WO2020008849A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2020008849A1
WO2020008849A1 PCT/JP2019/023897 JP2019023897W WO2020008849A1 WO 2020008849 A1 WO2020008849 A1 WO 2020008849A1 JP 2019023897 W JP2019023897 W JP 2019023897W WO 2020008849 A1 WO2020008849 A1 WO 2020008849A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
suction pipe
valve body
scroll compressor
pressing force
Prior art date
Application number
PCT/JP2019/023897
Other languages
French (fr)
Japanese (ja)
Inventor
俊之 外山
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2020008849A1 publication Critical patent/WO2020008849A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present disclosure relates to a scroll compressor.
  • the suction check valve has a valve body for closing an opening end face of a suction pipe inserted into a suction passage of the compression mechanism, and a valve body facing the opening end face of the suction pipe. And a biasing compression spring.
  • the compression spring contracts, the valve body separates from the opening end face, and the refrigerant is sucked into the compression chamber.
  • the contracted compression spring expands and presses the valve body against the opening end surface of the suction pipe to close the suction pipe.
  • An object of the present disclosure is to reduce a suction pressure loss during operation in a scroll compressor provided with a suction check valve.
  • a compression chamber (C) for compressing a fluid is formed between a movable scroll (35) and the movable scroll (35), and the fluid is guided to the compression chamber (C).
  • Scroll (31) having a suction passage (39) formed therein, a suction pipe (27) having one end inserted into the suction passage (39), and the suction passage (39) provided in the suction passage (39).
  • a suction check valve (90) for opening and closing an open end (27a) of the pipe (27), wherein the suction check valve (90) is an open end of the suction pipe (27).
  • the pressing mechanism (92) is configured such that the rate of change of the pressing force is such that the valve element (91) is connected to the opening of the suction pipe (27). It is configured to have nonlinear characteristics that become smaller as it approaches the end (27a).
  • valve element (91) is easily opened in the low opening degree range of the valve element (91), suction pressure loss during operation is reduced in the scroll compressor provided with the suction check valve. can do.
  • the pressing mechanism (92) is a coil spring (94) configured to have the nonlinear characteristic.
  • the pressing mechanism (92) having the above-described non-linear characteristics can be easily configured.
  • the pressing mechanism (92) includes a first permanent magnet (95a) fixed to the valve body (91) and the suction passage (39).
  • the first permanent magnet (95a) and a second permanent magnet (95b) provided to repel the first permanent magnet (95a) at a position apart from the open end (27a) of the suction pipe (27). .
  • the pressing mechanism (92) having the above-described non-linear characteristics can be easily configured.
  • FIG. 1 is a vertical sectional view of the scroll compressor according to the first embodiment.
  • FIG. 2 is an enlarged view of the suction passage portion of FIG.
  • FIG. 3 is an enlarged view of a suction passage portion viewed from an angle different from FIG.
  • FIG. 4 is a correlation diagram between the amount of deflection of the coil spring and the spring load.
  • FIG. 5 is an enlarged longitudinal sectional view showing a suction passage portion of the scroll compressor according to the second embodiment.
  • FIG. 6 is an enlarged view of a suction passage portion viewed from an angle different from FIG.
  • Embodiment 1 ⁇ Embodiment 1 of the present disclosure will be described.
  • the scroll compressor (10) of the first embodiment is connected to a refrigerant circuit (not shown) for performing a vapor compression refrigeration cycle, such as an air conditioner.
  • a refrigerant circuit for performing a vapor compression refrigeration cycle, such as an air conditioner.
  • the refrigerant (fluid) compressed and discharged by the scroll compressor (10) releases heat in the condenser (radiator), is decompressed by the decompression mechanism, and then evaporates in the evaporator. It is sucked into the scroll compressor (10) and compressed.
  • a refrigeration cycle is repeated.
  • the scroll compressor (10) includes a casing (20), which is a vertically long cylindrical hermetic container, a compression mechanism (30), a drive shaft (40), a housing (50), An electric motor (60), a lower bearing member (70), and an oil pump (80) are provided.
