WO2020009039A1 - Organic el element and display device, image pickup device, communication equipment, illumination device, lamp fitting, and mobile body using said organic el element - Google Patents

Organic el element and display device, image pickup device, communication equipment, illumination device, lamp fitting, and mobile body using said organic el element Download PDF

Info

Publication number
WO2020009039A1
WO2020009039A1 PCT/JP2019/025944 JP2019025944W WO2020009039A1 WO 2020009039 A1 WO2020009039 A1 WO 2020009039A1 JP 2019025944 W JP2019025944 W JP 2019025944W WO 2020009039 A1 WO2020009039 A1 WO 2020009039A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
dopant
emitting layer
light emitting
light
Prior art date
Application number
PCT/JP2019/025944
Other languages
French (fr)
Japanese (ja)
Inventor
広和 宮下
▲高▼谷 格
希之 伊藤
萌恵 ▲高▼比良
智奈 山口
塩原 悟
友和 小竹
春奈 飯田
山田 直樹
鎌谷 淳
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019117143A external-priority patent/JP7336277B2/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN201980045371.2A priority Critical patent/CN112385315B/en
Publication of WO2020009039A1 publication Critical patent/WO2020009039A1/en
Priority to US17/139,848 priority patent/US20210126214A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to an organic EL element that emits light by passing a current through an organic EL (electroluminescence) layer including a light emitting layer, which is sandwiched between a pair of electrodes, and various devices using the organic EL element.
  • organic EL electroluminescence
  • Patent Document 1 discloses an organic EL device in which a plurality of light-emitting layers are stacked, a charge barrier layer is provided between two light-emitting layers, and light emission efficiency is improved.
  • Patent Document 2 discloses an organic material in which three light-emitting layers are stacked, and an intermediate layer made of the same material as the host of the light-emitting layer is provided between the light-emitting layers to cause the three light-emitting layers to emit light and improve the light emission balance.
  • An EL element is disclosed.
  • the organic EL device disclosed in Patent Document 1 did not have sufficient durability characteristics.
  • the energy level (HOMO level) of the HOMO (highest occupied orbit) of the charge barrier layer (intermediate layer) provided between the two light emitting layers is higher than that of the host of the surrounding light emitting layer. large. That is, in other words, the element configuration is such that the HOMO level of the intermediate layer is closer to the vacuum level than the HOMO level of the adjacent light emitting layer. Therefore, since holes are accumulated in the intermediate layer sandwiched between the two light emitting layers, quenching of excitons due to accumulated charges and material deterioration due to accumulation of charges may occur.
  • the organic EL device disclosed in Patent Document 2 did not have a sufficient red, green, and blue light emission balance.
  • the first intermediate layer material adjacent to the red light emitting layer is a red light emitting layer. Is formed of the same material as that of the host forming the device. Therefore, energy transfer from the green or blue light-emitting layer located on the opposite side of the red light-emitting layer with respect to the first intermediate layer easily occurs to the red light-emitting layer via the first intermediate layer, and light emission accompanying the energy transfer is performed. A change in balance or a decrease in luminous efficiency may occur.
  • the intermediate layer also causes a reduction in the efficiency of the element and a deterioration of the element.
  • the present invention has been made in order to solve the above problems, and provides an organic EL device having improved durability characteristics and excellent light emission balance, and various devices using the organic EL device.
  • the first of the present invention comprises at least an anode, a first light-emitting layer, an intermediate layer, a second light-emitting layer, and a cathode in this order, wherein the intermediate layer has the first light-emitting layer and the second light-emitting layer.
  • An organic EL element adjacent to the layer The first light-emitting layer contains a first host and a first dopant, The second light-emitting layer contains a second host and a second dopant,
  • the intermediate layer contains an aromatic hydrocarbon compound, The following relationship (a) holds between the first host and the first dopant, The following relationship (b) holds between the second host and the second dopant, The following relationship (c) is established between the intermediate layer material and the first host.
  • a second aspect of the present invention is a display device having a plurality of pixels, wherein the pixels have the organic EL element of the present invention and an active element connected to the organic EL element. I do.
  • a third aspect of the present invention is a foldable display device having a flexible substrate and a display unit disposed on the flexible substrate, wherein the display unit is the organic EL element of the present invention, And an active element connected to the organic EL element.
  • a fourth aspect of the present invention is an imaging device including an optical unit having a plurality of lenses, an imaging element that receives light passing through the optical unit, and a display unit that displays an image, wherein the display unit is A display unit that displays an image captured by the imaging element, wherein the display unit includes the organic EL element of the present invention.
  • a fifth aspect of the present invention is a communication device including a display unit and a communication unit, wherein the display unit includes the organic EL element of the present invention.
  • a sixth aspect of the present invention is a lighting device including a light source and a light diffusing unit, wherein the light source includes the organic EL element of the present invention.
  • a seventh aspect of the present invention is a lighting device having a light source, wherein an optical film is provided on a light emitting side of the light source, and the light source has the organic EL element of the present invention.
  • An eighth aspect of the present invention is a lamp including the organic EL element of the present invention and a protection member for protecting the organic EL element.
  • a ninth aspect of the present invention is a moving body including a body and a lamp provided on the body, wherein the lamp includes the organic EL element of the present invention.
  • an organic EL device having improved durability characteristics and good light emission balance. Therefore, a display device, an imaging device, a communication device, a lighting device, a lamp, and a moving object which are excellent in required characteristics are provided by using the organic EL element.
  • FIG. 1 is a schematic sectional view schematically showing the configuration of an embodiment of the organic EL device of the present invention.
  • FIG. 1 is a schematic sectional view schematically showing the configuration of an embodiment of the organic EL device of the present invention.
  • FIG. 1 is a schematic sectional view schematically showing the configuration of an embodiment of the organic EL device of the present invention.
  • FIG. 2 is an energy diagram schematically showing the energy level of each layer constituting the organic EL device of the present invention.
  • FIG. 3 is a schematic cross-sectional view of an example of a display device using the organic EL element of the present invention.
  • FIG. 4 is an exploded perspective view schematically showing the configuration of another example of the display device using the organic EL element of the present invention.
  • FIG. 1 is a schematic sectional view schematically showing the configuration of an embodiment of the organic EL device of the present invention.
  • FIG. 1 is a schematic sectional view schematically showing the configuration of an embodiment of the organic EL device of the present invention.
  • FIG. 5 is a schematic rear view illustrating an example of an imaging device using the organic EL element of the present invention.
  • FIG. 6 is a perspective view schematically illustrating an example of a portable communication device using the organic EL element of the present invention.
  • FIG. 7 is a schematic front view showing another example of the display device using the organic EL element of the present invention.
  • FIG. 7 is a schematic front view showing another example of the display device using the organic EL element of the present invention.
  • FIG. 8 is an exploded perspective view illustrating a configuration of an example of a lighting device using the organic EL element of the present invention.
  • FIG. 9 is a schematic view illustrating an example of an automobile using the organic EL element of the present invention for a lamp.
  • the organic EL (electroluminescence) element of the present invention includes at least an anode, a first light-emitting layer, an intermediate layer, a second light-emitting layer, and a cathode in this order. It is arranged between the two light emitting layers.
  • the first light-emitting layer on the anode side contains a first host and a first dopant
  • the second light-emitting layer on the cathode side has a second host and a second dopant
  • the intermediate layer is a constituent material. (Hereinafter, referred to as “intermediate layer material”).
  • the energy level of the LUMO (lowest unoccupied orbit) of the host (hereinafter, referred to as “LUMO level”) is larger than the energy level of the LUMO of the dopant (close to the vacuum level).
  • the energy level of the HOMO (highest occupied orbit) of the intermediate layer material (hereinafter, referred to as “HOMO level”) is smaller (farther from the vacuum level) than the HOMO level of the first host material.
  • FIG. 1 is a diagram schematically showing the configuration of the embodiment of the organic EL device of the present invention, and is a cross-sectional view in the laminating direction.
  • an anode 2 In the organic EL device shown in FIG. 1A, an anode 2, a hole transport layer 3, a first light emitting layer 4a, an intermediate layer 5, a second light emitting layer 4b, a third light emitting layer 4c, and an electron transport layer 6 are formed on a substrate 1. And the cathode 7 are stacked in this order.
  • the first light emitting layer 4a, the second light emitting layer 4b, and the third light emitting layer 4c respectively contain dopants of different emission colors.
  • the organic EL device shown in FIG. 1B includes an anode 2, a hole transport layer 3, a third light emitting layer 4c, a first light emitting layer 4a, an intermediate layer 5, a second light emitting layer 4b, and an electron transport layer 6 on a substrate 1. And the cathode 7 are stacked in this order.
  • the first light emitting layer 4a, the second light emitting layer 4b, and the third light emitting layer 4c respectively contain dopants of different emission colors.
  • an anode 2 a hole transport layer 3
  • a first light emitting layer 4a an intermediate layer 5
  • a second light emitting layer 4b an electron transport layer 6, and a cathode 7 are formed on a substrate 1 in this order. It is laminated.
  • the first light emitting layer 4a contains two kinds of dopants of different emission colors
  • the second light emitting layer 4b contains a dopant of a different emission color from the dopant contained in the first light emitting layer 4a.
  • the light emitting layers 4a, 4b, 4c shown in FIGS. 1A to 1C are all fluorescent light emitting layers.
  • the light emitting layers 4a, 4b, 4c may be light emitting layers emitting any colors. For example, light emission may be the same color, or different colors may be emitted. Further, the light emitting layer may emit white light as a whole. In the case of emitting light of different colors, white light may be emitted from the red, green, and blue light emitting layers.
  • the light emitting layer means a layer having a light emitting function among organic compound layers provided between the anode 2 and the cathode 7.
  • the host included in the light-emitting layer refers to a material which is a main component among materials included in each light-emitting layer. More specifically, the host refers to a material included in the light emitting layer and having a content of more than 50% by mass in the light emitting layer.
  • the dopant is a material that is not a main component among the materials included in the light emitting layer. More specifically, the dopant refers to a material having a content of less than 50% by mass in the light emitting layer among the materials included in the light emitting layer.
  • the concentration of the dopant in the light emitting layer is preferably 0.1% by mass or more and 20% by mass or less, and more preferably 10% by mass or less in order to suppress concentration quenching.
  • a hole injection layer may be provided between the anode 2 and the hole transport layer 3, and an electron blocking layer may be provided between the hole transport layer 3 and the light emitting layer. Further, a hole blocking layer may be provided between the light emitting layer and the electron transport layer 6, and an electron injection layer may be provided between the electron transport layer 6 and the cathode 7.
  • FIG. 2 is an energy diagram schematically showing the energy levels around the light emitting layer constituting the organic EL device of the present invention.
  • LUMO (H1) and LUMO (D1) represent the LUMO levels of the first host and the first dopant, respectively.
  • LUMO (H2) and LUMO (D2) represent the LUMO levels of the second host and the second dopant, respectively.
  • HOMO (H1) and HOMO (IL) represent the HOMO levels of the first host and the intermediate layer material, respectively.
  • the HOMO level and the LUMO level are based on the vacuum level, and take negative values in the case of ordinary molecules. Therefore, when comparing the HOMO level and the LUMO level, those having a small value (large absolute value) are far from the vacuum level, and those having a large value (small absolute value) are the vacuum level. Get closer.
  • the HOMO level and the LUMO level use numerical values obtained by a molecular orbital calculation method.
  • the molecular orbital calculation method used was a density functional theory (DFT), which is widely used at present.
  • the functional was B3LYP and the basis function was 6-31G * .
  • the molecular orbital calculation method uses Gaussian 09 (Gaussian 09, Revision C.01, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA) which is currently widely used.
  • Gaussian 09 Gaussian 09, Revision C.01, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA
  • Robb JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA A. Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, A.
  • the organic EL device of the present invention has at least two fluorescent light emitting layers 4a and 4b, and an intermediate layer 5 is provided between the light emitting layers 4a and 4b. It has an element configuration. And since it has the following characteristics, it becomes an organic EL element which is excellent in durability characteristics and light emission balance.
  • the two light emitting layers 4a and 4b sandwiching the intermediate layer 5 have an electron trapping property.
  • the HOMO level of the intermediate layer material is equal to or lower than the HOMO level of the first host on the anode 2 side.
  • the intermediate layer material is a hydrocarbon.
  • the energy level of the lowest excited singlet (S 1 ) of the intermediate layer material (hereinafter, referred to as “S 1 level”) is high.
  • the two light emitting layers 4a and 4b sandwiching the intermediate layer 5 have an electron trapping property.
  • Charges (holes, electrons) in the light-emitting layer move in the light-emitting layer while moving back and forth between the levels of the host and the dopant.
  • the charge in the light emitting layer moves in the light emitting layer while being repeatedly trapped by the host or the dopant or detrapped by the host or the dopant.
  • the larger the difference between the HOMO level or the LUMO level between the host and the dopant the lower the charge mobility.
  • the LUMO level of the dopant when the LUMO level of the dopant is smaller than the LUMO level of the host, an electron trapping property is generated in the light emitting layer, and the smaller the LUMO level of the dopant, the better the electron trapping property.
  • the HOMO level of the dopant is higher than the HOMO level of the host, hole-trapping properties are generated in the light-emitting layer.
  • an amine compound used as a material for a hole transport layer has an unshared electron pair (lawn pair), and thus is stable against being in a radical cation state that has released an electron, but is a radical that has received an electron. It is a compound that is unstable in the anionic state. That is, when the electrons injected from the cathode 7 reach the hole transport layer 3, the electrons and the amine compound forming the hole transport layer 3 interact with each other to cause deterioration of the material. It is thought to happen.
  • the two light emitting layers 4a and 4b sandwiching the intermediate layer 5 have an electron trapping property, the recombination region is unevenly distributed on the electron transport layer 6 side. As a result, deterioration of the hole transport layer 3 due to electrons can be prevented, and an organic EL device having excellent durability characteristics can be obtained.
  • the HOMO level of the intermediate layer material is equal to or lower than the HOMO level of the first host on the anode 2 side.
  • the relationship (c) is required in the present invention.
  • a hole barrier is generated between the first light emitting layer 4a and the intermediate layer 5, so that the number of holes existing in the first light emitting layer 4a can be increased, and the recombination region is formed on the hole transport layer 3 side. Can also be expanded. As a result, it is possible to cause each of the stacked light emitting layers 4a and 4b to emit light, thereby obtaining white light emission.
  • the intermediate layer 5 that does not satisfy the relationship (c) above, that is, when the HOMO level of the intermediate layer 5 is higher than the HOMO level of the first host, there is no hole barrier, so that hole transport is not performed. Is difficult to restrict, and the recombination region is limited to the intermediate layer 5 and the second light emitting layer 4b. As a result, an excessive exciton is confined in the intermediate layer 5 and the second light emitting layer 4b, which may cause quench and material deterioration.
  • the intermediate layer material is a hydrocarbon.
  • the present inventors have found that the intermediate layer material constituting the intermediate layer 5 is preferably a hydrocarbon.
  • the intermediate layer 5 is responsible for transferring charges between the first light emitting layer 4a and the second light emitting layer 4b and adjusting the carrier balance.
  • the intermediate layer in order to control holes flowing into the second light emitting layer 4b, it is required that holes be accumulated at the interface between the first light emitting layer 4a and the intermediate layer 5. That is, it is necessary that the intermediate layer has a molecular structure that can withstand excessive generation of radical cations, and a hydrocarbon having high chemical stability is preferable as the intermediate layer material.
  • a compound having a hetero atom such as a nitrogen atom, an oxygen atom, or a sulfur atom has an unshared electron pair and is therefore active in donating and accepting electrons, that is, redox.
  • chemical stability is low because unpaired electrons generated through the transfer of electrons may cause material degradation due to interaction such as causing a disproportionation reaction.
  • hydrocarbons do not have lone pairs of electrons and have high chemical stability, and thus are preferred as intermediate layer materials.
  • the intermediate layer material has a role of not only adjusting the carrier balance but also suppressing the energy transfer between the first light emitting layer 4a and the second light emitting layer 4b. Since the organic EL device of the present invention is a light-emitting device using a fluorescent light-emitting dopant, the intermediate layer 5 is preferably a compound having a sufficiently high S 1 level. Specifically, the S 1 level is preferably 2.58 eV or more.
  • the S 1 level is preferably 2.58 eV or more, more preferably 2.88 eV or more, and desirably 3.00 eV or more. It is.
  • a material having a high S 1 level is an aromatic hydrocarbon compound. Specifically, the molecular structure is formed by bonding one or more aromatic hydrocarbons selected from benzene, naphthalene, fluorene, benzofluorene, phenanthrene, anthracene, chrysene, triphenylene, pyrene, fluoranthene, and benzofluoranthene.
  • S 1 level here is a numerical value calculated by molecular orbital calculations described above.
  • the S 1 level is preferably 2.18 eV or more, more preferably 2.48 eV or more, Desirably, it is 2.50 eV or more.
  • the S 1 level is preferably 2.14 eV or more, more preferably 1.82 eV or more, and preferably 1 or more. 80 eV or more.
  • an acene compound in which a benzene ring is linearly condensed is easily oxidized because of a substitution position having a high electron density in the central benzene ring, and has low chemical stability among aromatic hydrocarbons. Accordingly, benzene, naphthalene, benzofluorene, fluorene, phenanthrene, chrysene, triphenylene, pyrene, fluoranthene, and benzofluoranthene, excluding anthracene, which is an acene compound, are particularly preferable.
  • the S 1 level of the intermediate layer material is preferably 3.3 eV or less, more preferably 3.2 eV or less.
  • the intermediate layer material a compound having at least one of fluorene, benzofluorene, phenanthrene, chrysene, triphenylene, pyrene, fluoranthene, and benzofluoranthene as a part of its molecular structure is desirable.
  • the difference between the HOMO level of the first light emitting layer and the host material is preferably 0.5 eV or less in molecular orbital calculation. More preferably, it is within 0.3 eV.
  • an organic EL element in which a plurality of light-emitting layers are stacked unlike a single-color organic EL element having a single-layer light-emitting layer, good white can be realized unless the relationship between the plurality of light-emitting layers is considered. Can not.
  • the two light emitting layers 4a and 4b sandwiching the intermediate layer 5 have an electron trapping property, and the HOMO level of the intermediate layer material is or less HOMO level of the first host side, the interlayer material is a hydrocarbon, if S 1 level is high, it is possible to obtain an organic EL device having excellent light emission balance and durability.
  • the element configuration satisfy the following conditions because the effects of the above features (1) to (4) are enhanced.
  • the third light emitting layer 4c When the third light emitting layer 4c is provided, the third light emitting layer 4c also has an electron trapping property.
  • the third dopant fluorescent light emission
  • the first light emitting layer 4a It is in a relationship between the first host and the electron trap.
  • the first light emitting layer 4a has a hole trapping property.
  • the HOMO level of the second dopant in the second light emitting layer 4b is smaller than the HOMO level of the second host.
  • each of the light emitting layers 4a, 4b, 4c is larger than the hole trapping property.
  • the second light emitting layer 4b is a blue light emitting layer.
  • Each host material is a hydrocarbon.
  • Each dopant has a fluoranthene skeleton.
  • the third light-emitting layer 4c When the third light-emitting layer 4c is provided, the third light-emitting layer 4c also has an electron trapping property. When the third light-emitting layer 4c is not provided, the third dopant is contained in the first light-emitting layer 4a. There is a relationship between the host and the electron trap.
  • the light emitting layers 4a, 4b, and 4c shown in FIG. 1 are each composed of at least a host and a dopant. That is, the first light emitting layer 4a contains a first host and a first dopant, and the second light emitting layer 4b contains a second host and a second dopant. As shown in FIGS.
  • the third light emitting layer 4c when the third light emitting layer 4c is provided, the third light emitting layer 4c contains a third host and a third dopant. As shown in FIG. 1C, when the third light emitting layer 4c is not provided, the first light emitting layer 4a contains the third dopant in addition to the first dopant.
  • a third light emitting layer 4c adjacent to the second light emitting layer 4b is provided between the second light emitting layer 4b and the cathode 7, or as shown in FIG.
  • a third light emitting layer 4c adjacent to the first light emitting layer 4a is provided between the third host and the second dopant, it is preferable that the following relationship (d) be established between the third host and the third dopant.
  • LUMO (H3) and LUMO (D3) represent the LUMO levels of the third host and the third dopant, respectively.
  • the third light emitting layer 4c has an electron trapping property.
  • the recombination region is unevenly distributed on the electron transport layer 6 side, and the durability characteristics can be improved.
  • FIG. 1B by further providing the electron-trapping light-emitting layer on the hole transport layer 3 side, electrons reaching the hole transport layer 3 can be suppressed, and the durability characteristics can be improved.
  • the first light emitting layer 4a when the third light emitting layer 4c is not provided, the first light emitting layer 4a further has a third dopant, and the following (e) between the first host and the third dopant. Is preferably established.
  • LUMO (D3) represents the LUMO level of the third dopant.
  • the first light emitting layer 4a has a hole trapping property. Furthermore, in the first light emitting layer 4a, it is preferable that the following relationship (f) be established between the first host and the first dopant. (F) HOMO (H1) ⁇ HOMO (D1)
  • HOMO (H1) and HOMO (D1) represent the HOMO levels of the first host and the first dopant, respectively.
  • the first light emitting layer 4a has a hole trapping property, so that the balance of the amount of holes flowing into the second light emitting layer 4b, which has been adjusted only by the injection barrier of the intermediate layer 5, can be improved. It is easier to adjust. As a result, the recombination region is also extended to the hole transport layer 3 side, and it becomes easy to realize well-balanced white light emission.
  • the HOMO level of the second dopant in the second light emitting layer 4b is smaller than the HOMO level of the second host. Furthermore, in the second light emitting layer 4b, it is preferable that the following relationship (g) be established between the second host and the second dopant. (G) HOMO (H2)> HOMO (D2)
  • HOMO (H2) and HOMO (D2) represent the HOMO levels of the second host and the second dopant, respectively.
  • the hole trapping property in the second light emitting layer 4b can be suppressed.
  • the effect of distributing the recombination region to the electron transport layer 6 side can be enhanced.
  • the relationship (g) as shown in FIG. 1A, in the case of a laminated structure having the third light emitting layer 4c on the electron transporting 6 side, the hole trapping property of the second light emitting layer 4b is low, so that the third light emitting layer Enhances hole transport to 4c. Therefore, the effect of distributing the recombination region to the electron transport layer 6 side can be enhanced.
  • the electron trapping property of the second light emitting layer 4b can be relatively improved.
  • each of the light emitting layers 4a, 4b, 4c is higher than the hole trapping property.
  • the fact that the light emitting layer having the electron trapping property is effective in improving the durability characteristics will be described.
  • the hole trapping property of the first light emitting layer 4a is further reduced in combination with the relationship (b), and the electron trapping is relatively performed. Can be enhanced. As a result, by increasing the electron density of each light emitting layer as a whole sandwiching the intermediate layer 5, the recombination probability can be increased, and as a result, the hole density can be reduced.
  • the second light emitting layer 4b is a blue light emitting layer.
  • the first dopant contained in the first light emitting layer 4a preferably emits red light
  • the second dopant contained in the second light emitting layer 4b and the third dopant contained in the third light emitting layer 4c It is preferable that one of them emits green light and the other emits blue light.
  • the first light-emitting layer 4a can easily exhibit the above-described hole trapping property and also easily have a hole barrier with the intermediate layer 5. Further, in the present invention, the recombination region is localized on the electron transport layer 6 side.
  • the lamination structure in which the excitation energy generated by the blue light emitting dopant and the green light emitting dopant having a wide band gap can transfer energy to the red light emitting dopant on the hole transport layer 3 side has better white light emission with better balance. This is because it is easy to realize durability characteristics.
  • the second light emitting layer 4b is a blue light emitting layer. This is because by using a blue light emitting dopant having a wide band gap, it is easy to satisfy the above relationships (b) and (g), and the hole trapping property of the second light emitting layer 4b can be reduced.
  • the third dopant contained in the third light emitting layer 4c is red light emission
  • the first dopant contained in the first light emitting layer 4a is green light emission
  • the second dopant contained in the second light emitting layer 4b Preferably emits blue light.
  • the third light-emitting layer 4c becomes a light-emitting layer having a high electron trapping property, and can suppress electrons reaching the hole transport layer 3, thereby improving durability. This is because the characteristics are improved.
  • the recombination region is localized on the electron transport layer 6 side.
  • the lamination structure in which the excitation energy generated by the blue light-emitting dopant having a wide band gap can transfer energy to the red light-emitting dopant and the green light-emitting dopant on the hole transport layer 3 side has better white light emission with better balance. This is because it is easy to realize durability characteristics.
  • the first dopant and the third dopant contained in the first light emitting layer 4a are preferably a red light emitting dopant and a green light emitting dopant, and the second dopant contained in the second light emitting layer 4b. Is preferably a blue light emitting dopant.
  • the first light-emitting layer 4a becomes a light-emitting layer having a high electron trapping property, and can suppress electrons reaching the hole transport layer 3; This is because the characteristics are improved.
  • the recombination region is localized on the electron transport layer 6 side.
  • the stacked structure in which the excitation energy of the blue light-emitting dopant having a wide band gap can be transferred to the red light-emitting dopant and the green light-emitting dopant on the hole transport layer 3 side has a well-balanced white light emission and excellent durability. Easy to realize characteristics.
  • the doping concentration of the red light emitting dopant be lower than the doping concentration of the green light emitting dopant.
  • the concentration of the red light-emitting dopant is preferably 1/5 or less, more preferably 1/10 or less, of the green light-emitting dopant concentration by mass ratio.
  • the organic EL device of the present invention that the second light emitting layer 4b is a blue light emitting layer in the laminated structure of FIGS. 1A to 1C.
  • blue light-emitting dopant refers to a light-emitting material having a peak wavelength of an emission spectrum of 430 nm to 480 nm.
  • a green light emitting dopant refers to a light emitting material having a peak wavelength of an emission spectrum of 500 nm to 570 nm
  • a red light emitting dopant light refers to a light emitting material having a peak wavelength of a light emission spectrum of 580 nm to 680 nm.
  • Each host material is a hydrocarbon.
  • the compound used as the host of the light emitting layers 4a to 4c is not particularly limited, but a compound having no bond with low bond stability in the molecular structure is more preferable.
  • a compound having a bond with low bond stability in a molecular structure that is, a compound having an unstable bond with small binding energy is included as a host in a light-emitting layer included in an organic EL device, drive deterioration of the compound during driving of the device is reduced. Easy to happen. As a result, the durability of the organic EL element is likely to be adversely affected.
  • a bond having low bond stability is a bond connecting a carbazole ring and a phenylene group (nitrogen-carbon bond).
  • the comparison of the calculated values of the binding energies of the exemplary compound EM1 of the CBP and the host and the exemplary compound HT7 of the hole injection / transport material is shown below. The calculation was performed using b3-lyp / def2-SV (P).
  • the host of the light emitting layers 4a to 4c of the organic EL device of the present invention be a hydrocarbon having a high bond stability composed of a carbon-carbon bond.
  • the host is a hydrocarbon, the LUMO level of the host is small. Therefore, in order to form a light-emitting layer having high electron trapping properties, the LUMO level of the dopant is required to be small.
  • each dopant has a fluoranthene skeleton.
  • the compound used as the dopant contained in the light emitting layers 4a to 4c is not particularly limited, but from the viewpoint of the electron trapping property described in the above (10), it has a fluoranthene skeleton having an electron-withdrawing structure. Is preferred.
  • the LUMO level is reduced, the difference in LUMO level from the host material is increased, and the electron trapping property can be improved.
  • the compound does not have a substituted amino group that becomes a nitrogen-carbon bond.
  • the host is a hydrocarbon and the dopant is a compound having a fluoranthene skeleton and having no substituted amino group
  • the light-emitting layers 4a to 4c having high electron trapping properties can be formed. Further, in this case, the stability of the material itself for forming the light emitting layers 4a to 4c is high, so that an organic EL element exhibiting excellent durability characteristics can be obtained.
  • the fluoranthene skeleton refers to fluoranthene and a condensed polycyclic compound in which an aromatic hydrocarbon is further condensed with fluoranthene. Specifically, it refers to a condensed polycyclic compound as shown in FF1 to FF30 below.
  • a dopant having a structure in which two or more fluoranthenes are condensed is preferable from the viewpoint of improving the electron withdrawing property and improving the electron trapping property.
  • a dopant having a skeleton of FF7 to FF13, FF16 to FF20, and FF23 to FF30 can be suitably used in the present invention.
  • the electron trapping property by the third dopant is increased, the hole trapping property of each light emitting layer is low, and the second light emitting layer 4b is a blue light emitting layer.
  • the host is a hydrocarbon and the dopant has a fluoranthene skeleton, an organic EL device having particularly excellent durability characteristics and emission balance can be obtained.
  • hydrocarbons EM1 to EM26 are preferable from the viewpoint of the above-mentioned bond stability. By using these compounds as a host, an organic EL device having excellent durability can be obtained.
  • a carbazole derivative a dibenzofuran derivative, a dibenzothiophene derivative, an organic aluminum complex such as tris (8-quinolinolate) aluminum, an organic beryllium complex, and the like are used as the host.
  • Examples of the blue light emitting dopant used in the present invention include the following. However, the present invention is not limited to this.
  • the blue light emitting dopants of BD1 to BD31 it is preferable not to have a substituted amino group having a high electron donating property from the viewpoint of electron trapping properties. Further, by having a cyano group having a high electron-withdrawing property, the LUMO level of the dopant can be reduced and the electron-trapping property of the light-emitting layer can be improved, which is preferable.
  • the doping concentration of the blue light emitting dopant is preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass. If the concentration is too low, the probability of electron trapping decreases, and the probability of recombination decreases, leading to a decrease in blue emission intensity. Conversely, if the concentration is too high, concentration quenching occurs, which is not desirable.
  • the green light emitting dopant used in the present invention for example, the following can be used. However, the present invention is not limited to this.
  • the doping concentration of the green light emitting dopant is preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass. If the concentration is too low, the probability of electron trapping decreases and the probability of recombination decreases, leading to a decrease in green light emission intensity. Conversely, if the concentration is too high, concentration quenching occurs, which is not desirable.
  • red light emitting dopant used in the present invention for example, the following can be used. However, the present invention is not limited to this.
  • hydrocarbons are preferable from the viewpoint of bond stability.
  • the doping concentration of the red light emitting dopant is preferably 0.1 to 5% by mass, more preferably 0.1 to 0.5% by mass. If the concentration is too low, the probability of electron trapping decreases, and the probability of recombination decreases, leading to a decrease in the emission intensity of red light. Conversely, if the concentration is too high, concentration quenching occurs, which is not desirable.
  • fused ring compounds for example, fluorene derivatives, naphthalene derivatives, pyrene derivatives, perylene derivatives, tetracene derivatives, anthracene derivatives, rubrene, etc.
  • quinacridone Derivatives coumarin derivatives, stilbene derivatives, organoaluminum complexes such as tris (8-quinolinolato) aluminum, iridium complexes, platinum complexes, rhenium complexes, copper complexes, europium complexes, ruthenium complexes, and poly (phenylenevinylene) derivatives, poly (fluorene) )
  • Derivatives and polymer derivatives such as poly (phenylene) derivatives can also be used.
  • the organic EL device of the present invention is an organic electric field device having a pair of electrodes and an organic compound layer (organic EL layer) disposed between the pair of electrodes.
  • the light emitting device has a laminated structure of a light emitting layer / intermediate layer / second light emitting layer.
  • a hole transport layer may be provided between the anode and the first light emitting layer, and further, a configuration having a hole injection layer between the anode and the hole transport layer, or a hole transport layer
  • An electron blocking layer may be provided between the light emitting layer and the first light emitting layer.
  • an electron transporting layer may be provided between the cathode and the second light emitting layer, and further, an electron injection layer may be provided between the cathode and the electron transporting layer.
  • a hole blocking layer may be provided between the first light emitting layer and the second light emitting layer.
  • a structure having both a hole transporting layer and an electron blocking layer and a structure having both an electron transporting layer and a hole blocking layer can confine both hole and electron carriers in the light emitting layer, so that carrier leakage is reduced. And a light-emitting element with high luminous efficiency can be obtained.
  • an insulating layer is provided at the interface between the electrode and the organic compound layer, an adhesive layer or an interference layer is provided, the electron transporting layer or the hole transporting layer is composed of two layers having different ionization potentials, and the light emitting layer is made of a different light emitting material.
  • Various layer configurations such as a two-layer configuration can be employed.
  • the organic EL device of the present invention may be a so-called bottom emission type in which light is extracted from an electrode on the substrate side, a so-called top emission type in which light is extracted from the side opposite to the substrate, or a double-sided extraction structure.
  • the hole injecting and transporting material used for the hole transporting layer and the hole injecting layer a material capable of facilitating the injection of holes from the anode and a material capable of transporting the injected holes to the light emitting layer can be used.
  • a material having a high hole mobility is preferable.
  • a material having a high glass transition temperature is preferable.
  • low-molecular and high-molecular materials having hole injection transport properties examples include triarylamine derivatives, arylcarbazole derivatives, phenylenediamine derivatives, stilbene derivatives, phthalocyanine derivatives, porphyrin derivatives, poly (vinylcarbazole), poly (thiophene), Other conductive polymers can be used. Further, the above-described hole injecting and transporting material is also suitably used for an electron blocking layer.
  • the electron transporting material used for the electron transporting layer or the electron injecting layer can be arbitrarily selected from those capable of transporting electrons injected from the cathode to the light emitting layer. The selection is made in consideration of the balance with the mobility.
  • Examples of the material having an electron transporting property include oxadiazole derivatives, oxazole derivatives, pyrazine derivatives, triazole derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, organic aluminum complexes, fused compounds (for example, fluorene derivatives, naphthalene derivatives, Chrysene derivatives, anthracene derivatives, etc.).
  • the above-mentioned electron transporting material is also suitably used for a hole blocking layer.
  • any material such as quartz, glass, silicon wafer, resin, and metal may be used. Further, a switching element such as a transistor or a wiring may be provided on the substrate 1, and an insulating layer may be provided thereon. As the insulating layer, any material can be used as long as a contact hole can be formed in order to secure conduction between the anode 2 and the wiring, and insulation from an unconnected wiring can be ensured.
  • a resin such as polyimide, silicon oxide, silicon nitride, or the like can be used.
  • a light transmitting material is used for the substrate 1 and the insulating layer.
  • a material having a work function as large as possible is preferable.
  • simple metals such as gold, platinum, silver, copper, nickel, palladium, cobalt, selenium, vanadium, and tungsten, and mixtures containing them, or alloys thereof, tin oxide, zinc oxide, indium oxide, and tin oxide Metal oxides such as indium (ITO) and indium zinc oxide can be used.
  • conductive polymers such as polyaniline, polypyrrole, and polythiophene can be used.
  • Electrode 2 may be composed of a single layer or a plurality of layers.
  • chromium, aluminum, silver, titanium, tungsten, molybdenum, an alloy thereof, or a laminate thereof can be used in order to use the anode 2 as a reflection electrode.
  • an oxide transparent conductive layer of indium tin oxide (ITO), indium zinc oxide, or the like can be used in order to use the anode 2 as a transparent electrode, but is not limited thereto. Not something.
  • a photolithography technique can be used to form the electrodes.
  • the constituent material of the cathode 7 preferably has a small work function.
  • an alkali metal such as lithium
  • an alkaline earth metal such as calcium
  • a simple metal such as aluminum, titanium, manganese, silver, lead, and chromium, or a mixture containing these metals
  • an alloy obtained by combining these metals alone can also be used.
  • magnesium-silver, aluminum-lithium, aluminum-magnesium, silver-copper, zinc-silver and the like can be used.
  • a metal oxide such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • One of these electrode substances may be used alone, or two or more of them may be used in combination.
  • the cathode 7 may have a single-layer structure or a multilayer structure.
  • the cathode 7 may be made transparent using a transparent oxide conductive layer such as ITO.
  • the cathode 7 may be made of aluminum (Al) or the like. May be used as a reflective electrode.
  • the method for forming the cathode 7 is not particularly limited. However, it is more preferable to use a direct current or alternating current sputtering method because the film has good coverage and the resistance is easily reduced.
  • a sealing member (not shown) may be provided.
  • a glass provided with a hygroscopic agent on the cathode 7, it is possible to suppress the entry of water or the like into the organic compound layer and to suppress the occurrence of display defects.
  • a passivation film such as silicon nitride may be provided on the cathode 7 to suppress entry of water or the like into the organic compound layer.
  • a silicon nitride film having a thickness of 2 ⁇ m is formed by a CVD method, so that a sealing film may be formed.
  • a color filter may be provided outside the cathode 7 in the case of a top emission type, and outside the substrate 1 in the case of a bottom emission type.
  • the color filter may be separately formed and attached to the organic EL element, or may be directly formed on the organic EL element by using a photolithography technique.
  • the organic compound layer (a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer) according to the present invention is formed by vacuum evaporation, ionization evaporation, sputtering, It can be formed using a dry process such as plasma. Instead of the dry process, a wet process of forming a layer by a known coating method (for example, spin coating, dipping, casting, LB method, inkjet method, or the like) by dissolving in a suitable solvent can also be used.
  • a coating method for example, spin coating, dipping, casting, LB method, inkjet method, or the like
  • the layer is formed by a vacuum deposition method, a solution coating method, or the like, crystallization or the like hardly occurs, and the stability with time is excellent.
  • the film is formed by a coating method, the film can be formed in combination with an appropriate binder resin.
  • binder resin examples include, but are not limited to, polyvinyl carbazole resin, polycarbonate resin, polyester resin, ABS resin, acrylic resin, polyimide resin, phenol resin, epoxy resin, silicone resin, and urea resin. . These binder resins may be used alone as a homopolymer or a copolymer, or may be used as a mixture of two or more. If necessary, known additives such as a plasticizer, an antioxidant and an ultraviolet absorber may be used in combination.
  • the organic EL element of the present invention can be used as a light source of a display device, an imaging device, a communication device, a lighting device, and a lamp.
  • FIG. 3 is a schematic cross-sectional view showing an example of a display device having an organic light emitting device and an active device connected to the organic light emitting device.
  • the active element may be a transistor or a TFT made of polysilicon, an oxide semiconductor, or the like.
  • the display device 10 shown in FIG. 3 includes a substrate 11 made of glass or the like and an insulating layer 12 provided on the substrate 11 for protecting the transistor element or the organic compound layer.
  • a transistor element 18 having a gate electrode 13, a gate insulating film 14, a semiconductor layer 15, a drain electrode 16, and a source electrode 17 is provided thereon.
  • the display device has the organic light emitting element 26 over the transistor element via the interlayer insulating layer 19.
  • the organic light emitting element 26 has an anode 21, an organic compound layer 22 including a light emitting layer, and a cathode 23.
  • a contact hole 20 is provided in the interlayer insulating layer 19, and the anode 21 and the source electrode 17 constituting the organic light emitting element are connected via the contact hole.
  • the method of electrical connection between the electrodes (anode and cathode) included in the organic light-emitting element and the electrodes (source and drain electrodes) included in the transistor is not limited to the mode illustrated in FIG. That is, any one of the anode and the cathode may be electrically connected to one of the source electrode and the drain electrode of the transistor element.
  • the organic compound layer 22 is illustrated as one layer in the display device 10 of FIG. 3, the organic compound layer 22 may be a plurality of layers.
  • a first protective layer 24 and a second protective layer 25 for suppressing deterioration of the organic light emitting element are provided.
  • the display device 10 of FIG. 3 uses a transistor as a switching element, another element may be used as a switching element instead.
  • the transistor used in the display device 10 of FIG. 3 is not limited to a transistor using a single crystal silicon wafer, but may be a thin film transistor having an active layer on an insulating surface of a substrate.
  • the active layer include non-single-crystal silicon such as single-crystal silicon, amorphous silicon, and microcrystalline silicon; and non-single-crystal oxide semiconductors such as indium zinc oxide and indium gallium zinc oxide.
  • a thin film transistor is also called a TFT element.
  • the light emission luminance of the organic EL element 26 is controlled by the transistor 18.
  • the organic EL element By providing the organic EL element in a plurality of planes, an image can be displayed with each light emission luminance.
  • a TFT is preferably used as the transistor 18.
  • a switching element such as an MIM element or an active matrix driver formed on a substrate such as a Si substrate is preferably used. On the substrate can also be referred to as in the substrate. This is selected depending on the definition. For example, in the case of a definition of about 1 inch and QVGA, it is preferable to provide an organic EL element on a Si substrate.
  • FIG. 4 is a schematic diagram illustrating an example of a display device using the display device of FIG. 3 as a display panel.
  • the display device 1000 in FIG. 4 includes a touch panel 1003, a display panel 1005, a frame 1006, a circuit board 1007, and a battery 1008 between an upper cover 1001 and a lower cover 1009.
  • Flexible printed circuits FPCs 1002 and 1004 are connected to the touch panel 1003 and the display panel 1005.
  • Transistors are printed on the circuit board 1007.
  • the battery 1008 need not be provided unless the display device is a portable device, and need not be provided at this position even if the display device is a portable device.
  • the organic EL element of the present invention may be used in a display unit of an imaging device that includes an optical unit having a plurality of lenses and an image sensor that receives light passing through the optical unit.
  • the imaging device may include a display unit that displays information acquired by the imaging device. Further, the display unit may be a display unit exposed to the outside of the imaging device or a display unit arranged in a viewfinder.
  • the imaging device may be a digital camera or a digital video camera.
  • FIG. 5 is a schematic diagram illustrating an example of the imaging device.
  • the imaging device 1100 in FIG. 5 includes a viewfinder 1101, a rear display 1102, a housing 1103, and an operation unit 1104.
  • the viewfinder 1101 includes the organic EL element of the present invention, and may display not only a captured image but also environmental information, an imaging instruction, and the like.
  • the environmental information may include the intensity of the external light, the direction of the external light, the moving speed of the subject, the possibility that the subject is blocked by a blocking object, and the like.
  • the organic EL element of the present invention has a high response speed and is preferable as a display unit of an imaging device.
  • a display device using an organic EL element can be more suitably used in a device requiring a display speed than a liquid crystal display device.
  • the imaging device 1100 has an optical unit (not shown).
  • the optical unit has a plurality of lenses, and forms an image on an imaging element housed in the housing 1103.
  • the focus of the plurality of lenses can be adjusted by adjusting their relative positions. This operation can be performed automatically.
  • the display device using the organic EL element of the present invention may include a color filter having red, green, and blue.
  • the red, green, and blue colors may be arranged in a delta arrangement.
  • the display device using the organic EL element of the present invention may be used for a display unit of a portable terminal.
  • both the display function and the operation function may be provided.
  • the mobile terminal include a mobile phone such as a smartphone, a tablet, a head-mounted display, and the like.
  • FIG. 6 is a schematic view illustrating an example of a portable device using the organic EL element of the present invention for a display portion.
  • the mobile device 1200 includes a display unit 1201, an operation unit 1202, and a housing 1203.
  • the housing 1203 is provided with a circuit, a printed circuit board having the circuit, a battery, and a communication unit.
  • the operation unit 1202 may be a button or a touch panel type reaction unit.
  • the operation unit 1202 may be a biometric recognition unit that recognizes a fingerprint and unlocks the lock.
  • a portable device having a communication unit can also be called a communication device.
  • FIG. 7 is a schematic diagram illustrating another example of a display device using the organic EL element of the present invention for a display unit.
  • FIG. 7A shows a display device such as a television monitor or a PC monitor.
  • the display device 1300 includes a frame 1301, a display unit 1302, and a base 1303 that supports the frame 1301 and the display unit 1302.
  • the base 1303 is not limited to the form shown in FIG. 7A, and the lower side of the frame 1301 may also serve as the base.
  • the frame 1301 and the display unit 1302 may be curved, and the radius of curvature thereof may be 5000 mm or more and 6000 mm or less.
  • FIG. 7B is a schematic view illustrating another example of a display device using the organic EL element of the present invention for a display portion.
  • the display device 1310 in FIG. 7B is configured to be bendable, and is a so-called folderable display device.
  • the display device 1310 includes a first display portion 1311, a second display portion 1312, a housing 1313, and a bending point 1314.
  • the first display portion 1311 and the second display portion 1312 are the organic EL elements of the present invention, and can be separated by a bending point by a single seamless member.
  • the first display unit 1311 and the second display unit 1312 may display different images, respectively, or may display one image with the first and second display units.
  • the housing 1313 is a flexible board.
  • FIG. 8 is a schematic diagram illustrating an example of a lighting device using the organic EL element of the present invention as a light source.
  • the lighting device 1400 includes a housing 1401, a light source 1402, a circuit board 1403, an optical film 1404, and a light diffusion unit 1405.
  • the optical film 1404 may be a filter for improving the color rendering of the light source 1402, and is disposed on the light emission side of the light source 1402.
  • the light diffusing unit can effectively diffuse light from a light source such as light-up and deliver light to a wide range. If necessary, a cover may be provided on the outermost side.
  • the lighting device is, for example, a device that illuminates a room.
  • the lighting device may emit white or any other color from blue to red. It may have a dimming circuit for dimming them.
  • the lighting device has a power supply circuit connected to the organic EL element of the present invention for converting an AC voltage to a DC voltage.
  • White has a color temperature of 4200K and daytime has a color temperature of 5000K.
  • the lighting device may have a color filter.
  • FIG. 9 is a schematic view showing an automobile as an example of a moving body using the organic EL element of the present invention as a lamp.
  • the automobile 1500 has a tail lamp 1501.
  • a tail lamp is an example of a lamp.
  • the tail lamp may be in a form in which the tail lamp is turned on when a brake operation or the like of a vehicle is performed.
  • the tail lamp may have a protection member for protecting the organic EL element.
  • the protective member has a high strength to some extent, and any material may be used as long as it is transparent.
  • the protective member is preferably made of polycarbonate or the like.
  • a polycarbonate may be mixed with a furandicarboxylic acid derivative, an acrylonitrile derivative, or the like.
  • the automobile 1500 may have a fuselage 1503 and a window 1502 attached thereto.
  • the window may be a transparent display as long as it is not a window for confirming the front and rear of the vehicle.
  • the organic EL element of the present invention may be used as the transparent display.
  • the constituent materials such as the electrodes of the organic EL element are formed of transparent members.
  • the moving object of the present invention may be a ship, a drone, an aircraft, or the like, in addition to the automobile.
  • the lamp included in the moving object may be in a form that emits light to indicate its position.
  • Example 1 ⁇ Measurement of HOMO level / LUMO level> The HOMO level and the LUMO level of the host, the dopant, and the intermediate layer material were measured by the following method. Table 1 shows the results.
  • Tables 1 and 2 show the calculated values obtained by the molecular orbital calculation method. From the comparison with the actually measured values, it is understood that the HOMO level and the LUMO level have a correlation. Therefore, in this embodiment, the device results are considered using the numerical values of the HOMO level and the LUMO level obtained from the calculated values.
  • the HOMO level and the LUMO level are referred to as “HOMO” and “LUMO”, respectively.
  • An organic EL device having a top emission structure in which cathodes were sequentially formed was manufactured. Specifically, first, a 40 nm-thick Ti film was formed on a glass substrate by a sputtering method, and was patterned using a photolithography technique to form an anode. At this time, the facing area between the anode and the cathode was set to 3 mm 2 .
  • each layer was formed with the layer configuration shown in Table 3 below.
  • a voltage application device was connected to the obtained organic EL device, and its characteristics were evaluated.
  • the current-voltage characteristics were measured with a microammeter “4140B” manufactured by Hewlett-Packard Company, and the chromaticity was evaluated using “SR-3” manufactured by Topcon.
  • the emission luminance was measured with “BM7” manufactured by Topcon Corporation.
  • the efficiency, voltage, and CIE chromaticity coordinates at the time of display of 1000 cd / m 2 are 6.4 cd / A, 3.2 V, and (0.36, 0.36), respectively.
  • the emission spectrum at a low current density (0.01 mA / cm 2 ) was evaluated.
  • the peak height of the emission spectrum derived from the red emission dopant was set to 1.0
  • the respective peak heights of the blue emission dopant and the green emission dopant were evaluated.
  • " ⁇ " when the peak height was 0.5 or more that is, when the peak heights of blue light emission and green light emission are sufficiently high, it can be said that good white light emission can be obtained even at a low current density, that is, at a low luminance.
  • Table 4 shows the results.
  • Examples 3 to 6, Comparative Examples 1 to 3 An organic EL device was produced in the same manner as in Example 2, except that the first light emitting layer, the intermediate layer, and the second light emitting layer of Example 2 were changed to the compounds shown in Table 4. The characteristics of the obtained organic EL device were measured and evaluated in the same manner as in Example 2. Table 4 shows the results.
  • Examples 8 to 11, Comparative Example 4 An organic EL device was produced in the same manner as in Example 1, except that the first light emitting layer, the intermediate layer, and the second light emitting layer of Example 2 were appropriately changed to the compounds, film thicknesses, and concentrations shown in Table 5. . The characteristics of the obtained organic EL device were measured and evaluated in the same manner as in Example 1. Table 5 shows the results.
  • Example 12 The first light-emitting layer / intermediate layer / second light-emitting layer of Example 2 was changed to a first light-emitting layer / intermediate layer / second light-emitting layer / third light-emitting layer as shown in Table 6 to obtain a compound.
  • the characteristics of the obtained organic EL device were measured and evaluated in the same manner as in Example 2. Table 7 shows the results.
  • An organic EL device having a bottom emission structure in which a layer, an electron injection layer, and a cathode were sequentially formed was manufactured. Specifically, first, an ITO film was formed on a glass substrate, and a desired patterning process was performed to form an ITO electrode (anode). At this time, the thickness of the ITO electrode was set to 100 nm.
  • vacuum deposition was performed by resistance heating in a 1.33 ⁇ 10 ⁇ 4 Pa vacuum chamber, and an organic compound layer and a cathode shown in Table 8 below were continuously formed on the ITO electrode. At this time, the facing area between the anode and the cathode was set to 3 mm 2 .
  • the substrate was transferred to a glove box, and sealed with a glass cap containing a desiccant in a nitrogen atmosphere to obtain an organic EL device.
  • the characteristics of the obtained organic EL device were measured and evaluated in the same manner as in Example 2. Table 9 shows the results.
  • Example 16 and 17 Comparative Examples 5 and 7
  • An organic EL device was produced in the same manner as in Example 15 except that the first light emitting layer / intermediate layer / second light emitting layer / third light emitting layer of Example 15 were changed to the compounds shown in Table 9.
  • the characteristics of the obtained organic EL device were measured and evaluated in the same manner as in Example 2. Table 10 shows the measurement results.

