. for 30 minutes or more, preferably at a temperature of 30 ° C. to 150 ° C. for 40 minutes to 90 minutes. Done by The reaction pressure at this time is not particularly limited, and normal pressure is sufficient. The catalyst can be appropriately selected from those capable of dissolving a required amount of the compound of the formula (II) or a part or all of its anhydride, and is preferably ethanol, ethylene glycol, trimethylene. Glycol, tetramethylene glycol, benzene, xylene and the like.
 チタン化合物(1)と式(II)で表される化合物又はその無水物との反応モル比には限定はない。しかし、チタン化合物(1)の割合が高すぎない場合には、得られるポリエステル系樹脂の色調が良好となり、軟化点の低下が防止されうる。逆にチタン化合物(1)の割合が低すぎない場合には、重縮合反応が良好に進行しうる。このため、チタン化合物(1)と式(II)の化合物又はその無水物との反応モル比は、2/1~2/5の範囲内にコントロールされることが好ましい。この反応によって得られる反応生成物を、そのまま前述のリン化合物(3)との反応に供してもよく、或はこれを、アセトン、メチルアルコール及び/又は酢酸エチルなどからなる溶剤を用いて再結晶して精製した後、これをリン化合物(3)と反応させてもよい。 反 応 The reaction molar ratio of the titanium compound (1) to the compound represented by the formula (II) or its anhydride is not limited. However, when the proportion of the titanium compound (1) is not too high, the color tone of the obtained polyester resin becomes good, and a decrease in the softening point can be prevented. Conversely, if the proportion of the titanium compound (1) is not too low, the polycondensation reaction can proceed favorably. For this reason, the reaction molar ratio of the titanium compound (1) to the compound of the formula (II) or its anhydride is preferably controlled within the range of 2/1 to 2/5. The reaction product obtained by this reaction may be directly used for the reaction with the above-mentioned phosphorus compound (3), or the product may be recrystallized using a solvent composed of acetone, methyl alcohol and / or ethyl acetate. After the purification, this may be reacted with the phosphorus compound (3).
 リン化合物成分(B)に用いられる前記一般式(III)のリン化合物(3)において、Rにより表される6~20個の炭素原子を有するアリール基、又は1~20個の炭素原子を有するアルキル基は、未置換であってもよく、或は1個以上の置換基により置換されていてもよい。この置換基は、例えば、カルボキシル基、アルキル基、ヒドロキシル基及びアミノ基などを包含する。 In the phosphorus compound (3) of the general formula (III) used for the phosphorus compound component (B), an aryl group having 6 to 20 carbon atoms represented by R 5 or 1 to 20 carbon atoms The alkyl group may be unsubstituted or substituted with one or more substituents. The substituent includes, for example, a carboxyl group, an alkyl group, a hydroxyl group and an amino group.
 前記一般式(III)のリン化合物(3)は、例えば、モノメチルホスフェート、モノエチルホスフェート、モノトリメチルホスフェート、モノ-n-ブチルホスフェート、モノヘキシルホスフェート、モノヘプチルホスフェート、モノオクチルホスフェート、モノノニルホスフェート、モノデシルホスフェート、モノドデシルホスフェート、モノラウリルホスフェート、モノオレイルホスフェート、モノテトラデシルホスフェート、モノフェニルホスフェート、モノベンジルホスフェート、モノ(4-ドデシル)フェニルホスフェート、モノ(4-メチルフェニル)ホスフェート、モノ(4-エチルフェニル)ホスフェート、モノ(4-プロピルフェニル)ホスフェート、モノ(4-ドデシルフェニル)ホスフェート、モノトリルホスフェート、モノキシリルホスフェート、モノビフェニルホスフェート、モノナフチルホスフェート、及びモノアントリルホスフェート等のモノアルキルホスフェート類及びモノアリールホスフェート類を包含し、これらは単独で用いられてもよく、或は2種以上の混合物として、例えばモノアルキルホスフェートとモノアリールホスフェートとの混合物として用いられてもよい。但し、上記リン化合物を2種以上の混合物として用いる場合、モノアルキルホスフェートの比率が50%以上を占めていることが好ましく、90%以上を占めていることがより好ましく、特に100%を占めていることがさらに好ましい。 Examples of the phosphorus compound (3) of the general formula (III) include monomethyl phosphate, monoethyl phosphate, monotrimethyl phosphate, mono-n-butyl phosphate, monohexyl phosphate, monoheptyl phosphate, monooctyl phosphate, monononyl phosphate, Monodecyl phosphate, monododecyl phosphate, monolauryl phosphate, monooleyl phosphate, monotetradecyl phosphate, monophenyl phosphate, monobenzyl phosphate, mono (4-dodecyl) phenyl phosphate, mono (4-methylphenyl) phosphate, mono (4 -Ethylphenyl) phosphate, mono (4-propylphenyl) phosphate, mono (4-dodecylphenyl) phosphate, monotolylphosphate Monoalkyl phosphates and monoaryl phosphates such as monoxylyl phosphate, monoxylyl phosphate, monobiphenyl phosphate, mononaphthyl phosphate, and monoanthryl phosphate, which may be used alone or in combination of two or more. The above mixture may be used, for example, as a mixture of a monoalkyl phosphate and a monoaryl phosphate. However, when the above phosphorus compound is used as a mixture of two or more, the proportion of the monoalkyl phosphate preferably accounts for 50% or more, more preferably 90% or more, and particularly preferably 100%. It is more preferable that
 チタン化合物成分(A)とリン化合物成分(B)とから触媒を調製するには、例えば、式(III)の少なくとも1種のリン化合物(3)からなるリン化合物成分(B)と溶媒とを混合して、リン化合物成分(B)の一部又は全部を溶媒中に溶解し、この混合液にチタン化合物成分(A)を滴下し、通常反応系を好ましくは50℃~200℃、より好ましくは70℃~150℃の温度において好ましくは1分間~4時間、より好ましくは30分間~2時間、加熱することによって行われる。この反応において、反応圧力については格別の制限はなく、加圧下(0.1MPa~0.5MPa)、常圧下、又は減圧下(0.001MPa~0.1MPa)のいずれであってもよいが、通常常圧下において行われている。 In order to prepare a catalyst from the titanium compound component (A) and the phosphorus compound component (B), for example, a phosphorus compound component (B) comprising at least one phosphorus compound (3) of the formula (III) and a solvent are used. After mixing, part or all of the phosphorus compound component (B) is dissolved in a solvent, and the titanium compound component (A) is added dropwise to the mixture, and the reaction system is usually set to preferably 50 ° C to 200 ° C, more preferably 50 ° C to 200 ° C. Is carried out at a temperature of 70 ° C. to 150 ° C., preferably for 1 minute to 4 hours, more preferably 30 minutes to 2 hours. In this reaction, the reaction pressure is not particularly limited, and may be any of under pressure (0.1 MPa to 0.5 MPa), under normal pressure, or under reduced pressure (0.001 MPa to 0.1 MPa). It is usually performed under normal pressure.
 また上記触媒調製反応に用いられる式(III)のリン化合物成分(B)用溶媒は、リン化合物成分(B)の少なくとも一部を溶解し得る限り格別の制限はないが、例えば、エタノール、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ベンゼン、及びキシレン等から選ばれた少なくとも1種からなる溶媒が好ましく用いられる。特に、最終的に得ようとするポリエステルを構成しているグリコール成分と同一の化合物を溶媒として用いることが好ましい。 The solvent for the phosphorus compound component (B) of the formula (III) used in the catalyst preparation reaction is not particularly limited as long as at least a part of the phosphorus compound component (B) can be dissolved. A solvent composed of at least one selected from glycol, trimethylene glycol, tetramethylene glycol, benzene, xylene and the like is preferably used. In particular, it is preferable to use the same compound as the glycol component constituting the polyester finally obtained as the solvent.
 チタン化合物成分(A)と、リン化合物成分(B)との反応生成物は、それを反応系から、遠心沈降処理又は濾過などの手段により分離された後、これを精製することなく、ポリエステル系樹脂製造用触媒として用いてもよく、或は、この分離された反応生成物を、再結晶剤、例えばアセトン、メチルアルコール及び/又は水などにより再結晶して精製し、それによって得られた精製物を触媒として用いてもよい。また、前記反応生成物を、その反応系から分離することなく、反応生成物含有反応混合物をそのまま触媒含有混合物として用いてもよい。 The reaction product of the titanium compound component (A) and the phosphorus compound component (B) is separated from the reaction system by means such as centrifugal sedimentation or filtration, and then purified without purification. The separated reaction product may be used as a catalyst for resin production, or the separated reaction product may be purified by recrystallization with a recrystallization agent such as acetone, methyl alcohol and / or water. The product may be used as a catalyst. Further, the reaction product-containing reaction mixture may be used as it is as a catalyst-containing mixture without separating the reaction product from the reaction system.
 チタン系触媒として、前記式(I)(但し、kは1を表す)の少なくとも1種のチタン化合物(1)、すなわちチタンテトラアルコキシド、からなるチタン化合物成分(A)と、前記式(III)の少なくとも1種のリン化合物からなるリン化合物成分(B)との反応生成物が触媒として用いられることが好ましい。
 さらに、チタン系触媒として下記一般式(IV)で表される化合物が好ましく使用される。
As a titanium-based catalyst, a titanium compound component (A) comprising at least one kind of a titanium compound (1) of the above formula (I) (where k represents 1), that is, a titanium tetraalkoxide; Preferably, a reaction product of at least one phosphorus compound with the phosphorus compound component (B) is used as a catalyst.
Further, a compound represented by the following general formula (IV) is preferably used as a titanium-based catalyst.
Figure JPOXMLDOC01-appb-C000014
〔上記式中R及びRは、それぞれ互いに独立に、2~12個の炭素原子を有するアルキル基、又は6~12個の炭素原子を有するアリール基を表す〕
Figure JPOXMLDOC01-appb-C000014
[In the above formula, R 6 and R 7 each independently represent an alkyl group having 2 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms.]
 式(IV)で表されるチタン/リン化合物を含む触媒は、高い触媒活性を有し、これを用いて製造されたポリエステル系樹脂は、良好な色調(低いb値)を有し、実用上十分に低いアセトアルデヒド、残留金属及び芳香族ジカルボン酸とアルキレングリコールとのエステルの環状三量体の含有量を有し、かつ実用上十分なポリマー性能を有する。 The catalyst containing the titanium / phosphorus compound represented by the formula (IV) has high catalytic activity, and the polyester resin produced by using the catalyst has a good color tone (low b value), and It has a sufficiently low content of acetaldehyde, residual metal and cyclic trimer of an ester of an aromatic dicarboxylic acid and an alkylene glycol, and has practically sufficient polymer performance.
 チタン系触媒において、前記一般式(IV)のチタン/リン化合物が50重量%以上含まれていることが好ましく、70重量%以上含まれることがより好ましい。 In the titanium-based catalyst, the titanium / phosphorus compound represented by the general formula (IV) is preferably contained in an amount of 50% by weight or more, more preferably 70% by weight or more.
 チタン系触媒の使用量は、そのチタン原子換算ミリモル量が重合出発原料中に含まれる芳香族ジカルボン酸成分の合計ミリモル量に対して、2ミリ%~40ミリ%となる量であることが好ましく、5ミリ%~35ミリ%であることがさらに好ましく、10ミリ%~30ミリ%であることがより一層好ましい。2ミリ%以上である場合には、重合出発原料の重縮合反応に対する触媒の促進効果が十分になり、ポリエステル製造効率が十分になり、かつ所望の重合度を有するポリエステル系樹脂を得ることができる場合がある。また、40ミリ%以下である場合には、得られるポリエステル系樹脂の色調(b値)が良好となり、黄味を帯びることが抑制され、その実用性が確保されうる。 The amount of the titanium-based catalyst to be used is preferably such that the molar amount of titanium in terms of titanium atoms is 2 to 40 milli% with respect to the total amount of aromatic dicarboxylic acid contained in the polymerization starting material. More preferably, it is 5 to 35 mm%, even more preferably 10 to 30 mm%. When the content is 2 milli% or more, the effect of promoting the catalyst for the polycondensation reaction of the polymerization starting material is sufficient, the polyester production efficiency is sufficient, and a polyester resin having a desired degree of polymerization can be obtained. There are cases. When the content is 40 mm% or less, the color tone (b value) of the obtained polyester-based resin becomes good, yellowing is suppressed, and its practicality can be ensured.
 芳香族ジカルボン酸のアルキレングリコールエステルおよび/またはその低重合体の製造方法について制限はないが、通常、芳香族ジカルボン酸またはそのエステル形成性誘導体と、アルキレングリコールまたはそのエステル形成性誘導体とを、加熱反応させることによって製造される。例えばポリエチレンテレフタレートの原料として用いられるテレフタル酸のエチレングリコールエステルおよび/またはその低重合体は、テレフタル酸とエチレングリコールとを直接エステル化反応させるか、或はテレフタル酸の低級アルキルエステルとエチレングリコールとをエステル交換反応させるか、或はテレフタル酸にエチレンオキサイドを付加反応させる方法により製造される。なお、上記の芳香族ジカルボン酸のアルキレングリコールエステルおよび/またはその低重合体には、それと共重合可能な他のジカルボン酸エステルが、追加成分として、本開示の方法の効果が実質的に損なわれない範囲内の量の、具体的には酸成分合計モル量を基準として10モル%以下、好ましくは5モル%以下の範囲内の、添加量で含まれていてもよい。 The method for producing the alkylene glycol ester of an aromatic dicarboxylic acid and / or a low polymer thereof is not limited, but usually, an aromatic dicarboxylic acid or an ester-forming derivative thereof and an alkylene glycol or an ester-forming derivative thereof are heated and heated. It is produced by reacting. For example, an ethylene glycol ester of terephthalic acid and / or a low polymer thereof used as a raw material of polyethylene terephthalate is obtained by directly subjecting terephthalic acid and ethylene glycol to an esterification reaction, or a lower alkyl ester of terephthalic acid and ethylene glycol. It is produced by a transesterification reaction or an addition reaction of terephthalic acid with ethylene oxide. The alkylene glycol ester of the aromatic dicarboxylic acid and / or the low polymer thereof may contain another dicarboxylic acid ester copolymerizable therewith as an additional component, thereby substantially impairing the effect of the method of the present disclosure. It may be contained in an amount within the range not present, specifically, 10 mol% or less, preferably 5 mol% or less based on the total molar amount of the acid component.
 前記共重合可能な追加成分は、好ましくは、酸成分として、例えば、アジピン酸、セバシン酸、1,4-シクロヘキサンジカルボン酸などの脂肪族及び脂環式のジカルボン酸、並びにヒドロキシカルボン酸、例えば、β-ヒドロキシエトキシ安息香酸、p-オキシ安息香酸などの1種以上と、グリコール成分として、例えば、構成炭素数が2個以上のアルキレングリコール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、ビスフェノールA、ビスフェノールSのような脂肪族、脂環式、芳香族のジオール化合物およびポリオキシアルキレングリコール、の1種以上とのエステル又はその無水物から選ばれる。上記追記成分エステルは、単独で用いられてもよく、或はその二種以上を併用してもよい。但しその共重合量は上記の範囲内であることが好ましい。 Said copolymerizable additional components are preferably as acid components, for example aliphatic and cycloaliphatic dicarboxylic acids such as adipic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, and hydroxycarboxylic acids, for example, at least one kind of β-hydroxyethoxybenzoic acid, p-oxybenzoic acid and the like, and as a glycol component, for example, an alkylene glycol having 2 or more constituent carbon atoms, 1,4-cyclohexanedimethanol, neopentyl glycol, bisphenol A And esters of at least one of aliphatic, alicyclic, and aromatic diol compounds such as bisphenol S and polyoxyalkylene glycol, or anhydrides thereof. The above-mentioned additional component esters may be used alone or in combination of two or more. However, the copolymerization amount is preferably within the above range.
 なお、出発原料としてテレフタル酸及び又はテレフタル酸ジメチルを用いる場合には、ポリアルキレンテレフタレートを解重合することによって得られた回収テレフタル酸ジメチル又はこれを加水分解して得られる回収テレフタル酸を、ポリエステルを構成する全酸成分の重量を基準として70重量%以上使用することもできる。この場合、目的ポリアルキレンテレフタレートはポリエチレンテレフタレートであることが好ましく、特に回収されたPETボトル、回収された繊維製品、回収されたポリエステルフィルム製品、さらには、これら製品の製造工程において発生するポリマー屑などをポリエステル製造用原料源として用いることは、資源の有効活用の観点から好ましいことである。 In the case where terephthalic acid and / or dimethyl terephthalate is used as a starting material, the recovered dimethyl terephthalate obtained by depolymerizing polyalkylene terephthalate or the recovered terephthalic acid obtained by hydrolyzing the same is converted into a polyester. It can be used in an amount of 70% by weight or more based on the weight of all the constituent acid components. In this case, the target polyalkylene terephthalate is preferably polyethylene terephthalate, and in particular, recovered PET bottles, recovered fiber products, recovered polyester film products, and polymer waste generated in the manufacturing process of these products. It is preferable to use as a raw material source for polyester production from the viewpoint of effective utilization of resources.
 ここで、回収ポリアルキレンテレフタレートを解重合してテレフタル酸ジメチルを得る方法には特に限定はなく、従来公知の方法をいずれも採用することができる。例えば、回収ポリアルキレンテレフタレートをエチレングリコールを用いて解重合した後、解重合生成物を、低級アルコール、例えばメタノールによるエステル交換反応に供し、この反応混合物を精製してテレフタル酸の低級アルキルエステルを回収し、これをアルキレングリコールによるエステル交換反応に供し、得られたフタル酸/アルキレングリコールエステルを重縮合すればポリエステル系樹脂を得ることができる。また、上記回収された、テレフタル酸ジメチルからテレフタル酸を回収する方法にも特に制限はなく、従来方法のいずれを用いてもよい。例えばエステル交換反応により得られた反応混合物からテレフタル酸ジメチルを再結晶法及び/又は蒸留法により回収した後、高温高圧下で水とともに加熱して加水分解してテレフタル酸を回収することができる。この方法によって得られるテレフタル酸に含まれる不純物において、4-カルボキシベンズアルデヒド、パラトルイル酸、安息香酸及びヒドロキシテレフタル酸ジメチルの含有量が、合計で1ppm以下であることが好ましい。また、テレフタル酸モノメチルの含有量が、1ppm~5000ppmの範囲にあることが好ましい。上述の方法により回収されたテレフタル酸と、アルキレングリコールとを直接エステル化反応させ、得られたエステルを重縮合することによりポリエステル系樹脂を製造することができる。 Here, the method for depolymerizing the recovered polyalkylene terephthalate to obtain dimethyl terephthalate is not particularly limited, and any conventionally known method can be employed. For example, after the recovered polyalkylene terephthalate is depolymerized using ethylene glycol, the depolymerized product is subjected to a transesterification reaction with a lower alcohol, for example, methanol, and the reaction mixture is purified to recover a lower alkyl ester of terephthalic acid. Then, this is subjected to a transesterification reaction with an alkylene glycol, and the obtained phthalic acid / alkylene glycol ester is polycondensed to obtain a polyester resin. The method for recovering terephthalic acid from the recovered dimethyl terephthalate is not particularly limited, and any of the conventional methods may be used. For example, dimethyl terephthalate is recovered from a reaction mixture obtained by a transesterification reaction by a recrystallization method and / or a distillation method, and then heated with water at high temperature and high pressure to hydrolyze to recover terephthalic acid. Among the impurities contained in terephthalic acid obtained by this method, the total content of 4-carboxybenzaldehyde, paratoluic acid, benzoic acid and dimethyl hydroxyterephthalate is preferably 1 ppm or less. Further, the content of monomethyl terephthalate is preferably in the range of 1 ppm to 5000 ppm. A polyester resin can be produced by directly esterifying the terephthalic acid recovered by the above-described method with an alkylene glycol and subjecting the resulting ester to polycondensation.
 本開示に使用するポリエステル系樹脂において、触媒を重合出発原料に添加する時期は、芳香族ジカルボン酸アルキレングリコールエステルおよび/またはその低重合体の重縮合反応の開始時期の前の任意の段階であればよく、さらに、その添加方法にも制限はない。例えば、芳香族ジカルボン酸アルキレングリコールエステルを調製し、この反応系内に触媒の溶液またはスラリーを添加して重縮合反応を開始してもよいし、或は、前記芳香族ジカルボン酸アルキレングリコールエステルを調製する際に出発原料とともに、又はその仕込み後に、触媒の溶液又はスラリーを、反応系に添加してもよい。 In the polyester resin used in the present disclosure, the catalyst is added to the polymerization starting material at any stage before the start of the polycondensation reaction of the aromatic dicarboxylic acid alkylene glycol ester and / or its low polymer. The addition method is not limited. For example, an aromatic dicarboxylic acid alkylene glycol ester may be prepared, and a polycondensation reaction may be started by adding a catalyst solution or slurry to the reaction system, or the aromatic dicarboxylic acid alkylene glycol ester may be used as a starting material. A catalyst solution or slurry may be added to the reaction system together with the starting materials during the preparation, or after the preparation thereof.
 本開示に使用するポリエステル系樹脂の製造反応条件にも格別の制限はない。一般に重縮合反応は、230℃~320℃の温度において、常圧下、又は減圧下(0.1Pa~0.1MPa)において、或はこれらの条件を組み合わせて、15分間~300分間重縮合することが好ましい。 ポ リ エ ス テ ル There is no particular limitation on the reaction conditions for producing the polyester resin used in the present disclosure. Generally, the polycondensation reaction is carried out at a temperature of 230 ° C. to 320 ° C. under normal pressure or reduced pressure (0.1 Pa to 0.1 MPa), or a combination of these conditions, for 15 minutes to 300 minutes. Is preferred.
 本開示に使用するポリエステル系樹脂において、反応系に、必要に応じて反応安定剤、例えばトリメチルホスフェートをポリエステル系樹脂の製造における任意の段階で加えてもよく、さらに必要により、反応系に酸化防止剤、紫外線吸収剤、難燃剤、蛍光増白剤、艶消剤、整色剤、消泡剤、その他の添加剤の1種以上を配合してもよい。特に、ポリエステル系樹脂中には、少なくとも1種のヒンダードフェノール化合物を含む酸化防止剤が含まれることが好ましいが、その含有量は、ポリエステル系樹脂の重量に対して、1重量%以下であることが好ましい。その含有量が1重量%以下である場合には、酸化防止剤自身の熱劣化が防止されることにより、得られた生成物の品質が確保されうる。 In the polyester resin used in the present disclosure, a reaction stabilizer, for example, trimethyl phosphate may be added to the reaction system as needed at any stage in the production of the polyester resin. One or more of an additive, an ultraviolet absorber, a flame retardant, a fluorescent whitening agent, a matting agent, a coloring agent, an antifoaming agent, and other additives may be blended. In particular, it is preferable that the polyester resin contains an antioxidant containing at least one kind of hindered phenol compound, but the content is 1% by weight or less based on the weight of the polyester resin. Is preferred. When the content is 1% by weight or less, the quality of the obtained product can be ensured by preventing thermal degradation of the antioxidant itself.
