JP5204795B2 - Polycarbonate resin composition - Google Patents
Polycarbonate resin composition Download PDFInfo
- Publication number
- JP5204795B2 JP5204795B2 JP2010006883A JP2010006883A JP5204795B2 JP 5204795 B2 JP5204795 B2 JP 5204795B2 JP 2010006883 A JP2010006883 A JP 2010006883A JP 2010006883 A JP2010006883 A JP 2010006883A JP 5204795 B2 JP5204795 B2 JP 5204795B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- acid
- compound
- weight
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- ZVNOTJSRNPOHPY-UHFFFAOYSA-N CC(C1CC23)C1C2C3C1=C(C)C1C Chemical compound CC(C1CC23)C1C2C3C1=C(C)C1C ZVNOTJSRNPOHPY-UHFFFAOYSA-N 0.000 description 1
- WMCHKGNIFCMAJJ-UHFFFAOYSA-N CCN(C(C)C)C1(C)CCC1 Chemical compound CCN(C(C)C)C1(C)CCC1 WMCHKGNIFCMAJJ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
Description
本発明は、熱安定性と耐湿熱性が改善されたポリカーボネート樹脂組成物に関する。さらに詳しくは、本発明は特性元素からなる触媒を使用して生産されたポリエステル樹脂を含み、機械的強度、流動性に優れ、さらに良好な熱安定性と耐湿熱性を併せ持つポリカーボネート樹脂組成物に関する。 The present invention relates to a polycarbonate resin composition having improved thermal stability and heat-and-moisture resistance. More specifically, the present invention relates to a polycarbonate resin composition containing a polyester resin produced using a catalyst composed of a characteristic element, excellent in mechanical strength and fluidity, and having both good thermal stability and wet heat resistance.
芳香族ポリカーボネート樹脂と芳香族ポリエステル樹脂からなる樹脂組成物は、高水準の外観、並びに優れた機械特性、寸法安定性、および耐薬品性を有している為に各種工業分野で幅広く使用されている。特に芳香族ポリカーボネート樹脂とポリエチレンテレフタレート樹脂からなる樹脂組成物(以下PC/PETアロイと称することもある)は、種々の樹脂組成物が検討され、開示されている(特許文献1、2、3参照)。PC/PETアロイは、芳香族ポリカーボネート樹脂の持つ優れた耐衝撃性、機械特性、寸法安定性等にポリエチレンテレフタレート樹脂のもつ耐薬品性を付与した特性をもつため、特に自動車の内装および外装部品の分野やOA機器の分野などにおいて有効に利用されている。 Resin compositions composed of aromatic polycarbonate resins and aromatic polyester resins are widely used in various industrial fields because of their high level of appearance and excellent mechanical properties, dimensional stability, and chemical resistance. Yes. In particular, a resin composition comprising an aromatic polycarbonate resin and a polyethylene terephthalate resin (hereinafter sometimes referred to as PC / PET alloy) has been studied and disclosed as various resin compositions (see Patent Documents 1, 2, and 3). ). PC / PET alloys have the characteristics of adding the chemical resistance of polyethylene terephthalate resin to the excellent impact resistance, mechanical properties, dimensional stability, etc. of aromatic polycarbonate resins. It is effectively used in the field and the field of OA equipment.
近年、自動車分野およびOA分野では、部品の薄肉化および軽量化等が急速に進行している。例えば、自動車分野では軽量化のためフェンダー等のボディパネルに代表される大型部品を樹脂材料にする技術開発が再び活発となっており、これら薄肉化および軽量化が求められる部品において、従来よりも耐熱性や耐湿熱性への要求は高まっている。また、コストダウンのため部品点数の減数も求められており、部品の一体化、およびそれにともなうより複雑かつ大きな形状にも対応できるような成形加工性、つまりより良好な熱安定性が要求されるようになってきている。 In recent years, in the automobile field and the OA field, parts are being made thinner and lighter, and so on. For example, in the field of automobiles, technology development that uses large parts typified by body panels such as fenders as resin materials has become active again for weight reduction. The demand for heat resistance and heat and humidity resistance is increasing. In addition, a reduction in the number of parts is also required for cost reduction, and there is a need for integration of parts and molding processability that can cope with more complicated and large shapes, that is, better thermal stability. It has become like this.
こうした状況下でPC/PETアロイが上記要求を満たす手段として、特定の重合触媒により製造されたPETを用いたアロイ材料が提案されている(特許文献4、5参照)。特許文献4では、重合触媒として一般的なアンチモン化合物やチタン化合物で製造したPETにみられる色調・溶融安定性・外観・成形性の低下をゲルマニウム触媒を用いることにより改善している。しかしながら、現在の自動車用途で求められる湿熱性や熱安定性に関して満足のいくものではなく、更なる改善が求められる。特許文献5では、チタン含有触媒化合物を1−30ppm使用して製造されたポリエステル樹脂およびポリカーボネート樹脂からなるの樹脂組成物が色調・熱安定性・溶融安定性を改善している。触媒量を低減したことで、熱安定性・溶融安定性が改善されるものの、ポリエステル樹脂量が多くなるにつれて熱安定性は低下する傾向にあり、更なる改善が求められる。また、PC/ポリエステル材料への要求が高まっている湿熱性に関する知見は何ら教示されていない。
上述の如く、PC/PETアロイにおいては良好な熱安定性を保ちながら高い湿熱性を有し、耐薬品性、衝撃強度、耐熱性、剛性に優れる材料が望まれている。
Under such circumstances, an alloy material using PET produced with a specific polymerization catalyst has been proposed as a means for PC / PET alloy to satisfy the above requirements (see Patent Documents 4 and 5). In Patent Document 4, the decrease in color tone, melt stability, appearance, and moldability observed in PET produced with a general antimony compound or titanium compound as a polymerization catalyst is improved by using a germanium catalyst. However, it is not satisfactory with respect to the wet heat and thermal stability required for current automotive applications, and further improvements are required. In Patent Document 5, a resin composition comprising a polyester resin and a polycarbonate resin produced using 1-30 ppm of a titanium-containing catalyst compound has improved color tone, thermal stability, and melt stability. Although the thermal stability and melt stability are improved by reducing the amount of the catalyst, the thermal stability tends to decrease as the amount of the polyester resin increases, and further improvement is required. In addition, no knowledge about wet heat properties, which are increasing the demand for PC / polyester materials, is taught.
As described above, a PC / PET alloy is desired to have a material having high moist heat resistance while maintaining good thermal stability and excellent chemical resistance, impact strength, heat resistance and rigidity.
上記に鑑み本発明の目的は、芳香族ポリカーボネート樹脂とポリエステル樹脂からなる樹脂組成物であり、機械的強度、流動性、熱安定性に優れ、かつ良好な耐湿熱性を併せ持つ樹脂組成物を提供することにある。本発明者は、上記目的を達成せんとして鋭意検討を重ねた結果、特定構造をもつチタン系重合触媒により製造されたポリエステル樹脂を用いることで、かかる目的を達成できることを見出し、更に鋭意検討を進め本発明を完成するに至った。 In view of the above, an object of the present invention is to provide a resin composition comprising an aromatic polycarbonate resin and a polyester resin, which is excellent in mechanical strength, fluidity and thermal stability, and also has good wet heat resistance. There is. As a result of intensive investigations to achieve the above object, the present inventor has found that such an object can be achieved by using a polyester resin produced by a titanium-based polymerization catalyst having a specific structure, and further intensive investigations are advanced. The present invention has been completed.
本発明によれば、上記課題は、(A)芳香族ポリカーボネート樹脂(A成分)50〜99重量部および(B)ポリエステル樹脂(B成分)1〜50重量部からなる樹脂組成物であって、B成分が下記一般式(I)で表されるチタン化合物(1)、およびチタン化合物(1)と下記一般式(II)で表される芳香族多価カルボン酸またはその無水物とを反応させて得られたチタン化合物(2)からなる群より選ばれた少なくとも1種のチタン化合物成分と、下記一般式(III)で表されるリン化合物(3)の少なくとも1種からなるリン化合物成分を、該チタン化合物成分のチタン原子換算モル量(mTi)と該リン化合物成分のリン原子換算モル量(mP)との反応モル比(mTi/mP)が1/3〜1/1の範囲で反応させた反応生成物を含む化合物を触媒として使用して重合されたポリエステル樹脂であり、該ポリエステル樹脂が下記(i)および(ii)の要件を満たすことを特徴とする樹脂組成物により達成される。
(i)固有粘度が0.40〜1.2であり、
(ii)チタン系触媒の使用量が、チタン原子換算ミリモル量が重合出発原料中に含まれる芳香族ジカルボン酸成分の合計ミリモル量に対して、2〜40ミリ%である。
According to the present invention, the above problem is a resin composition comprising (A) 50 to 99 parts by weight of an aromatic polycarbonate resin (component A) and (B) 1 to 50 parts by weight of a polyester resin (component B), B component reacts the titanium compound (1) represented by the following general formula (I) and the titanium compound (1) with the aromatic polycarboxylic acid represented by the following general formula (II) or an anhydride thereof. and at least one titanium compound component selected from the group consisting of titanium compound (2) was collected using a phosphorus compound component comprising at least one phosphorus compound (3) represented by the following formula (III) And a reaction molar ratio (mTi / mP) of the titanium compound component molar amount (mTi) of the titanium compound component and the phosphorus atom component molar amount (mP) of the phosphorus compound component is within a range of 1/3 to 1/1. reaction product that had been A compound containing a polyester resin which is polymerized using as a catalyst, the polyester resin is achieved by the following (i) and the resin composition characterized by satisfying the requirements of (ii).
(I) the intrinsic viscosity is 0.40 to 1.2,
(Ii) The amount of the titanium-based catalyst used is 2 to 40 mm% with respect to the total millimolar amount of the aromatic dicarboxylic acid component contained in the polymerization starting material in terms of millimolar amount in terms of titanium atom.
以下、更に本発明の詳細について説明する。
(A成分:芳香族ポリカーボネート樹脂)
本発明のA成分として使用する芳香族ポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
Hereinafter, the details of the present invention will be described.
(Component A: aromatic polycarbonate resin)
The aromatic polycarbonate resin used as the component A of the present invention is obtained by reacting a dihydric phenol and a carbonate precursor. Examples of the reaction method include an interfacial polymerization method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エステル、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4−ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。 Representative examples of the dihydric phenol used here include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, and 2,2-bis (4-hydroxyphenyl). ) Propane (commonly called bisphenol A), 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl)- 1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) Pentane, 4,4 ′-(p-phenylenediisopropylidene) diphenol, 4,4 ′-(m-phenylenediisopropyl Pyridene) diphenol, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) ester, bis (4-hydroxy-3-methylphenyl) sulfide, 9,9-bis (4-hydroxyphenyl) Examples include fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene. A preferred dihydric phenol is bis (4-hydroxyphenyl) alkane, and bisphenol A is particularly preferred from the viewpoint of impact resistance, and is widely used.
本発明では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ−トをA成分として使用することが可能である。
例えば、2価フェノール成分の一部又は全部として、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン(以下“Bis−TMC”と略称することがある)、9,9−ビス(4−ヒドロキシフェニル)フルオレン及び9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ−ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。
In the present invention, in addition to bisphenol A-based polycarbonate, which is a general-purpose polycarbonate, it is possible to use a special polycarbonate produced using other dihydric phenols as the A component.
For example, as part or all of the dihydric phenol component, 4,4 ′-(m-phenylenediisopropylidene) diphenol (hereinafter sometimes abbreviated as “BPM”), 1,1-bis (4-hydroxy) Phenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (hereinafter sometimes abbreviated as “Bis-TMC”), 9,9-bis (4-hydroxyphenyl) Polycarbonate (homopolymer or copolymer) using fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (hereinafter sometimes abbreviated as “BCF”) has dimensions due to water absorption. It is suitable for applications where the demands for change and shape stability are particularly severe. These dihydric phenols other than BPA are preferably used in an amount of 5 mol% or more, particularly 10 mol% or more of the entire dihydric phenol component constituting the polycarbonate.
殊に、高剛性かつより良好な耐加水分解性が要求される場合には、ポリカーボネート樹脂組成物を構成するA成分が次の(1)〜(3)の共重合ポリカーボネートであるのが特に好適である。
(1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBCFが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10〜95モル%(より好適には50〜90モル%、さらに好適には60〜85モル%)であり、かつBCFが5〜90モル%(より好適には10〜50モル%、さらに好適には15〜40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBis−TMCが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
In particular, when high rigidity and better hydrolysis resistance are required, it is particularly preferable that the component A constituting the polycarbonate resin composition is a copolymerized polycarbonate of the following (1) to (3). It is.
(1) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Of 20 to 80 mol% (more preferably 25 to 60 mol%, more preferably 35 to 55 mol%).
(2) BPA is 10 to 95 mol% (more preferably 50 to 90 mol%, more preferably 60 to 85 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Is 5 to 90 mol% (more preferably 10 to 50 mol%, more preferably 15 to 40 mol%).
(3) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and Bis -Copolymer polycarbonate in which TMC is 20 to 80 mol% (more preferably 25 to 60 mol%, still more preferably 35 to 55 mol%).
これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。
これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6−172508号公報、特開平8−27370号公報、特開2001−55435号公報及び特開2002−117580号公報等に詳しく記載されている。
These special polycarbonates may be used alone or in combination of two or more. Moreover, these can also be mixed and used for the bisphenol A type polycarbonate generally used.
The production method and characteristics of these special polycarbonates are described in detail in, for example, JP-A-6-172508, JP-A-8-27370, JP-A-2001-55435, and JP-A-2002-117580. ing.
なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05〜0.15%、好ましくは0.06〜0.13%であり、かつTgが120〜180℃であるポリカーボネート、あるいは
(ii)Tgが160〜250℃、好ましくは170〜230℃であり、かつ吸水率が0.10〜0.30%、好ましくは0.13〜0.30%、より好ましくは0.14〜0.27%であるポリカーボネート。
Of the various polycarbonates described above, those having a water absorption and Tg (glass transition temperature) adjusted within the following ranges by adjusting the copolymer composition, etc. have good hydrolysis resistance of the polymer itself, and Since it is remarkably excellent in low warpage after molding, it is particularly suitable in a field where form stability is required.
(I) polycarbonate having a water absorption of 0.05 to 0.15%, preferably 0.06 to 0.13% and Tg of 120 to 180 ° C, or (ii) Tg of 160 to 250 ° C, Polycarbonate which is preferably 170 to 230 ° C. and has a water absorption of 0.10 to 0.30%, preferably 0.13 to 0.30%, more preferably 0.14 to 0.27%.
ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62−1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。 Here, the water absorption of the polycarbonate is a value obtained by measuring the moisture content after being immersed in water at 23 ° C. for 24 hours in accordance with ISO 62-1980 using a disc-shaped test piece having a diameter of 45 mm and a thickness of 3.0 mm. is there. Moreover, Tg (glass transition temperature) is a value calculated | required by the differential scanning calorimeter (DSC) measurement based on JISK7121.
カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。 As the carbonate precursor, carbonyl halide, carbonic acid diester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like.
前記二価フェノールとカーボネート前駆体を界面重合法によって芳香族ポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明の芳香族ポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られた芳香族ポリカーボネート樹脂の2種以上を混合した混合物であってもよい。 In producing the aromatic polycarbonate resin by the interfacial polymerization method using the dihydric phenol and the carbonate precursor, a catalyst, a terminal terminator, and an antioxidant for preventing the dihydric phenol from being oxidized as necessary. Etc. may be used. The aromatic polycarbonate resin of the present invention is a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, a polyester copolymerized with an aromatic or aliphatic (including alicyclic) difunctional carboxylic acid. Carbonate resin, copolymer polycarbonate resin copolymerized with bifunctional alcohol (including alicyclic), and polyester carbonate resin copolymerized with such bifunctional carboxylic acid and bifunctional alcohol are included. Moreover, the mixture which mixed 2 or more types of the obtained aromatic polycarbonate resin may be sufficient.
分岐ポリカーボネート樹脂は、本発明のポリカーボネート樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。 The branched polycarbonate resin can impart anti-drip performance and the like to the polycarbonate resin composition of the present invention. Examples of the trifunctional or higher polyfunctional aromatic compound used in the branched polycarbonate resin include phloroglucin, phloroglucid, or 4,6-dimethyl-2,4,6-tris (4-hydroxydiphenyl) heptene-2, 2 , 4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) Ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [ Trisphenol such as 1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol, tetra (4-hydride) Loxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and their acids Among them, 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable. 1-Tris (4-hydroxyphenyl) ethane is preferred.
分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、0.01〜1モル%、好ましくは0.05〜0.9モル%、特に好ましくは0.05〜0.8モル%である。 The structural unit derived from the polyfunctional aromatic compound in the branched polycarbonate is 0.1% in a total of 100 mol% of the structural unit derived from the dihydric phenol and the structural unit derived from the polyfunctional aromatic compound. It is 01 to 1 mol%, preferably 0.05 to 0.9 mol%, particularly preferably 0.05 to 0.8 mol%.
また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、0.001〜1モル%、好ましくは0.005〜0.9モル%、特に好ましくは0.01〜0.8モル%であるものが好ましい。なお、かかる分岐構造の割合については1H−NMR測定により算出することが可能である。 In particular, in the case of the melt transesterification method, a branched structural unit may be generated as a side reaction. However, the amount of the branched structural unit is also 0.1% in a total of 100 mol% with a structural unit derived from a dihydric phenol. Those having a ratio of 001 to 1 mol%, preferably 0.005 to 0.9 mol%, particularly preferably 0.01 to 0.8 mol% are preferred. The ratio of the branched structure can be calculated by 1 H-NMR measurement.
脂肪族の二官能性のカルボン酸は、α,ω−ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。
さらにポリオルガノシロキサン単位を共重合した、ポリカーボネート−ポリオルガノシロキサン共重合体の使用も可能である。
The aliphatic bifunctional carboxylic acid is preferably α, ω-dicarboxylic acid. Examples of the aliphatic difunctional carboxylic acid include sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, icosanedioic acid and other straight-chain saturated aliphatic dicarboxylic acids, and cyclohexanedicarboxylic acid. Preferred are alicyclic dicarboxylic acids such as As the bifunctional alcohol, an alicyclic diol is more preferable, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecane dimethanol.
Further, a polycarbonate-polyorganosiloxane copolymer obtained by copolymerizing polyorganosiloxane units can also be used.
本発明のポリカーボネート樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献および特許公報などで良く知られている方法である。
特に限定されないが、好ましくは10,000〜50,000であり、より好ましくは14,000〜30,000であり、さらに好ましくは14,000〜26,000である。
The reaction forms such as interfacial polymerization, melt transesterification, solid phase transesterification of carbonate prepolymer, and ring-opening polymerization of cyclic carbonate compounds, which are methods for producing the polycarbonate resin of the present invention, are various documents and patent publications. This is a well-known method.
Although it does not specifically limit, Preferably it is 10,000-50,000, More preferably, it is 14,000-30,000, More preferably, it is 14,000-26,000.
粘度平均分子量が10,000未満の芳香族ポリカーボネート樹脂では、良好な機械的特性が得られない。一方、粘度平均分子量が50,000を超える芳香族ポリカーボネート樹脂から得られる樹脂組成物は、射出成形時の流動性に劣る点で汎用性に劣る。 With an aromatic polycarbonate resin having a viscosity average molecular weight of less than 10,000, good mechanical properties cannot be obtained. On the other hand, a resin composition obtained from an aromatic polycarbonate resin having a viscosity average molecular weight exceeding 50,000 is inferior in versatility in that it is inferior in fluidity during injection molding.
なお、前記芳香族ポリカーボネート樹脂は、その粘度平均分子量が前記範囲外のものを混合して得られたものであってもよい。殊に、前記範囲(50,000)を超える粘度平均分子量を有する芳香族ポリカーボネート樹脂は、樹脂のエントロピー弾性が向上する。その結果、強化樹脂材料を構造部材に成形する際に使用されることのあるガスアシスト成形、および発泡成形において、良好な成形加工性を発現する。かかる成形加工性の改善は前記分岐ポリカーボネートよりもさらに良好である。より好適な態様としては、A成分が粘度平均分子量70,000〜300,000の芳香族ポリカーボネート樹脂(A−1−1成分)、および粘度平均分子量10,000〜30,000の芳香族ポリカーボネート樹脂(A−1−2成分)からなり、その粘度平均分子量が16,000〜35,000である芳香族ポリカーボネート樹脂(A−1成分)(以下、“高分子量成分含有芳香族ポリカーボネート樹脂”と称することがある)も使用できる。 The aromatic polycarbonate resin may be obtained by mixing those having a viscosity average molecular weight outside the above range. In particular, an aromatic polycarbonate resin having a viscosity average molecular weight exceeding the range (50,000) improves the entropy elasticity of the resin. As a result, good moldability is exhibited in gas assist molding and foam molding which may be used when molding a reinforced resin material into a structural member. Such improvement in moldability is even better than that of the branched polycarbonate. As a more preferred embodiment, the A component is an aromatic polycarbonate resin having a viscosity average molecular weight of 70,000 to 300,000 (component A-1-1), and an aromatic polycarbonate resin having a viscosity average molecular weight of 10,000 to 30,000. An aromatic polycarbonate resin (A-1 component) (hereinafter referred to as “high molecular weight component-containing aromatic polycarbonate resin”) having a viscosity average molecular weight of 16,000 to 35,000. May also be used.
かかる高分子量成分含有芳香族ポリカーボネート樹脂(A−1成分)において、A−1−1成分の分子量は70,000〜200,000が好ましく、より好ましくは80,000〜200,000、さらに好ましくは100,000〜200,000、特に好ましくは100,000〜160,000である。またA−1−2成分の分子量は10,000〜25,000が好ましく、より好ましくは11,000〜24,000、さらに好ましくは12,000〜24,000、特に好ましくは12,000〜23,000である。 In such a high molecular weight component-containing aromatic polycarbonate resin (A-1 component), the molecular weight of the A-1-1 component is preferably 70,000 to 200,000, more preferably 80,000 to 200,000, still more preferably. 100,000 to 200,000, particularly preferably 100,000 to 160,000. The molecular weight of the A-1-2 component is preferably 10,000 to 25,000, more preferably 11,000 to 24,000, still more preferably 12,000 to 24,000, and particularly preferably 12,000 to 23. , 000.
高分子量成分含有芳香族ポリカーボネート樹脂(A−1成分)は前記A−1−1成分とA−1−2成分を種々の割合で混合し、所定の分子量範囲を満足するよう調整して得ることができる。好ましくは、A−1成分100重量%中、A−1−1成分が2〜40重量%の場合であり、より好ましくはA−1−1成分が3〜30重量%であり、さらに好ましくはA−1−1成分が4〜20重量%であり、特に好ましくはA−1−1成分が5〜20重量%である。 The high molecular weight component-containing aromatic polycarbonate resin (component A-1) is obtained by mixing the components A-1-1 and A-1-2 at various ratios and adjusting them so as to satisfy a predetermined molecular weight range. Can do. Preferably, in 100% by weight of the A-1 component, the A-1-1 component is 2 to 40% by weight, more preferably the A-1-1 component is 3 to 30% by weight, and still more preferably The A-1-1 component is 4 to 20% by weight, and particularly preferably the A-1-1 component is 5 to 20% by weight.
また、A−1成分の調製方法としては、(1)A−1−1成分とA−1−2成分とを、それぞれ独立に重合しこれらを混合する方法、(2)特開平5−306336号公報に示される方法に代表される、GPC法による分子量分布チャートにおいて複数のポリマーピークを示す芳香族ポリカーボネート樹脂を同一系内において製造する方法を用い、かかる芳香族ポリカーボネート樹脂を本発明のA−1成分の条件を満足するよう製造する方法、および(3)かかる製造方法((2)の製造法)により得られた芳香族ポリカーボネート樹脂と、別途製造されたA−1−1成分および/またはA−1−2成分とを混合する方法などを挙げることができる。 As the preparation method of the component A-1, (1) a method in which the components A-1-1 and A-1-2 are independently polymerized and mixed, and (2) JP-A-5-306336. The method of producing an aromatic polycarbonate resin showing a plurality of polymer peaks in a molecular weight distribution chart by GPC method, represented by the method shown in Japanese Patent Publication No. Gazette, in the same system, the aromatic polycarbonate resin of the present invention A- A method of producing so as to satisfy the conditions of one component, and (3) an aromatic polycarbonate resin obtained by the production method (production method of (2)), a separately produced A-1-1 component and / or Examples thereof include a method of mixing the A-1-2 component.
