WO2020008879A1 - (meth)acrylate-terminated polycarbonate oligomer - Google Patents

(meth)acrylate-terminated polycarbonate oligomer Download PDF

Info

Publication number
WO2020008879A1
WO2020008879A1 PCT/JP2019/024236 JP2019024236W WO2020008879A1 WO 2020008879 A1 WO2020008879 A1 WO 2020008879A1 JP 2019024236 W JP2019024236 W JP 2019024236W WO 2020008879 A1 WO2020008879 A1 WO 2020008879A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
polycarbonate oligomer
group
formula
Prior art date
Application number
PCT/JP2019/024236
Other languages
French (fr)
Japanese (ja)
Inventor
充孝 尾▲崎▼
健 須藤
Original Assignee
本州化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本州化学工業株式会社 filed Critical 本州化学工業株式会社
Priority to KR1020207037565A priority Critical patent/KR102637355B1/en
Priority to JP2020528783A priority patent/JP7253548B2/en
Priority to CN201980043299.XA priority patent/CN112424259B/en
Publication of WO2020008879A1 publication Critical patent/WO2020008879A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/42Chemical after-treatment

Definitions

  • the present invention relates to a terminal (meth) acrylate polycarbonate oligomer having good solvent solubility.
  • Resin materials are widely used as engineering plastics because of their advantages such as light weight, low cost, and excellent workability.However, their surface hardness, scratch resistance, and chemical resistance are inferior to glass and metal. Therefore, it is not used as a substitute material as it is.
  • a hard coat treatment is performed to form a resin thin film of a material different from the base resin on the resin surface, protect the base resin from external factors, and modify the surface. Is commonly done.
  • a system is used in which a hard coat agent is applied to the resin surface of the base material, dried, and then irradiated with radiation such as an electron beam or ultraviolet rays (UV) as required, and then cured.
  • UV-curable hard coat agents using UV-curable resins can be processed at lower temperatures and in a shorter time than conventional hard coat agents. I have.
  • a polyfunctional (meth) acrylic monomer such as pentaerythritol (meth) acrylate is used as a main component. What has high compatibility is demanded.
  • the present invention has been made in view of the above circumstances, and has been described as a raw material of a UV-curable (meth) acrylic resin used for a UV-curable hard coat agent and the like, which is compatible with a polyfunctional (meth) acrylic monomer.
  • Another object of the present invention is to provide a terminal (meth) acrylate polycarbonate oligomer having excellent solvent solubility.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, in the terminal (meth) acrylate polycarbonate represented by the following formula (1) and / or (2), the weight average molecular weight (Mw) is specific.
  • Mw weight average molecular weight
  • the present inventors have found that oligomers within the range have excellent compatibility with polyfunctional (meth) acrylic monomers and good solvent solubility, and have completed the present invention.
  • a terminal (meth) acrylate polycarbonate oligomer represented by the following formulas (1) and / or (2) and having a weight average molecular weight (Mw) in a range of 500 or more and 10,000 or less.
  • R 1 to R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, 8 represents an alkoxy group or an aromatic hydrocarbon group having 6 to 12 carbon atoms
  • R 5 each independently represents a hydrogen atom or a methyl group
  • R 6 and R 7 each independently represent hydrogen.
  • X represents an atom or an alkyl group having 1 to 14 carbon atoms
  • X represents an alkylene group having 2 to 4 carbon atoms
  • n is an integer of 1 or more, provided that R 6 and R 7 have the same number of carbon atoms. Is not more than 14, and two oxygen atoms bonded to X do not bond to the same carbon atom of X.
  • the terminal (meth) acrylate polycarbonate oligomer according to the present invention has a weight average molecular weight (Mw) in the range of 500 or more and 10,000 or less, so that it can be used with a polyfunctional (meth) acrylic monomer such as pentaerythritol-based (meth) acrylate. Since it has excellent compatibility and good solvent solubility, it is optimal as a raw material for a UV-curable hard coat agent, and exhibits an industrially advantageous effect that a smooth coating film can be formed by UV curing.
  • Mw weight average molecular weight
  • Example 1 is a 1 H-NMR spectrum chart of a terminal (meth) acrylate polycarbonate oligomer (1c) synthesized in Example 1.
  • 5 is a 1 H-NMR spectrum chart of a terminal (meth) acrylate polycarbonate oligomer (1d) synthesized in Example 2.
  • the terminal (meth) acrylate polycarbonate oligomer of the present invention is, as illustrated in the following reaction formula, a polycarbonate oligomer represented by the formula (A) and a (meth) acrylate agent such as (meth) acrylic acid chloride.
  • Mw weight average molecular weight
  • R 1 to R 7 , X, and n in the formula (A) are the same as those in the above formulas (1) and (2).
  • the alkyl group is preferably an alkyl group having 1 to 4 carbon atoms. It is a linear or branched alkyl group, and specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and an isobutyl group.
  • Such an alkyl group may have a substituent such as a phenyl group or an alkoxy group having 1 to 4 carbon atoms, as long as the effects of the present invention are not impaired.
  • the cycloalkyl group is preferably a cycloalkyl group having 5 to 7 carbon atoms.
  • a cyclohexyl group, a cyclopentyl group, a cycloheptyl group and the like can be mentioned.
  • Examples of such a cycloalkyl group include linear or branched alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 4 carbon atoms, and phenyl groups as long as the effects of the present invention are not impaired. And the like.
  • the alkoxy group is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms. It is a chain alkoxy group, and specific examples include a methoxy group and an ethoxy group.
  • Such an alkoxy group may have a substituent such as a phenyl group or an alkoxy group having 1 to 4 carbon atoms, as long as the effects of the present application are not impaired.
  • R 1 , R 2 , R 3 and R 4 is an aromatic hydrocarbon group having 6 to 12 carbon atoms
  • the aromatic hydrocarbon group is specifically, for example, phenyl And naphthyl groups.
  • an alkyl group having 1 to 4 carbon atoms and / or an alkoxy group having 1 to 4 carbon atoms is in a range of 1 to 3 as long as the effects of the present invention are not impaired. It may be substituted.
  • the position where the substituents of R 1 , R 2 , R 3 and R 4 are bonded is preferably ortho to the oxygen atom bonded to the benzene ring.
  • R 6 or R 7 is an alkyl group having 1 to 14 carbon atoms
  • the alkyl group is preferably a linear or branched chain having 1 to 12 carbon atoms.
  • Alkyl group specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, n-hexyl group, n-heptyl group , N-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group and the like.
  • the total number of carbon atoms of R 6 and R 7 must be 14 or less.
  • X is, specifically, an ethylene group, an n-propylene group, a propane-1,2-diyl group, an n-butylene group, a butane-1,3-diyl group, a butane-1, A 2-diyl group and a butane-2,3-diyl group, among which an ethylene group, an n-propylene group, a propane-1,2-diyl group and an n-butylene group are preferable, and an ethylene group, a propane-1,2 -Diyl group is more preferable, and ethylene group is particularly preferable.
  • polycarbonate oligomer represented by the formula (A) those produced by any conventionally known production method can be used. Specific examples include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer. Among them, it is industrially advantageous to use an interfacial polymerization method, a melt transesterification method, or a solid phase transesterification method of a prepolymer.
  • a melt transesterification method using no phosgene and a solid phase transesterification method of a prepolymer by a melt transesterification method are particularly preferable.
  • the above-mentioned production method is carried out using a dihydroxy compound represented by the following formula (B) and a carbonate ester-forming agent.
  • R 1 to R 4 , R 6 , R 7 and X in the formula (B) are the same as those in the above formulas (1) and (2).
  • dihydroxy compound represented by the formula (B) include, for example, bis (4- (2-hydroxyethoxy) phenyl) methane, 2,2-bis (4- (2-hydroxyethoxy) phenyl) Propane, 2,2-bis (4- (2-hydroxyethoxy) -3-methylphenyl) propane, 1,1-bis (4- (2-hydroxyethoxy) phenyl) ethane, 2,2-bis (4- (2-hydroxyethoxy) -4-methylpentane, 2,2-bis (4- (2-hydroxyethoxy) phenyl) butane, 1,1-bis (4- (2-hydroxyethoxy) phenyl) dodecane, etc. Is mentioned. In the polymerization reaction, such a dihydroxy compound may be used alone or as a mixture of two or more kinds at an arbitrary ratio.
  • the carbonate-forming agent to be reacted with the dihydroxy compound represented by the formula (B) include, for example, diaryl carbonate such as diphenyl carbonate, ditolyl carbonate, bis (m-cresyl) carbonate, dimethyl carbonate, diethyl
  • diaryl carbonate such as diphenyl carbonate, ditolyl carbonate, bis (m-cresyl) carbonate, dimethyl carbonate, diethyl
  • dialkyl carbonates such as carbonate and dicyclohexyl carbonate
  • alkylaryl carbonates such as methylphenyl carbonate, ethylphenyl carbonate and cyclohexylphenyl carbonate
  • diester carbonates such as dialkenyl carbonate such as divinyl carbonate, diisopropenyl carbonate and dipropenyl carbonate.
  • a dihalogenated carbonyl compound such as phosgene and the like, and triphosgene are also included.
  • diaryl carbonate is preferred
  • melt transesterification method As a method for producing the polycarbonate oligomer represented by the formula (A), a melt transesterification method will be described.
  • a method of the melt transesterification reaction is performed in the presence of a catalyst in an inert gas atmosphere at normal pressure or reduced pressure. The stirring is carried out while heating, and the formed phenol is distilled off.
  • the desired molecular weight and terminal hydroxyl group amount are adjusted by adjusting the mixing ratio of the dihydroxy compound represented by the formula (B) and the carbonate ester forming agent and the degree of reduced pressure during the transesterification reaction.
  • the polycarbonate oligomer represented can be obtained.
  • the mixing ratio of the dihydroxy compound represented by the formula (B) and the carbonate-forming agent is based on 1 mol of the dihydroxy compound represented by the formula (B).
  • the carbonic acid ester-forming agent is usually used in a molar amount of 0.2 to 1.0, preferably 0.25 to 0.95, more preferably 0.3 to 0.90.
  • a transesterification catalyst is used as needed in order to increase the reaction rate.
  • the transesterification catalyst is not particularly limited, and examples thereof include lithium, sodium, cesium hydroxides, carbonates, inorganic alkali metal compounds such as hydrogen carbonate compounds, alcoholates, and organic alkali metal compounds such as organic carboxylate.
  • alkaline earth metal compounds such as tetramethylboron
  • Basic boron compounds such as sodium salts, calcium salts, and magnesium salts such as tetraethylboron and butyltriphenylboron
  • trivalent phosphorus compounds such as triethylphosphine and tri-n-propylphosphine; or derived from these compounds
  • Basic phosphorus compounds such as quaternary phosphonium salts
  • Use of a basic ammonium compound such as tramethylammonium hydroxide,
  • alkali metal compounds are preferable, and cesium compounds such as cesium carbonate and cesium hydroxide are particularly preferable.
  • the amount of the catalyst used is within a range that does not cause a problem in the quality of the produced oligomer due to the catalyst residue, and a suitable addition amount varies depending on the type of the catalyst. ) Is usually 0.05 to 100 ⁇ mol, preferably 0.08 to 50 ⁇ mol, more preferably 0.1 to 20 ⁇ mol, and still more preferably 0.1 to 5 ⁇ mol, per 1 mol of the dihydroxy compound represented by the formula (1). .
  • the catalyst may be added as it is, or may be added after being dissolved in a solvent.
  • the solvent for example, a solvent that does not affect the reaction such as water and phenol is preferable.
  • the temperature is usually in the range of 120 to 360 ° C, preferably in the range of 150 to 280 ° C, and more preferably in the range of 180 to 260 ° C. If the reaction temperature is too low, the transesterification does not proceed, and if the reaction temperature is too high, side reactions such as decomposition proceed, which is not preferable.
  • the reaction is preferably performed under reduced pressure.
  • the reaction pressure is preferably a pressure at which the carbonate forming agent as a raw material cannot be distilled out of the system at the reaction temperature, and a by-product such as phenol can be distilled off. Under such reaction conditions, the reaction is usually completed in about 0.5 to 10 hours.
  • the terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) and / or (2) of the present invention comprises a polycarbonate oligomer represented by the formula (A) and (meth) It is obtained by reaction with a (meth) acrylate agent such as acrylic acid chloride.
  • a (meth) acrylate agent such as acrylic acid chloride.
  • the (meth) acrylic agent include acrylic acid chloride, methacrylic acid chloride, acrylic acid, methacrylic acid, and the like.
  • the amount of the (meth) acrylate agent used is determined based on the total terminal hydroxyl groups of the polycarbonate oligomer represented by the formula (A) when the (meth) acrylate polycarbonate oligomer having both ends is represented by the formula (1).
  • the (meth) acrylate is used usually in an amount of 1.0 to 2.5 moles, preferably 1.1 to 2.0 moles, and more preferably 1.15 to 1.5 moles.
  • a (meth) acrylate is usually added to all terminal hydroxyl groups of the polycarbonate oligomer represented by the formula (A).
  • a hydrogen chloride scavenger in combination.
  • any basic substance can be used.
  • the inorganic basic substance an alkali metal carbonate or bicarbonate can be used.
  • Tertiary amines can be used as the organic basic substance.
  • tertiary amines examples include trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tributylamine, N-methyl-diethylamine, N-ethyl-dimethylamine, N-ethyl-diamylamine, N, N- Aliphatic amines such as diisopropylethylamine, N, N-dimethyl-cyclohexylamine, N, N-diethyl-cyclohexylamine; aromatic amines such as N, N-dimethylaniline, N, N-diethylaniline; pyridine, picoline, N Heterocyclic amines such as N, N-dimethylaminopyridine; Fats such as 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene And cyclic amines.
  • the amount of the hydrogen chloride scavenger to be used is 0.8 to 10 moles, preferably 0.9 to 8 moles, particularly preferably 0.9 mole, relative to the moles of the (meth) acrylate agent usually used. Is about 1.0 to 7 times mol. If the amount of the hydrogen chloride scavenger is less than 0.8 times the number of moles of the (meth) acrylate, the generated hydrogen chloride cannot be completely captured, and the polycarbonate oligomer represented by the formula (A) as a raw material or the target substance cannot be used. There is a possibility that the terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) or (2) will be decomposed to lower the purity of the target product.
  • the solvent used may be any solvent that can uniformly mix the used raw materials and the like, and specifically, halogenated hydrocarbons such as methylene chloride, tetrahydrofuran, dioxane, Chlorobenzene and the like can be mentioned.
  • the amount of the solvent used is not particularly limited, but is usually 0.5 to 100 times by weight, preferably 1 to 50 times by weight, particularly preferably 2 to 10 times by weight, based on the polycarbonate oligomer represented by the formula (A). Weight times.
  • the (meth) acrylation reaction is carried out at a relatively low temperature, usually at -50 to 100 ° C, preferably at -30 to 80 ° C, particularly preferably at -15 to 60 ° C.
  • reaction temperature exceeds 100 ° C., a side reaction occurs, leading to a decrease in the yield of the target product.
  • the temperature is lower than -50 ° C., the reaction rate becomes slow and the required time is too long, which is not economical.
  • a reaction procedure a method in which a polycarbonate oligomer represented by the formula (A) and a (meth) acrylate are mixed in a solvent in advance and a hydrogen chloride scavenger is added thereto, )) And a hydrogen chloride scavenger in a solvent, and adding a (meth) acrylate to the mixture.
  • the hydrogen chloride scavenger or the (meth) acrylic agent to be added later may be used after being diluted with a solvent.
  • a solvent for example, hydroquinone, hydroquinone monomethyl ether, phenothiazine, 2,6-di-tert-butyl-4-methylphenol (BHT) and the like may be added as a polymerization inhibitor.
  • the acidic substance to be used is not particularly limited, but examples of the inorganic acidic substance include hydrochloric acid, sulfuric acid, and nitric acid, and examples of the organic acidic substance include, for example, formic acid, acetic acid, and propionic acid.
  • Carboxylic acids such as butyric acid; and sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid and p-toluenesulfonic acid.
  • an organic acidic substance having a low acidity is more preferable. After removing the hydrogen chloride scavenger, it is preferable to subsequently carry out water washing.
  • the obtained terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) and / or (2) is obtained as a precipitate by adding a poor solvent to a dissolved solution.
  • the poor solvent include an aliphatic alcohol solvent having 1 to 6 carbon atoms such as methanol, ethanol, and propanol, or a mixture of the aliphatic alcohol solvent and water.
  • N in the formulas (1a) to (1d) is an integer of 1 or more, and the weight average molecular weight (Mw) is in the range of 500 to 10,000.
  • Preferred compounds of the one-terminal (meth) acrylate polycarbonate oligomer represented by the formula (2) are as follows.
  • n is an integer of 1 or more, but the weight average molecular weight (Mw) is in the range of 500 or more and 10,000 or less.
  • the terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) and / or (2) of the present invention has a weight average molecular weight (Mw) in a range of 500 or more and 10,000 or less, and among them, 1,000 or more.
  • the range is preferably 8,000 or less, more preferably 2,000 or more and 6,000 or less. It is preferable that the weight average molecular weight (Mw) is within this range, since good solubility in an organic solvent can be obtained.
  • terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) and / or (2) of the present invention is used as a component of a UV-curable hard coat agent, a pentaerythritol-based Since it has excellent compatibility with polyfunctional (meth) acrylic monomers such as (meth) acrylate, it has an industrially advantageous effect that a smooth coating film can be formed by UV curing.
  • the terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) and / or (2) of the present invention can be used as a raw material for a 3D printer or a heat source such as an epoxy resin in addition to a raw material for a UV-curable hard coat agent. Useful as a modifier for cured resins.
  • the weight average molecular weight (Mw) in the following examples was measured by gel permeation chromatography.
  • the analysis method is as follows. ⁇ Analysis method> 1. Gel permeation chromatography (oligomer analysis) Equipment: Tosoh Corporation HLC-8320GPC Flow rate: 0.35 ml / min, mobile phase: tetrahydrofuran, injection volume: 10 ⁇ l Column: TSKgel guardcolumn SuperMP (HZ) -N, TSKgel SuperMultipore HZ-N x 3 detectors: RI, Analysis method: Relative molecular weight in terms of polystyrene.
  • Polystyrene standard A-500, A-2500, A-5000, F-1, F-2, F-4 manufactured by Tosoh Corporation (Polymer analysis) Equipment: Tosoh Corporation HLC-8320GPC Flow rate: 1.0 ml / min, mobile phase: tetrahydrofuran, injection volume: 100 ⁇ l
  • Analysis method Relative molecular weight in terms of polystyrene.
  • Polystyrene standard product PStQuick E, F manufactured by Tosoh Corporation (E: F-40, F-4, A-5000, A-1000, F: F-20, F-2, A-2500, A-500) 2. Measurement of terminal hydroxyl concentration Using 1 H-NMR, using TCE (1,1,1,2-tetrachloroethane) as an internal standard, using bisphenol A and bisphenol C as samples, and preparing a calibration curve of the weight ratio with TCE did. The phenol terminal weight was determined by a method for determining the phenol terminal weight from this calibration curve. Apparatus: Ascend TM 400 manufactured by BRUKER 2. Measurement conditions: room temperature, 120 integrations Identification of Chemical Structure It was carried out by 1 H-NMR measurement using the same apparatus as in “2.” above.
  • FIG. 1 shows a 1 H-NMR spectrum chart of the obtained terminal acrylate polycarbonate oligomer (1c).
  • a transparent solution was obtained.
  • pentaerythritol tetraacrylate which is a polyfunctional acrylate
  • Irgacure 0.5 g
  • terminal acrylate polycarbonate oligomer (1c) showed good solubility in organic solvents such as cyclohexanone, and was found to be excellent in compatibility with pentaerythritol tetraacrylate which is a polyfunctional acrylate.
  • Example 2 Synthesis of terminal methacrylate polycarbonate oligomer (1d) 96 g of the polycarbonate oligomer (Aa) obtained in Reference Example 1 was charged into a four-necked flask equipped with a thermometer, a stirrer, and a cooler, and reacted. After the vessel was replaced with nitrogen, 8.5 g (0.08 mol) of methacrylic acid chloride, 120.4 g of dichloromethane, and 4.6 mg of methquinone were added under a nitrogen stream. At 10 ° C., 10.9 g (0.11 mol) of triethylamine was added over 30 minutes. After stirring was further continued at 10 ° C.
  • FIG. 2 shows a 1 H-NMR spectrum chart of the obtained terminal methacrylate polycarbonate oligomer (1d).
  • the resulting terminal methacrylate polycarbonate oligomer (1d) showed good solubility in organic solvents such as cyclohexanone, and was found to be excellent in compatibility with pentaerythritol tetraacrylate, which is a polyfunctional acrylate.
  • the weight average molecular weight of the obtained polycarbonate was 31,240 (gel permeation chromatography), and the terminal hydroxyl concentration was 0.13 mmol / g.
  • 13.6 g of the obtained polycarbonate was placed in a four-necked flask equipped with a thermometer, a stirrer, and a cooler, and the reaction vessel was replaced with nitrogen. Then, 0.3 g (0.003 mol) of acrylic acid chloride was added. After adding 47.6 g of dichloromethane under a nitrogen stream, 0.4 g (0.004 mol) of triethylamine was added at 15 ° C. After stirring for 2 hours, the reaction solution was added to 163 g of methanol to precipitate the desired product.
  • the terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) and / or (2) of the present invention has a weight average molecular weight (Mw) within a specific range. It has been found that the compound has good solubility in a solvent and has excellent compatibility with a polyfunctional acrylate or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The present invention addresses the problem of providing a (meth)acrylate-terminated polycarbonate oligomer as a starting material for a UV curable (meth)acrylic resin that is used as a UV curable hard coating agent or the like, said (meth)acrylate-terminated polycarbonate oligomer having excellent solvent solubility and excellent compatibility with a polyfunctional (meth)acrylic monomer. The present invention provides, as a solution, a (meth)acrylate-terminated polycarbonate oligomer which is characterized by being represented by formula (1) and/or formula (2) and by having a weight average molecular weight (Mw) within the range of from 500 to 10,000 (inclusive).