 本開示に使用するポリエステル系樹脂に用いられる酸化防止剤用ヒンダードフェノール化合物は、ペンタエリスリトール-テトラエキス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕、3,9-ビス{2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカンなどから選ばれ、これらヒンダードフェノール系酸化防止剤とチオエーテル系二次酸化防止剤とを併用して用いることも好ましく実施される。上記ヒンダードフェノール系酸化防止剤のポリエステル系樹脂への添加方法には特に制限はないが、好ましくはエステル交換反応、またはエステル化反応の終了後、重合反応が完了するまでの間の任意の段階で添加される。 The hindered phenol compound for an antioxidant used in the polyester resin used in the present disclosure is pentaerythritol-tetraextract [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3, 9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl} -2,4,8,10-tetraoxaspiro [5 , 5] undecane, etc., and it is also preferable to use these hindered phenol-based antioxidants in combination with thioether-based secondary antioxidants. The method for adding the hindered phenolic antioxidant to the polyester resin is not particularly limited, but is preferably an arbitrary step from completion of the transesterification reaction or esterification reaction to completion of the polymerization reaction. Is added.
 さらに、得られるポリエステル系樹脂の色調を微調整するために、ポリエステル系樹脂の製造段階において、その反応系中にアゾ系、トリフェニルメタン系、キノリン系、アントラキノン系、フタロシアニン系等の有機青色顔料及び無機青色顔料の1種以上からなる整色剤を添加することができる。なお、本開示の製造方法においては、当然のことながら、ポリエステル系樹脂の溶融熱安定性を低下させるコバルト等を含む無機青色顔料を整色剤としては用いる必要はない。従って本開示に使用されるポリエステル系樹脂には実質的にコバルトが含まれていないものとなる。 Further, in order to finely adjust the color tone of the obtained polyester resin, an organic blue pigment such as an azo-based, triphenylmethane-based, quinoline-based, anthraquinone-based, phthalocyanine-based, etc. And a tinting agent consisting of one or more inorganic blue pigments. In the production method of the present disclosure, it is needless to say that it is not necessary to use an inorganic blue pigment containing cobalt or the like which lowers the melting heat stability of the polyester-based resin as a coloring agent. Therefore, the polyester resin used in the present disclosure does not substantially contain cobalt.
 本開示に使用するポリエステル系樹脂は、上記触媒由来のチタン元素を0.001ppm~100ppm含有することが好ましい。該含有量は0.001ppm~50ppmであることがより好ましく、1ppm~50ppmであることがさらに好ましい。含有するチタン元素が100ppmより多いと熱安定性や耐湿熱性の悪化を生ずる場合があり、0.001ppmより少ないと使用するポリエステル系樹脂の触媒残量を大幅に下回っており、ポリエステル系樹脂の製造が困難となることを意味しており、本組成の特徴である良好な機械強度・熱安定性や湿熱安定性が得られない場合がある。 ポ リ エ ス テ ル The polyester resin used in the present disclosure preferably contains 0.001 ppm to 100 ppm of the above-mentioned catalyst-derived titanium element. The content is more preferably from 0.001 ppm to 50 ppm, further preferably from 1 ppm to 50 ppm. When the content of the titanium element is more than 100 ppm, thermal stability and wet heat resistance may be deteriorated. When the content is less than 0.001 ppm, the residual amount of the catalyst of the polyester resin to be used is significantly lower. This means that good mechanical strength, thermal stability and wet heat stability characteristic of the present composition may not be obtained.
 本開示に使用するポリエステル系樹脂において、通常、ハンター型色差計より得られるL値が80.0以上、b値が-2.0~5.0の範囲にあることが好ましい。ポリエステル系樹脂のL値が80.0未満であると、得られるポリエステル系樹脂の白色度が低くなるため実用に供し得る高白色度成形物を得ることができないことがある。また、b値が-2.0未満であると、得られるポリエステル系樹脂の黄味は少ないが、青味が増し、またb値が5.0を越えると、得られるポリエステル系樹脂の黄味が強くなるため、実用上有用な成形物の製造に供することができないことがある。本開示の方法により得られるポリエステル系樹脂のL値はより好ましくは82以上、特に好ましくは83以上であり、b値のより好ましい範囲は-1.0~4.5であり、特に好ましくは0.0~4.0である。 に お い て In the polyester resin used in the present disclosure, it is usually preferable that the L value obtained by a Hunter type color difference meter is 80.0 or more and the b value is in the range of −2.0 to 5.0. If the L value of the polyester-based resin is less than 80.0, the whiteness of the obtained polyester-based resin will be low, and a high-whiteness molded product that can be practically used may not be obtained. When the b value is less than -2.0, the resulting polyester resin has a small yellowish tint, but has a bluish tint. When the b value exceeds 5.0, the resulting polyester resin has a yellow tint. , It may not be possible to produce a practically useful molded product. The L value of the polyester resin obtained by the method of the present disclosure is more preferably 82 or more, particularly preferably 83 or more, and the b value is more preferably in the range of -1.0 to 4.5, and particularly preferably 0. 0.0 to 4.0.
 本開示により得られたポリエステル系樹脂の固有粘度は、0.4~1.5であることが好ましい。前記固有粘度のより好ましい範囲は、0.45~1.4であり、さらに好ましくは0.50~1.3である。ポリエステル系樹脂の固有粘度が0.4以上である場合には、十分な衝撃特性と耐薬品性が得られる場合があり、1.5以下である場合には、射出成形時の流動性が確保され、フローマークや着色不良といった外観不良の発生が防止されうる。ポリエステル系樹脂の固有粘度は、ポリエステル系樹脂をオルソクロロフェノールに溶解し、35℃の温度において測定される。なお、固相重縮合により得られたポリエステル系樹脂は、一般的ボトルなどに利用する場合が多く、そのため、ポリエステル系樹脂中に含まれ、0.70~0.90の固有粘度を有する。前記芳香族ジカルボン酸とアルキレングリコールとのエステルの環状三量体の含有量が0.5wt%以下であり、かつアセトアルデヒドの含有量が5ppm以下であることが好ましい。前記環状三量体は、アルキレンテレフタレート、例えばエチレンテレフタレート、トリメチレンテレフタレート、テトラメチレンテレフタレート、及びヘキサメチレンテレフタレートなど、並びにアルキレンナフタレート、例えば、エチレンナフタレート、トリメチレンナフタレート、テトラメチレンナフタレート及びヘキサメチレンナフタレートなどを包含する。 固有 The intrinsic viscosity of the polyester resin obtained according to the present disclosure is preferably 0.4 to 1.5. A more preferable range of the intrinsic viscosity is 0.45 to 1.4, and further preferably 0.50 to 1.3. If the intrinsic viscosity of the polyester resin is 0.4 or more, sufficient impact characteristics and chemical resistance may be obtained. If the intrinsic viscosity is 1.5 or less, fluidity during injection molding is secured. Thus, appearance defects such as flow marks and coloring defects can be prevented from occurring. The intrinsic viscosity of the polyester resin is measured at a temperature of 35 ° C. by dissolving the polyester resin in orthochlorophenol. The polyester-based resin obtained by solid-phase polycondensation is often used for general bottles and the like, and is therefore contained in the polyester-based resin and has an intrinsic viscosity of 0.70 to 0.90. Preferably, the content of the cyclic trimer of the ester of the aromatic dicarboxylic acid and the alkylene glycol is 0.5 wt% or less, and the content of acetaldehyde is 5 ppm or less. The cyclic trimers include alkylene terephthalates such as ethylene terephthalate, trimethylene terephthalate, tetramethylene terephthalate, and hexamethylene terephthalate, and alkylene naphthalates such as ethylene naphthalate, trimethylene naphthalate, tetramethylene naphthalate, and hexamethylene. Methylene naphthalate and the like.
 また本開示では、従来公知の重縮合の前段回であるエステル交換反応において使用される、マンガン、亜鉛、カルシウム、マグネシウム等の化合物を併せて使用でき、およびエステル交換反応終了後にリン酸または亜リン酸の化合物等により、かかる触媒を失活させて重縮合することも可能である。 Further, in the present disclosure, a compound such as manganese, zinc, calcium, and magnesium used in a transesterification reaction that is a former stage of a conventionally known polycondensation can be used in combination, and phosphoric acid or phosphorus phosphite is used after the transesterification reaction is completed. It is also possible to deactivate such a catalyst with an acid compound or the like for polycondensation.
 ポリエステル系樹脂の製造方法は、バッチ式、連続重合式のいずれの方法をとることも可能である。 The method for producing the polyester resin can be any of a batch method and a continuous polymerization method.
 B成分の含有量は、A成分とB成分との合計100重量部中、20~70重量部であることが好ましく、30~70重量部であることがより好ましく、35~65重量部であることがさらに好ましく、40~60重量部であることが特に好ましい。B成分の含有量が少なすぎる場合には、耐薬品性が発現しないことがあり、B成分の含有量が多すぎる場合には、良好な機械特性、難燃性および防汚性が低下する場合がある。 The content of the component B is preferably 20 to 70 parts by weight, more preferably 30 to 70 parts by weight, and more preferably 35 to 65 parts by weight based on 100 parts by weight of the total of the components A and B. More preferably, it is particularly preferably 40 to 60 parts by weight. When the content of the B component is too small, the chemical resistance may not be exhibited, and when the content of the B component is too large, good mechanical properties, flame retardancy and antifouling properties are reduced. There is.
 (C成分:ポリオルガノシロキサンゴムおよびアルキル(メタ)アクリレ-トゴムを含む成分からなる複合ゴムに、芳香族アルケニル化合物単量体単位およびアルキル(メタ)アクリレート化合物単量体単位よりなる群より選ばれる少なくとも1種の単位がグラフト重合されたコアシェル構造を有するグラフト共重合体)
 本開示の樹脂組成物は、C成分として、ポリオルガノシロキサンゴムおよびアルキル(メタ)アクリレ-トゴムを含む成分からなる複合ゴムに、芳香族アルケニル化合物単量体単位およびアルキル(メタ)アクリレート化合物単量体単位からなる群より選ばれる少なくとも1種も単位がグラフト重合されたコアシェル構造を有するグラフト共重合体を含有する。
(Component C: a composite rubber comprising a component containing a polyorganosiloxane rubber and an alkyl (meth) acrylate rubber, selected from the group consisting of an aromatic alkenyl compound monomer unit and an alkyl (meth) acrylate compound monomer unit Graft copolymer having a core-shell structure in which at least one unit is graft-polymerized)
The resin composition according to the present disclosure is characterized in that a compound rubber containing a polyorganosiloxane rubber and an alkyl (meth) acrylate rubber as a C component is added to an aromatic alkenyl compound monomer unit and an alkyl (meth) acrylate compound At least one selected from the group consisting of body units also contains a graft copolymer having a core-shell structure in which units are graft-polymerized.
 C成分のゴム成分は、ポリオルガノシロキサンゴムおよびアルキル(メタ)アクリレ-トゴムを含む成分からなる複合ゴム成分である。複合ゴムとは、2種のゴム成分を共重合したゴムまたは分離できないよう相互に絡み合ったIPN構造をとるように重合したゴムをいう。また、防汚性の観点から、ゴム成分中のポリオルガノシロキサンゴムの割合が10%以上であるものが好ましく、15%以上であるものがより好ましい。ゴム成分中のポリオルガノシロキサンゴムの割合の上限は、特に限定されないが、好ましくは、95%以下、90%以下、80%以下、又は70%以下である。コアシェル型グラフトポリマーにおいて、そのコアの粒径は重量平均粒子径において0.05μm~0.8μmが好ましく、0.1μm~0.6μmがより好ましく、0.15μm~0.5μmがさらに好ましい。0.05μm~0.8μmの範囲であればより良好な耐衝撃性が達成されることがあり好ましい。 The rubber component of the component C is a composite rubber component comprising a component containing a polyorganosiloxane rubber and an alkyl (meth) acrylate rubber. The composite rubber refers to a rubber obtained by copolymerizing two types of rubber components or a rubber obtained by polymerizing so as to have an IPN structure entangled with each other so as to be inseparable. In addition, from the viewpoint of antifouling properties, the proportion of the polyorganosiloxane rubber in the rubber component is preferably 10% or more, and more preferably 15% or more. The upper limit of the proportion of the polyorganosiloxane rubber in the rubber component is not particularly limited, but is preferably 95% or less, 90% or less, 80% or less, or 70% or less. In the core-shell type graft polymer, the core has a weight average particle diameter of preferably 0.05 μm to 0.8 μm, more preferably 0.1 μm to 0.6 μm, and still more preferably 0.15 μm to 0.5 μm. When the thickness is in the range of 0.05 μm to 0.8 μm, better impact resistance may be achieved, which is preferable.
 コアシェル型グラフトポリマーのシェルにグラフト重合させる芳香族アルケニル化合物としては、スチレン、α-メチルスチレン、p-メチルスチレン、アルコキシスチレン、ハロゲン化スチレン等を挙げることができる。またアルキル(メタ)アクリレート化合物としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸オクチル等のアクリル酸エステルや、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸オクチル等のメタクリル酸エステルを挙げることができる。 芳香 Examples of the aromatic alkenyl compound to be graft-polymerized on the shell of the core-shell type graft polymer include styrene, α-methylstyrene, p-methylstyrene, alkoxystyrene, and halogenated styrene. Examples of the alkyl (meth) acrylate compound include acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, and octyl acrylate; methyl methacrylate, ethyl methacrylate, butyl methacrylate, and methacrylic acid. Methacrylic esters such as cyclohexyl and octyl methacrylate can be mentioned.
 芳香族ポリカーボネート樹脂との親和性の観点から、芳香族アルケニル化合物単量体単位およびアルキル(メタ)アクリレート化合物単量体単位からなる群より選ばれる少なくとも1種の単位を複合ゴムにグラフト重合することにより、芳香族ポリカーボネート樹脂の有する良好な耐衝撃性がより効果的に発揮され、結果として樹脂組成物の耐衝撃性が向上する。 Graft polymerizing at least one unit selected from the group consisting of an aromatic alkenyl compound monomer unit and an alkyl (meth) acrylate compound monomer unit onto the composite rubber from the viewpoint of affinity with the aromatic polycarbonate resin. Thereby, the good impact resistance of the aromatic polycarbonate resin is more effectively exhibited, and as a result, the impact resistance of the resin composition is improved.
 ポリオルガノシロキサンゴムおよびアルキル(メタ)アクリレ-トゴムを含む成分からなる複合ゴムを含有する弾性重合体は、塊状重合、溶液重合、懸濁重合、乳化重合のいずれの重合法で製造したものであってもよく、共重合の方式は一段グラフトであっても多段グラフトであっても差し支えない。また製造の際に副生するグラフト成分のみのコポリマーとの混合物であってもよい。さらに重合法としては一般的な乳化重合法の他、過硫酸カリウム等の開始剤を使用するソープフリー重合法、シード重合法、二段階膨潤重合法等を挙げることができる。また懸濁重合法において、水相とモノマー相とを個別に保持して両者を正確に連続式の分散機に供給し、粒子径を分散機の回転数で制御する方法、および連続式の製造方法において分散能を有する水性液体中にモノマー相を数~数十μm径の細径オリフィスまたは多孔質フィルターを通すことにより供給し粒径を制御する方法などを行ってもよい。コアシェル型のグラフト重合体の場合、その反応はコアおよびシェル共に、1段であっても多段であってもよい。 An elastic polymer containing a composite rubber comprising a component containing a polyorganosiloxane rubber and an alkyl (meth) acrylate rubber is produced by any one of bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. The copolymerization method may be a single-stage graft or a multi-stage graft. Further, it may be a mixture with a copolymer of only a graft component which is by-produced during the production. Examples of the polymerization method include a general emulsion polymerization method, a soap-free polymerization method using an initiator such as potassium persulfate, a seed polymerization method, and a two-step swelling polymerization method. In the suspension polymerization method, a method in which an aqueous phase and a monomer phase are separately held, and both are accurately supplied to a continuous disperser, and the particle diameter is controlled by the number of revolutions of the disperser. In the method, a method of supplying a monomer phase into an aqueous liquid having a dispersing ability by passing it through a small-diameter orifice having a diameter of several to several tens of μm or a porous filter to control the particle size may be employed. In the case of a core-shell type graft polymer, the reaction may be performed in one stage or in multiple stages for both the core and the shell.
 かかる重合体は市販されており容易に入手することが可能である。例えば、三菱ケミカル(株)製の、コア成分がシリコーン‐アクリル複合ゴムでシェル成分がメチルメタクリレートを主成分とするメタブレンS-2501やS-2030、SX-005、あるいはシェル成分がアクリロニトリルとスチレンを主成分とするSRK-200AやSX-200Rという商品名で市販されているものが挙げられる。 Such polymers are commercially available and can be easily obtained. For example, Mitsubishi Chemical Corporation's Methrene S-2501, S-2030, SX-005, whose core component is a silicone-acrylic composite rubber and whose shell component is methyl methacrylate as a main component, or shell component is acrylonitrile and styrene, manufactured by Mitsubishi Chemical Corporation. Examples thereof include those commercially available under the trade names SRK-200A and SX-200R, which are the main components.
 C成分として、上記のグラフト共重合体以外のグラフト共重合体を使用した場合、耐薬品性、防汚性が発現しない。 When a graft copolymer other than the above graft copolymer is used as the C component, chemical resistance and antifouling properties are not exhibited.
 C成分の含有量は、A成分とB成分との合計100重量部に対し、3重量部~15重量部であり、好ましくは4重量部~12重量部、より好ましくは5重量部~10重量部である。C成分の添加により、耐衝撃性および耐薬品性、防汚性がさらに向上する。15重量部以下である場合には、良好な外観が確保される。 The content of the component C is 3 parts by weight to 15 parts by weight, preferably 4 parts by weight to 12 parts by weight, more preferably 5 parts by weight to 10 parts by weight based on 100 parts by weight of the total of the components A and B. Department. The addition of the C component further improves impact resistance, chemical resistance, and antifouling properties. When the amount is 15 parts by weight or less, a good appearance is secured.
 (D成分:防汚性付与剤)
 本開示の樹脂組成物はD成分として、防汚性付与剤を含有する。本開示の防汚性付与剤としては、具体的にはシリコーンオイル、シリコーンガム、シリコーン樹脂微粒子、ポリオレフィン、シリコーン変性ポリオレフィン、ワックス等が挙げられ、その中でも効果的かつ持続的な防汚性の発現という観点でシリコーンガム、シリコーン変性ポリオレフィンが特に望ましい。
(D component: antifouling agent)
The resin composition of the present disclosure contains, as a D component, an antifouling agent. Specific examples of the antifouling agent of the present disclosure include silicone oil, silicone gum, silicone resin fine particles, polyolefin, silicone-modified polyolefin, wax and the like. From the viewpoint, silicone gum and silicone-modified polyolefin are particularly desirable.
 本開示で用いられるシリコーンガムは、分子量が10万以上のガム状になっているポリオルガノシロキサンであることが好ましい。ポリオルガノシロキサンとは、ケイ素原子が酸素原子を介して他のケイ素原子と結合した構造に有機基が付加している高分子物質である。ポリオルガノシロキサンの骨格は、直鎖状、分岐状、環状でもよく、又はこれらの混合物でもよい。 シ リ コ ー ン The silicone gum used in the present disclosure is preferably a gum-like polyorganosiloxane having a molecular weight of 100,000 or more. Polyorganosiloxane is a polymer substance in which an organic group is added to a structure in which a silicon atom is bonded to another silicon atom via an oxygen atom. The skeleton of the polyorganosiloxane may be linear, branched, cyclic, or a mixture thereof.
 ポリオルガノシロキサンの構造としては、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリメチルハイドロジェンシロキサン、アラルキル変性ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、アルキル変性ポリジメチルシロキサン、高級脂肪酸変性ポリジメチルシロキサン、フルオロアルキル変性ポリジメチルシロキサン、アミノ変性ポリジメチルシロキサン、エポキシ変性ポリジメチルシロキサン、カルビノール変性ポリジメチルシロキサン、カルボキシル変性ポリジメチルシロキサン、フェノール変性ポリジメチルシロキサン、シラノール変性ポリジメチルシロキサン等が挙げられる。これらは、単独で使用してもよく、2種以上併用してもよい。これらのうち、性能とコストのバランスから、ポリジメチルシロキサンが最も好適に使用される。 Examples of the structure of polyorganosiloxane include polydimethylsiloxane, polymethylphenylsiloxane, polymethylhydrogensiloxane, aralkyl-modified polydimethylsiloxane, polyether-modified polydimethylsiloxane, alkyl-modified polydimethylsiloxane, higher fatty acid-modified polydimethylsiloxane, and fluoropolysiloxane. Examples include alkyl-modified polydimethylsiloxane, amino-modified polydimethylsiloxane, epoxy-modified polydimethylsiloxane, carbinol-modified polydimethylsiloxane, carboxyl-modified polydimethylsiloxane, phenol-modified polydimethylsiloxane, and silanol-modified polydimethylsiloxane. These may be used alone or in combination of two or more. Of these, polydimethylsiloxane is most preferably used in view of the balance between performance and cost.
 分子量が10万以上になることにより非常に高粘度となりうる。ハンドリング性を向上させる観点から、熱可塑性樹脂により希釈されたマスターバッチ品が、好適に用いられる。かかるマスターバッチ品は市販されており容易に入手することが可能である。例えば、東レダウコーニング(株)製のポリカーボネート50%マスターバッチ品であるMB50-315やポリプロピレン50%マスターバッチ品であるBY27-001、ポリエステルエラストマー50%マスターバッチ品であるBY27-009という商品名で市販されているものが挙げられる。 こ と When the molecular weight is 100,000 or more, very high viscosity can be obtained. From the viewpoint of improving the handleability, a master batch product diluted with a thermoplastic resin is preferably used. Such masterbatch products are commercially available and can be easily obtained. For example, trade names of MB50-315 which is a 50% masterbatch product of Toray Dow Corning Co., Ltd., BY27-001 which is a masterbatch product of 50% polypropylene, and BY27-009 which is a 50% masterbatch product of a polyester elastomer. Commercially available ones can be mentioned.
 また、本開示では、シリコーン変性ポリオレフィンも使用することができる。シリコーン変性ポリオレフィンとは、ポリオレフィン系樹脂にポリオルガノシロキサンが化学的に結合したものである。シリコーン変性ポリオレフィンとしては、例えば、ポリオルガノシロキサングラフトポリオレフィン樹脂が挙げられる。ポリオレフィン系樹脂は、ラジカル重合性二重結合を有するオレフィン系単量体を重合又は共重合させてなる合成樹脂である。オレフィン系単量体としては、特に限定されず、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、4-メチル-1-ペンテンなどのα-オレフィンや、ブタジエン、イソプレンなどの共役ジエンなどが挙げられる。オレフィン系単量体は、単独で用いられても二種以上が併用されてもよい。ポリオレフィン系樹脂としては、特に限定されず、例えば、エチレンの単独重合体、エチレンとエチレン以外のα-オレフィンとの共重合体、プロピレンの単独重合体、プロピレンとプロピレン以外のα-オレフィンとの共重合体、ブテンの単独重合体、ブタジエンやイソプレンなどの共役ジエンの単独重合体又は共重合体などが挙げられ、プロピレンの単独重合体、プロピレンとプロピレン以外のα-オレフィンとの共重合体が好ましい。更に好ましくは、プロピレンの単独重合体である。ポリオレフィン系樹脂は、単独で用いられても二種以上が併用されてもよい。本開示では汎用性および剛性の観点から、ポリプロピレン系樹脂がより好適に用いられる。 シ リ コ ー ン In the present disclosure, a silicone-modified polyolefin can also be used. The silicone-modified polyolefin is obtained by chemically bonding a polyorganosiloxane to a polyolefin resin. Examples of the silicone-modified polyolefin include a polyorganosiloxane-grafted polyolefin resin. The polyolefin resin is a synthetic resin obtained by polymerizing or copolymerizing an olefin monomer having a radical polymerizable double bond. The olefin-based monomer is not particularly limited, and examples thereof include α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, and 4-methyl-1-pentene. Examples include olefins and conjugated dienes such as butadiene and isoprene. The olefin monomers may be used alone or in combination of two or more. The polyolefin resin is not particularly limited, and examples thereof include a homopolymer of ethylene, a copolymer of ethylene and an α-olefin other than ethylene, a homopolymer of propylene, and a copolymer of propylene and an α-olefin other than propylene. Polymers, butene homopolymers, conjugated diene homopolymers or copolymers such as butadiene and isoprene, and the like. Preferred are propylene homopolymers and copolymers of propylene and α-olefins other than propylene. . More preferably, it is a homopolymer of propylene. The polyolefin resins may be used alone or in combination of two or more. In the present disclosure, a polypropylene-based resin is more preferably used from the viewpoint of versatility and rigidity.