  • a compression mechanism (30), a housing (50), an electric motor (60), a lower bearing member (70), and an oil pump (80) are arranged in this order from above to below.
  • the casing (20) is constituted by a vertically long cylindrical closed container. Specifically, the casing (20) has a trunk (21), a first end plate (22), a second end plate (23), and a leg (24).
  • the body (21) is formed in a cylindrical shape whose both ends in the axial direction are open.
  • the first end plate part (22) closes one end (the upper end in FIG. 1) of the body part (21) in the axial direction.
  • the second end plate (23) closes the other end (the lower end in FIG. 1) of the body (21) in the axial direction.
  • the leg (24) is provided below the second end plate (23), and supports the casing (20).
  • a suction pipe (27) and a discharge pipe (not shown) are connected to the casing (20).
  • the suction pipe (27) penetrates the first end plate (22) of the casing (20) in the axial direction, and has one end (lower end in FIG. 1) in a suction passage (39) of the compression mechanism (30) which will be described later. Is press-fitted.
  • the discharge pipe not shown, penetrates the body (21) of the casing (20) in the radial direction and opens to a lower space (25) between the housing (50) and the electric motor (60).
  • An oil reservoir (26) is provided at the bottom of the casing (20).
  • the oil reservoir (26) stores lubricating oil for lubricating each sliding portion inside the scroll compressor (10).
  • the compression mechanism (30) is provided in the casing (20) and compresses a fluid (for example, a refrigerant or the like).
  • the compression mechanism (30) includes a fixed scroll (31) and a movable scroll (35) that meshes with the fixed scroll (31).
  • the fixed scroll (31) has a fixed-side end plate (32), a fixed-side wrap (33), and an outer peripheral wall (34).
  • the fixed side end plate (32) is formed in a disk shape.
  • the fixed-side wrap (33) is formed in a spiral wall shape that draws an involute curve, and protrudes from the front surface (the lower surface in FIG. 1) of the fixed-side end plate portion (32).
  • the outer peripheral wall (34) is formed so as to surround the outer peripheral side of the fixed wrap (33), and is substantially flush with the distal end surface of the fixed wrap (33).
  • the movable scroll (35) has a movable-side end plate (36), a movable-side wrap (37), and a boss (38).
  • the movable end plate (36) is formed in a disk shape.
  • the movable side wrap (37) is formed in a spiral wall shape drawing an involute curve, and protrudes from the front surface (the upper surface in FIG. 1) of the movable side end plate portion (36).
  • the boss (38) is formed in a cylindrical shape, and is arranged at the center of the rear surface (the lower surface in FIG. 1) of the movable end plate (36).
  • a sliding bearing (38a) is fitted on the inner peripheral side of the boss (38), and an eccentric part (42) of a drive shaft (40) described later is fitted on the inner peripheral side.
  • the movable scroll (35) and the fixed scroll (31) face each other on the front surfaces of the fixed end plate (32) and the movable end plate (36), and the movable wrap (37)
  • the fixed side wrap (33) is provided so as to mesh with the fixed side wrap (33).
  • the fixed side wrap (33) and the movable side wrap (37) are surrounded between the fixed side end plate (32) and the movable side end plate (36).
  • a compression chamber (C) for compressing the fluid is formed.
  • a suction passage (39) for guiding the fluid to the compression chamber (C) is formed in the fixed side end plate (32).
  • the suction passage (39) is formed in the outer peripheral wall portion (34) on the outer peripheral side of the fixed side end plate portion (32) so as to extend in the axial direction of the drive shaft (40) (vertical direction in FIG. 1).
  • One end (the upper end in FIG. 1) of the suction passage (39) is an open end that opens on the upper surface of the fixed end plate (32), and the other end (the lower end in FIG. 1) is the lower end of the fixed end plate (32). It is configured at the closed end closed by. As shown in FIGS.
  • a suction port (P1) is provided in a portion of the fixed side end plate (32) which constitutes a side wall of the suction passage (39) near the drive shaft (40),
  • the suction passage (39) communicates with the compression chamber (C) via the suction port (P1).