Abstract

This organic EL element is at least provided with an anode 2, a first light-emitting layer 4a, an intermediate layer 5, a second light-emitting layer 4b, and a cathode 7 in this order, the intermediate layer 5 being disposed adjacent to the first light-emitting layer 4a and the second light-emitting layer 4b, wherein the first light-emitting layer 4a and the second light-emitting layer 4b are capable of trapping electrons, and the intermediate layer 5 is composed of a hydrocarbon material that has a high S1 level and a HOMO level not higher than that of a host material in the first light-emitting layer 4a.

Description

有機EL素子及びこれを用いた表示装置、撮像装置、通信機器、照明装置、灯具、移動体Organic EL element and display device, imaging device, communication device, lighting device, lamp, moving body using the same
 本発明は、一対の電極間に挟まれた、発光層を含む有機EL(エレクトロルミネセンス)層に通電することにより光を放出する有機EL素子及び該有機EL素子を用いた各種装置に関する。 The present invention relates to an organic EL element that emits light by passing a current through an organic EL (electroluminescence) layer including a light emitting layer, which is sandwiched between a pair of electrodes, and various devices using the organic EL element.
 近年、有機EL素子を用いたフルカラー発光アレイの研究開発が精力的に進められている。フルカラー発光アレイを作製する場合、発光層を画素(素子)ごとに塗り分ける方式と、発光層が白発光の有機EL素子を用い、カラーフィルタを画素ごとに塗り分ける方式とがある。有機EL素子に関しては、二種類以上の発光材料を用いることが多い。 Recently, research and development of full-color light-emitting arrays using organic EL elements have been actively pursued. When a full-color light-emitting array is manufactured, there are a method in which a light-emitting layer is separately applied to each pixel (element) and a method in which a color filter is applied to each pixel using an organic EL element in which the light-emitting layer emits white light. As for the organic EL element, two or more kinds of light emitting materials are often used.
 特許文献1には、複数の発光層を積層し、2つの発光層間に電荷障壁層を備え、発光効率の向上を図った有機EL素子が開示されている。 Patent Document 1 discloses an organic EL device in which a plurality of light-emitting layers are stacked, a charge barrier layer is provided between two light-emitting layers, and light emission efficiency is improved.
 特許文献2には、3つの発光層を積層し、各発光層間に発光層のホストと同一材料からなる中間層を備えることで、3つの発光層を発光させ、発光バランスの向上を図った有機EL素子が開示されている。 Patent Document 2 discloses an organic material in which three light-emitting layers are stacked, and an intermediate layer made of the same material as the host of the light-emitting layer is provided between the light-emitting layers to cause the three light-emitting layers to emit light and improve the light emission balance. An EL element is disclosed.
国際公開第2010/134350号パンフレットWO 2010/134350 pamphlet 特開2011-151011号公報JP 2011-151011 A
 しかしながら、特許文献1に開示されている有機EL素子は、耐久特性が十分ではなかった。特許文献1の有機EL素子は、2つの発光層間に備えられる電荷障壁層(中間層)のHOMO(最高被占軌道)のエネルギー準位(HOMO準位)が、周囲の発光層のホストよりも大きい。つまり、換言すると、中間層のHOMO準位が隣り合う発光層のHOMO準位よりも真空準位に近い素子構成になっている。従って、2つの発光層間に挟まれる中間層に正孔が蓄積されるので、蓄積された電荷による励起子のクエンチや、電荷たまりによる材料劣化が起こり得る。 However, the organic EL device disclosed in Patent Document 1 did not have sufficient durability characteristics. In the organic EL device of Patent Document 1, the energy level (HOMO level) of the HOMO (highest occupied orbit) of the charge barrier layer (intermediate layer) provided between the two light emitting layers is higher than that of the host of the surrounding light emitting layer. large. That is, in other words, the element configuration is such that the HOMO level of the intermediate layer is closer to the vacuum level than the HOMO level of the adjacent light emitting layer. Therefore, since holes are accumulated in the intermediate layer sandwiched between the two light emitting layers, quenching of excitons due to accumulated charges and material deterioration due to accumulation of charges may occur.
 また、特許文献2にて開示されている有機EL素子は、赤・緑・青の発光バランスが十分ではなかった。特許文献2の有機EL素子では、3つの発光層間に備えられる2つの中間層(第一中間層、第二中間層)のうち、赤発光層に隣接する第一中間層材料は、赤発光層を形成するホストと同一材料である素子構成になっている。従って、第一中間層を挟んで赤発光層とは反対側に位置する緑又は青発光層からのエネルギー移動が、第一中間層を介して赤発光層へと起こりやすく、エネルギー移動に伴う発光バランスの変化や発光効率の低下が起こりうる。 (4) The organic EL device disclosed in Patent Document 2 did not have a sufficient red, green, and blue light emission balance. In the organic EL device of Patent Document 2, of the two intermediate layers (first intermediate layer and second intermediate layer) provided between the three light emitting layers, the first intermediate layer material adjacent to the red light emitting layer is a red light emitting layer. Is formed of the same material as that of the host forming the device. Therefore, energy transfer from the green or blue light-emitting layer located on the opposite side of the red light-emitting layer with respect to the first intermediate layer easily occurs to the red light-emitting layer via the first intermediate layer, and light emission accompanying the energy transfer is performed. A change in balance or a decrease in luminous efficiency may occur.
 さらに、中間層も材料の構造によっては、素子の効率低下や素子劣化を引き起こすと考えられる。 Furthermore, it is considered that depending on the material structure, the intermediate layer also causes a reduction in the efficiency of the element and a deterioration of the element.
 本発明は上記課題を解決するためになされたものであり、耐久特性が改善され、発光バランスに優れる有機EL素子、及び該有機EL素子を用いた各種装置を提供するものである。 The present invention has been made in order to solve the above problems, and provides an organic EL device having improved durability characteristics and excellent light emission balance, and various devices using the organic EL device.
 本発明の第一は、少なくとも、陽極と、第一発光層と、中間層と、第二発光層と、陰極とをこの順に備え、前記中間層は、前記第一発光層と前記第二発光層に隣接する有機EL素子であって、
 前記第一発光層は、第一ホストと第一ドーパントとを含有し、
 前記第二発光層は、第二ホストと第二ドーパントとを含有し、
 前記中間層は、芳香族炭化水素化合物を含有し、
 前記第一ホストと前記第一ドーパントとの間で、下記(a)の関係が成り立ち、
 前記第二ホストと前記第二ドーパントとの間で、下記(b)の関係が成り立ち、
 前記中間層材料と前記第一ホストとの間で、下記(c)の関係が成り立つことを特徴とする。
(a)LUMO(H1)>LUMO(D1)
(b)LUMO(H2)>LUMO(D2)
(c)HOMO(H1)≧HOMO(IL)
〔上記(a)乃至(c)において、LUMO(H1)、LUMO(D1)、LUMO(H2)、LUMO(D2)は、それぞれ、第一ホスト、第一ドーパント、第二ホスト、第二ドーパントのそれぞれのLUMOのエネルギー準位を表し、HOMO(H1)、HOMO(IL)は、それぞれ、第一ホスト、中間層材料のHOMOのエネルギー準位を表す。〕本発明の第二は、複数の画素を有する表示装置であって、前記画素は、上記本発明の有機EL素子と、前記有機EL素子に接続されている能動素子とを有することを特徴とする。
The first of the present invention comprises at least an anode, a first light-emitting layer, an intermediate layer, a second light-emitting layer, and a cathode in this order, wherein the intermediate layer has the first light-emitting layer and the second light-emitting layer. An organic EL element adjacent to the layer,
The first light-emitting layer contains a first host and a first dopant,
The second light-emitting layer contains a second host and a second dopant,
The intermediate layer contains an aromatic hydrocarbon compound,
The following relationship (a) holds between the first host and the first dopant,
The following relationship (b) holds between the second host and the second dopant,
The following relationship (c) is established between the intermediate layer material and the first host.
(A) LUMO (H1)> LUMO (D1)
(B) LUMO (H2)> LUMO (D2)
(C) HOMO (H1) ≧ HOMO (IL)
[In the above (a) to (c), LUMO (H1), LUMO (D1), LUMO (H2), and LUMO (D2) are the first host, the first dopant, the second host, and the second dopant, respectively. HOMO (H1) and HOMO (IL) represent the energy levels of the HOMO of the first host and the intermediate layer material, respectively. A second aspect of the present invention is a display device having a plurality of pixels, wherein the pixels have the organic EL element of the present invention and an active element connected to the organic EL element. I do.
 本発明の第三は、フレキシブル基板と、前記フレキシブル基板の上に配置されている表示部とを有する折り曲げ可能な表示装置であって、前記表示部は、上記本発明の有機EL素子と、前記有機EL素子に接続されている能動素子とを有することを特徴とする。 A third aspect of the present invention is a foldable display device having a flexible substrate and a display unit disposed on the flexible substrate, wherein the display unit is the organic EL element of the present invention, And an active element connected to the organic EL element.
 本発明の第四は、複数のレンズを有する光学部と、前記光学部を通過した光を受光する撮像素子と、画像を表示する表示部と、を有する撮像装置であって、前記表示部は、前記撮像素子が撮像した画像を表示する表示部であり、前記表示部は上記本発明の有機EL素子を有することを特徴とする。 A fourth aspect of the present invention is an imaging device including an optical unit having a plurality of lenses, an imaging element that receives light passing through the optical unit, and a display unit that displays an image, wherein the display unit is A display unit that displays an image captured by the imaging element, wherein the display unit includes the organic EL element of the present invention.
 本発明の第五は、表示部と、通信部とを有する通信機器であって、前記表示部は、上記本発明の有機EL素子を有することを特徴とする。 第 A fifth aspect of the present invention is a communication device including a display unit and a communication unit, wherein the display unit includes the organic EL element of the present invention.
 本発明の第六は、光源と、光拡散部と、を有する照明装置であって、前記光源は、上記本発明の有機EL素子を有することを特徴とする。 第 A sixth aspect of the present invention is a lighting device including a light source and a light diffusing unit, wherein the light source includes the organic EL element of the present invention.
 本発明の第七は、光源を有する照明装置であって、前記光源の光出射側に光学フィルムを有し、前記光源が上記本発明の有機EL素子を有することを特徴とする。 第 A seventh aspect of the present invention is a lighting device having a light source, wherein an optical film is provided on a light emitting side of the light source, and the light source has the organic EL element of the present invention.
 本発明の第八は、上記本発明の有機EL素子と、前記有機EL素子を保護する保護部材とを有することを特徴とする灯具である。 An eighth aspect of the present invention is a lamp including the organic EL element of the present invention and a protection member for protecting the organic EL element.
 本発明の第九は、機体と、前記機体に設けられた灯具とを有する移動体であって、前記灯具は、上記本発明の有機EL素子を有することを特徴とする。 A ninth aspect of the present invention is a moving body including a body and a lamp provided on the body, wherein the lamp includes the organic EL element of the present invention.
 本発明によれば、耐久特性が改善され、発光バランスの良い有機EL素子を提供することができる。よって、係る有機EL素子を用いて、求められる特性に優れた、表示装置、撮像装置、通信機器、照明装置、灯具、移動体が提供される。 According to the present invention, it is possible to provide an organic EL device having improved durability characteristics and good light emission balance. Therefore, a display device, an imaging device, a communication device, a lighting device, a lamp, and a moving object which are excellent in required characteristics are provided by using the organic EL element.
図1は本発明の有機EL素子における実施形態の構成を模式的に示す断面模式図である。FIG. 1 is a schematic sectional view schematically showing the configuration of an embodiment of the organic EL device of the present invention. 図1は本発明の有機EL素子における実施形態の構成を模式的に示す断面模式図である。FIG. 1 is a schematic sectional view schematically showing the configuration of an embodiment of the organic EL device of the present invention. 図1は本発明の有機EL素子における実施形態の構成を模式的に示す断面模式図である。FIG. 1 is a schematic sectional view schematically showing the configuration of an embodiment of the organic EL device of the present invention. 図2は本発明の有機EL素子を構成する各層のエネルギー準位を模式的に表したエネルギーダイアグラムである。FIG. 2 is an energy diagram schematically showing the energy level of each layer constituting the organic EL device of the present invention. 図3は本発明の有機EL素子を用いた表示装置の一例の概略断面図である。FIG. 3 is a schematic cross-sectional view of an example of a display device using the organic EL element of the present invention. 図4は本発明の有機EL素子を用いた表示装置の他の例の構成を模式的に示す分解斜視図である。FIG. 4 is an exploded perspective view schematically showing the configuration of another example of the display device using the organic EL element of the present invention. 図5は本発明の有機EL素子を用いた撮像装置の一例を表す背面模式図である。FIG. 5 is a schematic rear view illustrating an example of an imaging device using the organic EL element of the present invention. 図6は本発明の有機EL素子を用いた携帯通信機器の一例を模式的に表す斜視図である。FIG. 6 is a perspective view schematically illustrating an example of a portable communication device using the organic EL element of the present invention. 図7は本発明の有機EL素子を用いた表示装置の他の例を表す正面模式図である。FIG. 7 is a schematic front view showing another example of the display device using the organic EL element of the present invention. 図7は本発明の有機EL素子を用いた表示装置の他の例を表す正面模式図である。FIG. 7 is a schematic front view showing another example of the display device using the organic EL element of the present invention. 図8は本発明の有機EL素子を用いた照明装置の一例の構成を表す分解斜視図である。FIG. 8 is an exploded perspective view illustrating a configuration of an example of a lighting device using the organic EL element of the present invention. 図9は本発明の有機EL素子を灯具に用いた自動車の一例を表す模式図である。FIG. 9 is a schematic view illustrating an example of an automobile using the organic EL element of the present invention for a lamp.
 本発明の有機EL(エレクトロルミネッセンス)素子は、少なくとも、陽極と、第一発光層と、中間層と、第二発光層と、陰極とをこの順に備え、中間層は、第一発光層と第二発光層の間に配置されている。そして、陽極側の第一発光層は、第一ホストと第一ドーパントとを含有し、陰極側の第二発光層は、第二ホストと第二ドーパントとを有し、中間層は、構成材料として(以下、「中間層材料」と記す)芳香族炭化水素化合物を含有している。 The organic EL (electroluminescence) element of the present invention includes at least an anode, a first light-emitting layer, an intermediate layer, a second light-emitting layer, and a cathode in this order. It is arranged between the two light emitting layers. The first light-emitting layer on the anode side contains a first host and a first dopant, the second light-emitting layer on the cathode side has a second host and a second dopant, and the intermediate layer is a constituent material. (Hereinafter, referred to as “intermediate layer material”).
 ここで、それぞれの発光層において、ホストのLUMO(最低空軌道)のエネルギー準位(以下、「LUMO準位」と記す)が、ドーパントのLUMOのエネルギー準位よりも大きい(真空準位に近い)。さらに、中間層材料のHOMO(最高被占軌道)のエネルギー準位(以下、「HOMO準位」と記す)が、第一ホスト材料のHOMO準位よりも小さい(真空準位から遠い)ことに特徴を有する。以下、図1を用いて、本発明をより詳細に説明する。 Here, in each light-emitting layer, the energy level of the LUMO (lowest unoccupied orbit) of the host (hereinafter, referred to as “LUMO level”) is larger than the energy level of the LUMO of the dopant (close to the vacuum level). ). Further, the energy level of the HOMO (highest occupied orbit) of the intermediate layer material (hereinafter, referred to as “HOMO level”) is smaller (farther from the vacuum level) than the HOMO level of the first host material. Has features. Hereinafter, the present invention will be described in more detail with reference to FIG.
 図1は、本発明の有機EL素子の実施形態の構成を模式的に示す図であり、積層方向における断面図である。 FIG. 1 is a diagram schematically showing the configuration of the embodiment of the organic EL device of the present invention, and is a cross-sectional view in the laminating direction.
 図1Aに示される有機EL素子は、基板1上に、陽極2、正孔輸送層3、第一発光層4a、中間層5、第二発光層4b、第三発光層4c、電子輸送層6、陰極7がこの順に積層されている。前記第一発光層4aと第二発光層4bと第三発光層4cは、異なる発光色のドーパントをそれぞれ含有する。 In the organic EL device shown in FIG. 1A, an anode 2, a hole transport layer 3, a first light emitting layer 4a, an intermediate layer 5, a second light emitting layer 4b, a third light emitting layer 4c, and an electron transport layer 6 are formed on a substrate 1. And the cathode 7 are stacked in this order. The first light emitting layer 4a, the second light emitting layer 4b, and the third light emitting layer 4c respectively contain dopants of different emission colors.
 図1Bに示される有機EL素子は、基板1上に、陽極2、正孔輸送層3、第三発光層4c、第一発光層4a、中間層5、第二発光層4b、電子輸送層6、陰極7がこの順に積層されている。前記第一発光層4aと第二発光層4bと第三発光層4cは、異なる発光色のドーパントをそれぞれ含有する。 The organic EL device shown in FIG. 1B includes an anode 2, a hole transport layer 3, a third light emitting layer 4c, a first light emitting layer 4a, an intermediate layer 5, a second light emitting layer 4b, and an electron transport layer 6 on a substrate 1. And the cathode 7 are stacked in this order. The first light emitting layer 4a, the second light emitting layer 4b, and the third light emitting layer 4c respectively contain dopants of different emission colors.
 図1Cに示される有機EL素子は、基板1上に、陽極2、正孔輸送層3、第一発光層4a、中間層5、第二発光層4b、電子輸送層6、陰極7がこの順に積層されている。前記第一発光層4aには異なる発光色のドーパントが2種類含まれ、第二発光層4bは、第一発光層4aに含まれるドーパントとは異なる発光色のドーパントを含有する。 1C, an anode 2, a hole transport layer 3, a first light emitting layer 4a, an intermediate layer 5, a second light emitting layer 4b, an electron transport layer 6, and a cathode 7 are formed on a substrate 1 in this order. It is laminated. The first light emitting layer 4a contains two kinds of dopants of different emission colors, and the second light emitting layer 4b contains a dopant of a different emission color from the dopant contained in the first light emitting layer 4a.
 図1A乃至図1Cに示される発光層4a,4b,4cはいずれも蛍光発光層である。発光層4a,4b,4cはそれぞれ何色を発する発光層であってもよい。例えば、全て同じ色を発する発光であってもよいし、それぞれ異なる色を発光してもよい。また、発光層全体として白色を発するものであってよい。それぞれ異なる色を発光する場合は、赤、緑、青の発光層により、白色を発する構成であってよい。 The light emitting layers 4a, 4b, 4c shown in FIGS. 1A to 1C are all fluorescent light emitting layers. The light emitting layers 4a, 4b, 4c may be light emitting layers emitting any colors. For example, light emission may be the same color, or different colors may be emitted. Further, the light emitting layer may emit white light as a whole. In the case of emitting light of different colors, white light may be emitted from the red, green, and blue light emitting layers.
 尚、本発明において、発光層とは、陽極2及び陰極7間に設けられる有機化合物層のうち発光機能を有する層をいう。また発光層に含まれるホストは、各発光層に含まれる材料のうち主成分となる材料をいう。より具体的には、ホストとは発光層に含まれる材料のうち発光層内の含有率が50質量%を超える材料をいう。一方、ドーパントとは、発光層に含まれる材料のうち、主成分とはならない材料のことである。より具体的には、ドーパントは、発光層に含まれる材料のうち、発光層内の含有率が50質量%未満である材料をいう。発光層中のドーパントの濃度は、好ましくは0.1質量%以上20質量%以下であり、さらには、濃度消光を抑制するために10質量%以下であることが望ましい。 In the present invention, the light emitting layer means a layer having a light emitting function among organic compound layers provided between the anode 2 and the cathode 7. The host included in the light-emitting layer refers to a material which is a main component among materials included in each light-emitting layer. More specifically, the host refers to a material included in the light emitting layer and having a content of more than 50% by mass in the light emitting layer. On the other hand, the dopant is a material that is not a main component among the materials included in the light emitting layer. More specifically, the dopant refers to a material having a content of less than 50% by mass in the light emitting layer among the materials included in the light emitting layer. The concentration of the dopant in the light emitting layer is preferably 0.1% by mass or more and 20% by mass or less, and more preferably 10% by mass or less in order to suppress concentration quenching.
 さらに、図1の各素子において、陽極2と正孔輸送層3との間に正孔注入層を、正孔輸送層3と発光層との間に電子ブロック層を備えていてもよい。また、発光層と電子輸送層6との間に正孔ブロック層を、電子輸送層6と陰極7との間に電子注入層を備えていてもよい。これら正孔注入層、電子ブロック層、正孔ブロック層、電子注入層は本発明において必要に応じて適宜用いられる。 In addition, in each of the devices shown in FIG. 1, a hole injection layer may be provided between the anode 2 and the hole transport layer 3, and an electron blocking layer may be provided between the hole transport layer 3 and the light emitting layer. Further, a hole blocking layer may be provided between the light emitting layer and the electron transport layer 6, and an electron injection layer may be provided between the electron transport layer 6 and the cathode 7. These hole injection layer, electron block layer, hole block layer, and electron injection layer are appropriately used in the present invention as needed.
 図2は、本発明の有機EL素子を構成する発光層周辺のエネルギー準位を模式的に表したエネルギーダイアグラムを示す図である。 FIG. 2 is an energy diagram schematically showing the energy levels around the light emitting layer constituting the organic EL device of the present invention.
 図2に示されるように、本発明において、第一発光層4aに含まれる第一ホストと第一ドーパントとの間で下記(a)の関係が成り立つ。
(a)LUMO(H1)>LUMO(D1)
As shown in FIG. 2, in the present invention, the following relationship (a) is established between the first host and the first dopant contained in the first light emitting layer 4a.
(A) LUMO (H1)> LUMO (D1)
 上記(a)において、LUMO(H1)、LUMO(D1)はそれぞれ、第一ホスト、第一ドーパントのLUMO準位を表す。 に お い て In (a) above, LUMO (H1) and LUMO (D1) represent the LUMO levels of the first host and the first dopant, respectively.
 一方、第二発光層4bに含まれる第二ホストと第二ドーパントとの間で下記(b)の関係が成り立つ。
(b)LUMO(H2)>LUMO(D2)
On the other hand, the following relationship (b) is established between the second host and the second dopant contained in the second light emitting layer 4b.
(B) LUMO (H2)> LUMO (D2)
 上記(b)において、LUMO(H2)、LUMO(D2)はそれぞれ、第二ホスト、第二ドーパントのLUMO準位を表す。 に お い て In (b) above, LUMO (H2) and LUMO (D2) represent the LUMO levels of the second host and the second dopant, respectively.
 さらに、中間層5を構成する中間層材料と、第一発光層4aに含まれる第一ホストとの間で下記(c)の関係が成り立つ。
(c)HOMO(H1)≧HOMO(IL)
Further, the following relationship (c) is established between the intermediate layer material forming the intermediate layer 5 and the first host included in the first light emitting layer 4a.
(C) HOMO (H1) ≧ HOMO (IL)
 上記(c)において、HOMO(H1)、HOMO(IL)はそれぞれ第一ホスト、中間層材料のHOMO準位を表す。 に お い て In (c) above, HOMO (H1) and HOMO (IL) represent the HOMO levels of the first host and the intermediate layer material, respectively.
 尚、HOMO準位及びLUMO準位は真空準位を基準とし、通常の分子の場合、負の値を取る。よって、HOMO準位及びLUMO準位を各々比較する際に、値の小さいもの(絶対値の大きいもの)は真空準位から遠く、値の大きいもの(絶対値の小さいもの)は真空準位に近くなる。 H Note that the HOMO level and the LUMO level are based on the vacuum level, and take negative values in the case of ordinary molecules. Therefore, when comparing the HOMO level and the LUMO level, those having a small value (large absolute value) are far from the vacuum level, and those having a large value (small absolute value) are the vacuum level. Get closer.