 また、ポリオルガノシロキサンの骨格は、直鎖状、分岐状、環状でもよく、又はこれらの混合物でもよい。ポリオルガノシロキサンの構造としては、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリメチルハイドロジェンシロキサン、アラルキル変性ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、アルキル変性ポリジメチルシロキサン、高級脂肪酸変性ポリジメチルシロキサン、フルオロアルキル変性ポリジメチルシロキサン、アミノ変性ポリジメチルシロキサン、エポキシ変性ポリジメチルシロキサン、カルビノール変性ポリジメチルシロキサン、カルボキシル変性ポリジメチルシロキサン、フェノール変性ポリジメチルシロキサン、シラノール変性ポリジメチルシロキサン等が挙げられる。これらは、単独で使用してもよく、2種以上併用してもよい。これらのうち、性能とコストのバランスから、ポリジメチルシロキサンが最も好適に使用される。かかる重合体は市販されており容易に入手することが可能である。例えば、東レダウコーニング(株)製のポリオルガノシロキサングラフトポリプロピレンであるBY27-201やBY27-201Cという商品名で市販されているものが挙げられる。 The skeleton of the polyorganosiloxane may be linear, branched, cyclic, or a mixture thereof. Examples of the structure of polyorganosiloxane include polydimethylsiloxane, polymethylphenylsiloxane, polymethylhydrogensiloxane, aralkyl-modified polydimethylsiloxane, polyether-modified polydimethylsiloxane, alkyl-modified polydimethylsiloxane, higher fatty acid-modified polydimethylsiloxane, and fluoropolysiloxane. Examples include alkyl-modified polydimethylsiloxane, amino-modified polydimethylsiloxane, epoxy-modified polydimethylsiloxane, carbinol-modified polydimethylsiloxane, carboxyl-modified polydimethylsiloxane, phenol-modified polydimethylsiloxane, and silanol-modified polydimethylsiloxane. These may be used alone or in combination of two or more. Of these, polydimethylsiloxane is most preferably used in view of the balance between performance and cost. Such polymers are commercially available and can be easily obtained. For example, those commercially available under the trade names BY27-201 and BY27-201C, which are polyorganosiloxane-grafted polypropylene manufactured by Toray Dow Corning Co., Ltd., may be mentioned.
 D成分の含有量は、A成分とB成分との合計100重量部に対し、0.5重量部~6.0重量部であり、好ましくは1.0重量部~5.0重量部、より好ましくは1.5重量部~4.0重量部である。D成分が0.5重量部以上である場合には、防汚性が発現する。なお、D成分の含有量が4.0重量部以下である場合には、ブリードアウトといったような外観不良が発生しない。なお、上記のマスターバッチ品を使用した場合、D成分の含有量はマスターバッチ品に含まれる防汚性付与剤の量を示す。 The content of the component D is 0.5 to 6.0 parts by weight, preferably 1.0 to 5.0 parts by weight, based on 100 parts by weight of the total of the components A and B. Preferably it is 1.5 to 4.0 parts by weight. When the component D is 0.5 parts by weight or more, antifouling properties are exhibited. When the content of the D component is 4.0 parts by weight or less, appearance defects such as bleed-out do not occur. When the above-mentioned master batch product is used, the content of the D component indicates the amount of the antifouling agent included in the master batch product.
≪難燃性ポリカーボネート樹脂組成物≫
 本開示の1つの実施態様では、ポリカーボネート樹脂組成物が、下記の難燃剤をさらに含む:
 (E)ハロゲン系難燃剤(E成分)、および
 (F)下記式(1)で表される構造を有するリン系難燃剤(F成分)
Figure JPOXMLDOC01-appb-C000015
(式中、XおよびXは、同一もしくは異なり、下記一般式(I)で表される芳香族置換アルキル基である。)
Figure JPOXMLDOC01-appb-C000016
(式中、ALは炭素数1~5の分岐状または直鎖状の脂肪族炭化水素基であり、Arはフェニル基、ナフチル基またはアントリル基であり、nは1~3の整数を示し、ArはALの任意の炭素原子に結合することができる。)。
<< Flame-retardant polycarbonate resin composition >>
In one embodiment of the present disclosure, the polycarbonate resin composition further comprises the following flame retardant:
(E) a halogen-based flame retardant (component E), and (F) a phosphorus-based flame retardant having a structure represented by the following formula (1) (component F)
Figure JPOXMLDOC01-appb-C000015
(In the formula, X 1 and X 2 are the same or different and are an aromatic substituted alkyl group represented by the following general formula (I).)
Figure JPOXMLDOC01-appb-C000016
(Wherein, AL is a branched or linear aliphatic hydrocarbon group having 1 to 5 carbon atoms, Ar is a phenyl group, a naphthyl group or an anthryl group, n represents an integer of 1 to 3, Ar can be attached to any carbon atom of AL.).
 電気電子機器等の用途では、難燃化の要求が高まっており、種々の難燃性樹脂組成物が提案されている。しかしながら、いずれの提案も、機械特性、外観、難燃性、耐薬品性、防汚性、及び熱安定性を併せ持つ難燃性ポリカーボネート樹脂組成物を提供するには至っていないのが現状である。 用途 In applications such as electric and electronic equipment, the demand for flame retardancy is increasing, and various flame retardant resin compositions have been proposed. However, none of the proposals has provided a flame-retardant polycarbonate resin composition having both mechanical properties, appearance, flame retardancy, chemical resistance, antifouling property, and thermal stability.
 本開示の上記実施態様に係るポリカーボネート樹脂組成物は、難燃剤として上述のE成分及びF成分をさらに含有していることによって、優れた機械特性、耐薬品性、防汚性、および外観に加えて、難燃性および熱安定性を高い次元で満たしている。したがって、屋外/屋内に限らず、住宅設備用途、建材用途、生活資材用途、インフラ設備用途、自動車用途、OA・EE用途、屋外機器用途、その他の各種分野において、特に幅広く有用である。 The polycarbonate resin composition according to the embodiment of the present disclosure further includes the above-mentioned components E and F as a flame retardant, so that the polycarbonate resin composition has excellent mechanical properties, chemical resistance, antifouling properties, and appearance. Satisfies flame retardancy and thermal stability at a high level. Therefore, the present invention is widely and particularly useful not only in outdoor / indoor use, but also in various applications such as housing equipment, building materials, living materials, infrastructure equipment, automobiles, OA / EE, outdoor equipment, and the like.
 (E成分:ハロゲン系難燃剤)
 本開示の1つの実施態様に係る樹脂組成物は、E成分としてハロゲン系難燃剤を含有する。ハロゲン系難燃剤としては、臭素化ポリカーボネート(オリゴマーを含む)が特に好適である。臭素化ポリカーボネートは耐熱性に優れ、かつ大幅に難燃性を向上できる。本開示で使用する臭素化ポリカーボネートは、下記式(7)で表される構成単位が全構成単位の好ましくは少なくとも60モル%、より好ましくは少なくとも80モル%であり、特に好ましくは実質的に下記式(7)で表される構成単位からなる臭素化ポリカーボネート化合物である。
(E component: halogen-based flame retardant)
The resin composition according to one embodiment of the present disclosure contains a halogen-based flame retardant as the E component. As the halogen-based flame retardant, brominated polycarbonate (including oligomer) is particularly preferred. Brominated polycarbonate is excellent in heat resistance and can greatly improve flame retardancy. In the brominated polycarbonate used in the present disclosure, the structural unit represented by the following formula (7) is preferably at least 60 mol%, more preferably at least 80 mol% of all the structural units, and particularly preferably substantially the following. It is a brominated polycarbonate compound comprising a structural unit represented by the formula (7).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(7)中、Xは臭素原子、Rは炭素数1~4のアルキレン基、炭素数1~4のアルキリデン基または-SO-である。
 また、かかる式(7)において、好適にはRはメチレン基、エチレン基、イソプロピリデン基、-SO-、特に好ましくはイソプロピリデン基を示す。
In the formula (7), X is a bromine atom, R is an alkylene group having 1 to 4 carbon atoms, an alkylidene group having 1 to 4 carbon atoms, or —SO 2 —.
In the formula (7), R preferably represents a methylene group, an ethylene group, an isopropylidene group, —SO 2 —, and particularly preferably an isopropylidene group.
 臭素化ポリカーボネートは、残存するクロロホーメート基末端が少なく、末端塩素量が0.3ppm以下であることが好ましく、より好ましくは0.2ppm以下である。かかる末端塩素量は、試料を塩化メチレンに溶解し、4-(p-ニトロベンジル)ピリジンを加えて末端塩素(末端クロロホーメート)と反応させ、これを紫外可視分光光度計(日立製作所製U-3200)により測定して求めることができる。末端塩素量が0.3ppm以下であると、ポリカーボネート樹脂組成物の熱安定性がより良好となり、更に高温の成形が可能となり、その結果成形加工性により優れた樹脂組成物が提供される。 (4) The brominated polycarbonate has few residual chloroformate group terminals, and the amount of terminal chlorine is preferably 0.3 ppm or less, more preferably 0.2 ppm or less. The amount of terminal chlorine can be determined by dissolving a sample in methylene chloride, adding 4- (p-nitrobenzyl) pyridine and reacting with terminal chlorine (terminal chloroformate), and using an ultraviolet-visible spectrophotometer (manufactured by Hitachi, Ltd.). -3200). When the amount of terminal chlorine is 0.3 ppm or less, the thermal stability of the polycarbonate resin composition becomes better, and molding at a higher temperature becomes possible. As a result, a resin composition having more excellent moldability is provided.
 また臭素化ポリカーボネートは、残存する水酸基末端が少ないことが好ましい。より具体的には臭素化ポリカーボネートの構成単位1モルに対して、末端水酸基量が0.0005モル以下であることが好ましく、より好ましくは0.0003モル以下である。末端水酸基量は、試料を重クロロホルムに溶解し、H-NMR法により測定して求めることができる。かかる末端水酸基量であると、ポリカーボネート樹脂組成物の熱安定性が更に向上し好ましい。 Further, the brominated polycarbonate preferably has a small number of remaining hydroxyl group terminals. More specifically, the amount of terminal hydroxyl groups is preferably 0.0005 mol or less, more preferably 0.0003 mol or less, per 1 mol of the structural unit of the brominated polycarbonate. The amount of terminal hydroxyl groups can be determined by dissolving a sample in deuterated chloroform and measuring by 1 H-NMR method. Such an amount of terminal hydroxyl groups is preferable because the thermal stability of the polycarbonate resin composition is further improved.
 臭素化ポリカーボネートの比粘度は、好ましくは0.015~0.1の範囲、より好ましくは0.015~0.08の範囲である。臭素化ポリカーボネートの比粘度は、前述した本開示のA成分であるポリカーボネート系樹脂の粘度平均分子量を算出するに際し使用した上記比粘度の算出式に従って算出されたものである。 (4) The specific viscosity of the brominated polycarbonate is preferably in the range of 0.015 to 0.1, more preferably in the range of 0.015 to 0.08. The specific viscosity of the brominated polycarbonate is calculated according to the above-mentioned specific viscosity calculation formula used in calculating the viscosity average molecular weight of the polycarbonate resin as the component A of the present disclosure.
 E成分の含有量はA成分とB成分との合計100重量部に対し、5重量部~35重量部であり、好ましくは8重量部~30重量部、より好ましくは10重量部~25重量部である。E成分の含有量が5重量部以上では、難燃性が発現する場合があり、かつ35重量部以下では、良好な機械特性、外観および耐薬品性が確保される場合がある。 The content of the component E is 5 parts by weight to 35 parts by weight, preferably 8 parts by weight to 30 parts by weight, more preferably 10 parts by weight to 25 parts by weight based on 100 parts by weight of the total of the components A and B. It is. When the content of the E component is 5 parts by weight or more, flame retardancy may be exhibited, and when the content is 35 parts by weight or less, good mechanical properties, appearance, and chemical resistance may be secured.
 また、ハロゲン系難燃剤は一般に酸化アンチモン化合物との併用により樹脂組成物の難燃性をさらに高めることができるが、本開示においては、熱安定性が著しく低下するため、望ましくない。 ハ ロ ゲ ン Although a halogen-based flame retardant can generally further increase the flame retardancy of a resin composition when used in combination with an antimony oxide compound, it is not desirable in the present disclosure because thermal stability is significantly reduced.
 (F成分:リン系難燃剤)
 本開示のリン系難燃剤は、下記一般式(1)で表される有機リン化合物である。
(F component: phosphorus-based flame retardant)
The phosphorus-based flame retardant of the present disclosure is an organic phosphorus compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記式(1)中、XおよびXは、同一もしくは異なり、下記一般式(I)で表される芳香族置換アルキル基を示す。 In the above formula (1), X 1 and X 2 are the same or different and represent an aromatic-substituted alkyl group represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記式(I)中、ALは炭素数1~5、好ましくは1または2の分岐状もしくは直鎖状の脂肪族炭化水素基である。具体的にはALは下記式(8)で表されるアルキル基であることが好ましい。またArはフェニル基、ナフチル基またはアントリル基であり、そのうちフェニル基が好ましい。nは1~3の整数を示すが好ましくは1または2である。ArはALの任意の炭素に結合することができる。 AL In the above formula (I), AL is a branched or straight-chain aliphatic hydrocarbon group having 1 to 5, preferably 1 or 2 carbon atoms. Specifically, AL is preferably an alkyl group represented by the following formula (8). Ar is a phenyl group, a naphthyl group or an anthryl group, of which a phenyl group is preferable. n represents an integer of 1 to 3, preferably 1 or 2. Ar can be attached to any carbon of AL.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記式(1)で表される有機リン系難燃剤は、芳香族ポリエステル樹脂に対して極めて優れた難燃効果を発現する。
 有機リン系難燃剤は、前記一般式(1)で表されるが、最も好ましい代表的化合物は下記式(B-a)~(B-d)からなる群から選ばれる少なくとも1種の化合物である。これらの化合物は一種でもまたは二種以上でも使用することができる。
The organophosphorus flame retardant represented by the above formula (1) exhibits an extremely excellent flame retardant effect on an aromatic polyester resin.
The organophosphorous flame retardant is represented by the general formula (1), and the most preferred representative compound is at least one compound selected from the group consisting of the following formulas (Ba) to (Bd). is there. One or more of these compounds can be used.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 これら式(B-a)~(B-d)のうち、式(B-a)で表されるB-a成分または式(B-c)で表されるB-c成分は難燃効果あるいは合成の容易性などの点で好適である。なお、該リン系難燃剤以外のリン系難燃剤を使用した場合、本開示の範囲内での添加量では、難燃性が発現しない。 Of these formulas (Ba) to (Bd), the Ba component represented by the formula (Ba) or the Bc component represented by the formula (Bc) has a flame-retardant effect or It is suitable in terms of ease of synthesis and the like. In addition, when a phosphorus-based flame retardant other than the phosphorus-based flame retardant is used, the flame retardancy does not appear if the amount is within the range of the present disclosure.
 本開示における前記有機リン系難燃剤の合成法については公知の方法によって合成され、以下に説明する方法以外の方法によって製造されたものであってもよい。 合成 The method for synthesizing the organic phosphorus-based flame retardant in the present disclosure may be synthesized by a known method, and may be manufactured by a method other than the method described below.
 有機リン系難燃剤は例えばペンタエリスリトールに三塩化リンを反応させ、続いて酸化させた反応物を、ナトリウムメトキシド等のアルカリ金属化合物により処理し、次いでアラルキルハライドを反応させることにより得られる。また、ペンタエリスリトールにアラルキルホスホン酸ジクロリドを反応させる方法や、ペンタエリスリトールに三塩化リンを反応させることによって得られた化合物にアラルキルアルコールを反応させ、次いで高温でArbuzov転移を行う方法により得ることもできる。後者の反応は、例えば米国特許第3,141,032号明細書、特開昭54-157156号公報、特開昭53-39698号公報に開示されている。 The organic phosphorus-based flame retardant is obtained, for example, by reacting pentaerythritol with phosphorus trichloride, subsequently treating the oxidized reactant with an alkali metal compound such as sodium methoxide, and then reacting with aralkyl halide. Further, it can also be obtained by a method of reacting aralkylphosphonic dichloride with pentaerythritol or a method of reacting aralkyl alcohol with a compound obtained by reacting pentaerythritol with phosphorus trichloride and then performing Arbuzov transition at a high temperature. . The latter reaction is disclosed in, for example, US Pat. No. 3,141,032, JP-A-54-157156 and JP-A-53-39698.
 具体的合成法を以下説明するが、この合成法は単に説明のためであって、本開示において使用される有機リン系難燃剤は、これら合成法のみならず、その改変およびその他の合成法で合成されたものであってもよい。より具体的な合成法は後述する調製例1で説明する。
(i)前記(B-a)の有機リン化合物;
 ペンタエリスリトールに三塩化リンを反応させ、次いでターシャリーブタノールにより酸化させた反応物を、ナトリウムメトキシドにより処理し、ベンジルブロマイドを反応させることにより得ることができる。
(ii)前記(B-b)の有機リン化合物;
 ペンタエリスリトールに三塩化リンを反応させ、続いてターシャリーブタノールにより酸化させた反応物を、ナトリウムメトキシドにより処理し、1-ブロモエチルベンゼンを反応させることにより得ることができる。
(iii)前記(B-c)の有機リン化合物;
 ペンタエリスリトールに三塩化リンを反応させ、続いてターシャリーブタノールにより酸化させた反応物を、ナトリウムメトキシドにより処理し、2-ブロモエチルベンゼンを反応させることにより得ることができる。
(iv)前記(B-d)の有機リン化合物;
 ペンタエリスリトールとジフェニルメチルホスホン酸ジクロリドを反応させることにより得ることができる。
Although a specific synthesis method is described below, this synthesis method is merely for explanation, and the organophosphorus flame retardant used in the present disclosure includes not only these synthesis methods but also modifications and other synthesis methods. It may be synthesized. A more specific synthesis method will be described in Preparation Example 1 described later.
(I) the organic phosphorus compound of (Ba);
The reaction product obtained by reacting pentaerythritol with phosphorus trichloride and then oxidizing with tert-butanol can be obtained by treating with sodium methoxide and reacting with benzyl bromide.
(Ii) the organic phosphorus compound of (Bb);
The reaction product obtained by reacting pentaerythritol with phosphorus trichloride and subsequently oxidizing with tert-butanol can be obtained by treating with sodium methoxide and reacting with 1-bromoethylbenzene.
(Iii) the organic phosphorus compound of (Bc);
The reaction product obtained by reacting pentaerythritol with phosphorus trichloride and subsequently oxidizing with tert-butanol can be obtained by treating with sodium methoxide and reacting with 2-bromoethylbenzene.
(Iv) the organic phosphorus compound of (Bd);
It can be obtained by reacting pentaerythritol with diphenylmethylphosphonic acid dichloride.
 有機リン系難燃剤の酸価は0.7mgKOH/g以下であることが好ましく、より好ましくは0.5mgKOH/g以下である。酸価がこの範囲の有機リン系難燃剤を使用することにより、ポリエステル樹脂の分解が起り難く熱安定性の良好となるため、加工性の良好な組成物となる。有機リン系難燃剤は、その酸価が0.4mgKOH/g以下のものが最も好ましい。ここで酸価とは、サンプル1g中の酸成分を中和するのに必要なKOHの量(mg)を意味する。該酸価が0.7mgKOH/g以下である場合には、良好な熱安定性が確保され、加工性に優れる場合があるため、好ましい。 酸 The acid value of the organophosphorus flame retardant is preferably 0.7 mgKOH / g or less, more preferably 0.5 mgKOH / g or less. By using an organic phosphorus-based flame retardant having an acid value in this range, the polyester resin hardly decomposes and the thermal stability becomes good, so that a composition having good processability is obtained. Most preferably, the organic phosphorus-based flame retardant has an acid value of 0.4 mgKOH / g or less. Here, the acid value means the amount (mg) of KOH required to neutralize the acid component in 1 g of the sample. When the acid value is 0.7 mgKOH / g or less, good thermal stability is ensured and workability may be excellent, which is preferable.
 さらに、有機リン系難燃剤は、そのHPLC純度が、好ましくは90%以上、より好ましくは95%以上であるものが使用される。かかる高純度のものは成形品の難燃性や色相に優れ好ましい。ここでF成分のHPLC純度の測定は、以下の方法を用いることにより効果的に測定が可能となる。カラムは野村化学(株)製Develosil ODS-7 300mm×4mmφを用い、カラム温度は40℃とした。溶媒としてはアセトニトリルと水の6:4(容量比)の混合溶液を用い、5μlを注入した。検出器はUV-260nmを用いた。F成分中の不純物を除去する方法としては、特に限定されるものではないが、水、メタノール等の溶剤でリパルプ洗浄(溶剤で洗浄、ろ過を数回繰り返す)を行う方法が最も効果的で、且つコスト的にも有利である。 Furthermore, as the organophosphorus flame retardant, those having an HPLC purity of preferably 90% or more, more preferably 95% or more are used. Such a high-purity product is preferable because of its excellent flame retardancy and hue. Here, the HPLC purity of the F component can be measured effectively by using the following method. The column used was Develosil {ODS-7} 300 mm × 4 mmφ manufactured by Nomura Chemical Co., Ltd., and the column temperature was 40 ° C. As a solvent, a mixed solution of acetonitrile and water 6: 4 (volume ratio) was used, and 5 μl was injected. The detector used was UV-260 nm. The method of removing impurities in the F component is not particularly limited, but a method of performing repulp washing with a solvent such as water or methanol (washing with a solvent and repeating filtration several times) is most effective, It is also advantageous in terms of cost.
 F成分の含有量は、A成分およびB成分の合計100重量部に対して、0.5重量部~5重量部であり、好ましくは0.8重量部~4重量部、より好ましくは1重量部~3重量部の範囲である。F成分の含有量が0.5重量部以上の場合、難燃性が発現し、含有量が5重量部以下である場合、良好な機械特性、外観、および耐薬品性が確保される場合がある。 The content of the component F is 0.5 to 5 parts by weight, preferably 0.8 to 4 parts by weight, more preferably 1 part by weight, based on 100 parts by weight of the total of the components A and B. Parts to 3 parts by weight. When the content of the F component is 0.5 parts by weight or more, flame retardancy is exhibited, and when the content is 5 parts by weight or less, good mechanical properties, appearance, and chemical resistance may be ensured. is there.
 (G成分:ドリップ防止剤)
 本開示の樹脂組成物は、G成分としてドリップ防止剤を含有することができる。このドリップ防止剤の含有により、成形品の物性を損なうことなく、良好な難燃性を達成することができる。
(G component: anti-drip agent)
The resin composition of the present disclosure may contain an anti-drip agent as a G component. By containing this anti-drip agent, good flame retardancy can be achieved without impairing the physical properties of the molded article.