Description

末端(メタ)アクリレートポリカーボネートオリゴマーTerminal (meth) acrylate polycarbonate oligomer
 本発明は、溶媒溶解性が良好な、末端(メタ)アクリレートポリカーボネートオリゴマーに関する。 The present invention relates to a terminal (meth) acrylate polycarbonate oligomer having good solvent solubility.
 樹脂材料は、軽量かつ安価であり加工性にも優れているなどの長所から、エンジニアリングプラスチックとして汎用されているが、ガラスや金属に比べて表面の硬度、耐擦傷性、耐薬品性などが劣っているため、そのまま代替材料として採用されることはない。樹脂材料のこれらの欠点を改良するため、樹脂表面に基材の樹脂とは異なる素材の樹脂製薄膜を形成し、外的要因から基材の樹脂を保護し、表面改質を図るハードコート処理が一般的に行われている。このハードコート層の形成は、基材の樹脂表面にハードコート剤を塗布し乾燥した後、必要に応じて電子線、紫外線(UV)などの放射線を照射し、硬化するシステムが採用されている(例えば、特許文献1、2)。この中でも、UV硬化性樹脂を使用したUV硬化型ハードコート剤が、従来のハードコート剤に比べて、低温かつ短時間で処理が可能となるため、生産性が高く様々な用途に展開されている。
 このUV硬化型ハードコート剤は、主成分としてペンタエリスリトール系(メタ)アクリレート等の多官能(メタ)アクリルモノマーが使用されるので、配合される成分は、これら多官能(メタ)アクリルモノマーとの相溶性の高いものが求められている。
Resin materials are widely used as engineering plastics because of their advantages such as light weight, low cost, and excellent workability.However, their surface hardness, scratch resistance, and chemical resistance are inferior to glass and metal. Therefore, it is not used as a substitute material as it is. In order to improve these disadvantages of the resin material, a hard coat treatment is performed to form a resin thin film of a material different from the base resin on the resin surface, protect the base resin from external factors, and modify the surface. Is commonly done. For the formation of the hard coat layer, a system is used in which a hard coat agent is applied to the resin surface of the base material, dried, and then irradiated with radiation such as an electron beam or ultraviolet rays (UV) as required, and then cured. (For example, Patent Documents 1 and 2). Above all, UV-curable hard coat agents using UV-curable resins can be processed at lower temperatures and in a shorter time than conventional hard coat agents. I have.
In this UV-curable hard coating agent, a polyfunctional (meth) acrylic monomer such as pentaerythritol (meth) acrylate is used as a main component. What has high compatibility is demanded.
特開2010-024255号公報JP 2010-024255 A 特開2016-011365号公報JP 2016-011365 A
 本発明は、上述した事情を背景としてなされたものであって、UV硬化型ハードコート剤等に用いられるUV硬化型(メタ)アクリル樹脂の原料として、多官能(メタ)アクリルモノマーとの相溶性や、溶媒溶解性に優れた末端(メタ)アクリレートポリカーボネートオリゴマーを提供することを目的とする。 The present invention has been made in view of the above circumstances, and has been described as a raw material of a UV-curable (meth) acrylic resin used for a UV-curable hard coat agent and the like, which is compatible with a polyfunctional (meth) acrylic monomer. Another object of the present invention is to provide a terminal (meth) acrylate polycarbonate oligomer having excellent solvent solubility.
 本発明者らは、上述の課題解決のために鋭意検討した結果、下記式(1)及び/又は(2)で表される末端(メタ)アクリレートポリカーボネートにおいて、重量平均分子量(Mw)が特定の範囲であるオリゴマーが、多官能(メタ)アクリルモノマーとの相溶性に優れ、溶媒溶解性も良好であることを見出し、本発明を完成した。 The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, in the terminal (meth) acrylate polycarbonate represented by the following formula (1) and / or (2), the weight average molecular weight (Mw) is specific. The present inventors have found that oligomers within the range have excellent compatibility with polyfunctional (meth) acrylic monomers and good solvent solubility, and have completed the present invention.
 本発明は以下の通りである。
1.下記式(1)及び/又は(2)で表され、重量平均分子量(Mw)が500以上10,000以下の範囲であることを特徴とする末端(メタ)アクリレートポリカーボネートオリゴマー。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 (式(1)、(2)中、R~Rは、各々独立して水素原子、炭素原子数1~8のアルキル基、炭素数5~12のシクロアルキル基、炭素原子数1~8のアルコキシ基、又は、炭素原子数6~12の芳香族炭化水素基を表し、Rは、各々独立して水素原子又はメチル基を表し、R、Rは、各々独立して水素原子又は炭素原子数1~14のアルキル基を表し、Xは、炭素原子数2~4のアルキレン基を表し、nは、1以上の整数である。ただし、R及びRの炭素原子数の合計は14以下であり、Xに結合している2つの酸素原子は、Xの同一炭素原子には結合しない。)
The present invention is as follows.
1. A terminal (meth) acrylate polycarbonate oligomer represented by the following formulas (1) and / or (2) and having a weight average molecular weight (Mw) in a range of 500 or more and 10,000 or less.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(In the formulas (1) and (2), R 1 to R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, 8 represents an alkoxy group or an aromatic hydrocarbon group having 6 to 12 carbon atoms, R 5 each independently represents a hydrogen atom or a methyl group, and R 6 and R 7 each independently represent hydrogen. X represents an atom or an alkyl group having 1 to 14 carbon atoms, X represents an alkylene group having 2 to 4 carbon atoms, and n is an integer of 1 or more, provided that R 6 and R 7 have the same number of carbon atoms. Is not more than 14, and two oxygen atoms bonded to X do not bond to the same carbon atom of X.)
 本発明による末端(メタ)アクリレートポリカーボネートオリゴマーは、重量平均分子量(Mw)が500以上10,000以下の範囲であることから、ペンタエリスリトール系(メタ)アクリレート等の多官能(メタ)アクリルモノマーとの相溶性に優れ、溶媒溶解性も良好であるため、UV硬化型ハードコート剤の原料として最適であり、UV硬化により平滑な塗膜形成が可能という工業的に有利な効果を発揮する。 The terminal (meth) acrylate polycarbonate oligomer according to the present invention has a weight average molecular weight (Mw) in the range of 500 or more and 10,000 or less, so that it can be used with a polyfunctional (meth) acrylic monomer such as pentaerythritol-based (meth) acrylate. Since it has excellent compatibility and good solvent solubility, it is optimal as a raw material for a UV-curable hard coat agent, and exhibits an industrially advantageous effect that a smooth coating film can be formed by UV curing.
実施例1で合成した末端(メタ)アクリレートポリカーボネートオリゴマー(1c)のH-NMRスペクトルチャートである。1 is a 1 H-NMR spectrum chart of a terminal (meth) acrylate polycarbonate oligomer (1c) synthesized in Example 1. 実施例2で合成した末端(メタ)アクリレートポリカーボネートオリゴマー(1d)のH-NMRスペクトルチャートである。5 is a 1 H-NMR spectrum chart of a terminal (meth) acrylate polycarbonate oligomer (1d) synthesized in Example 2.
 以下、本発明の末端(メタ)アクリレートポリカーボネートオリゴマーについて詳細に説明する。
 本発明の末端(メタ)アクリレートポリカーボネートオリゴマーは、下記反応式に例示するように、式(A)で表されるポリカーボネートオリゴマーと、(メタ)アクリル酸クロライドのような(メタ)アクリル化剤との反応により得られる、重量平均分子量(Mw)が500以上10,000以下の範囲である、下記式(1)及び/又は下記式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000005
 (反応式中のR~R、X、nの定義は、上述の式(1)、(2)と同じである。)
Hereinafter, the terminal (meth) acrylate polycarbonate oligomer of the present invention will be described in detail.
The terminal (meth) acrylate polycarbonate oligomer of the present invention is, as illustrated in the following reaction formula, a polycarbonate oligomer represented by the formula (A) and a (meth) acrylate agent such as (meth) acrylic acid chloride. A compound represented by the following formula (1) and / or (2) having a weight average molecular weight (Mw) in the range of 500 to 10,000 obtained by the reaction.
Figure JPOXMLDOC01-appb-C000005
(The definitions of R 1 to R 7 , X, and n in the reaction formula are the same as in the above formulas (1) and (2).)
<式(A)で表されるポリカーボネートオリゴマーについて>
 本発明の末端(メタ)アクリレートポリカーボネートオリゴマーの化学構造については、その合成原料である、下記式(A)で表されるポリカーボネートオリゴマーを詳細に説明することにより、その説明とする。すなわち、式(A)中のR~R4、R6、R7、X、nの具体例、好ましい化学基やその置換基等については、本発明の末端(メタ)アクリレートポリカーボネートオリゴマーを表す、式(1)又は(2)中のR~R、X、nと同じである。
Figure JPOXMLDOC01-appb-C000006
 (式(A)中のR~R、X、nの定義は、上述の式(1)、(2)と同じである。)
 上記式(A)において、R、R、R及びRのいずれかが、炭素原子数1~8のアルキル基である場合、アルキル基としては、好ましくは炭素原子数1~4の直鎖状、分岐鎖状のアルキル基であり、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、イソブチル基等が挙げられる。このようなアルキル基には、本発明の効果を損なわない範囲で例えばフェニル基、炭素原子数1~4のアルコキシ基等の置換基を有していてもよい。
 R、R、R及びRのいずれかが、炭素原子数5~12のシクロアルキル基である場合、シクロアルキル基としては、好ましくは炭素原子数5~7のシクロアルキル基であり、具体的には、例えば、シクロヘキシル基、シクロペンチル基、シクロへプチル基等が挙げられる。このようなシクロアルキル基には、本発明の効果を損なわない範囲で、例えば、直鎖又は分岐鎖状の炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基等の置換基を有していてもよい。
 また、R、R、R及びRのいずれかが、炭素原子数1~8のアルコキシ基である場合、アルコキシ基としては、好ましくは炭素原子数1~4の直鎖状、分岐鎖状のアルコキシ基であり、具体的には、例えば、メトキシ基、エトキシ基等が挙げられる。このようなアルコキシ基には本願の効果を損なわない範囲で、例えば、フェニル基、炭素原子数1~4のアルコキシ基等の置換基を有していてもよい。
 さらに、R、R、R及びRのいずれかが、炭素原子数6~12の芳香族炭化水素基である場合、芳香族炭化水素基としては、具体的には、例えば、フェニル基、ナフチル基等が挙げられる。このような芳香族炭化水素基には、本発明の効果を損なわない範囲で、例えば、炭素原子数1~4のアルキル基及び/又は、炭素原子数1~4のアルコキシ基が1~3程度置換していてもよい。
 R、R、R及びRの置換基が結合する位置は、そのベンゼン環に結合する酸素原子に対してオルト位が好ましい。
 上記式(A)において、R及びRのいずれかが、炭素原子数1~14のアルキル基である場合、アルキル基としては、好ましくは炭素原子数1~12の直鎖状、分岐鎖状のアルキル基であり、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基等が挙げられる。ただし、R及びRの炭素原子数の合計は14以下でなければならない。
 上記式(A)において、Xは、具体的には、エチレン基、n-プロピレン基、プロパン-1,2-ジイル基、n-ブチレン基、ブタン-1,3-ジイル基、ブタン-1,2-ジイル基、ブタン-2,3-ジイル基を表し、中でも、エチレン基、n-プロピレン基、プロパン-1,2-ジイル基、n-ブチレン基が好ましく、エチレン基、プロパン-1,2-ジイル基、がより好ましく、エチレン基が特に好ましい。
<About the polycarbonate oligomer represented by the formula (A)>
The chemical structure of the terminal (meth) acrylate polycarbonate oligomer of the present invention will be described by describing in detail the polycarbonate oligomer represented by the following formula (A), which is a raw material for the synthesis. That is, specific examples of R 1 to R 4 , R 6 , R 7 , X and n in the formula (A), preferred chemical groups and substituents thereof represent the terminal (meth) acrylate polycarbonate oligomer of the present invention. , And are the same as R 1 to R 7 , X, and n in the formula (1) or (2).
Figure JPOXMLDOC01-appb-C000006
(The definitions of R 1 to R 7 , X, and n in the formula (A) are the same as those in the above formulas (1) and (2).)
In the above formula (A), when any of R 1 , R 2 , R 3 and R 4 is an alkyl group having 1 to 8 carbon atoms, the alkyl group is preferably an alkyl group having 1 to 4 carbon atoms. It is a linear or branched alkyl group, and specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and an isobutyl group. Such an alkyl group may have a substituent such as a phenyl group or an alkoxy group having 1 to 4 carbon atoms, as long as the effects of the present invention are not impaired.