本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlに芳香族ポリカーボネート0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t0)/t0
[t0は塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
ηSP/c=[η]+0.45×[η]2c(但し[η]は極限粘度)
[η]=1.23×10−4M0.83
c=0.7
The viscosity average molecular weight referred to in the present invention is first determined by using an Ostwald viscometer from a solution obtained by dissolving 0.7 g of aromatic polycarbonate in 100 ml of methylene chloride at 20 ° C. with a specific viscosity (η SP ) calculated by the following formula. ,
Specific viscosity (η SP ) = (t−t 0 ) / t 0
[T 0 is methylene chloride falling seconds, t is sample solution falling seconds]
The viscosity average molecular weight M is calculated from the determined specific viscosity (η SP ) by the following formula.
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10 −4 M 0.83
c = 0.7
尚、本発明のガラス繊維強化樹脂組成物における芳香族ポリカーボネート樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20〜30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。 The calculation of the viscosity average molecular weight of the aromatic polycarbonate resin in the glass fiber reinforced resin composition of the present invention is performed as follows. That is, the composition is mixed with 20 to 30 times its weight of methylene chloride to dissolve the soluble component in the composition. Such soluble matter is collected by Celite filtration. Thereafter, the solvent in the obtained solution is removed. The solid after removal of the solvent is sufficiently dried to obtain a solid component that dissolves in methylene chloride. A specific viscosity at 20 ° C. is determined from a solution obtained by dissolving 0.7 g of the solid in 100 ml of methylene chloride in the same manner as described above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as described above.
(B成分:ポリエステル樹脂)。
本発明のB成分として使用するポリエステル樹脂は、芳香族ジカルボン酸またはその反応性誘導体と、ジオール、またはそのエステル誘導体とを主成分とする縮合反応により得られる重合体ないしは共重合体である。
(B component: polyester resin).
The polyester resin used as the component B of the present invention is a polymer or copolymer obtained by a condensation reaction mainly comprising an aromatic dicarboxylic acid or a reactive derivative thereof and a diol or an ester derivative thereof.
ここでいう芳香族ジカルボン酸としてはテレフタル酸、イソフタル酸、オルトフタル酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸、4,4’−ビフェニルエーテルジカルボン酸、4,4’−ビフェニルメタンジカルボン酸、4,4’−ビフェニルスルホンジカルボン酸、4,4’−ビフェニルイソプロピリデンジカルボン酸、1,2−ビス(フェノキシ)エタン−4,4’−ジカルボン酸、2,5−アントラセンジカルボン酸、2,6−アントラセンジカルボン酸、4,4’−p−ターフェニレンジカルボン酸、2,5−ピリジンジカルボン酸等の芳香族系ジカルボン酸、ジフェニルメタンジカルボン酸、ジフェニルエーテルジカルボン酸、及びβ−ヒドロキシエトキシ安息香酸から選ばれることが好適に用いられ、特にテレフタル酸、2,6−ナフタレンジカルボン酸が好ましく使用できる。芳香族ジカルボン酸は二種以上を混合して使用してもよい。なお少量であれば、該ジカルボン酸と共にアジピン酸、アゼライン酸、セバシン酸、ドデカンジ酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸等を一種以上混合使用することも可能である。 As the aromatic dicarboxylic acid here, terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-biphenyl ether Dicarboxylic acid, 4,4′-biphenylmethane dicarboxylic acid, 4,4′-biphenylsulfone dicarboxylic acid, 4,4′-biphenylisopropylidenedicarboxylic acid, 1,2-bis (phenoxy) ethane-4,4′-dicarboxylic acid Acid, 2,5-anthracene dicarboxylic acid, 2,6-anthracene dicarboxylic acid, 4,4'-p-terphenylene dicarboxylic acid, aromatic dicarboxylic acid such as 2,5-pyridinedicarboxylic acid, diphenylmethane dicarboxylic acid, diphenyl ether Dicarboxylic acid and β-hydroxyethoxybenzoate It is preferably used selected from the acid, particularly terephthalic acid, 2,6-naphthalenedicarboxylic acid can be preferably used. Aromatic dicarboxylic acids may be used as a mixture of two or more. In addition, if the amount is small, it is also possible to use a mixture of one or more aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and dodecanediic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, etc. together with the dicarboxylic acid. .
また本発明のポリエステル樹脂の成分であるジオールとしては、エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール、ネオペンチルグリコール、ペンタメチレングリコール、ヘキサメチレングリコール、デカメチレングリコール、2−メチル−1,3−プロパンジオール、ジエチレングリコール、トリエチレングリコール等の脂肪族ジオール、1,4−シクロヘキサンジメタノール等の脂環族ジオール等、2,2−ビス(β−ヒドロキシエトキシフェニル)プロパン等の芳香環を含有するジオール等及びそれらの混合物等が挙げられる。更に少量であれば、分子量400〜6,000の長鎖ジオール、すなわちポリエチレングリコール、ポリ−1,3−プロピレングリコール、ポリテトラメチレングリコール等を1種以上共重合してもよい。 Examples of the diol that is a component of the polyester resin of the present invention include ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, neopentyl glycol, pentamethylene glycol, hexamethylene glycol, decamethylene glycol, 2-methyl-1,3. -It contains an aromatic ring such as 2,2-bis (β-hydroxyethoxyphenyl) propane, an aliphatic diol such as propanediol, diethylene glycol, or triethylene glycol; an alicyclic diol such as 1,4-cyclohexanedimethanol; Examples thereof include diols and mixtures thereof. If the amount is even smaller, one or more long-chain diols having a molecular weight of 400 to 6,000, that is, polyethylene glycol, poly-1,3-propylene glycol, polytetramethylene glycol, and the like may be copolymerized.
また本発明のポリエステル樹脂は少量の分岐剤を導入することにより分岐させることができる。分岐剤の種類に制限はないがトリメシン酸、トリメリチン酸、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。 The polyester resin of the present invention can be branched by introducing a small amount of a branching agent. Although there is no restriction | limiting in the kind of branching agent, A trimesic acid, a trimellitic acid, a trimethylol ethane, a trimethylol propane, a pentaerythritol, etc. are mentioned.
具体的なポリエステル樹脂としては、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート、ポリブチレンテレフタレート(PBT)、ポリへキシレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリエチレン−1,2−ビス(フェノキシ)エタン−4,4’−ジカルボキシレート、等の他、ポリエチレンイソフタレート/テレフタレート、ポリブチレンテレフタレート/イソフタレート、等の共重合ポリエステル樹脂が挙げられる。これらのうち、機械的性質等のバランスがとれたポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレートおよびこれらの混合物が好ましく使用できる。 Specific polyester resins include polyethylene terephthalate (PET), polypropylene terephthalate, polybutylene terephthalate (PBT), polyhexylene terephthalate, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyethylene-1,2- In addition to bis (phenoxy) ethane-4,4′-dicarboxylate, a copolymer polyester resin such as polyethylene isophthalate / terephthalate, polybutylene terephthalate / isophthalate, and the like can be given. Among these, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate and a mixture thereof having a good balance of mechanical properties and the like can be preferably used.
また得られた芳香族ポリエステル樹脂の末端基構造は特に限定されるものではなく、末端基における水酸基とカルボキシル基の割合がほぼ同量の場合以外に、一方の割合が多い場合であってもよい。またかかる末端基に対して反応性を有する化合物を反応させる等により、それらの末端基が封止されているものであってもよい。
かかるポリエステル樹脂は常法に従い、特定のチタン系触媒存在下に、加熱しながらジカルボン酸成分と前記ジオール成分とを重合させ、副生する水または低級アルコールを系外に排出することにより製造される。
Further, the terminal group structure of the obtained aromatic polyester resin is not particularly limited, and may be a case where the ratio of one of the hydroxyl groups and the carboxyl group in the terminal group is large in addition to the case where the ratio is almost the same. . Moreover, those terminal groups may be sealed by reacting a compound having reactivity with such terminal groups.
Such a polyester resin is produced by polymerizing a dicarboxylic acid component and the diol component while heating in the presence of a specific titanium-based catalyst and discharging by-product water or lower alcohol out of the system according to a conventional method. .
上記のチタン系触媒は、下記のチタン化合物成分(A)と、リン化合物成分(B)との反応生成物を含むものである。
チタン化合物成分(A)は、下記一般式(I)により表されるチタン化合物(1)及び、チタン化合物(1)と下記一般式(II)で表される芳香族多価カルボン酸またはその無水物とを反応させて得られたチタン化合物(2)からなる群より選ばれた少なくとも1種のチタン化合物成分である。
The titanium-based catalyst includes a reaction product of the following titanium compound component (A) and phosphorus compound component (B).
The titanium compound component (A) includes a titanium compound (1) represented by the following general formula (I), an aromatic polyvalent carboxylic acid represented by the titanium compound (1) and the following general formula (II), or anhydrous It is at least one titanium compound component selected from the group consisting of a titanium compound (2) obtained by reacting with a product.
リン化合物成分(B)は、下記一般式(III)で表されるリン化合物(3)の少なくとも1種からなるリン化合物成分である。
The phosphorus compound component (B) is a phosphorus compound component composed of at least one of the phosphorus compounds (3) represented by the following general formula (III).
上記の特定のチタン系触媒を用いることにより製造されるポリエステル樹脂は、ゲルマニウム、アンチモンおよび他のチタン系触媒を用いた場合に比べ、熱安定性と耐湿熱性に優れる。上記の特定のチタン系触媒を用いた場合、他の触媒を使用した場合よりも製造時の色相安定剤や熱安定剤等の添加剤の添加量が少なくても品質が安定しており、そのため熱環境下や湿熱環境下での添加剤の分解が低減されることから、熱安定性と耐湿熱性に優れたものとなると推定される。 The polyester resin produced by using the above specific titanium-based catalyst is superior in thermal stability and wet heat resistance compared to the case where germanium, antimony and other titanium-based catalysts are used. When the above specific titanium-based catalyst is used, the quality is stable even if the amount of additives such as hue stabilizer and heat stabilizer during production is less than when other catalysts are used. Since decomposition of the additive in a thermal environment or a moist heat environment is reduced, it is presumed that the thermal stability and the heat and humidity resistance are excellent.
チタン化合物成分(A)と、リン化合物成分(B)との反応生成物において、チタン化合物成分(A)のチタン原子換算モル量(mTi)と、リン化合物成分(B)のリン原子換算モル量(mP)との反応モル比(mTi/mP)は、1/3〜1/1の範囲内にあることが好ましく、1/2〜1/1の範囲内にあることがより好ましい。 In the reaction product of the titanium compound component (A) and the phosphorus compound component (B), the titanium compound equivalent molar amount (mTi) of the titanium compound component (A) and the phosphorus atom equivalent molar amount of the phosphorus compound component (B) The reaction molar ratio (mTi / mP) with (mP) is preferably in the range of 1/3 to 1/1, and more preferably in the range of 1/2 to 1/1.
チタン化合物成分(A)のチタン原子換算モル量とは、チタン化合物成分(A)に含まれる各チタン化合物のモル量と、当該チタン化合物の1分子中に含まれるチタン原子の個数との積の合計値であり、リン化合物成分(B)のリン原子換算モル量とは、リン化合物成分(B)に含まれる各リン化合物のモル量と、当該リン化合物の1分子中に含まれるリン原子の個数との積の合計値である。但し、式(III)で表されるリン化合物は1分子当たり1個のリン原子を含むものであるから、リン化合物のリン原子換算モル量は当該リン化合物のモル量に等しい。 The molar amount in terms of titanium atom of the titanium compound component (A) is the product of the molar amount of each titanium compound contained in the titanium compound component (A) and the number of titanium atoms contained in one molecule of the titanium compound. It is a total value, and the phosphorus atom equivalent molar amount of the phosphorus compound component (B) is the molar amount of each phosphorus compound contained in the phosphorus compound component (B) and the phosphorus atoms contained in one molecule of the phosphorus compound. It is the total value of the product with the number. However, since the phosphorus compound represented by the formula (III) contains one phosphorus atom per molecule, the phosphorus atom equivalent molar amount of the phosphorus compound is equal to the molar amount of the phosphorus compound.
反応モル比(mTi/mP) が1/1より大きくなると、すなわち、チタン化合物成分(A)の量が過多になると、得られる触媒を用いて得られるポリエステル樹脂の色調不良(b値が高すぎる)になり、かつその耐熱性が低下することがある。また、反応モル比(mTi/mP)が、1/3未満になると、すなわちチタン化合物成分(A)の量が過少になると、得られる触媒のポリエステル生成反応に対する触媒活性が不十分になることがある。 When the reaction molar ratio (mTi / mP) is larger than 1/1, that is, when the amount of the titanium compound component (A) is excessive, the color tone of the polyester resin obtained using the resulting catalyst (b value is too high). ) And its heat resistance may be reduced. Further, when the reaction molar ratio (mTi / mP) is less than 1/3, that is, when the amount of the titanium compound component (A) becomes too small, the catalytic activity of the resulting catalyst for the polyester formation reaction may be insufficient. is there.
チタン化合物成分(A)に用いられる前記一般式(I)で表されるチタン化合物(1)としては、チタンテトラブトキシド、チタンテトライソプロポキシド、チタンテトラプロポキシド、及びチタンテトラエトキシドなどのチタンテトラアルコキシド類、並びにオクタアルキルトリチタネート類及びヘキサアルキルジチタネート類などのアルキルチタネート類を挙げることができるが、これらのなかでも、本発明において使用されるリン化合物成分との反応性の良好なチタンテトラアルコキシド類を用いることが好ましく、特にチタンテトラブトキシドを用いることがより好ましい。 Examples of the titanium compound (1) represented by the general formula (I) used for the titanium compound component (A) include titanium tetrabutoxide, titanium tetraisopropoxide, titanium tetrapropoxide, and titanium tetraethoxide. Examples include tetraalkoxides, and alkyl titanates such as octaalkyltrititanates and hexaalkyldititanates, and among these, titanium having good reactivity with the phosphorus compound component used in the present invention. It is preferable to use tetraalkoxides, and it is particularly preferable to use titanium tetrabutoxide.
チタン化合物成分(A)に用いられるチタン化合物(2)はチタン化合物(1)と、前記一般式(II)で表される芳香族多価カルボン酸又はその無水物との反応により得られる。前記一般式(II)の芳香族多価カルボン酸及びその無水物は、フタル酸、トリメリット酸、ヘミメリット酸、ピロメリット酸およびこれらの無水物からなる群より選ばれることが好ましい。特にチタン化合物(1)との反応性がよく、また得られる重縮合触媒のポリエステルとの親和性の高いトリメリット酸無水物を用いることがより好ましい。 The titanium compound (2) used for the titanium compound component (A) is obtained by reacting the titanium compound (1) with the aromatic polyvalent carboxylic acid represented by the general formula (II) or an anhydride thereof. The aromatic polyvalent carboxylic acid of the general formula (II) and its anhydride are preferably selected from the group consisting of phthalic acid, trimellitic acid, hemimellitic acid, pyromellitic acid and their anhydrides. In particular, it is more preferable to use trimellitic anhydride having good reactivity with the titanium compound (1) and high affinity with the polyester of the resulting polycondensation catalyst.
チタン化合物(1)と前記一般式(II)の芳香族多価カルボン酸又はその無水物との反応は、前記芳香族多価カルボン酸又はその無水物を溶媒に混合してその一部または全部を溶媒中に溶解し、この混合液にチタン化合物(1)を滴下し、0℃〜200℃の温度で30分間以上、好ましくは30〜150℃の温度で40〜90分間加熱することによって行われる。この際の反応圧力については特に制限はなく、常圧で充分である。なお、前記触媒としては、所要量の式(II)の化合物又はその無水物の一部または全部を溶解し得るものから適宜に選択することができるが、好ましくは、エタノール、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ベンゼン及びキシレン等から選ばれる。 The reaction between the titanium compound (1) and the aromatic polyvalent carboxylic acid of the general formula (II) or an anhydride thereof is carried out by mixing the aromatic polyvalent carboxylic acid or the anhydride thereof in a solvent and part or all of the mixture. Is dissolved in a solvent, and the titanium compound (1) is dropped into this mixed solution and heated at a temperature of 0 ° C. to 200 ° C. for 30 minutes or more, preferably at a temperature of 30 to 150 ° C. for 40 to 90 minutes. Is called. The reaction pressure at this time is not particularly limited, and normal pressure is sufficient. The catalyst can be appropriately selected from those capable of dissolving a required amount of the compound of formula (II) or a part or all of its anhydride, preferably ethanol, ethylene glycol, trimethylene. It is selected from glycol, tetramethylene glycol, benzene, xylene and the like.
チタン化合物(1)と式(II)で表される化合物又はその無水物との反応モル比には限定はない。しかし、チタン化合物(1)の割合が高すぎると、得られるポリエステル樹脂の色調が悪化したり、軟化点が低下したりすることがあり、逆にチタン化合物(1)の割合が低すぎると重縮合反応が進みにくくなることがある。このため、チタン化合物(1)と式(II)の化合物又はその無水物との反応モル比は、2/1〜2/5の範囲内にコントロールされることが好ましい。この反応によって得られる反応生成物を、そのまま前述のリン化合物(3)との反応に供してもよく、或はこれを、アセトン、メチルアルコール及び/又は酢酸エチルなどからなる溶剤を用いて再結晶して精製した後、これをリン化合物(3)と反応させてもよい。 There is no limitation on the reaction molar ratio between the titanium compound (1) and the compound represented by the formula (II) or its anhydride. However, if the proportion of the titanium compound (1) is too high, the color tone of the resulting polyester resin may be deteriorated or the softening point may be lowered. On the contrary, if the proportion of the titanium compound (1) is too low, it is heavy. The condensation reaction may be difficult to proceed. For this reason, it is preferable that the reaction molar ratio of the titanium compound (1) to the compound of the formula (II) or an anhydride thereof is controlled within the range of 2/1 to 2/5. The reaction product obtained by this reaction may be directly subjected to the reaction with the above-described phosphorus compound (3) or recrystallized using a solvent comprising acetone, methyl alcohol and / or ethyl acetate. Then, this may be reacted with the phosphorus compound (3).
リン化合物成分(B)に用いられる前記一般式(III)のリン化合物(3)において、R5により表される6〜20個の炭素原子を有するアリール基、又は1〜20個の炭素原子を有するアルキル基は、未置換であってもよく、或は1個以上の置換基により置換されていてもよい。この置換基は、例えば、カルボキシル基、アルキル基、ヒドロキシル基及びアミノ基などを包含する。 In the phosphorus compound (3) of the general formula (III) used for the phosphorus compound component (B), an aryl group having 6 to 20 carbon atoms represented by R 5 , or 1 to 20 carbon atoms The alkyl group possessed may be unsubstituted or substituted with one or more substituents. Examples of the substituent include a carboxyl group, an alkyl group, a hydroxyl group, and an amino group.
前記一般式(III)のリン化合物(3)は、例えば、モノメチルホスフェート、モノエチルホスフェート、モノトリメチルホスフェート、モノ−n−ブチルホスフェート、モノヘキシルホスフェート、モノヘプチルホスフェート、モノオクチルホスフェート、モノノニルホスフェート、モノデシルホスフェート、モノドデシルホスフェート、モノラウリルホスフェート、モノオレイルホスフェート、モノテトラデシルホスフェート、モノフェニルホスフェート、モノベンジルホスフェート、モノ(4−ドデシル)フェニルホスフェート、モノ(4−メチルフェニル)ホスフェート、モノ(4−エチルフェニル)ホスフェート、モノ(4−プロピルフェニル)ホスフェート、モノ(4−ドデシルフェニル)ホスフェート、モノトリルホスフェート、モノキシリルホスフェート、モノビフェニルホスフェート、モノナフチルホスフェート、及びモノアントリルホスフェート等のモノアルキルホスフェート類及びモノアリールホスフェート類を包含し、これらは単独で用いられてもよく、或は2種以上の混合物として、例えばモノアルキルホスフェートとモノアリールホスフェートとの混合物として用いられてもよい。但し、上記リン化合物を2種以上の混合物として用いる場合、モノアルキルホスフェートの比率が50%以上を占めていることが好ましく、90%以上を占めていることがより好ましく、特に100%を占めていることがさらに好ましい。 The phosphorus compound (3) of the general formula (III) includes, for example, monomethyl phosphate, monoethyl phosphate, monotrimethyl phosphate, mono-n-butyl phosphate, monohexyl phosphate, monoheptyl phosphate, monooctyl phosphate, monononyl phosphate, Monodecyl phosphate, monododecyl phosphate, monolauryl phosphate, monooleyl phosphate, monotetradecyl phosphate, monophenyl phosphate, monobenzyl phosphate, mono (4-dodecyl) phenyl phosphate, mono (4-methylphenyl) phosphate, mono (4 -Ethylphenyl) phosphate, mono (4-propylphenyl) phosphate, mono (4-dodecylphenyl) phosphate, monotolylphosphate Monoalkyl phosphates and monoaryl phosphates, such as benzoyl, monoxyl phosphate, monobiphenyl phosphate, mononaphthyl phosphate, and monoanthryl phosphate, which may be used alone or in combination of two or more For example, a mixture of monoalkyl phosphate and monoaryl phosphate may be used. However, when the above phosphorus compound is used as a mixture of two or more kinds, it is preferable that the proportion of monoalkyl phosphate occupies 50% or more, more preferably 90% or more, particularly 100%. More preferably.
チタン化合物成分(A)とリン化合物成分(B)とから触媒を調製するには、例えば、式(III)の少なくとも1種のリン化合物(3)からなるリン化合物成分(B)と溶媒とを混合して、リン化合物成分(B)の一部又は全部を溶媒中に溶解し、この混合液にチタン化合物成分(A)を滴下し、通常反応系を好ましくは50℃〜200℃、より好ましくは70℃〜150℃の温度において好ましくは1分間〜4時間、より好ましくは30分間〜2時間、加熱することによって行われる。この反応において、反応圧力については格別の制限はなく、加圧下(0.1〜0.5MPa)、常圧下、又は減圧下(0.001〜0.1MPa)のいずれであってもよいが、通常常圧下において行われている。 In order to prepare a catalyst from the titanium compound component (A) and the phosphorus compound component (B), for example, a phosphorus compound component (B) comprising at least one phosphorus compound (3) of the formula (III) and a solvent are prepared. Mix and dissolve part or all of the phosphorus compound component (B) in a solvent, drop the titanium compound component (A) into this mixture, and usually react the reaction system preferably at 50 ° C to 200 ° C, more preferably Is carried out by heating at a temperature of 70 ° C. to 150 ° C., preferably for 1 minute to 4 hours, more preferably for 30 minutes to 2 hours. In this reaction, the reaction pressure is not particularly limited, and may be under pressure (0.1 to 0.5 MPa), normal pressure, or reduced pressure (0.001 to 0.1 MPa). Usually performed under normal pressure.
また上記触媒調製反応に用いられる式(III)のリン化合物成分(B)用溶媒は、リン化合物成分(B)の少なくとも一部を溶解し得る限り格別の制限はないが、例えば、エタノール、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ベンゼン、及びキシレン等から選ばれた少なくとも1種からなる溶媒が好ましく用いられる。特に、最終的に得ようとするポリエステルを構成しているグリコール成分と同一の化合物を溶媒として用いることが好ましい。 The solvent for the phosphorus compound component (B) of the formula (III) used in the catalyst preparation reaction is not particularly limited as long as at least a part of the phosphorus compound component (B) can be dissolved. For example, ethanol, ethylene A solvent composed of at least one selected from glycol, trimethylene glycol, tetramethylene glycol, benzene, xylene and the like is preferably used. In particular, it is preferable to use, as a solvent, the same compound as the glycol component constituting the polyester to be finally obtained.