 G成分のドリップ防止剤としては、フィブリル形成能を有する含フッ素ポリマーを挙げることができ、かかるポリマーとしてはポリテトラフルオロエチレン、テトラフルオロエチレン系共重合体(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、など)、米国特許第4379910号公報に示されるような部分フッ素化ポリマー、フッ素化ジフェノールから製造されるポリカーボネート樹脂などを挙げることができる。中でも好ましくはポリテトラフルオロエチレン(以下PTFEと称することがある)である。 Examples of the anti-drip agent of the G component include a fluorine-containing polymer having a fibril-forming ability. Examples of such a polymer include polytetrafluoroethylene and tetrafluoroethylene-based copolymers (for example, tetrafluoroethylene / hexafluoropropylene copolymer). Polymers, etc.), partially fluorinated polymers as shown in US Pat. No. 4,379,910, polycarbonate resins produced from fluorinated diphenols, and the like. Among them, polytetrafluoroethylene (hereinafter sometimes referred to as PTFE) is preferable.
 フィブリル形成能を有するPTFEの分子量は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その分子量は、標準比重から求められる数平均分子量において100万~1000万、より好ましく200万~900万である。かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、さらに良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。 PTFE having a fibril-forming ability has a very high molecular weight, and has a tendency to combine with each other by an external action such as shearing force to form a fibrous form. Its molecular weight is 1,000,000 to 10,000,000, more preferably 2,000,000 to 9,000,000, in number average molecular weight determined from the standard specific gravity. As the PTFE, not only a solid form but also an aqueous dispersion form can be used. In addition, PTFE having such fibril-forming ability can use a PTFE mixture in a mixed form with another resin in order to improve the dispersibility in the resin and to obtain better flame retardancy and mechanical properties. is there.
 かかるフィブリル形成能を有するPTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン工業(株)のポリフロンMPA FA500およびF-201Lなどを挙げることができる。PTFEの水性分散液の市販品としては、旭アイシーアイフロロポリマーズ(株)製のフルオンAD-1、AD-936、ダイキン工業(株)製のフルオンD-1およびD-2、三井・デュポンフロロケミカル(株)製のテフロン(登録商標)30Jなどを代表として挙げることができる。 Examples of commercially available PTFE having such a fibril-forming ability include Teflon (registered trademark) 6J of DuPont-Mitsui Fluorochemicals Co., Ltd., and Polyflon MPA FA500 and F-201L of Daikin Industries, Ltd. Commercially available PTFE aqueous dispersions include Fluon AD-1, AD-936 manufactured by Asahi ICI Fluoropolymers Co., Ltd., Fluon D-1 and D-2 manufactured by Daikin Industries, Ltd., and DuPont Mitsui Teflon (registered trademark) 30J manufactured by Chemical Co., Ltd. can be mentioned as a representative.
 混合形態のPTFEとしては、
 (1)PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し共沈殿を行い、共凝集混合物を得る方法(特開昭60-258263号公報、特開昭63-154744号公報などに記載された方法)、
 (2)PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4-272957号公報に記載された方法)、
 (3)PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06-220210号公報、特開平08-188653号公報などに記載された方法)、
 (4)PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9-95583号公報に記載された方法)、および
 (5)PTFEの水性分散液と有機重合体分散液を均一に混合後、さらに該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11-29679号などに記載された方法)により得られたものが使用できる。
 これら混合形態のPTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3800」(商品名)、およびGEスペシャリティーケミカルズ社製 「BLENDEX B449」(商品名)などを挙げることができる。
As the mixed form of PTFE,
(1) A method in which an aqueous dispersion of PTFE and an aqueous dispersion or solution of an organic polymer are mixed and co-precipitated to obtain a coaggregated mixture (JP-A-60-258263, JP-A-63-154744). Gazettes),
(2) a method of mixing an aqueous dispersion of PTFE and dried organic polymer particles (a method described in JP-A-4-272957);
(3) A method of uniformly mixing an aqueous dispersion of PTFE and an organic polymer particle solution and simultaneously removing the respective media from the mixture (described in JP-A-06-220210 and JP-A-08-188655). Method),
(4) a method of polymerizing a monomer forming an organic polymer in an aqueous dispersion of PTFE (method described in JP-A-9-95583), and (5) an aqueous dispersion of PTFE and an organic polymer. After the combined dispersion is uniformly mixed, a vinyl monomer is further polymerized in the mixed dispersion, and then the mixture is obtained by a method of obtaining a mixture (a method described in JP-A-11-29679). Can be used.
Examples of commercially available PTFE in these mixed forms include “METABLEN A3800” (trade name) manufactured by Mitsubishi Rayon Co., Ltd., and “BLENDEX B449” (trade name) manufactured by GE Specialty Chemicals.
 混合形態におけるPTFEの割合としては、PTFE混合物100重量%中、PTFEが1重量%~60重量%が好ましく、より好ましくは5重量%~55重量%である。PTFEの割合がかかる範囲にある場合は、PTFEの良好な分散性を達成することができる。なお、上記G成分の割合は正味のドリップ防止剤の量を示し、混合形態のPTFEの場合には、正味のPTFE量を示す。 割 合 The proportion of PTFE in the mixed form is preferably 1% by weight to 60% by weight, more preferably 5% by weight to 55% by weight, based on 100% by weight of the PTFE mixture. When the proportion of PTFE is in such a range, good dispersibility of PTFE can be achieved. Note that the ratio of the G component indicates the net amount of the anti-drip agent, and in the case of PTFE in a mixed form, indicates the net amount of PTFE.
 G成分の含有量は、A成分とB成分との合計100重量部に対して、好ましくは0.05重量部~2重量部、より好ましくは0.1重量部~1.5重量部、さらに好ましくは0.2重量部~1重量部である。ドリップ防止剤が上記範囲を超えて少なすぎる場合には難燃性が不十分となる場合がある。一方、ドリップ防止剤が上記範囲を超えて多すぎる場合にはPTFEが成形品表面に析出し外観不良となる場合があるばかりでなく、樹脂組成物のコストアップに繋がり、好ましくない。 The content of the component G is preferably 0.05 to 2 parts by weight, more preferably 0.1 to 1.5 parts by weight, based on 100 parts by weight of the total of the components A and B. Preferably it is 0.2 to 1 part by weight. If the amount of the anti-drip agent is less than the above range, the flame retardancy may be insufficient. On the other hand, if the amount of the anti-drip agent is too large, exceeding the above range, not only may PTFE precipitate on the surface of the molded article, resulting in poor appearance, but also leads to an increase in the cost of the resin composition, which is not preferable.
 また本開示のポリテトラフルオロエチレン系混合体に使用される有機系重合体に使用されるスチレン系単量体としては、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基およびハロゲンからなる群より選ばれた1つ以上の基で置換されてもよいスチレン、例えば、オルト-メチルスチレン、メタ-メチルスチレン、パラ-メチルスチレン、ジメチルスチレン、エチル-スチレン、パラ-tert-ブチルスチレン、メトキシスチレン、フルオロスチレン、モノブロモスチレン、ジブロモスチレン、およびトリブロモスチレン、ビニルキシレン、ビニルナフタレンが例示されるが、これらに制限されない。前記スチレン系単量体は単独又は2つ以上の種類を混合して使用することができる。 The styrene-based monomer used in the organic polymer used in the polytetrafluoroethylene-based mixture of the present disclosure includes an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and halogen. Styrene which may be substituted with one or more groups selected from the group consisting of, for example, ortho-methylstyrene, meta-methylstyrene, para-methylstyrene, dimethylstyrene, ethyl-styrene, para-tert-butylstyrene , Methoxystyrene, fluorostyrene, monobromostyrene, dibromostyrene, and tribromostyrene, vinylxylene, vinylnaphthalene, but are not limited thereto. The styrene monomers may be used alone or in combination of two or more.
 本開示のポリテトラフルオロエチレン系混合体に使用される有機系重合体に使用されるアクリル系単量体は、置換されてもよい(メタ)アクリレート誘導体を含む。具体的に前記アクリル系単量体としては、炭素数1~20のアルキル基、炭素数3~8のシクロアルキル基、アリール基、及びグリシジル基からなる群より選ばれた1つ以上基により置換されてもよい(メタ)アクリレート誘導体、例えば(メタ)アクリロニトリル、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレートおよびグリシジル(メタ)アクリレート、炭素数1~6のアルキル基、又はアリール基により置換されてもよいマレイミド、例えば、マレイミド、N-メチル-マレイミドおよびN-フェニル-マレイミド、マレイン酸、フタル酸およびイタコン酸が例示されるが、これらに制限されない。前記アクリル系単量体は単独又は2つ以上の種類を混合して使用することができる。これらの中でも(メタ)アクリロニトリルが好ましい。 ア ク リ ル The acrylic monomer used in the organic polymer used in the polytetrafluoroethylene-based mixture of the present disclosure includes a (meth) acrylate derivative that may be substituted. Specifically, the acrylic monomer is substituted with at least one group selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group, and a glycidyl group. (Meth) acrylate derivatives that may be used, such as (meth) acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, hexyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate and glycidyl (meth) acrylate; Alkyl having 1 to 6 carbon atoms , Or maleimide which may be substituted by an aryl group, for example, maleimide, N- methyl - maleimide and N- phenyl - maleimide, maleic acid, phthalic acid and itaconic acid are exemplified, but are not limited thereto. The acrylic monomers may be used alone or in combination of two or more. Among these, (meth) acrylonitrile is preferred.
 コーティング層に用いられる有機重合体に含まれるアクリル系単量体由来単位の量は、スチレン系単量体由来単位100重量部に対して好ましくは8重量部~11重量部、より好ましくは8重量部~10重量部、さらに好ましくは8重量部~9重量部である。アクリル系単量体由来単位が8重量部以上である場合には、コーティング強度が確保される場合があり、11重量部以下である場合には、成形品の良好な表面外観が確保されうる。 The amount of the acrylic monomer-derived unit contained in the organic polymer used for the coating layer is preferably 8 parts by weight to 11 parts by weight, more preferably 8 parts by weight, based on 100 parts by weight of the styrene-based monomer-derived unit. Parts to 10 parts by weight, more preferably 8 to 9 parts by weight. When the unit derived from the acrylic monomer is at least 8 parts by weight, the coating strength may be ensured, and when it is at most 11 parts by weight, a good surface appearance of the molded article can be ensured.
 本開示のポリテトラフルオロエチレン系混合体は、残存水分含量が0.5重量%以下であることが好ましく、より好ましくは0.2重量%~0.4重量%、さらに好ましくは0.1重量%~0.3重量%である。残存水分量が0.5重量%以下である場合には、難燃性への悪影響が回避されうる。 The polytetrafluoroethylene-based mixture of the present disclosure preferably has a residual moisture content of 0.5% by weight or less, more preferably 0.2% to 0.4% by weight, and still more preferably 0.1% by weight. % To 0.3% by weight. When the residual water content is 0.5% by weight or less, adverse effects on flame retardancy can be avoided.
 本開示のポリテトラフルオロエチレン系混合体の製造工程には、開始剤の存在下でスチレン系単量体及びアクリル単量体からなるグループより選ばれた1つ以上の単量体を含むコーティング層を分岐状ポリテトラフルオロエチレンの外部に形成するステップが含まれる。さらに、前記コーティング層形成のステップ後に残存水分含量を0.5重量%以下、好ましくは0.2重量%~0.4重量%、より好ましくは0.1重量%~0.3重量%となるように乾燥させるステップを含むことが好ましい。乾燥のステップは、例えば、熱風乾燥又は真空乾燥方法のような当業界に公知にされた方法を用いて行うことができる。 In the manufacturing process of the polytetrafluoroethylene-based mixture of the present disclosure, a coating layer containing at least one monomer selected from the group consisting of a styrene-based monomer and an acrylic monomer in the presence of an initiator. Is formed outside the branched polytetrafluoroethylene. Further, the residual moisture content after the step of forming the coating layer is 0.5% by weight or less, preferably 0.2% by weight to 0.4% by weight, more preferably 0.1% by weight to 0.3% by weight. It is preferable to include a drying step. The drying step can be performed using a method known in the art, for example, a hot air drying method or a vacuum drying method.
 本開示のポリテトラフルオロエチレン系混合体に使用される開始剤は、スチレン系及び/又はアクリル系単量体の重合反応に使用されるものであれば制限なく使用され得る。前記開始剤としては、クミルハイドロパーオキサイド、ジ-tert-ブチルパーオキサイド、ベンゾイルパーオキサイド、ハイドロゲンパーオキサイド、およびポタシウムパーオキサイドが例示されるが、これらに制限されない。本開示のポリテトラフルオロエチレン系混合体には、反応条件に応じて前記開始剤を1種以上使用することができる。前記開始剤の量は、ポリテトラフルオロエチレンの量及び単量体の種類/量を考慮して使用される範囲内で自由に選択され、全組成物の量を基準として0.15重量部~0.25重量部使用することが好ましい。 開始 The initiator used in the polytetrafluoroethylene-based mixture of the present disclosure can be used without any limitation as long as it is used for the polymerization reaction of styrene-based and / or acrylic-based monomers. Examples of the initiator include, but are not limited to, cumyl hydroperoxide, di-tert-butyl peroxide, benzoyl peroxide, hydrogen peroxide, and potassium peroxide. In the polytetrafluoroethylene-based mixture of the present disclosure, one or more of the above initiators can be used depending on reaction conditions. The amount of the initiator is freely selected within the range used in consideration of the amount of polytetrafluoroethylene and the type / amount of the monomer, and is from 0.15 parts by weight based on the total amount of the composition. It is preferred to use 0.25 parts by weight.
 本開示のポリテトラフルオロエチレン系混合体は、懸濁重合法により下記の手順にて製造を行った。 ポ リ The polytetrafluoroethylene-based mixture of the present disclosure was produced by a suspension polymerization method according to the following procedure.
 まず、反応器中に水および分岐状ポリテトラフルオロエチレンディスパージョン(固形濃度:60%、ポリテトラフルオロエチレン粒子径:0.15~0.3μm)を入れた後、攪拌しながらアクリルモノマー、スチレンモノマーおよび水溶性開始剤としてクメンハイドロパーオキサイドを添加し80℃~90℃にて9時間反応を行なった。反応終了後、遠心分離機にて30分間遠心分離を行うことにより水分を除去し、ペースト状の生成物を得た。その後、生成物のペーストを熱風乾燥機にて80℃~100℃にて8時間乾燥した。その後、かかる乾燥した生成物の粉砕を行い本開示のポリテトラフルオロエチレン系混合体を得た。 First, water and a branched polytetrafluoroethylene dispersion (solid concentration: 60%, polytetrafluoroethylene particle size: 0.15 to 0.3 μm) are put into a reactor, and then, an acrylic monomer and styrene are stirred while stirring. Cumene hydroperoxide was added as a monomer and a water-soluble initiator, and the mixture was reacted at 80 ° C. to 90 ° C. for 9 hours. After completion of the reaction, water was removed by centrifuging for 30 minutes using a centrifuge to obtain a paste-like product. Thereafter, the product paste was dried with a hot air drier at 80 ° C. to 100 ° C. for 8 hours. Thereafter, the dried product was pulverized to obtain a polytetrafluoroethylene-based mixture of the present disclosure.
 かかる懸濁重合法は、特許3469391号公報などに例示される乳化重合法における乳化分散による重合工程を必要としないため、乳化剤および重合後のラテックスを凝固沈殿するための電解質塩類を必要としない。また乳化重合法で製造されたポリテトラフルオロエチレン混合体では、混合体中の乳化剤および電解質塩類が混在しやすく取り除きにくくなるため、かかる乳化剤、電解質塩類由来のナトリウム金属イオン、カリウム金属イオンを低減することは難しい。本開示で使用するポリテトラフルオロエチレン系混合体は、懸濁重合法で製造されているため、かかる乳化剤、電解質塩類を使用しないことから混合体中のナトリウム金属イオン、カリウム金属イオンが低減することができ、熱安定性および耐加水分解性を向上することができる。 懸 濁 Since such a suspension polymerization method does not require a polymerization step by emulsification dispersion in the emulsion polymerization method exemplified in Japanese Patent No. 3469391, it does not require an emulsifier and electrolyte salts for coagulating and precipitating a latex after polymerization. In addition, in the polytetrafluoroethylene mixture produced by the emulsion polymerization method, the emulsifier and the electrolyte salts in the mixture are easily mixed and difficult to remove, so that such emulsifier, sodium metal ions and potassium metal ions derived from the electrolyte salts are reduced. It is difficult. Since the polytetrafluoroethylene-based mixture used in the present disclosure is manufactured by a suspension polymerization method, such an emulsifier and a sodium metal ion and a potassium metal ion in the mixture can be reduced since no electrolyte salt is used. To improve heat stability and hydrolysis resistance.
 また、本開示ではドリップ防止剤として被覆分岐PTFEを使用することができる。被覆分岐PTFEは分岐状ポリテトラフルオロエチレン粒子および有機系重合体からなるポリテトラフルオロエチレン系混合体であり、分岐状ポリテトラフルオロエチレンの外部に有機系重合体、好ましくはスチレン系単量体由来単位及び/又はアクリル系単量体由来単位を含む重合体からなるコーティング層を有する。前記コーティング層は、分岐状ポリテトラフルオロエチレンの表面上に形成される。また、前記コーティング層はスチレン系単量体及びアクリル系単量体の共重合体を含むことが好ましい。 被覆 Also, in the present disclosure, coated branched PTFE can be used as an anti-drip agent. The coated branched PTFE is a polytetrafluoroethylene-based mixture composed of branched polytetrafluoroethylene particles and an organic polymer, and an organic polymer, preferably a styrene-based monomer, is provided outside the branched polytetrafluoroethylene. It has a coating layer made of a polymer containing units and / or units derived from an acrylic monomer. The coating layer is formed on the surface of the branched polytetrafluoroethylene. The coating layer preferably contains a copolymer of a styrene monomer and an acrylic monomer.
 被覆分岐PTFEに含まれるポリテトラフルオロエチレンは分岐状ポリテトラフルオロエチレンである。含まれるポリテトラフルオロエチレンが分岐状ポリテトラフルオロエチレンでない場合、ポリテトラフルオロエチレンの添加が少ない場合の滴下防止効果が不十分となる。分岐状ポリテトラフルオロエチレンは粒子状であり、好ましくは0.1μm~0.6μm、より好ましくは0.3μm~0.5μm、さらに好ましくは0.3μm~0.4μmの粒子径を有する。0.1μmより粒子径が小さい場合には成形品の表面外観に優れるが、0.1μmより小さい粒子径を有するポリテトラフルオロエチレンを商業的に入手することは難しい。また0.6μm以下の粒子径である場合には、成形品の良好な表面外観が確保される場合がある。本開示に使用されるポリテトラフルオロエチレンの数平均分子量は1×10~1×10が好ましく、より好ましくは2×10~9×10であり、一般的に高い分子量のポリテトラフルオロエチレンが安定性の側面においてより好ましい。粉末又は分散液の形態いずれも使用され得る。 The polytetrafluoroethylene contained in the coated branched PTFE is a branched polytetrafluoroethylene. When the contained polytetrafluoroethylene is not a branched polytetrafluoroethylene, the effect of preventing dripping when the addition of polytetrafluoroethylene is small is insufficient. The branched polytetrafluoroethylene is in the form of particles, and preferably has a particle diameter of 0.1 μm to 0.6 μm, more preferably 0.3 μm to 0.5 μm, and still more preferably 0.3 μm to 0.4 μm. When the particle diameter is smaller than 0.1 μm, the surface appearance of the molded article is excellent, but it is difficult to commercially obtain polytetrafluoroethylene having a particle diameter smaller than 0.1 μm. When the particle diameter is 0.6 μm or less, good surface appearance of the molded product may be secured. The number average molecular weight of the polytetrafluoroethylene used in the present disclosure is preferably 1 × 10 4 to 1 × 10 7 , more preferably 2 × 10 6 to 9 × 10 6 , and generally polytetrafluoroethylene having a high molecular weight. Fluoroethylene is more preferred in terms of stability. Either in powder or dispersion form can be used.
 被覆分岐PTFEにおける分岐状ポリテトラフルオロエチレンの含有量は、被覆分岐PTFEの総重量100重量部に対して、好ましくは20重量部~60重量部、より好ましくは40重量部~55重量部、さらに好ましくは47重量部~53重量部、特に好ましくは48重量部~52重量部、最も好ましくは49重量部~51重量部である。分岐状ポリテトラフルオロエチレンの割合がかかる範囲にある場合は、分岐状ポリテトラフルオロエチレンの良好な分散性を達成することができる。 The content of the branched polytetrafluoroethylene in the coated branched PTFE is preferably 20 parts by weight to 60 parts by weight, more preferably 40 parts by weight to 55 parts by weight, based on 100 parts by weight of the total weight of the coated branched PTFE. It is preferably from 47 to 53 parts by weight, particularly preferably from 48 to 52 parts by weight, most preferably from 49 to 51 parts by weight. When the proportion of the branched polytetrafluoroethylene is in such a range, good dispersibility of the branched polytetrafluoroethylene can be achieved.
 (その他の添加剤)
 (i)リン系安定剤
 リン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル、並びに第3級ホスフィンなどが例示される。
(Other additives)
(I) Phosphorus-based stabilizer Examples of the phosphorus-based stabilizer include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and tertiary phosphine.
 具体的にはホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-iso-プロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、ビス{2,4-ビス(1-メチル-1-フェニルエチル)フェニル}ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、およびジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。 Specifically, examples of the phosphite compound include triphenyl phosphite, tris (nonylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, and dioctyl monophenyl. Phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, tris (diethyl phenyl) phosphite, tris (di-iso-propyl phenyl) phosphite, tris (di -N-butylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, di Teaarylpentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, Bis (2,6-di-tert-butyl-4-ethylphenyl) pentaerythritol diphosphite, bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, bis (nonylphenyl) pentaerythritol diphosphite, dicyclohexylpentaerythritol diphosphite, and the like.
 更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、および2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイトなどが例示される。 Further phosphite compounds which react with dihydric phenols and have a cyclic structure can also be used. For example, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butyl) Butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite and 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite.
 ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリフェニルホスフェート、トリメチルホスフェートである。 Examples of the phosphate compound include tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenylcresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, and dioctyl phosphate. Examples thereof include diisopropyl phosphate, and preferred are triphenyl phosphate and trimethyl phosphate.
 ホスホナイト化合物としては、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト等があげられ、テトラキス(ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、ビス(ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトが好ましく、テトラキス(2,4-ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。 Examples of the phosphonite compound include tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite and tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenylenediene Phosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite , Tetrakis (2,6-di-tert-butylphenyl) -4,3′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4- -Tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-n-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl-phenylphosphonite and the like, and tetrakis (di-tert-butylphenyl) -biphenylenediphosphonite, Bis (di-tert-butylphenyl) -phenyl-phenylphosphonite is preferred, and tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl) -Phenyl-phenylphosphonite is more preferred. Such a phosphonite compound can be used in combination with the phosphite compound having an aryl group in which two or more alkyl groups are substituted, and is thus preferable.
 ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。 Examples of the phosphonate compound include dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate.
 第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ-p-トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。 Examples of the tertiary phosphine include triethylphosphine, tripropylphosphine, tributylphosphine, trioctylphosphine, triamylphosphine, dimethylphenylphosphine, dibutylphenylphosphine, diphenylmethylphosphine, diphenyloctylphosphine, triphenylphosphine, and tri-p-tolyl. Examples include phosphine, trinaphthylphosphine, and diphenylbenzylphosphine. A particularly preferred tertiary phosphine is triphenylphosphine.
 上記リン系安定剤は、1種のみならず2種以上を混合して用いることができる。上記リン系安定剤の中でも、ホスホナイト化合物もしくは下記一般式(9)で表されるホスファイト化合物が好ましい。 The above-mentioned phosphorus stabilizers can be used alone or in combination of two or more. Among the phosphorus-based stabilizers, a phosphonite compound or a phosphite compound represented by the following general formula (9) is preferable.