When any of R 1 , R 2 , R 3 and R 4 is a cycloalkyl group having 5 to 12 carbon atoms, the cycloalkyl group is preferably a cycloalkyl group having 5 to 7 carbon atoms. Specifically, for example, a cyclohexyl group, a cyclopentyl group, a cycloheptyl group and the like can be mentioned. Examples of such a cycloalkyl group include linear or branched alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 4 carbon atoms, and phenyl groups as long as the effects of the present invention are not impaired. And the like.
When any of R 1 , R 2 , R 3 and R 4 is an alkoxy group having 1 to 8 carbon atoms, the alkoxy group is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms. It is a chain alkoxy group, and specific examples include a methoxy group and an ethoxy group. Such an alkoxy group may have a substituent such as a phenyl group or an alkoxy group having 1 to 4 carbon atoms, as long as the effects of the present application are not impaired.
Further, when any of R 1 , R 2 , R 3 and R 4 is an aromatic hydrocarbon group having 6 to 12 carbon atoms, the aromatic hydrocarbon group is specifically, for example, phenyl And naphthyl groups. In such an aromatic hydrocarbon group, for example, an alkyl group having 1 to 4 carbon atoms and / or an alkoxy group having 1 to 4 carbon atoms is in a range of 1 to 3 as long as the effects of the present invention are not impaired. It may be substituted.
The position where the substituents of R 1 , R 2 , R 3 and R 4 are bonded is preferably ortho to the oxygen atom bonded to the benzene ring.
In the above formula (A), when either R 6 or R 7 is an alkyl group having 1 to 14 carbon atoms, the alkyl group is preferably a linear or branched chain having 1 to 12 carbon atoms. Alkyl group, specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, n-hexyl group, n-heptyl group , N-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group and the like. However, the total number of carbon atoms of R 6 and R 7 must be 14 or less.
In the above formula (A), X is, specifically, an ethylene group, an n-propylene group, a propane-1,2-diyl group, an n-butylene group, a butane-1,3-diyl group, a butane-1, A 2-diyl group and a butane-2,3-diyl group, among which an ethylene group, an n-propylene group, a propane-1,2-diyl group and an n-butylene group are preferable, and an ethylene group, a propane-1,2 -Diyl group is more preferable, and ethylene group is particularly preferable.
 式(A)で表されるポリカーボネートオリゴマーは、従来公知の任意の製造方法により製造されるものを使用できる。具体的には、例えば、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法等を挙げることができる。中でも、界面重合法、溶融エステル交換法、プレポリマーの固相エステル交換法を用いることが産業上有利である。これらの中でも、ホスゲンを使用しない溶融エステル交換法や、溶融エステル交換法によるプレポリマーの固相エステル交換法が、特に好ましい。上記製造方法は、下記式(B)で表されるジヒドロキシ化合物と炭酸エステル形成剤とを使用して行われる。
Figure JPOXMLDOC01-appb-C000007
 (式(B)中のR~R、R、R、Xの定義は、上述の式(1)、(2)と同じである。)
As the polycarbonate oligomer represented by the formula (A), those produced by any conventionally known production method can be used. Specific examples include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer. Among them, it is industrially advantageous to use an interfacial polymerization method, a melt transesterification method, or a solid phase transesterification method of a prepolymer. Among them, a melt transesterification method using no phosgene and a solid phase transesterification method of a prepolymer by a melt transesterification method are particularly preferable. The above-mentioned production method is carried out using a dihydroxy compound represented by the following formula (B) and a carbonate ester-forming agent.
Figure JPOXMLDOC01-appb-C000007
(The definitions of R 1 to R 4 , R 6 , R 7 and X in the formula (B) are the same as those in the above formulas (1) and (2).)
<式(B)で表されるジヒドロキシ化合物について>
 式(B)で表されるジヒドロキシ化合物としては、具体的には、例えば、ビス(4-(2-ヒドロキシエトキシ)フェニル)メタン、2,2-ビス(4-(2-ヒドロキシエトキシ)フェニル)プロパン、2,2-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)プロパン、1,1-ビス(4-(2-ヒドロキシエトキシ)フェニル)エタン、2,2-ビス(4-(2-ヒドロキシエトキシ)フェニル)-4-メチルペンタン、2,2-ビス(4-(2-ヒドロキシエトキシ)フェニル)ブタン、1,1-ビス(4-(2-ヒドロキシエトキシ)フェニル)ドデカンなどが挙げられる。
 重合反応に際し、このようなジヒドロキシ化合物は単独でも、2種以上を任意の割合で混合して用いても良い。
<About the dihydroxy compound represented by the formula (B)>
Specific examples of the dihydroxy compound represented by the formula (B) include, for example, bis (4- (2-hydroxyethoxy) phenyl) methane, 2,2-bis (4- (2-hydroxyethoxy) phenyl) Propane, 2,2-bis (4- (2-hydroxyethoxy) -3-methylphenyl) propane, 1,1-bis (4- (2-hydroxyethoxy) phenyl) ethane, 2,2-bis (4- (2-hydroxyethoxy) phenyl) -4-methylpentane, 2,2-bis (4- (2-hydroxyethoxy) phenyl) butane, 1,1-bis (4- (2-hydroxyethoxy) phenyl) dodecane, etc. Is mentioned.
In the polymerization reaction, such a dihydroxy compound may be used alone or as a mixture of two or more kinds at an arbitrary ratio.
<炭酸エステル形成剤について>
 式(B)で表されるジヒドロキシ化合物と反応させる炭酸エステル形成剤としては、具体的には、例えば、ジフェニルカーボネート、ジトリルカーボネート、ビス(m-クレジル)カーボネート等の炭酸ジアリール、ジメチルカーボネート、ジエチルカーボネート、ジシクロヘキシルカーボネート等の炭酸ジアルキル、メチルフェニルカーボネート、エチルフェニルカーボネート、シクロヘキシルフェニルカーボネート等の炭酸アルキルアリール又はジビニルカーボネート、ジイソプロペニルカーボネート、ジプロペニルカーボネート等の炭酸ジアルケニル等の炭酸ジエステル類が挙げられる。さらに、ホスゲン等のジハロゲン化カルボニル化合物等や、トリホスゲンも挙げられる。これらの中で、炭酸ジアリールが好ましく、ジフェニルカーボネートが特に好ましい。
<About carbonate ester forming agent>
Specific examples of the carbonate-forming agent to be reacted with the dihydroxy compound represented by the formula (B) include, for example, diaryl carbonate such as diphenyl carbonate, ditolyl carbonate, bis (m-cresyl) carbonate, dimethyl carbonate, diethyl Examples thereof include dialkyl carbonates such as carbonate and dicyclohexyl carbonate; alkylaryl carbonates such as methylphenyl carbonate, ethylphenyl carbonate and cyclohexylphenyl carbonate; and diester carbonates such as dialkenyl carbonate such as divinyl carbonate, diisopropenyl carbonate and dipropenyl carbonate. Furthermore, a dihalogenated carbonyl compound such as phosgene and the like, and triphosgene are also included. Of these, diaryl carbonate is preferred, and diphenyl carbonate is particularly preferred.
<溶融エステル交換法について>
 式(A)で表されるポリカーボネートオリゴマーの製造方法として、溶融エステル交換法について説明する。
 溶融エステル交換反応の方法としては、式(B)で表されるジヒドロキシ化合物と、炭酸エステル形成剤としてジフェニルカーボネートを使用する場合には、触媒の存在下、常圧または減圧の不活性ガス雰囲気で加熱しながら撹拌し、生成するフェノールを留出させて行われる。通常、式(B)で表されるジヒドロキシ化合物と炭酸エステル形成剤の混合比率や、エステル交換反応時の減圧度を調整して、所望の分子量及び末端水酸基量を調整した、式(A)で表されるポリカーボネートオリゴマーを得ることができる。
 式(A)で表されるポリカーボネートオリゴマーを得るために、式(B)で表されるジヒドロキシ化合物と炭酸エステル形成剤との混合比率は、式(B)で表されるジヒドロキシ化合物1モルに対して、炭酸エステル形成剤を通常0.2~1.0モル倍、好ましくは0.25~0.95モル倍、更に好ましくは0.3~0.90モル倍を用いる。
 溶融エステル交換反応に際し、反応速度を高めるため、必要に応じてエステル交換触媒が用いられる。エステル交換触媒としては、特に制限はなく、例えば、リチウム、ナトリウム、セシウムの水酸化物、炭酸塩、炭酸水素化合物等の無機アルカリ金属化合物、アルコラート、有機カルボン酸塩等の有機アルカリ金属化合物等のアルカリ金属化合物;ベリリウム、マグネシウム等の水酸化物、炭酸塩等の無機アルカリ土類金属化合物、アルコラート、有機カルボン酸塩等の有機アルカリ土類金属化合物等のアルカリ土類金属化合物;テトラメチルホウ素、テトラエチルホウ素、ブチルトリフェニルホウ素等のナトリウム塩、カルシウム塩、マグネシウム塩等の塩基性ホウ素化合物;トリエチルホスフィン、トリ-n-プロピルホスフィン等の3価のリン化合物、又は、これらの化合物から誘導される4級ホスホニウム塩等の塩基性リン化合物;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等の塩基性アンモニウム化合物;4-アミノピリジン、2-ジメチルアミノイミダゾール、アミノキノリン等アミン系化合物等の公知のエステル交換触媒を用いることができる。中でも、アルカリ金属化合物が好ましく、特に炭酸セシウム、水酸化セシウム等のセシウム化合物が好ましい。
 触媒の使用量は、触媒残留物による生成オリゴマーの品質上の問題が生じない範囲で用いられ、触媒の種類により好適な添加量が異なるので一概には言えないが、概略、例えば、式(B)で表されるジヒドロキシ化合物1モルに対して通常0.05~100μモル、好ましくは0.08~50μモル、より好ましくは0.1~20μモル、さらに好ましくは0.1~5μモルである。触媒はそのままで添加してもよいし、溶媒に溶解して添加してもよく、溶媒としては、例えば水、フェノール等の反応に影響しないものが好ましい。
 溶融エステル交換反応の反応条件は、温度は通常120~360℃の範囲、好ましくは150~280℃の範囲、より好ましくは180~260℃の範囲である。反応温度が低すぎるとエステル交換反応が進行せず、反応温度が高いと分解反応等の副反応が進行するので好ましくない。反応は好ましくは減圧下でおこなわれる。反応圧力は、反応温度において原料である炭酸エステル形成剤が系外に留出せず、フェノール等の副生物が留出できる圧力であることが好ましい。このような反応条件において、反応は通常0.5~10時間程度で完結する。
<About the melt transesterification method>
As a method for producing the polycarbonate oligomer represented by the formula (A), a melt transesterification method will be described.
In the case of using a dihydroxy compound represented by the formula (B) and diphenyl carbonate as a carbonate ester-forming agent, a method of the melt transesterification reaction is performed in the presence of a catalyst in an inert gas atmosphere at normal pressure or reduced pressure. The stirring is carried out while heating, and the formed phenol is distilled off. In general, the desired molecular weight and terminal hydroxyl group amount are adjusted by adjusting the mixing ratio of the dihydroxy compound represented by the formula (B) and the carbonate ester forming agent and the degree of reduced pressure during the transesterification reaction. The polycarbonate oligomer represented can be obtained.
In order to obtain the polycarbonate oligomer represented by the formula (A), the mixing ratio of the dihydroxy compound represented by the formula (B) and the carbonate-forming agent is based on 1 mol of the dihydroxy compound represented by the formula (B). The carbonic acid ester-forming agent is usually used in a molar amount of 0.2 to 1.0, preferably 0.25 to 0.95, more preferably 0.3 to 0.90.
In the case of the melt transesterification reaction, a transesterification catalyst is used as needed in order to increase the reaction rate. The transesterification catalyst is not particularly limited, and examples thereof include lithium, sodium, cesium hydroxides, carbonates, inorganic alkali metal compounds such as hydrogen carbonate compounds, alcoholates, and organic alkali metal compounds such as organic carboxylate. Alkali metal compounds; hydroxides such as beryllium and magnesium, inorganic alkaline earth metal compounds such as carbonates, alcoholates, organic alkaline earth metal compounds such as organic carboxylates, etc .; alkaline earth metal compounds such as tetramethylboron; Basic boron compounds such as sodium salts, calcium salts, and magnesium salts such as tetraethylboron and butyltriphenylboron; trivalent phosphorus compounds such as triethylphosphine and tri-n-propylphosphine; or derived from these compounds Basic phosphorus compounds such as quaternary phosphonium salts; Use of a basic ammonium compound such as tramethylammonium hydroxide, tetraethylammonium hydroxide, or tetrabutylammonium hydroxide; known transesterification catalysts such as amine compounds such as 4-aminopyridine, 2-dimethylaminoimidazole, and aminoquinoline Can be. Among them, alkali metal compounds are preferable, and cesium compounds such as cesium carbonate and cesium hydroxide are particularly preferable.