チタン化合物成分(A)と、リン化合物成分(B)との反応生成物は、それを反応系から、遠心沈降処理又は濾過などの手段により分離された後、これを精製することなく、ポリエステル樹脂製造用触媒として用いてもよく、或は、この分離された反応生成物を、再結晶剤、例えばアセトン、メチルアルコール及び/又は水などにより再結晶して精製し、それによって得られた精製物を触媒として用いてもよい。また、前記反応生成物を、その反応系から分離することなく、反応生成物含有反応混合物をそのまま触媒含有混合物として用いてもよい。 After the reaction product of the titanium compound component (A) and the phosphorus compound component (B) is separated from the reaction system by means such as centrifugal sedimentation or filtration, the polyester resin is purified without purification. It may be used as a production catalyst, or the separated reaction product is purified by recrystallization from a recrystallization agent such as acetone, methyl alcohol and / or water, and the purified product obtained thereby. May be used as a catalyst. Moreover, you may use the reaction product containing reaction mixture as a catalyst containing mixture as it is, without isolate | separating the said reaction product from the reaction system.
チタン系触媒として、前記式(I)(但し、kは1を表す)の少なくとも1種のチタン化合物(1)、すなわちチタンテトラアルコキシド、からなるチタン化合物成分(A)と、前記式(III)の少なくとも1種のリン化合物からなるリン化合物成分(B)との反応生成物が触媒として用いられることが好ましい。
さらに、チタン系触媒として下記一般式(IV)で表される化合物が好ましく使用される。
As a titanium-based catalyst, a titanium compound component (A) comprising at least one titanium compound (1) of the above formula (I) (where k represents 1), that is, titanium tetraalkoxide, and the above formula (III) It is preferable that the reaction product with the phosphorus compound component (B) comprising at least one phosphorus compound is used as a catalyst.
Furthermore, a compound represented by the following general formula (IV) is preferably used as the titanium-based catalyst.
式(IV)で表されるチタン/リン化合物を含む触媒は、高い触媒活性を有し、これを用いて製造されたポリエステル樹脂は、良好な色調(低いb値)を有し、実用上十分に低いアセトアルデヒド、残留金属及び芳香族ジカルボン酸とアルキレングリコールとのエステルの環状三量体の含有量を有し、かつ実用上十分なポリマー性能を有する。
チタン系触媒において、前記一般式(IV)のチタン/リン化合物が50質量%以上含まれていることが好ましく、70質量%以上含まれることがより好ましい。
The catalyst containing the titanium / phosphorus compound represented by the formula (IV) has high catalytic activity, and the polyester resin produced using the catalyst has a good color tone (low b value) and is practically sufficient. In addition, it has a low content of acetaldehyde, a residual metal and a cyclic trimer of an ester of an aromatic dicarboxylic acid and an alkylene glycol, and has practically sufficient polymer performance.
In the titanium-based catalyst, the titanium / phosphorus compound of the general formula (IV) is preferably contained in an amount of 50% by mass or more, and more preferably 70% by mass or more.
チタン系触媒の使用量は、そのチタン原子換算ミリモル量が重合出発原料中に含まれる芳香族ジカルボン酸成分の合計ミリモル量に対して、2〜40ミリ%となる量であることが好ましく、5〜35ミリ%であることがさらに好ましく、10〜30ミリ%であることがより一層好ましい。2ミリ%未満であると、重合出発原料の重縮合反応に対する触媒の促進効果が不十分になり、ポリエステル製造効率が不十分になり、かつ所望の重合度を有するポリエステル樹脂を得ることができないことがある。また、40ミリ%を超えると、得られるポリエステル樹脂の色調(b値)が、不十分になり黄味を帯びるようになり、その実用性が低下することがある。 The amount of the titanium-based catalyst used is preferably an amount such that the mmol amount in terms of titanium atom is 2 to 40 mm % with respect to the total mmol amount of the aromatic dicarboxylic acid component contained in the polymerization starting material. It is more preferable that it is -35 mm %, and it is still more preferable that it is 10-30 mm %. If it is less than 2 mm %, the catalyst's promotion effect on the polycondensation reaction of the polymerization starting material becomes insufficient, the polyester production efficiency becomes insufficient, and a polyester resin having a desired degree of polymerization cannot be obtained. There is. On the other hand, if it exceeds 40 mm %, the color tone (b value) of the resulting polyester resin becomes insufficient and becomes yellowish, and its practicality may be lowered.
芳香族ジカルボン酸のアルキレングリコールエステルおよび/またはその低重合体の製造方法について制限はないが、通常、芳香族ジカルボン酸またはそのエステル形成性誘導体と、アルキレングリコールまたはそのエステル形成性誘導体とを、加熱反応させることによって製造される。例えばポリエチレンテレフタレートの原料として用いられるテレフタル酸のエチレングリコールエステルおよび/またはその低重合体は、テレフタル酸とエチレングリコールとを直接エステル化反応させるか、或はテレフタル酸の低級アルキルエステルとエチレングリコールとをエステル交換反応させるか、或はテレフタル酸にエチレンオキサイドを付加反応させる方法により製造される。なお、上記の芳香族ジカルボン酸のアルキレングリコールエステルおよび/またはその低重合体には、それと共重合可能な他のジカルボン酸エステルが、追加成分として、本発明方法の効果が実質的に損なわれない範囲内の量の、具体的には酸成分合計モル量を基準として10モル%以下、好ましくは5モル%以下の範囲内の、添加量で含まれていてもよい。 There is no limitation on the production method of the alkylene glycol ester of aromatic dicarboxylic acid and / or its low polymer, but usually, the aromatic dicarboxylic acid or its ester-forming derivative and the alkylene glycol or its ester-forming derivative are heated. Produced by reacting. For example, an ethylene glycol ester of terephthalic acid and / or a low polymer thereof used as a raw material for polyethylene terephthalate may be obtained by directly esterifying terephthalic acid and ethylene glycol, or by using a lower alkyl ester of terephthalic acid and ethylene glycol. It is produced by a method of transesterification or an addition reaction of terephthalic acid with ethylene oxide. In addition, the above-described aromatic dicarboxylic acid alkylene glycol ester and / or a low polymer thereof may contain other dicarboxylic acid ester copolymerizable therewith as an additional component, so that the effect of the method of the present invention is not substantially impaired. It may be contained in an amount within the range, specifically, 10 mol% or less, preferably 5 mol% or less, based on the total molar amount of the acid components.
前記共重合可能な追加成分は、好ましくは、酸成分として、例えば、アジピン酸、セバシン酸、1,4−シクロヘキサンジカルボン酸などの脂肪族及び脂環式のジカルボン酸、並びにヒドロキシカルボン酸、例えば、β−ヒドロキシエトキシ安息香酸、p−オキシ安息香酸などの1種以上と、グリコール成分として、例えば、構成炭素数が2個以上のアルキレングリコール、1,4−シクロヘキサンジメタノール、ネオペンチルグリコール、ビスフェノールA、ビスフェノールSのような脂肪族、脂環式、芳香族のジオール化合物およびポリオキシアルキレングリコール、の1種以上とのエステル又はその無水物から選ばれる。上記追記成分エステルは、単独で用いられてもよく、或はその二種以上を併用してもよい。但しその共重合量は上記の範囲内であることが好ましい。 The copolymerizable additional component is preferably an acid component, for example, aliphatic and alicyclic dicarboxylic acids such as adipic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, and hydroxycarboxylic acids such as One or more of β-hydroxyethoxybenzoic acid, p-oxybenzoic acid, and the like and a glycol component, for example, alkylene glycol having 2 or more carbon atoms, 1,4-cyclohexanedimethanol, neopentyl glycol, bisphenol A , An ester with one or more of aliphatic, cycloaliphatic, aromatic diol compounds such as bisphenol S and polyoxyalkylene glycol, or anhydrides thereof. The postscript component ester may be used alone or in combination of two or more thereof. However, the copolymerization amount is preferably within the above range.
なお、出発原料としてテレフタル酸及び又はテレフタル酸ジメチルを用いる場合には、ポリアルキレンテレフタレートを解重合することによって得られた回収テレフタル酸ジメチル又はこれを加水分解して得られる回収テレフタル酸を、ポリエステルを構成する全酸成分の質量を基準として70質量%以上使用することもできる。この場合、目的ポリアルキレンテレフタレートはポリエチレンテレフタレートであることが好ましく、特に回収されたPETボトル、回収された繊維製品、回収されたポリエステルフィルム製品、さらには、これら製品の製造工程において発生するポリマー屑などをポリエステル製造用原料源として用いることは、資源の有効活用の観点から好ましいことである。ここで、回収ポリアルキレンテレフタレートを解重合してテレフタル酸ジメチルを得る方法には特に限定はなく、従来公知の方法をいずれも採用することができる。例えば、回収ポリアルキレンテレフタレートをエチレングリコールを用いて解重合した後、解重合生成物を、低級アルコール、例えばメタノールによるエステル交換反応に供し、この反応混合物を精製してテレフタル酸の低級アルキルエステルを回収し、これをアルキレングリコールによるエステル交換反応に供し、得られたフタール酸/アルキレングリコールエステルを重縮合すればポリエステル樹脂を得ることができる。また、上記回収された、テレフタル酸ジメチルからテレフタル酸を回収する方法にも特に制限はなく、従来方法のいずれを用いてもよい。例えばエステル交換反応により得られた反応混合物からテレフタル酸ジメチルを再結晶法及び/又は蒸留法により回収した後、高温高圧下で水とともに加熱して加水分解してテレフタル酸を回収することができる。この方法によって得られるテレフタル酸に含まれる不純物において、4−カルボキシベンズアルデヒド、パラトルイル酸、安息香酸及びヒドロキシテレフタル酸ジメチルの含有量が、合計で1ppm以下であることが好ましい。また、テレフタル酸モノメチルの含有量が、1〜5000ppmの範囲にあることが好ましい。上述の方法により回収されたテレフタル酸と、アルキレングリコールとを直接エステル化反応させ、得られたエステルを重縮合することによりポリエステル樹脂を製造することができる。 When terephthalic acid and / or dimethyl terephthalate is used as a starting material, recovered dimethyl terephthalate obtained by depolymerizing polyalkylene terephthalate or recovered terephthalic acid obtained by hydrolyzing this is used as polyester. 70 mass% or more can also be used on the basis of the mass of all the acid components to comprise. In this case, it is preferable that the target polyalkylene terephthalate is polyethylene terephthalate. In particular, recovered PET bottles, recovered fiber products, recovered polyester film products, polymer waste generated in the manufacturing process of these products, etc. It is preferable to use as a raw material source for producing polyester from the viewpoint of effective utilization of resources. Here, the method for depolymerizing the recovered polyalkylene terephthalate to obtain dimethyl terephthalate is not particularly limited, and any conventionally known method can be employed. For example, after the recovered polyalkylene terephthalate is depolymerized with ethylene glycol, the depolymerized product is subjected to a transesterification reaction with a lower alcohol such as methanol, and the reaction mixture is purified to recover the lower alkyl ester of terephthalic acid. The polyester resin can be obtained by subjecting this to an ester exchange reaction with alkylene glycol and polycondensing the resulting phthalic acid / alkylene glycol ester. Further, the method for recovering terephthalic acid from the recovered dimethyl terephthalate is not particularly limited, and any conventional method may be used. For example, dimethyl terephthalate can be recovered from the reaction mixture obtained by the transesterification by recrystallization and / or distillation, and then heated and hydrolyzed with water under high temperature and high pressure to recover terephthalic acid. In the impurities contained in terephthalic acid obtained by this method, the total content of 4-carboxybenzaldehyde, p-toluic acid, benzoic acid and dimethyl hydroxyterephthalate is preferably 1 ppm or less. Moreover, it is preferable that content of monomethyl terephthalate exists in the range of 1-5000 ppm. A polyester resin can be produced by directly esterifying the terephthalic acid recovered by the above-described method with an alkylene glycol and polycondensing the resulting ester.
本発明に使用するポリエステル樹脂において、触媒を重合出発原料に添加する時期は、芳香族ジカルボン酸アルキレングリコールエステルおよび/またはその低重合体の重縮合反応の開始時期の前の任意の段階であればよく、さらに、その添加方法にも制限はない。例えば、芳香族ジカルボン酸アルキレングリコールエステルを調製し、この反応系内に触媒の溶液またはスラリーを添加して重縮合反応を開始してもよいし、或は、前記芳香族ジカルボン酸アルキレングリコールエステルを調製する際に出発原料とともに、又はその仕込み後に、触媒の溶液又はスラリーを、反応系に添加してもよい。 In the polyester resin used in the present invention, the timing of adding the catalyst to the polymerization starting material is any stage before the start of the polycondensation reaction of the aromatic dicarboxylic acid alkylene glycol ester and / or its low polymer. Moreover, there is no limitation on the addition method. For example, an aromatic dicarboxylic acid alkylene glycol ester may be prepared and a polycondensation reaction may be initiated by adding a catalyst solution or slurry to the reaction system, or the aromatic dicarboxylic acid alkylene glycol ester may be A catalyst solution or slurry may be added to the reaction system together with the starting materials during the preparation or after the charging.
本発明に使用するポリエステル樹脂の製造反応条件にも格別の制限はない。一般に重縮合反応は、230〜320℃の温度において、常圧下、又は減圧下(0.1Pa〜0.1MPa)において、或はこれらの条件を組み合わせて、15〜300分間重縮合することが好ましい。 There is no special restriction | limiting also in the manufacturing reaction conditions of the polyester resin used for this invention. In general, the polycondensation reaction is preferably performed at a temperature of 230 to 320 ° C. under normal pressure or reduced pressure (0.1 Pa to 0.1 MPa), or a combination of these conditions for 15 to 300 minutes. .
本発明に使用するポリエステル樹脂において、反応系に、必要に応じて反応安定剤、例えばトリメチルホスフェートをポリエステル製造における任意の段階で加えてもよく、さらに必要により、反応系に酸化防止剤、紫外線吸収剤、難燃剤、蛍光増白剤、艶消剤、整色剤、消泡剤、その他の添加剤の1種以上を配合してもよい。特に、ポリエステル樹脂中には、少なくとも1種のヒンダードフェノール化合物を含む酸化防止剤が含まれることが好ましいが、その含有量は、ポリエステル樹脂の質量に対して、1質量%以下であることが好ましい。その含有量が1質量%をこえると、酸化防止剤自身の熱劣化により、得られた生成物の品質を悪化させるという不都合を生ずることがある。 In the polyester resin used in the present invention, if necessary, a reaction stabilizer such as trimethyl phosphate may be added to the reaction system at any stage in the production of the polyester. One or more of an agent, a flame retardant, a fluorescent brightening agent, a matting agent, a color adjusting agent, an antifoaming agent, and other additives may be blended. In particular, the polyester resin preferably contains an antioxidant containing at least one hindered phenol compound, but the content thereof is 1% by mass or less based on the mass of the polyester resin. preferable. When the content exceeds 1% by mass, there may be a disadvantage that the quality of the obtained product is deteriorated due to thermal deterioration of the antioxidant itself.
本発明に使用するポリエステル樹脂に用いられる酸化防止剤用ヒンダードフェノール化合物は、ペンタエリスリトール−テトラエキス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、3,9−ビス{2−〔3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ〕−1,1−ジメチルエチル}−2,4,8,10−テトラオキサスピロ〔5,5〕ウンデカンなどから選ばれ、これらヒンダードフェノール系酸化防止剤とチオエーテル系二次酸化防止剤とを併用して用いることも好ましく実施される。上記ヒンダードフェノール系酸化防止剤のポリエステル樹脂への添加方法には特に制限はないが、好ましくはエステル交換反応、またはエステル化反応の終了後、重合反応が完了するまでの間の任意の段階で添加される。 The hindered phenol compound for an antioxidant used in the polyester resin used in the present invention is pentaerythritol-tetra extract [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3.9. -Bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl} -2,4,8,10-tetraoxaspiro [5 5] It is also preferably practiced to use these hindered phenolic antioxidants in combination with thioether secondary antioxidants selected from undecane and the like. The method for adding the hindered phenolic antioxidant to the polyester resin is not particularly limited, but preferably at any stage between the completion of the ester exchange reaction or the esterification reaction and the completion of the polymerization reaction. Added.
さらに、得られるポリエステル樹脂の色調を微調整するために、ポリエステル樹脂の製造段階において、その反応系中にアゾ系、トリフェニルメタン系、キノリン系、アントラキノン系、フタロシアニン系等の有機青色顔料及び無機青色顔料の1種以上からなる整色剤を添加することができる。なお、本発明の製造方法においては、当然のことながら、ポリエステル樹脂の溶融熱安定性を低下させるコバルト等を含む無機青色顔料を整色剤としては用いる必要はない。従って本発明に使用されるポリエステル樹脂には実質的にコバルトが含まれていないものとなる。 Further, in order to finely adjust the color tone of the obtained polyester resin, in the production stage of the polyester resin, organic blue pigments such as azo, triphenylmethane, quinoline, anthraquinone, phthalocyanine and the like are included in the reaction system. A color adjusting agent composed of one or more blue pigments can be added. In the production method of the present invention, as a matter of course, it is not necessary to use an inorganic blue pigment containing cobalt or the like which lowers the melt heat stability of the polyester resin as a color adjusting agent. Therefore, the polyester resin used in the present invention is substantially free of cobalt.
本発明の樹脂組成物は、上記触媒由来のチタン元素を0.001−50ppm含むことが好ましく、1−45ppmを含むことがより好ましい。含有するチタン元素が50ppmより多いと熱安定性や色相の悪化を生じ、0.001ppmより少ないと使用するポリエステル樹脂の触媒残量を大幅に下回っており、ポリエステル樹脂の製造が困難となることを意味しており、本組成の特徴である良好な機械強度・熱安定性や湿熱安定性が得られず、好ましくない。 The resin composition of the present invention preferably contains 0.001-50 ppm of titanium element derived from the catalyst, and more preferably contains 1-45 ppm. When the content of titanium element is more than 50 ppm, thermal stability and hue are deteriorated. When the content is less than 0.001 ppm, the remaining amount of catalyst of the polyester resin used is significantly lower, making it difficult to produce the polyester resin. This means that the good mechanical strength, thermal stability and wet heat stability, which are the characteristics of this composition, cannot be obtained, which is not preferable.
本発明に使用するポリエステル樹脂において、通常、ハンター型色差計より得られるL値が80.0以上、b値が−2.0〜5.0の範囲にあることが好ましい。ポリエステル樹脂のL値が80.0未満であると、得られるポリエステル樹脂の白色度が低くなるため実用に供し得る高白色度成形物を得ることができないことがある。また、b値が−2.0未満であると、得られるポリエステル樹脂の黄味は少ないが、青味が増し、またb値が5.0を越えると、得られるポリエステル樹脂の黄味が強くなるため、実用上有用な成形物の製造に供することができないことがある。本発明方法により得られるポリエステル樹脂のL値はより好ましくは82以上、特に好ましくは83以上であり、b値のより好ましい範囲は−1.0〜4.5であり、特に好ましくは 0.0〜4.0 である。 In the polyester resin used in the present invention, it is usually preferred that the L value obtained from a Hunter-type color difference meter is 80.0 or more and the b value is in the range of -2.0 to 5.0. If the L value of the polyester resin is less than 80.0, the whiteness of the resulting polyester resin will be low, and it may not be possible to obtain a high whiteness molded product that can be used practically. Further, when the b value is less than −2.0, the resulting polyester resin has little yellowness, but the bluishness increases. When the b value exceeds 5.0, the resulting polyester resin has a strong yellowness. Therefore, it may not be possible to produce a practically useful molded product. The L value of the polyester resin obtained by the method of the present invention is more preferably 82 or more, particularly preferably 83 or more, and a more preferable range of the b value is −1.0 to 4.5, particularly preferably 0.0. ~ 4.0.
本発明により得られたポリエステル樹脂の固有粘度には制限はないが、0.40〜1.2の範囲にあることが好ましい。該固有粘度がこの範囲内にあると、溶融成形が容易で、且つそれから得られる成形物の強度も高いものとなる。前記固有粘度のさらに好ましい範囲は、0.45〜1.1であり、特に好ましくは0.50〜1.0である。ポリエステル樹脂の固有粘度は、ポリエステル樹脂をオルソクロロフェノールに溶解し、35℃の温度において測定される。なお、固相重縮合により得られたポリエステル樹脂は、一般的ボトルなどに利用する場合が多く、そのため、ポリエステル樹脂中に含まれ、0.70〜0.90の固有粘度を有する。前記芳香族ジカルボン酸とアルキレングリコールとのエステルの環状三量体の含有量が0.5wt%以下であり、かつアセトアルデヒドの含有量が5ppm 以下であることが好ましい。前記環状三量体は、アルキレンテレフタレート、例えばエチレンテレフタレート、トリメチレンテレフタレート、テトラメチレンテレフタレート、及びヘキサメチレンテレフタレートなど、並びにアルキレンナフタレート、例えば、エチレンナフタレート、トリメチレンナフタレート、テトラメチレンナフタレート及びヘキサメチレンナフタレートなどを包含する。 Although there is no restriction | limiting in the intrinsic viscosity of the polyester resin obtained by this invention, It is preferable to exist in the range of 0.40-1.2. When the intrinsic viscosity is within this range, melt molding is easy and the strength of the molded product obtained therefrom is high. A more preferable range of the intrinsic viscosity is 0.45 to 1.1, and particularly preferably 0.50 to 1.0. The intrinsic viscosity of the polyester resin is measured at a temperature of 35 ° C. by dissolving the polyester resin in orthochlorophenol. In addition, the polyester resin obtained by solid phase polycondensation is often used for a general bottle or the like, and is therefore contained in the polyester resin and has an intrinsic viscosity of 0.70 to 0.90. The cyclic trimer content of the ester of aromatic dicarboxylic acid and alkylene glycol is preferably 0.5 wt% or less, and the acetaldehyde content is preferably 5 ppm or less. The cyclic trimers include alkylene terephthalates such as ethylene terephthalate, trimethylene terephthalate, tetramethylene terephthalate, and hexamethylene terephthalate, and alkylene naphthalates such as ethylene naphthalate, trimethylene naphthalate, tetramethylene naphthalate and hexamethylene. Including methylene naphthalate.
ポリエステル樹脂の含有量はA成分とB成分の合計100重量部当り、1〜50重量部、好ましくは5〜45重量部、より好ましくは15〜35重量部である。1重量部以下であると、耐薬品性の改良効果がみられず、50重量部を超えると外観の悪化や耐湿熱性の低下を招くため、好ましくない。 The content of the polyester resin is 1 to 50 parts by weight, preferably 5 to 45 parts by weight, more preferably 15 to 35 parts by weight, per 100 parts by weight of the total of component A and component B. If it is 1 part by weight or less, the chemical resistance improving effect is not observed, and if it exceeds 50 parts by weight, the appearance is deteriorated and the heat and humidity resistance is lowered, which is not preferable.
(その他の添加剤について)
本発明のポリカーボネート樹脂組成物には、成形加工時の分子量低下や色相を安定化させるための各種安定剤、離型剤、色剤、衝撃改質剤、充填剤及び難燃剤等を使用することができる。
(Other additives)
In the polycarbonate resin composition of the present invention, various stabilizers, mold release agents, colorants, impact modifiers, fillers, flame retardants and the like for stabilizing molecular weight reduction and hue during molding processing should be used. Can do.
(i)難燃剤
本発明のポリカーボネート樹脂組成物には、難燃剤として知られる各種の化合物が配合される。尚、難燃剤として使用される化合物の配合は難燃性の向上のみならず、各化合物の性質に基づき、例えば帯電防止性、流動性、剛性、および熱安定性の向上などがもたらされる。
かかる難燃剤としては、(1)有機金属塩系難燃剤(例えば有機スルホン酸アルカリ(土類)金属塩、ホウ酸金属塩系難燃剤、および錫酸金属塩系難燃剤など)、(2)有機リン系難燃剤(例えば、モノホスフェート化合物、ホスフェートオリゴマー化合物、ホスホネートオリゴマー化合物、ホスホニトリルオリゴマー化合物、およびホスホン酸アミド化合物など)、(3)シリコーン化合物からなるシリコーン系難燃剤、並びに(4)ハロゲン系難燃剤(例えば、臭素化エポキシ樹脂、臭素化ポリスチレン、臭素化ポリカーボネート(オリゴマーを含む)、臭素化ポリアクリレート、および塩素化ポリエチレンなど)等が挙げられる。
(I) Flame retardant Various compounds known as flame retardants are blended in the polycarbonate resin composition of the present invention. The compounding of the compound used as a flame retardant not only improves the flame retardancy but also provides, for example, an improvement in antistatic properties, fluidity, rigidity, and thermal stability based on the properties of each compound.