 本発明においては、HOMO準位及びLUMO準位は、分子軌道計算法より求めた数値を用いる。尚、分子軌道計算法の計算手法は、現在広く用いられている密度汎関数法(Density Functional Theory,DFT)を用いた。汎関数はB3LYP、基底関数は6-31Gを用いた。尚、分子軌道計算法は、現在広く用いられているGaussian09(Gaussian09,RevisionC.01,M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani,V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,T.Vreven,J.A.Montgomery,Jr.,J.E.Peralta,F.Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N.Kudin,V.N.Staroverov,T.Keith,R.Kobayashi,J.Normand,K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M.Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A.Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A.D.Daniels,O.Farkas,J.B.Foresman,J.V.Ortiz,J.Cioslowski,and D.J.Fox,Gaussian,Inc.,Wallingford CT,2010.)により実施した。 In the present invention, the HOMO level and the LUMO level use numerical values obtained by a molecular orbital calculation method. The molecular orbital calculation method used was a density functional theory (DFT), which is widely used at present. The functional was B3LYP and the basis function was 6-31G * . In addition, the molecular orbital calculation method uses Gaussian 09 (Gaussian 09, Revision C.01, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA) which is currently widely used. Robb, JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA A. Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, A. F. Izmaylov. J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, JA Montgomery, Jr., JE Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, KN Kudin, V. N. Starovov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, JC Burant, SS Iyengar, J. Tomasi, M. Regis, N. Regis. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomberts, R. E. Stratmann, O. Yazyev, A. J. Austi , R. Cami, C. Pomerli, JW Ochterski, RL Martin, K. Morokuma, VG Zakrzewski, GA Voth, P. Salvador, J. J. Dannenberg, S. Daprich. , AD Daniels, O. Farkas, JB Foresman, JV Ortiz, J. Cioslowski, and DJ J. Fox, Gaussian, Inc., Wallingford CT, 2010.).
 後述する実施例においては、計算値の確からしさを検証するため、分子軌道計算法より求めた計算値と、実測値との比較を行った。 In the examples described below, in order to verify the accuracy of the calculated values, the calculated values obtained by the molecular orbital calculation method were compared with the actually measured values.
 本発明の有機EL素子は、図1A乃至図1C及び図2に示されるように、少なくとも二つの蛍光発光層4a、4bを有し、該発光層4a,4b間に中間層5が設けられた素子構成を有している。そして、以下のような特徴を有するため、耐久特性と発光バランスに優れる有機EL素子となる。
(1)中間層5を挟む2つの発光層4a,4bが電子トラップ性である。
(2)中間層材料のHOMO準位が、陽極2側の第一ホストのHOMO準位以下である。(3)中間層材料が炭化水素である。
(4)中間層材料の最低励起一重項(S)のエネルギー準位(以下、「S準位」と記す)が高い。
As shown in FIGS. 1A to 1C and 2, the organic EL device of the present invention has at least two fluorescent light emitting layers 4a and 4b, and an intermediate layer 5 is provided between the light emitting layers 4a and 4b. It has an element configuration. And since it has the following characteristics, it becomes an organic EL element which is excellent in durability characteristics and light emission balance.
(1) The two light emitting layers 4a and 4b sandwiching the intermediate layer 5 have an electron trapping property.
(2) The HOMO level of the intermediate layer material is equal to or lower than the HOMO level of the first host on the anode 2 side. (3) The intermediate layer material is a hydrocarbon.
(4) The energy level of the lowest excited singlet (S 1 ) of the intermediate layer material (hereinafter, referred to as “S 1 level”) is high.
 以下、これらの特徴について説明する。 特 徴 These features are described below.
 (1)中間層5を挟む2つの発光層4a,4bが電子トラップ性である。
 発光層中の電荷(正孔、電子)は、ホストとドーパントの準位間を行き来しながら、発光層内を移動する。言い換えれば、発光層中の電荷は、ホスト或いはドーパントにトラップされ、又はホスト或いはドーパントにデトラップすることを繰り返しながら、発光層内を移動する。この時に、ホストとドーパント間のHOMO準位或いはLUMO準位間の差が大きいほど電荷の移動度が低下する。
(1) The two light emitting layers 4a and 4b sandwiching the intermediate layer 5 have an electron trapping property.
Charges (holes, electrons) in the light-emitting layer move in the light-emitting layer while moving back and forth between the levels of the host and the dopant. In other words, the charge in the light emitting layer moves in the light emitting layer while being repeatedly trapped by the host or the dopant or detrapped by the host or the dopant. At this time, the larger the difference between the HOMO level or the LUMO level between the host and the dopant, the lower the charge mobility.
 より具体的には、ホストのLUMO準位よりもドーパントのLUMO準位が小さい場合、発光層に電子トラップ性が生じ、ドーパントのLUMO準位が小さいほど、電子トラップ性が向上する。また、ホストのHOMO準位よりも、ドーパントのHOMO準位が大きい場合、発光層に正孔トラップ性が生じる。 More specifically, when the LUMO level of the dopant is smaller than the LUMO level of the host, an electron trapping property is generated in the light emitting layer, and the smaller the LUMO level of the dopant, the better the electron trapping property. When the HOMO level of the dopant is higher than the HOMO level of the host, hole-trapping properties are generated in the light-emitting layer.
 ここで、本発明においては、上記(a)及び(b)の関係が成り立つ。即ち、図1において、中間層5を挟む2つの発光層4a、4bは電子トラップ性の発光層となり、各発光層4a、4bの電子移動度が低下する。こうすることで、再結合領域は電子輸送層6側に偏在することになる。 Here, in the present invention, the above-mentioned relations (a) and (b) hold. That is, in FIG. 1, the two light emitting layers 4a and 4b sandwiching the intermediate layer 5 become light emitting layers having an electron trapping property, and the electron mobility of each light emitting layer 4a and 4b is reduced. By doing so, the recombination region is localized on the electron transport layer 6 side.
 一般に、正孔輸送層材料として用いられるアミン化合物は、非共有電子対(ローンペア)を有するため、電子を放出したラジカルカチオン状態になることに対しては安定であるが、電子を受容したラジカルアニオン状態においては不安定な化合物である。即ち、陰極7から注入された電子が正孔輸送層3に到達すると、電子と正孔輸送層3を形成するアミン化合物とが相互作用し材料劣化を起こすため、発光効率や耐久特性の低下が起こると考えられる。本発明において、中間層5を挟む2つの発光層4a,4bは電子トラップ性であるため、再結合領域が電子輸送層6側に偏在している。結果として、電子による正孔輸送層3の劣化を防ぐことができ、耐久特性に優れる有機EL素子となる。 In general, an amine compound used as a material for a hole transport layer has an unshared electron pair (lawn pair), and thus is stable against being in a radical cation state that has released an electron, but is a radical that has received an electron. It is a compound that is unstable in the anionic state. That is, when the electrons injected from the cathode 7 reach the hole transport layer 3, the electrons and the amine compound forming the hole transport layer 3 interact with each other to cause deterioration of the material. It is thought to happen. In the present invention, since the two light emitting layers 4a and 4b sandwiching the intermediate layer 5 have an electron trapping property, the recombination region is unevenly distributed on the electron transport layer 6 side. As a result, deterioration of the hole transport layer 3 due to electrons can be prevented, and an organic EL device having excellent durability characteristics can be obtained.
 (2)中間層材料のHOMO準位が、陽極2側の第一ホストのHOMO準位以下である。
 複数の発光層が積層した有機EL素子において、上記(1)のように電子輸送層6側に再結合領域を偏在させた場合、電子輸送層6側の発光層4b、4cのみが発光し、白発光を得ることが難しくなることが考えられる。
(2) The HOMO level of the intermediate layer material is equal to or lower than the HOMO level of the first host on the anode 2 side.
In the organic EL device in which a plurality of light emitting layers are stacked, when the recombination region is unevenly distributed on the electron transport layer 6 side as in the above (1), only the light emitting layers 4b and 4c on the electron transport layer 6 side emit light, It is considered that it is difficult to obtain white light emission.
 ここで、本発明において、上記(c)の関係が必要であることを見出した。これにより、第一発光層4aと中間層5に間に正孔障壁が発生するため、第一発光層4aに存在する正孔を増加することができ、再結合領域を正孔輸送層3側にも拡大させることができる。結果として、積層した複数の発光層4a、4bそれぞれを発光させ、白発光を得ることができる。 Here, it has been found that the relationship (c) is required in the present invention. As a result, a hole barrier is generated between the first light emitting layer 4a and the intermediate layer 5, so that the number of holes existing in the first light emitting layer 4a can be increased, and the recombination region is formed on the hole transport layer 3 side. Can also be expanded. As a result, it is possible to cause each of the stacked light emitting layers 4a and 4b to emit light, thereby obtaining white light emission.
 また、第一発光層4aに到達した電子は、第一発光層4aの電子トラップ性により、トラップされた状態にある。そして、第一発光層4aと中間層5との界面に存在する正孔と速やかに再結合を起こすため、正孔輸送層3に到達する電子を制限することもできる。結果として、上述したような電子による正孔輸送層3の劣化を促進するようなことはない。 (4) The electrons that have reached the first light emitting layer 4a are trapped by the electron trapping property of the first light emitting layer 4a. Then, recombination with holes existing at the interface between the first light emitting layer 4a and the intermediate layer 5 occurs quickly, so that electrons reaching the hole transport layer 3 can be restricted. As a result, the deterioration of the hole transport layer 3 due to electrons as described above is not promoted.
 上記(c)の関係を満たさない中間層5の場合、つまり、中間層5のHOMO準位が、第一ホストのHOMO準位よりも大きい場合には、正孔障壁がないために正孔輸送の制限が難しくなり、中間層5や第二発光層4bに再結合領域が限定される。これにより、中間層5や第二発光層4bに過剰な励起子が閉じ込められる状態になり、クエンチや材料劣化を招く恐れがある。 In the case of the intermediate layer 5 that does not satisfy the relationship (c) above, that is, when the HOMO level of the intermediate layer 5 is higher than the HOMO level of the first host, there is no hole barrier, so that hole transport is not performed. Is difficult to restrict, and the recombination region is limited to the intermediate layer 5 and the second light emitting layer 4b. As a result, an excessive exciton is confined in the intermediate layer 5 and the second light emitting layer 4b, which may cause quench and material deterioration.
 (3)中間層材料が炭化水素である。
 本発明者等は、中間層5を構成する中間層材料は、炭化水素が好ましいことを見出した。本発明において中間層5は、第一発光層4aと第二発光層4bとの電荷の受け渡しやキャリアバランスの調整を担う。特に第二発光層4bへ流れ込む正孔を調節するため、第一発光層4aと中間層5との界面に正孔を蓄積させることが求められる。即ち、過剰なラジカルカチオン発生に耐え得る分子構造であることが必要であり、中間層材料としては、化学的安定性の高い炭化水素が好ましい。一般に、窒素原子や酸素原子、硫黄原子などのヘテロ原子を有する化合物は、非共有電子対を有するため、電子の供与と受容、即ち酸化還元に対して活性である。このため、電子の授受を通して生じる不対電子が不均化反応を起こすなどの相互作用による材料劣化を招く可能性があるため、化学的安定性は低い。一方、炭化水素は非共有電子対を有しておらず、化学的安定性が高いため、中間層材料として好ましい。
(3) The intermediate layer material is a hydrocarbon.
The present inventors have found that the intermediate layer material constituting the intermediate layer 5 is preferably a hydrocarbon. In the present invention, the intermediate layer 5 is responsible for transferring charges between the first light emitting layer 4a and the second light emitting layer 4b and adjusting the carrier balance. In particular, in order to control holes flowing into the second light emitting layer 4b, it is required that holes be accumulated at the interface between the first light emitting layer 4a and the intermediate layer 5. That is, it is necessary that the intermediate layer has a molecular structure that can withstand excessive generation of radical cations, and a hydrocarbon having high chemical stability is preferable as the intermediate layer material. In general, a compound having a hetero atom such as a nitrogen atom, an oxygen atom, or a sulfur atom has an unshared electron pair and is therefore active in donating and accepting electrons, that is, redox. For this reason, chemical stability is low because unpaired electrons generated through the transfer of electrons may cause material degradation due to interaction such as causing a disproportionation reaction. On the other hand, hydrocarbons do not have lone pairs of electrons and have high chemical stability, and thus are preferred as intermediate layer materials.
 (4)中間層材料のS準位が高い。
 中間層材料は、キャリアバランスの調整だけでなく、第一発光層4aと第二発光層4b間のエネルギー移動を抑制する役割を担う。本発明の有機EL素子は、蛍光発光ドーパントによる発光素子であるため、中間層5としては、S準位が十分に高い化合物であることが好ましい。具体的には、S準位は2.58eV以上であることが好ましい。青色領域である、430nm以上480nm以下の波長のエネルギー移動を抑制するためには、2.58eV以上のS準位であることが好ましく、より好ましくは2.88eV以上、望ましくは3.00eV以上である。S準位の高い材料としては、芳香族炭化水素化合物である。具体的には、ベンゼン、ナフタレン、フルオレン、ベンゾフルオレン、フェナントレン、アントラセン、クリセン、トリフェニレン、ピレン、フルオランテン、ベンゾフルオランテンから選ばれる一種以上の芳香族炭化水素が結合することで分子構造が構成される化合物である。なお、ここでいうS準位は、上述した分子軌道計算により算出した数値である。
(4) S 1 level of the intermediate layer material is high.
The intermediate layer material has a role of not only adjusting the carrier balance but also suppressing the energy transfer between the first light emitting layer 4a and the second light emitting layer 4b. Since the organic EL device of the present invention is a light-emitting device using a fluorescent light-emitting dopant, the intermediate layer 5 is preferably a compound having a sufficiently high S 1 level. Specifically, the S 1 level is preferably 2.58 eV or more. In order to suppress energy transfer at a wavelength of 430 nm to 480 nm, which is a blue region, the S 1 level is preferably 2.58 eV or more, more preferably 2.88 eV or more, and desirably 3.00 eV or more. It is. A material having a high S 1 level is an aromatic hydrocarbon compound. Specifically, the molecular structure is formed by bonding one or more aromatic hydrocarbons selected from benzene, naphthalene, fluorene, benzofluorene, phenanthrene, anthracene, chrysene, triphenylene, pyrene, fluoranthene, and benzofluoranthene. Compound. Incidentally, S 1 level here is a numerical value calculated by molecular orbital calculations described above.
 中間層5が、緑色領域である、500nm以上570nm以下の波長のエネルギー移動を抑制する場合には、S準位は、2.18eV以上であることが好ましく、より好ましくは2.48eV以上、望ましくは2.50eV以上である。また、赤色領域である、580nm以上680nm以下の波長のエネルギー移動を抑制する場合には、S準位は、2.14eV以上であることが好ましく、より好ましくは1.82eV以上、望ましくは1.80eV以上である。 When the intermediate layer 5 suppresses energy transfer of a wavelength in the green region, that is, 500 nm or more and 570 nm or less, the S 1 level is preferably 2.18 eV or more, more preferably 2.48 eV or more, Desirably, it is 2.50 eV or more. When suppressing energy transfer at a wavelength of 580 nm to 680 nm, which is a red region, the S 1 level is preferably 2.14 eV or more, more preferably 1.82 eV or more, and preferably 1 or more. 80 eV or more.
 さらに、ベンゼン環が直線状に縮環したアセン化合物は、中央ベンゼン環に電子密度の高い置換位置があるため、酸化されやすく、芳香族炭化水素の中では化学的安定性が低い。よって、アセン化合物であるアントラセンを除いた、ベンゼン、ナフタレン、ベンゾフルオレン、フルオレン、フェナントレン、クリセン、トリフェニレン、ピレン、フルオランテン、ベンゾフルオランテンが特に好ましい。 Furthermore, an acene compound in which a benzene ring is linearly condensed is easily oxidized because of a substitution position having a high electron density in the central benzene ring, and has low chemical stability among aromatic hydrocarbons. Accordingly, benzene, naphthalene, benzofluorene, fluorene, phenanthrene, chrysene, triphenylene, pyrene, fluoranthene, and benzofluoranthene, excluding anthracene, which is an acene compound, are particularly preferable.
 さらに、ベンゼン及びナフタレンのみから構成される場合、バンドギャップが大きくなり、第一発光層4aと第二発光層4bとの間に、電子及び正孔の注入障壁となる不要に過剰な障壁が生まれてしまう。これにより、キャリアバランスの調整がしにくくなることや、電荷溜りによる局所的な電界集中による材料劣化を招く恐れがある。よって、中間層材料のS準位は、3.3eV以下であることが好ましく、より好ましくは3.2eV以下である。具体的には、中間層材料は、フルオレン、ベンゾフルオレン、フェナントレン、クリセン、トリフェニレン、ピレン、フルオランテン、ベンゾフルオランテンの少なくともいずれかを分子構造の一部に有している化合物が望ましい。また、過剰な正孔障壁を生み出さない観点から、第一発光層のホスト材料とのHOMO準位の差異は、分子軌道計算で、0.5eV以内が好ましい。さらに、望ましくは0.3eV以内が好ましい。 Further, in the case of being composed only of benzene and naphthalene, the band gap becomes large, and an unnecessary excessive barrier is formed between the first light emitting layer 4a and the second light emitting layer 4b as an electron and hole injection barrier. Would. This may make it difficult to adjust the carrier balance and may cause material degradation due to local electric field concentration due to charge accumulation. Therefore, the S 1 level of the intermediate layer material is preferably 3.3 eV or less, more preferably 3.2 eV or less. Specifically, as the intermediate layer material, a compound having at least one of fluorene, benzofluorene, phenanthrene, chrysene, triphenylene, pyrene, fluoranthene, and benzofluoranthene as a part of its molecular structure is desirable. In addition, from the viewpoint of not generating an excessive hole barrier, the difference between the HOMO level of the first light emitting layer and the host material is preferably 0.5 eV or less in molecular orbital calculation. More preferably, it is within 0.3 eV.
 複数の発光層を積層した有機EL素子の場合、単層の発光層を備えた単色の有機EL素子とは異なり、複数の発光層間の関係についても考慮しないと、良好な白色を実現することはできない。特に、上記の特徴(1)乃至(4)を満たす時、つまり、中間層5を挟む2つの発光層4a,4bが電子トラップ性であり、且つ、中間層材料のHOMO準位が、陽極2側の第一ホストのHOMO準位以下であり、その中間層材料が炭化水素であり、S準位が高い場合、耐久特性と発光バランスに優れる有機EL素子を得ることができる。 In the case of an organic EL element in which a plurality of light-emitting layers are stacked, unlike a single-color organic EL element having a single-layer light-emitting layer, good white can be realized unless the relationship between the plurality of light-emitting layers is considered. Can not. In particular, when the above characteristics (1) to (4) are satisfied, that is, the two light emitting layers 4a and 4b sandwiching the intermediate layer 5 have an electron trapping property, and the HOMO level of the intermediate layer material is or less HOMO level of the first host side, the interlayer material is a hydrocarbon, if S 1 level is high, it is possible to obtain an organic EL device having excellent light emission balance and durability.
 さらに、以下のような条件を満たす素子構成となる場合、上記の特徴(1)乃至(4)の効果が高まるため、好ましい。
(5)第三発光層4cを有する場合、第三発光層4cも電子トラップ性であり、第三発光層4cを有さない場合、第三ドーパント(蛍光発光)は第一発光層4aに含まれ、第一ホストと電子トラップの関係にある。
(6)第一発光層4aが正孔トラップ性を有する。
(7)第二発光層4bの第二ドーパントのHOMO準位が、第二ホストのHOMO準位よりも小さい。
(8)各発光層4a,4b,4cの電子トラップ性が、正孔トラップ性よりも大きい。
(9)第二発光層4bが青発光層である。
(10)各ホスト材料が、炭化水素である。
(11)各ドーパントが、フルオランテン骨格を有する。
Further, it is preferable that the element configuration satisfy the following conditions because the effects of the above features (1) to (4) are enhanced.
(5) When the third light emitting layer 4c is provided, the third light emitting layer 4c also has an electron trapping property. When the third light emitting layer 4c is not provided, the third dopant (fluorescent light emission) is included in the first light emitting layer 4a. It is in a relationship between the first host and the electron trap.
(6) The first light emitting layer 4a has a hole trapping property.
(7) The HOMO level of the second dopant in the second light emitting layer 4b is smaller than the HOMO level of the second host.
(8) The electron trapping property of each of the light emitting layers 4a, 4b, 4c is larger than the hole trapping property.
(9) The second light emitting layer 4b is a blue light emitting layer.
(10) Each host material is a hydrocarbon.
(11) Each dopant has a fluoranthene skeleton.
 以下、これらについて説明する。 Hereinafter, these will be described.
 (5)第三発光層4cを有する場合、第三発光層4cも電子トラップ性であり、第三発光層4cを有さない場合、第三ドーパントは第一発光層4aに含まれ、第一ホストと電子トラップの関係にある。
 図1に示した発光層4a、4b、4cは、それぞれ少なくともホストとドーパントで構成されている。即ち、第一発光層4aには、第一ホストと第一ドーパントが含まれており、第二発光層4bには、第二ホストと第二ドーパントが含まれている。図1Aおよび図1Bに示すように、第三発光層4cを有する場合は、第三発光層4cに第三ホストと第三ドーパントが含まれている。図1Cに示すように、第三発光層4cを有さない場合には、第一発光層4aに第一ドーパントに加えて第三ドーパントが含まれている。
(5) When the third light-emitting layer 4c is provided, the third light-emitting layer 4c also has an electron trapping property. When the third light-emitting layer 4c is not provided, the third dopant is contained in the first light-emitting layer 4a. There is a relationship between the host and the electron trap.
The light emitting layers 4a, 4b, and 4c shown in FIG. 1 are each composed of at least a host and a dopant. That is, the first light emitting layer 4a contains a first host and a first dopant, and the second light emitting layer 4b contains a second host and a second dopant. As shown in FIGS. 1A and 1B, when the third light emitting layer 4c is provided, the third light emitting layer 4c contains a third host and a third dopant. As shown in FIG. 1C, when the third light emitting layer 4c is not provided, the first light emitting layer 4a contains the third dopant in addition to the first dopant.
 図1Aのように、第二発光層4bと陰極7との間に、第二発光層4bに隣接する第三発光層4cを備える場合や、図1Bのように、第一発光層4aと陽極2との間に、第一発光層4aに隣接する第三発光層4cを備える場合には、第三ホストと第三ドーパントとの間で下記(d)の関係が成り立つことが好ましい。
(d)LUMO(H3)>LUMO(D3)
1A, a third light emitting layer 4c adjacent to the second light emitting layer 4b is provided between the second light emitting layer 4b and the cathode 7, or as shown in FIG. When a third light emitting layer 4c adjacent to the first light emitting layer 4a is provided between the third host and the second dopant, it is preferable that the following relationship (d) be established between the third host and the third dopant.
(D) LUMO (H3)> LUMO (D3)
 上記(d)において、LUMO(H3)、LUMO(D3)はそれぞれ、第三ホスト、第三ドーパントのLUMO準位を表す。上記(d)の関係を有することで、第三発光層4cは電子トラップ性となる。 に お い て In (d) above, LUMO (H3) and LUMO (D3) represent the LUMO levels of the third host and the third dopant, respectively. By having the relationship (d), the third light emitting layer 4c has an electron trapping property.
 図1Aの場合、電子トラップ性発光層を電子輸送層6側にさらに設けることで、再結合領域が電子輸送層6側に偏在し、耐久特性が向上させることができる。また、図1Bのように、電子トラップ性発光層を正孔輸送層3側にさらに設けることで、正孔輸送層3に到達する電子を抑制することができ、耐久特性が向上させることができる。 In the case of FIG. 1A, by further providing the electron trapping light emitting layer on the electron transport layer 6 side, the recombination region is unevenly distributed on the electron transport layer 6 side, and the durability characteristics can be improved. Further, as shown in FIG. 1B, by further providing the electron-trapping light-emitting layer on the hole transport layer 3 side, electrons reaching the hole transport layer 3 can be suppressed, and the durability characteristics can be improved. .
 また、図1Cのように、第三発光層4cを有さない場合には、第一発光層4aがさらに第三ドーパントを有し、第一ホストと第三ドーパントとの間で下記(e)の関係が成り立つことが好ましい。
(e)LUMO(H1)>LUMO(D3)
In addition, as shown in FIG. 1C, when the third light emitting layer 4c is not provided, the first light emitting layer 4a further has a third dopant, and the following (e) between the first host and the third dopant. Is preferably established.
(E) LUMO (H1)> LUMO (D3)
 上記(e)において、LUMO(D3)は、第三ドーパントのLUMO準位を表す。上記(e)の関係を有することで、第一発光層4aの電子トラップ性を高めることができ、正孔輸送層3に到達する電子を抑制することができ、耐久特性が向上させることができる。 に お い て In (e) above, LUMO (D3) represents the LUMO level of the third dopant. By having the relationship (e), the electron trapping property of the first light emitting layer 4a can be enhanced, the electrons reaching the hole transport layer 3 can be suppressed, and the durability characteristics can be improved. .
 (6)第一発光層4aが正孔トラップ性を有する。
 さらに、第一発光層4aにおいて、第一ホストと第一ドーパントとの間で下記(f)の関係が成り立つことが好ましい。
(f)HOMO(H1)<HOMO(D1)
(6) The first light emitting layer 4a has a hole trapping property.
Furthermore, in the first light emitting layer 4a, it is preferable that the following relationship (f) be established between the first host and the first dopant.
(F) HOMO (H1) <HOMO (D1)
 上記(f)において、HOMO(H1)、HOMO(D1)はそれぞれ、第一ホスト、第一ドーパントのHOMO準位を表す。上記(f)の関係を有することにより、第一発光層4aが正孔トラップ性を有するため、中間層5の注入障壁だけで調整していた第二発光層4bへ流れ込む正孔量のバランスをより調節しやすくなる。これにより、再結合領域を正孔輸送層3側にも拡大させて、バランスの良い白発光を実現しやすくなる。即ち、第一発光層4aの正孔トラップ性と中間層5による正孔注入障壁により、第二発光層4bへ輸送する正孔量を調整することで白発光しやすいキャリアバランスを実現させることができる。 に お い て In (f) above, HOMO (H1) and HOMO (D1) represent the HOMO levels of the first host and the first dopant, respectively. By having the relationship (f), the first light emitting layer 4a has a hole trapping property, so that the balance of the amount of holes flowing into the second light emitting layer 4b, which has been adjusted only by the injection barrier of the intermediate layer 5, can be improved. It is easier to adjust. As a result, the recombination region is also extended to the hole transport layer 3 side, and it becomes easy to realize well-balanced white light emission. That is, by adjusting the amount of holes transported to the second light emitting layer 4b by the hole trapping property of the first light emitting layer 4a and the hole injection barrier by the intermediate layer 5, it is possible to realize a carrier balance that easily emits white light. it can.