  • One end (the lower end in FIG. 1) of the above-described suction pipe (27) is press-fitted into one end (the upper end in FIG. 1) of the suction passage (39).
  • the opening end (27a) of the suction pipe (27) is closed in the suction passage (39) to move the fluid in the compression chamber (C) toward the suction pipe (27).
  • a suction check valve (90) for preventing backflow of the air is provided. The details of the suction check valve (90) will be described later.
  • a discharge port (P2) and a discharge chamber (S) are formed in the fixed end plate (32).
  • the discharge port (P2) penetrates the center of the fixed side end plate (32) in the axial direction and communicates with the compression chamber (C).
  • the discharge chamber (S) is formed on the back surface (the upper surface in FIG. 1) of the fixed end plate (32), and communicates with the discharge port (P2).
  • the discharge chamber (S) communicates with the space (25) below the housing (50) through a discharge passage (not shown) formed in the fixed scroll (31) and the housing (50). That is, the space (25) below the housing (50) forms a high-pressure space filled with a high-pressure fluid (for example, high-pressure discharge refrigerant).
  • a high-pressure fluid for example, high-pressure discharge refrigerant
  • the drive shaft (40) extends vertically inside the casing (20). Specifically, the drive shaft (40) extends in the axial direction of the casing (20) from the upper end of the body (21) of the casing (20) to the oil reservoir (26) serving as the bottom of the casing (20). (Vertically in FIG. 1).
  • the drive shaft (40) has a main shaft portion (41) and an eccentric portion (42).
  • the main shaft portion (41) extends in the axial direction of the casing (20) (the vertical direction in FIG. 1).
  • the eccentric part (42) is provided at the upper end of the main shaft part (41).
  • the eccentric portion (42) is formed to have an outer diameter smaller than the outer diameter of the main shaft portion (41), and the axis is eccentric by a predetermined distance from the axis of the main shaft portion (41).
  • the drive shaft (40) has an eccentric portion (42) constituting the upper end thereof slidably connected to the boss (38) of the movable scroll (35).
  • the eccentric portion (42) is rotatably supported by the boss portion (38) of the movable scroll (35) via a slide bearing (38a).
  • the entire periphery of the housing (50) is joined to the inner surface of the body (21) of the casing (20).
  • the housing (50) includes an upper part (51) and a lower part (52).
  • the upper part (51) and the lower part (52) are formed continuously from top to bottom.
  • the upper part (51) is formed in a substantially cylindrical shape, and a concave part that forms a crank chamber that houses the boss (38) of the orbiting scroll (35) is formed in the center of the upper surface.
  • the lower part (52) is formed in a substantially cylindrical shape having a smaller diameter than the upper part (51), and protrudes downward from the lower surface of the upper part (51).
  • a sliding bearing (52a) is fitted on the inner peripheral side, and the main shaft part (41) of the drive shaft (40) is inserted through the inner peripheral side to rotate the main shaft part (41). It constitutes a main bearing part that supports freely.
  • An Oldham coupling (not shown) is provided on the upper surface of the housing (50) to prevent the movable scroll (35) from rotating.
  • the Oldham coupling is slidably fitted between the movable end plate (36) of the movable scroll (35) and the housing (50).
  • the electric motor (60) is provided below the housing (50) in the casing (20).
  • the electric motor (60) has a stator (61) and a rotor (62).
  • the stator (61) is formed in a cylindrical shape, and is fixed to the body (21) of the casing (20).
  • the rotor (62) is formed in a cylindrical shape, and is provided on the inner peripheral side of the stator (61).
  • the drive shaft (40) is inserted into the rotor (62), and the rotor (62) rotationally drives the drive shaft (40).
  • the lower bearing member (70) is formed in a cylindrical shape extending in the axial direction (the vertical direction in FIG. 1) of the casing (20), and the electric motor (60) and the oil serving as the bottom of the casing (20) in the casing (20). It is provided between the storage part (26).
  • the lower bearing member (70) has an upper part (71) and a lower part (72).