Examples of such flame retardants include (1) organometallic salt flame retardants (for example, alkali (earth) organic sulfonate metal salts, borate metal salt flame retardants, stannate metal salt flame retardants, etc.), (2) Organophosphorous flame retardants (for example, monophosphate compounds, phosphate oligomer compounds, phosphonate oligomer compounds, phosphonitrile oligomer compounds, and phosphonic acid amide compounds), (3) silicone flame retardants comprising silicone compounds, and (4) halogens And flame retardant (for example, brominated epoxy resin, brominated polystyrene, brominated polycarbonate (including oligomers), brominated polyacrylate, chlorinated polyethylene, etc.).
(1)有機金属塩系難燃剤
有機金属塩系難燃剤は、耐熱性がほぼ維持されると共に少なからず帯電防止性を付与できる点で有利である。本発明において最も有利に使用される有機金属塩系難燃剤は、含フッ素有機金属塩化合物である。本発明の含フッ素有機金属塩化合物とは、フッ素置換された炭化水素基を有する有機酸からなるアニオン成分と金属イオンからなるカチオン成分からなる金属塩化合物をいう。より好適な具体例としては、フッ素置換有機スルホン酸の金属塩、フッ素置換有機硫酸エステルの金属塩、およびフッ素置換有機リン酸エステルの金属塩が例示される。含フッ素有機金属塩化合物は1種もしくは2種以上を混合して使用することができる。その中でも好ましいのはフッ素置換有機スルホン酸の金属塩であり、とくに好ましいのはパーフルオロアルキル基を有するスルホン酸の金属塩である。ここでパーフルオロアルキル基の炭素数は、1〜18の範囲が好ましく、1〜10の範囲がより好ましく、更に好ましくは1〜8の範囲である。
(1) Organometallic salt-based flame retardant An organic metal salt-based flame retardant is advantageous in that heat resistance is substantially maintained and antistatic properties can be imparted. The organometallic salt flame retardant most advantageously used in the present invention is a fluorine-containing organometallic salt compound. The fluorine-containing organometallic salt compound of the present invention refers to a metal salt compound comprising an anion component composed of an organic acid having a fluorine-substituted hydrocarbon group and a cation component composed of a metal ion. More preferred specific examples include metal salts of fluorine-substituted organic sulfonic acids, metal salts of fluorine-substituted organic sulfates, and metal salts of fluorine-substituted organic phosphates. Fluorine-containing organometallic salt compounds can be used alone or in combination of two or more. Among them, a metal salt of a fluorine-substituted organic sulfonic acid is preferable, and a metal salt of a sulfonic acid having a perfluoroalkyl group is particularly preferable. Here, the carbon number of the perfluoroalkyl group is preferably in the range of 1-18, more preferably in the range of 1-10, and still more preferably in the range of 1-8.
有機金属塩系難燃剤の金属イオンを構成する金属は、アルカリ金属あるいはアルカリ土類金属であり、アルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムが挙げられ、アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウムおよびバリウムが挙げられる。より好適にはアルカリ金属である。したがって好適な有機金属塩系難燃剤は、パーフルオロアルキルスルホン酸アルカリ金属塩である。かかるアルカリ金属の中でも、透明性の要求がより高い場合にはルビジウムおよびセシウムが好適である一方、これらは汎用的でなくまた精製もし難いことから、結果的にコストの点で不利となる場合がある。一方、コストや難燃性の点で有利であるがリチウムおよびナトリウムは逆に透明性の点で不利な場合がある。これらを勘案してパーフルオロアルキルスルホン酸アルカリ金属塩中のアルカリ金属を使い分けることができるが、いずれの点においても特性のバランスに優れたパーフルオロアルキルスルホン酸カリウム塩が最も好適である。かかるカリウム塩と他のアルカリ金属からなるパーフルオロアルキルスルホン酸アルカリ金属塩とを併用することもできる。 The metal constituting the metal ion of the organometallic salt flame retardant is an alkali metal or an alkaline earth metal. Examples of the alkali metal include lithium, sodium, potassium, rubidium and cesium. Examples of the alkaline earth metal include beryllium. , Magnesium, calcium, strontium and barium. More preferred is an alkali metal. Accordingly, a preferred organometallic salt flame retardant is an alkali metal perfluoroalkyl sulfonate. Among such alkali metals, rubidium and cesium are suitable when transparency requirements are higher, but these are not general-purpose and difficult to purify, resulting in disadvantages in terms of cost. is there. On the other hand, although lithium and sodium are advantageous in terms of cost and flame retardancy, they may be disadvantageous in terms of transparency. In consideration of these, the alkali metal in the perfluoroalkylsulfonic acid alkali metal salt can be properly used, but perfluoroalkylsulfonic acid potassium salt having an excellent balance of properties is most suitable in any respect. Such potassium salts and alkali metal salts of perfluoroalkylsulfonic acid composed of other alkali metals can be used in combination.
かかるパーフルオロアルキルスルホン酸アルカリ金属塩としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウム等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。これらの中で特にパーフルオロブタンスルホン酸カリウムが好ましい。 Such alkali metal perfluoroalkylsulfonates include potassium trifluoromethanesulfonate, potassium perfluorobutanesulfonate, potassium perfluorohexanesulfonate, potassium perfluorooctanesulfonate, sodium pentafluoroethanesulfonate, perfluorobutanesulfone. Acid sodium, sodium perfluorooctane sulfonate, lithium trifluoromethane sulfonate, lithium perfluorobutane sulfonate, lithium perfluoroheptane sulfonate, cesium trifluoromethane sulfonate, cesium perfluorobutane sulfonate, cesium perfluorooctane sulfonate, Cesium perfluorohexane sulfonate, rubidium perfluorobutane sulfonate, and perful B hexane sulfonate rubidium and the like, and these can be used in combination with more than one or two. Of these, potassium perfluorobutanesulfonate is particularly preferred.
上記の含フッ素有機金属塩はイオンクロマトグラフィー法により測定した弗化物イオンの含有量が好ましくは50ppm以下、より好ましくは20ppm以下、更に好ましくは10ppm以下である。弗化物イオンの含有量が低いほど、難燃性や耐光性が良好となる。弗化物イオンの含有量の下限は実質的に0とすることも可能であるが、精製工数と効果との兼ね合いから実用的には0.2ppm程度が好ましい。かかる弗化物イオンの含有量のパーフルオロアルキルスルホン酸アルカリ金属塩は例えば次のように精製される。パーフルオロアルキルスルホン酸アルカリ金属塩を、該金属塩の2〜10重量倍のイオン交換水に、40〜90℃(より好適には60〜85℃)の範囲において溶解させる。該パーフルオロアルキルスルホン酸アルカリ金属塩は、パーフルオロアルキルスルホン酸をアルカリ金属の炭酸塩または水酸化物で中和する方法、もしくはパーフルオロアルキルスルホニルフルオライドをアルカリ金属の炭酸塩または水酸化物で中和する方法により(より好適には後者の方法により)生成される。また該イオン交換水は、特に好適には電気抵抗値が18MΩ・cm以上である水である。金属塩を溶解した液を上記温度下で0.1〜3時間、より好適には0.5〜2.5時間撹拌する。その後該液を0〜40℃、より好適に10〜35℃の範囲に冷却する。冷却により結晶が析出する。析出した結晶をろ過によって取り出す。これにより好適な精製されたパーフルオロアルキルスルホン酸アルカリ金属塩が製造される。 The fluorine-containing organometallic salt preferably has a fluoride ion content as measured by ion chromatography of 50 ppm or less, more preferably 20 ppm or less, and even more preferably 10 ppm or less. The lower the fluoride ion content, the better the flame retardancy and light resistance. The lower limit of the fluoride ion content can be substantially zero, but is practically preferably about 0.2 ppm in view of the balance between the refining man-hour and the effect. Such alkali metal salt of perfluoroalkylsulfonic acid having a fluoride ion content is purified, for example, as follows. The perfluoroalkylsulfonic acid alkali metal salt is dissolved in 2 to 10 times by weight of the metal salt in ion-exchanged water in the range of 40 to 90 ° C. (more preferably 60 to 85 ° C.). The alkali metal salt of perfluoroalkylsulfonic acid is a method of neutralizing perfluoroalkylsulfonic acid with an alkali metal carbonate or hydroxide, or perfluoroalkylsulfonyl fluoride with an alkali metal carbonate or hydroxide. It is produced by a neutralizing method (more preferably by the latter method). The ion-exchanged water is particularly preferably water having an electric resistance value of 18 MΩ · cm or more. The solution in which the metal salt is dissolved is stirred at the above temperature for 0.1 to 3 hours, more preferably 0.5 to 2.5 hours. Thereafter, the liquid is cooled to 0 to 40 ° C, more preferably in the range of 10 to 35 ° C. Crystals precipitate upon cooling. The precipitated crystals are removed by filtration. This produces a suitable purified perfluoroalkylsulfonic acid alkali metal salt.
含フッ素有機金属塩化合物の含有量は、A成分、B成分の合計100重量部を基準として好ましくは0.005〜0.6重量部、より好ましくは0.005〜0.2重量部、更に好ましくは0.008〜0.13重量部である。かかる好ましい範囲であるほど含フッ素有機金属塩の配合により期待される効果(例えば難燃性や帯電防止性など)が発揮されると共に、ポリカーボネート樹脂組成物の耐光性に与える悪影響も少なくなる。 The content of the fluorine-containing organometallic salt compound is preferably 0.005 to 0.6 parts by weight, more preferably 0.005 to 0.2 parts by weight, based on the total of 100 parts by weight of component A and component B, Preferably it is 0.008-0.13 weight part. The more preferable range is, the effects (for example, flame retardancy and antistatic properties) expected by the blending of the fluorine-containing organic metal salt are exhibited, and the adverse effect on the light resistance of the polycarbonate resin composition is reduced.
その他上記含フッ素有機金属塩化合物以外の有機金属塩系難燃剤としては、フッ素原子を含有しない有機スルホン酸の金属塩が好適である。該金属塩としては、例えば脂肪族スルホン酸のアルカリ金属塩、脂肪族スルホン酸のアルカリ土類金属塩、芳香族スルホン酸のアルカリ金属塩、および芳香族スルホン酸のアルカリ土類金属塩等(いずれもフッ素原子を含有しない)が挙げられる。 In addition, as an organic metal salt flame retardant other than the above-mentioned fluorine-containing organic metal salt compound, a metal salt of an organic sulfonic acid not containing a fluorine atom is suitable. Examples of the metal salt include an alkali metal salt of an aliphatic sulfonic acid, an alkaline earth metal salt of an aliphatic sulfonic acid, an alkali metal salt of an aromatic sulfonic acid, and an alkaline earth metal salt of an aromatic sulfonic acid (any Also does not contain a fluorine atom).
脂肪族スルホン酸金属塩の好ましい例としては、アルキルスルホン酸アルカリ(土類)金属塩を挙げることができ、これらは1種もしくは2種以上を併用して使用することができる(ここで、アルカリ(土類)金属塩の表記は、アルカリ金属塩、アルカリ土類金属塩のいずれも含む意味で使用する)。かかるアルキルスルホン酸アルカリ(土類)金属塩に使用するアルカンスルホン酸の好ましい例としては、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸、メチルブタンスルホン酸、ヘキサンスルホン酸、へプタンスルホン酸、オクタンスルホン酸等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。 Preferable examples of the aliphatic sulfonic acid metal salt include an alkali (earth) metal salt of an alkyl sulfonate, and these can be used alone or in combination of two or more (here, alkali The (earth) metal salt is used to include both alkali metal salts and alkaline earth metal salts). Preferred examples of the alkane sulfonic acid used for the alkali (earth) metal salt of the alkyl sulfonate include methane sulfonic acid, ethane sulfonic acid, propane sulfonic acid, butane sulfonic acid, methyl butane sulfonic acid, hexane sulfonic acid, and heptane. Examples thereof include sulfonic acid and octanesulfonic acid, and these can be used alone or in combination of two or more.
芳香族スルホン酸アルカリ(土類)金属塩に使用する芳香族スルホン酸としては、モノマー状またはポリマー状の芳香族サルファイドのスルホン酸、芳香族カルボン酸およびエステルのスルホン酸、モノマー状またはポリマー状の芳香族エーテルのスルホン酸、芳香族スルホネートのスルホン酸、モノマー状またはポリマー状の芳香族スルホン酸、モノマー状またはポリマー状の芳香族スルホンスルホン酸、芳香族ケトンのスルホン酸、複素環式スルホン酸、芳香族スルホキサイドのスルホン酸、芳香族スルホン酸のメチレン型結合による縮合体からなる群から選ばれた少なくとも1種の酸を挙げることができ、これらは1種もしくは2種以上を併用して使用することができる。 The aromatic sulfonic acid used in the aromatic (earth) metal salt of aromatic sulfonate includes monomeric or polymeric aromatic sulfide sulfonic acid, aromatic carboxylic acid and ester sulfonic acid, monomeric or polymeric sulfonic acid. Aromatic ether sulfonic acid, aromatic sulfonate sulfonic acid, monomeric or polymeric aromatic sulfonic acid, monomeric or polymeric aromatic sulfonic acid, aromatic ketone sulfonic acid, heterocyclic sulfonic acid, Examples include at least one acid selected from the group consisting of sulfonic acids of aromatic sulfoxides and condensates of methylene type bonds of aromatic sulfonic acids, and these are used alone or in combination of two or more. be able to.
芳香族スルホン酸アルカリ(土類)金属塩の具体例としては、例えばジフェニルサルファイド−4,4’−ジスルホン酸ジナトリウム、ジフェニルサルファイド−4,4’−ジスルホン酸ジカリウム、5−スルホイソフタル酸カリウム、5−スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウム、1−メトキシナフタレン−4−スルホン酸カルシウム、4−ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6−ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6−ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2−フルオロ−6−ブチルフェニレンオキシド)ポリスルホン酸リチウム、ベンゼンスルホネートのスルホン酸カリウム、ベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p−ベンゼンジスルホン酸ジカリウム、ナフタレン−2,6−ジスルホン酸ジカリウム、ビフェニル−3,3’−ジスルホン酸カルシウム、ジフェニルスルホン−3−スルホン酸ナトリウム、ジフェニルスルホン−3−スルホン酸カリウム、ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3,4’−ジスルホン酸ジカリウムな、α,α,α−トリフルオロアセトフェノン−4−スルホン酸ナトリウム、ベンゾフェノン−3,3’−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸ジナトリウム、チオフェン−2,5−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウム、ジフェニルスルホキサイド−4−スルホン酸カリウム、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、およびアントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。 Specific examples of the aromatic (earth) metal salt of an aromatic sulfonate include, for example, disodium diphenyl sulfide-4,4′-disulfonate, dipotassium diphenyl sulfide-4,4′-disulfonate, potassium 5-sulfoisophthalate, Sodium 5-sulfoisophthalate, polysodium polyethylene terephthalate polysulfonate, calcium 1-methoxynaphthalene-4-sulfonate, disodium 4-dodecylphenyl ether disulfonate, polysodium poly (2,6-dimethylphenylene oxide) polysulfonate Poly (1,3-phenylene oxide) polysulfonic acid polysodium, poly (1,4-phenylene oxide) polysulfonic acid polysodium, poly (2,6-diphenylphenylene oxide) polysulfonic acid poly Lithium, poly (2-fluoro-6-butylphenylene oxide) polysulfonate, potassium sulfonate of benzenesulfonate, sodium benzenesulfonate, strontium benzenesulfonate, magnesium benzenesulfonate, dipotassium p-benzenedisulfonate, naphthalene-2 , 6-disulfonic acid dipotassium, biphenyl-3,3'-disulfonic acid calcium, diphenylsulfone-3-sulfonic acid sodium, diphenylsulfone-3-sulfonic acid potassium, diphenylsulfone-3,3'-disulfonic acid dipotassium, diphenylsulfone Α, α, α-trifluoroacetophenone sodium 4-sulfonate, dipotassium benzophenone-3,3′-disulfonate, Nene-2,5-disulfonate, dipotassium thiophene-2,5-disulfonate, calcium thiophene-2,5-disulfonate, sodium benzothiophenesulfonate, potassium diphenylsulfoxide-4-sulfonate, naphthalene Examples thereof include a formalin condensate of sodium sulfonate and a formalin condensate of sodium anthracene sulfonate.
一方、硫酸エステルのアルカリ(土類)金属塩としては、特に一価および/または多価アルコール類の硫酸エステルのアルカリ(土類)金属塩を挙げることができ、かかる一価および/または多価アルコール類の硫酸エステルとしては、メチル硫酸エステル、エチル硫酸エステル、ラウリル硫酸エステル、ヘキサデシル硫酸エステル、ポリオキシエチレンアルキルフェニルエーテルの硫酸エステル、ペンタエリスリトールのモノ、ジ、トリ、テトラ硫酸エステル、ラウリン酸モノグリセライドの硫酸エステル、パルミチン酸モノグリセライドの硫酸エステル、およびステアリン酸モノグリセライドの硫酸エステルなどを挙げることができる。これらの硫酸エステルのアルカリ(土類)金属塩として好ましくはラウリル硫酸エステルのアルカリ(土類)金属塩を挙げることができる。 On the other hand, the alkali (earth) metal salt of sulfate ester may include, in particular, the alkali (earth) metal salt of sulfate ester of monovalent and / or polyhydric alcohols. Alcohol sulfates include methyl sulfate, ethyl sulfate, lauryl sulfate, hexadecyl sulfate, polyoxyethylene alkylphenyl ether sulfate, pentaerythritol mono, di, tri, tetrasulfate, and lauric acid monoglyceride. And sulfuric acid esters of palmitic acid monoglyceride and stearic acid monoglyceride sulfate. The alkali (earth) metal salts of these sulfates are preferably alkali (earth) metal salts of lauryl sulfate.
また他のアルカリ(土類)金属塩としては、芳香族スルホンアミドのアルカリ(土類)金属塩を挙げることができ、例えばサッカリン、N−(p−トリルスルホニル)−p−トルエンスルホイミド、N−(N’−ベンジルアミノカルボニル)スルファニルイミド、およびN−(フェニルカルボキシル)スルファニルイミドのアルカリ(土類)金属塩などが挙げられる。 Examples of other alkali (earth) metal salts include alkali (earth) metal salts of aromatic sulfonamides such as saccharin, N- (p-tolylsulfonyl) -p-toluenesulfonimide, N Examples include-(N'-benzylaminocarbonyl) sulfanilimide and alkali (earth) metal salts of N- (phenylcarboxyl) sulfanilimide.
上記の中でも好ましいフッ素原子を含有しない有機スルホン酸の金属塩は、芳香族スルホン酸アルカリ(土類)金属塩であり、特にカリウム塩が好適である。かかる芳香族スルホン酸アルカリ(土類)金属塩を配合する場合その含有量は、A成分、B成分の合計100重量部を基準として好ましくは0.001〜1重量部であり、より好ましくは0.005〜0.5重量部、更に好ましくは0.01〜0.1重量部である。 Among the above, preferable metal salts of organic sulfonic acids not containing fluorine atoms are aromatic (earth) metal salts of aromatic sulfonates, and potassium salts are particularly preferable. When blending such an alkali (earth) sulfonate metal salt, its content is preferably 0.001 to 1 part by weight, more preferably 0, based on a total of 100 parts by weight of component A and component B. 0.005 to 0.5 parts by weight, more preferably 0.01 to 0.1 parts by weight.
(2)有機リン系難燃剤
本発明の有機リン系難燃剤としては、アリールホスフェート化合物が好適である。かかるホスフェート化合物は概して色相に優れ、光高反射性に悪影響を与えることが少ないためである。またホスフェート化合物は可塑化効果があるため本発明のポリカーボネート樹脂組成物の成形加工性を高められる点で有利である。かかるホスフェート化合物は、従来難燃剤として公知の各種ホスフェート化合物が使用できるが、より好適には特に下記一般式(5)で表される1種または2種以上のホスフェート化合物を挙げることができる。
(2) Organophosphorous flame retardant As the organophosphorous flame retardant of the present invention, an aryl phosphate compound is suitable. This is because such a phosphate compound is generally excellent in hue and hardly adversely affects high light reflectivity. Moreover, since the phosphate compound has a plasticizing effect, it is advantageous in that the moldability of the polycarbonate resin composition of the present invention can be improved. As the phosphate compound, various known phosphate compounds as conventional flame retardants can be used, and more preferably, one or more phosphate compounds represented by the following general formula (5) can be mentioned.
前記式のホスフェート化合物は、異なるn数を有する化合物の混合物であってもよく、かかる混合物の場合、平均のn数は好ましくは0.5〜1.5、より好ましくは0.8〜1.2、更に好ましくは0.95〜1.15、特に好ましくは1〜1.14の範囲である。 The phosphate compound of the above formula may be a mixture of compounds having different n numbers, in which case the average n number is preferably 0.5 to 1.5, more preferably 0.8 to 1. 2, More preferably, it is 0.95-1.15, Most preferably, it is the range of 1-1.14.
上記Xを誘導する二価フェノールの好適な具体例はレゾルシノール、ビスフェノールA、およびジヒドロキシジフェニルである。
上記R1、R2、R3、およびR4を誘導する一価フェノールの好適な具体例はフェノール、および2,6−ジメチルフェノールである。
尚、かかる一価フェノールはハロゲン原子で置換されてもよく、該一価フェノールから誘導される基を有するホスフェート化合物の具体例としては、トリス(2,4,6−トリブロモフェニル)ホスフェートおよびトリス(2,4−ジブロモフェニル)ホスフェート、トリス(4−ブロモフェニル)ホスフェートなどが例示される。
Preferred specific examples of the dihydric phenol for deriving X are resorcinol, bisphenol A, and dihydroxydiphenyl.
Preferred specific examples of the monohydric phenol for deriving the above R 1 , R 2 , R 3 , and R 4 are phenol and 2,6-dimethylphenol.
The monohydric phenol may be substituted with a halogen atom. Specific examples of the phosphate compound having a group derived from the monohydric phenol include tris (2,4,6-tribromophenyl) phosphate and tris. Examples include (2,4-dibromophenyl) phosphate, tris (4-bromophenyl) phosphate, and the like.
一方、ハロゲン原子で置換されていないホスフェート化合物の具体例としては、トリフェニルホスフェートおよびトリ(2,6−キシリル)ホスフェートなどのモノホスフェート化合物、並びにレゾルシノールビスジ(2,6−キシリル)ホスフェート)を主体とするホスフェートオリゴマー、4,4−ジヒドロキシジフェニルビス(ジフェニルホスフェート)を主体とするホスフェートオリゴマー、およびビスフェノールAビス(ジフェニルホスフェート)を主体とするリン酸エステルオリゴマーが好適である(ここで主体とするとは、重合度の異なる他の成分を少量含んでよいことを示し、より好適には前記式(1)におけるn=1の成分が80重量%以上、より好ましくは85重量%以上、更に好ましくは90重量%以上含有されることを示す。)。
有機リン系難燃剤の含有量は、A成分、B成分の合計100重量部を基準として好ましくは1〜20重量部であり、より好ましくは2〜10重量部、更に好ましくは2〜7重量部である。
On the other hand, specific examples of the phosphate compound not substituted with a halogen atom include monophosphate compounds such as triphenyl phosphate and tri (2,6-xylyl) phosphate, and resorcinol bisdi (2,6-xylyl) phosphate). Preferred are phosphate oligomers mainly composed of phosphate oligomers, phosphate oligomers mainly composed of 4,4-dihydroxydiphenyl bis (diphenyl phosphate), and phosphate oligomers mainly composed of bisphenol A bis (diphenyl phosphate). Indicates that a small amount of other components having different degrees of polymerization may be included, and more preferably, the component of n = 1 in the formula (1) is 80% by weight or more, more preferably 85% by weight or more, and still more preferably Contains over 90% by weight Are shown.).
The content of the organophosphorous flame retardant is preferably 1 to 20 parts by weight, more preferably 2 to 10 parts by weight, still more preferably 2 to 7 parts by weight, based on a total of 100 parts by weight of component A and component B. It is.