 (7)第二発光層4bの第二ドーパントのHOMO準位が、第二ホストのHOMO準位よりも小さい。
 さらに、第二発光層4bにおいて、第二ホストと第二ドーパントとの間で下記(g)の関係が成り立つことが好ましい。
(g)HOMO(H2)>HOMO(D2)
(7) The HOMO level of the second dopant in the second light emitting layer 4b is smaller than the HOMO level of the second host.
Furthermore, in the second light emitting layer 4b, it is preferable that the following relationship (g) be established between the second host and the second dopant.
(G) HOMO (H2)> HOMO (D2)
 上記(g)において、HOMO(H2)、HOMO(D2)はそれぞれ、第二ホスト、第二ドーパントのHOMO準位を表す。上記(g)の関係を有することにより、第二発光層4bにおける正孔トラップ性を抑制することができる。その結果、再結合領域を電子輸送層6側に偏在させる効果を高めることができる。例えば、(g)の関係により、図1Aのように、電子輸送6側に第三発光層4cを有する積層構成の場合、第二発光層4bにおける正孔トラップ性が低いため、第三発光層4cへの正孔輸送を促進させる。よって、再結合領域を電子輸送層6側に偏在させる効果を高めることができる。また、(g)の関係にある時、第二発光層4bにおける電子トラップ性を相対的に向上させることができる。 に お い て In (g) above, HOMO (H2) and HOMO (D2) represent the HOMO levels of the second host and the second dopant, respectively. By having the relationship (g), the hole trapping property in the second light emitting layer 4b can be suppressed. As a result, the effect of distributing the recombination region to the electron transport layer 6 side can be enhanced. For example, according to the relationship (g), as shown in FIG. 1A, in the case of a laminated structure having the third light emitting layer 4c on the electron transporting 6 side, the hole trapping property of the second light emitting layer 4b is low, so that the third light emitting layer Enhances hole transport to 4c. Therefore, the effect of distributing the recombination region to the electron transport layer 6 side can be enhanced. When the relationship (g) is satisfied, the electron trapping property of the second light emitting layer 4b can be relatively improved.
 (8)各発光層4a,4b,4cの電子トラップ性が、正孔トラップ性よりも高い。
 また、正孔輸送層3の劣化を防ぐことのほかにも、電子トラップ性の発光層であることは耐久特性の改善に効果があることを説明する。
(8) The electron trapping property of each of the light emitting layers 4a, 4b, 4c is higher than the hole trapping property.
In addition to the fact that the hole transport layer 3 is prevented from being deteriorated, the fact that the light emitting layer having the electron trapping property is effective in improving the durability characteristics will be described.
 Science,283,1900(1999)には、発光層のホストであるトリス(8-キノリラト)アルミニウム(Alq3)の劣化の一因が、正孔通電によって生成したラジカルカチオンの不安定性であることが示唆されている。このような発光層におけるラジカルカチオン起因の劣化を抑えるためには、発光層における正孔密度を下げることで、ラジカルカチオンになる確率自体を下げることが好ましい。そして、そのためには、正孔トラップ性を低下させ、電子トラップ性を高め、発光層における電子密度を高くするとよい。 Science, 283, 1900 (1999) suggests that one of the causes of degradation of tris (8-quinolinolato) aluminum (Alq3), which is the host of the light-emitting layer, is the instability of radical cations generated by hole conduction. Have been. In order to suppress such deterioration due to radical cations in the light emitting layer, it is preferable to lower the hole density in the light emitting layer to lower the probability of becoming a radical cation. For that purpose, it is preferable to reduce the hole trapping property, increase the electron trapping property, and increase the electron density in the light emitting layer.
 具体的には図2の第一発光層4aを用いて説明すると、下記(h)の関係が好ましい。(h)LUMO(H1)-LUMO(D1)>HOMO(D1)-HOMO(H1) Specifically, using the first light emitting layer 4a of FIG. 2, the following relationship (h) is preferable. (H) LUMO (H1) -LUMO (D1)> HOMO (D1) -HOMO (H1)
 上記(h)の関係にあることで、第一発光層4aの正孔トラップ性を低下させ、電子トラップ性を向上させることができる。 (4) With the above relationship (h), the hole trapping property of the first light emitting layer 4a can be reduced, and the electron trapping property can be improved.
 さらに、上記(g)及び上記(h)の関係を満たした場合、上記(b)の関係と相俟って、第一発光層4aの正孔トラップ性をさらに低下させ、相対的に電子トラップ性を高めることができる。結果として、中間層5を挟む各発光層全体の電子密度を高めることで、再結合確率を増やし、結果的に正孔密度を低下させることができる。 Further, when the relationship (g) and the relationship (h) are satisfied, the hole trapping property of the first light emitting layer 4a is further reduced in combination with the relationship (b), and the electron trapping is relatively performed. Can be enhanced. As a result, by increasing the electron density of each light emitting layer as a whole sandwiching the intermediate layer 5, the recombination probability can be increased, and as a result, the hole density can be reduced.
 (9)第二発光層4bが青発光層である。
 図1Aの積層構成では、第一発光層4aに含まれる第一ドーパントは赤発光であることが好ましく、第二発光層4bに含まれる第二ドーパント及び第三発光層4cに含まれる第三ドーパントの一方が緑発光、他方が青発光であることが好ましい。バンドギャップの狭い赤発光ドーパントを第一発光層4aに含めることで、第一発光層4aは上述した正孔トラップ性を発現しやすく、また中間層5との正孔障壁も有しやすい。さらに、本発明では、再結合領域を電子輸送層6側に偏在させる。よって、バンドギャップが広い青発光ドーパント及び緑発光ドーパントにより生じる励起エネルギーが、正孔輸送層3側の赤発光ドーパントへとエネルギー移動可能な積層構成である方が、バランスの良い白発光と優れた耐久特性を実現しやすいからである。
(9) The second light emitting layer 4b is a blue light emitting layer.
1A, the first dopant contained in the first light emitting layer 4a preferably emits red light, and the second dopant contained in the second light emitting layer 4b and the third dopant contained in the third light emitting layer 4c It is preferable that one of them emits green light and the other emits blue light. By including a red light-emitting dopant having a narrow band gap in the first light-emitting layer 4a, the first light-emitting layer 4a can easily exhibit the above-described hole trapping property and also easily have a hole barrier with the intermediate layer 5. Further, in the present invention, the recombination region is localized on the electron transport layer 6 side. Therefore, the lamination structure in which the excitation energy generated by the blue light emitting dopant and the green light emitting dopant having a wide band gap can transfer energy to the red light emitting dopant on the hole transport layer 3 side has better white light emission with better balance. This is because it is easy to realize durability characteristics.
 特に、第二発光層4bが青発光層であることが好ましい。バンドギャップが広い青発光ドーパントを用いることで、上記(b)及び(g)の関係を満たしやすく、第二発光層4bの正孔トラップ性を低下させることができるからである。 It is particularly preferable that the second light emitting layer 4b is a blue light emitting layer. This is because by using a blue light emitting dopant having a wide band gap, it is easy to satisfy the above relationships (b) and (g), and the hole trapping property of the second light emitting layer 4b can be reduced.
 さらに、図1Bの積層構成では、第三発光層4cに含まれる第三ドーパントは赤発光、第一発光層4aに含まれる第一ドーパントは緑発光、第二発光層4bに含まれる第二ドーパントは青発光であることが好ましい。バンドギャップの狭い赤発光ドーパントを第三発光層4cに含めることで、第三発光層4cは電子トラップ性が高い発光層となり、正孔輸送層3に到達する電子を抑制することができ、耐久特性が向上するからである。さらに、本発明では、再結合領域を電子輸送層6側に偏在させる。よって、バンドギャップの広い青発光ドーパントにより生じる励起エネルギーが、正孔輸送層3側の赤発光ドーパント及び緑発光ドーパントへとエネルギー移動可能な積層構成である方が、バランスの良い白発光と優れた耐久特性を実現しやすいからである。 1B, the third dopant contained in the third light emitting layer 4c is red light emission, the first dopant contained in the first light emitting layer 4a is green light emission, and the second dopant contained in the second light emitting layer 4b. Preferably emits blue light. By including a red light-emitting dopant having a narrow band gap in the third light-emitting layer 4c, the third light-emitting layer 4c becomes a light-emitting layer having a high electron trapping property, and can suppress electrons reaching the hole transport layer 3, thereby improving durability. This is because the characteristics are improved. Further, in the present invention, the recombination region is localized on the electron transport layer 6 side. Therefore, the lamination structure in which the excitation energy generated by the blue light-emitting dopant having a wide band gap can transfer energy to the red light-emitting dopant and the green light-emitting dopant on the hole transport layer 3 side has better white light emission with better balance. This is because it is easy to realize durability characteristics.
 さらに、図1Cの積層構成の場合、第一発光層4aに含まれる第一ドーパント及び第三ドーパントは赤発光ドーパント及び緑発光ドーパントであることが好ましく、第二発光層4bに含まれる第二ドーパントは青発光ドーパントであることが好ましい。バンドギャップの狭い赤発光ドーパントを第一発光層4aに含めることで、第一発光層4aは電子トラップ性が高い発光層となり、正孔輸送層3に到達する電子を抑制することができ、耐久特性が向上するからである。さらに、本発明では、再結合領域を電子輸送層6側に偏在させる。よって、バンドギャップの広い青発光ドーパントの励起エネルギーが、正孔輸送層3側の赤発光ドーパント及び緑発光ドーパントへとエネルギー移動可能な積層構成である方が、バランスの良い白発光と優れた耐久特性を実現しやすい。 1C, the first dopant and the third dopant contained in the first light emitting layer 4a are preferably a red light emitting dopant and a green light emitting dopant, and the second dopant contained in the second light emitting layer 4b. Is preferably a blue light emitting dopant. By including a red light-emitting dopant having a narrow band gap in the first light-emitting layer 4a, the first light-emitting layer 4a becomes a light-emitting layer having a high electron trapping property, and can suppress electrons reaching the hole transport layer 3; This is because the characteristics are improved. Further, in the present invention, the recombination region is localized on the electron transport layer 6 side. Therefore, the stacked structure in which the excitation energy of the blue light-emitting dopant having a wide band gap can be transferred to the red light-emitting dopant and the green light-emitting dopant on the hole transport layer 3 side has a well-balanced white light emission and excellent durability. Easy to realize characteristics.
 また、第一発光層4aにおいてバンドギャップの異なる赤発光ドーパントと緑発光ドーパントとが混在すると、よりバンドギャップの狭い赤発光ドーパントへのエネルギー移動が起こりやすい。そのため、赤発光ドーパントのドープ濃度は、緑発光ドーパントのドープ濃度に比べて小さくすることが好ましい。好ましくは赤発光ドーパントの濃度は、質量比で緑発光ドーパント濃度の1/5以下、より好ましくは1/10以下にすることが望ましい。これにより、赤・緑のドーパントの発光強度バランスを整えることができる。 {Circle around (4)} When a red light emitting dopant and a green light emitting dopant having different band gaps are mixed in the first light emitting layer 4a, energy transfer to a red light emitting dopant having a narrower band gap tends to occur. Therefore, it is preferable that the doping concentration of the red light emitting dopant be lower than the doping concentration of the green light emitting dopant. Preferably, the concentration of the red light-emitting dopant is preferably 1/5 or less, more preferably 1/10 or less, of the green light-emitting dopant concentration by mass ratio. Thereby, the emission intensity balance of the red and green dopants can be adjusted.
 結果として、図1A乃至図1Cの積層構成において、第二発光層4bが青発光層であることが、本発明の有機EL素子にとって好ましい。 As a result, it is preferable for the organic EL device of the present invention that the second light emitting layer 4b is a blue light emitting layer in the laminated structure of FIGS. 1A to 1C.
 尚、本明細書においては、青発光ドーパントとは、発光スペクトルのピーク波長が430nm乃至480nmの発光材料をさす。また、緑発光ドーパントとは、発光スペクトルのピーク波長が500nm乃至570nmの発光材料を、赤発光ドーパント発光とは、発光スペクトルのピーク波長が580nm乃至680nmのものをそれぞれさす。 In the present specification, the term “blue light-emitting dopant” refers to a light-emitting material having a peak wavelength of an emission spectrum of 430 nm to 480 nm. In addition, a green light emitting dopant refers to a light emitting material having a peak wavelength of an emission spectrum of 500 nm to 570 nm, and a red light emitting dopant light refers to a light emitting material having a peak wavelength of a light emission spectrum of 580 nm to 680 nm.
 (10)各ホスト材料が、炭化水素である。
 本発明において、発光層4a乃至4cのホストとして用いられる化合物は特に限定されないが、分子構造内に結合安定性の低い結合を有しない化合物の方が好ましい。分子構造内に結合安定性の低い結合、即ち、結合エネルギーの小さい不安定な結合を有する化合物を、有機EL素子を構成する発光層にホストとして含ませた場合、素子駆動時に化合物の駆動劣化が起こりやすい。その結果、有機EL素子の耐久寿命に悪影響を及ぼす可能性が高いからである。
(10) Each host material is a hydrocarbon.
In the present invention, the compound used as the host of the light emitting layers 4a to 4c is not particularly limited, but a compound having no bond with low bond stability in the molecular structure is more preferable. When a compound having a bond with low bond stability in a molecular structure, that is, a compound having an unstable bond with small binding energy is included as a host in a light-emitting layer included in an organic EL device, drive deterioration of the compound during driving of the device is reduced. Easy to happen. As a result, the durability of the organic EL element is likely to be adversely affected.
 下記に示す[4,4’-ビス(カルバゾール-9-イル)ビフェニル](CBP)を例にとると、結合安定性の低い結合とは、カルバゾール環とフェニレン基をつなぐ結合(窒素-炭素結合)のことである。下記に、CBPとホストの例示化合物EM1と、正孔注入輸送材料の例示化合物HT7の結合エネルギーの計算値の比較を示す。尚、計算手法は、b3-lyp/def2-SV(P)を用いて行った。 Taking the [4,4′-bis (carbazol-9-yl) biphenyl] (CBP) shown below as an example, a bond having low bond stability is a bond connecting a carbazole ring and a phenylene group (nitrogen-carbon bond). ). The comparison of the calculated values of the binding energies of the exemplary compound EM1 of the CBP and the host and the exemplary compound HT7 of the hole injection / transport material is shown below. The calculation was performed using b3-lyp / def2-SV (P).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記結果より、本発明の有機EL素子の発光層4a乃至4cのホストとしては、炭素-炭素結合から構成される結合安定性の高い炭化水素であることが好ましい。一方で、ホストが炭化水素である場合、ホストのLUMO準位は小さくなるため、電子トラップ性の高い発光層を形成するためにはドーパントのLUMO準位も小さくなることが求められる。 From the above results, it is preferable that the host of the light emitting layers 4a to 4c of the organic EL device of the present invention be a hydrocarbon having a high bond stability composed of a carbon-carbon bond. On the other hand, when the host is a hydrocarbon, the LUMO level of the host is small. Therefore, in order to form a light-emitting layer having high electron trapping properties, the LUMO level of the dopant is required to be small.
 (11)各ドーパントが、フルオランテン骨格を有する。
 本発明において、発光層4a乃至4cに含まれるドーパントとして用いられる化合物は特に限定されないが、上記(10)に挙げた電子トラップ性の観点から、電子求引性の構造であるフルオランテン骨格を有することが好ましい。フルオランテン骨格を有することで、LUMO準位が小さくなり、ホスト材料とのLUMO準位の差が大きくなり、電子トラップ性を向上させることができる。さらに電子供与性の置換アミノ基を有さない方が、LUMO準位が小さくなり、電子トラップ性が高くなるため、好ましい。また、結合安定性の観点からも、窒素-炭素結合となる置換アミノ基を有しない化合物であることが好ましい。
(11) Each dopant has a fluoranthene skeleton.
In the present invention, the compound used as the dopant contained in the light emitting layers 4a to 4c is not particularly limited, but from the viewpoint of the electron trapping property described in the above (10), it has a fluoranthene skeleton having an electron-withdrawing structure. Is preferred. By having a fluoranthene skeleton, the LUMO level is reduced, the difference in LUMO level from the host material is increased, and the electron trapping property can be improved. Further, it is preferable to have no electron-donating substituted amino group since the LUMO level becomes small and the electron trapping property becomes high. Further, from the viewpoint of bond stability, it is preferable that the compound does not have a substituted amino group that becomes a nitrogen-carbon bond.
 以上より、ホストが炭化水素であり、ドーパントがフルオランテン骨格を有し、且つ、置換アミノ基を有しない化合物である場合、電子トラップ性の高い発光層4a乃至4cを形成することができる。またこの場合、発光層4a乃至4cを形成する材料自体の安定性が高いため、優れた耐久特性を示す有機EL素子を得ることができる。 As described above, when the host is a hydrocarbon and the dopant is a compound having a fluoranthene skeleton and having no substituted amino group, the light-emitting layers 4a to 4c having high electron trapping properties can be formed. Further, in this case, the stability of the material itself for forming the light emitting layers 4a to 4c is high, so that an organic EL element exhibiting excellent durability characteristics can be obtained.
 ここで、上記フルオランテン骨格について説明する。フルオランテン骨格とは、フルオランテン及び、フルオランテンにさらに芳香族炭化水素が縮合した縮合多環化合物を指す。具体的には、下記FF1乃至FF30に示すような縮合多環化合物のことである。 Here, the fluoranthene skeleton will be described. The fluoranthene skeleton refers to fluoranthene and a condensed polycyclic compound in which an aromatic hydrocarbon is further condensed with fluoranthene. Specifically, it refers to a condensed polycyclic compound as shown in FF1 to FF30 below.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記FF1乃至FF30のフルオランテン系化合物のうち、電子求引性を向上させ、電子トラップ性を向上させる観点から、フルオランテンが2つ以上縮合した構造を有するドーパントが好ましい。具体的には、FF7乃至FF13、FF16乃至FF20、FF23乃至FF30の骨格を有するドーパントを本発明において、好適に用いることができる。 ド ー パ ン ト Among the fluoranthene-based compounds of FF1 to FF30, a dopant having a structure in which two or more fluoranthenes are condensed is preferable from the viewpoint of improving the electron withdrawing property and improving the electron trapping property. Specifically, a dopant having a skeleton of FF7 to FF13, FF16 to FF20, and FF23 to FF30 can be suitably used in the present invention.
 以上より、上記の条件(5)乃至(10)を満たす時、つまり、第三ドーパントによる電子トラップ性が高まり、各発光層の正孔トラップ性が低く、第二発光層4bが青発光層であり、ホストが炭化水素であり、ドーパントがフルオランテン骨格を有する場合、特に耐久特性と発光バランスに優れる有機EL素子を得ることができる。 As described above, when the above conditions (5) to (10) are satisfied, that is, the electron trapping property by the third dopant is increased, the hole trapping property of each light emitting layer is low, and the second light emitting layer 4b is a blue light emitting layer. In addition, when the host is a hydrocarbon and the dopant has a fluoranthene skeleton, an organic EL device having particularly excellent durability characteristics and emission balance can be obtained.
 以下に本発明に用いられるホストの具体例を示す。但し、これらの化合物はあくまで具体例であり、本発明はこれに限定されるものではない。 具体 Specific examples of the host used in the present invention are shown below. However, these compounds are only specific examples, and the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記EM1乃至EM31のホストのうち、上述した結合安定性の観点から、炭化水素であるEM1乃至EM26が好ましい。これらの化合物をホストに用いることで、耐久特性に優れる有機EL素子を得ることができるからである。 ホ ス ト Among the hosts of EM1 to EM31, hydrocarbons EM1 to EM26 are preferable from the viewpoint of the above-mentioned bond stability. By using these compounds as a host, an organic EL device having excellent durability can be obtained.
 本発明においてホストには、上記した具体例以外にも、カルバゾール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、トリス(8-キノリノラート)アルミニウム等の有機アルミニウム錯体、有機ベリリウム錯体等が用いられる。 に お い て In the present invention, in addition to the specific examples described above, a carbazole derivative, a dibenzofuran derivative, a dibenzothiophene derivative, an organic aluminum complex such as tris (8-quinolinolate) aluminum, an organic beryllium complex, and the like are used as the host.
 本発明に用いられる青発光ドーパントは、例えば以下のものを挙げることができる。但し、本発明はこれに限定されるものではない。 青 Examples of the blue light emitting dopant used in the present invention include the following. However, the present invention is not limited to this.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記BD1乃至BD31の青発光ドーパントのうち、電子トラップ性の観点から、電子供与性の高い置換アミノ基を有しないことが好ましい。さらに、電子求引性の高いシアノ基を有することで、ドーパントのLUMO準位を小さくすることができ、発光層の電子トラップ性を高めることができ、好ましい。 の う ち Of the blue light emitting dopants of BD1 to BD31, it is preferable not to have a substituted amino group having a high electron donating property from the viewpoint of electron trapping properties. Further, by having a cyano group having a high electron-withdrawing property, the LUMO level of the dopant can be reduced and the electron-trapping property of the light-emitting layer can be improved, which is preferable.
 青発光ドーパントのドープ濃度としては、それぞれ0.1乃至10質量%、より好ましくは0.3乃至5質量%が望ましい。濃度が薄すぎると電子トラップ確率が低下して、再結合確率が低下し、青色の発光強度の低下を招き、逆に濃度が濃すぎると濃度消光を起こすため望ましくない。 ド ー プ The doping concentration of the blue light emitting dopant is preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass. If the concentration is too low, the probability of electron trapping decreases, and the probability of recombination decreases, leading to a decrease in blue emission intensity. Conversely, if the concentration is too high, concentration quenching occurs, which is not desirable.
 本発明に用いられる緑発光ドーパントは、例えば以下のものを用いることができる。但し、本発明はこれに限定されるものではない。 緑 As the green light emitting dopant used in the present invention, for example, the following can be used. However, the present invention is not limited to this.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記GD1乃至GD32の緑発光ドーパントのうち、電子トラップ性の観点から、電子供与性の高い置換アミノ基を有しない化合物が好ましい。 の う ち Among the green light-emitting dopants GD1 to GD32, compounds having no substituted amino group having a high electron-donating property are preferable from the viewpoint of electron trapping properties.
 緑発光ドーパントのドープ濃度としては、それぞれ0.1乃至10質量%、より好ましくは0.3乃至5質量%が望ましい。濃度が薄すぎると電子トラップ確率が低下して、再結合確率が低下し、緑色の発光強度の低下を招き、逆に濃度が濃すぎると濃度消光を起こすため望ましくない。 ド ー プ The doping concentration of the green light emitting dopant is preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass. If the concentration is too low, the probability of electron trapping decreases and the probability of recombination decreases, leading to a decrease in green light emission intensity. Conversely, if the concentration is too high, concentration quenching occurs, which is not desirable.
 本発明に用いられる赤発光ドーパントは、例えば以下のものを用いることができる。但し、本発明はこれに限定されるものではない。 赤 As the red light emitting dopant used in the present invention, for example, the following can be used. However, the present invention is not limited to this.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記RD1乃至RD23の赤発光ドーパントのうち、結合安定性の観点から、炭化水素であることが好ましい。 の う ち Among the red light-emitting dopants of RD1 to RD23, hydrocarbons are preferable from the viewpoint of bond stability.
 赤発光ドーパントのドープ濃度としては、それぞれ0.1乃至5質量%、より好ましくは0.1乃至0.5質量%が望ましい。濃度が薄すぎると電子トラップ確率が低下して、再結合確率が低下し、赤色の発光強度の低下を招き、逆に濃度が濃すぎると濃度消光を起こすため望ましくない。 ド ー プ The doping concentration of the red light emitting dopant is preferably 0.1 to 5% by mass, more preferably 0.1 to 0.5% by mass. If the concentration is too low, the probability of electron trapping decreases, and the probability of recombination decreases, leading to a decrease in the emission intensity of red light. Conversely, if the concentration is too high, concentration quenching occurs, which is not desirable.