Figure JPOXMLDOC01-appb-C000025
(式(9)中、RおよびR’は炭素数6~30のアルキル基または炭素数6~30のアリール基を表し、互いに同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000025
(In the formula (9), R and R ′ represent an alkyl group having 6 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and may be the same or different.)
 上記の如く、ホスホナイト化合物としてはテトラキス(2,4-ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイトが好ましく、該ホスホナイトを主成分とする安定剤は、Sandostab P-EPQ(商標、Clariant社製)およびIrgafos P-EPQ(商標、CIBA SPECIALTY CHEMICALS社製)として市販されておりいずれも利用できる。 As described above, tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite is preferred as the phosphonite compound, and the stabilizer containing phosphonite as a main component is Sandostab @ P-EPQ (trademark, manufactured by Clariant). ) And Irgafos @ P-EPQ (trademark, manufactured by CIBA SPECTIALTY CHEMICALS), and both can be used.
 また上記式(9)の中でもより好適なホスファイト化合物は、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、およびビス{2,4-ビス(1-メチル-1-フェニルエチル)フェニル}ペンタエリスリトールジホスファイトである。 In the above formula (9), more preferred phosphite compounds include distearylpentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, and bis (2,6-diphosphite). -Tert-butyl-4-methylphenyl) pentaerythritol diphosphite and bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite.
 ジステアリルペンタエリスリトールジホスファイトは、アデカスタブPEP-8(商標、旭電化工業(株)製)、JPP681S(商標、城北化学工業(株)製)として市販されておりいずれも利用できる。ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイトは、アデカスタブPEP-24G(商標、旭電化工業(株)製)、Alkanox P-24(商標、Great Lakes社製)、Ultranox P626(商標、GE Specialty Chemicals社製)、Doverphos S-9432(商標、Dover Chemical社製)、並びにIrgaofos126および126FF(商標、CIBA SPECIALTY CHEMICALS社製)などとして市販されておりいずれも利用できる。ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイトはアデカスタブPEP-36(商標、旭電化工業(株)製)として市販されており容易に利用できる。またビス{2,4-ビス(1-メチル-1-フェニルエチル)フェニル}ペンタエリスリトールジホスファイトは、アデカスタブPEP-45(商標、旭電化工業(株)製)、およびDoverphos S-9228(商標、Dover Chemical社製)として市販されておりいずれも利用できる。 Distearyl pentaerythritol diphosphite is commercially available as ADK STAB PEP-8 (trademark, manufactured by Asahi Denka Kogyo Co., Ltd.) and JPP681S (trademark, manufactured by Johoku Chemical Co., Ltd.), and any of them can be used. Bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite is manufactured by ADK STAB PEP-24G (trademark, manufactured by Asahi Denka Kogyo Co., Ltd.), Alkanox P-24 (trademark, manufactured by Great Lakes), and Ultranox. P626 (trademark, manufactured by GE Specialty Chemicals), Doverphos S-9432 (trademark, manufactured by Dover Chemical), and Irgaofos 126 and 126FF (trademark, manufactured by CIBA SPECTIALTY CHEMICALS) are commercially available. Bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite is commercially available as ADK STAB PEP-36 (trademark, manufactured by Asahi Denka Kogyo KK) and can be easily used. Bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite is available from ADK STAB PEP-45 (trademark, manufactured by Asahi Denka Kogyo KK) and Doverphos @ S-9228 (trademark). , Dover @ Chemical Co., Ltd.), and any of them can be used.
 上記リン系安定剤は、単独でまたは2種以上を組合せて使用することができる。リン系安定剤の含有量は、A成分とB成分との合計100重量部に対し、0.01重量部~1.0重量部であることが好ましく、より好ましくは0.03重量部~0.8重量部、さらに好ましくは0.05重量部~0.5重量部である。含有量が0.01重量部以上である場合には、加工時の熱分解抑制効果が発現し、良好な機械特性が確保される場合があり、1.0重量部以下である場合にも、良好な機械特性が確保される場合がある。 The above phosphorus-based stabilizers can be used alone or in combination of two or more. The content of the phosphorus-based stabilizer is preferably from 0.01 to 1.0 part by weight, more preferably from 0.03 to 0 parts by weight, based on 100 parts by weight of the total of the component A and the component B. 0.8 parts by weight, more preferably 0.05 to 0.5 parts by weight. When the content is 0.01 part by weight or more, the effect of suppressing thermal decomposition during processing is exhibited, and good mechanical properties may be ensured. Even when the content is 1.0 part by weight or less, Good mechanical properties may be ensured.
 (ii)フェノール系安定剤
 本開示の樹脂組成物はフェノール系安定剤を含有することができる。フェノール系安定剤としては一般的にヒンダードフェノール、セミヒンダードフェノール、レスヒンダードフェノール化合物が挙げられるが、ポリプロピレン系樹脂に対して熱安定処方を施すという観点で特にヒンダードフェノール化合物がより好適に用いられる。かかるヒンダードフェノール化合物としては、例えば、α-トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、2-tert-ブチル-6-(3’-tert-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,6-ジ-tert-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホネートジエチルエステル、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール)、2,2’-ジメチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)、2,2’-エチリデン-ビス(4,6-ジ-tert-ブチルフェノール)、2,2’-ブチリデン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、トリエチレングリコール-N-ビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、1,6-へキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ビス[2-tert-ブチル-4-メチル6-(3-tert-ブチル-5-メチル-2-ヒドロキシベンジル)フェニル]テレフタレート、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1,-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-チオビス(4-メチル-6-tert-ブチルフェノール)、ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィド、4,4’-ジ-チオビス(2,6-ジ-tert-ブチルフェノール)、4,4’-トリ-チオビス(2,6-ジ-tert-ブチルフェノール)、2,2-チオジエチレンビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、N,N’-ヘキサメチレンビス-(3,5-ジ-tert-ブチル-4-ヒドロキシヒドロシンナミド)、N,N’-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)イソシアヌレート、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌレート、1,3,5-トリス2[3(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコール-N-ビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、トリエチレングリコール-N-ビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)アセテート、3,9-ビス[2-{3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)アセチルオキシ}-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、テトラキス[メチレン-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]メタン、1,3,5-トリメチル-2,4,6-トリス(3-tert-ブチル-4-ヒドロキシ-5-メチルベンジル)ベンゼン、およびトリス(3-tert-ブチル-4-ヒドロキシ-5-メチルベンジル)イソシアヌレートなどが例示される。上記化合物の中でも、テトラキス[メチレン-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]メタン、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートが好適に用いられ、さらに加工時の熱分解による機械特性低下の抑制に優れるものとして、下記式(10)で表される(3,3’,3’’,5,5’,5’’-ヘキサ-tert-ブチル-a,a’,a’’-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、および下記式(11)で表される1,3,5-トリス-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンがより好適に用いられる。
(Ii) Phenolic stabilizer The resin composition of the present disclosure may contain a phenol stabilizer. Phenolic stabilizers generally include hindered phenols, semi-hindered phenols, and re-hindered phenol compounds, but hindered phenol compounds are more preferable in terms of applying a heat-stable formulation to a polypropylene resin. Used for Examples of such hindered phenol compounds include α-tocopherol, butylhydroxytoluene, sinapyr alcohol, vitamin E, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2-tert -Butyl-6- (3'-tert-butyl-5'-methyl-2'-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethylamino Methyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-ethyl -6-tert-butylphenol), 4,4'-methylenebis (2.6 Di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-cyclohexylphenol), 2,2′-dimethylene-bis (6-α-methyl-benzyl-p-cresol), 2,2 ′ -Ethylidene-bis (4,6-di-tert-butylphenol), 2,2′-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert) -Butylphenol), triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, 1,6-hexanediolbis [3- (3,5-di- tert-butyl-4-hydroxyphenyl) propionate], bis [2-tert-butyl-4-methyl6- (3-tert-butyl) 5-Methyl-2-hydroxybenzyl) phenyl] terephthalate, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1, -Dimethylethyl {-2,4,8,10-tetraoxaspiro [5,5] undecane, 4,4'-thiobis (6-tert-butyl-m-cresol), 4,4'-thiobis (3- Methyl-6-tert-butylphenol), 2,2′-thiobis (4-methyl-6-tert-butylphenol), bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 4,4 ′ -Di-thiobis (2,6-di-tert-butylphenol), 4,4'-tri-thiobis (2,6-di-tert-butylphenol), 2,2-thiodie Lenbis- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4-hydroxy-3,5-di-tert- Butylanilino) -1,3,5-triazine, N, N′-hexamethylenebis- (3,5-di-tert-butyl-4-hydroxyhydrocinnamide), N, N′-bis [3- (3 , 5-Di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl 2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-tert-butyl-4-hydroxyphenyl) iso Cyanurate, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, 1,3,5-tris 2 [3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl isocyanurate, tetrakis [methylene-3- (3,5-di-tert-butyl- 4-hydroxyphenyl) propionate] methane, triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, triethylene glycol-N-bis-3- (3- tert-butyl-4-hydroxy-5-methylphenyl) acetate, 3,9-bis [2 {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) acetyloxy} -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane, tetrakis [Methylene-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate] methane, 1,3,5-trimethyl-2,4,6-tris (3-tert-butyl-4-hydroxy -5-methylbenzyl) benzene, and tris (3-tert-butyl-4-hydroxy-5-methylbenzyl) isocyanurate. Among the above compounds, tetrakis [methylene-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate] methane, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionate is preferably used, and as a material excellent in suppressing a decrease in mechanical properties due to thermal decomposition during processing, represented by the following formula (10): (3,3 ', 3'',5,5', 5 '' -Hexa-tert-butyl-a, a ', a''-(mesitylene-2,4,6-triyl) tri-p-cresol and 1,3,5 represented by the following formula (11) -Tris- (3,5-di-tert-butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione is more preferably used.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 上記フェノール系安定剤は、単独でまたは2種以上を組合せて使用することができる。フェノール系安定剤の含有量は、A成分とB成分との合計100重量部に対し、0.05重量部~1.0重量部であることが好ましく、より好ましくは0.07重量部~0.8重量部、さらに好ましくは0.1重量部~0.5重量部である。含有量が0.05重量部以上である場合には、加工時の熱分解抑制効果が発現し、良好な機械特性が確保される場合があり、1.0重量部以下である場合にも、良好な機械特性が確保される場合がある。 The above phenolic stabilizers can be used alone or in combination of two or more. The content of the phenol stabilizer is preferably 0.05 to 1.0 part by weight, more preferably 0.07 to 0 parts by weight, based on 100 parts by weight of the total of the component A and the component B. 0.8 parts by weight, more preferably 0.1 to 0.5 parts by weight. When the content is 0.05 parts by weight or more, the effect of suppressing thermal decomposition during processing is exhibited, and good mechanical properties may be ensured. Even when the content is 1.0 parts by weight or less, Good mechanical properties may be ensured.
 リン系安定剤およびフェノール系安定剤はいずれかが配合されることが好ましく、これらの併用は更に好ましい。併用の場合はA成分とB成分との合計100重量部に対し、0.01重量部~0.5重量部のリン系安定剤および0.01重量部~0.5重量部のフェノール系安定剤が配合されることが好ましい。 It is preferable that one of the phosphorus-based stabilizer and the phenol-based stabilizer is blended, and the combination of these is more preferred. When used in combination, 0.01 to 0.5 parts by weight of a phosphorus-based stabilizer and 0.01 to 0.5 parts by weight of a phenol-based stabilizer, based on 100 parts by weight of the total of the components A and B. Preferably, an agent is blended.
 (iii)紫外線吸収剤
 本開示のポリカーボネート樹脂組成物は紫外線吸収剤を含有することができる。紫外線吸収剤としては、ベンゾフェノン系では、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-ベンジロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシトリハイドライドレイトベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-5-ソジウムスルホキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2-ヒドロキシ-4-n-ドデシルオキシベンソフェノン、および2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノンなどが例示される。
(Iii) Ultraviolet absorber The polycarbonate resin composition of the present disclosure can contain an ultraviolet absorber. Examples of the ultraviolet absorber include benzophenone-based compounds such as 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, Hydroxy-4-methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydrate benzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2 ′, 4,4 ′ -Tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4- Hydroxy-2-methoxyphenyl) Examples include methane, 2-hydroxy-4-n-dodecyloxybensophenone, and 2-hydroxy-4-methoxy-2'-carboxybenzophenone.
 ベンゾトリアゾール系では、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジクミルフェニル)フェニルベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2,2’-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)、および2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミドメチル)-5-メチルフェニル]ベンゾトリアゾ-ル、並びに2-(2’-ヒドロキシ-5-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2-(2’―ヒドロキシ-5-アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2-ヒドロキシフェニル-2H-ベンゾトリアゾール骨格を有する重合体などが例示される。 In the benzotriazole type, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [4- (1,1,3 , 3-Tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- (2- Hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3, -Di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole, 2- (2-hydroxy-4-octoxyphenyl) benzotriazole, 2,2'-methylenebis (4-cumyl-6-benzotriazolephenyl), 2,2'-p-phenylenebis (1,3-benzoxazine- 4-one), 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimidomethyl) -5-methylphenyl] benzotriazole, and 2- (2'-hydroxy-5-methacrylic Roxyethylphenyl) -2H-benzotriazole and a copolymerizable vinyl monomer. 2-hydroxyphenyl-2H-benzotriazole skeleton such as a copolymer or a copolymer of 2- (2'-hydroxy-5-acryloxyethylphenyl) -2H-benzotriazole and a vinyl monomer copolymerizable with the monomer. And the like.
 ヒドロキシフェニルトリアジン系では、例えば、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-メチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-エチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-プロピルオキシフェノール、および2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ブチルオキシフェノールなどが例示される。さらに2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4-ジメチルフェニル基となった化合物が例示される。 Hydroxyphenyl triazines include, for example, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-hexyloxyphenol, 2- (4,6-diphenyl-1,3,5 -Triazin-2-yl) -5-methyloxyphenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-ethyloxyphenol, 2- (4,6-diphenyl -1,3,5-triazin-2-yl) -5-propyloxyphenol and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-butyloxyphenol Is exemplified. Furthermore, the phenyl group of the above exemplified compound such as 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-hexyloxyphenol is 2,4-dimethyl A compound having a phenyl group is exemplified.
 環状イミノエステル系では、例えば2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-m-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、および2,2’-p,p’-ジフェニレンビス(3,1-ベンゾオキサジン-4-オン)などが例示される。 In the case of cyclic iminoesters, for example, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2′-m-phenylenebis (3,1-benzoxazin-4-one) And 2,2′-p, p′-diphenylenebis (3,1-benzoxazin-4-one).
 シアノアクリレート系では、例えば1,3-ビス-[(2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ]-2,2-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3-ビス-[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。 In the cyanoacrylate system, for example, 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2-cyano-3,3-diphenylacryloyl) oxy ] Methyl) propane and 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene.
 さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/または光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。前記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。 Further, the ultraviolet absorber has a structure of a monomer compound capable of radical polymerization, so that the ultraviolet absorber and / or the light-stable monomer can be combined with a monomer such as alkyl (meth) acrylate. It may be a polymer type ultraviolet absorber obtained by copolymerization with a body. Preferred examples of the ultraviolet absorbing monomer include compounds containing a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic imino ester skeleton, and a cyanoacrylate skeleton in an ester substituent of a (meth) acrylate. You.
 上記化合物の中でも、本開示において、下記式(12)、(13)および(14)のいずれかで表される化合物がより好適に用いられる。 中 で も Among the above compounds, in the present disclosure, a compound represented by any of the following formulas (12), (13) and (14) is more preferably used.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 上記紫外線吸収剤は、単独でまたは2種以上を組合せて使用することができる。
 紫外線吸収剤の含有量は、A成分とB成分との合計100重量部に対し、0.1重量部~2重量部であることが好ましく、より好ましくは0.12重量部~1.5重量部、さらに好ましくは0.15重量部~1重量部である。紫外線吸収剤の含有量が0.1重量部以上である場合には、十分な耐光性が発現する場合があり、2重量部以下である場合には、ガス発生による外観不良や物性低下などが回避されうる点から好ましい。
The above ultraviolet absorbers can be used alone or in combination of two or more.
The content of the ultraviolet absorbent is preferably from 0.1 to 2 parts by weight, more preferably from 0.12 to 1.5 parts by weight, based on 100 parts by weight of the total of the component A and the component B. Parts, more preferably 0.15 parts by weight to 1 part by weight. When the content of the ultraviolet absorber is 0.1 part by weight or more, sufficient light resistance may be exhibited, and when the content is 2 parts by weight or less, poor appearance or physical property deterioration due to gas generation may occur. It is preferable because it can be avoided.
 (iv)ヒンダードアミン系光安定剤
 本開示のポリカーボネート樹脂組成物はヒンダードアミン系光安定剤を含有することができる。ヒンダードアミン系光安定剤は一般にHALS(Hindered Amine Light Stabilizer)と呼ばれ、2,2,6,6-テトラメチルピペリジン骨格を構造中に有する化合物であり、例えば、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(フェニルアセトキシ)-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-メトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアリルオキシ-2,2,6,6-テトラメチルピペリジン、4-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン、4-ベンジルオキシ-2,2,6,6-テトラメチルピペリジン、4-フェノキシ-2,2,6,6-テトラメチルピペリジン、4-(エチルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(シクロヘキシルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(フェニルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、ビス(2,2,6,6-テトラメチル-4-ピペリジル)カーボネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)オキサレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)マロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)テレフタレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)カーボネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)オキサレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)マロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)アジペート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)テレフタレート、N,N’-ビス-2,2,6,6-テトラメチル-4-ピペリジニル-1,3-ベンゼンジカルボキシアミド、1,2-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)エタン、α,α’-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)-p-キシレン、ビス(2,2,6,6-テトラメチル-4-ピペリジルトリレン-2,4-ジカルバメート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-ヘキサメチレン-1,6-ジカルバメート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,5-トリカルボキシレート、N,N’,N’’,N’’’-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,4-トリカルボキシレート、1-[2-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}ブチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6-テトラメチルピペリジン、及び1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールとβ,β,β’,β’-テトラメチル-3,9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエタノールとの縮合物などが挙げられる。
(Iv) Hindered amine light stabilizer The polycarbonate resin composition of the present disclosure may contain a hindered amine light stabilizer. The hindered amine light stabilizer is generally called HALS (Hindered Amine Light Stabilizer) and is a compound having a 2,2,6,6-tetramethylpiperidine skeleton in its structure. For example, 4-acetoxy-2,2,6 , 6-Tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-2,2,6,6-tetramethylpiperidine, 4- (phenylacetoxy) -2, 2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-methoxy-2,2,6,6-tetramethylpiperidine, 4-stearyloxy-2, 2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6,6- Tramethylpiperidine, 4-benzyloxy-2,2,6,6-tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethylpiperidine, 4- (ethylcarbamoyloxy) -2,2,6 , 6-Tetramethylpiperidine, 4- (cyclohexylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (phenylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, bis (2 , 2,6,6-tetramethyl-4-piperidyl) carbonate, bis (2,2,6,6-tetramethyl-4-piperidyl) oxalate, bis (2,2,6,6-tetramethyl-4-) Piperidyl) malonate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl) 4-piperidyl) adipate, bis (2,2,6,6-tetramethyl-4-piperidyl) terephthalate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) carbonate, bis (1,2 , 2,6,6-pentamethyl-4-piperidyl) oxalate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) malonate, bis (1,2,2,6,6-pentamethyl-4) -Piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) adipate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) terephthalate, N, N'- Bis-2,2,6,6-tetramethyl-4-piperidinyl-1,3-benzenedicarboxamide, 1,2-bis (2,2,6,6-tetramethyl-4-piperid Loxy) ethane, α, α'-bis (2,2,6,6-tetramethyl-4-piperidyloxy) -p-xylene, bis (2,2,6,6-tetramethyl-4-piperidyltolylene -2,4-dicarbamate, bis (2,2,6,6-tetramethyl-4-piperidyl) -hexamethylene-1,6-dicarbamate, tris (2,2,6,6-tetramethyl-4 -Piperidyl) -benzene-1,3,5-tricarboxylate, N, N ', N ", N'"-tetrakis- (4,6-bis- (butyl- (N-methyl-2,2 , 6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10-diamine, dibutylamine-1,3,5-triazine.N, N ' -Bis (2,2,6,6-tetramethyl-4-pi Peridyl) -1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate, poly [{6- (1,1,3,3-tetra Methylbutyl) amino-1,3,5-triazine-2,4-diyl {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene} (2,2,6,6- Tetramethyl-4-piperidyl) imino}], tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, tetrakis (1,2,2) 6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, tris (2,2,6,6-tetramethyl-4-piperidyl) -benzene-1,3,4- Tricarboxylate 1- [2- {3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy} butyl] -4- [3- (3,5-di-t-butyl-4-hydroxyphenyl ) Propionyloxy] 2,2,6,6-tetramethylpiperidine, and 1,2,3,4-butanetetracarboxylic acid, 1,2,2,6,6-pentamethyl-4-piperidinol and β, β, and condensates with β ′, β′-tetramethyl-3,9- [2,4,8,10-tetraoxaspiro (5,5) undecane] diethanol.
 ヒンダードアミン系光安定剤はピペリジン骨格中の窒素原子の結合相手により大きく分けて、N-H型(窒素原子に水素が結合)、N-R型(窒素原子にアルキル基(R)が結合)、N-OR型(窒素原子にアルコキシ基(OR)が結合)の3タイプがあるが、ポリカーボネート樹脂に適用する際、ヒンダードアミン系光安定剤の塩基性の観点から、低塩基性であるN-R型、N-OR型を用いるのがより好ましい。 Hindered amine light stabilizers are broadly classified according to the bonding partner of the nitrogen atom in the piperidine skeleton, such as NH (hydrogen is bonded to a nitrogen atom), NR (alkyl group (R) is bonded to a nitrogen atom), There are three types of N-OR type (alkoxy group (OR) is bonded to the nitrogen atom), but when applied to a polycarbonate resin, from the viewpoint of basicity of the hindered amine-based light stabilizer, NR having low basicity is used. And N-OR type are more preferably used.
 上記化合物の中でも、本開示において、下記式(15)、(16)で表される化合物がより好適に用いられる。 中 で も Among the above compounds, in the present disclosure, compounds represented by the following formulas (15) and (16) are more preferably used.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 ヒンダードアミン系光安定剤は、単独でまたは2種以上を組合せて使用することができる。ヒンダードアミン系光安定剤の含有量は、A成分とB成分との合計100重量部に対し、0重量部~1重量部であることが好ましく、0.05重量部~1重量部がより好ましく、さらに好ましくは0.08重量部~0.7重量部、特に好ましくは0.1重量部~0.5重量部である。ヒンダードアミン系光安定剤の含有量が1重量部以下である場合には、ガス発生による外観不良やポリカーボネート樹脂の分解による物性低下が回避される場合があり好ましい。また、0.05重量部以上である場合には、十分な耐光性が発現する場合がある。 The hindered amine light stabilizers can be used alone or in combination of two or more. The content of the hindered amine light stabilizer is preferably from 0 to 1 part by weight, more preferably from 0.05 to 1 part by weight, based on 100 parts by weight of the total of the component A and the component B. It is more preferably from 0.08 to 0.7 parts by weight, particularly preferably from 0.1 to 0.5 parts by weight. When the content of the hindered amine-based light stabilizer is 1 part by weight or less, poor appearance due to gas generation and deterioration in physical properties due to decomposition of the polycarbonate resin may be avoided, which is preferable. When the amount is 0.05 parts by weight or more, sufficient light resistance may be exhibited.