(3)シリコーン系難燃剤
本発明のシリコーン系難燃剤として使用されるシリコーン化合物は、燃焼時の化学反応によって難燃性を向上させるものである。該化合物としては従来芳香族ポリカーボネート樹脂の難燃剤として提案された各種の化合物を使用することができる。シリコーン化合物はその燃焼時にそれ自体が結合してまたは樹脂に由来する成分と結合してストラクチャーを形成することにより、または該ストラクチャー形成時の還元反応により、ポリカーボネート樹脂に難燃効果を付与するものと考えられている。したがってかかる反応における活性の高い基を含んでいることが好ましく、より具体的にはアルコキシ基およびハイドロジェン(即ちSi−H基)から選択された少なくとも1種の基を所定量含んでいることが好ましい。かかる基(アルコキシ基、Si−H基)の含有割合としては、0.1〜1.2mol/100gの範囲が好ましく、0.12〜1mol/100gの範囲がより好ましく、0.15〜0.6mol/100gの範囲が更に好ましい。かかる割合はアルカリ分解法より、シリコーン化合物の単位重量当たりに発生した水素またはアルコールの量を測定することにより求められる。尚、アルコキシ基は炭素数1〜4のアルコキシ基が好ましく、特にメトキシ基が好適である。
(3) Silicone-based flame retardant The silicone compound used as the silicone-based flame retardant of the present invention improves flame retardancy by a chemical reaction during combustion. As the compound, various compounds conventionally proposed as flame retardants for aromatic polycarbonate resins can be used. The silicone compound binds itself during combustion or binds to a component derived from the resin to form a structure, or gives a flame retardant effect to the polycarbonate resin by a reduction reaction during the structure formation. It is considered. Therefore, it is preferable that a group having high activity in such a reaction is contained, and more specifically, a predetermined amount of at least one group selected from an alkoxy group and a hydrogen (ie, Si—H group) is contained. preferable. As a content rate of this group (alkoxy group, Si-H group), the range of 0.1-1.2 mol / 100g is preferable, the range of 0.12-1 mol / 100g is more preferable, 0.15-0. The range of 6 mol / 100 g is more preferable. Such a ratio can be determined by measuring the amount of hydrogen or alcohol generated per unit weight of the silicone compound by the alkali decomposition method. The alkoxy group is preferably an alkoxy group having 1 to 4 carbon atoms, and particularly preferably a methoxy group.
一般的にシリコーン化合物の構造は、以下に示す4種類のシロキサン単位を任意に組み合わせることによって構成される。すなわち、
M単位:(CH3)3SiO1/2、H(CH3)2SiO1/2、H2(CH3)SiO1/2、(CH3)2(CH2=CH)SiO1/2、(CH3)2(C6H5)SiO1/2、(CH3)(C6H5)(CH2=CH)SiO1/2等の1官能性シロキサン単位、
D単位:(CH3)2SiO、H(CH3)SiO、H2SiO、H(C6H5)SiO、(CH3)(CH2=CH)SiO、(C6H5)2SiO等の2官能性シロキサン単位、
T単位:(CH3)SiO3/2、(C3H7)SiO3/2、HSiO3/2、(CH2=CH)SiO3/2、(C6H5)SiO3/2等の3官能性シロキサン単位、
Q単位:SiO2で示される4官能性シロキサン単位である。
Generally, the structure of a silicone compound is constituted by arbitrarily combining the following four types of siloxane units. That is,
M units: (CH 3 ) 3 SiO 1/2 , H (CH 3 ) 2 SiO 1/2 , H 2 (CH 3 ) SiO 1/2 , (CH 3 ) 2 (CH 2 = CH) SiO 1/2 Monofunctional siloxane units such as (CH 3 ) 2 (C 6 H 5 ) SiO 1/2 , (CH 3 ) (C 6 H 5 ) (CH 2 ═CH) SiO 1/2 ,
D unit: (CH 3 ) 2 SiO, H (CH 3 ) SiO, H 2 SiO, H (C 6 H 5 ) SiO, (CH 3 ) (CH 2 ═CH) SiO, (C 6 H 5 ) 2 SiO Bifunctional siloxane units such as
T unit: (CH 3 ) SiO 3/2 , (C 3 H 7 ) SiO 3/2 , HSiO 3/2 , (CH 2 ═CH) SiO 3/2 , (C 6 H 5 ) SiO 3/2 etc. A trifunctional siloxane unit of
Q unit: a tetrafunctional siloxane unit represented by SiO 2 .
シリコーン系難燃剤に使用されるシリコーン化合物の構造は、具体的には、示性式としてDn、Tp、MmDn、MmTp、MmQq、MmDnTp、MmDnQq、MmTpQq、MmDnTpQq、DnTp、DnQq、DnTpQqが挙げられる。この中で好ましいシリコーン化合物の構造は、MmDn、MmTp、MmDnTp、MmDnQqであり、さらに好ましい構造は、MmDnまたはMmDnTpである。 Specifically, the structure of the silicone compound used in the silicone-based flame retardant is represented by the following formulas: D n , T p , M m D n , M m T p , M m Q q , M m D n T p , M m D n Q q, M m T p Q q, M m D n T p Q q, D n T p, D n Q q, include D n T p Q q. Among these, preferable structures of the silicone compound are M m D n , M m T p , M m D n T p , and M m D n Q q , and more preferable structures are M m D n or M m D n. T p .
ここで、上記示性式中の係数m、n、p、qは各シロキサン単位の重合度を表す1以上の整数であり、各示性式における係数の合計がシリコーン化合物の平均重合度となる。この平均重合度は好ましくは3〜150の範囲、より好ましくは3〜80の範囲、更に好ましくは3〜60の範囲、特に好ましくは4〜40の範囲である。かかる好適な範囲であるほど難燃性において優れるようになる。更に後述するように芳香族基を所定量含むシリコーン化合物においては透明性や色相にも優れる。 Here, the coefficients m, n, p, and q in the above formulas are integers of 1 or more representing the degree of polymerization of each siloxane unit, and the sum of the coefficients in each formula is the average degree of polymerization of the silicone compound. . This average degree of polymerization is preferably in the range of 3 to 150, more preferably in the range of 3 to 80, still more preferably in the range of 3 to 60, and particularly preferably in the range of 4 to 40. The better the range, the better the flame retardancy. Further, as described later, a silicone compound containing a predetermined amount of an aromatic group is excellent in transparency and hue.
またm、n、p、qのいずれかが2以上の数値である場合、その係数の付いたシロキサン単位は、結合する水素原子や有機残基が異なる2種以上のシロキサン単位とすることができる。 When any of m, n, p, and q is a numerical value of 2 or more, the siloxane unit with the coefficient can be two or more types of siloxane units having different hydrogen atoms or organic residues to be bonded. .
シリコーン化合物は、直鎖状であっても分岐構造を持つものであってもよい。またシリコン原子に結合する有機残基は炭素数1〜30、より好ましくは1〜20の有機残基であることが好ましい。かかる有機残基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、およびデシル基などのアルキル基、シクロヘキシル基の如きシクロアルキル基、フェニル基の如きアリール基、並びにトリル基の如きアラルキル基を挙げることがでる。さらに好ましくは炭素数1〜8のアルキル基、アルケニル基またはアリール基である。アルキル基としては、特にはメチル基、エチル基、およびプロピル基等の炭素数1〜4のアルキル基が好ましい。 The silicone compound may be linear or have a branched structure. The organic residue bonded to the silicon atom is preferably an organic residue having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms. Specific examples of such an organic residue include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a decyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, And aralkyl groups such as tolyl groups. More preferably, they are a C1-C8 alkyl group, an alkenyl group, or an aryl group. As the alkyl group, an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, and a propyl group is particularly preferable.
さらにシリコーン系難燃剤として使用されるシリコーン化合物はアリール基を含有することが好ましい。より好適には下記一般式(6)で示される芳香族基が含まれる割合(芳香族基量)が10〜70重量%(より好適には15〜60重量%)である。 Further, the silicone compound used as the silicone flame retardant preferably contains an aryl group. More preferably, the ratio (aromatic group amount) of the aromatic group represented by the following general formula (6) is 10 to 70% by weight (more preferably 15 to 60% by weight).
シリコーン系難燃剤として使用されるシリコーン化合物は、上記Si−H基およびアルコキシ基以外にも反応基を含有していてもよく、かかる反応基としては例えば、アミノ基、カルボキシル基、エポキシ基、ビニル基、メルカプト基、およびメタクリロキシ基などが例示される。
Si−H基を有するシリコーン化合物としては、下記一般式(7)および(8)で示される構成単位の少なくとも一種以上を含むシリコーン化合物が好適に例示される。
The silicone compound used as the silicone-based flame retardant may contain a reactive group in addition to the Si-H group and the alkoxy group. Examples of the reactive group include an amino group, a carboxyl group, an epoxy group, and a vinyl group. Examples thereof include a group, a mercapto group, and a methacryloxy group.
As a silicone compound which has Si-H group, the silicone compound containing at least 1 or more types of the structural unit shown by the following general formula (7) and (8) is illustrated suitably.
シリコーン系難燃剤に使用されるシリコーン化合物において、アルコキシ基を有するシリコーン化合物としては、例えば一般式(10)および一般式(11)に示される化合物から選択される少なくとも1種の化合物があげられる。 Examples of the silicone compound having an alkoxy group in the silicone compound used for the silicone-based flame retardant include at least one compound selected from the compounds represented by the general formula (10) and the general formula (11).
上記成分の含有量は、A成分、B成分の合計100重量部を基準として、0.01〜10重量部が好ましく、より好ましくは0.05〜5重量部、さらに好ましくは0.1〜5重量部である。 The content of the above components is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 5 parts by weight, still more preferably 0.1 to 5 parts, based on 100 parts by weight of the total of the A component and the B component. Parts by weight.
(4)ハロゲン系難燃剤
本発明のハロゲン系難燃剤としては、臭素化ポリカーボネート(オリゴマーを含む)が特に好適である。臭素化ポリカーボネートは耐熱性に優れ、かつ大幅に難燃性を向上できる。本発明で使用する臭素化ポリカーボネートは、下記一般式(12)で表される構成単位が全構成単位の少なくとも60モル%、好ましくは少なくとも80モル%であり、特に好ましくは実質的に下記一般式(12)で表される構成単位からなる臭素化ポリカーボネート化合物である。
(4) Halogen flame retardant As the halogen flame retardant of the present invention, brominated polycarbonate (including oligomers) is particularly suitable. Brominated polycarbonate has excellent heat resistance and can greatly improve flame retardancy. In the brominated polycarbonate used in the present invention, the structural unit represented by the following general formula (12) is at least 60 mol%, preferably at least 80 mol%, particularly preferably substantially the following general formula. A brominated polycarbonate compound comprising the structural unit represented by (12).
また、かかる式(12)において、好適にはRはメチレン基、エチレン基、イソプロピリデン基、−SO2−、特に好ましくはイソプロピリデン基を示す。
臭素化ポリカーボネートは、残存するクロロホーメート基末端が少なく、末端塩素量が0.3ppm以下であることが好ましく、より好ましくは0.2ppm以下である。かかる末端塩素量は、試料を塩化メチレンに溶解し、4−(p−ニトロベンジル)ピリジンを加えて末端塩素(末端クロロホーメート)と反応させ、これを紫外可視分光光度計(日立製作所製U−3200)により測定して求めることができる。末端塩素量が0.3ppm以下であると、ポリカーボネート樹脂組成物の熱安定性がより良好となり、更に高温の成形が可能となり、その結果成形加工性により優れたポリカーボネート樹脂組成物が提供される。
In the formula (12), R preferably represents a methylene group, an ethylene group, an isopropylidene group, —SO 2 —, and particularly preferably an isopropylidene group.
The brominated polycarbonate has a small number of remaining chloroformate groups and preferably has a terminal chlorine content of 0.3 ppm or less, more preferably 0.2 ppm or less. The amount of terminal chlorine is determined by dissolving a sample in methylene chloride, adding 4- (p-nitrobenzyl) pyridine and allowing it to react with terminal chlorine (terminal chloroformate). -3200). When the amount of terminal chlorine is 0.3 ppm or less, the thermal stability of the polycarbonate resin composition becomes better, and molding at a higher temperature becomes possible. As a result, a polycarbonate resin composition that is superior in molding processability is provided.
また臭素化ポリカーボネートは、残存する水酸基末端が少ないことが好ましい。より具体的には臭素化ポリカーボネートの構成単位1モルに対して、末端水酸基量が0.0005モル以下であることが好ましく、より好ましくは0.0003モル以下である。末端水酸基量は、試料を重クロロホルムに溶解し、1H−NMR法により測定して求めることができる。かかる末端水酸基量であると、ポリカーボネート樹脂組成物の熱安定性が更に向上し好ましい。 The brominated polycarbonate preferably has a small number of remaining hydroxyl terminals. More specifically, the amount of terminal hydroxyl groups is preferably 0.0005 mol or less, more preferably 0.0003 mol or less with respect to 1 mol of the structural unit of brominated polycarbonate. The amount of terminal hydroxyl groups can be determined by dissolving a sample in deuterated chloroform and measuring it by 1 H-NMR method. Such a terminal hydroxyl group amount is preferable because the thermal stability of the polycarbonate resin composition is further improved.
臭素化ポリカーボネートの比粘度は、好ましくは0.015〜0.1の範囲、より好ましくは0.015〜0.08の範囲である。臭素化ポリカーボネートの比粘度は、前述した本発明のA成分であるポリカーボネート樹脂の粘度平均分子量を算出するに際し使用した上記比粘度の算出式に従って算出されたものである。
上記成分の含有量は、A成分、B成分の合計100重量部を基準として、0.01〜10重量部が好ましく、より好ましくは0.01〜8重量部、さらに好ましくは0.05〜7重量部である。
The specific viscosity of the brominated polycarbonate is preferably in the range of 0.015 to 0.1, more preferably in the range of 0.015 to 0.08. The specific viscosity of the brominated polycarbonate is calculated according to the above-described specific viscosity calculation formula used for calculating the viscosity average molecular weight of the polycarbonate resin which is the component A of the present invention.
The content of the above component is preferably 0.01 to 10 parts by weight, more preferably 0.01 to 8 parts by weight, and still more preferably 0.05 to 7 parts by weight, based on the total of 100 parts by weight of component A and component B. Parts by weight.
(ii)含フッ素滴下防止剤
本発明のポリカーボネート樹脂組成物には、含フッ素滴下防止剤を含むことができる。かかる含フッ素滴下防止剤を上記難燃剤と併用することにより、より良好な難燃性を得ることができる。かかる含フッ素滴下防止剤としては、フィブリル形成能を有する含フッ素ポリマーを挙げることができ、かかるポリマーとしてはポリテトラフルオロエチレン、テトラフルオロエチレン系共重合体(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、など)、米国特許第4379910号公報に示されるような部分フッ素化ポリマー、フッ素化ジフェノールから製造されるポリカーボネート樹脂などを挙げることかできるが、好ましくはポリテトラフルオロエチレン(以下PTFEと称することがある)である。
(Ii) Fluorine-containing anti-dripping agent The polycarbonate resin composition of the present invention may contain a fluorine-containing anti-drop agent. By using such a fluorine-containing anti-drip agent in combination with the above flame retardant, better flame retardancy can be obtained. Examples of such a fluorine-containing anti-drip agent include a fluorine-containing polymer having a fibril-forming ability. Examples of such a polymer include polytetrafluoroethylene and tetrafluoroethylene copolymers (for example, tetrafluoroethylene / hexafluoropropylene copolymer). Polymer, etc.), partially fluorinated polymers as shown in US Pat. No. 4,379,910, polycarbonate resins produced from fluorinated diphenols, and the like, preferably polytetrafluoroethylene (hereinafter referred to as PTFE). May be called).
フィブリル形成能を有するポリテトラフルオロエチレン(フィブリル化PTFE)は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その数平均分子量は、150万〜数千万の範囲である。かかる下限はより好ましくは300万である。かかる数平均分子量は、特開平6−145520号公報に開示されているとおり、380℃でのポリテトラフルオロエチレンの溶融粘度に基づき算出される。即ち、フィブリル化PTFEは、かかる公報に記載された方法で測定される380℃における溶融粘度が107〜1013poiseの範囲であり、好ましくは108〜1012poiseの範囲である。 Polytetrafluoroethylene (fibrillated PTFE) having fibril-forming ability has a very high molecular weight, and exhibits a tendency to bind PTFE to each other by an external action such as shearing force to form a fiber. Its number average molecular weight ranges from 1.5 million to tens of millions. The lower limit is more preferably 3 million. The number average molecular weight is calculated based on the melt viscosity of polytetrafluoroethylene at 380 ° C. as disclosed in JP-A-6-145520. That is, the fibrillated PTFE has a melt viscosity at 380 ° C. measured by the method described in this publication in the range of 10 7 to 10 13 poise, preferably in the range of 10 8 to 10 12 poise.
かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、更に良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。また、特開平6−145520号公報に開示されているとおり、かかるフィブリル化PTFEを芯とし、低分子量のポリテトラフルオロエチレンを殻とした構造を有するものも好ましく利用される。 Such PTFE can be used in solid form or in the form of an aqueous dispersion. In addition, PTFE having such fibril-forming ability can improve the dispersibility in the resin, and it is also possible to use a PTFE mixture in a mixed form with other resins in order to obtain better flame retardancy and mechanical properties. is there. Further, as disclosed in JP-A-6-145520, those having a structure having such a fibrillated PTFE as a core and a low molecular weight polytetrafluoroethylene as a shell are also preferably used.
フィブリル化PTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン化学工業(株)のポリフロンMPA FA500、F−201Lなどを挙げることができる。フィブリル化PTFEの水性分散液の市販品としては、旭アイシーアイフロロポリマーズ(株)製のフルオンAD−1、AD−936、ダイキン工業(株)製のフルオンD−1、D−2、三井・デュポンフロロケミカル(株)製のテフロン(登録商標)30Jなどを代表として挙げることができる。 Examples of commercially available fibrillated PTFE include Teflon (registered trademark) 6J from Mitsui DuPont Fluorochemical Co., Ltd., Polyflon MPA FA500, F-201L from Daikin Chemical Industries, Ltd., and the like. Commercially available aqueous dispersions of fibrillated PTFE include: Fluon AD-1, AD-936 manufactured by Asahi IC Fluoropolymers, Fluon D-1, D-2 manufactured by Daikin Industries, Ltd., Mitsui A representative example is Teflon (registered trademark) 30J manufactured by DuPont Fluorochemical Co., Ltd.
混合形態のフィブリル化PTFEとしては、(1)フィブリル化PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し共沈殿を行い共凝集混合物を得る方法(特開昭60−258263号公報、特開昭63−154744号公報などに記載された方法)、(2)フィブリル化PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4−272957号公報に記載された方法)、(3)フィブリル化PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06−220210号公報、特開平08−188653号公報などに記載された方法)、(4)フィブリル化PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9−95583号公報に記載された方法)、および(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、更に該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11−29679号などに記載された方法)により得られたものが使用できる。これらの混合形態のフィブリル化PTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3800」(商品名)、GEスペシャリティーケミカルズ社製 「BLENDEX B449」(商品名)およびPacific Interchem Corporation社製「POLY TS AD001」(商品名)などが例示される。 As a mixed form of fibrillated PTFE, (1) a method in which an aqueous dispersion of fibrillated PTFE and an aqueous dispersion or solution of an organic polymer are mixed and co-precipitated to obtain a co-agglomerated mixture (JP-A-60-258263). (2) A method of mixing an aqueous dispersion of fibrillated PTFE and dried organic polymer particles (Japanese Patent Laid-Open No. 4-272957). Described method), (3) A method in which an aqueous dispersion of fibrillated PTFE and an organic polymer particle solution are uniformly mixed, and the respective media are simultaneously removed from the mixture (Japanese Patent Laid-Open Nos. 06-220210, (Method described in Japanese Patent Application Laid-Open No. 08-188653), (4) A method of polymerizing monomers forming an organic polymer in an aqueous dispersion of fibrillated PTFE (Method described in JP-A-9-95583), and (5) an aqueous dispersion of PTFE and an organic polymer dispersion are uniformly mixed, and then a vinyl monomer is further polymerized in the mixed dispersion. Thereafter, those obtained by a method for obtaining a mixture (a method described in JP-A No. 11-29679) can be used. Commercial products of these mixed forms of fibrillated PTFE include “Metablene A3800” (trade name) manufactured by Mitsubishi Rayon Co., Ltd., “BLENDEX B449” (trade name) manufactured by GE Specialty Chemicals, and “Product of Pacific Interchem Corporation” “POLY TS AD001” (product name) is exemplified.
上記フィブリル化PTFEは機械的強度を低下させないため、できる限り微分散されることが好ましい。かかる微分散を達成する手段として、上記混合形態のフィブリル化PTFEは有利である。また水性分散液形態のものを溶融混練機に直接供給する方法も微分散には有利である。但し水性分散液形態のものはやや色相が悪化する点に配慮を要する。混合形態におけるフィブリル化PTFEの割合としては、かかる混合物100重量%中、フィブリル化PTFEが10〜80重量%が好ましく、より好ましくは15〜75重量%である。フィブリル化PTFEの割合がかかる範囲にある場合は、フィブリル化PTFEの良好な分散性を達成することができる。
上記成分の含有量は、A成分、B成分の合計100重量部を基準として、0.01〜3重量部が好ましく、より好ましくは0.01〜2重量部、さらに好ましくは0.05〜1.5重量部である。
The fibrillated PTFE is preferably finely dispersed as much as possible in order not to lower the mechanical strength. As a means of achieving such fine dispersion, the above mixed form of fibrillated PTFE is advantageous. A method of directly supplying an aqueous dispersion in a melt kneader is also advantageous for fine dispersion. However, in the case of the aqueous dispersion form, consideration is required in that the hue is slightly deteriorated. The proportion of fibrillated PTFE in the mixed form is preferably 10 to 80% by weight, more preferably 15 to 75% by weight, in 100% by weight of the mixture. When the ratio of fibrillated PTFE is in such a range, good dispersibility of fibrillated PTFE can be achieved.
The content of the above components is preferably 0.01 to 3 parts by weight, more preferably 0.01 to 2 parts by weight, and still more preferably 0.05 to 1 based on 100 parts by weight of the total of component A and component B. .5 parts by weight.
(iii)安定剤
本発明のポリカーボネート樹脂組成物には公知の各種安定剤を配合することができる。安定剤としては、リン系安定剤、ヒンダードフェノール系酸化防止剤、紫外線吸収剤および光安定剤などが挙げられる。
(Iii) Stabilizer Various known stabilizers can be blended in the polycarbonate resin composition of the present invention. Examples of the stabilizer include phosphorus stabilizers, hindered phenol antioxidants, ultraviolet absorbers, and light stabilizers.
(iii−1)リン系安定剤
リン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル、並びに第3級ホスフィンなどが例示される。これらの中でも特に、亜リン酸、リン酸、亜ホスホン酸、およびホスホン酸、トリオルガノホスフェート化合物、およびアシッドホスフェート化合物が好ましい。尚、アシッドホスフェート化合物における有機基は、一置換、二置換、およびこれらの混合物のいずれも含む。該化合物に対応する下記の例示化合物においても同様にいずれをも含むものとする。
(Iii-1) Phosphorous stabilizer Examples of the phosphorous stabilizer include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and tertiary phosphine. Among these, phosphorous acid, phosphoric acid, phosphonous acid, and phosphonic acid, triorganophosphate compounds, and acid phosphate compounds are particularly preferable. The organic group in the acid phosphate compound includes any of mono-substituted, di-substituted, and mixtures thereof. Any of the following exemplified compounds corresponding to the compound is similarly included.
トリオルガノホスフェート化合物としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリデシルホスフェート、トリドデシルホスフェート、トリラウリルホスフェート、トリステアリルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、およびトリブトキシエチルホスフェートなどが例示される。これらの中でもトリアルキルホスフェートが好ましい。かかるトリアルキルホスフェートの炭素数は、好ましくは1〜22、より好ましくは1〜4である。特に好ましいトリアルキルホスフェートはトリメチルホスフェートである。 Triorganophosphate compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tridecyl phosphate, tridodecyl phosphate, trilauryl phosphate, tristearyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, diphenyl Examples include cresyl phosphate, diphenyl monoorthoxenyl phosphate, and tributoxyethyl phosphate. Among these, trialkyl phosphate is preferable. The carbon number of the trialkyl phosphate is preferably 1 to 22, more preferably 1 to 4. A particularly preferred trialkyl phosphate is trimethyl phosphate.