 本発明においては、上述した青発光ドーパント、緑発光ドーパント、赤発光ドーパントの他に、縮環化合物(例えばフルオレン誘導体、ナフタレン誘導体、ピレン誘導体、ペリレン誘導体、テトラセン誘導体、アントラセン誘導体、ルブレン等)、キナクリドン誘導体、クマリン誘導体、スチルベン誘導体、トリス(8-キノリノラート)アルミニウム等の有機アルミニウム錯体、イリジウム錯体、白金錯体、レニウム錯体、銅錯体、ユーロピウム錯体、ルテニウム錯体、及びポリ(フェニレンビニレン)誘導体、ポリ(フルオレン)誘導体、ポリ(フェニレン)誘導体等の高分子誘導体を用いることもできる。 In the present invention, in addition to the above-described blue light emitting dopant, green light emitting dopant, and red light emitting dopant, fused ring compounds (for example, fluorene derivatives, naphthalene derivatives, pyrene derivatives, perylene derivatives, tetracene derivatives, anthracene derivatives, rubrene, etc.), quinacridone Derivatives, coumarin derivatives, stilbene derivatives, organoaluminum complexes such as tris (8-quinolinolato) aluminum, iridium complexes, platinum complexes, rhenium complexes, copper complexes, europium complexes, ruthenium complexes, and poly (phenylenevinylene) derivatives, poly (fluorene) ) Derivatives and polymer derivatives such as poly (phenylene) derivatives can also be used.
 以下に、本発明に用いられる中間層材料の具体例を示す。但し、これらの化合物はあくまで具体例であり、本発明はこれに限定されるものではない。 具体 Specific examples of the intermediate layer material used in the present invention are shown below. However, these compounds are only specific examples, and the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 本発明の有機EL素子は、一対の電極と、前記一対の電極の間に配置される有機化合物層(有機EL層)とを有する有機電界素子であって、有機化合物層は陽極側から第一発光層/中間層/第二発光層からなる積層構成を有することを特徴とする。本発明においては、陽極と第一発光層の間に正孔輸送層を備えても良く、さらに、陽極と正孔輸送層との間に正孔注入層を備えた構成や、正孔輸送層と第一発光層との間に電子ブロッキング層を備えていても良い。また、本発明においては、陰極と第二発光層との間に電子輸送層を備えていても良く、さらに、陰極と電子輸送層との間に電子注入層を備えた構成や、電子輸送層と第二発光層との間に正孔ブロッキング層を備えていても良い。 The organic EL device of the present invention is an organic electric field device having a pair of electrodes and an organic compound layer (organic EL layer) disposed between the pair of electrodes. The light emitting device has a laminated structure of a light emitting layer / intermediate layer / second light emitting layer. In the present invention, a hole transport layer may be provided between the anode and the first light emitting layer, and further, a configuration having a hole injection layer between the anode and the hole transport layer, or a hole transport layer An electron blocking layer may be provided between the light emitting layer and the first light emitting layer. Further, in the present invention, an electron transporting layer may be provided between the cathode and the second light emitting layer, and further, an electron injection layer may be provided between the cathode and the electron transporting layer. A hole blocking layer may be provided between the first light emitting layer and the second light emitting layer.
 特に、正孔輸送層と電子ブロッキング層、及び電子輸送層と正孔ブロッキング層を共に有している構成は、正孔と電子の両キャリアを発光層内に閉じ込めることができるので、キャリア漏れがなく発光効率が高い発光素子を得ることができる。 In particular, a structure having both a hole transporting layer and an electron blocking layer, and a structure having both an electron transporting layer and a hole blocking layer can confine both hole and electron carriers in the light emitting layer, so that carrier leakage is reduced. And a light-emitting element with high luminous efficiency can be obtained.
 また、電極と有機化合物層界面に絶縁性層を設ける、接着層或いは干渉層を設ける、電子輸送層もしくは正孔輸送層がイオン化ポテンシャルの異なる二層から構成される、発光層が発光材料の異なる二層から構成されるなど多様な層構成をとることができる。 In addition, an insulating layer is provided at the interface between the electrode and the organic compound layer, an adhesive layer or an interference layer is provided, the electron transporting layer or the hole transporting layer is composed of two layers having different ionization potentials, and the light emitting layer is made of a different light emitting material. Various layer configurations such as a two-layer configuration can be employed.
 本発明の有機EL素子は、基板側の電極から光を取り出すいわゆるボトムエミッション方式でも、基板と逆側から光を取り出すいわゆるトップエミッション方式でも良く、両面取り出しの構成でも使用することができる。 有機 The organic EL device of the present invention may be a so-called bottom emission type in which light is extracted from an electrode on the substrate side, a so-called top emission type in which light is extracted from the side opposite to the substrate, or a double-sided extraction structure.
 上記正孔輸送層や正孔注入層に用いられる正孔注入輸送性材料としては、陽極からの正孔の注入を容易にすることができる材料や、注入された正孔を発光層へ輸送できるように正孔移動度が高い材料が好ましい。また有機EL素子中において結晶化等の膜質の劣化を抑制するために、ガラス転移点温度が高い材料が好ましい。正孔注入輸送性能を有する低分子及び高分子系材料としては、トリアリールアミン誘導体、アリールカルバゾール誘導体、フェニレンジアミン誘導体、スチルベン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、ポリ(ビニルカルバゾール)、ポリ(チオフェン)、その他導電性高分子が挙げられる。さらに上記の正孔注入輸送性材料は、電子ブロッキング層にも好適に使用される。 As the hole injecting and transporting material used for the hole transporting layer and the hole injecting layer, a material capable of facilitating the injection of holes from the anode and a material capable of transporting the injected holes to the light emitting layer can be used. Thus, a material having a high hole mobility is preferable. Further, in order to suppress deterioration of film quality such as crystallization in the organic EL device, a material having a high glass transition temperature is preferable. Examples of low-molecular and high-molecular materials having hole injection transport properties include triarylamine derivatives, arylcarbazole derivatives, phenylenediamine derivatives, stilbene derivatives, phthalocyanine derivatives, porphyrin derivatives, poly (vinylcarbazole), poly (thiophene), Other conductive polymers can be used. Further, the above-described hole injecting and transporting material is also suitably used for an electron blocking layer.
 以下に、正孔注入輸送性材料として用いられる化合物の具体例を示すが、本発明においては、これらに限定されるものではない。 具体 Specific examples of the compound used as the hole injecting / transporting material are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記電子輸送層や電子注入層に用いられる電子輸送性材料としては、陰極から注入された電子を発光層へ輸送することができるものから任意に選ぶことができ、正孔輸送性材料の正孔移動度とのバランス等を考慮して選択される。電子輸送性能を有する材料としては、オキサジアゾール誘導体、オキサゾール誘導体、ピラジン誘導体、トリアゾール誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、有機アルミニウム錯体、縮環化合物(例えばフルオレン誘導体、ナフタレン誘導体、クリセン誘導体、アントラセン誘導体等)が挙げられる。さらに上記の電子輸送性材料は、正孔ブロッキング層にも好適に使用される。 The electron transporting material used for the electron transporting layer or the electron injecting layer can be arbitrarily selected from those capable of transporting electrons injected from the cathode to the light emitting layer. The selection is made in consideration of the balance with the mobility. Examples of the material having an electron transporting property include oxadiazole derivatives, oxazole derivatives, pyrazine derivatives, triazole derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, organic aluminum complexes, fused compounds (for example, fluorene derivatives, naphthalene derivatives, Chrysene derivatives, anthracene derivatives, etc.). Furthermore, the above-mentioned electron transporting material is also suitably used for a hole blocking layer.
 以下に、電子輸送性材料として用いられる化合物の具体例を示すが、本発明においては、これらに限定されるものではない。 具体 Specific examples of the compound used as the electron transporting material are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 以下、その他の構成部材について、図1を用いて説明する。 Hereinafter, other components will be described with reference to FIG.
 基板1としては、石英、ガラス、シリコンウェハ、樹脂、金属など何を用いてもよい。また、基板1上には、トランジスタなどのスイッチング素子や配線を備え、その上に絶縁層を備えてもよい。絶縁層としては、陽極2と配線の導通を確保するために、コンタクトホールを形成可能で、尚かつ未接続の配線との絶縁を確保できれば、何を用いてもよい。例えば、ポリイミド等の樹脂、酸化シリコン、窒化シリコンなどを用いることができる。尚、ボトムエミッション型の素子の場合には、基板1及び上記絶縁層としては光透過性の材料を用いる。 As the substrate 1, any material such as quartz, glass, silicon wafer, resin, and metal may be used. Further, a switching element such as a transistor or a wiring may be provided on the substrate 1, and an insulating layer may be provided thereon. As the insulating layer, any material can be used as long as a contact hole can be formed in order to secure conduction between the anode 2 and the wiring, and insulation from an unconnected wiring can be ensured. For example, a resin such as polyimide, silicon oxide, silicon nitride, or the like can be used. In the case of a bottom emission type element, a light transmitting material is used for the substrate 1 and the insulating layer.
 陽極2の構成材料としては仕事関数がなるべく大きいものが良い。例えば、金、白金、銀、銅、ニッケル、パラジウム、コバルト、セレン、バナジウム、タングステン、等の金属単体やこれらを含む混合物、或いはこれらを組み合わせた合金、酸化錫、酸化亜鉛、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム等の金属酸化物が使用できる。またポリアニリン、ポリピロール、ポリチオフェン等の導電性ポリマーも使用できる。 As a constituent material of the anode 2, a material having a work function as large as possible is preferable. For example, simple metals such as gold, platinum, silver, copper, nickel, palladium, cobalt, selenium, vanadium, and tungsten, and mixtures containing them, or alloys thereof, tin oxide, zinc oxide, indium oxide, and tin oxide Metal oxides such as indium (ITO) and indium zinc oxide can be used. Also, conductive polymers such as polyaniline, polypyrrole, and polythiophene can be used.
 これらの電極物質は一種類を単独で使用してもよいし、二種類以上を併用して使用してもよい。また、陽極2は一層で構成されていてもよく、複数の層で構成されていてもよい。 電極 One of these electrode substances may be used alone, or two or more thereof may be used in combination. Further, anode 2 may be composed of a single layer or a plurality of layers.
 トップエミッション型の素子の場合、陽極2を反射電極として用いるために、例えばクロム、アルミニウム、銀、チタン、タングステン、モリブデン、又はこれらの合金、積層したものなどを用いることができる。また、ボトムエミッション型の素子の場合、陽極2を透明電極として用いるために、酸化インジウム錫(ITO)、酸化インジウム亜鉛などの酸化物透明導電層などを用いることができるが、これらに限定されるものではない。 In the case of a top emission type element, for example, chromium, aluminum, silver, titanium, tungsten, molybdenum, an alloy thereof, or a laminate thereof can be used in order to use the anode 2 as a reflection electrode. In the case of a bottom emission type element, an oxide transparent conductive layer of indium tin oxide (ITO), indium zinc oxide, or the like can be used in order to use the anode 2 as a transparent electrode, but is not limited thereto. Not something.
 電極の形成には、フォトリソグラフィ技術を用いることができる。 フ ォ ト A photolithography technique can be used to form the electrodes.
 一方、陰極7の構成材料としては仕事関数の小さなものがよい。例えばリチウム等のアルカリ金属、カルシウム等のアルカリ土類金属、アルミニウム、チタニウム、マンガン、銀、鉛、クロム等の金属単体又はこれらを含む混合物が挙げられる。或いはこれら金属単体を組み合わせた合金も使用することができる。例えばマグネシウム-銀、アルミニウム-リチウム、アルミニウム-マグネシウム、銀-銅、亜鉛-銀等が使用できる。酸化錫インジウム(ITO)等の金属酸化物の利用も可能である。これらの電極物質は一種類を単独で使用してもよいし、二種類以上を併用して使用してもよい。また陰極7は一層構成でもよく、多層構成でもよい。 On the other hand, the constituent material of the cathode 7 preferably has a small work function. For example, an alkali metal such as lithium, an alkaline earth metal such as calcium, a simple metal such as aluminum, titanium, manganese, silver, lead, and chromium, or a mixture containing these metals may be used. Alternatively, an alloy obtained by combining these metals alone can also be used. For example, magnesium-silver, aluminum-lithium, aluminum-magnesium, silver-copper, zinc-silver and the like can be used. It is also possible to use a metal oxide such as indium tin oxide (ITO). One of these electrode substances may be used alone, or two or more of them may be used in combination. The cathode 7 may have a single-layer structure or a multilayer structure.
 トップエミッション型の素子の場合、陰極7は、ITOなどの透明酸化物導電層を使用して光透過性とすれば良く、ボトムエミッション型の素子の場合には、陰極7をアルミニウム(Al)などを用いて反射電極とすれば良い。陰極7の形成方法としては、特に限定されないが、直流及び交流スパッタリング法などを用いると、膜のカバレッジがよく、抵抗を下げやすいためより好ましい。 In the case of a top emission type device, the cathode 7 may be made transparent using a transparent oxide conductive layer such as ITO. In the case of a bottom emission type device, the cathode 7 may be made of aluminum (Al) or the like. May be used as a reflective electrode. The method for forming the cathode 7 is not particularly limited. However, it is more preferable to use a direct current or alternating current sputtering method because the film has good coverage and the resistance is easily reduced.
 陰極7形成後に、不図示の封止部材を設けてもよい。例えば、陰極7上に吸湿剤を設けたガラスを接着することで、有機化合物層に対する水等の浸入を抑え、表示不良の発生を抑えることができる。また、陰極7上に窒化ケイ素等のパッシベーション膜を設け、有機化合物層に対する水等の浸入を抑えてもよい。例えば、陰極7形成後に真空を破らずに別のチャンバーに搬送し、CVD法で厚さ2μmの窒化ケイ素膜を形成することで、封止膜としてもよい。 封 止 After forming the cathode 7, a sealing member (not shown) may be provided. For example, by adhering a glass provided with a hygroscopic agent on the cathode 7, it is possible to suppress the entry of water or the like into the organic compound layer and to suppress the occurrence of display defects. Further, a passivation film such as silicon nitride may be provided on the cathode 7 to suppress entry of water or the like into the organic compound layer. For example, after the cathode 7 is formed, it is transferred to another chamber without breaking the vacuum, and a silicon nitride film having a thickness of 2 μm is formed by a CVD method, so that a sealing film may be formed.
 また、トップエミッション型であれば陰極7の外側に、ボトムエミッション型であれば基板1の外側にカラーフィルタを設けてもよい。カラーフィルタは別途形成したものを有機EL素子に貼り合わせてもよいし、有機EL素子にフォトリソグラフィ技術を用いて直接形成しても良い。 In addition, a color filter may be provided outside the cathode 7 in the case of a top emission type, and outside the substrate 1 in the case of a bottom emission type. The color filter may be separately formed and attached to the organic EL element, or may be directly formed on the organic EL element by using a photolithography technique.
 本発明に係る有機化合物層(正孔注入層、正孔輸送層、電子ブロッキング層、発光層、正孔ブロッキング層、電子輸送層、電子注入層)は、真空蒸着法、イオン化蒸着法、スパッタリング、プラズマ等のドライプロセスを用いて形成することができる。またドライプロセスに代えて、適当な溶媒に溶解させて公知の塗布法(例えば、スピンコーティング、ディッピング、キャスト法、LB法、インクジェット法等)により層を形成するウェットプロセスを用いることもできる。 The organic compound layer (a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer) according to the present invention is formed by vacuum evaporation, ionization evaporation, sputtering, It can be formed using a dry process such as plasma. Instead of the dry process, a wet process of forming a layer by a known coating method (for example, spin coating, dipping, casting, LB method, inkjet method, or the like) by dissolving in a suitable solvent can also be used.
 ここで真空蒸着法や溶液塗布法等によって層を形成すると、結晶化等が起こりにくく経時安定性に優れる。また塗布法で成膜する場合は、適当なバインダー樹脂と組み合わせて膜を形成することもできる。 す る と Here, when the layer is formed by a vacuum deposition method, a solution coating method, or the like, crystallization or the like hardly occurs, and the stability with time is excellent. When the film is formed by a coating method, the film can be formed in combination with an appropriate binder resin.
 上記バインダー樹脂としては、ポリビニルカルバゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ABS樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、尿素樹脂等が挙げられるが、これらに限定されるものではない。また、これらバインダー樹脂は、ホモポリマー又は共重合体として一種類を単独で使用してもよいし、二種類以上を混合して使用してもよい。さらに必要に応じて、公知の可塑剤、酸化防止剤、紫外線吸収剤等の添加剤を併用してもよい。 Examples of the binder resin include, but are not limited to, polyvinyl carbazole resin, polycarbonate resin, polyester resin, ABS resin, acrylic resin, polyimide resin, phenol resin, epoxy resin, silicone resin, and urea resin. . These binder resins may be used alone as a homopolymer or a copolymer, or may be used as a mixture of two or more. If necessary, known additives such as a plasticizer, an antioxidant and an ultraviolet absorber may be used in combination.
 本発明の有機EL素子は、表示装置や撮像装置、通信機器、照明装置、灯具の光源として用いることができる。 有機 The organic EL element of the present invention can be used as a light source of a display device, an imaging device, a communication device, a lighting device, and a lamp.
 図3は、有機発光素子とこの有機発光素子に接続される能動素子とを有する表示装置の例を示す断面模式図である。能動素子は、ポリシリコン、酸化物半導体等で構成されたトランジスタやTFTであってよい。 FIG. 3 is a schematic cross-sectional view showing an example of a display device having an organic light emitting device and an active device connected to the organic light emitting device. The active element may be a transistor or a TFT made of polysilicon, an oxide semiconductor, or the like.
 図3の表示装置10は、ガラス等の基板11とその上部にトランジスタ素子又は有機化合物層を保護するための絶縁層12が設けられている。その上にはゲート電極13、ゲート絶縁膜14と、半導体層15、ドレイン電極16、ソース電極17、を備えたトランジスタ素子18を有する。 The display device 10 shown in FIG. 3 includes a substrate 11 made of glass or the like and an insulating layer 12 provided on the substrate 11 for protecting the transistor element or the organic compound layer. A transistor element 18 having a gate electrode 13, a gate insulating film 14, a semiconductor layer 15, a drain electrode 16, and a source electrode 17 is provided thereon.
 表示装置は、トランジスタ素子の上に、層間絶縁層19を介して、有機発光素子26を有する。有機発光素子26は、陽極21、発光層を含む有機化合物層22、陰極23を有する。 The display device has the organic light emitting element 26 over the transistor element via the interlayer insulating layer 19. The organic light emitting element 26 has an anode 21, an organic compound layer 22 including a light emitting layer, and a cathode 23.
 層間絶縁層19には、コンタクトホール20が設けられていて、コンタクトホールを介して有機発光素子を構成する陽極21とソース電極17とが接続されている。 (4) A contact hole 20 is provided in the interlayer insulating layer 19, and the anode 21 and the source electrode 17 constituting the organic light emitting element are connected via the contact hole.
 なお、有機発光素子に含まれる電極(陽極、陰極)とトランジスタに含まれる電極(ソース電極、ドレイン電極)との電気接続の方式は、図3に示される態様に限られるものではない。つまり陽極又は陰極のうちいずれか一方とトランジスタ素子のソース電極またはドレイン電極のいずれか一方とが電気接続されていればよい。 Note that the method of electrical connection between the electrodes (anode and cathode) included in the organic light-emitting element and the electrodes (source and drain electrodes) included in the transistor is not limited to the mode illustrated in FIG. That is, any one of the anode and the cathode may be electrically connected to one of the source electrode and the drain electrode of the transistor element.
 図3の表示装置10では有機化合物層22を1つの層の如く図示をしているが、有機化合物層22は、複数層であってもよい。陰極23の上には有機発光素子の劣化を抑制するための第一の保護層24や第二の保護層25が設けられている。 表示 Although the organic compound layer 22 is illustrated as one layer in the display device 10 of FIG. 3, the organic compound layer 22 may be a plurality of layers. On the cathode 23, a first protective layer 24 and a second protective layer 25 for suppressing deterioration of the organic light emitting element are provided.
 図3の表示装置10ではスイッチング素子としてトランジスタを使用しているが、これに代えて他の素子をスイッチング素子として用いてもよい。 Although the display device 10 of FIG. 3 uses a transistor as a switching element, another element may be used as a switching element instead.
 また図3の表示装置10に使用されるトランジスタは、単結晶シリコンウエハを用いたトランジスタに限らず、基板の絶縁性表面上に活性層を有する薄膜トランジスタでもよい。活性層として、単結晶シリコン、アモルファスシリコン、微結晶シリコンなどの非単結晶シリコン、インジウム亜鉛酸化物、インジウムガリウム亜鉛酸化物等の非単結晶酸化物半導体があげられる。なお、薄膜トランジスタはTFT素子とも呼ばれる。 The transistor used in the display device 10 of FIG. 3 is not limited to a transistor using a single crystal silicon wafer, but may be a thin film transistor having an active layer on an insulating surface of a substrate. Examples of the active layer include non-single-crystal silicon such as single-crystal silicon, amorphous silicon, and microcrystalline silicon; and non-single-crystal oxide semiconductors such as indium zinc oxide and indium gallium zinc oxide. Note that a thin film transistor is also called a TFT element.
 図3の表示装置10において、有機EL素子26はトランジスタ18により発光輝度が制御され、有機EL素子を複数面内に設けることでそれぞれの発光輝度により画像を表示することができる。尚、トランジスタ18としてTFTが好ましく用いられる。また、トランジスタ以外にも、MIM素子、Si基板等の基板上に形成されたアクティブマトリクスドライバーなどのスイッチング素子が好ましく用いられる。基板上とは、その基板内ということもできる。これは精細度によって選択され、例えば1インチでQVGA程度の精細度の場合はSi基板上に有機EL素子を設けることが好ましい。本発明の有機EL素子を用いた表示装置を駆動することにより、良好な画質で、長時間表示にも安定な表示が可能になる。 (3) In the display device 10 of FIG. 3, the light emission luminance of the organic EL element 26 is controlled by the transistor 18. By providing the organic EL element in a plurality of planes, an image can be displayed with each light emission luminance. Note that a TFT is preferably used as the transistor 18. In addition to the transistor, a switching element such as an MIM element or an active matrix driver formed on a substrate such as a Si substrate is preferably used. On the substrate can also be referred to as in the substrate. This is selected depending on the definition. For example, in the case of a definition of about 1 inch and QVGA, it is preferable to provide an organic EL element on a Si substrate. By driving a display device using the organic EL element of the present invention, stable image display with good image quality and long-time display is possible.
 図4は、図3の表示装置を表示パネルとして用いた表示装置の一例を表す模式図である。図4の表示装置1000は、上部カバー1001と下部カバー1009との間に、タッチパネル1003、表示パネル1005、フレーム1006、回路基板1007、バッテリー1008を有している。タッチパネル1003及び表示パネル1005には、フレキシブルプリント回路FPC1002、1004が接続されている。回路基板1007にはトランジスタがプリントされている。バッテリー1008は、表示装置が携帯機器でなければ設けなくてよいし、携帯機器であってもこの位置に設ける必要はない。 FIG. 4 is a schematic diagram illustrating an example of a display device using the display device of FIG. 3 as a display panel. The display device 1000 in FIG. 4 includes a touch panel 1003, a display panel 1005, a frame 1006, a circuit board 1007, and a battery 1008 between an upper cover 1001 and a lower cover 1009. Flexible printed circuits FPCs 1002 and 1004 are connected to the touch panel 1003 and the display panel 1005. Transistors are printed on the circuit board 1007. The battery 1008 need not be provided unless the display device is a portable device, and need not be provided at this position even if the display device is a portable device.
 本発明の有機EL素子は、複数のレンズを有する光学部と、当該光学部を通過した光を受光する撮像素子とを有する撮像装置の表示部に用いられてもよい。撮像装置は、撮像素子が取得した情報を表示する表示部を有してよい。また、表示部は、撮像装置の外部に露出した表示部であっても、ファインダ内に配置された表示部であってもよい。撮像装置は、デジタルカメラ、デジタルビデオカメラであってよい。 The organic EL element of the present invention may be used in a display unit of an imaging device that includes an optical unit having a plurality of lenses and an image sensor that receives light passing through the optical unit. The imaging device may include a display unit that displays information acquired by the imaging device. Further, the display unit may be a display unit exposed to the outside of the imaging device or a display unit arranged in a viewfinder. The imaging device may be a digital camera or a digital video camera.
 図5は、上記撮像装置の一例を表す模式図である。図5の撮像装置1100は、ビューファインダ1101、背面ディスプレイ1102、筐体1103、操作部1104を有している。ビューファインダ1101は、本発明の有機EL素子を有しており、撮像した画像のみならず、環境情報、撮像指示等を表示してもよい。環境情報には、外光の強度、外光の向き、被写体の動く速度、被写体が遮蔽物に遮蔽される可能性等であってよい。 FIG. 5 is a schematic diagram illustrating an example of the imaging device. The imaging device 1100 in FIG. 5 includes a viewfinder 1101, a rear display 1102, a housing 1103, and an operation unit 1104. The viewfinder 1101 includes the organic EL element of the present invention, and may display not only a captured image but also environmental information, an imaging instruction, and the like. The environmental information may include the intensity of the external light, the direction of the external light, the moving speed of the subject, the possibility that the subject is blocked by a blocking object, and the like.