 (v)離型剤
 本開示のポリカーボネート樹脂組成物には、その成形時の生産性向上や成形品の歪みの低減を目的として、更に離型剤を配合することが好ましい。かかる離型剤としては公知のものが使用できる。例えば、飽和脂肪酸エステル、不飽和脂肪酸エステル、ポリオレフィン系ワックス(ポリエチレンワックス、1-アルケン重合体など。酸変性などの官能基含有化合物で変性されているものも使用できる)、シリコーン化合物、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、蜜蝋などを挙げることができる。中でも好ましい離型剤として脂肪酸エステルが挙げられる。かかる脂肪酸エステルは、脂肪族アルコールと脂肪族カルボン酸とのエステルである。かかる脂肪族アルコールは1価アルコールであっても2価以上の多価アルコールであってもよい。また該アルコールの炭素数としては、3~32の範囲、より好適には5~30の範囲である。かかる一価アルコールとしては、例えばドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノール、エイコサノール、テトラコサノール、セリルアルコール、およびトリアコンタノールなどが例示される。かかる多価アルコールとしては、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリグリセロール(トリグリセロール~ヘキサグリセロール)、ジトリメチロールプロパン、キシリトール、ソルビトール、およびマンニトールなどが挙げられる。本開示の脂肪酸エステルにおいては多価アルコールがより好ましい。
(V) Release Agent The polycarbonate resin composition of the present disclosure preferably further contains a release agent for the purpose of improving productivity during molding and reducing distortion of a molded product. Known release agents can be used. For example, saturated fatty acid esters, unsaturated fatty acid esters, polyolefin-based waxes (polyethylene wax, 1-alkene polymer, etc .; those modified with a functional group-containing compound such as acid modification can also be used), silicone compounds, fluorine compounds ( Fluorine oil represented by polyfluoroalkyl ether), paraffin wax, beeswax, and the like. Among them, preferred release agents include fatty acid esters. Such a fatty acid ester is an ester of an aliphatic alcohol and an aliphatic carboxylic acid. Such an aliphatic alcohol may be a monohydric alcohol or a dihydric or higher polyhydric alcohol. Further, the carbon number of the alcohol is in the range of 3 to 32, more preferably 5 to 30. Examples of such a monohydric alcohol include dodecanol, tetradecanol, hexadecanol, octadecanol, eicosanol, tetracosanol, seryl alcohol, and triacontanol. Such polyhydric alcohols include pentaerythritol, dipentaerythritol, tripentaerythritol, polyglycerol (triglycerol to hexaglycerol), ditrimethylolpropane, xylitol, sorbitol, mannitol and the like. Polyhydric alcohols are more preferred in the fatty acid esters of the present disclosure.
 一方、脂肪族カルボン酸は炭素数3~32であることが好ましく、特に炭素数10~22の脂肪族カルボン酸が好ましい。該脂肪族カルボン酸としては、例えばデカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、ノナデカン酸、ベヘン酸、イコサン酸、およびドコサン酸などの飽和脂肪族カルボン酸、並びにパルミトレイン酸、オレイン酸、リノール酸、リノレン酸、エイコセン酸、エイコサペンタエン酸、およびセトレイン酸などの不飽和脂肪族カルボン酸を挙げることができる。上記の中でも脂肪族カルボン酸は、炭素原子数14~20であるものが好ましい。なかでも飽和脂肪族カルボン酸が好ましい。特にステアリン酸およびパルミチン酸が好ましい。 On the other hand, the aliphatic carboxylic acid preferably has 3 to 32 carbon atoms, particularly preferably an aliphatic carboxylic acid having 10 to 22 carbon atoms. Examples of the aliphatic carboxylic acid include decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, octadecanoic acid (stearic acid), nonadecanoic acid, behenic acid, Mention may be made of saturated aliphatic carboxylic acids such as icosanoic acid, and docosanoic acid, and unsaturated aliphatic carboxylic acids such as palmitoleic acid, oleic acid, linoleic acid, linolenic acid, eicosenoic acid, eicosapentaenoic acid, and setrenic acid. . Among the above, the aliphatic carboxylic acid preferably has 14 to 20 carbon atoms. Among them, saturated aliphatic carboxylic acids are preferred. Particularly preferred are stearic acid and palmitic acid.
 ステアリン酸やパルミチン酸など上記の脂肪族カルボン酸は通常、牛脂や豚脂などに代表される動物性油脂およびパーム油やサンフラワー油に代表される植物性油脂などの天然油脂類から製造されるため、これらの脂肪族カルボン酸は、通常炭素原子数の異なる他のカルボン酸成分を含む混合物である。したがって本開示の脂肪酸エステルの製造においてもかかる天然油脂類から製造され、他のカルボン酸成分を含む混合物の形態からなる脂肪族カルボン酸、殊にステアリン酸やパルミチン酸が好ましく使用される。 The above-mentioned aliphatic carboxylic acids such as stearic acid and palmitic acid are usually produced from natural fats and oils such as animal fats and fats such as tallow and lard and vegetable fats and fats such as palm oil and sunflower oil. Therefore, these aliphatic carboxylic acids are usually mixtures containing other carboxylic acid components having different numbers of carbon atoms. Accordingly, in the production of the fatty acid ester of the present disclosure, an aliphatic carboxylic acid, particularly stearic acid or palmitic acid, which is produced from such natural fats and oils and is in the form of a mixture containing other carboxylic acid components, is preferably used.
 本開示の脂肪酸エステルは、部分エステルおよび全エステル(フルエステル)のいずれであってもよい。しかしながら部分エステルでは通常水酸基価が高くなり高温時の樹脂の分解などを誘発しやすいことから、より好適にはフルエステルである。本開示の脂肪酸エステルにおける酸価は、熱安定性の点から好ましく20以下、より好ましくは4~20の範囲、更に好ましくは4~12の範囲である。尚、酸価は実質的に0を取り得る。また脂肪酸エステルの水酸基価は、0.1~30の範囲がより好ましい。更にヨウ素価は、10以下が好ましい。尚、ヨウ素価は実質的に0を取り得る。これらの特性はJIS K 0070に規定された方法により求めることができる。 脂肪酸 The fatty acid ester of the present disclosure may be either a partial ester or a whole ester (full ester). However, a partial ester is more preferably a full ester since the hydroxyl value is usually high and the resin is easily decomposed at a high temperature. The acid value of the fatty acid ester of the present disclosure is preferably 20 or less, more preferably 4 to 20, and still more preferably 4 to 12, from the viewpoint of thermal stability. Incidentally, the acid value can take substantially zero. Further, the hydroxyl value of the fatty acid ester is more preferably in the range of 0.1 to 30. Further, the iodine value is preferably 10 or less. Incidentally, the iodine value can take substantially zero. These characteristics can be obtained by a method specified in JIS K 0070.
 離型剤の含有量は、A成分とB成分との合計100重量部に対して、好ましくは0.005重量部~2重量部、より好ましくは0.01重量部~1重量部、更に好ましくは0.05重量部~0.5重量部である。かかる範囲においては、ポリカーボネート樹脂組成物は良好な離型性および離ロール性を有する。特にかかる量の脂肪酸エステルは良好な色相を損なうことなく良好な離型性および離ロール性を有するポリカーボネート樹脂組成物を提供する。 The content of the release agent is preferably 0.005 to 2 parts by weight, more preferably 0.01 to 1 part by weight, and still more preferably 100 parts by weight of the total of the component A and the component B. Is 0.05 to 0.5 parts by weight. Within such a range, the polycarbonate resin composition has good release properties and roll release properties. In particular, such an amount of the fatty acid ester provides a polycarbonate resin composition having a good releasing property and a good roll releasing property without impairing a good hue.
 (vi)染顔料
 本開示のポリカーボネート樹脂組成物は更に各種の染顔料を含有し多様な意匠性を発現する成形品を提供できる。蛍光増白剤やそれ以外の発光をする蛍光染料を配合することにより、発光色を生かした更に良好な意匠効果を付与することができる。また極微量の染顔料による着色、かつ鮮やかな発色性を有するポリカーボネート樹脂組成物もまた提供可能である。
(Vi) Dye and pigment The polycarbonate resin composition of the present disclosure can further provide a molded article containing various dyes and pigments and exhibiting various design properties. By blending a fluorescent whitening agent or a fluorescent dye that emits other light, a better design effect utilizing the emitted color can be provided. It is also possible to provide a polycarbonate resin composition which is colored by a trace amount of dye and pigment and has vivid coloration.
 本開示で使用する蛍光染料(蛍光増白剤を含む)としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。これらの中でも耐熱性が良好でポリカーボネート樹脂の成形加工時における劣化が少ないクマリン系蛍光染料、ベンゾピラン系蛍光染料、およびペリレン系蛍光染料が好適である。 Examples of the fluorescent dye (including a fluorescent whitening agent) used in the present disclosure include, for example, a coumarin fluorescent dye, a benzopyran fluorescent dye, a perylene fluorescent dye, an anthraquinone fluorescent dye, a thioindigo fluorescent dye, and a xanthene fluorescent dye. And xanthone fluorescent dyes, thioxanthene fluorescent dyes, thioxanthone fluorescent dyes, thiazine fluorescent dyes, and diaminostilbene fluorescent dyes. Of these, coumarin-based fluorescent dyes, benzopyran-based fluorescent dyes, and perylene-based fluorescent dyes, which have good heat resistance and are less likely to deteriorate during molding of the polycarbonate resin, are preferred.
 上記ブルーイング剤および蛍光染料以外の染料としては、ペリレン系染料、クマリン系染料、チオインジゴ系染料、アンスラキノン系染料、チオキサントン系染料、紺青等のフェロシアン化物、ペリノン系染料、キノリン系染料、キナクリドン系染料、ジオキサジン系染料、イソインドリノン系染料、およびフタロシアニン系染料などを挙げることができる。更に本開示の樹脂組成物はメタリック顔料を配合してより良好なメタリック色彩を得ることもできる。メタリック顔料としては、各種板状フィラーに金属被膜または金属酸化物被膜を有するものが好適である。 As the dyes other than the bluing agent and the fluorescent dye, perylene dyes, coumarin dyes, thioindigo dyes, anthraquinone dyes, thioxanthone dyes, ferrocyanides such as navy blue, perinone dyes, quinoline dyes, quinacridone Dyes, dioxazine dyes, isoindolinone dyes, and phthalocyanine dyes. Further, the resin composition of the present disclosure can also obtain a better metallic color by blending a metallic pigment. As the metallic pigment, those having a metal coating or a metal oxide coating on various plate-like fillers are preferable.
 上記の染顔料の含有量は、A成分とB成分との合計100重量部に対して、0.00001重量部~1重量部が好ましく、0.00005重量部~0.5重量部がより好ましい。 The content of the dye / pigment is preferably 0.00001 to 1 part by weight, more preferably 0.00005 to 0.5 part by weight, based on 100 parts by weight of the total of the component A and the component B. .
 (vii)その他の熱安定剤
 本開示のポリカーボネート樹脂組成物には、上記のリン系安定剤およびフェノール系安定剤以外の他の熱安定剤を配合することもできる。かかるその他の熱安定剤は、これらの安定剤および酸化防止剤のいずれかと併用されることが好ましく、特に両者と併用されることが好ましい。かかる他の熱安定剤としては、例えば3-ヒドロキシ-5,7-ジ-tert-ブチル-フラン-2-オンとo-キシレンとの反応生成物に代表されるラクトン系安定剤(かかる安定剤の詳細は特開平7-233160号公報に記載されている)が好適に例示される。かかる化合物はIrganox HP-136(商標、CIBA SPECIALTY CHEMICALS社製)として市販され、該化合物を利用できる。更に該化合物と各種のホスファイト化合物およびヒンダードフェノール化合物を混合した安定剤が市販されている。例えば上記社製のIrganox HP-2921が好適に例示される。本開示においてもかかる予め混合された安定剤を利用することもできる。ラクトン系安定剤の配合量は、A成分とB成分との合計100重量部に対し、好ましくは0.0005重量部~0.05重量部、より好ましくは0.001重量部~0.03重量部である。
(Vii) Other heat stabilizers The polycarbonate resin composition of the present disclosure may also contain other heat stabilizers other than the above-mentioned phosphorus-based stabilizer and phenol-based stabilizer. Such other heat stabilizers are preferably used in combination with any one of these stabilizers and antioxidants, and particularly preferably used in combination with both. Such other heat stabilizers include, for example, lactone stabilizers represented by the reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one with o-xylene (such stabilizers) The details are described in JP-A-7-233160). Such a compound is commercially available as Irganox HP-136 (trademark, manufactured by CIBA SPECIALTY CHEMICALS), and the compound can be used. Further, stabilizers obtained by mixing the compound with various phosphite compounds and hindered phenol compounds are commercially available. For example, Irganox HP-2921 manufactured by the above company is preferably exemplified. Such premixed stabilizers can also be utilized in the present disclosure. The compounding amount of the lactone stabilizer is preferably 0.0005 to 0.05 part by weight, more preferably 0.001 to 0.03 part by weight, based on 100 parts by weight of the total of the component A and the component B. Department.
 またその他の安定剤としては、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、およびグリセロール-3-ステアリルチオプロピオネートなどのイオウ含有安定剤が例示される。かかる安定剤は、樹脂組成物が回転成形に適用される場合に特に有効である。かかるイオウ含有安定剤の配合量は、A成分とB成分との合計100重量部に対して、好ましくは0.001重量部~0.1重量部、より好ましくは0.01重量部~0.08重量部である。 Other stabilizers include sulfur-containing stabilizers such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), and glycerol-3-stearylthiopropionate. Is exemplified. Such a stabilizer is particularly effective when the resin composition is applied to rotational molding. The amount of the sulfur-containing stabilizer to be added is preferably 0.001 part by weight to 0.1 part by weight, more preferably 0.01 part by weight to 0.1 part by weight, based on 100 parts by weight of the total of the component A and the component B. 08 parts by weight.
 (viii)充填材
 本開示のポリカーボネート樹脂組成物には、本開示の効果を発揮する範囲において、強化フィラーとして各種充填材を配合することができる。例えば、炭酸カルシウム、ガラス繊維、ガラスビーズ、ガラスバルーン、ガラスミルドファイバー、ガラスフレーク、炭素繊維、炭素フレーク、カーボンビーズ、カーボンミルドファイバー、グラファイト、気相成長法極細炭素繊維(繊維径が0.1μm未満)、カーボンナノチューブ(繊維径が0.1μm未満であり、中空状)、フラーレン、金属フレーク、金属繊維、金属コートガラス繊維、金属コート炭素繊維、金属コートガラスフレーク、シリカ、金属酸化物粒子、金属酸化物繊維、金属酸化物バルーン、並びに各種ウイスカー(チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、および塩基性硫酸マグネシウムなど)などが例示される。これらの強化フィラーは1種もしくは2種以上を併用して含むものであってもよい。これらの充填材の含有量はA成分とB成分との合計100重量部に対して、好ましくは0.1重量部~60重量部、より好ましくは0.5重量部~50重量部である。
(Viii) Filler In the polycarbonate resin composition of the present disclosure, various fillers can be blended as a reinforcing filler within a range in which the effects of the present disclosure are exhibited. For example, calcium carbonate, glass fiber, glass beads, glass balloon, glass milled fiber, glass flake, carbon fiber, carbon flake, carbon beads, carbon milled fiber, graphite, vapor grown ultrafine carbon fiber (fiber diameter 0.1 μm Less than), carbon nanotubes (fiber diameter less than 0.1 μm, hollow), fullerene, metal flake, metal fiber, metal-coated glass fiber, metal-coated carbon fiber, metal-coated glass flake, silica, metal oxide particles, Examples include metal oxide fibers, metal oxide balloons, and various whiskers (such as potassium titanate whiskers, aluminum borate whiskers, and basic magnesium sulfate). These reinforcing fillers may be used alone or in combination of two or more. The content of these fillers is preferably from 0.1 to 60 parts by weight, more preferably from 0.5 to 50 parts by weight, based on 100 parts by weight of the total of the component A and the component B.
 (ix)光高反射用白色顔料
 本開示のポリカーボネート樹脂組成物には、光高反射用白色顔料を配合して光反射効果を付与することができる。かかる白色顔料としては酸化チタン、硫化亜鉛、酸化亜鉛、硫酸バリウム、炭酸カルシウム、焼成カオリンなどが挙げられ、特に酸化チタンが公的に用いられる。使用される酸化チタンとしては、有機物で表面処理された平均粒子径が0.1~5.0μmの酸化チタンが好ましい。(尚、本開示においては酸化チタン顔料の酸化チタン成分を“TiO”と表記し、表面処理剤を含む顔料全体について“酸化チタン”と表記する)TiOは結晶形がアナタース型、ルチル型のいずれのものでもよく、それらは必要に応じて混合して使用することもできる。初期の機械特性や長期耐候性の点でより好ましいのはルチル型である。尚、ルチル型結晶中にアナタース型結晶を含有するものでもよい。更にTiOの製法は硫酸法、塩素法、その他種々の方法によって製造された物を使用できるが、塩素法がより好ましい。また本開示の酸化チタンは、特に、その形状を限定するものではないが粒子状のものがより好適である。酸化チタンは、通常各種着色用途に使用されており、本開示の白色顔料として使用される酸化チタンの平均粒子径は、0.10μm~5.0μmであることが好ましく、0.15μm~2.0μmがより好ましく、0.18μm~1.5μmがさらに好ましい。平均粒子径が0.10μm以上である場合には、高充填した場合であってもシルバー等の外観不良が回避される場合があり、また、5.0μm以下である場合には、良好な外観及び機械特性が確保される場合がある。なお、かかる平均粒子径は電子顕微鏡観察から、個々の単一粒子径を測定しその数平均により算出される。
(Ix) High-reflection white pigment The polycarbonate resin composition of the present disclosure can be mixed with a high-reflection white pigment to impart a light reflection effect. Examples of such white pigments include titanium oxide, zinc sulfide, zinc oxide, barium sulfate, calcium carbonate, calcined kaolin and the like, and in particular, titanium oxide is publicly used. As the titanium oxide to be used, titanium oxide having an average particle diameter of 0.1 to 5.0 μm, which is surface-treated with an organic substance, is preferable. (In the present disclosure, the titanium oxide component of the titanium oxide pigment is described as “TiO 2 ”, and the entire pigment including the surface treatment agent is described as “titanium oxide.”) TiO 2 has a crystal form of anatase type or rutile type. Any of these may be used, and they may be used as a mixture if necessary. The rutile type is more preferable in terms of initial mechanical properties and long-term weather resistance. The rutile-type crystal may contain an anatase-type crystal. Further, as the method for producing TiO 2 , those produced by various methods such as a sulfuric acid method and a chlorine method can be used, but the chlorine method is more preferable. Further, the titanium oxide of the present disclosure is not particularly limited in its shape, but is preferably in the form of particles. Titanium oxide is generally used for various coloring purposes, and the average particle diameter of titanium oxide used as the white pigment of the present disclosure is preferably 0.10 μm to 5.0 μm, and more preferably 0.15 μm to 2.0 μm. 0 μm is more preferred, and 0.18 μm to 1.5 μm is even more preferred. When the average particle size is 0.10 μm or more, poor appearance such as silver may be avoided even in the case of high filling, and when the average particle size is 5.0 μm or less, a good appearance is obtained. And mechanical characteristics may be ensured. The average particle diameter is calculated from the number average of individual single particle diameters measured by electron microscope observation.
 本開示で使用される酸化チタンは有機化合物で表面処理されていることが好ましい。有機処理されていない酸化チタンを使用した場合、黄変により、外観が悪化し、また成形体の反射率が著しく低下し、充分な日射反射率が得られない場合があるため、屋外での使用には適さない場合がある。かかる表面処理剤としては、ポリオール系、アミン系、およびシリコーン系などの各種処理剤を使用することができる。ポリオール系表面処理剤としては、例えばペンタエリスリトール、トリメチロールエタン、およびトリメチロールプロパンなどが挙げられ、アミン系表面処理剤としては、例えばトリエタノールアミンの酢酸塩、およびトリメチロールアミンの酢酸塩などが挙げられ、シリコーン系表面処理剤としては、例えばアルキルクロロシラン(トリメチルクロロシランなど)、アルキルアルコキシシラン(メチルトリメトキシシランなど)、およびハイドロジェンポリシロキサンなどを挙げることができる。ハイドロジェンポリシロキサンとしては、アルキルハイドロジェンポリシロキサン、およびアルキルフェニルハイドロジェンポリシロキサンなどが例示される。かかるアルキル基としてはメチル基およびエチル基が好適である。かかるアルキルアルコキシシランおよび/またはハイドロジェンポリシロキサンで表面処理された酸化チタンは、本開示の樹脂組成物により良好な光反射性を与える。表面処理に使用される有機化合物の量は、酸化チタン100重量部当り、好ましくは0.05重量部~5重量部、より好ましくは0.5重量部~3重量部、更に好ましくは1.5重量部~2.5重量部の範囲である。表面処理量が0.05重量部以上である場合には、十分な熱安定性が得られる場合があり、5重量部以下である場合には、シルバーなどの成形不良が回避されうる点から好ましい。有機化合物の表面処理剤は、予め酸化チタン(より好適には他の金属酸化物で被覆された酸化チタン)になされることが好ましい。しかしながら、樹脂組成物の原材料を溶融混練する際に該表面処理剤を別途添加し、その溶融混練工程において酸化チタンの表面処理が行われる方法であってもよい。 チ タ ン The titanium oxide used in the present disclosure is preferably surface-treated with an organic compound. When using titanium oxide that has not been subjected to organic treatment, the appearance is deteriorated due to yellowing, and the reflectance of the molded article is significantly reduced, so that sufficient solar reflectance may not be obtained. May not be suitable for As such a surface treating agent, various treating agents such as polyol-based, amine-based, and silicone-based can be used. Examples of the polyol-based surface treatment agent include pentaerythritol, trimethylolethane, and trimethylolpropane, and examples of the amine-based surface treatment agent include triethanolamine acetate and trimethylolamine acetate. Examples of the silicone-based surface treatment agent include alkyl chlorosilane (such as trimethylchlorosilane), alkylalkoxysilane (such as methyltrimethoxysilane), and hydrogenpolysiloxane. Examples of the hydrogen polysiloxane include an alkyl hydrogen polysiloxane and an alkylphenyl hydrogen polysiloxane. As such an alkyl group, a methyl group and an ethyl group are preferable. The titanium oxide surface-treated with such an alkylalkoxysilane and / or hydrogenpolysiloxane gives the resin composition of the present disclosure better light reflectivity. The amount of the organic compound used for the surface treatment is preferably from 0.05 to 5 parts by weight, more preferably from 0.5 to 3 parts by weight, and still more preferably from 1.5 to 3 parts by weight, per 100 parts by weight of titanium oxide. The range is from 2.5 parts by weight to 2.5 parts by weight. When the surface treatment amount is 0.05 parts by weight or more, sufficient thermal stability may be obtained, and when the surface treatment amount is 5 parts by weight or less, it is preferable because molding defects such as silver can be avoided. . It is preferable that the surface treatment agent of the organic compound is previously formed on titanium oxide (more preferably, titanium oxide coated with another metal oxide). However, a method in which the surface treatment agent is separately added when the raw materials of the resin composition are melt-kneaded, and the surface treatment of titanium oxide is performed in the melt-kneading step may be employed.