The amount of the catalyst used is within a range that does not cause a problem in the quality of the produced oligomer due to the catalyst residue, and a suitable addition amount varies depending on the type of the catalyst. ) Is usually 0.05 to 100 μmol, preferably 0.08 to 50 μmol, more preferably 0.1 to 20 μmol, and still more preferably 0.1 to 5 μmol, per 1 mol of the dihydroxy compound represented by the formula (1). . The catalyst may be added as it is, or may be added after being dissolved in a solvent. As the solvent, for example, a solvent that does not affect the reaction such as water and phenol is preferable.
Regarding the reaction conditions for the melt transesterification reaction, the temperature is usually in the range of 120 to 360 ° C, preferably in the range of 150 to 280 ° C, and more preferably in the range of 180 to 260 ° C. If the reaction temperature is too low, the transesterification does not proceed, and if the reaction temperature is too high, side reactions such as decomposition proceed, which is not preferable. The reaction is preferably performed under reduced pressure. The reaction pressure is preferably a pressure at which the carbonate forming agent as a raw material cannot be distilled out of the system at the reaction temperature, and a by-product such as phenol can be distilled off. Under such reaction conditions, the reaction is usually completed in about 0.5 to 10 hours.
<(メタ)アクリル化について>
 上記反応式において例示するように、本発明の式(1)及び/又は(2)で表される末端(メタ)アクリレートポリカーボネートオリゴマーは、式(A)で表されるポリカーボネートオリゴマーと、(メタ)アクリル酸クロライドのような(メタ)アクリル化剤との反応により得られる。
 (メタ)アクリル化剤としては、具体的には、例えば、アクリル酸クロライド、メタクリル酸クロライド、アクリル酸、メタクリル酸等が挙げられる。
 (メタ)アクリル化剤の使用量は、式(1)で表される両末端(メタ)アクリレートポリカーボネートオリゴマーを得る場合には、式(A)で表されるポリカーボネートオリゴマーの全末端ヒドロキシル基に対して、(メタ)アクリル化剤を、通常1.0~2.5モル倍、好ましくは1.1~2.0モル倍、さらに好ましくは1.15~1.5モル倍用いる。
 式(2)で表される片末端(メタ)アクリレートポリカーボネートオリゴマーを得る場合には、式(A)で表されるポリカーボネートオリゴマーの全末端ヒドロキシル基に対して、(メタ)アクリル化剤を、通常0.5~1.5モル倍、好ましくは0.55~1.25モル倍、さらに好ましくは0.6~1.0モル倍用いる。
 例えば、(メタ)アクリル酸クロライドを用いて、式(A)で表されるポリカーボネートオリゴマーをアクリル化する場合、クロライドイオンが塩化水素の形で発生するので、塩化水素補足剤を併用することが好ましい。塩化水素補足剤としては、塩基性物質であれば使用できる。無機塩基性物質としては、アルカリ金属の炭酸塩や炭酸水素塩などが使用できる。有機塩基性物質としては3級アミン類が使用できる。3級アミン類としては、例えば、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリブチルアミン、N-メチル-ジエチルアミン、N-エチル-ジメチルアミン、N-エチル-ジアミルアミン、N,N-ジイソプロピルエチルアミン、N,N-ジメチル-シクロヘキシルアミン、N,N-ジエチル-シクロヘキシルアミン等の脂肪族アミン;N,N-ジメチルアニリン、N,N-ジエチルアニリン等の芳香族アミン;ピリジン、ピコリン、N,N-ジメチルアミノピリジン等の複素環アミン;1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0] ノン-5-エン等の脂環式アミン等が挙げられる。
 塩化水素補足剤の使用量としては、通常は使用される(メタ)アクリル化剤のモル数に対して、0.8~10倍モルであり、好ましくは0.9~8倍モル、特に好ましくは、1.0~7倍モル程度である。塩化水素補足剤が(メタ)アクリル化剤のモル数に対して0.8倍未満では、発生する塩化水素を捕捉しきれず、原料の式(A)で表されるポリカーボネートオリゴマーや、目的物である式(1)又は(2)で表される末端(メタ)アクリレートポリカーボネートオリゴマーを分解してしまい、目的物の純度低下を起こす恐れがある。また、塩化水素補足剤が(メタ)アクリル化剤のモル数に対して10倍モルを超えると、塩化水素補足剤の除去が煩雑となるだけでなく経済的ではないため好ましくない。
<About (meth) acrylation>
As exemplified in the above reaction formula, the terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) and / or (2) of the present invention comprises a polycarbonate oligomer represented by the formula (A) and (meth) It is obtained by reaction with a (meth) acrylate agent such as acrylic acid chloride.
Specific examples of the (meth) acrylic agent include acrylic acid chloride, methacrylic acid chloride, acrylic acid, methacrylic acid, and the like.
The amount of the (meth) acrylate agent used is determined based on the total terminal hydroxyl groups of the polycarbonate oligomer represented by the formula (A) when the (meth) acrylate polycarbonate oligomer having both ends is represented by the formula (1). The (meth) acrylate is used usually in an amount of 1.0 to 2.5 moles, preferably 1.1 to 2.0 moles, and more preferably 1.15 to 1.5 moles.
When a one-terminal (meth) acrylate polycarbonate oligomer represented by the formula (2) is obtained, a (meth) acrylate is usually added to all terminal hydroxyl groups of the polycarbonate oligomer represented by the formula (A). It is used in an amount of 0.5 to 1.5 moles, preferably 0.55 to 1.25 moles, and more preferably 0.6 to 1.0 moles.
For example, when a (meth) acrylic acid chloride is used to acrylate a polycarbonate oligomer represented by the formula (A), chloride ions are generated in the form of hydrogen chloride. Therefore, it is preferable to use a hydrogen chloride scavenger in combination. . As a hydrogen chloride scavenger, any basic substance can be used. As the inorganic basic substance, an alkali metal carbonate or bicarbonate can be used. Tertiary amines can be used as the organic basic substance. Examples of the tertiary amines include trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tributylamine, N-methyl-diethylamine, N-ethyl-dimethylamine, N-ethyl-diamylamine, N, N- Aliphatic amines such as diisopropylethylamine, N, N-dimethyl-cyclohexylamine, N, N-diethyl-cyclohexylamine; aromatic amines such as N, N-dimethylaniline, N, N-diethylaniline; pyridine, picoline, N Heterocyclic amines such as N, N-dimethylaminopyridine; Fats such as 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene And cyclic amines.
The amount of the hydrogen chloride scavenger to be used is 0.8 to 10 moles, preferably 0.9 to 8 moles, particularly preferably 0.9 mole, relative to the moles of the (meth) acrylate agent usually used. Is about 1.0 to 7 times mol. If the amount of the hydrogen chloride scavenger is less than 0.8 times the number of moles of the (meth) acrylate, the generated hydrogen chloride cannot be completely captured, and the polycarbonate oligomer represented by the formula (A) as a raw material or the target substance cannot be used. There is a possibility that the terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) or (2) will be decomposed to lower the purity of the target product. On the other hand, if the amount of the hydrogen chloride scavenger exceeds 10 times the number of moles of the (meth) acrylate, the removal of the hydrogen chloride scavenger is not only complicated but also not economical, which is not preferable.
 この(メタ)アクリル化の反応において、使用される溶媒は使用される原料等を均一に混合できる溶媒であれば良く、具体的には、塩化メチレンのようなハロゲン化炭化水素やテトラヒドロフラン、ジオキサン、クロロベンゼン等が挙げられる。溶媒の使用量は特に限定されないが、通常、式(A)で表されるポリカーボネートオリゴマーに対して、0.5~100重量倍であり、好ましくは1~50重量倍、特に好ましくは2~10重量倍である。
 (メタ)アクリル化の反応は比較的低温度で実施され、通常は-50~100℃、好ましくは-30~80℃、特に好ましくは-15~60℃である。反応温度が100℃を超えると副反応が起こり、目的物の収率低下につながる。また、-50℃未満では反応速度が遅くなり所要時間がかかりすぎて経済的でない。
 反応手順としては、あらかじめ、式(A)で表されるポリカーボネートオリゴマーと(メタ)アクリル化剤とを溶媒中で混合し、そこに塩化水素補足剤を添加する方法や、先に、式(A)で表されるポリカーボネートオリゴマーと塩化水素補足剤とを溶媒中で混合し、そこに(メタ)アクリル化剤を添加する方法がある。これらの方法において、後で添加する塩化水素補足剤や(メタ)アクリル化剤は、溶媒に希釈した状態で使用しても良い。
 また、反応時に重合禁止剤として、例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル、フェノチアジン、2,6-ジ-tert-ブチル-4-メチルフェノール(BHT)等を添加しても良い。
In this (meth) acrylation reaction, the solvent used may be any solvent that can uniformly mix the used raw materials and the like, and specifically, halogenated hydrocarbons such as methylene chloride, tetrahydrofuran, dioxane, Chlorobenzene and the like can be mentioned. The amount of the solvent used is not particularly limited, but is usually 0.5 to 100 times by weight, preferably 1 to 50 times by weight, particularly preferably 2 to 10 times by weight, based on the polycarbonate oligomer represented by the formula (A). Weight times.
The (meth) acrylation reaction is carried out at a relatively low temperature, usually at -50 to 100 ° C, preferably at -30 to 80 ° C, particularly preferably at -15 to 60 ° C. If the reaction temperature exceeds 100 ° C., a side reaction occurs, leading to a decrease in the yield of the target product. On the other hand, when the temperature is lower than -50 ° C., the reaction rate becomes slow and the required time is too long, which is not economical.
As a reaction procedure, a method in which a polycarbonate oligomer represented by the formula (A) and a (meth) acrylate are mixed in a solvent in advance and a hydrogen chloride scavenger is added thereto, )) And a hydrogen chloride scavenger in a solvent, and adding a (meth) acrylate to the mixture. In these methods, the hydrogen chloride scavenger or the (meth) acrylic agent to be added later may be used after being diluted with a solvent.
During the reaction, for example, hydroquinone, hydroquinone monomethyl ether, phenothiazine, 2,6-di-tert-butyl-4-methylphenol (BHT) and the like may be added as a polymerization inhibitor.
<(メタ)アクリル化の後処理と精製について>
 (メタ)アクリル化反応においては、塩化水素補足剤である塩基性物質は過剰に添加されることが多く、特に有機塩基性物質は、目的物である式(1)及び/又は(2)で表される末端(メタ)アクリレートポリカーボネートオリゴマーと一緒に有機溶媒中に残存し、着色・分解等の好ましくない現象を引き起こしやすいので、反応後の洗浄作業で除去しておくことが好ましい。有機塩基性物質を洗浄除去するためには、酸性物質の水溶液で洗浄することが好ましい。使用する酸性物質としては、特に限定されるものではないが、無機系酸性物質としては、例えば、塩酸、硫酸、硝酸などがあり、有機系酸性物質としては、例えば、蟻酸、酢酸、プロピオン酸、酪酸などのカルボン酸;メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸などのスルホン酸などがある。中でも、酸性度の低い有機性酸性物質がより好ましい。塩化水素補足剤を除去した後は、続いて、水洗を実施することが好ましい。
 得られた式(1)及び/又は(2)で表される末端(メタ)アクリレートポリカーボネートオリゴマーは、溶解している溶液中に貧溶媒を添加することで、沈殿物として得る方法等が好ましい。上記貧溶媒としては、具体的には、例えば、メタノール、エタノール、プロパノール等の炭素数1~6の脂肪族アルコール溶媒又は上記脂肪族アルコール溶媒と水の混合物が挙げられる。