 撮像に好適なタイミングはわずかな時間なので、少しでも早く情報を表示した方がよい。従って、本発明の有機EL素子は、応答速度が速く、撮像装置の表示部として好ましい。有機EL素子を用いた表示装置は、表示速度が求められる装置において、液晶表示装置よりも好適に用いることができる。 タ イ ミ ン グ Since the timing suitable for imaging is a short time, it is better to display information as soon as possible. Therefore, the organic EL element of the present invention has a high response speed and is preferable as a display unit of an imaging device. A display device using an organic EL element can be more suitably used in a device requiring a display speed than a liquid crystal display device.
 撮像装置1100は、不図示の光学部を有する。光学部は複数のレンズを有し、筐体1103内に収容されている撮像素子に結像する。複数のレンズは、その相対位置を調整することで、焦点を調整することができる。この操作を自動で行うこともできる。 The imaging device 1100 has an optical unit (not shown). The optical unit has a plurality of lenses, and forms an image on an imaging element housed in the housing 1103. The focus of the plurality of lenses can be adjusted by adjusting their relative positions. This operation can be performed automatically.
 本発明の有機EL素子を用いた表示装置は、赤色、緑色、青色を有するカラーフィルタを有してよい。カラーフィルタは、当該赤色、緑色、青色がデルタ配列で配置されてよい。 The display device using the organic EL element of the present invention may include a color filter having red, green, and blue. In the color filters, the red, green, and blue colors may be arranged in a delta arrangement.
 本発明の有機EL素子を用いた表示装置は、携帯端末の表示部に用いられてもよい。その際には、表示機能と操作機能との双方を有してもよい。携帯端末としては、スマートフォン等の携帯電話、タブレット、ヘッドマウントディスプレイ等が挙げられる。 The display device using the organic EL element of the present invention may be used for a display unit of a portable terminal. In that case, both the display function and the operation function may be provided. Examples of the mobile terminal include a mobile phone such as a smartphone, a tablet, a head-mounted display, and the like.
 図6は、本発明の有機EL素子を表示部に用いた携帯機器の一例を表す模式図である。携帯機器1200は、表示部1201と、操作部1202と、筐体1203とを有する。筐体1203には、回路、当該回路を有するプリント基板、バッテリー、通信部、が設けられており、操作部1202は、ボタンであってもよいし、タッチパネル方式の反応部であってもよい。操作部1202は、指紋を認識してロックの解除等を行う生体認識部であってもよい。通信部を有する携帯機器は通信機器ということもできる。 FIG. 6 is a schematic view illustrating an example of a portable device using the organic EL element of the present invention for a display portion. The mobile device 1200 includes a display unit 1201, an operation unit 1202, and a housing 1203. The housing 1203 is provided with a circuit, a printed circuit board having the circuit, a battery, and a communication unit. The operation unit 1202 may be a button or a touch panel type reaction unit. The operation unit 1202 may be a biometric recognition unit that recognizes a fingerprint and unlocks the lock. A portable device having a communication unit can also be called a communication device.
 図7は、本発明の有機EL素子を表示部に用いた表示装置の他の例を表す模式図である。図7Aは、テレビモニタやPCモニタ等の表示装置である。表示装置1300は、額縁1301と、表示部1302と、額縁1301と表示部1302とを支える土台1303とを有している。土台1303は、図7Aの形態に限られず、額縁1301の下辺が土台を兼ねてもよい。また、額縁1301及び表示部1302は、曲がっていてもよく、その曲率半径は、5000mm以上6000mm以下であってよい。 FIG. 7 is a schematic diagram illustrating another example of a display device using the organic EL element of the present invention for a display unit. FIG. 7A shows a display device such as a television monitor or a PC monitor. The display device 1300 includes a frame 1301, a display unit 1302, and a base 1303 that supports the frame 1301 and the display unit 1302. The base 1303 is not limited to the form shown in FIG. 7A, and the lower side of the frame 1301 may also serve as the base. In addition, the frame 1301 and the display unit 1302 may be curved, and the radius of curvature thereof may be 5000 mm or more and 6000 mm or less.
 図7Bは本発明の有機EL素子を表示部に用いた表示装置の他の例を表す模式図である。図7Bの表示装置1310は、折り曲げ可能に構成されており、いわゆるフォルダブルな表示装置である。表示装置1310は、第一表示部1311、第二表示部1312、筐体1313、屈曲点1314を有する。第一表示部1311と第二表示部1312は本発明の有機EL素子であり、つなぎ目のない1枚で、屈曲点で分けることができる。第一表示部1311、第二表示部1312は、それぞれ異なる画像を表示してもよいし、第一及び第二表示部とで一つの画像を表示してもよい。筐体1313はフレキシブル基板である。 FIG. 7B is a schematic view illustrating another example of a display device using the organic EL element of the present invention for a display portion. The display device 1310 in FIG. 7B is configured to be bendable, and is a so-called folderable display device. The display device 1310 includes a first display portion 1311, a second display portion 1312, a housing 1313, and a bending point 1314. The first display portion 1311 and the second display portion 1312 are the organic EL elements of the present invention, and can be separated by a bending point by a single seamless member. The first display unit 1311 and the second display unit 1312 may display different images, respectively, or may display one image with the first and second display units. The housing 1313 is a flexible board.
 図8は、本発明の有機EL素子を光源として用いた照明装置の一例を表す模式図である。照明装置1400は、筐体1401と、光源1402と、回路基板1403と、光学フィルム1404と、光拡散部1405と、を有している。光学フィルム1404は光源1402の演色性を向上させるフィルタでもよく、光源1402の光出射側に配置される。光拡散部は、ライトアップ等、光源の光を効果的に拡散し、広い範囲に光を届けることができる。必要に応じて、最外部にカバーを設けてもよい。 FIG. 8 is a schematic diagram illustrating an example of a lighting device using the organic EL element of the present invention as a light source. The lighting device 1400 includes a housing 1401, a light source 1402, a circuit board 1403, an optical film 1404, and a light diffusion unit 1405. The optical film 1404 may be a filter for improving the color rendering of the light source 1402, and is disposed on the light emission side of the light source 1402. The light diffusing unit can effectively diffuse light from a light source such as light-up and deliver light to a wide range. If necessary, a cover may be provided on the outermost side.
 照明装置は例えば室内を照明する装置である。照明装置は、白、その他青から赤のいずれの色を発光するものであってよい。それらを調光する調光回路を有してよい。照明装置は本発明の有機EL素子に接続される、交流電圧を直流電圧に変換する電源回路を有している。また、白とは色温度が4200Kで昼とは色温度が5000Kである。照明装置はカラーフィルタを有してもよい。 The lighting device is, for example, a device that illuminates a room. The lighting device may emit white or any other color from blue to red. It may have a dimming circuit for dimming them. The lighting device has a power supply circuit connected to the organic EL element of the present invention for converting an AC voltage to a DC voltage. White has a color temperature of 4200K and daytime has a color temperature of 5000K. The lighting device may have a color filter.
 図9は、本発明の有機EL素子を灯具として用いた移動体の一例である自動車を示す模式図である。自動車1500は、テールランプ1501を有する。テールランプは灯具の一例である。テールランプは、自動車のブレーキ操作等を行った際に、テールランプが点灯する形態であってよい。テールランプは、有機EL素子を保護する保護部材を有してよい。保護部材はある程度高い強度を有し、透明であれば材料は問わないが、ポリカーボネート等で構成されることが好ましい。ポリカーボネートにフランジカルボン酸誘導体、アクリロニトリル誘導体等を混ぜてよい。 FIG. 9 is a schematic view showing an automobile as an example of a moving body using the organic EL element of the present invention as a lamp. The automobile 1500 has a tail lamp 1501. A tail lamp is an example of a lamp. The tail lamp may be in a form in which the tail lamp is turned on when a brake operation or the like of a vehicle is performed. The tail lamp may have a protection member for protecting the organic EL element. The protective member has a high strength to some extent, and any material may be used as long as it is transparent. However, the protective member is preferably made of polycarbonate or the like. A polycarbonate may be mixed with a furandicarboxylic acid derivative, an acrylonitrile derivative, or the like.
 自動車1500は、機体1503、それに取り付けられている窓1502を有してよい。窓は、自動車の前後を確認するための窓でなければ、透明なディスプレイであってもよい。当該透明なディスプレイとして、本発明の有機EL素子を用いても良い。この場合、有機EL素子が有する電極等の構成材料は透明な部材で構成される。本発明の移動体は、自動車の他にも、船舶、ドローン、航空機等であってよい。移動体が有する灯具は、その位置を示すために発光する形態であってよい。 The automobile 1500 may have a fuselage 1503 and a window 1502 attached thereto. The window may be a transparent display as long as it is not a window for confirming the front and rear of the vehicle. The organic EL element of the present invention may be used as the transparent display. In this case, the constituent materials such as the electrodes of the organic EL element are formed of transparent members. The moving object of the present invention may be a ship, a drone, an aircraft, or the like, in addition to the automobile. The lamp included in the moving object may be in a form that emits light to indicate its position.
 (実施例1)
 <HOMO準位・LUMO準位の測定>
 下記に示す方法で、ホスト及びドーパント、中間層材料のHOMO準位、LUMO準位を測定した。結果を表1に示す。
(Example 1)
<Measurement of HOMO level / LUMO level>
The HOMO level and the LUMO level of the host, the dopant, and the intermediate layer material were measured by the following method. Table 1 shows the results.
 A)HOMO準位の測定
 アルミ基板上に各材料を用いて膜厚30nmの薄膜を形成し、この薄膜について、AC-3(理研計器社製)を用いてHOMO準位を測定した。結果を表1、表2に示す。
A) Measurement of HOMO Level A thin film having a thickness of 30 nm was formed on each aluminum substrate using each material, and the HOMO level of this thin film was measured using AC-3 (manufactured by Riken Keiki Co., Ltd.). The results are shown in Tables 1 and 2.
 B)LUMO準位の測定
 石英基板上に各材料を用いて膜厚30nmの薄膜を形成し、この薄膜について、分光光度計(「V-560」日本分光社製)を用い、被測定材料の光学バンドギャップ(吸収端)を求めた。その光学バンドギャップ値に前述のHOMO準位との和をLUMO準位とした。結果を表1、表2に示す。
B) Measurement of LUMO level A thin film having a thickness of 30 nm is formed on each quartz substrate using each material, and the thin film is measured for the material to be measured using a spectrophotometer (“V-560” manufactured by JASCO Corporation). The optical band gap (absorption edge) was determined. The sum of the optical band gap value and the HOMO level described above was taken as the LUMO level. The results are shown in Tables 1 and 2.
 さらに、表1、表2に、分子軌道計算法より求めた計算値を示す。実測値との比較から、HOMO準位及びLUMO準位には相関性があることが分かる。よって本実施例においては、計算値から求めたHOMO準位及びLUMO準位の数値を用いて素子結果を考察する。尚、以下の表中においては、HOMO準位及びLUMO準位をそれぞれ「HOMO」、「LUMO」と記す。 Further, Tables 1 and 2 show the calculated values obtained by the molecular orbital calculation method. From the comparison with the actually measured values, it is understood that the HOMO level and the LUMO level have a correlation. Therefore, in this embodiment, the device results are considered using the numerical values of the HOMO level and the LUMO level obtained from the calculated values. In the tables below, the HOMO level and the LUMO level are referred to as “HOMO” and “LUMO”, respectively.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 (実施例2)
 本実施例では、基板上に陽極、正孔注入層、正孔輸送層、電子ブロッキング層、第一発光層、中間層、第二発光層、正孔ブロッキング層、電子輸送層、電子注入層、陰極が順次形成されたトップエミッション型構造の有機EL素子を作製した。具体的には、先ず、ガラス基板上に、スパッタリング法でTiを40nm成膜し、フォトリソグラフィ技術を用いてパターニングし、陽極を形成した。尚、この時、陽極と陰極との対向面積が3mmとなるようにした。続いて、真空蒸着装置(アルバック社製)に洗浄済みの電極までを形成した上記基板と材料を取り付け、1.33×10-4Pa(1×10-6Torr)まで排気した後、UV/オゾン洗浄を施した。その後、下記表3に示される層構成で各層の成膜を行った。
(Example 2)
In the present embodiment, an anode, a hole injection layer, a hole transport layer, an electron blocking layer, a first light emitting layer, an intermediate layer, a second light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, An organic EL device having a top emission structure in which cathodes were sequentially formed was manufactured. Specifically, first, a 40 nm-thick Ti film was formed on a glass substrate by a sputtering method, and was patterned using a photolithography technique to form an anode. At this time, the facing area between the anode and the cathode was set to 3 mm 2 . Subsequently, the above-described substrate and the material on which the electrodes having been cleaned were formed were attached to a vacuum evaporation apparatus (manufactured by ULVAC, Inc.), and the material was evacuated to 1.33 × 10 −4 Pa (1 × 10 −6 Torr). Ozone cleaning was performed. Thereafter, each layer was formed with the layer configuration shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 電子注入層を形成した後、スパッタリング法でITOを500nm成膜し、陰極を形成した。その後、基板をグローブボックスに移し、窒素雰囲気中で乾燥剤を入れたガラスキャップにより封止し、有機EL素子を得た。 (4) After forming the electron injection layer, 500 nm of ITO was formed by a sputtering method to form a cathode. Thereafter, the substrate was transferred to a glove box, and sealed with a glass cap containing a desiccant in a nitrogen atmosphere to obtain an organic EL device.
 得られた有機EL素子に電圧印加装置を接続し、その特性を評価した。電流電圧特性をヒューレッドパッカード社製の微小電流計「4140B」で測定し、色度の評価はトプコン製「SR-3」を用いて行った。発光輝度は、トプコン社製「BM7」で測定した。1000cd/m表示時の効率、電圧、及びCIE色度座標はそれぞれ6.4cd/A、3.2V、(0.36、0.36)であり、高効率で良好な有機EL素子であった。 A voltage application device was connected to the obtained organic EL device, and its characteristics were evaluated. The current-voltage characteristics were measured with a microammeter “4140B” manufactured by Hewlett-Packard Company, and the chromaticity was evaluated using “SR-3” manufactured by Topcon. The emission luminance was measured with “BM7” manufactured by Topcon Corporation. The efficiency, voltage, and CIE chromaticity coordinates at the time of display of 1000 cd / m 2 are 6.4 cd / A, 3.2 V, and (0.36, 0.36), respectively. Was.
 次に、低電流密度(0.01mA/cm)における発光スペクトルの評価を行った。赤発光ドーパント由来の発光スペクトルのピーク高さ1.0とした時に、青発光ドーパント及び緑発光ドーパントのそれぞれのピーク高さを評価した。ピーク高さが0.1未満の場合「×」、ピーク高さが0.1以上0.5未満の場合「△」、ピーク高さが0.5以上の場合「○」とした。即ち、青発光と緑発光のピーク高さが十分に高い場合には、低電流密度、つまり低輝度においても、良好な白発光を得ることができると言える。その結果を表4に示す。 Next, the emission spectrum at a low current density (0.01 mA / cm 2 ) was evaluated. When the peak height of the emission spectrum derived from the red emission dopant was set to 1.0, the respective peak heights of the blue emission dopant and the green emission dopant were evaluated. "X" when the peak height was less than 0.1, "△" when the peak height was 0.1 or more and less than 0.5, and "○" when the peak height was 0.5 or more. That is, when the peak heights of blue light emission and green light emission are sufficiently high, it can be said that good white light emission can be obtained even at a low current density, that is, at a low luminance. Table 4 shows the results.
 さらに、初期輝度2000cd/mでの連続駆動試験を行い、100時間経過後の輝度の劣化率を測定した。その結果を表4に示す。 Further, a continuous driving test was performed at an initial luminance of 2000 cd / m 2 , and the luminance deterioration rate after 100 hours had elapsed was measured. Table 4 shows the results.
 (実施例3乃至6、比較例1乃至3)
 実施例2の第一発光層及び中間層、第二発光層を、表4に示される化合物に変更する以外は、実施例2と同様にして、有機EL素子を作製した。得られた有機EL素子について、実施例2と同様にその特性を測定・評価した。結果を表4に示す。
(Examples 3 to 6, Comparative Examples 1 to 3)
An organic EL device was produced in the same manner as in Example 2, except that the first light emitting layer, the intermediate layer, and the second light emitting layer of Example 2 were changed to the compounds shown in Table 4. The characteristics of the obtained organic EL device were measured and evaluated in the same manner as in Example 2. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実施例2乃至7に示されるように、本発明の有機EL素子においては、優れた耐久特性と、低輝度域における赤・緑・青のバランスのよい白発光を確認することができた。一方で、比較例1においてはバランスの良い白発光を確認することができたが、耐久特性に優れなかった。これは中間層のHOMO準位が小さいこと、さらに中間層材料がHT7(アミン化合物)であり、炭化水素ではないことに起因する。また比較例2では、耐久低下が確認された。これは中間層材料が炭化水素ではないことに起因する。さらに比較例3では、バランスの良い発光を確認することができなかった。これは、中間層が存在しないため、第二発光層(青発光層)から第一発光層(赤・緑発光層)へとエネルギー移動しているためと考えられる。 {Circle around (2)} As shown in Examples 2 to 7, in the organic EL device of the present invention, excellent durability characteristics and white light emission with a good balance of red, green, and blue in a low luminance range could be confirmed. On the other hand, in Comparative Example 1, white light emission with good balance could be confirmed, but the durability was not excellent. This is because the HOMO level of the intermediate layer is small and the material of the intermediate layer is HT7 (amine compound), not hydrocarbon. In Comparative Example 2, a decrease in durability was confirmed. This is due to the fact that the interlayer material is not a hydrocarbon. Further, in Comparative Example 3, light emission with good balance could not be confirmed. This is presumably because energy is transferred from the second light emitting layer (blue light emitting layer) to the first light emitting layer (red / green light emitting layer) because the intermediate layer is not present.
 (実施例8乃至11、比較例4)
 実施例2の第一発光層及び中間層、第二発光層を、表5に示される化合物、膜厚、濃度に適宜変更する以外は、実施例1と同様にして、有機EL素子を作製した。得られた有機EL素子について、実施例1と同様にその特性を測定・評価した。結果を表5に示す。
(Examples 8 to 11, Comparative Example 4)
An organic EL device was produced in the same manner as in Example 1, except that the first light emitting layer, the intermediate layer, and the second light emitting layer of Example 2 were appropriately changed to the compounds, film thicknesses, and concentrations shown in Table 5. . The characteristics of the obtained organic EL device were measured and evaluated in the same manner as in Example 1. Table 5 shows the results.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 (実施例12乃至14)
 実施例2の第一発光層/中間層/第二発光層を、表6に示されるように第一発光層/中間層/第二発光層/第三発光層の積層構成に変更し、化合物と濃度を表6に示すように変更する以外は、実施例2と同様にして、有機EL素子を作製した。但し膜厚は第一発光層/中間層/第二発光層/第三発光層=10nm/5nm/10nm/5nmである。得られた有機EL素子について、実施例2と同様にその特性を測定・評価した。結果を表7に示す。
(Examples 12 and 14)
The first light-emitting layer / intermediate layer / second light-emitting layer of Example 2 was changed to a first light-emitting layer / intermediate layer / second light-emitting layer / third light-emitting layer as shown in Table 6 to obtain a compound. An organic EL device was produced in the same manner as in Example 2, except that the concentration and the concentration were changed as shown in Table 6. However, the thickness is 10 nm / 5 nm / 10 nm / 5 nm = first light emitting layer / intermediate layer / second light emitting layer / third light emitting layer. The characteristics of the obtained organic EL device were measured and evaluated in the same manner as in Example 2. Table 7 shows the results.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 実施例8乃至14にあるように、本発明の有機EL素子においては、優れた耐久特性と、低輝度域における赤・緑・青のバランスの良い白発光を確認することができた。一方で、比較例4では、バランスの良い発光を確認することができなかった。これは、中間層が存在しないため、第一発光層(青発光層)から第二発光層(赤緑発光層)へとエネルギー移動しているためである。 As shown in Examples 8 to 14, in the organic EL device of the present invention, excellent durability characteristics and white light emission with a good balance of red, green, and blue in a low luminance range could be confirmed. On the other hand, in Comparative Example 4, light emission with good balance could not be confirmed. This is because energy is transferred from the first light emitting layer (blue light emitting layer) to the second light emitting layer (red green light emitting layer) because there is no intermediate layer.
 (実施例15)
 本実施例では、基板上に、陽極、正孔注入層、電子ブロッキング層、正孔輸送層、第一発光層、中間層、第二発光層、第三発光層、正孔ブロック層、電子輸送層、電子注入層、陰極が順次形成されたボトムエミッション型構造の有機EL素子を作製した。具体的には、先ずガラス基板上にITOを成膜し、所望のパターニング加工を施すことによりITO電極(陽極)を形成した。この時、ITO電極の膜厚を100nmとした。次に、1.33×10-4Paの真空チャンバー内における抵抗加熱による真空蒸着を行って、上記ITO電極の上に、下記表8に示す有機化合物層及び陰極を連続成膜した。尚、この時、陽極と陰極との対向面積が3mmとなるようにした。
(Example 15)
In this embodiment, an anode, a hole injection layer, an electron blocking layer, a hole transport layer, a first light emitting layer, an intermediate layer, a second light emitting layer, a third light emitting layer, a hole blocking layer, an electron transport layer An organic EL device having a bottom emission structure in which a layer, an electron injection layer, and a cathode were sequentially formed was manufactured. Specifically, first, an ITO film was formed on a glass substrate, and a desired patterning process was performed to form an ITO electrode (anode). At this time, the thickness of the ITO electrode was set to 100 nm. Next, vacuum deposition was performed by resistance heating in a 1.33 × 10 −4 Pa vacuum chamber, and an organic compound layer and a cathode shown in Table 8 below were continuously formed on the ITO electrode. At this time, the facing area between the anode and the cathode was set to 3 mm 2 .
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 そして、基板をグローブボックスに移し、窒素雰囲気中で乾燥剤を入れたガラスキャップにより封止し、有機EL素子を得た。得られた有機EL素子について、実施例2と同様に素子の特性を測定・評価した。その結果を表9に示す。 Then, the substrate was transferred to a glove box, and sealed with a glass cap containing a desiccant in a nitrogen atmosphere to obtain an organic EL device. The characteristics of the obtained organic EL device were measured and evaluated in the same manner as in Example 2. Table 9 shows the results.
 (実施例16乃至17、比較例5乃至7)
 実施例15の第一発光層/中間層/第二発光層/第三発光層を、表9に示される化合物に変更する以外は、実施例15と同様の方法により有機EL素子を作製した。得られた有機EL素子について実施例2と同様に素子の特性を測定・評価した。測定の結果を表10に示す。
(Examples 16 and 17, Comparative Examples 5 and 7)
An organic EL device was produced in the same manner as in Example 15 except that the first light emitting layer / intermediate layer / second light emitting layer / third light emitting layer of Example 15 were changed to the compounds shown in Table 9. The characteristics of the obtained organic EL device were measured and evaluated in the same manner as in Example 2. Table 10 shows the measurement results.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 実施例15乃至17にあるように、本発明の有機EL素子においては、優れた耐久特性とバランスのよい白発光を確認することができた。一方で、比較例5においてはバランスの良い白発光を確認することができたが、耐久特性に優れなかった。これは中間層のHOMO準位が小さいことに起因する。また比較例6では、耐久低下が確認された。これは青発光層が電子トラップ性でないことに起因する。さらに比較例7では、バランスの良い発光を確認することができなかった。これは、中間層のS準位が低いため、第二発光層(青発光層)から第一発光層又は第三発光層(赤又は緑発光層)へとエネルギー移動しているためと考えられる。 As in Examples 15 to 17, in the organic EL device of the present invention, excellent durability characteristics and well-balanced white light emission could be confirmed. On the other hand, in Comparative Example 5, white light emission with good balance could be confirmed, but the durability was not excellent. This is due to the small HOMO level of the intermediate layer. In Comparative Example 6, a decrease in durability was confirmed. This is because the blue light emitting layer is not electron trapping. Furthermore, in Comparative Example 7, light emission with good balance could not be confirmed. This is because the intermediate layer has a low S 1 level, and energy is transferred from the second light emitting layer (blue light emitting layer) to the first light emitting layer or the third light emitting layer (red or green light emitting layer). Can be
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the following claims are appended to make the scope of the present invention public.
 本願は、2018年7月5日提出の日本国特許出願特願2018-128017と2019年6月25日提出の日本国特許出願特願2019-117143を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2018-128017 filed on July 5, 2018 and Japanese Patent Application No. 2019-117143 filed on June 25, 2019, The entire contents of the description are incorporated herein.