 光高反射用白色顔料の含有量は、A成分とB成分との合計100重量部に対し、0.1重量部~10重量部であることが好ましく、0.15重量部~7.5重量部がより好ましく、さらに好ましくは0.15重量部~5重量部である。光高反射用白色顔料の含有量が0.1重量部以上である場合には、充分な白色外観や遮光性が得られる場合があり、10重量部以下である場合には、シルバーなどの成形不良や物性の著しい低下が回避されうるため好ましい。尚、光高反射用白色顔料は2種以上を併用することができる。 The content of the white pigment for high light reflection is preferably from 0.1 to 10 parts by weight, and more preferably from 0.15 to 7.5 parts by weight, based on 100 parts by weight of the total of the component A and the component B. Parts by weight, more preferably 0.15 parts by weight to 5 parts by weight. When the content of the high-reflection white pigment is 0.1 part by weight or more, a sufficient white appearance or light-shielding property may be obtained. When the content is 10 parts by weight or less, molding of silver or the like is performed. This is preferable because defects and remarkable reduction in physical properties can be avoided. In addition, two or more kinds of white pigments for high light reflection can be used in combination.
 (x)他の樹脂やエラストマー
 本開示の樹脂組成物には、他の樹脂やD成分以外のグラフトポリマーを本開示の効果を発揮する範囲において、少割合使用することもできる。
(X) Other Resins and Elastomers In the resin composition of the present disclosure, a small proportion of other resins and graft polymers other than the D component may be used as long as the effects of the present disclosure are exhibited.
 かかる他の樹脂としては、例えばABS等のスチレン系樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリメタクリレート樹脂、フェノール樹脂、エポキシ樹脂等の樹脂が挙げられる。 As such other resins, for example, styrene resins such as ABS, polyamide resins, polyimide resins, polyetherimide resins, polyurethane resins, silicone resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, polymethacrylate resins, phenol resins, Examples of the resin include an epoxy resin.
 また、エラストマーとしては、例えばイソブチレン/イソプレンゴム、エチレン/プロピレンゴム、スチレン系エラストマー、アクリル系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等が挙げられる。 エ ラ ス ト マ ー Also, examples of the elastomer include isobutylene / isoprene rubber, ethylene / propylene rubber, styrene-based elastomer, acrylic-based elastomer, polyester-based elastomer, and polyamide-based elastomer.
(xi)A成分以外のポリカーボネート樹脂
 本開示の樹脂組成物には、A成分以外のポリカーボネート系樹脂を、本開示の効果を発揮する範囲において、少量使用することもできる。
(Xi) Polycarbonate resin other than A component In the resin composition of the present disclosure, a small amount of a polycarbonate resin other than the A component may be used as long as the effects of the present disclosure are exhibited.
 本開示において使用されるポリカーボネート-ポリジオルガノシロキサン共重合樹脂(A成分)以外のポリカーボネート系樹脂は、一般に二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。 ポ リ カ ー ボ ネ ー ト A polycarbonate resin other than the polycarbonate-polydiorganosiloxane copolymer resin (component A) used in the present disclosure is generally obtained by reacting a dihydric phenol with a carbonate precursor. Examples of the reaction method include an interfacial polymerization method, a melt transesterification method, a solid-phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
 ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’-ビフェノール、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、4,4’-(p-フェニレンジイソプロピリデン)ジフェノール、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシフェニル)エステル、ビス(4-ヒドロキシ-3-メチルフェニル)スルフィド、9,9-ビス(4-ヒドロキシフェニル)フルオレンおよび9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4-ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。 Representative examples of the dihydric phenol used here include hydroquinone, resorcinol, 4,4'-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, and 2,2-bis (4-hydroxyphenyl). ) Propane (commonly known as bisphenol A), 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl)- 1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) Pentane, 4,4 '-(p-phenylenediisopropylidene) diphenol, 4,4'-(m-phenylenediiso (Ropylidene) diphenol, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) ester, bis (4-hydroxy-3-methylphenyl) sulfide, 9,9-bis (4-hydroxyphenyl) Fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene. Preferred dihydric phenols are bis (4-hydroxyphenyl) alkanes. Among them, bisphenol A is particularly preferred from the viewpoint of impact resistance, and is widely used.
 本開示では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ-トをA成分として使用することが可能である。 In the present disclosure, besides bisphenol A-based polycarbonate which is a general-purpose polycarbonate, a special polycarbonate produced by using other dihydric phenols can be used as the component A.
 例えば、2価フェノール成分の一部又は全部として、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(以下“Bis-TMC”と略称することがある)、9,9-ビス(4-ヒドロキシフェニル)フルオレン及び9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ-ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。 For example, 4,4 ′-(m-phenylenediisopropylidene) diphenol (hereinafter sometimes abbreviated as “BPM”), 1,1-bis (4-hydroxy Phenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (hereinafter sometimes abbreviated as “Bis-TMC”), 9,9-bis (4-hydroxyphenyl) Polycarbonate (homopolymer or copolymer) using fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (hereinafter may be abbreviated as “BCF”) has a dimension due to water absorption. It is particularly suitable for applications where the requirements for change and morphological stability are particularly severe. These dihydric phenols other than BPA are preferably used in an amount of 5 mol% or more, particularly 10 mol% or more of the entire dihydric phenol component constituting the polycarbonate.
 殊に、高剛性かつより良好な耐加水分解性が要求される場合には、樹脂組成物を構成するA成分以外のポリカーボネート系樹脂が次の(1)~(3)のいずれかの共重合ポリカーボネートであるのが特に好適である:
(1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20モル%~80モル%(より好適には40モル%~75モル%、さらに好適には45モル%~65モル%)であり、かつBCFが20モル%~80モル%(より好適には25モル%~60モル%、さらに好適には35モル%~55モル%)である共重合ポリカーボネート
(2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10モル%~95モル%(より好適には50モル%~90モル%、さらに好適には60モル%~85モル%)であり、かつBCFが5モル%~90モル%(より好適には10モル%~50モル%、さらに好適には15モル%~40モル%)である共重合ポリカーボネート
(3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20モル%~80モル%(より好適には40モル%~75モル%、さらに好適には45モル%~65モル%)であり、かつBis-TMCが20モル%~80モル%(より好適には25モル%~60モル%、さらに好適には35モル%~55モル%)である共重合ポリカーボネート。
In particular, when high rigidity and better hydrolysis resistance are required, a polycarbonate resin other than the component A constituting the resin composition is copolymerized with any of the following (1) to (3): Particularly preferred is polycarbonate:
(1) 20 mol% to 80 mol% (more preferably 40 mol% to 75 mol%, more preferably 45 mol% to 65 mol%) of BPM in 100 mol% of the dihydric phenol component constituting the polycarbonate. ), And having a BCF of 20 mol% to 80 mol% (more preferably 25 mol% to 60 mol%, and still more preferably 35 mol% to 55 mol%). BPA is 10 mol% to 95 mol% (more preferably 50 mol% to 90 mol%, more preferably 60 mol% to 85 mol%) in 100 mol% of the dihydric phenol component, and BCF Is from 5 mol% to 90 mol% (more preferably from 10 mol% to 50 mol%, and still more preferably from 15 mol% to 40 mol%). BPM is 20 mol% to 80 mol% (more preferably 40 mol% to 75 mol%, still more preferably 45 mol% to 65 mol%) in 100 mol% of the dihydric phenol component, and Bis- A copolymerized polycarbonate having a TMC of 20 mol% to 80 mol% (more preferably 25 mol% to 60 mol%, and still more preferably 35 mol% to 55 mol%).
 これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。 These special polycarbonates may be used alone or as a mixture of two or more. These can also be used by mixing with a commonly used bisphenol A type polycarbonate.
 これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6-172508号公報、特開平8-27370号公報、特開2001-55435号公報及び特開2002-117580号公報等に詳しく記載されている。 The production methods and properties of these special polycarbonates are described in detail in, for example, JP-A-6-172508, JP-A-8-27370, JP-A-2001-55435, and JP-A-2002-117580. ing.
 なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05%~0.15%、好ましくは0.06%~0.13%であり、かつTgが120%~180℃であるポリカーボネート、あるいは
(ii)Tgが160℃~250℃、好ましくは170℃~230℃であり、かつ吸水率が0.10%~0.30%、好ましくは0.13%~0.30%、より好ましくは0.14%~0.27%であるポリカーボネート。
Among the above-mentioned various polycarbonates, those whose water absorption and Tg (glass transition temperature) are adjusted to the following ranges by adjusting the copolymer composition and the like have good hydrolysis resistance of the polymer itself, and Since it is extremely excellent in low warpage after molding, it is particularly suitable in the field where form stability is required.
(I) a polycarbonate having a water absorption of 0.05% to 0.15%, preferably 0.06% to 0.13% and a Tg of 120% to 180 ° C, or (ii) a Tg of 160 ° C To 250 ° C., preferably 170 ° C. to 230 ° C., and a water absorption of 0.10% to 0.30%, preferably 0.13% to 0.30%, more preferably 0.14% to 0.30%. Polycarbonate that is 27%.
 ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62-1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。 Here, the water absorption of the polycarbonate is a value obtained by measuring a water content after immersing in water at 23 ° C. for 24 hours in accordance with ISO 62-1980 using a disk-shaped test piece having a diameter of 45 mm and a thickness of 3.0 mm. is there. Further, Tg (glass transition temperature) is a value determined by a differential scanning calorimeter (DSC) measurement based on JIS K7121.
 カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。 As the carbonate precursor, carbonyl halide, carbonic acid diester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate or dihaloformate of dihydric phenol.
 前記二価フェノールとカーボネート前駆体を界面重合法によって芳香族ポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本開示の芳香族ポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られた芳香族ポリカーボネート樹脂の2種以上を混合した混合物であってもよい。 In producing the aromatic polycarbonate resin by the interfacial polymerization method of the dihydric phenol and the carbonate precursor, if necessary, a catalyst, a terminal stopper, an antioxidant to prevent oxidation of the dihydric phenol. May be used. Further, the aromatic polycarbonate resin of the present disclosure is a branched polycarbonate resin obtained by copolymerizing a trifunctional or higher polyfunctional aromatic compound, or a polyester obtained by copolymerizing an aromatic or aliphatic (including alicyclic) difunctional carboxylic acid. Includes carbonate resins, copolymerized polycarbonate resins copolymerized with a difunctional alcohol (including alicyclic), and polyester carbonate resins copolymerized with such a difunctional carboxylic acid and a difunctional alcohol. Further, a mixture of two or more of the obtained aromatic polycarbonate resins may be used.
 分岐ポリカーボネート樹脂は、本開示の樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノール、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。 A branched polycarbonate resin can impart drip prevention performance and the like to the resin composition of the present disclosure. Examples of the trifunctional or higher polyfunctional aromatic compound used in such a branched polycarbonate resin include phloroglucin, phloroglucid, and 4,6-dimethyl-2,4,6-tris (4-hydrodiphenyl) heptene-2,2. , 4,6-Trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) Ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [ 1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol Roxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and their acids Chloride and the like, among which 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable, and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane is particularly preferable. 1-Tris (4-hydroxyphenyl) ethane is preferred.
 分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、好ましくは0.01モル%~1モル%、より好ましくは0.05モル%~0.9モル%、さらに好ましくは0.05モル%~0.8モル%である。 The structural unit derived from the polyfunctional aromatic compound in the branched polycarbonate is preferably 100 mol% of the total of the structural unit derived from the dihydric phenol and the structural unit derived from the polyfunctional aromatic compound, and is preferably It is 0.01 mol% to 1 mol%, more preferably 0.05 mol% to 0.9 mol%, and still more preferably 0.05 mol% to 0.8 mol%.
 また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、好ましくは0.001モル%~1モル%、より好ましくは0.005モル%~0.9モル%、さらに好ましくは0.01モル%~0.8モル%であるものが好ましい。なお、かかる分岐構造の割合についてはH-NMR測定により算出することが可能である。 In addition, particularly in the case of the melt transesterification method, a branched structural unit may be generated as a side reaction, and the amount of the branched structural unit is preferably in a total of 100 mol% with the structural unit derived from dihydric phenol. It is preferably 0.001 mol% to 1 mol%, more preferably 0.005 mol% to 0.9 mol%, and still more preferably 0.01 mol% to 0.8 mol%. It should be noted that the ratio of such a branched structure can be calculated by 1 H-NMR measurement.
 脂肪族の二官能性のカルボン酸は、α,ω-ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。 Α The aliphatic bifunctional carboxylic acid is preferably α, ω-dicarboxylic acid. Examples of the aliphatic difunctional carboxylic acid include straight-chain saturated aliphatic dicarboxylic acids such as sebacic acid (decandioic acid), dodecandioic acid, tetradecandioic acid, icosandioic acid, and cyclohexanedicarboxylic acid. And alicyclic dicarboxylic acids. As the bifunctional alcohol, an alicyclic diol is more preferable, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecanedimethanol.
 本開示のポリカーボネート系樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマー固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献および特許公報などで良く知られている方法である。 Reaction methods such as an interfacial polymerization method, a melt transesterification method, a carbonate prepolymer solid-phase transesterification method, and a ring-opening polymerization method of a cyclic carbonate compound, which are production methods of the polycarbonate resin of the present disclosure, are disclosed in various literatures and patent publications. This is a well-known method.
 (xi)その他の添加剤
 その他、本開示のポリカーボネート樹脂組成物には、成形品に種々の機能の付与や特性改善のために、それ自体知られた添加物を少割合配合することができる。これら添加物は本開示の目的を損なわない限り、通常の配合量である。
(Xi) Other additives In addition, the polycarbonate resin composition of the present disclosure may contain a small amount of additives known per se for imparting various functions to a molded article and improving properties. These additives are in a usual amount unless the purpose of the present disclosure is impaired.
 かかる添加剤としては、摺動剤(例えばPTFE粒子)、着色剤(例えばカーボンブラックなどの顔料、染料)、光拡散剤(例えばアクリル架橋粒子、シリコン架橋粒子、極薄ガラスフレーク、炭酸カルシウム粒子)、蛍光染料、無機系蛍光体(例えばアルミン酸塩を母結晶とする蛍光体)、帯電防止剤、結晶核剤、無機および有機の抗菌剤、光触媒系防汚剤(例えば微粒子酸化チタン、微粒子酸化亜鉛)、ラジカル発生剤、赤外線吸収剤(熱線吸収剤)、およびフォトクロミック剤などが挙げられる。 Examples of such additives include a sliding agent (for example, PTFE particles), a coloring agent (for example, pigments and dyes such as carbon black), and a light diffusing agent (for example, acrylic crosslinked particles, silicon crosslinked particles, ultrathin glass flakes, and calcium carbonate particles). , Fluorescent dyes, inorganic phosphors (for example, phosphors having an aluminate as a mother crystal), antistatic agents, crystal nucleating agents, inorganic and organic antibacterial agents, and photocatalyst-based antifouling agents (for example, fine particle titanium oxide, fine particle oxidation) Zinc), a radical generator, an infrared absorber (heat ray absorber), and a photochromic agent.
 (ポリカーボネート樹脂組成物の製造)
 本開示のポリカーボネート樹脂組成物を製造するには、任意の方法が採用される。例えば、B成分を除くA成分~D成分又はA成分~F成分、および任意に他の添加剤を、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などの予備混合手段を用いて充分に混合した後、必要に応じて押出造粒器やブリケッティングマシーンなどによりかかる予備混合物の造粒を行い、その後ベント式二軸押出機に代表される溶融混練機で溶融混練し、その後ペレタイザーによりペレット化する方法が挙げられる。
(Production of polycarbonate resin composition)
An arbitrary method is employed for producing the polycarbonate resin composition of the present disclosure. For example, the components A to D or the components A to F excluding the component B and, optionally, other additives are sufficiently mixed by using a premixing means such as a V-type blender, a Henschel mixer, a mechanochemical device, and an extruder. After mixing, the premix is granulated by an extrusion granulator or briquetting machine as necessary, and then melt-kneaded by a melt kneader represented by a vented twin screw extruder, and then a pelletizer. To form pellets.
 他に、各成分をそれぞれ独立にベント式二軸押出機に代表される溶融混練機に供給する方法や、各成分の一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法なども挙げられる。各成分の一部を予備混合する方法としては例えば、A成分およびB成分以外の成分を予め予備混合した後、A成分の熱可塑性樹脂に混合または押出機に直接供給する方法が挙げられる。 Alternatively, each component may be independently supplied to a melt kneader typified by a vented twin-screw extruder, or after a part of each component is premixed, supplied to the melt kneader independently of the remaining components. And the like. As a method of premixing a part of each component, for example, a method in which components other than the component A and the component B are preliminarily mixed and then mixed with the thermoplastic resin of the component A or directly supplied to an extruder can be mentioned.
 予備混合する方法としては例えば、A成分としてパウダーの形態を有するものを含む場合、かかるパウダーの一部と配合する添加剤とをブレンドしてパウダーで希釈した添加剤のマスターバッチを製造し、かかるマスターバッチを利用する方法が挙げられる。更に一成分を独立に溶融押出機の途中から供給する方法なども挙げられる。尚、配合する成分に液状のものがある場合には、溶融押出機への供給にいわゆる液注装置、または液添装置を使用することができる。 As a method of pre-mixing, for example, in the case where a component having the form of powder as the A component is included, a master batch of an additive diluted with powder is produced by blending a part of the powder and an additive to be blended, and There is a method using a master batch. Furthermore, a method in which one component is independently supplied from the middle of the melt extruder may be used. When there is a liquid component to be compounded, a so-called liquid injection device or liquid addition device can be used for supply to the melt extruder.
 押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。 As the extruder, a extruder having a vent capable of degassing moisture in the raw material and volatile gas generated from the melt-kneaded resin can be preferably used. A vacuum pump for efficiently discharging generated moisture and volatile gas from the vent to the outside of the extruder is preferably installed. It is also possible to install a screen for removing foreign matters and the like mixed in the extruded raw material in a zone in front of the die portion of the extruder to remove the foreign matters from the resin composition. Examples of such a screen include a wire mesh, a screen changer, a sintered metal plate (such as a disk filter) and the like.
 溶融混練機としては二軸押出機の他にバンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機などを挙げることができる。 Examples of the melt kneader include a Banbury mixer, a kneading roll, a single screw extruder, and a multi-screw extruder having three or more screws in addition to a twin-screw extruder.
 上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の低減、運送または輸送時に発生する微小粉の低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を適宜行うことができる。これらの処方により成形のハイサイクル化、およびシルバーの如き不良発生割合の低減を行うことができる。またペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1mm~5mm、より好ましくは1.5mm~4mm、さらに好ましくは2mm~3.3mmである。一方、円柱の長さは好ましくは1mm~30mm、より好ましくは2mm~5mm、さらに好ましくは2.5mm~3.5mmである。 樹脂 The resin extruded as described above is directly cut into pellets, or after the strands are formed, the strands are cut with a pelletizer to be pelletized. When it is necessary to reduce the influence of external dust and the like during pelletization, it is preferable to clean the atmosphere around the extruder. Furthermore, in the production of such pellets, using various methods already proposed for polycarbonate resins for optical discs, narrowing of the shape distribution of pellets, reduction of miscuts, reduction of fine powder generated during transportation or transportation. In addition, air bubbles (vacuum air bubbles) generated inside the strands and pellets can be appropriately reduced. By these prescriptions, it is possible to increase the molding cycle and to reduce the occurrence rate of defects such as silver. The shape of the pellet may be a general shape such as a cylinder, a prism, and a sphere, but is more preferably a cylinder. The diameter of such a cylinder is preferably 1 mm to 5 mm, more preferably 1.5 mm to 4 mm, and still more preferably 2 mm to 3.3 mm. On the other hand, the length of the column is preferably 1 mm to 30 mm, more preferably 2 mm to 5 mm, and further preferably 2.5 mm to 3.5 mm.
 (本開示の樹脂組成物からなる成形品について)
 本開示における樹脂組成物は、通常上述の方法で得られたペレットを射出成形して各種製品を製造することができる。かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。
(About a molded article comprising the resin composition of the present disclosure)
The resin composition of the present disclosure can be used to produce various products by injection molding the pellets obtained by the above-described method. In such injection molding, not only ordinary molding methods but also, as appropriate, injection compression molding, injection press molding, gas assist injection molding, foam molding (including injection by supercritical fluid), insert molding, A molded article can be obtained by using an injection molding method such as in-mold coating molding, heat-insulating mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, and ultra-high-speed injection molding. The advantages of these various molding methods are already widely known. For the molding, either a cold runner method or a hot runner method can be selected.
 また本開示における樹脂組成物は、押出成形により各種異形押出成形品、シート、フィルムなどの形で使用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。さらに特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本開示の樹脂組成物を回転成形やブロー成形などにより成形品とすることも可能である。 The resin composition of the present disclosure can also be used in the form of various shaped extruded products, sheets, films, etc. by extrusion. For forming a sheet or film, an inflation method, a calendar method, a casting method, or the like can be used. It is also possible to form a heat-shrinkable tube by performing a specific stretching operation. Further, the resin composition of the present disclosure can be formed into a molded product by rotational molding, blow molding, or the like.
 本開示の樹脂組成物が利用される成形品の具体例としては、生活資材・住宅設備資材・建材・インテリア用品やOA機器・家電製品の内部部品やハウジングなどへの応用に好適なものである。これらの製品としては例えば、パソコン、ノートパソコン、CRTディスプレー、プリンター、携帯端末、携帯電話、コピー機、ファックス、記録媒体(CD、CD-ROM、DVD、PD、FDDなど)ドライブ、パラボラアンテナ、電動工具、VTR、テレビ、アイロン、ヘアードライヤー、炊飯器、電子レンジ、音響機器、オーディオ・レーザーディスク(登録商標)・コンパクトディスクなどの音声機器、照明機器、冷蔵庫、エアコン、タイプライター、ワードプロセッサー、スーツケースや清掃用具などの生活資材、浴室、トイレタリー、洗面化粧台などの住宅設備資材などを挙げることができ、これらの筐体などの各種部品に本開示のポリカーボネート樹脂組成物から形成された樹脂製品を使用することができる。またその他の樹脂製品としては、ディフレクター部品、カーナビケーション部品、カーステレオ部品などの車両用部品を挙げることができる。 Specific examples of molded articles in which the resin composition of the present disclosure is used include those suitable for application to living materials, housing equipment materials, building materials, interior goods, OA equipment and internal components of electric home appliances, housings, and the like. . These products include, for example, personal computers, notebook computers, CRT displays, printers, mobile terminals, mobile phones, copiers, faxes, recording media (CD, CD-ROM, DVD, PD, FDD, etc.) drives, parabolic antennas, Tools, VTRs, TVs, irons, hair dryers, rice cookers, microwave ovens, audio equipment, audio equipment such as audio, laser disks (registered trademark) and compact disks, lighting equipment, refrigerators, air conditioners, typewriters, word processors, suitcases And living equipment such as cleaning tools, bathrooms, toiletries, housing equipment such as vanities, and the like.Resin products formed from the polycarbonate resin composition of the present disclosure in various parts such as these housings. Can be used. Other resin products include vehicle parts such as deflector parts, car navigation parts, and car stereo parts.
 本開示に係る発明を実施するための形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本開示はこれらの形態に限定されるものではない。 形態 The mode for carrying out the invention according to the present disclosure is an aggregation of the preferred ranges of the above-described requirements. For example, representative examples are described in the following examples. Of course, the present disclosure is not limited to these modes.
 以下に実施例をあげて本開示に係る発明を更に説明する。なお、特に説明が無い限り実施例中の部は重量部、%は重量%である。なお、評価は下記の方法によって実施した。 発 明 The invention according to the present disclosure will be further described below with reference to examples. Unless otherwise specified, parts in Examples are parts by weight and% is% by weight. The evaluation was performed by the following method.