<Post-treatment and purification of (meth) acrylation>
In the (meth) acrylation reaction, a basic substance which is a hydrogen chloride scavenger is often added in excess, and especially an organic basic substance is represented by the formula (1) and / or (2) which is the target substance. Since it remains in the organic solvent together with the terminal (meth) acrylate polycarbonate oligomer represented and easily causes undesired phenomena such as coloring and decomposition, it is preferable to remove it by washing after the reaction. In order to wash and remove the organic basic substance, it is preferable to wash with an aqueous solution of an acidic substance. The acidic substance to be used is not particularly limited, but examples of the inorganic acidic substance include hydrochloric acid, sulfuric acid, and nitric acid, and examples of the organic acidic substance include, for example, formic acid, acetic acid, and propionic acid. Carboxylic acids such as butyric acid; and sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid and p-toluenesulfonic acid. Among them, an organic acidic substance having a low acidity is more preferable. After removing the hydrogen chloride scavenger, it is preferable to subsequently carry out water washing.
It is preferable that the obtained terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) and / or (2) is obtained as a precipitate by adding a poor solvent to a dissolved solution. Specific examples of the poor solvent include an aliphatic alcohol solvent having 1 to 6 carbon atoms such as methanol, ethanol, and propanol, or a mixture of the aliphatic alcohol solvent and water.
<末端(メタ)アクリレートポリカーボネートオリゴマーについて>
 本発明の式(1)及び/又は(2)で表される末端(メタ)アクリレートポリカーボネートオリゴマーの好ましい化合物について、以下に具体例を示す。
<About terminal (meth) acrylate polycarbonate oligomer>
Specific examples of preferred compounds of the terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) and / or (2) of the present invention are shown below.
 式(1)で表される両末端(メタ)アクリレートポリカーボネートオリゴマーの好ましい化合物は以下のとおりである。式(1a)~(1d)中のnは、1以上の整数であるが、重量平均分子量(Mw)は500以上10,000以下の範囲である。
Figure JPOXMLDOC01-appb-C000008
Preferred compounds of the both-terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) are as follows. N in the formulas (1a) to (1d) is an integer of 1 or more, and the weight average molecular weight (Mw) is in the range of 500 to 10,000.
Figure JPOXMLDOC01-appb-C000008
 式(2)で表される片末端(メタ)アクリレートポリカーボネートオリゴマーの好ましい化合物は以下のとおりである。式(2a)~(2d)中のnは、1以上の整数であるが、重量平均分子量(Mw)は500以上10,000以下の範囲である。
Figure JPOXMLDOC01-appb-C000009
Preferred compounds of the one-terminal (meth) acrylate polycarbonate oligomer represented by the formula (2) are as follows. In the formulas (2a) to (2d), n is an integer of 1 or more, but the weight average molecular weight (Mw) is in the range of 500 or more and 10,000 or less.
Figure JPOXMLDOC01-appb-C000009
 本発明の式(1)及び/又は(2)で表される末端(メタ)アクリレートポリカーボネートオリゴマーは、重量平均分子量(Mw)が500以上10,000以下の範囲であり、中でも、1,000以上8,000以下の範囲が好ましく、2,000以上6,000以下の範囲がより好ましい。重量平均分子量(Mw)がこの範囲内であると、有機溶媒に対して良好な溶解性が得られるため好ましい。
 また、本発明の式(1)及び/又は(2)で表される末端(メタ)アクリレートポリカーボネートオリゴマーを、UV硬化型ハードコート剤の成分として使用する場合には、主成分であるペンタエリスリトール系(メタ)アクリレート等の多官能(メタ)アクリルモノマーとの相溶性に優れているため、UV硬化により平滑な塗膜形成が可能であるという工業的に有利な効果を発揮する。
 本発明の式(1)及び/又は(2)で表される末端(メタ)アクリレートポリカーボネートオリゴマーは、UV硬化型ハードコート剤の原料以外に、3Dプリンタの造形用材料原料やエポキシ樹脂等の熱硬化樹脂の改質剤として有用である。
The terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) and / or (2) of the present invention has a weight average molecular weight (Mw) in a range of 500 or more and 10,000 or less, and among them, 1,000 or more. The range is preferably 8,000 or less, more preferably 2,000 or more and 6,000 or less. It is preferable that the weight average molecular weight (Mw) is within this range, since good solubility in an organic solvent can be obtained.
When the terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) and / or (2) of the present invention is used as a component of a UV-curable hard coat agent, a pentaerythritol-based Since it has excellent compatibility with polyfunctional (meth) acrylic monomers such as (meth) acrylate, it has an industrially advantageous effect that a smooth coating film can be formed by UV curing.
The terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) and / or (2) of the present invention can be used as a raw material for a 3D printer or a heat source such as an epoxy resin in addition to a raw material for a UV-curable hard coat agent. Useful as a modifier for cured resins.
 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 なお、以下の例における重量平均分子量(Mw)はゲル浸透クロマトグラフィーにより測定した。その分析方法は以下のとおりである。
<分析方法> 
1.ゲル浸透クロマトグラフィー測定
(オリゴマーの分析)
装置:東ソー株式会社製 HLC-8320GPC
流量:0.35ml/min、移動相:テトラヒドロフラン、打ち込み量:10μl
カラム:TSKgel guardcolumn SuperMP(HZ)-N,TSKgel SuperMultiporeHZ-N×3本
検出器:RI、
解析方法:ポリスチレン換算の相対分子量とする。
ポリスチレン標品:東ソー株式会社製 A-500,A-2500,A-5000,F-1,F-2,F-4
(ポリマーの分析)
装置:東ソー株式会社製 HLC-8320GPC
流量:1.0ml/min、移動相:テトラヒドロフラン、打ち込み量:100μl
カラム:TSKgel guardcolumn HXL-L   TSKgel G2000HXL ×2本 +TSKgel G3000HXL + TSKgel G4000HXL
検出器:RI、
解析方法:ポリスチレン換算の相対分子量とする。
ポリスチレン標品:東ソー株式会社製 PStQuick E,F(E:F-40,F-4,A-5000,A-1000、F:F-20,F-2,A-2500,A-500)
2.末端ヒドロキシル濃度の測定
 H-NMRを用い、TCE(1,1,1,2-テトラクロロエタン)を内部標準として、ビスフェノールA、ビスフェノールCを標品に用いTCEとの重量比の検量線を作成した。この検量線からフェノール末端重量を求める方法で定量した。
装置:BRUKER社製 AscendTM 400
測定条件:室温、積算回数120回
3.化学構造の同定
 上記「2.」と同じ装置を用いて、H-NMR測定により実施した。
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
The weight average molecular weight (Mw) in the following examples was measured by gel permeation chromatography. The analysis method is as follows.
<Analysis method>
1. Gel permeation chromatography (oligomer analysis)
Equipment: Tosoh Corporation HLC-8320GPC
Flow rate: 0.35 ml / min, mobile phase: tetrahydrofuran, injection volume: 10 μl
Column: TSKgel guardcolumn SuperMP (HZ) -N, TSKgel SuperMultipore HZ-N x 3 detectors: RI,
Analysis method: Relative molecular weight in terms of polystyrene.
Polystyrene standard: A-500, A-2500, A-5000, F-1, F-2, F-4 manufactured by Tosoh Corporation
(Polymer analysis)
Equipment: Tosoh Corporation HLC-8320GPC
Flow rate: 1.0 ml / min, mobile phase: tetrahydrofuran, injection volume: 100 μl
Column: TSKgel guardcolumn HXL-L TSKgel G2000HXL x 2 + TSKgel G3000HXL + TSKgel G4000HXL
Detector: RI,
Analysis method: Relative molecular weight in terms of polystyrene.
Polystyrene standard product: PStQuick E, F manufactured by Tosoh Corporation (E: F-40, F-4, A-5000, A-1000, F: F-20, F-2, A-2500, A-500)
2. Measurement of terminal hydroxyl concentration Using 1 H-NMR, using TCE (1,1,1,2-tetrachloroethane) as an internal standard, using bisphenol A and bisphenol C as samples, and preparing a calibration curve of the weight ratio with TCE did. The phenol terminal weight was determined by a method for determining the phenol terminal weight from this calibration curve.
Apparatus: Ascend ™ 400 manufactured by BRUKER
2. Measurement conditions: room temperature, 120 integrations Identification of Chemical Structure It was carried out by 1 H-NMR measurement using the same apparatus as in “2.” above.
<参考例1>ポリカーボネートオリゴマー(A-a)の合成
Figure JPOXMLDOC01-appb-C000010
 温度計、撹拌機、冷却器を備えた4つ口フラスコに2,2-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)プロパン388.6g(1.1モル)、ジフェニルカーボネート169.2g(0.8モル)を仕込み、反応容器を窒素置換した後、110℃で0.09%炭酸セシウム水溶液0.82gを加えた。200℃まで昇温した後、減圧度を0.3kPaに調整し、2時間、生成したフェノールを留出させながら反応し、反応終了液383.4gを得た。
 次いで、得られた反応終了液372.6gを温度計、撹拌機、冷却器を備えた4つ口フラスコに仕込み、トルエン745.2gに溶解させ、さらにメタノール2235.6gを添加し、室温で30分撹拌した。30分静置して分離した上層の溶液を抜き取り、得られた下層溶液にトルエン558.9g、メタノール2235.6gを添加し、同様に撹拌、静置、上層溶液の抜き取り作業を2回行った。その後、溶剤を濃縮することで、ポリカーボネートオリゴマー(A-a)193.5gを得た。得られたポリカーボネートオリゴマーの重量平均分子量は4630(ゲル浸透クロマトグラフィー)、末端ヒドロキシル濃度は0.67mmol/gであった。
<Reference Example 1> Synthesis of polycarbonate oligomer (Aa)
Figure JPOXMLDOC01-appb-C000010
In a four-necked flask equipped with a thermometer, stirrer, and condenser, 388.6 g (1.1 mol) of 2,2-bis (4- (2-hydroxyethoxy) -3-methylphenyl) propane and diphenyl carbonate 169 were added. After charging the reaction vessel with nitrogen, 0.82 g of a 0.09% cesium carbonate aqueous solution was added at 110 ° C. After the temperature was raised to 200 ° C., the degree of vacuum was adjusted to 0.3 kPa, and the reaction was carried out for 2 hours while distilling off the generated phenol, to obtain 383.4 g of a reaction-terminated liquid.
Next, 372.6 g of the obtained reaction-terminated liquid was charged into a four-necked flask equipped with a thermometer, a stirrer, and a cooler, dissolved in 745.2 g of toluene, and 2235.6 g of methanol was added. For a minute. The solution of the upper layer separated by standing for 30 minutes was drawn out, 558.9 g of toluene and 2235.6 g of methanol were added to the obtained lower layer solution, and the same stirring, standing, and extraction of the upper layer solution were performed twice. . Thereafter, the solvent was concentrated to obtain 193.5 g of a polycarbonate oligomer (Aa). The weight average molecular weight of the obtained polycarbonate oligomer was 4630 (gel permeation chromatography), and the terminal hydroxyl concentration was 0.67 mmol / g.
<実施例1>末端アクリレートポリカーボネートオリゴマー(1c)の合成
 温度計、撹拌機、冷却器を備えた4つ口フラスコに、参考例1で得られたポリカーボネートオリゴマー(A-a)80.3gを入れ、反応容器を窒素置換した後、アクリル酸クロライド7.3g(0.08モル)、ジクロロメタン120.5g、メトキノン4.0mgを窒素気流下において加えた。10℃でトリエチルアミン10.9g(0.11モル)とジクロロメタン40.2gの混合溶液を2時間かけて添加した。さらに10℃で1時間撹拌を続けた後、水825gとメタノール960gを添加し、1時間撹拌後、静置して分離した上層の溶液を抜き取り、更にメタノール960gを添加、撹拌した。1時間撹拌後、静置して分離した上層の溶液を抜き取り、更にメタノール320gを添加、撹拌した。2時間撹拌後、沈殿物を濾別、乾燥し、粉末状の末端アクリレートポリカーボネートオリゴマー(1c)79.3gを取得した。