  • the upper part (71) of the lower bearing member (70) has a part of the outer peripheral surface protruding radially outward and fixed to the inner peripheral surface of the trunk (21) of the casing (20).
  • a sliding bearing (71a) is fitted on the inner peripheral side of the upper part (71) of the lower bearing member (70), and the upper part (71) is connected to the drive shaft (40) via the sliding bearing (71a). ) Is rotatably supported.
  • the lower end of the main shaft (41) of the drive shaft (40) is housed on the inner peripheral side of the lower part (72) of the lower bearing member (70).
  • the oil pump (80) is provided at the lower end of the drive shaft (40), and is attached to the lower surface of the lower bearing member (70) so as to close the lower end of the lower portion (72) of the lower bearing member (70). ing.
  • the oil pump (80) transports the lubricating oil from the oil reservoir (26) to an oil supply passage (43) formed inside the drive shaft (40), and supplies the lubricating oil to the drive shaft (40) in the same manner as the oil supply passage.
  • the lubricating oil is configured to be conveyed from an oil drainage passage (44) formed therein to an oil reservoir (26).
  • the suction check valve (90) includes a valve body (91) for closing the open end (27a) of the suction pipe (27) and a suction valve (91).
  • a pressing mechanism (92) for applying a pressing force to the valve body (91) to press the opening end (27a) of the pipe (27), and pressing the pressing mechanism (92) at a predetermined position in the suction passage (39).
  • a supporting member (93) for supporting.
  • the valve element (91) has a disk-shaped main body (91a) and a cylindrical cylindrical wall (91b) continuous with the outer peripheral edge of the main body (91a).
  • the main body (91a) is formed to have a size that can close the open end (27a) of the suction pipe (27), that is, a diameter larger than the inner diameter of the open end (27a) of the suction pipe (27). Further, the main body (91a) has a size within the suction passage (39) capable of reciprocating in the direction in which the suction passage (39) extends in a direction substantially perpendicular to the direction in which the suction passage (39) extends (vertical direction in FIG. 2). , Formed with a smaller diameter than the inner diameter of the suction passage (39).
  • the surface (the upper surface in FIG. 2) of the main body portion (91a) on the side of the suction pipe (27) comes into contact with the open end (27a) of the suction pipe (27) and serves as a closed surface for closing the open end (27a). .
  • the cylindrical wall portion (91b) is formed so as to protrude from the outer peripheral edge of the surface (the lower surface in FIG. 2) of the main body portion (91a) on the side opposite to the suction pipe (27).
  • the cylindrical wall portion (91b) has a size capable of reciprocating in the extension direction of the suction passage (39) together with the main body portion (91a) in the suction passage (39) in the extending direction (vertical direction in FIG. 1), that is, the outer diameter thereof.
  • the diameter is formed smaller than the inner diameter of the suction passage (39).
  • the cylindrical wall (91b) extends along the inner wall of the suction passage (39).
  • Such a cylindrical wall portion (91b) along the inner wall of the suction passage (39) makes it difficult for the body portion (91a) reciprocating in the suction passage (39) to tilt, and the extending direction of the suction passage (39). A substantially vertical posture is maintained.
  • the cylindrical wall portion (91b) is large enough to accommodate one end of a coil spring (94) constituting a pressing mechanism (92) described later, that is, the inner diameter is larger than the outer diameter of the coil spring (94). The diameter is formed.
  • the pressing mechanism (92) is constituted by a coil spring (94) provided between the valve body (91) and the support member (93).
  • the coil spring (94) is always in a contracted state so as to apply a pressing force to the valve body (91) to press the valve body (91) against the open end (27a) of the suction pipe (27). (91) and the supporting member (93). That is, the coil spring (94) is configured to apply a pressing force to the valve body (91) even when the valve body (91) is fully closed when the valve body (91) is pressed against the open end (27a) of the suction pipe (27). ing.
  • the spring load (restoring force) of the coil spring (94) increases as the amount of deflection (contraction) of the coil spring (94) increases. It is configured to have a non-linear characteristic in which the rate of change (increase rate) of the spring load increases as the rate increases.