Claims (25)

  1.  少なくとも、陽極と、第一発光層と、中間層と、第二発光層と、陰極とをこの順に備え、前記中間層は、前記第一発光層と前記第二発光層との間に配置されている有機EL素子であって、
     前記第一発光層は、第一ホストと第一ドーパントとを含有し、
     前記第二発光層は、第二ホストと第二ドーパントとを含有し、
     前記中間層は、芳香族炭化水素化合物を含有し、
     前記第一ホストと前記第一ドーパントとの間で、下記(a)の関係が成り立ち、
     前記第二ホストと前記第二ドーパントとの間で、下記(b)の関係が成り立ち、
     前記中間層材料と前記第一ホストとの間で、下記(c)の関係が成り立つことを特徴とする有機EL素子。
    (a)LUMO(H1)>LUMO(D1)
    (b)LUMO(H2)>LUMO(D2)
    (c)HOMO(H1)≧HOMO(IL)
    〔上記(a)乃至(c)において、LUMO(H1)、LUMO(D1)、LUMO(H2)、LUMO(D2)は、それぞれ、第一ホスト、第一ドーパント、第二ホスト、第二ドーパントのそれぞれのLUMOのエネルギー準位を表し、HOMO(H1)、HOMO(IL)は、それぞれ、第一ホスト、中間層材料のHOMOのエネルギー準位を表す。〕
    At least an anode, a first light emitting layer, an intermediate layer, a second light emitting layer, and a cathode are provided in this order, and the intermediate layer is disposed between the first light emitting layer and the second light emitting layer. Organic EL element,
    The first light-emitting layer contains a first host and a first dopant,
    The second light-emitting layer contains a second host and a second dopant,
    The intermediate layer contains an aromatic hydrocarbon compound,
    The following relationship (a) holds between the first host and the first dopant,
    The following relationship (b) holds between the second host and the second dopant,
    An organic EL device wherein the following relationship (c) is established between the intermediate layer material and the first host.
    (A) LUMO (H1)> LUMO (D1)
    (B) LUMO (H2)> LUMO (D2)
    (C) HOMO (H1) ≧ HOMO (IL)
    [In the above (a) to (c), LUMO (H1), LUMO (D1), LUMO (H2), and LUMO (D2) are the first host, the first dopant, the second host, and the second dopant, respectively. HOMO (H1) and HOMO (IL) represent the energy levels of the HOMO of the first host and the intermediate layer material, respectively. ]
  2.  前記中間層の最低励起一重項のエネルギー準位が、2.58eV以上であることを特徴とする請求項1に記載の有機EL素子。 The organic EL device according to claim 1, wherein the energy level of the lowest excited singlet of the intermediate layer is 2.58 eV or more.
  3.  前記芳香族炭化水素化合物は、ベンゼン、ナフタレン、フルオレン、ベンゾフルオレン、フェナントレン、アントラセン、クリセン、トリフェニレン、ピレン、フルオランテン、ベンゾフルオランテンから選ばれる一種以上の芳香族炭化水素が結合することで分子構造が構成される化合物であることを特徴とする請求項1又は2に記載の有機EL素子。 The aromatic hydrocarbon compound has a molecular structure in which one or more aromatic hydrocarbons selected from benzene, naphthalene, fluorene, benzofluorene, phenanthrene, anthracene, chrysene, triphenylene, pyrene, fluoranthene, and benzofluoranthene are bonded. 3. The organic EL device according to claim 1, wherein
  4.  前記第一ホスト及び前記第二ホストは炭化水素であることを特徴とする請求項1又は2に記載の有機EL素子。 3. The organic EL device according to claim 1, wherein the first host and the second host are hydrocarbons.
  5.  前記第一ドーパント及び前記第二ドーパントが、蛍光を発光するドーパントであることを特徴とする請求項1乃至4のいずれか一項に記載の有機EL素子。 The organic EL device according to any one of claims 1 to 4, wherein the first dopant and the second dopant are fluorescent dopants.
  6.  前記第一ドーパント及び前記第二ドーパントはフルオランテン骨格を有し、置換アミノ基を有しない化合物であることを特徴とする請求項1乃至5のいずれか一項に記載の有機EL素子。 6. The organic EL device according to claim 1, wherein the first dopant and the second dopant are compounds having a fluoranthene skeleton and having no substituted amino group. 7.
  7.  前記第二発光層と前記陰極との間に、前記第二発光層に隣接して第三発光層を有し、
     前記第三発光層は、第三ホストと蛍光発光する第三ドーパントとを含有し、
     前記第三ホストと前記第三ドーパントとの間で、下記(d)の関係が成り立つことを特徴とする請求項1乃至6のいずれか一項に記載の有機EL素子。
    (d)LUMO(H3)>LUMO(D3)
    〔上記(d)において、LUMO(H3)、LUMO(D3)は、それぞれ、第三ホスト、第三ドーパントのLUMOのエネルギー準位を表す。〕
    A third light emitting layer is provided between the second light emitting layer and the cathode, adjacent to the second light emitting layer,
    The third light-emitting layer contains a third host and a third dopant that emits fluorescence,
    The organic EL device according to any one of claims 1 to 6, wherein the following relationship (d) is established between the third host and the third dopant.
    (D) LUMO (H3)> LUMO (D3)
    [In the above (d), LUMO (H3) and LUMO (D3) represent the energy levels of the LUMO of the third host and the third dopant, respectively. ]
  8.  前記第一ドーパントは赤発光、前記第二ドーパント、前記第三ドーパントは一方が青発光で他方が緑発光であることを特徴とする請求項7に記載の有機EL素子。 8. The organic EL device according to claim 7, wherein the first dopant emits red light, the second dopant, and the third dopant emit blue light while the other emits green light.
  9.  前記陽極と前記第一発光層との間に、前記第一発光層に隣接して第三発光層を有し、
     前記第三発光層は、第三ホストと蛍光発光する第三ドーパントを含有し、
     前記第三ホストと前記第三ドーパントとの間で、下記(d)の関係が成り立つことを特徴とする請求項1乃至6のいずれか一項に記載の有機EL素子。
    (d)LUMO(H3)>LUMO(D3)
    〔上記(d)において、LUMO(H3)、LUMO(D3)は、それぞれ、第三ホスト、第三ドーパントのLUMOのエネルギー準位を表す。〕
    Between the anode and the first light emitting layer, having a third light emitting layer adjacent to the first light emitting layer,
    The third light-emitting layer contains a third host and a third dopant that emits fluorescence,
    The organic EL device according to any one of claims 1 to 6, wherein the following relationship (d) is established between the third host and the third dopant.
    (D) LUMO (H3)> LUMO (D3)
    [In the above (d), LUMO (H3) and LUMO (D3) represent the energy levels of the LUMO of the third host and the third dopant, respectively. ]
  10.  前記第一ドーパントは緑発光、前記第二ドーパントは青発光、前記第三ドーパントは赤発光であることを特徴とする請求項9に記載の有機EL素子。 10. The organic EL device according to claim 9, wherein the first dopant emits green light, the second dopant emits blue light, and the third dopant emits red light.
  11.  前記第一発光層は、蛍光発光する第三ドーパントを含有し、
     前記第一ホストと前記第三ドーパントとの間で、下記(e)の関係が成り立つことを特徴とする請求項1乃至6のいずれか一項に記載の有機EL素子。
    (e)LUMO(H1)>LUMO(D3)
    〔上記(e)において、LUMO(D3)は、第三ドーパントのLUMOのエネルギー準位を表す。〕
    The first light-emitting layer contains a third dopant that emits fluorescence,
    The organic EL device according to any one of claims 1 to 6, wherein the following relationship (e) is established between the first host and the third dopant.
    (E) LUMO (H1)> LUMO (D3)
    [In the above (e), LUMO (D3) represents the energy level of LUMO of the third dopant. ]
  12.  前記第二ドーパントは青発光、前記第一ドーパント及び前記第三ドーパントの一方は赤発光で他方が緑発光であることを特徴とする請求項11に記載の有機EL素子。 The organic EL device according to claim 11, wherein the second dopant emits blue light, one of the first dopant and the third dopant emits red light, and the other emits green light.
  13.  前記第三ホストは、炭化水素であることを特徴とする請求項7乃至12のいずれか一項に記載の有機EL素子。 The organic EL device according to any one of claims 7 to 12, wherein the third host is a hydrocarbon.
  14.  前記第三ドーパントは、フルオランテン骨格を有し、置換アミノ基を有しない化合物であることを特徴とする請求項7乃至13のいずれか一項に記載の有機EL素子。 The organic EL device according to any one of claims 7 to 13, wherein the third dopant is a compound having a fluoranthene skeleton and having no substituted amino group.
  15.  前記第一ホストと前記第一ドーパントとの間で、下記(f)の関係が成り立つことを特徴とする請求項1乃至14のいずれか一項に記載の有機EL素子。
    (f)HOMO(H1)<HOMO(D1)
    〔上記(f)において、HOMO(H1)、HOMO(D1)は、それぞれ、第一ホスト、第一ドーパントのHOMOのエネルギー準位を表す。〕
    The organic EL device according to any one of claims 1 to 14, wherein the following relationship (f) is established between the first host and the first dopant.
    (F) HOMO (H1) <HOMO (D1)
    [In the above (f), HOMO (H1) and HOMO (D1) represent the energy levels of the HOMO of the first host and the first dopant, respectively. ]
  16.  前記第二ホストと前記第二ドーパントとの間で、下記(g)の関係が成り立つことを特徴とする請求項1乃至15のいずれか一項に記載の有機EL素子。
    (g)HOMO(H2)>HOMO(D2)
    〔上記(g)において、HOMO(H2)、HOMO(D2)は、それぞれ、第二ホスト、第二ドーパントのHOMOのエネルギー準位を表す。〕
    The organic EL device according to any one of claims 1 to 15, wherein the following relationship (g) is established between the second host and the second dopant.
    (G) HOMO (H2)> HOMO (D2)
    [In the above (g), HOMO (H2) and HOMO (D2) represent the energy levels of the HOMO of the second host and the second dopant, respectively. ]
  17.  前記第一ホストと前記第一ドーパントとの間で、下記(h)の関係が成り立つことを特徴とする請求項1乃至16のいずれか一項に記載の有機EL素子。
    (h)LUMO(H1)-LUMO(D1)>HOMO(D1)-HOMO(H1)
    〔上記(h)において、HOMO(D1)は、第一ドーパントのHOMOのエネルギー準位を表す。〕
    17. The organic EL device according to claim 1, wherein the following relationship (h) is satisfied between the first host and the first dopant.
    (H) LUMO (H1) -LUMO (D1)> HOMO (D1) -HOMO (H1)
    [In the above (h), HOMO (D1) represents the energy level of the HOMO of the first dopant. ]
  18.  複数の画素を有する表示装置であって、前記画素は、請求項1乃至17のいずれか一項に記載の有機EL素子と、前記有機EL素子に接続されている能動素子とを有することを特徴とする表示装置。 A display device having a plurality of pixels, wherein the pixels include the organic EL element according to any one of claims 1 to 17, and an active element connected to the organic EL element. Display device.
  19.  フレキシブル基板と、前記フレキシブル基板の上に配置されている表示部とを有する折り曲げ可能な表示装置であって、前記表示部は、請求項1乃至17のいずれか一項に記載の有機EL素子と、前記有機EL素子に接続されている能動素子とを有することを特徴とする表示装置。 A foldable display device comprising: a flexible substrate; and a display unit disposed on the flexible substrate, wherein the display unit includes the organic EL element according to claim 1. And an active element connected to the organic EL element.
  20.  複数のレンズを有する光学部と、前記光学部を通過した光を受光する撮像素子と、画像を表示する表示部と、を有する撮像装置であって、前記表示部は、前記撮像素子が撮像した画像を表示する表示部であり、前記表示部は請求項1乃至17のいずれか一項に記載の有機EL素子を有することを特徴とする撮像装置。 An optical device having a plurality of lenses, an image sensor that receives light that has passed through the optical unit, and a display unit that displays an image, wherein the display unit has an image captured by the image sensor. An imaging device, comprising: a display unit for displaying an image, wherein the display unit includes the organic EL element according to claim 1.
  21.  表示部と、通信部とを有する通信機器であって、前記表示部は、請求項1乃至17のいずれか一項に記載の有機EL素子を有することを特徴とする通信機器。 18. A communication device having a display unit and a communication unit, wherein the display unit includes the organic EL element according to claim 1.
  22.  光源と、光拡散部と、を有する照明装置であって、前記光源は、請求項1乃至17のいずれか一項に記載の有機EL素子を有することを特徴とする照明装置。 A lighting device having a light source and a light diffusion unit, wherein the light source includes the organic EL element according to any one of claims 1 to 17.
  23.  光源を有する照明装置であって、前記光源の光出射側に光学フィルムを有し、前記光源が請求項1乃至17のいずれか一項に記載の有機EL素子を有することを特徴とする照明装置。 A lighting device having a light source, comprising: an optical film on a light emitting side of the light source; wherein the light source includes the organic EL element according to claim 1. .
  24.  請求項1乃至17のいずれか一項に記載の有機EL素子と、前記有機EL素子を保護する保護部材とを有することを特徴とする灯具。 A lamp comprising the organic EL element according to any one of claims 1 to 17, and a protection member for protecting the organic EL element.
  25.  機体と、前記機体に設けられた灯具とを有する移動体であって、前記灯具は、請求項1乃至17のいずれか一項に記載の有機EL素子を有することを特徴とする移動体。 移動 A moving body having a body and a lamp provided on the body, wherein the lamp has the organic EL element according to any one of claims 1 to 17.
PCT/JP2019/025944 2018-07-05 2019-06-28 Organic el element and display device, image pickup device, communication equipment, illumination device, lamp fitting, and mobile body using said organic el element WO2020009039A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980045371.2A CN112385315B (en) 2018-07-05 2019-06-28 Organic EL device, and display apparatus, image pickup apparatus, communication apparatus, illumination apparatus, lamp, and moving body using the same
US17/139,848 US20210126214A1 (en) 2018-07-05 2020-12-31 Organic el device as well as display apparatus, image pickup apparatus, communication apparatus, lighting apparatus, luminaire, and moving body each including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018128017 2018-07-05
JP2018-128017 2018-07-05
JP2019-117143 2019-06-25
JP2019117143A JP7336277B2 (en) 2018-07-05 2019-06-25 Organic EL elements and display devices using the same, imaging devices, communication devices, lighting devices, lamps, mobile objects