 得られた末端アクリレートポリカーボネートオリゴマー(1c)の重量平均分子量は5,211であった(ゲル浸透クロマトグラフィー)。H-NMRの分析結果より、上記式(1c)に表される、両末端アクリレートポリカーボネートオリゴマーであることを確認した。図1に、得られた末端アクリレートポリカーボネートオリゴマー(1c)のH-NMRスペクトルチャートを示す。
 得られた末端アクリレートポリカーボネートオリゴマー(1c)2.0gとシクロヘキサノン10.0gを混合したところ、透明な溶液が得られた。さらに、多官能アクリレートであるペンタエリスリトールテトラアクリレート8.0g、イルガキュア(184)0.5gを混合したところ、透明な溶液が得られた。
 得られた末端アクリレートポリカーボネートオリゴマー(1c)はシクロヘキサノン等の有機溶媒に良好な溶解性を示し、また、多官能アクリレートであるペンタエリスリトールテトラアクリレートとの相溶性に優れることが明らかとなった。
<Example 1> Synthesis of terminal acrylate polycarbonate oligomer (1c) 80.3 g of the polycarbonate oligomer (Aa) obtained in Reference Example 1 was placed in a four-necked flask equipped with a thermometer, a stirrer, and a cooler. After the atmosphere in the reaction vessel was replaced with nitrogen, 7.3 g (0.08 mol) of acrylic acid chloride, 120.5 g of dichloromethane and 4.0 mg of methquinone were added under a nitrogen stream. At 10 ° C., a mixed solution of 10.9 g (0.11 mol) of triethylamine and 40.2 g of dichloromethane was added over 2 hours. After further stirring at 10 ° C. for 1 hour, 825 g of water and 960 g of methanol were added. After stirring for 1 hour, the solution of the upper layer separated by standing was taken out, and 960 g of methanol was further added and stirred. After stirring for 1 hour, the solution of the upper layer separated by standing was drawn out, and 320 g of methanol was further added and stirred. After stirring for 2 hours, the precipitate was separated by filtration and dried to obtain 79.3 g of a powdery terminal acrylate polycarbonate oligomer (1c).
The weight average molecular weight of the obtained terminal acrylate polycarbonate oligomer (1c) was 5,211 (gel permeation chromatography). From the result of the 1 H-NMR analysis, it was confirmed that it was an acrylate polycarbonate oligomer having both ends represented by the above formula (1c). FIG. 1 shows a 1 H-NMR spectrum chart of the obtained terminal acrylate polycarbonate oligomer (1c).
When 2.0 g of the obtained terminal acrylate polycarbonate oligomer (1c) and 10.0 g of cyclohexanone were mixed, a transparent solution was obtained. Further, when 8.0 g of pentaerythritol tetraacrylate, which is a polyfunctional acrylate, and 0.5 g of Irgacure (184) were mixed, a clear solution was obtained.
The obtained terminal acrylate polycarbonate oligomer (1c) showed good solubility in organic solvents such as cyclohexanone, and was found to be excellent in compatibility with pentaerythritol tetraacrylate which is a polyfunctional acrylate.
<実施例2>末端メタクリレートポリカーボネートオリゴマー(1d)の合成
 温度計、撹拌機、冷却器を備えた4つ口フラスコに、参考例1で得られたポリカーボネートオリゴマー(A-a)96gを仕込み、反応容器を窒素置換した後、メタクリル酸クロライド8.5g(0.08モル)、ジクロロメタン120.4g、メトキノン4.6mgを窒素気流下において加えた。10℃でトリエチルアミン10.9g(0.11モル)を30分かけて添加した。さらに10℃で2時間撹拌を続けた後、水825gとメタノール960gを添加し、1時間撹拌後、静置して分離した上層の溶液を抜き取り、更にメタノール960gを添加、撹拌した。2時間撹拌後、沈殿物を濾別し、さらに得られたウェットケーキを、メタノール960g中に再分散させる洗浄工程を実施した。その後、沈殿物を濾別、乾燥し、粉末状の末端メタクリレートポリカーボネートオリゴマー(1d)56.1gを取得した。
 得られた末端メタクリレートポリカーボネートオリゴマー(1d)の重量平均分子量は4,734であった(ゲル浸透クロマトグラフィー)。H-NMRの分析結果より、上記式(1d)に表される、両末端メタクリレートポリカーボネートオリゴマーであることを確認した。図2に、得られた末端メタクリレートポリカーボネートオリゴマー(1d)のH-NMRスペクトルチャートを示す。
 得られた末端メタクリレートポリカーボネートオリゴマー(1d)2.0gとシクロヘキサノン10.0gを混合したところ、透明な溶液が得られた。さらに、多官能アクリレートであるペンタエリスリトールテトラアクリレート8.0g、イルガキュア(184)0.5gを混合したところ、透明な溶液が得られた。
 得られた末端メタクリレートポリカーボネートオリゴマー(1d)は、シクロヘキサノン等の有機溶媒に良好な溶解性を示し、また、多官能アクリレートであるペンタエリスリトールテトラアクリレートとの相溶性に優れることが明らかとなった。
<Example 2> Synthesis of terminal methacrylate polycarbonate oligomer (1d) 96 g of the polycarbonate oligomer (Aa) obtained in Reference Example 1 was charged into a four-necked flask equipped with a thermometer, a stirrer, and a cooler, and reacted. After the vessel was replaced with nitrogen, 8.5 g (0.08 mol) of methacrylic acid chloride, 120.4 g of dichloromethane, and 4.6 mg of methquinone were added under a nitrogen stream. At 10 ° C., 10.9 g (0.11 mol) of triethylamine was added over 30 minutes. After stirring was further continued at 10 ° C. for 2 hours, 825 g of water and 960 g of methanol were added. After stirring for 1 hour, the solution of the separated upper layer was left standing and separated, and 960 g of methanol was further added and stirred. After stirring for 2 hours, the precipitate was filtered off, and a washing step of redispersing the obtained wet cake in 960 g of methanol was performed. Thereafter, the precipitate was separated by filtration and dried to obtain 56.1 g of a powdery terminal methacrylate polycarbonate oligomer (1d).
The weight average molecular weight of the obtained terminal methacrylate polycarbonate oligomer (1d) was 4,734 (gel permeation chromatography). From the result of 1 H-NMR analysis, it was confirmed that the oligomer was a methacrylate polycarbonate oligomer having both ends represented by the above formula (1d). FIG. 2 shows a 1 H-NMR spectrum chart of the obtained terminal methacrylate polycarbonate oligomer (1d).
When 2.0 g of the obtained terminal methacrylate polycarbonate oligomer (1d) and 10.0 g of cyclohexanone were mixed, a transparent solution was obtained. Further, when 8.0 g of pentaerythritol tetraacrylate, which is a polyfunctional acrylate, and 0.5 g of Irgacure (184) were mixed, a clear solution was obtained.
The resulting terminal methacrylate polycarbonate oligomer (1d) showed good solubility in organic solvents such as cyclohexanone, and was found to be excellent in compatibility with pentaerythritol tetraacrylate, which is a polyfunctional acrylate.
<比較例1>末端ジアクリルポリカーボネートの合成
 温度計、撹拌機、冷却器を備えた4つ口フラスコに、2,2-ビス(4-ヒドロキシフェニル)プロパン246.1g(1.08モル)、ジフェニルカーボネート237.1g(1.12モル)を入れ、反応容器を窒素置換した後、110℃で0.08%炭酸セシウム水溶液0.9gを加えた。220℃まで昇温した後、常圧で40分反応させ、生成したフェノールを留出させながら、80分かけて減圧度を13.3kPaにし、240℃まで昇温後、40分かけて減圧度を0.8kPaにした。さらに285℃まで昇温し、0.7kPaで7時間反応した。反応終了液250gを得た。
 次いで、得られた反応終了液のうち150.0gを、ジクロロメタン530.0gに溶解させた溶液を、メタノール1850g中に滴下し、目的物を沈殿させた。1時間撹拌した後、沈殿物を濾別、乾燥し、粉末状のポリカーボネートを取得した。
 得られたポリカーボネートの重量平均分子量は、31,240(ゲル浸透クロマトグラフィー)、末端ヒドロキシル濃度は0.13mmol/gであった。
 次に温度計、撹拌機、冷却器を備えた4つ口フラスコに、得られたポリカーボネート13.6gを入れ、反応容器を窒素置換した後、アクリル酸クロライド0.3g(0.003モル)、ジクロロメタン47.6gを、窒素気流下において加えた後、15℃でトリエチルアミン0.4g(0.004モル)を添加した。2時間撹拌後、メタノール163g中に反応液を添加し、目的物を沈殿させた。その後、沈殿物を濾別、乾燥し、得られたウェットケーキ14.1gをジクロロメタン47.6gに溶解させ、その溶解液を、メタノール163g中に添加し、沈殿させた。その後、沈殿物を濾別、乾燥し、白色粉末状の化合物13gを取得した。
 得られた化合物のH-NMRの分析結果より、末端ジアクリルポリカーボネートであることを確認した。
 末端ジアクリルポリカーボネート0.4gに対して、シクロヘキサノン8.0gを使用したが溶解しなかった。また、シクロヘキサノンの代わりにジクロロメタンを用い、末端ジアクリルポリカーボネート0.6g、多官能アクリレートであるペンタエリスリトールテトラアクリレート2.4g、ジクロロメタン3.0gを混ぜ合わせた混合物は白濁状態であり、透明な溶液を得ることができなかった。
Comparative Example 1 Synthesis of Terminal Diacrylic Polycarbonate In a four-necked flask equipped with a thermometer, a stirrer, and a condenser, 246.1 g (1.08 mol) of 2,2-bis (4-hydroxyphenyl) propane was added. 237.1 g (1.12 mol) of diphenyl carbonate was added, the reaction vessel was purged with nitrogen, and at 110 ° C., 0.9 g of a 0.08% cesium carbonate aqueous solution was added. After the temperature was raised to 220 ° C., the reaction was carried out at normal pressure for 40 minutes, and while the generated phenol was distilled, the degree of vacuum was raised to 13.3 kPa over 80 minutes. After the temperature was raised to 240 ° C., the pressure was reduced over 40 minutes. Was set to 0.8 kPa. The temperature was further raised to 285 ° C., and the reaction was performed at 0.7 kPa for 7 hours. 250 g of the reaction-terminated liquid was obtained.
Next, a solution obtained by dissolving 150.0 g of the obtained reaction-terminated liquid in 530.0 g of dichloromethane was dropped into 1850 g of methanol to precipitate the desired product. After stirring for 1 hour, the precipitate was separated by filtration and dried to obtain a powdery polycarbonate.
The weight average molecular weight of the obtained polycarbonate was 31,240 (gel permeation chromatography), and the terminal hydroxyl concentration was 0.13 mmol / g.
Next, 13.6 g of the obtained polycarbonate was placed in a four-necked flask equipped with a thermometer, a stirrer, and a cooler, and the reaction vessel was replaced with nitrogen. Then, 0.3 g (0.003 mol) of acrylic acid chloride was added. After adding 47.6 g of dichloromethane under a nitrogen stream, 0.4 g (0.004 mol) of triethylamine was added at 15 ° C. After stirring for 2 hours, the reaction solution was added to 163 g of methanol to precipitate the desired product. Thereafter, the precipitate was separated by filtration and dried, and 14.1 g of the obtained wet cake was dissolved in 47.6 g of dichloromethane. The solution was added to 163 g of methanol to precipitate. Thereafter, the precipitate was separated by filtration and dried to obtain 13 g of a white powdery compound.
From the result of 1 H-NMR analysis of the obtained compound, it was confirmed that it was a terminal diacryl polycarbonate.
8.0 g of cyclohexanone was used with respect to 0.4 g of terminal diacryl polycarbonate, but did not dissolve. Further, a mixture of 0.6 g of terminal diacrylic polycarbonate, 2.4 g of pentaerythritol tetraacrylate, which is a polyfunctional acrylate, and 3.0 g of dichloromethane, using dichloromethane instead of cyclohexanone, is in a cloudy state, and a transparent solution is obtained. I couldn't get it.
 以上の結果より、本発明の式(1)及び/又は(2)で表される末端(メタ)アクリレートポリカーボネートオリゴマーは、重量平均分子量(Mw)が特定の範囲内のものとすることにより、有機溶媒に良好な溶解性を示し、また、多官能アクリレート等との相溶性に優れることが明らかとなった。 According to the above results, the terminal (meth) acrylate polycarbonate oligomer represented by the formula (1) and / or (2) of the present invention has a weight average molecular weight (Mw) within a specific range. It has been found that the compound has good solubility in a solvent and has excellent compatibility with a polyfunctional acrylate or the like.