  • the coil spring (94) is formed by an unequal-pitch coil spring in which the coil diameter and the coil wire diameter are equal from one end to the other end in the expansion and contraction direction, but the pitch changes. Have been.
  • the coil spring (94) includes a first coil part (94a) and a second coil part (94b) having a smaller pitch than the first coil part (94a).
  • the first coil portion (94a) has a spring constant twice (2K) the spring constant K of a linear spring used as a conventional pressing mechanism (92) indicated by a broken line in FIG.
  • the second coil portion (94b) is configured such that the spring constant is 2/3 times (2K / 3) the spring constant K of the conventional linear spring.
  • the force (downward force in FIG. 1) acting on the valve body (91) for separating from the open end (27a) of the suction pipe (27) is applied to the coil spring (94).
  • the coil spring (94) contracts, and the valve body (91) moves away from the open end (27a) of the suction pipe (27) to open the suction pipe (27).
  • the first coil part (94a) and the second coil part (94b) also contract, but the second coil part (94b) having a small spring constant.
  • the opening of the valve element (91) exceeds a predetermined opening, the second coil portion (94b) does not function as a coil spring, and the spring load of the coil spring (94) is reduced. Change rate (increase rate) becomes large.
  • the coil spring (94) the amount of deflection from X 0 fully closed until the entire second coil portion (94b) is X 1 which can not shrink more in contact between the lines, the first coil The portion (94a) and the second coil portion (94b) function as a coil spring having a spring constant K / 2 and connected in series. Then, the amount of deflection becomes the X 1 or more, the second coil portion (94b) is no longer functional, only the first coil spring of spring constant 2K (94a) is to function. Therefore, in the coil spring (94), as the amount of deflection of the coil spring (94) increases, the spring load increases and the rate of change (increase rate) of the spring load increases. In other words, in the coil spring (94), as the amount of deflection of the coil spring (94) decreases, the spring load decreases and the rate of change (decrease rate) of the spring load decreases.
  • the pressing mechanism (92) is configured such that the valve element (91) has the open end (27a) of the suction pipe (27). ), That is, as the opening of the valve element (91) decreases, the pressing force for pressing the valve element (91) against the open end (27a) of the suction pipe (27) decreases, and the rate of change of the pressing force decreases. It is configured to have a non-linear characteristic in which the (decrease rate) decreases.
  • the opening degree of the valve element (91) refers to the position of the valve element (91) with respect to the open end (27a) of the suction pipe (27), and the valve element (91) is connected to the open end of the suction pipe (27).
  • the time when the valve 27a) is fully closed is 0%, and the time when the valve element (91) is in the fully open state where the valve body (91) contacts the support member (93) is 100%.
  • the support member (93) is provided at a position in the suction passage (39) away from the opening end (27a) of the suction pipe (27). Specifically, the support member (93) is opposite to the open end (the upper end in FIG. 1) into which one end (the lower end in FIG. 1) of the suction pipe (27) of the suction passage (39) is press-fitted. It is provided at the closed end (the lower end in FIG. 1).
  • the support member (93) is formed in a shape corresponding to the valve element (91), and has a disk-shaped main body (93a) and a cylindrical cylindrical wall (continuous to the outer peripheral edge of the main body (93a)). 93b).
  • the main body (93a) is formed smaller in diameter than the inner diameter of the suction passage (39), similarly to the main body (91a) of the valve body (91).
  • the main body (93a) is provided along the closed end face (the lower end face in FIG. 1) of the suction passage (39).
  • the cylindrical wall portion (93b) is formed so as to protrude from the outer peripheral edge of the surface (the upper surface in FIG. 1) of the main body portion (93a) on the side opposite to the closed end of the suction passage (39).
  • the cylindrical wall (93b) has an outer diameter smaller than the inner diameter of the suction passage (39), and extends along the inner wall of the suction passage (39).
  • the cylindrical wall portion (93b) is large enough to accommodate the other end (the lower end in FIG. 1) of the coil spring (94) constituting the pressing mechanism (92), that is, the inner diameter is the coil spring (94). Is formed to have a larger diameter than the outer diameter.