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/139,848 Continuation US20210126214A1 (en) 2018-07-05 2020-12-31 Organic el device as well as display apparatus, image pickup apparatus, communication apparatus, lighting apparatus, luminaire, and moving body each including the same

Publications (1)

Publication Number Publication Date
WO2020009039A1 true WO2020009039A1 (en) 2020-01-09

Family

ID=69060864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025944 WO2020009039A1 (en) 2018-07-05 2019-06-28 Organic el element and display device, image pickup device, communication equipment, illumination device, lamp fitting, and mobile body using said organic el element

Country Status (1)

Country Link
WO (1) WO2020009039A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272144A (en) * 2008-05-07 2009-11-19 Seiko Epson Corp Light-emitting element, display, and electronic equipment
WO2010134350A1 (en) * 2009-05-22 2010-11-25 出光興産株式会社 Organic electroluminescent element
JP2011151011A (en) * 2009-12-22 2011-08-04 Seiko Epson Corp Light emitting element, display device, and electronic equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272144A (en) * 2008-05-07 2009-11-19 Seiko Epson Corp Light-emitting element, display, and electronic equipment
WO2010134350A1 (en) * 2009-05-22 2010-11-25 出光興産株式会社 Organic electroluminescent element
JP2011151011A (en) * 2009-12-22 2011-08-04 Seiko Epson Corp Light emitting element, display device, and electronic equipment

Similar Documents

Publication Publication Date Title
JP7059094B2 (en) Organic EL element, display device having it, image pickup device, lighting device, mobile body
US11251375B2 (en) While organic EL element
JP2019186521A (en) Organic light-emitting element, display device, imaging apparatus, and lighting device
US10790465B2 (en) White organic EL element
JP2023093576A (en) Organic light-emitting element, display device including the same, imaging apparatus, lighting device, mobile body
US11411193B2 (en) Organic light emitting element, comprising at least first and second light emitting layers with satisfying lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) relations
US20210126214A1 (en) Organic el device as well as display apparatus, image pickup apparatus, communication apparatus, lighting apparatus, luminaire, and moving body each including the same
US11917844B2 (en) Organic EL element, and display apparatus, illumination apparatus, and moving object including the same
JP7401212B2 (en) white organic EL element
JP2023107949A (en) Organic light-emitting element, display device including the same, imaging apparatus, lighting device, mobile body
JP7379097B2 (en) Organic compounds and organic light emitting devices
WO2020009039A1 (en) Organic el element and display device, image pickup device, communication equipment, illumination device, lamp fitting, and mobile body using said organic el element
JP2021024800A (en) Organic compound and organic light-emitting device
WO2023120218A1 (en) Organic light emitting element
US11964930B2 (en) Organic compound and organic light-emitting element
WO2024034343A1 (en) Organic light emitting element
JP2023128838A (en) Organic light-emitting element
JP2015079882A (en) Organic light-emitting device and display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830011

Country of ref document: EP

Kind code of ref document: A1