 (ポリカーボネート樹脂組成物の評価)
(i)シャルピー衝撃強度
 下記の方法で得られたISO曲げ試験片を用いて、ISO 179に従い、ノッチ付きのシャルピー衝撃強度の測定を実施した。
(ii)難燃性
 下記の方法で得られたUL試験片を用いて、UL94に従い、V試験を実施した。なお、判定がV-0、V-1、V-2のいずれの基準も満たすことが出来なかった場合を「notV」と示した。
(iii)耐薬品性
 下記の方法で得られたISO引張試験片を用いて、3点曲げ試験法にて、1%歪みをかけた後、マジックリン、バスマジックリンおよびトイレマジックリン(全て、花王(株)製)を含浸させた布をかけ、23℃で96時間放置した後に、外観変化の有無を確認した。なお、評価は下記の基準で実施した。
○:外観変化が見られないもの
△:微細なクラックの発生が見られるもの
×:破断にいたるような大きなクラックが見られるもの
(iv)防汚性(対水接触角)
 下記の方法で得られた見本板(穴つき3段プレート)の表面の対水接触角を接触角測定機G-I-1000(株式会社エルマ製)も用いて測定した。対水接触角が100°以上になった場合を「○」、100°未満になった場合を「×」として評価を実施した。
(v)熱安定性
 下記の方法と同条件のままシリンダー内で10分滞留させた後に成形して得られた試験片とペレットの間の粘度平均分子量の低下量ΔMvを下記式に基づいて算出した。
粘度平均分子量の低下量ΔMv=(ペレットの粘度平均分子量)-(10分滞留後の成形品の粘度平均分子量)
なお、評価は下記の基準で実施した。
○:ΔMv<3,000
△:3,000≦ΔMv<5,000
×:5,000≦ΔMv
(vi)外観
 下記の方法で作製して得られた見本板(穴つき3段プレート)の外観について、目視で
評価した。なお、評価は下記の基準で実施した。
○:ゲート付近に目立った外観不良が見られない
×:ゲート付近に大きなフローマーク、あるいは剥離が発生
(Evaluation of polycarbonate resin composition)
(I) Charpy impact strength Notched Charpy impact strength was measured in accordance with ISO 179 using an ISO bending test piece obtained by the following method.
(Ii) Flame retardancy A V test was performed according to UL94 using the UL test piece obtained by the following method. The case where the judgment failed to satisfy any of the criteria of V-0, V-1, and V-2 was indicated as "notV".
(Iii) Chemical resistance After applying 1% strain by a three-point bending test method using an ISO tensile test piece obtained by the following method, magic phosphorus, bath magic phosphorus and toilet magic phosphorus (all, After a cloth impregnated with Kao Corporation) was impregnated and allowed to stand at 23 ° C. for 96 hours, the presence or absence of a change in appearance was confirmed. The evaluation was performed according to the following criteria.
:: No change in appearance is observed △: Fine cracks are observed X: Large cracks leading to breakage are observed (iv) Antifouling property (contact angle to water)
The contact angle of water on the surface of the sample plate (three-stage plate with holes) obtained by the following method was measured using a contact angle measuring machine GI-1000 (manufactured by Elma Corporation). The evaluation was performed as “対” when the contact angle with water was 100 ° or more, and “X” when the contact angle was less than 100 °.
(V) Thermal stability The amount of decrease in viscosity average molecular weight ΔMv between a test piece and a pellet obtained by molding after allowing to stay in a cylinder for 10 minutes under the same conditions as the following method is calculated based on the following equation. did.
Amount of decrease in viscosity average molecular weight ΔMv = (viscosity average molecular weight of pellet)-(viscosity average molecular weight of molded article after 10 minutes residence)
The evaluation was performed according to the following criteria.
:: ΔMv <3,000
Δ: 3,000 ≦ ΔMv <5,000
×: 5,000 ≦ ΔMv
(Vi) Appearance The appearance of a sample plate (three-step plate with holes) obtained by the following method was visually evaluated. The evaluation was performed according to the following criteria.
:: No noticeable appearance defect is observed near the gate. ×: Large flow mark or peeling occurs near the gate.
 [実施例1~33、比較例1~11]
 表1~3に示す組成で、B成分のポリエステル系樹脂を除く成分からなる混合物を押出機の第1供給口から供給した。なお、実施例1~13、15~29および31~33、並びに比較例1~4、6、7、10、11におけるD成分の含有量は、括弧内に示したD-1~D-3に含まれる防汚性付与剤の量である(括弧外の数字は、濃度50%のマスターバッチであるD-1~D-3の量を表す。)。かかる混合物はV型ブレンダーで混合して得た。B成分のポリエステル系樹脂は、第2供給口からサイドフィーダーを用いて供給した。押出は径30mmφのベント式二軸押出機((株)日本製鋼所TEX30α-38.5BW-3V)を使用し、スクリュー回転数230rpm、吐出量25kg/h、ベントの真空度3kPaで溶融混練しペレットを得た。なお、押出温度については、第1供給口からダイス部分まで260℃で実施した。得られたペレットの一部は、80℃で6時間熱風循環式乾燥機にて乾燥した後、射出成形機を用いて、シリンダー温度260℃、金型温度60℃にて評価用の試験片(ISO引張試験片(ISO527-1及びISO527-2準拠)、ISO曲げ試験片(ISO178、ISO179、ISO75-1及びISO75-2準拠))、UL試験片(幅13mm×長さ125mm×厚さ1.5mm)、および見本板(穴つき3段プレート))を作製した。
[Examples 1 to 33, Comparative Examples 1 to 11]
Mixtures having the compositions shown in Tables 1 to 3 and excluding the polyester resin as the B component were supplied from the first supply port of the extruder. The content of the D component in Examples 1 to 13, 15 to 29 and 31 to 33, and Comparative Examples 1 to 4, 6, 7, 10, and 11 was D-1 to D-3 shown in parentheses. (The numbers outside the parentheses indicate the amounts of master batches D-1 to D-3 having a concentration of 50%). Such a mixture was obtained by mixing with a V-type blender. The polyester resin of the component B was supplied from the second supply port using a side feeder. Extrusion was carried out using a vent-type twin screw extruder with a diameter of 30 mmφ (Nippon Steel Works TEX30α-38.5BW-3V) at a screw rotation speed of 230 rpm, a discharge rate of 25 kg / h, and a degree of vacuum of the vent of 3 kPa. A pellet was obtained. The extrusion temperature was 260 ° C. from the first supply port to the die. A part of the obtained pellets was dried at 80 ° C. for 6 hours by a hot air circulation type drier, and then, using an injection molding machine, a test piece for evaluation at a cylinder temperature of 260 ° C. and a mold temperature of 60 ° C. ( ISO tensile test piece (based on ISO527-1 and ISO527-2), ISO bending test piece (based on ISO178, ISO179, ISO75-1 and ISO75-2), UL test piece (width 13 mm x length 125 mm x thickness 1. 5 mm), and a sample plate (three-stage plate with holes)).
 なお、表1~3中の記号表記の各成分は下記の通りである。 In addition, each component of the symbol notation in Tables 1-3 is as follows.
 (A成分)
A:ポリカーボネート-ポリジオルガノシロキサン共重合樹脂(粘度平均分子量25,000、PDMS量8.4%、PDMS重合度37、帝人(株)製パンライトW-0111)
(A component)
A: Polycarbonate-polydiorganosiloxane copolymer resin (viscosity average molecular weight: 25,000, PDMS amount: 8.4%, PDMS polymerization degree: 37, Panlite W-0111 manufactured by Teijin Limited)
 (B成分)
B-1:ポリブチレンテレフタレート樹脂(長春人造樹脂公司製 1100-211MD(製品名)、固有粘度:0.965dl/g)
B-2:ポリブチレンテレフタレート樹脂(長春人造樹脂公司製 1100-211XG(製品名)、固有粘度:1.26dl/g)
B-3:ポリエチレンテレフタレート樹脂(帝人(株)製 TRN-8550FF(製品名)、固有粘度:0.77dl/g)
(B component)
B-1: Polybutylene terephthalate resin (1100-211MD (product name) manufactured by Changchun Man-made Resin Co., Ltd., intrinsic viscosity: 0.965 dl / g)
B-2: Polybutylene terephthalate resin (1100-211XG (product name) manufactured by Changchun Manufactured Resins Co., Ltd., intrinsic viscosity: 1.26 dl / g)
B-3: Polyethylene terephthalate resin (TRN-8550FF (product name) manufactured by Teijin Limited, intrinsic viscosity: 0.77 dl / g)
 (C成分)
C-1:シリコーン系コアシェル型グラフトポリマー(コアがアクリル-シリコーン複合ゴムを主成分、シェルがメチルメタクリレートを主成分とするコアシェル構造を有するグラフト共重合体、三菱レイヨン(株)製 メタブレンS-2030(製品名))
C-2:ブタジエン系コアシェル型グラフトポリマー(コアがブタジエンゴムを主成分、シェルがメチルメタクリレートを主成分とするコアシェル構造を有するグラフト共重合体、(株)カネカ製 カネエースM-711(製品名))
C-3:アクリル系コアシェル型グラフトポリマー(コアがブチルアクリレートを主成分、シェルがメチルメタクリレートを主成分とするコアシェル構造を有するグラフト共重合体、三菱レイヨン(株)製 メタブレンW-600A(製品名))
(C component)
C-1: Silicone-based core-shell type graft polymer (graft copolymer having a core-shell structure in which a core is mainly composed of acryl-silicone composite rubber and a shell is mainly composed of methyl methacrylate, METABLEN S-2030 manufactured by Mitsubishi Rayon Co., Ltd. (product name))
C-2: Butadiene-based core-shell type graft polymer (graft copolymer having a core-shell structure in which a core is mainly composed of butadiene rubber and a shell is mainly composed of methyl methacrylate, Kaneace M-711 (product name) manufactured by Kaneka Corporation) )
C-3: Acrylic core-shell type graft polymer (graft copolymer having a core-shell structure having a core of butyl acrylate as a main component and a shell of methyl methacrylate as a main component, METABLEN W-600A manufactured by Mitsubishi Rayon Co., Ltd. (product name) ))
 (D成分)
D-1:シリコーンガムPCマスター(超高分子量ポリジメチルシロキサンのポリカーボネート50%マスターバッチ品、東レダウコーニング(株)製 MB50-315(製品名))
D-2:シリコーンガムPEstマスター(超高分子量ポリジメチルシロキサンのポリエステルエラストマー50%マスターバッチ品、東レダウコーニング(株)製 BY27-009(製品名))
D-3:シリコーンガムPPマスター(超高分子量ポリジメチルシロキサンのポリプロピレン50%マスターバッチ品、東レダウコーニング(株)製 BY27-001(製品名))
D-4:シリコーン変性ポリプロピレン(ポリプロピレンにポリオルガノシロキサンをグラフト重合した重合体、東レダウコーニング(株)製 BY27-201(製品名))
(D component)
D-1: Silicone gum PC master (ultra high molecular weight polydimethylsiloxane polycarbonate 50% masterbatch product, MB50-315 (product name) manufactured by Toray Dow Corning Co., Ltd.)
D-2: Silicone gum PEst master (Master batch product of 50% polyester elastomer of ultra-high molecular weight polydimethylsiloxane, BY27-009 (product name) manufactured by Toray Dow Corning Co., Ltd.)
D-3: Silicone gum PP master (50% polypropylene masterbatch of ultra-high molecular weight polydimethylsiloxane, BY27-001 (product name) manufactured by Toray Dow Corning Co., Ltd.)
D-4: Silicone-modified polypropylene (polymer obtained by graft-polymerizing polypropylene with polyorganosiloxane, BY27-201 (product name) manufactured by Toray Dow Corning Co., Ltd.)
 (E成分)
E:臭素系難燃剤(ビスフェノールA骨格を有する臭素化カーボネートオリゴマー、帝人(株)製 FG-8500(製品名))
(E component)
E: Brominated flame retardant (brominated carbonate oligomer having bisphenol A skeleton, FG-8500 (product name) manufactured by Teijin Limited)
 (F成分)
F-1:リン系難燃剤(2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン,3,9-ジベンジル-3,9-ジオキサイド、帝人(株)製 FCX-210(製品名))
(F component)
F-1: Phosphorus flame retardant (2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-dibenzyl-3,9-dioxide, FCX manufactured by Teijin Limited) -210 (product name))
 (G成分)
G-1:被覆PTFE(スチレン-アクリロニトリル共重合物で被覆されたポリテトラフルオロエチレン(ポリテトラフルオロエチレン含有量50重量%)、Shine polymer社製 SN3307PF(商品名))
G-2:被覆PTFE(メタクリル酸メチル、アクリル酸ブチル共重合物で被覆されたポリテトラフルオロエチレン(ポリテトラフルオロエチレン含有量50重量%)、三菱レイヨン(株)製 メタブレンA3750(商品名))
(G component)
G-1: coated PTFE (polytetrafluoroethylene coated with a styrene-acrylonitrile copolymer (polytetrafluoroethylene content: 50% by weight), SN3307PF (trade name) manufactured by Shine Polymer)
G-2: coated PTFE (polytetrafluoroethylene coated with methyl methacrylate, butyl acrylate copolymer (polytetrafluoroethylene content: 50% by weight), METABLEN A3750 (trade name) manufactured by Mitsubishi Rayon Co., Ltd.)
 (その他の成分)
PC:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量25,100のポリカーボネート樹脂粉末、帝人(株)製 パンライトL-1250WQ(製品名))
STB-1:フェノール系熱安定剤(オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、分子量531、BASFジャパン(株)製 Irganox 1330(製品名))
STB-2:リン系熱安定剤(トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、BASFジャパン(株)製 Irgafos 168(製品名))
STB-3:リン系熱安定剤(トリメチルホスフェート、大八化学工業(株)製 TMP(製品名))
(Other components)
PC: aromatic polycarbonate resin (polycarbonate resin powder having a viscosity-average molecular weight of 25,100, produced from bisphenol A and phosgene by a conventional method, Panlite L-1250WQ (product name) manufactured by Teijin Limited)
STB-1: Phenolic heat stabilizer (octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, molecular weight 531, Irganox 1330 (product name) manufactured by BASF Japan Ltd.)
STB-2: phosphorus-based heat stabilizer (tris (2,4-di-tert-butylphenyl) phosphite, Irgafos 168 (product name) manufactured by BASF Japan Ltd.)
STB-3: phosphorus-based heat stabilizer (trimethyl phosphate, TMP (product name) manufactured by Daihachi Chemical Industry Co., Ltd.)
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035

Claims (9)

  1.  (A)ポリカーボネート-ポリジオルガノシロキサン共重合樹脂(A成分)および(B)ポリエステル系樹脂(B成分)の合計100重量部に対し、
     (C)ポリオルガノシロキサンゴムおよびアルキル(メタ)アクリレ-トゴムを含む成分からなる複合ゴムに、芳香族アルケニル化合物単量体単位およびアルキル(メタ)アクリレート化合物単量体単位からなる群より選ばれる少なくとも1種の単位がグラフト重合されたコアシェル構造を有するグラフト共重合体(C成分)3重量部~15重量部、並びに
     (D)防汚性付与剤(D成分)0.5重量部~6重量部
    を含むことを特徴とする、ポリカーボネート樹脂組成物。
    (A) Polycarbonate-polydiorganosiloxane copolymer resin (A component) and (B) 100% by weight of polyester resin (B component) in total
    (C) a composite rubber comprising a component containing a polyorganosiloxane rubber and an alkyl (meth) acrylate rubber, wherein at least one selected from the group consisting of an aromatic alkenyl compound monomer unit and an alkyl (meth) acrylate compound monomer unit; 3 to 15 parts by weight of a graft copolymer having a core-shell structure in which one type of unit is graft-polymerized (component C), and 0.5 to 6 parts by weight of (D) an antifouling agent (component D) A polycarbonate resin composition comprising:
  2.  (E)ハロゲン系難燃剤(E成分)5重量部~35重量部、および
     (F)下記式(1)で表される構造を有するリン系難燃剤(F成分)0.5重量部~5重量部
    をさらに含むことを特徴とする、請求項1に記載のポリカーボネート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、XおよびXは、同一もしくは異なり、下記一般式(I)で表される芳香族置換アルキル基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、ALは炭素数1~5の分岐状または直鎖状の脂肪族炭化水素基であり、Arはフェニル基、ナフチル基またはアントリル基であり、nは1~3の整数を示し、ArはALの任意の炭素原子に結合することができる。)
    (E) 5 to 35 parts by weight of a halogen-based flame retardant (component E), and (F) 0.5 to 5 parts by weight of a phosphorus-based flame retardant (component F) having a structure represented by the following formula (1). The polycarbonate resin composition according to claim 1, further comprising parts by weight.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, X 1 and X 2 are the same or different and are an aromatic substituted alkyl group represented by the following general formula (I).)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, AL is a branched or linear aliphatic hydrocarbon group having 1 to 5 carbon atoms, Ar is a phenyl group, a naphthyl group or an anthryl group, n represents an integer of 1 to 3, Ar can be attached to any carbon atom of AL.)
  3.  B成分の含有量が、A成分とB成分との合計100重量部中、20重量部~70重量部であることを特徴とする、請求項1又は2に記載のポリカーボネート樹脂組成物。 3. The polycarbonate resin composition according to claim 1, wherein the content of the component B is 20 to 70 parts by weight based on 100 parts by weight of the total of the component A and the component B.
  4.  B成分が、ポリエチレンテレフタレート樹脂およびポリブチレンテレフタレート樹脂のうち少なくとも一方を含むことを特徴とする、請求項1~3のいずれかに記載のポリカーボネート樹脂組成物。 4. The polycarbonate resin composition according to claim 1, wherein the component B contains at least one of a polyethylene terephthalate resin and a polybutylene terephthalate resin.
  5.  D成分が、分子量10万以上のシリコーンガムであることを特徴とする、請求項1~4のいずれかに記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to any one of claims 1 to 4, wherein the component (D) is a silicone gum having a molecular weight of 100,000 or more.
  6.  D成分が、ポリオルガノシロキサングラフトポリオレフィン樹脂であることを特徴とする、請求項1~5のいずれかに記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to any one of claims 1 to 5, wherein the component (D) is a polyorganosiloxane-grafted polyolefin resin.
  7.  C成分の複合ゴム中のポリオルガノシロキサンゴム成分の割合が、15%以上であることを特徴とする、請求項1~6のいずれかに記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to any one of claims 1 to 6, wherein the proportion of the polyorganosiloxane rubber component in the composite rubber of the C component is 15% or more.
  8.  A成分とB成分との合計100重量部に対し、(G)ドリップ防止剤(G成分)0.05重量部~2重量部を含むことを特徴とする、請求項1~7のいずれかに記載のポリカーボネート樹脂組成物。 The method according to any one of claims 1 to 7, wherein (G) an anti-drip agent (G component) is contained in an amount of 0.05 to 2 parts by weight based on 100 parts by weight in total of the component A and the component B. The polycarbonate resin composition according to the above.
  9.  G成分が、フィブリル形成能を有する含フッ素ポリマーであることを特徴とする、請求項8に記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to claim 8, wherein the G component is a fluoropolymer having fibril-forming ability.
PCT/JP2019/026180 2018-07-03 2019-07-01 Polycarbonate resin composition WO2020009076A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020528989A JP6976438B2 (en) 2018-07-03 2019-07-01 Polycarbonate resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018126744 2018-07-03
JP2018-126744 2018-07-03
JP2018207304 2018-11-02
JP2018-207304 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020009076A1 true WO2020009076A1 (en) 2020-01-09

Family

ID=69060372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026180 WO2020009076A1 (en) 2018-07-03 2019-07-01 Polycarbonate resin composition

Country Status (3)

Country Link
JP (1) JP6976438B2 (en)
TW (1) TWI818043B (en)
WO (1) WO2020009076A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112980173A (en) * 2021-03-22 2021-06-18 辽宁科技学院 Antibacterial polycarbonate plastic

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078630A (en) * 2000-09-05 2002-03-19 Bridgestone Corp Soil-resistant bathtub
JP2013234293A (en) * 2012-05-10 2013-11-21 Teijin Chem Ltd Polycarbonate resin composition used for resin anhydrous urinal and anhydrous urinal comprising the same
JP2014231561A (en) * 2013-05-29 2014-12-11 帝人株式会社 Resin composition for use in decorative molding
JP2015221850A (en) * 2014-05-22 2015-12-10 帝人株式会社 Polycarbonate resin composition and molded article containing the same
WO2018066210A1 (en) * 2016-10-06 2018-04-12 ソニー株式会社 Flame-retardant resin composition
JP2018095669A (en) * 2016-12-08 2018-06-21 帝人株式会社 Polycarbonate resin composition and resin metal composite molding formed from the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078630A (en) * 2000-09-05 2002-03-19 Bridgestone Corp Soil-resistant bathtub
JP2013234293A (en) * 2012-05-10 2013-11-21 Teijin Chem Ltd Polycarbonate resin composition used for resin anhydrous urinal and anhydrous urinal comprising the same
JP2014231561A (en) * 2013-05-29 2014-12-11 帝人株式会社 Resin composition for use in decorative molding
JP2015221850A (en) * 2014-05-22 2015-12-10 帝人株式会社 Polycarbonate resin composition and molded article containing the same
WO2018066210A1 (en) * 2016-10-06 2018-04-12 ソニー株式会社 Flame-retardant resin composition
JP2018095669A (en) * 2016-12-08 2018-06-21 帝人株式会社 Polycarbonate resin composition and resin metal composite molding formed from the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112980173A (en) * 2021-03-22 2021-06-18 辽宁科技学院 Antibacterial polycarbonate plastic

Also Published As

Publication number Publication date
TW202006064A (en) 2020-02-01
JP6976438B2 (en) 2021-12-08
JPWO2020009076A1 (en) 2021-04-30
TWI818043B (en) 2023-10-11

Similar Documents

Publication Publication Date Title
JP4866010B2 (en) Flame retardant aromatic polycarbonate resin composition
JP6328985B2 (en) Polycarbonate resin composition
JP4988293B2 (en) Aromatic polycarbonate resin composition
CA2787096A1 (en) Polycarbonate resin composition
JP2006257284A (en) Aromatic polycarbonate resin composition
JP2006249288A (en) Light-diffusing aromatic polycarbonate resin composition
JP5592046B2 (en) Flame retardant polycarbonate resin composition with excellent antistatic properties
JP5592047B2 (en) Flame retardant polycarbonate resin composition with excellent antistatic properties
JP6588219B2 (en) Polycarbonate resin composition
JP5718701B2 (en) Aromatic polycarbonate resin composition with excellent weld appearance and surface hardness
JP2017132913A (en) Antibacterial polycarbonate resin composition
WO2020066535A1 (en) Flame-retardant polycarbonate resin composition
JP7260251B2 (en) Flame-retardant polycarbonate resin composition
JP2015137307A (en) Fire retardant polycarbonate resin composition
JP2016003329A (en) Polycarbonate resin composition
JP6577162B2 (en) Transparent flame retardant thermoplastic resin composition and molded article thereof
JP6976438B2 (en) Polycarbonate resin composition
JP6495669B2 (en) Flame retardant polycarbonate resin composition
JP7208069B2 (en) Fiber-reinforced polypropylene resin composition
JP5204795B2 (en) Polycarbonate resin composition
WO2019146606A1 (en) Reusable medical container
JP6782576B2 (en) Polycarbonate resin composition
JP7267839B2 (en) Flame-retardant polycarbonate resin composition
JP2016113480A (en) Flame-retardant polycarbonate resin composition
JP7116198B2 (en) Molding material made of carbon fiber reinforced polycarbonate resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830017

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830017

Country of ref document: EP

Kind code of ref document: A1