Claims (1)

  1.  下記式(1)及び/又は(2)で表され、重量平均分子量(Mw)が500以上10,000以下の範囲であることを特徴とする末端(メタ)アクリレートポリカーボネートオリゴマー。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式(1)、(2)中、R~Rは、各々独立して水素原子、炭素原子数1~8のアルキル基、炭素数5~12のシクロアルキル基、炭素原子数1~8のアルコキシ基、又は、炭素原子数6~12の芳香族炭化水素基を表し、Rは、各々独立して水素原子又はメチル基を表し、R、Rは、各々独立して水素原子又は炭素原子数1~14のアルキル基を表し、Xは、炭素原子数2~4のアルキレン基を表し、nは、1以上の整数である。ただし、R及びRの炭素原子数の合計は14以下であり、Xに結合している2つの酸素原子は、Xの同一炭素原子には結合しない。)
    A terminal (meth) acrylate polycarbonate oligomer represented by the following formulas (1) and / or (2) and having a weight average molecular weight (Mw) in a range of 500 or more and 10,000 or less.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In the formulas (1) and (2), R 1 to R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, 8 represents an alkoxy group or an aromatic hydrocarbon group having 6 to 12 carbon atoms, R 5 each independently represents a hydrogen atom or a methyl group, and R 6 and R 7 each independently represent hydrogen. X represents an atom or an alkyl group having 1 to 14 carbon atoms, X represents an alkylene group having 2 to 4 carbon atoms, and n is an integer of 1 or more, provided that R 6 and R 7 have the same number of carbon atoms. Is not more than 14, and two oxygen atoms bonded to X do not bond to the same carbon atom of X.)
PCT/JP2019/024236 2018-07-05 2019-06-19 (meth)acrylate-terminated polycarbonate oligomer WO2020008879A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207037565A KR102637355B1 (en) 2018-07-05 2019-06-19 Terminal (meth)acrylate polycarbonate oligomer
JP2020528783A JP7253548B2 (en) 2018-07-05 2019-06-19 (Meth)acrylate terminated polycarbonate oligomer
CN201980043299.XA CN112424259B (en) 2018-07-05 2019-06-19 Terminal (meth) acrylate polycarbonate oligomer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018128378 2018-07-05
JP2018-128378 2018-07-05