アシッドホスフェート化合物としては、メチルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、ブトキシエチルアシッドホスフェート、オクチルアシッドホスフェート、デシルアシッドホスフェート、ラウリルアシッドホスフェート、ステアリルアシッドホスフェート、オレイルアシッドホスフェート、ベヘニルアシッドホスフェート、フェニルアシッドホスフェート、ノニルフェニルアシッドホスフェート、シクロヘキシルアシッドホスフェート、フェノキシエチルアシッドホスフェート、アルコキシポリエチレングリコールアシッドホスフェート、およびビスフェノールAアシッドホスフェートなどが例示される。これらの中でも炭素数10以上の長鎖ジアルキルアシッドホスフェートが熱安定性の向上に有効であり、該アシッドホスフェート自体の安定性が高いことから好ましい。 Examples of the acid phosphate compound include methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, butoxyethyl acid phosphate, octyl acid phosphate, decyl acid phosphate, lauryl acid phosphate, stearyl acid phosphate, oleyl acid phosphate, behenyl acid phosphate, behenyl acid phosphate Nonylphenyl acid phosphate, cyclohexyl acid phosphate, phenoxyethyl acid phosphate, alkoxy polyethylene glycol acid phosphate, bisphenol A acid phosphate, and the like. Among these, long-chain dialkyl acid phosphates having 10 or more carbon atoms are effective for improving thermal stability, and the acid phosphate itself is preferable because of high stability.
ホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、およびジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。 Examples of the phosphite compound include triphenyl phosphite, tris (nonylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl Monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, tris (diethylphenyl) phosphite, tris (di-iso-propylphenyl) phosphite, tris (di-n-butyl) Phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, distearyl Taerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis ( 2,6-di-tert-butyl-4-ethylphenyl) pentaerythritol diphosphite, bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite, phenylbisphenol A penta Examples include erythritol diphosphite, bis (nonylphenyl) pentaerythritol diphosphite, and dicyclohexylpentaerythritol diphosphite.
更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、および2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイトなどが例示される。 Further, as other phosphite compounds, those which react with dihydric phenols and have a cyclic structure can be used. For example, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert- Examples include butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite and 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite.
ホスホナイト化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等があげられ、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。 Examples of the phosphonite compound include tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenylenedi. Phosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite Tetrakis (2,6-di-tert-butylphenyl) -4,3′-biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3′-biphenylene diphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4-di tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-n-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl)- 4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, and the like, and tetrakis (di-tert-butylphenyl) -biphenylenediphosphonite, bis (Di-tert-butylphenyl) -phenyl-phenylphosphonite is preferred, tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl)- More preferred is phenyl-phenylphosphonite. Such a phosphonite compound is preferable because it can be used in combination with a phosphite compound having an aryl group in which two or more alkyl groups are substituted.
ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。 Examples of the phosphonate compound include dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate.
第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ−p−トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。 Tertiary phosphine includes triethylphosphine, tripropylphosphine, tributylphosphine, trioctylphosphine, triamylphosphine, dimethylphenylphosphine, dibutylphenylphosphine, diphenylmethylphosphine, diphenyloctylphosphine, triphenylphosphine, tri-p-tolyl. Examples include phosphine, trinaphthylphosphine, and diphenylbenzylphosphine. A particularly preferred tertiary phosphine is triphenylphosphine.
好適なリン系安定剤は、トリオルガノホスフェート化合物、アシッドホスフェート化合物、および下記一般式(13)で表されるホスファイト化合物である。殊にトリオルガノホスフェート化合物を配合することが好ましい。 Suitable phosphorus stabilizers are triorganophosphate compounds, acid phosphate compounds, and phosphite compounds represented by the following general formula (13). It is particularly preferable to add a triorganophosphate compound.
上記の如く、ホスホナイト化合物としてはテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、該ホスホナイトを主成分とする安定剤は、Sandostab P−EPQ(商標、Clariant社製)およびIrgafos P−EPQ(商標、CIBA SPECIALTY CHEMICALS社製)として市販されておりいずれも利用できる。 As described above, tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite is preferable as the phosphonite compound, and the stabilizer containing phosphonite as a main component is Sandostab P-EPQ (trademark, manufactured by Clariant). ) And Irgafos P-EPQ (trademark, manufactured by CIBA SPECIALTY CHEMICALS) and both can be used.
また上記式(13)の中でもより好適なホスファイト化合物は、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、およびビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイトである。 Among the above formulas (13), more preferred phosphite compounds are distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di). -Tert-butyl-4-methylphenyl) pentaerythritol diphosphite, and bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite.
(iii−2)ヒンダードフェノール系酸化防止剤
ヒンダードフェノール化合物としては、通常樹脂に配合される各種の化合物が使用できる。かかるヒンダードフェノール化合物としては、例えば、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)、2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセテート、3,9−ビス[2−{3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセチルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、テトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、1,3,5−トリメチル−2,4,6−トリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)ベンゼン、およびトリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)イソシアヌレートなどが例示される。
(Iii-2) Hindered phenolic antioxidant As the hindered phenolic compound, various compounds that are usually blended in resins can be used. Examples of such hindered phenol compounds include α-tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin E, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2-tert -Butyl-6- (3'-tert-butyl-5'-methyl-2'-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethylamino) Methyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl) -6-tert-butylphenol), 4,4'-methylenebis (2,6 Di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-cyclohexylphenol), 2,2′-dimethylene-bis (6-α-methyl-benzyl-p-cresol), 2,2 ′ -Ethylidene-bis (4,6-di-tert-butylphenol), 2,2'-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert) -Butylphenol), triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, 1,6-hexanediol bis [3- (3,5-di- tert-butyl-4-hydroxyphenyl) propionate], bis [2-tert-butyl-4-methyl 6- (3-tert-butyl) Ru-5-methyl-2-hydroxybenzyl) phenyl] terephthalate, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1, -Dimethylethyl} -2,4,8,10-tetraoxaspiro [5,5] undecane, 4,4'-thiobis (6-tert-butyl-m-cresol), 4,4'-thiobis (3- Methyl-6-tert-butylphenol), 2,2′-thiobis (4-methyl-6-tert-butylphenol), bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 4,4 ′ -Di-thiobis (2,6-di-tert-butylphenol), 4,4'-tri-thiobis (2,6-di-tert-butylphenol), 2,2-thiodie Renbis- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4-hydroxy-3,5-di-tert- Butylanilino) -1,3,5-triazine, N, N′-hexamethylenebis- (3,5-di-tert-butyl-4-hydroxyhydrocinnamide), N, N′-bis [3- (3 , 5-Di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl -2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-tert-butyl-4-hydroxyphenyl) iso Cyanurate, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, 1,3,5-tris2 [3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl isocyanurate, tetrakis [methylene-3- (3,5-di-tert-butyl- 4-hydroxyphenyl) propionate] methane, triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, triethylene glycol-N-bis-3- (3- tert-butyl-4-hydroxy-5-methylphenyl) acetate, 3,9-bis [2 {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) acetyloxy} -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane, tetrakis [Methylene-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate] methane, 1,3,5-trimethyl-2,4,6-tris (3-tert-butyl-4-hydroxy Examples include -5-methylbenzyl) benzene and tris (3-tert-butyl-4-hydroxy-5-methylbenzyl) isocyanurate.
上記化合物の中でも、本発明においてはテトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、および3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましく利用される。特に3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましい。上記ヒンダードフェノール系酸化防止剤は、単独でまたは2種以上を組合せて使用することができる。 Among the above compounds, tetrakis [methylene-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate] methane, octadecyl-3- (3,5-di-tert-butyl-) is used in the present invention. 4-hydroxyphenyl) propionate, and 3,9-bis [2- {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4 , 8,10-Tetraoxaspiro [5,5] undecane is preferably used. In particular, 3,9-bis [2- {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4,8,10-tetraoxa Spiro [5,5] undecane is preferred. The said hindered phenolic antioxidant can be used individually or in combination of 2 or more types.
リン系安定剤およびヒンダードフェノール系酸化防止剤はいずれかが配合されることが好ましい。殊にリン系安定剤が配合されることが好ましく、トリオルガノホスフェート化合物が配合されることがより好ましい。リン系安定剤およびヒンダードフェノール系酸化防止剤の含有量は、それぞれA成分、B成分の合計100重量部を基準として、好ましくは0.005〜1重量部、より好ましくは0.01〜0.3重量部である。 It is preferable that either a phosphorus stabilizer or a hindered phenol antioxidant is blended. In particular, a phosphorus stabilizer is preferably blended, and a triorganophosphate compound is more blended. The content of the phosphorus-based stabilizer and the hindered phenol-based antioxidant is preferably 0.005 to 1 part by weight, more preferably 0.01 to 0, based on 100 parts by weight of the total of component A and component B, respectively. .3 parts by weight.
(iii−3)紫外線吸収剤
本発明のポリカーボネート樹脂組成物は紫外線吸収剤を含有することができる。本発明のポリカーボネート樹脂組成物は良好な色相をも有することから、紫外線吸収剤の配合により屋外の使用においてもかかる色相を長期間維持することができる。
(Iii-3) Ultraviolet Absorber The polycarbonate resin composition of the present invention can contain an ultraviolet absorber. Since the polycarbonate resin composition of the present invention also has a good hue, the hue can be maintained for a long time even in outdoor use by incorporating an ultraviolet absorber.
ベンゾフェノン系では、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシトリハイドライドレイトベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンソフェノン、および2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノンなどが例示される。 In the benzophenone series, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy- 5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydridolate benzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) ) Methane, 2- Dorokishi -4-n-dodecyloxy benzoin phenone, and such as 2-hydroxy-4-methoxy-2'-carboxy benzophenone may be exemplified.
ベンゾトリアゾール系では、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾ−ル、2,2’−メチレンビス(4−クミル−6−ベンゾトリアゾールフェニル)、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)、および2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾ−ル、並びに2−(2’−ヒドロキシ−5−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2−(2’―ヒドロキシ−5−アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2−ヒドロキシフェニル−2H−ベンゾトリアゾール骨格を有する重合体などが例示される。 In the benzotriazole series, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-Dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [4- (1,1,3 , 3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- (2- Hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5 Di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole, 2- ( 2-hydroxy-4-octoxyphenyl) benzotriazole, 2,2'-methylenebis (4-cumyl-6-benzotriazolephenyl), 2,2'-p-phenylenebis (1,3-benzoxazine-4 -One), and 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimidomethyl) -5-methylphenyl] benzotriazole, and 2- (2'-hydroxy-5-methacryloxy) Copolymerization of ethylphenyl) -2H-benzotriazole with vinyl monomer copolymerizable with the monomer And 2- (2′-hydroxy-5-acryloxyethylphenyl) -2H-benzotriazole and a copolymer of vinyl monomer copolymerizable with the monomer, 2-hydroxyphenyl-2H-benzotriazole skeleton A polymer having
ヒドロキシフェニルトリアジン系では、例えば、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−メチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−エチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−プロピルオキシフェノール、および2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ブチルオキシフェノールなどが例示される。さらに2−(4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4−ジメチルフェニル基となった化合物が例示される。 In the hydroxyphenyl triazine series, for example, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-hexyloxyphenol, 2- (4,6-diphenyl-1,3,5) -Triazin-2-yl) -5-methyloxyphenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-ethyloxyphenol, 2- (4,6-diphenyl) -1,3,5-triazin-2-yl) -5-propyloxyphenol and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-butyloxyphenol Illustrated. Furthermore, the phenyl group of the above exemplary compounds such as 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-hexyloxyphenol is 2,4-dimethyl. Examples of the compound are phenyl groups.
環状イミノエステル系では、例えば2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、および2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)などが例示される。 In the cyclic imino ester system, for example, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazine) -4-one), 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one), and the like.
また紫外線吸収剤としては、具体的にシアノアクリレート系では、例えば1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。 Further, as the ultraviolet absorber, specifically, for cyanoacrylate, for example, 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2- Examples include cyano-3,3-diphenylacryloyl) oxy] methyl) propane and 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene.
さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/またはヒンダードアミン構造を有する光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。上記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。 Further, the ultraviolet absorber has a structure of a monomer compound capable of radical polymerization, whereby the ultraviolet-absorbing monomer and / or the light-stable monomer having a hindered amine structure, and an alkyl (meth) acrylate. A polymer type ultraviolet absorber obtained by copolymerization with a monomer such as may be used. Preferred examples of the UV-absorbing monomer include compounds containing a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic imino ester skeleton, and a cyanoacrylate skeleton in the ester substituent of (meth) acrylate. The
上記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。上記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。 Among them, benzotriazole and hydroxyphenyltriazine are preferable from the viewpoint of ultraviolet absorption ability, and cyclic imino ester and cyanoacrylate are preferable from the viewpoint of heat resistance and hue. You may use the said ultraviolet absorber individually or in mixture of 2 or more types.
紫外線吸収剤の含有量は、A成分、B成分の合計100重量部を基準として好ましくは0.01〜2重量部、より好ましくは0.02〜2重量部、更に好ましくは0.03〜1重量部、最も好ましくは0.05〜0.5重量部である。 The content of the ultraviolet absorber is preferably 0.01 to 2 parts by weight, more preferably 0.02 to 2 parts by weight, still more preferably 0.03 to 1 based on the total of 100 parts by weight of component A and component B. Parts by weight, most preferably 0.05 to 0.5 parts by weight.
(iii−4)その他の熱安定剤
本発明のポリカーボネート樹脂組成物には、上記のリン系安定剤およびヒンダードフェノール系酸化防止剤以外の他の熱安定剤を配合することもできる。かかるその他の熱安定剤は、これらの安定剤および酸化防止剤のいずれかと併用されることが好ましく、特に両者と併用されることが好ましい。かかる他の熱安定剤としては、例えば3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとo−キシレンとの反応生成物に代表されるラクトン系安定剤(かかる安定剤の詳細は特開平7−233160号公報に記載されている)が好適に例示される。かかる化合物はIrganox HP−136(商標、CIBA SPECIALTY CHEMICALS社製)として市販され、該化合物を利用できる。更に該化合物と各種のホスファイト化合物およびヒンダードフェノール化合物を混合した安定剤が市販されている。例えば上記社製のIrganox HP−2921が好適に例示される。本発明においてもかかる予め混合された安定剤を利用することもできる。ラクトン系安定剤の含有量は、A成分、B成分の合計100重量部を基準として、好ましくは0.0005〜0.05重量部、より好ましくは0.001〜0.03重量部である。
(Iii-4) Other Heat Stabilizers The polycarbonate resin composition of the present invention may contain other heat stabilizers other than the phosphorus stabilizers and hindered phenol antioxidants. Such other heat stabilizers are preferably used in combination with any of these stabilizers and antioxidants, and particularly preferably used in combination with both. Examples of such other heat stabilizers include lactone stabilizers represented by the reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene (such stabilizers). Is described in detail in JP-A-7-233160). Such a compound is commercially available as Irganox HP-136 (trademark, manufactured by CIBA SPECIALTY CHEMICALS) and can be used. Furthermore, a stabilizer obtained by mixing the compound with various phosphite compounds and hindered phenol compounds is commercially available. For example, Irganox HP-2921 manufactured by the above company is preferably exemplified. In the present invention, such a premixed stabilizer can also be used. The content of the lactone-based stabilizer is preferably 0.0005 to 0.05 parts by weight, more preferably 0.001 to 0.03 parts by weight, based on 100 parts by weight of the total of the A component and the B component.
またその他の安定剤としては、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、およびグリセロール−3−ステアリルチオプロピオネートなどのイオウ含有安定剤が例示される。かかる安定剤は、ポリカーボネート樹脂組成物が回転成形に適用される場合に特に有効である。かかるイオウ含有安定剤の配合量は、A成分、B成分の合計100重量部を基準として好ましくは0.001〜0.1重量部、より好ましくは0.01〜0.08重量部である。 Other stabilizers include sulfur-containing stabilizers such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), and glycerol-3-stearylthiopropionate. Illustrated. Such a stabilizer is particularly effective when the polycarbonate resin composition is applied to rotational molding. The amount of the sulfur-containing stabilizer is preferably 0.001 to 0.1 parts by weight, more preferably 0.01 to 0.08 parts by weight, based on 100 parts by weight of the total of component A and component B.
(iv)離型剤
本発明のポリカーボネート樹脂組成物は、その成形時の生産性向上や成形品の寸法精度の向上を目的として、更に、脂肪酸エステル、ポリオレフィン系ワックス、シリコーン化合物、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、蜜蝋などの公知の離型剤を配合することもできる。本発明のポリカーボネート樹脂組成物は、良好な流動性を有することから圧力伝播が良好で、歪の均一化された成形品が得られる。一方で離型抵抗が大きくなるような複雑形状の成形品の場合、離型時における成形品の変形を招く恐れがある。上記特定の成分の配合は、かかる問題をポリカーボネート樹脂組成物の特性を損なうことなく解決するものである。
(Iv) Mold Release Agent The polycarbonate resin composition of the present invention is further prepared with a fatty acid ester, a polyolefin wax, a silicone compound, a fluorine compound (polyester) for the purpose of improving productivity during molding and improving dimensional accuracy of a molded product. Known release agents such as fluoro oil represented by fluoroalkyl ether), paraffin wax, beeswax and the like can also be blended. Since the polycarbonate resin composition of the present invention has good fluidity, the pressure propagation is good and a molded article with uniform strain can be obtained. On the other hand, in the case of a molded product having a complicated shape that increases the mold release resistance, the molded product may be deformed at the time of mold release. The compounding of the specific component solves such a problem without impairing the properties of the polycarbonate resin composition.
かかる脂肪酸エステルは、脂肪族アルコールと脂肪族カルボン酸とのエステルである。かかる脂肪族アルコールは1価アルコールであっても2価以上の多価アルコールであってもよい。また該アルコールの炭素数は、好ましくは3〜32、より好ましくは5〜30である。一方、脂肪族カルボン酸は好ましくは炭素数3〜32、より好ましくは炭素数10〜30の脂肪族カルボン酸である。その中でも飽和脂肪族カルボン酸が好ましい。本発明の脂肪酸エステルは、全エステル(フルエステル)が高温時の熱安定性に優れる点で好ましい。本発明の脂肪酸エステルにおける酸価は、20以下(実質的に0を取り得る)であることが好ましい。また脂肪酸エステルの水酸基価は、0.1〜30の範囲がより好ましい。更に脂肪酸エステルのヨウ素価は、10以下(実質的に0を取り得る)が好ましい。これらの特性はJIS K 0070に規定された方法により求めることができる。 Such fatty acid esters are esters of aliphatic alcohols and aliphatic carboxylic acids. Such an aliphatic alcohol may be a monohydric alcohol or a dihydric or higher polyhydric alcohol. Moreover, carbon number of this alcohol becomes like this. Preferably it is 3-32, More preferably, it is 5-30. On the other hand, the aliphatic carboxylic acid is preferably an aliphatic carboxylic acid having 3 to 32 carbon atoms, more preferably 10 to 30 carbon atoms. Of these, saturated aliphatic carboxylic acids are preferred. The fatty acid ester of the present invention is preferable in that all esters (full esters) are excellent in thermal stability at high temperatures. The acid value in the fatty acid ester of the present invention is preferably 20 or less (can take substantially 0). The hydroxyl value of the fatty acid ester is more preferably in the range of 0.1-30. Further, the iodine value of the fatty acid ester is preferably 10 or less (can take substantially 0). These characteristics can be obtained by a method defined in JIS K 0070.
ポリオレフィン系ワックスとしては、分子量が1,000〜10,000である、エチレン単独重合体、炭素原子数3〜60のα−オレフィンの単独重合体または共重合体、もしくはエチレンと炭素原子数3〜60のα−オレフィンとの共重合体が例示される。かかる分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法により標準ポリスチレン換算で測定される数平均分子量である。かかる数平均分子量の上限は、より好ましくは6,000、更に好ましくは3,000である。ポリオレフィン系ワックスにおけるα−オレフィン成分の炭素数は好ましくは60以下、より好ましくは40以下である。より好適な具体例としては、プロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、および1−オクテンなどが例示される。好適なポリオレフィン系ワックスはエチレン単独重合体、もしくはエチレンと炭素原子数3〜60のα−オレフィンとの共重合体である。炭素原子数3〜60のα−オレフィンの割合は、好ましくは20モル%以下、より好ましくは10モル%以下である。いわゆるポリエチレンワックスとして市販されているものが好適に利用される。
上記の離型剤の含有量は、A成分、B成分の合計100重量部を基準として好ましくは0.005〜5重量部、より好ましくは0.01〜4重量部、更に好ましくは0.02〜3重量部である。
As the polyolefin wax, an ethylene homopolymer having a molecular weight of 1,000 to 10,000, a homopolymer or copolymer of an α-olefin having 3 to 60 carbon atoms, or ethylene and a carbon atom having 3 to 3 carbon atoms. A copolymer with 60 α-olefins is exemplified. The molecular weight is a number average molecular weight measured in terms of standard polystyrene by GPC (gel permeation chromatography) method. The upper limit of the number average molecular weight is more preferably 6,000, and still more preferably 3,000. The carbon number of the α-olefin component in the polyolefin wax is preferably 60 or less, more preferably 40 or less. More preferred specific examples include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene and the like. A suitable polyolefin wax is an ethylene homopolymer or a copolymer of ethylene and an α-olefin having 3 to 60 carbon atoms. The proportion of the α-olefin having 3 to 60 carbon atoms is preferably 20 mol% or less, more preferably 10 mol% or less. What is marketed as what is called polyethylene wax is used suitably.
The content of the above releasing agent is preferably 0.005 to 5 parts by weight, more preferably 0.01 to 4 parts by weight, and still more preferably 0.02 based on a total of 100 parts by weight of component A and component B. ~ 3 parts by weight.
(v)染顔料
本発明のポリカーボネート樹脂組成物は更に各種の染顔料を含有し多様な意匠性を発現する成形品を提供できる。本発明で使用する染顔料としては、ペリレン系染料、クマリン系染料、チオインジゴ系染料、アンスラキノン系染料、チオキサントン系染料、紺青等のフェロシアン化物、ペリノン系染料、キノリン系染料、キナクリドン系染料、ジオキサジン系染料、イソインドリノン系染料、およびフタロシアニン系染料などを挙げることができる。更に本発明のポリカーボネート樹脂組成物はメタリック顔料を配合してより良好なメタリック色彩を得ることもできる。メタリック顔料としては、アルミ粉が好適である。また、蛍光増白剤やそれ以外の発光をする蛍光染料を配合することにより、発光色を生かした更に良好な意匠効果を付与することができる。
(V) Dye / pigment The polycarbonate resin composition of the present invention can further contain various dyes / pigments and can provide a molded product exhibiting various design properties. Examples of dyes used in the present invention include perylene dyes, coumarin dyes, thioindigo dyes, anthraquinone dyes, thioxanthone dyes, ferrocyanides such as bitumen, perinone dyes, quinoline dyes, quinacridone dyes, Examples thereof include dioxazine dyes, isoindolinone dyes, and phthalocyanine dyes. Furthermore, the polycarbonate resin composition of the present invention can be blended with a metallic pigment to obtain a better metallic color. As the metallic pigment, aluminum powder is suitable. In addition, by blending a fluorescent brightening agent or other fluorescent dyes that emit light, a better design effect utilizing the luminescent color can be imparted.
本発明で使用する蛍光染料(蛍光増白剤を含む)としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。これらの中でも耐熱性が良好でポリカーボネート樹脂の成形加工時における劣化が少ないクマリン系蛍光染料、ベンゾピラン系蛍光染料、およびペリレン系蛍光染料が好適である。
上記の染顔料の含有量は、A成分、B成分の合計100重量部を基準として、0.00001〜1重量部が好ましく、0.00005〜0.5重量部がより好ましい。
Examples of the fluorescent dye (including a fluorescent brightening agent) used in the present invention include a coumarin fluorescent dye, a benzopyran fluorescent dye, a perylene fluorescent dye, an anthraquinone fluorescent dye, a thioindigo fluorescent dye, and a xanthene fluorescent dye. And xanthone fluorescent dyes, thioxanthene fluorescent dyes, thioxanthone fluorescent dyes, thiazine fluorescent dyes, and diaminostilbene fluorescent dyes. Among these, coumarin fluorescent dyes, benzopyran fluorescent dyes, and perylene fluorescent dyes are preferable because they have good heat resistance and little deterioration during molding of the polycarbonate resin.