Publications (1)

Publication Number Publication Date
WO2020008879A1 true WO2020008879A1 (en) 2020-01-09

Family

ID=69060300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024236 WO2020008879A1 (en) 2018-07-05 2019-06-19 (meth)acrylate-terminated polycarbonate oligomer

Country Status (5)

Country Link
JP (1) JP7253548B2 (en)
KR (1) KR102637355B1 (en)
CN (1) CN112424259B (en)
TW (1) TWI794523B (en)
WO (1) WO2020008879A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020189598A1 (en) * 2019-03-19 2020-09-24
WO2023145108A1 (en) * 2022-01-25 2023-08-03 Dic株式会社 Curable resin, curable resin composition, and cured article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155106A (en) * 1984-08-24 1986-03-19 Tokuyama Soda Co Ltd Liquid prepolymer
JPS6183212A (en) * 1984-10-01 1986-04-26 Tokuyama Soda Co Ltd High-refractive index resin
JPH03217407A (en) * 1990-01-23 1991-09-25 Mitsubishi Petrochem Co Ltd Preparation of high refractive index resin
JPH0841044A (en) * 1994-07-22 1996-02-13 Bayer Ag Di(meth)acrylate with cyclic carbonate group
JPH1081720A (en) * 1996-09-05 1998-03-31 Nof Corp Resin composition for casting polymerization and optical material
JP2006028418A (en) * 2004-07-20 2006-02-02 Japan Composite Co Ltd Radical-curable resin composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302829A (en) * 1999-04-23 2000-10-31 Jsr Corp Liquid curable resin composition and cured substance thereof
JP2010024255A (en) 2008-07-15 2010-02-04 Nippon Synthetic Chem Ind Co Ltd:The Active energy ray-curing resin composition and coating agent composition
TWI549986B (en) * 2011-05-19 2016-09-21 Mitsubishi Gas Chemical Co A high-flow polycarbonate copolymer, a method for producing a high molecular weight aromatic polycarbonate resin, and an aromatic polycarbonate compound
KR101938923B1 (en) 2011-11-01 2019-04-10 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6155106B2 (en) 2013-06-14 2017-06-28 セコム株式会社 Image sensor
JP2016011365A (en) 2014-06-30 2016-01-21 アイカ工業株式会社 Ultraviolet-curable hard coat agent
KR102601255B1 (en) * 2015-12-08 2023-11-09 혼슈우 카가쿠고교 가부시키가이샤 Aromatic polycarbonate oligomer solid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155106A (en) * 1984-08-24 1986-03-19 Tokuyama Soda Co Ltd Liquid prepolymer
JPS6183212A (en) * 1984-10-01 1986-04-26 Tokuyama Soda Co Ltd High-refractive index resin
JPH03217407A (en) * 1990-01-23 1991-09-25 Mitsubishi Petrochem Co Ltd Preparation of high refractive index resin
JPH0841044A (en) * 1994-07-22 1996-02-13 Bayer Ag Di(meth)acrylate with cyclic carbonate group
JPH1081720A (en) * 1996-09-05 1998-03-31 Nof Corp Resin composition for casting polymerization and optical material
JP2006028418A (en) * 2004-07-20 2006-02-02 Japan Composite Co Ltd Radical-curable resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020189598A1 (en) * 2019-03-19 2020-09-24
JP7387973B2 (en) 2019-03-19 2023-11-29 本州化学工業株式会社 Terminal (meth)acrylate polycarbonate oligomer
WO2023145108A1 (en) * 2022-01-25 2023-08-03 Dic株式会社 Curable resin, curable resin composition, and cured article

Also Published As

Publication number Publication date
JPWO2020008879A1 (en) 2021-07-08
TW202006010A (en) 2020-02-01
KR20210029159A (en) 2021-03-15
CN112424259B (en) 2022-11-08
CN112424259A (en) 2021-02-26
TWI794523B (en) 2023-03-01
KR102637355B1 (en) 2024-02-15
JP7253548B2 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
WO2020189598A1 (en) (meth)acrylate-terminated polycarbonate oligomer
CN108602744B (en) Bisphenol having fluorene skeleton, method for producing same, and polyarylate resin, (meth) acrylate compound and epoxy resin derived from said bisphenol
WO2020008879A1 (en) (meth)acrylate-terminated polycarbonate oligomer
JP2005530001A (en) Method for producing polycarbonate
KR101687831B1 (en) Method for producing thermoplastic resin, polyester resin and polycarbonate resin, and their applications
JP2021042349A (en) Siloxane acrylate having perfluoropolyether group
JP6148748B2 (en) Method for producing polycarbonate
JPS60168720A (en) Copolyester-carbonate resin showing improved processability
TW201446834A (en) Polycarbonate manufacturing method and polycarbonate
JP2006502276A (en) Polycarbonate manufacturing method
EP3640278A1 (en) Aromatic polycarbonate resin, method for producing same, and aromatic dihydroxy compound
JP4685204B2 (en) Process for producing aromatic-aliphatic copolymer polycarbonate
US20160023978A1 (en) 6-hydroxy-2-naphthalenyl fluorene derivatives and lens and camera module using the same
JP7267008B2 (en) Novel dihydroxy compound
TWI770014B (en) Novel dihydroxy compound
KR101668129B1 (en) Method for manufacturing trimellitic anhydride aryl ester
JPH07292084A (en) Lactone polymer produced by ring-opening polymerization and containing phenolic hydroxyl group and production thereof
JP2011225499A (en) Method for producing fluorine-containing aromatic (meth)acrylic ester compound, and fluorine-containing aromatic (meth)acrylic ester compound
JP6907883B2 (en) 1,1-bis (4-hydroxyphenyl) dodecane and its production method
JP2011046623A (en) New epoxy compound
TW201731912A (en) Method for producing polycarbonate
KR20160013784A (en) 6-hydroxy-2-naphthalenyl fluorene derivatives for producing lens and camera module, using the same
JP2002256065A (en) New fumaric acid ester and production method thereof
JP2011219426A (en) Manufacturing method of fluorine-containing aromatic (meth)acrylic acid ester compound, and fluorine-containing aromatic (meth)acrylic acid ester compound
JPH0925258A (en) Phenolic hydroxyl group-containing carbonate oligomer and polycarbonate resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528783

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831243

Country of ref document: EP

Kind code of ref document: A1