The content of the dye / pigment is preferably 0.00001 to 1 part by weight, more preferably 0.00005 to 0.5 part by weight based on 100 parts by weight of the total of the A component and the B component.
(vi)熱線吸収能を有する化合物
本発明のポリカーボネート樹脂組成物は熱線吸収能を有する化合物を含有することができる。かかる化合物としてはフタロシアニン系近赤外線吸収剤、ATO、ITO、酸化イリジウムおよび酸化ルテニウム、酸化イモニウムなどの金属酸化物系近赤外線吸収剤、ホウ化ランタン、ホウ化セリウムおよびホウ化タングステンなどの金属ホウ化物系や酸化タングステン系近赤外線吸収剤などの近赤外吸収能に優れた各種の金属化合物、ならびに炭素フィラーが好適に例示される。かかるフタロシアニン系近赤外線吸収剤としてはたとえば三井化学(株)製MIR−362が市販され容易に入手可能である。炭素フィラーとしてはカーボンブラック、グラファイト(天然、および人工のいずれも含む)およびフラーレンなどが例示され、好ましくはカーボンブラックおよびグラファイトである。これらは単体または2種以上を併用して使用することができる。フタロシアニン系近赤外線吸収剤の含有量は、A成分、B成分の合計100重量部を基準として0.0005〜0.2重量部が好ましく、0.0008〜0.1重量部がより好ましく、0.001〜0.07重量部がさらに好ましい。金属酸化物系近赤外線吸収剤、金属ホウ化物系近赤外線吸収剤および炭素フィラーの含有量は、本発明の樹脂組成物中、0.1〜200ppm(重量割合)の範囲が好ましく、0.5〜100ppmの範囲がより好ましい。
(Vi) Compound having heat ray absorbing ability The polycarbonate resin composition of the present invention may contain a compound having heat ray absorbing ability. Such compounds include phthalocyanine-based near-infrared absorbers, metal oxide-based near-infrared absorbers such as ATO, ITO, iridium oxide, ruthenium oxide and imonium oxide, and metal borides such as lanthanum boride, cerium boride and tungsten boride. Preferable examples include various metal compounds having excellent near-infrared absorptivity such as a system and tungsten oxide near-infrared absorber, and carbon filler. As such a phthalocyanine-based near infrared absorber, for example, MIR-362 manufactured by Mitsui Chemicals, Inc. is commercially available and easily available. Examples of the carbon filler include carbon black, graphite (including both natural and artificial) and fullerene, and carbon black and graphite are preferable. These can be used alone or in combination of two or more. The content of the phthalocyanine-based near infrared absorber is preferably 0.0005 to 0.2 parts by weight, more preferably 0.0008 to 0.1 parts by weight, based on the total of 100 parts by weight of the component A and the component B. 0.001 to 0.07 part by weight is more preferable. The content of the metal oxide near-infrared absorber, the metal boride-based near infrared absorber, and the carbon filler is preferably in the range of 0.1 to 200 ppm (weight ratio) in the resin composition of the present invention. A range of ˜100 ppm is more preferable.
(vii)光拡散剤
本発明のポリカーボネート樹脂組成物には、光拡散剤を配合して光拡散効果を付与することができる。かかる光拡散剤としては高分子微粒子、炭酸カルシウムの如き低屈折率の無機微粒子、およびこれらの複合物等が例示される。かかる高分子微粒子は、既にポリカーボネート樹脂の光拡散剤として公知の微粒子である。より好適には粒径数μmのアクリル架橋粒子およびポリオルガノシルセスキオキサンに代表されるシリコーン架橋粒子などが例示される。光拡散剤の形状は球形、円盤形、柱形、および不定形などが例示される。かかる球形は、完全球である必要はなく変形しているものを含み、かかる柱形は立方体を含む。好ましい光拡散剤は球形であり、その粒径は均一であるほど好ましい。光拡散剤の含有量は、A成分、B成分の合計100重量部を基準として好ましくは0.005〜20重量部、より好ましくは0.01〜10重量部、更に好ましくは0.01〜3重量部である。尚、光拡散剤は2種以上を併用することができる。
(Vii) Light diffusing agent The polycarbonate resin composition of the present invention can be provided with a light diffusing effect by blending a light diffusing agent. Examples of such light diffusing agents include polymer fine particles, inorganic fine particles having a low refractive index such as calcium carbonate, and composites thereof. Such polymer fine particles are fine particles that are already known as light diffusing agents for polycarbonate resins. More preferably, acrylic crosslinked particles having a particle size of several μm, silicone crosslinked particles represented by polyorganosilsesquioxane, and the like are exemplified. Examples of the shape of the light diffusing agent include a spherical shape, a disk shape, a column shape, and an indefinite shape. Such spheres need not be perfect spheres, but include deformed ones, and such columnar shapes include cubes. A preferred light diffusing agent is spherical, and the more uniform the particle size is. The content of the light diffusing agent is preferably 0.005 to 20 parts by weight, more preferably 0.01 to 10 parts by weight, still more preferably 0.01 to 3 parts by weight based on the total of 100 parts by weight of the component A and the component B. Parts by weight. Two or more light diffusing agents can be used in combination.
(viii)光高反射用白色顔料
本発明のポリカーボネート樹脂組成物には、光高反射用白色顔料を配合して光反射効果を付与することができる。かかる白色顔料としては二酸化チタン(特にシリコーンなど有機表面処理剤により処理された二酸化チタン)顔料が特に好ましい。かかる光高反射用白色顔料の含有量は、A成分、B成分の合計100重量部を基準として3〜30重量部が好ましく、8〜25重量部がより好ましい。尚、光高反射用白色顔料は2種以上を併用することができる。
(Viii) White pigment for high light reflection The polycarbonate resin composition of the present invention can be provided with a light reflection effect by blending a white pigment for high light reflection. As such a white pigment, a titanium dioxide (particularly titanium dioxide treated with an organic surface treating agent such as silicone) pigment is particularly preferred. The content of the white pigment for high light reflection is preferably 3 to 30 parts by weight, more preferably 8 to 25 parts by weight based on a total of 100 parts by weight of the component A and the component B. Two or more kinds of white pigments for high light reflection can be used in combination.
(ix)帯電防止剤
本発明のポリカーボネート樹脂組成物には、帯電防止性能が求められる場合があり、かかる場合帯電防止剤を含むことが好ましい。かかる帯電防止剤としては、例えば(1)ドデシルベンゼンスルホン酸ホスホニウム塩に代表されるアリールスルホン酸ホスホニウム塩、およびアルキルスルホン酸ホスホニウム塩などの有機スルホン酸ホスホニウム塩、並びにテトラフルオロホウ酸ホスホニウム塩の如きホウ酸ホスホニウム塩が挙げられる。該ホスホニウム塩の含有量はA成分、B成分の合計100重量部を基準として、5重量部以下が適切であり、好ましくは0.05〜5重量部、より好ましくは1〜3.5重量部、更に好ましくは1.5〜3重量部の範囲である。
(Ix) Antistatic agent The polycarbonate resin composition of the present invention may require antistatic performance, and in such a case, it is preferable to include an antistatic agent. Examples of the antistatic agent include (1) aryl sulfonic acid phosphonium salts represented by dodecylbenzenesulfonic acid phosphonium salts, organic sulfonic acid phosphonium salts such as alkyl sulfonic acid phosphonium salts, and tetrafluoroboric acid phosphonium salts. Examples thereof include phosphonium borate salts. The content of the phosphonium salt is suitably 5 parts by weight or less, preferably 0.05 to 5 parts by weight, more preferably 1 to 3.5 parts by weight, based on 100 parts by weight of the total of component A and component B. More preferably, it is in the range of 1.5 to 3 parts by weight.
帯電防止剤としては例えば、(2)有機スルホン酸リチウム、有機スルホン酸ナトリウム、有機スルホン酸カリウム、有機スルホン酸セシウム、有機スルホン酸ルビジウム、有機スルホン酸カルシウム、有機スルホン酸マグネシウム、および有機スルホン酸バリウムなどの有機スルホン酸アルカリ(土類)金属塩が挙げられる。かかる金属塩は前述のとおり、難燃剤としても使用される。かかる金属塩は、より具体的には例えばドデシルベンゼンスルホン酸の金属塩やパーフルオロアルカンスルホン酸の金属塩などが例示される。有機スルホン酸アルカリ(土類)金属塩の含有量はA成分、B成分とC成分の合計100重量部を基準として、0.5重量部以下が適切であり、好ましくは0.001〜0.3重量部、より好ましくは0.005〜0.2重量部である。特にカリウム、セシウム、およびルビジウムなどのアルカリ金属塩が好適である。 Examples of the antistatic agent include: (2) lithium organic sulfonate, organic sodium sulfonate, organic potassium sulfonate, cesium organic sulfonate, rubidium organic sulfonate, calcium organic sulfonate, magnesium organic sulfonate, and barium organic sulfonate. And organic sulfonate alkali (earth) metal salts. Such metal salts are also used as flame retardants as described above. More specific examples of such metal salts include metal salts of dodecylbenzene sulfonic acid and metal salts of perfluoroalkane sulfonic acid. The content of the organic sulfonic acid alkali (earth) metal salt is suitably 0.5 parts by weight or less, preferably 0.001 to 0.00, based on the total of 100 parts by weight of the component A, the component B and the component C. 3 parts by weight, more preferably 0.005 to 0.2 parts by weight. In particular, alkali metal salts such as potassium, cesium, and rubidium are preferable.
帯電防止剤としては、例えば(3)アルキルスルホン酸アンモニウム塩、およびアリールスルホン酸アンモニウム塩などの有機スルホン酸アンモニウム塩が挙げられる。該アンモニウム塩はA成分、B成分とC成分の合計100重量部を基準として、0.05重量部以下が適切である。帯電防止剤としては、例えば(4)ポリエーテルエステルアミドの如きポリ(オキシアルキレン)グリコール成分をその構成成分として含有するポリマーが挙げられる。該ポリマーはA成分、B成分の合計100重量部を基準として5重量部以下が適切である。 Examples of the antistatic agent include (3) organic sulfonic acid ammonium salts such as alkyl sulfonic acid ammonium salt and aryl sulfonic acid ammonium salt. The ammonium salt is suitably 0.05 parts by weight or less based on 100 parts by weight of the total of the A component, B component and C component. Examples of the antistatic agent include (4) a polymer containing a poly (oxyalkylene) glycol component such as polyether ester amide as a constituent component. The polymer is suitably 5 parts by weight or less based on a total of 100 parts by weight of the A component and the B component.
(x) 充填材
本発明のポリカーボネート樹脂組成物には、強化フィラーとして公知の各種充填材を配合することができる。かかる充填材としては、各種の繊維状充填材、板状充填材、および粒状充填材が利用できる。ここで、繊維状充填材はその形状が繊維状(棒状、針状、扁平状、またはその軸が複数の方向に伸びた形状をいずれも含む)であり、板状充填材はその形状が板状(表面に凹凸を有するものや、板が湾曲を有するものを含む)である充填材である。粒状充填材は、不定形状を含むこれら以外の形状の充填材である。
上記繊維状や板状の形状は充填材の形状観察より明らかな場合が多いが、例えばいわゆる不定形との差異としては、そのアスペクト比が3以上であるものは繊維状や板状といえる。
(X) Filler
Various known fillers can be blended in the polycarbonate resin composition of the present invention as a reinforcing filler. As such a filler, various fibrous fillers, plate-like fillers, and granular fillers can be used. Here, the fibrous filler has a fibrous shape (including a rod shape, a needle shape, a flat shape, or a shape whose axes extend in a plurality of directions), and the plate-shaped filler has a plate shape. It is a filler which has a shape (including those having irregularities on the surface and those having a curved surface). The granular filler is a filler having a shape other than these including an indefinite shape.
The fiber-like and plate-like shapes are often clear from the observation of the shape of the filler. For example, a difference from a so-called indeterminate shape can be said to be a fiber-like or plate-like one having an aspect ratio of 3 or more.
板状充填材としては、ガラスフレーク、タルク、マイカ、カオリン、メタルフレーク、カーボンフレーク、およびグラファイト、並びにこれらの充填剤に対して例えば金属や金属酸化物などの異種材料を表面被覆した板状充填材などが好ましく例示される。その粒径は0.1〜300μmの範囲が好ましい。かかる粒径は、10μm程度までの領域は液相沈降法の1つであるX線透過法で測定された粒子径分布のメジアン径(D50)による値をいい、10〜50μmの領域ではレーザー回折・散乱法で測定された粒子径分布のメジアン径(D50)による値をいい、50〜300μmの領域では振動式篩分け法による値である。かかる粒径は樹脂組成物中での粒径である。板状充填材は、各種のシラン系、チタネート系、アルミネート系、およびジルコネート系などのカップリング剤で表面処理されてもよく、またオレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂などの各種樹脂や高級脂肪酸エステルなどにより集束処理されるか、または圧縮処理された造粒物であってもよい。 As plate-like fillers, glass-flake, talc, mica, kaolin, metal flakes, carbon flakes, and graphite, and these fillers are coated with different materials such as metals and metal oxides. A material etc. are illustrated preferably. The particle size is preferably in the range of 0.1 to 300 μm. The particle size is about 10 μm in terms of the median diameter (D50) of the particle size distribution measured by the X-ray transmission method, which is one of the liquid phase precipitation methods. In the region of 10-50 μm, laser diffraction is performed. -The value by the median diameter (D50) of the particle size distribution measured by the scattering method is referred to, and in the region of 50 to 300 μm, the value is by the vibration sieving method. Such a particle size is a particle size in the resin composition. The plate-like filler may be surface-treated with various coupling agents such as silane, titanate, aluminate, and zirconate, and olefin resin, styrene resin, acrylic resin, polyester resin. Further, it may be a granulated product that has been subjected to a bundling treatment or compression treatment with various resins such as epoxy resins and urethane resins, higher fatty acid esters, and the like.
繊維状充填材は、その繊維径が0.1〜20μmの範囲が好ましい。繊維径の上限は13μmが好ましく、10μmが更に好ましい。一方繊維径の下限は1μmが好ましい。
ここでいう繊維径とは数平均繊維径を指す。尚、かかる数平均繊維径は、成形品を溶剤に溶解するかもくしは樹脂を塩基性化合物で分解した後に採取される残渣、およびるつぼで灰化を行った後に採取される灰化残渣を走査電子顕微鏡観察した画像から算出される値である。
The fiber diameter of the fibrous filler is preferably in the range of 0.1 to 20 μm. The upper limit of the fiber diameter is preferably 13 μm, more preferably 10 μm. On the other hand, the lower limit of the fiber diameter is preferably 1 μm.
The fiber diameter here refers to the number average fiber diameter. The number average fiber diameter is obtained by scanning the residue collected after dissolving the molded product in a solvent, or decomposing the resin with a basic compound, and the ash residue collected after ashing with a crucible. It is a value calculated from an image observed with an electron microscope.
かかる繊維状充填材としては、例えば、ガラスファイバー、扁平断面ガラス繊維、ガラスミルドファイバー、ガラスフレーク、カーボンファイバー、扁平断面カーボンファイバー、カーボンミルドファイバー、メタルファイバー、バサルト繊維、アスベスト、ロックウール、セラミックファイバー、スラグファイバー、チタン酸カリウムウィスカー、ボロンウィスカー、ホウ酸アルミニウムウィスカー、炭酸カルシウムウィスカー、酸化チタンウィスカー、ワラストナイト、ゾノトライト、パリゴルスカイト(アタパルジャイト)、およびセピオライトなどの繊維状無機充填材、アラミド繊維、ポリイミド繊維およびポリベンズチアゾール繊維などの耐熱有機繊維に代表される繊維状耐熱有機充填材、ヘンプ麻や竹などの植物性繊維、並びにこれらの充填剤に対して例えば金属や金属酸化物などの異種材料を表面被覆した繊維状充填材などが例示される。異種材料を表面被覆した充填材としては、例えば金属コートガラスファイバー、金属コートガラスフレーク、酸化チタンコートガラスフレーク、および金属コートカーボンファイバーなどが例示される。異種材料の表面被覆の方法としては特に限定されるものではなく、例えば公知の各種メッキ法(例えば、電解メッキ、無電解メッキ、溶融メッキなど)、真空蒸着法、イオンプレーティング法、CVD法(例えば熱CVD、MOCVD、プラズマCVDなど)、PVD法、およびスパッタリング法などを挙げることができる。 Examples of the fibrous filler include glass fiber, flat cross-section glass fiber, glass milled fiber, glass flake, carbon fiber, flat cross-section carbon fiber, carbon milled fiber, metal fiber, basalt fiber, asbestos, rock wool, and ceramic fiber. , Slag fiber, potassium titanate whisker, boron whisker, aluminum borate whisker, calcium carbonate whisker, titanium oxide whisker, wollastonite, zonotolite, palygorskite (attapulgite), sepiolite and other fibrous inorganic fillers, aramid fiber, polyimide Fibrous heat-resistant organic fillers typified by heat-resistant organic fibers such as fibers and polybenzthiazole fibers, vegetable fibers such as hemp hemp and bamboo, and Such as a fibrous filler with different materials and surface coatings, such as with respect to those of fillers such as metal or metal oxide are exemplified. Examples of the filler whose surface is coated with a different material include metal-coated glass fibers, metal-coated glass flakes, titanium oxide-coated glass flakes, and metal-coated carbon fibers. The surface coating method of different materials is not particularly limited. For example, various known plating methods (for example, electrolytic plating, electroless plating, hot-dip plating, etc.), vacuum deposition methods, ion plating methods, CVD methods ( For example, thermal CVD, MOCVD, plasma CVD, etc.), PVD method, sputtering method, etc. can be mentioned.
ここで繊維状充填材とは、アスペクト比が3以上、好ましくは5以上、より好ましくは10以上である繊維状の充填材をいう。アスペクト比の上限は10,000程度であり、好ましくは200である。かかる充填材のアスペクト比は樹脂組成物中での値である。また扁平断面ガラス繊維とは、繊維断面の長径の平均値が10〜50μm、好ましくは15〜40μm、より好ましくは20〜35μmで長径と短径の比(長径/短径)の平均値が1.5〜8、好ましくは2〜6、更に好ましくは2.5〜5であるガラス繊維である。繊維状充填材も上記板状充填材と同様に各種のカップリング剤で表面処理されてもよく、各種の樹脂などにより集束処理され、また圧縮処理により造粒されてもよい。
かかる充填材の含有量は、A成分、B成分の合計100重量部を基準として200重量部以下が好ましく、より好ましくは100重量部以下、更に好ましくは50重量部以下、特に好ましくは30重量部以下である。
Here, the fibrous filler means a fibrous filler having an aspect ratio of 3 or more, preferably 5 or more, more preferably 10 or more. The upper limit of the aspect ratio is about 10,000, preferably 200. The aspect ratio of such a filler is a value in the resin composition. The flat cross-section glass fiber has an average value of the major axis of the fiber cross section of 10 to 50 μm, preferably 15 to 40 μm, more preferably 20 to 35 μm, and an average value of the ratio of major axis to minor axis (major axis / minor axis) of 1. .5-8, preferably 2-6, more preferably 2.5-5 glass fiber. The fibrous filler may be surface-treated with various coupling agents in the same manner as the plate-like filler, may be converged with various resins, and may be granulated by compression.
The content of the filler is preferably 200 parts by weight or less, more preferably 100 parts by weight or less, still more preferably 50 parts by weight or less, particularly preferably 30 parts by weight based on 100 parts by weight of the total of the A component and the B component. It is as follows.
(xi)その他の添加剤
本発明のポリカーボネート樹脂組成物には、A成分、B成分以外の熱可塑性樹脂、エラストマー、その他の流動改質剤、抗菌剤、流動パラフィンの如き分散剤、光触媒系防汚剤およびフォトクロミック剤などを配合することができる。
かかる他の樹脂としては、例えばポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリスチレン樹脂、アクリロニトリル/スチレン共重合体(AS樹脂)、アクリロニトリル/ブタジエン/スチレン共重合体(ABS樹脂)、ポリメタクリレート樹脂、フェノール樹脂、エポキシ樹脂、環状ポリオレフィン樹脂、ポリ乳酸樹脂、ポリカプロラクトン樹脂、並びに熱可塑性フッ素樹脂(例えばポリフッ化ビニリデン樹脂に代表される)等の樹脂が挙げられる。
(Xi) Other additives The polycarbonate resin composition of the present invention includes A component, thermoplastic resin other than B component, elastomer, other flow modifiers, antibacterial agents, dispersants such as liquid paraffin, photocatalyst protection A soiling agent, a photochromic agent, etc. can be mix | blended.
Examples of such other resins include polyamide resins, polyimide resins, polyetherimide resins, polyurethane resins, silicone resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, polyolefin resins such as polyethylene and polypropylene, polystyrene resins, acrylonitrile / styrene. Copolymer (AS resin), acrylonitrile / butadiene / styrene copolymer (ABS resin), polymethacrylate resin, phenol resin, epoxy resin, cyclic polyolefin resin, polylactic acid resin, polycaprolactone resin, and thermoplastic fluororesin (for example, And the like (represented by polyvinylidene fluoride resin).
また、エラストマーとしては、例えばイソブチレン/イソプレンゴム、スチレン/ブタジエンゴム、エチレン/プロピレンゴム、アクリル系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、コアシェル型のエラストマーであるMBS(メタクリル酸メチル/ステレン/ブタジエン)ゴム、MAS(メタクリル酸メチル/アクリロニトリル/スチレン)ゴム等が挙げられる。
上記他の熱可塑性樹脂の含有量は、A成分、B成分の合計100重量部を基準として好ましくは30重量部以下、より好ましくは20重量部以下である。
As the elastomer, for example, isobutylene / isoprene rubber, styrene / butadiene rubber, ethylene / propylene rubber, acrylic elastomer, polyester elastomer, polyamide elastomer, MBS (methyl methacrylate / sterene / butadiene) which is a core-shell type elastomer. Examples thereof include rubber and MAS (methyl methacrylate / acrylonitrile / styrene) rubber.
The content of the other thermoplastic resin is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, based on the total of 100 parts by weight of component A and component B.
(樹脂組成物の製造)
本発明の樹脂組成物の調製には任意の方法が採用される。例えばA成分、B成分および任意に他の成分を予備混合し、その後溶融混練し、ペレット化する方法を挙げることができる。予備混合の手段としては、ナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などを挙げることができる。予備混合においては必要に応じて押出造粒器やブリケッティングマシーンなどにより造粒を行うこともできる。他の方法としては例えば、A成分としてパウダーの形態を有するものを含む場合、かかるパウダーの一部と配合する添加剤とをブレンドしてパウダーで希釈した添加剤のマスターバッチを製造し、かかるマスターバッチを利用する方法が挙げられる。予備混合後、ベント式二軸押出機に代表される溶融混練機で溶融混練、およびペレタイザー等の機器によりペレット化する。溶融混練機としては他にバンバリーミキサー、混練ロール、恒熱撹拌容器などを挙げることができるが、ベント式二軸押出機が好ましい。
(Manufacture of resin composition)
Arbitrary methods are employ | adopted for preparation of the resin composition of this invention. For example, there can be mentioned a method in which the A component, the B component and optionally other components are premixed and then melt-kneaded and pelletized. Examples of the premixing means include a Nauter mixer, a V-type blender, a Henschel mixer, a mechanochemical apparatus, and an extrusion mixer. In the premixing, granulation can be performed by an extrusion granulator or a briquetting machine as necessary. As another method, for example, when a component having a powder form is included as the component A, a master batch of an additive diluted with powder by blending a part of the powder and an additive to be blended is manufactured, and the master A method using a batch is mentioned. After the preliminary mixing, the mixture is melt-kneaded by a melt-kneader represented by a vent type twin-screw extruder and pelletized by a device such as a pelletizer. Other examples of the melt kneader include a Banbury mixer, a kneading roll, and a constant temperature stirring vessel, but a vent type twin screw extruder is preferred.
他に、各成分を予備混合することなく、それぞれ独立に二軸押出機に代表される溶融混練機に供給する方法も取ることができる。また一部の成分を予備混合した後、残りの成分と独立に溶融混練機に供給する方法が挙げられる。特に無機充填材が配合される場合には、無機充填材は押出機途中の供給口から溶融樹脂中にサイドフィーダーの如き供給装置を用いて供給されることが好ましい。予備混合の手段や造粒に関しては、前記と同様である。なお、配合する成分に液状のものがある場合には、溶融混練機への供給にいわゆる液注装置、または液添装置を使用することができる。 In addition, a method of supplying each component independently to a melt kneader represented by a twin screw extruder without premixing each component can also be employed. Moreover, after premixing some components, the method of supplying to a melt-kneader independently of the remaining components is mentioned. In particular, when an inorganic filler is blended, the inorganic filler is preferably supplied from a supply port in the middle of the extruder into the molten resin using a supply device such as a side feeder. The premixing means and granulation are the same as described above. In addition, when there exists a liquid thing in the component to mix | blend, what is called a liquid injection apparatus or a liquid addition apparatus can be used for supply to a melt kneader.
押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。 As the extruder, one having a vent capable of degassing moisture in the raw material and volatile gas generated from the melt-kneaded resin can be preferably used. From the vent, a vacuum pump is preferably installed for efficiently discharging generated moisture and volatile gas to the outside of the extruder. It is also possible to remove a foreign substance from the resin composition by installing a screen for removing the foreign substance mixed in the extrusion raw material in the zone in front of the extruder die. Examples of such a screen include a wire mesh, a screen changer, a sintered metal plate (such as a disk filter), and the like.
溶融混練機としては二軸押出機の他にバンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機などを挙げることができる。
さらに溶融混練前にA成分、およびB成分に含まれる水分が少ないことが好ましい。したがって各種熱風乾燥、電磁波乾燥、真空乾燥などの方法により、A成分またはB成分のいずれかまたは両者を乾燥した後に溶融混練することがより好ましい。溶融混練中のベント吸引度は、1〜60kPa、好ましくは2〜30kPaの範囲が好ましい。
Examples of the melt kneader include a banbury mixer, a kneading roll, a single screw extruder, a multi-screw extruder having three or more axes, in addition to a twin screw extruder.
Furthermore, it is preferable that the moisture contained in the A component and the B component is small before melt kneading. Therefore, it is more preferable to melt-knead after drying either A component or B component, or both by methods, such as various hot air drying, electromagnetic wave drying, and vacuum drying. The vent suction during melt-kneading is preferably in the range of 1 to 60 kPa, preferably 2 to 30 kPa.
上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の低減、運送または輸送時に発生する微小粉の低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を適宜行うことができる。これらの処方により成形のハイサイクル化、およびシルバーの如き不良発生割合の低減を行うことができる。またペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.3mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜3.5mmである。 The resin extruded as described above is directly cut into pellets, or after forming strands, the strands are cut with a pelletizer to be pelletized. When it is necessary to reduce the influence of external dust during pelletization, it is preferable to clean the atmosphere around the extruder. Furthermore, in the manufacture of such pellets, various methods already proposed for polycarbonate resin for optical discs are used to narrow the shape distribution of pellets, reduce miscuts, and reduce fine powder generated during transportation or transportation. In addition, it is possible to appropriately reduce bubbles (vacuum bubbles) generated inside the strands and pellets. By these prescriptions, it is possible to increase the molding cycle and reduce the occurrence rate of defects such as silver. Moreover, although the shape of a pellet can take common shapes, such as a cylinder, a prism, and a spherical shape, it is a cylinder more suitably. The diameter of such a cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, and still more preferably 2 to 3.3 mm. On the other hand, the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, and still more preferably 2.5 to 3.5 mm.
本発明のポリカーボネート樹脂組成物は通常上記の如く製造されたペレットを射出成形して成形品を得ることにより各種製品を製造することができる。かかる射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、多色成形、サンドイッチ成形、および超高速射出成形などを挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。 The polycarbonate resin composition of the present invention can be produced in various products by usually injection-molding the pellets produced as described above to obtain molded products. In such injection molding, not only ordinary molding methods but also injection compression molding, injection press molding, gas assist injection molding, foam molding (including a method of injecting a supercritical fluid), insert molding, in-mold coating molding, heat insulation Examples thereof include mold molding, rapid heating / cooling mold molding, two-color molding, multicolor molding, sandwich molding, and ultrahigh-speed injection molding. In addition, either a cold runner method or a hot runner method can be selected for molding.
また本発明のポリカーボネート樹脂組成物は、押出成形により各種異形押出成形品、シート、フィルムなどの形で使用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。更に特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明のポリカーボネート樹脂組成物を回転成形やブロー成形などにより成形品とすることも可能である。 The polycarbonate resin composition of the present invention can also be used in the form of various shaped extruded products, sheets, films, etc. by extrusion molding. For forming sheets and films, an inflation method, a calendar method, a casting method, or the like can also be used. It is also possible to form a heat-shrinkable tube by applying a specific stretching operation. Further, the polycarbonate resin composition of the present invention can be formed into a molded product by rotational molding or blow molding.
これにより機械的強度、耐薬品性、熱安定性、さらに良好な耐湿熱性を併せ持つポリカーボネート樹脂組成物ならびに成形品が提供される。即ち、本発明によれば、(A)芳香族ポリカーボネート樹脂(A成分)50〜99重量部および(B)ポリエステル樹脂(B成分)1〜50重量部からなる樹脂組成物であって、B成分が上記一般式(I)で表されるチタン化合物(1)、およびチタン化合物(1)と上記一般式(II)で表される芳香族多価カルボン酸またはその無水物とを反応させて得られたチタン化合物(2)からなる群より選ばれた少なくとも1種のチタン化合物成分と、上記一般式(III)で表されるリン化合物(3)の少なくとも1種からなるリン化合物成分との反応生成物を含む化合物を触媒として使用して重合されたポリエステル樹脂であることを特徴とする樹脂組成物を溶融成形した成形品が提供される。 As a result, a polycarbonate resin composition and a molded product having both mechanical strength, chemical resistance, thermal stability, and good wet heat resistance are provided. That is, according to the present invention, there is provided a resin composition comprising (A) 50 to 99 parts by weight of an aromatic polycarbonate resin (component A) and (B) 1 to 50 parts by weight of a polyester resin (component B). Obtained by reacting the titanium compound (1) represented by the above general formula (I) and the titanium compound (1) with the aromatic polycarboxylic acid represented by the above general formula (II) or an anhydride thereof. Reaction of at least one titanium compound component selected from the group consisting of the obtained titanium compound (2) and a phosphorus compound component consisting of at least one phosphorus compound (3) represented by the general formula (III) There is provided a molded article obtained by melt-molding a resin composition, which is a polyester resin polymerized using a compound containing a product as a catalyst.
本発明のポリカーボネート樹脂組成物が利用される成形品は、各種電子・電気機器部品、カメラ部品、OA機器部品、精密機械部品、機械部品、車両部品(特に車両用内外装部品)、その他農業資材、搬送容器、遊戯具および雑貨などの各種用途に有用であり、その奏する産業上の効果は格別である。 Molded articles in which the polycarbonate resin composition of the present invention is used include various electronic / electric equipment parts, camera parts, OA equipment parts, precision machine parts, machine parts, vehicle parts (particularly interior and exterior parts for vehicles), and other agricultural materials. It is useful for various uses such as transport containers, playground equipment, and miscellaneous goods, and its industrial effects are exceptional.
更に本発明のポリカーボネート樹脂組成物からなる成形品には、各種の表面処理を行うことが可能である。ここでいう表面処理とは、蒸着(物理蒸着、化学蒸着など)、メッキ(電気メッキ、無電解メッキ、溶融メッキなど)、塗装、コーティング、印刷などの樹脂成形品の表層上に新たな層を形成させるものであり、通常のポリカーボネート樹脂に用いられる方法が適用できる。表面処理としては、具体的には、ハードコート、撥水・撥油コート、紫外線吸収コート、赤外線吸収コート、並びにメタライジング(蒸着など)などの各種の表面処理が例示される。ハードコートは特に好ましくかつ必要とされる表面処理である。 Furthermore, various surface treatments can be performed on the molded article made of the polycarbonate resin composition of the present invention. Surface treatment here refers to a new layer on the surface of resin molded products such as vapor deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electroplating, electroless plating, hot dipping, etc.), painting, coating, printing, etc. A method used for ordinary polycarbonate resin is applicable. Specific examples of the surface treatment include various surface treatments such as hard coat, water / oil repellent coat, ultraviolet absorption coat, infrared absorption coat, and metalizing (evaporation). Hard coat is a particularly preferred and required surface treatment.
加えて、本発明のポリカーボネート樹脂組成物は、改良された金属密着性を有することから、蒸着処理およびメッキ処理の適用も好ましい。かようにして金属層が設けられた成形品は、電磁波シールド部品、導電部品、およびアンテナ部品などに利用できる。かかる部品は特にシート状およびフィルム状が好ましい。 In addition, since the polycarbonate resin composition of the present invention has improved metal adhesion, application of vapor deposition and plating is also preferred. The molded product thus provided with the metal layer can be used for electromagnetic wave shielding parts, conductive parts, antenna parts, and the like. Such parts are particularly preferably sheet-like and film-like.
本発明のポリカーボネート樹脂組成物は、機械的強度、耐薬品性、熱安定性に優れ、さらに良好な耐湿熱性を併せ持つことから、上記の如く、建築物、建築資材、農業資材、海洋資材、車両、電気・電子機器、機械、その他の各種分野において幅広く有用である。したがって本発明の奏する産業上の効果は極めて大である。 The polycarbonate resin composition of the present invention is excellent in mechanical strength, chemical resistance, thermal stability, and also has good moisture and heat resistance. Therefore, as described above, the building, building material, agricultural material, marine material, vehicle It is useful in a wide range of fields such as electrical / electronic equipment, machinery, and others. Therefore, the industrial effect exhibited by the present invention is extremely great.
本発明者が現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。 The form of the present invention considered to be the best by the present inventor is a collection of the preferable ranges of the above requirements. For example, typical examples are described in the following examples. Of course, the present invention is not limited to these forms.
(I)ポリカーボネート樹脂組成物の評価
(i)Ti元素分析:アジレント・テクノロジー社製ICP質量分析装置Agilent7500csを用いて測定した。なお、試料は、秤量した試料に硫酸添加しマイクロウェーブ分解により樹脂を灰化後、更に硝酸添加しマイクロウェーブ分解を行って得られた残渣金属を超純水で定容し、残渣からTi元素量を測定した。
(ii)シャルピー衝撃強度測定:得られた各種ペレットを120℃で5時間乾燥した後に射出成形機(住友重機械工業(株)製 SG−150U)によりシリンダー温度280℃、金型温度70℃で、成形片を成形し、ISO179に従い、ノッチ付きのシャルピー衝撃強度の測定を実施した。
(iii)MVR測定:得られた各種ペレットを120℃で5時間乾燥した後に射出成形機(住友重機械工業(株)製 SG−150U)を使用して、シリンダー温度270℃、金型温度70℃、成形サイクル50秒にて、厚み2mmの試験片を成形した。該試験片を温度80℃、相対湿度95%の恒温恒湿試験機に500時間放置して処理した後、温度23℃、相対湿度50%の環境下で24時間放置した試験片(湿熱処理後の試験片)を用いて280℃・2.16kg荷重条件で測定したMVR測定値と、温度23℃、相対湿度50%の環境下で24時間放置した試験片(湿熱処理前の試験片)を用いて同条件で測定したMVR測定値を、下記数式にしたがって計算し、湿熱処理前後の変化率(ΔMVR)を算出した。このΔMVRが大きいほど、成形品の樹脂劣化が大きいことを意味しており、ΔMVRは300以下であることが必要である。
ΔMVR=100×(湿熱処理後の試験片のMVR)/(湿熱処理前の試験片のMVR)(iv)成形品外観:得られた各種ペレットを120℃で5時間乾燥した後に射出成形機(住友重機械工業(株)製 SG−150U)によりシリンダー温度280℃、金型温度70℃で、成形した長さ150mm×幅150mm×厚み2mmtの平板成形品の外観を目視にて観察し評価を行った。なお、評価は以下の基準により実施した。
○:異常が認められないもの
△:ゲート部にのみシルバーがみられるもの
×:成形品全体にシルバーがみられるもの
(I) Evaluation of polycarbonate resin composition (i) Ti elemental analysis: Measurement was performed using an ICP mass spectrometer Agilent 7500cs manufactured by Agilent Technologies. In addition, after adding the sulfuric acid to the weighed sample and ashing the resin by microwave decomposition, the sample was further added with nitric acid and the residue metal obtained by microwave decomposition was fixed in ultrapure water. The amount was measured.
(Ii) Charpy impact strength measurement: After drying the various pellets obtained at 120 ° C. for 5 hours, the cylinder temperature was 280 ° C. and the mold temperature was 70 ° C. using an injection molding machine (SG-150U, manufactured by Sumitomo Heavy Industries, Ltd.). The molded piece was molded, and the Charpy impact strength with a notch was measured according to ISO179.
(Iii) MVR measurement: The various pellets obtained were dried at 120 ° C. for 5 hours, and then an injection molding machine (SG-150U, manufactured by Sumitomo Heavy Industries, Ltd.) was used. The cylinder temperature was 270 ° C. and the mold temperature was 70. A test piece having a thickness of 2 mm was molded at 50 ° C. and a molding cycle of 50 seconds. The test piece was left in a constant temperature and humidity tester at a temperature of 80 ° C. and a relative humidity of 95% for 500 hours, and then left for 24 hours in an environment at a temperature of 23 ° C. and a relative humidity of 50% (after wet heat treatment). MVR measurement value measured under the load condition of 280 ° C. and 2.16 kg using a test piece) and a test piece (test piece before wet heat treatment) left for 24 hours in an environment of a temperature of 23 ° C. and a relative humidity of 50%. The MVR measurement value measured under the same conditions was calculated according to the following formula, and the rate of change (ΔMVR) before and after the wet heat treatment was calculated. A larger ΔMVR means that the resin deterioration of the molded product is larger, and ΔMVR needs to be 300 or less.
ΔMVR = 100 × (MVR of test piece after wet heat treatment) / (MVR of test piece before wet heat treatment) (iv) Appearance of molded product: After drying various pellets obtained at 120 ° C. for 5 hours, an injection molding machine ( Sumitomo Heavy Industries, Ltd. SG-150U) is visually evaluated by visually observing the appearance of a molded product of 150mm length x 150mm width x 2mm thickness at a cylinder temperature of 280 ° C and a mold temperature of 70 ° C. went. The evaluation was performed according to the following criteria.
○: No abnormality is observed Δ: Silver is seen only at the gate part ×: Silver is seen throughout the molded product
[実施例1〜7、比較例1〜5]
ポリカーボネート樹脂、ポリエステル樹脂および表1および表2記載の各種添加剤を各配合量で、ブレンダーにて混合した後、ベント式二軸押出機を用いて溶融混練してペレットを得た。使用する各種添加剤は、それぞれ配合量の10〜100倍の濃度を目安に予めポリカーボネート樹脂との予備混合物を作成した後、ブレンダーによる全体の混合を行った。ベント式二軸押出機((株)日本製鋼所製:TEX30α(完全かみ合い、同方向回転、2条ネジスクリュー))を使用した。押出条件は吐出量20kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第1供給口からダイス部分まで270℃とした。得られたペレットを120℃で5時間、熱風循環式乾燥機にて乾燥した後、射出成形機を用いて、評価用の試験片を成形した。各評価結果を表1および表2に示した。
[Examples 1-7, Comparative Examples 1-5]
A polycarbonate resin, a polyester resin, and various additives shown in Tables 1 and 2 were mixed at blending amounts in blenders, and then melt-kneaded using a vent type twin screw extruder to obtain pellets. Various additives to be used were prepared in advance by premixing with a polycarbonate resin with a concentration of 10 to 100 times the blending amount as a guide, and then the whole was mixed by a blender. A vent type twin screw extruder (manufactured by Nippon Steel Works, Ltd .: TEX30α (completely meshing, rotating in the same direction, two-thread screw)) was used. Extrusion conditions were a discharge rate of 20 kg / h, a screw rotation speed of 150 rpm, a vent vacuum of 3 kPa, and an extrusion temperature of 270 ° C. from the first supply port to the die part. The obtained pellets were dried with a hot air circulation dryer at 120 ° C. for 5 hours, and then a test piece for evaluation was molded using an injection molding machine. The evaluation results are shown in Tables 1 and 2.
表1および表2中の記号表記の各成分は下記の通りである。
(A成分)
PC−1:粘度平均分子量16,000の直鎖状芳香族ポリカーボネート樹脂パウダー
PC−2:粘度平均分子量25,000の直鎖状芳香族ポリカーボネート樹脂パウダー
(B成分)
PET−1:チタンテトラブトキシドとモノラウリルホスフェートを反応させて得たチタン系触媒を使用して重合されたポリエチレンテレフタレート樹脂(IV=0.83)
PET−2:チタンテトラブトキシドとモノラウリルホスフェートを反応させて得たチタン系重合触媒を使用して重合されたポリエチレンテレフタレート樹脂(IV=0.53)
PET−3:アセチルトリイソプロピルチタネート重合触媒を使用して重合されたポリエチレンテレフタレート樹脂(IV=0.80)
(その他の成分)
P−1:トリメチルホスフェート
P−2:ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトールジホスファイト
Each component of the symbol notation in Table 1 and Table 2 is as follows.
(A component)
PC-1: Linear aromatic polycarbonate resin powder having a viscosity average molecular weight of 16,000 PC-2: Linear aromatic polycarbonate resin powder having a viscosity average molecular weight of 25,000 (component B)
PET-1: Polyethylene terephthalate resin polymerized using a titanium-based catalyst obtained by reacting titanium tetrabutoxide and monolauryl phosphate (IV = 0.83)
PET-2: Polyethylene terephthalate resin polymerized using a titanium-based polymerization catalyst obtained by reacting titanium tetrabutoxide and monolauryl phosphate (IV = 0.53)
PET-3: Polyethylene terephthalate resin polymerized using an acetyltriisopropyl titanate polymerization catalyst (IV = 0.80)
(Other ingredients)
P-1: Trimethyl phosphate P-2: Bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite
Claims (6)
(i)固有粘度が0.40〜1.2であり、
(ii)チタン系触媒の使用量が、チタン原子換算ミリモル量が重合出発原料中に含まれる芳香族ジカルボン酸成分の合計ミリモル量に対して、2〜40ミリ%である。
(I) the intrinsic viscosity is 0.40 to 1.2,
(Ii) The amount of the titanium-based catalyst used is 2 to 40 mm% with respect to the total millimolar amount of the aromatic dicarboxylic acid component contained in the polymerization starting material in terms of millimolar amount in terms of titanium atom.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010006883A JP5204795B2 (en) | 2010-01-15 | 2010-01-15 | Polycarbonate resin composition |
CA2787096A CA2787096C (en) | 2010-01-15 | 2011-01-13 | Polycarbonate resin composition |
KR1020127017707A KR101773214B1 (en) | 2010-01-15 | 2011-01-13 | Polycarbonate resin composition |
EP11733008.4A EP2524946B8 (en) | 2010-01-15 | 2011-01-13 | Polycarbonate resin composition |
PCT/JP2011/050901 WO2011087141A1 (en) | 2010-01-15 | 2011-01-13 | Polycarbonate resin composition |
CN201180006106.7A CN102712807B (en) | 2010-01-15 | 2011-01-13 | Polycarbonate resin composition |
US13/522,138 US8648165B2 (en) | 2010-01-15 | 2011-01-13 | Polycarbonate resin composition |
TW100101428A TWI557152B (en) | 2010-01-15 | 2011-01-14 | Polycarbonate resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010006883A JP5204795B2 (en) | 2010-01-15 | 2010-01-15 | Polycarbonate resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011144283A JP2011144283A (en) | 2011-07-28 |
JP5204795B2 true JP5204795B2 (en) | 2013-06-05 |
Family
ID=44459422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010006883A Active JP5204795B2 (en) | 2010-01-15 | 2010-01-15 | Polycarbonate resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5204795B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5634981B2 (en) * | 2011-12-29 | 2014-12-03 | 三菱エンジニアリングプラスチックス株式会社 | Method for producing polycarbonate resin composition |
JP5634980B2 (en) * | 2011-12-29 | 2014-12-03 | 三菱エンジニアリングプラスチックス株式会社 | Polycarbonate resin composition and polycarbonate resin molded product |
JP6854655B2 (en) * | 2017-01-27 | 2021-04-07 | 帝人株式会社 | Thermoplastic resin composition and its molded product |
WO2021085051A1 (en) * | 2019-10-29 | 2021-05-06 | 帝人株式会社 | Conductive film for antennas, and antenna |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003160656A (en) * | 2001-11-28 | 2003-06-03 | Teijin Ltd | Method of manufacturing polyester and fiber |
JP2003213144A (en) * | 2002-01-28 | 2003-07-30 | Teijin Chem Ltd | Flame-retardant thermoplastic resin composition |
JP3973566B2 (en) * | 2003-01-16 | 2007-09-12 | 帝人ファイバー株式会社 | Easy fibrillar polyester fiber |
CN100537660C (en) * | 2004-07-02 | 2009-09-09 | 三菱工程塑料株式会社 | Thermoplastic resin composition and molded object |
JP2007176971A (en) * | 2005-12-27 | 2007-07-12 | Mitsubishi Chemicals Corp | Aromatic polycarbonate resin composition and resin molded product |
JP2007176969A (en) * | 2005-12-27 | 2007-07-12 | Mitsubishi Chemicals Corp | Aromatic polycarbonate resin composition and resin molded product |
JP2009001619A (en) * | 2007-06-19 | 2009-01-08 | Mitsubishi Chemicals Corp | Aromatic polycarbonate resin composition and resin molded product |
-
2010
- 2010-01-15 JP JP2010006883A patent/JP5204795B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011144283A (en) | 2011-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101773214B1 (en) | Polycarbonate resin composition | |
JP5602997B2 (en) | Glass fiber reinforced aromatic polycarbonate resin composition | |
JP6195904B2 (en) | Glass fiber reinforced polycarbonate resin composition | |
JP5431758B2 (en) | Polycarbonate resin composition | |
JP5048948B2 (en) | Glass fiber reinforced aromatic polycarbonate resin composition | |
JP5524463B2 (en) | A lens barrel made of a glass fiber reinforced flame retardant resin composition | |
JP5902409B2 (en) | Method for producing flame retardant polycarbonate resin composition and method for producing molded product thereof | |
JP2011026439A (en) | Glass fiber-reinforced resin composition | |
JP6181513B2 (en) | Carbon fiber reinforced polycarbonate resin composition | |
JP2018095669A (en) | Polycarbonate resin composition and resin metal composite molding formed from the same | |
JP6224331B2 (en) | Thermoplastic resin composition and molded article thereof | |
JP6181394B2 (en) | Thermoplastic resin composition and molded article thereof | |
JP5204814B2 (en) | Thermoplastic resin composition | |
JP2010275413A (en) | Glass-reinforced resin composition | |
JP2018159003A (en) | Thermoplastic resin composition | |
JP2017132822A (en) | Thermoplastic resin composition | |
JP5204795B2 (en) | Polycarbonate resin composition | |
JP2011140545A (en) | Fiber-reinforced resin composition and resin molded article produced by molding the same | |
JP6110197B2 (en) | Conductive polycarbonate resin composition | |
JP2013221072A (en) | Glass fiber-reinforced polycarbonate resin composition | |
JP6854655B2 (en) | Thermoplastic resin composition and its molded product | |
JP6782576B2 (en) | Polycarbonate resin composition | |
JP2008231441A (en) | Glass fiber-reinforced aromatic polycarbonate resin composition | |
JP6276061B2 (en) | Thermoplastic resin composition | |
JP4870367B2 (en) | Reinforced aromatic polycarbonate resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110630 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110630 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111205 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20111205 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20120201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120326 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120508 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120806 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120904 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5204795 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160222 Year of fee payment: 3 |