  • the suction check valve (90) includes the coil spring (94) configured to have the above-described non-linear characteristic between the valve body (91) and the support member (93). Accordingly, in the low opening range where the opening of the valve element (91) is small, the pressing force applied to the valve element (91) by the coil spring (94) is relatively small, so that the fluid flow rate (refrigerant circulation amount) is small.
  • the valve body (91) can be easily opened even in an operation state or an operation state in which the pressure of the suction fluid (low-pressure gas refrigerant) is low.
  • the pressing force applied to the valve body (91) by the coil spring (94) is significantly larger than in the low opening degree area. Therefore, even when the operation is stopped from the fully opened operation state of the valve element (91), a large pressing force is applied to the valve element (91), and the open end (27a) of the suction pipe (27) is applied. ) Is quickly blocked.
  • the drive shaft (40) rotates and the movable scroll (35) of the compression mechanism (30) is driven.
  • the orbiting scroll (35) revolves around the axis of the drive shaft (40) in a state where rotation is restricted by an Oldham coupling (not shown). Due to the revolution of the movable scroll (35), the volume of the compression chamber (C) periodically increases and decreases, and the low-pressure fluid (from the suction pipe (27) to the compression chamber (C) through the suction passage (39) of the compression mechanism (30). For example, a low-pressure gas refrigerant is sucked and compressed.
  • the low pressure fluid acts on the valve body (91) of the suction check valve (90) in a direction opposite to the pressing force by the pressing mechanism (92) (downward in FIG. 1), that is, the fluid drag. (1/2 ⁇ drag coefficient ⁇ fluid density ⁇ square of fluid velocity ⁇ valve flow path area) acts.
  • gravity acts on the valve element (91) in a direction opposite to the pressing force. Therefore, the opposite force acting on the valve element (91) obtained by adding the above-mentioned fluid drag and gravity is generated by the pressing force (in the present embodiment, the restoring force of the coil spring (94)) of the pressing mechanism (92).
  • valve body (91) When the valve body (91) also becomes large, the valve body (91) closing the open end (27a) of the suction pipe (27) moves away from the open end (27a), so that the suction pipe (27) is opened. Thereby, the suction pipe (27) communicates with the suction passage (39), and the low-pressure fluid in the suction pipe (27) is sucked into the compression chamber (C) via the suction passage (39).
  • the low-pressure fluid sucked into the compression chamber (C) is compressed as the volume of the compression chamber (C) decreases.
  • the fluid (that is, the high-pressure fluid) compressed in the compression chamber (C) is discharged to the discharge chamber (S) through the discharge port (P2) of the fixed scroll (31).
  • the high-pressure fluid (for example, high-pressure gas refrigerant) flowing into the discharge chamber (S) flows out to a space (25) below the housing (50) through a discharge passage (not shown) formed in the fixed scroll (31) and the housing (50). I do.
  • the high-pressure fluid flowing into the lower space (25) is discharged to the outside of the casing (20) (for example, a condenser of a refrigerant circuit) through a discharge pipe (not shown).
  • the pressing mechanism (92) moves the valve body (91) toward the suction pipe (27).
  • the coil spring (94) has a non-linear characteristic in which the pressing force for pressing the opening end (27a) of the 27) decreases and the rate of change (decrease rate) of the pressing force decreases.
  • the pressing force applied by the pressing mechanism (92) to the valve element (91) is a relatively large pressing force equivalent to that of a conventional linear spring. Therefore, when the operation of the scroll compressor (10) is stopped, the opening end (27a) of the suction pipe (27) is quickly closed as in the related art.
  • the spring constant of the coil spring (94) is smaller than that of the conventional linear spring, so that the pressing mechanism (92) is attached to the valve element (91). The pressing force to be applied is smaller than that of the conventional linear spring.
  • valve element (91) is easily opened as compared with the related art, and the suction pressure loss is lower than in the related art. Further, when a linear spring having a high spring constant is used as in a conventional scroll compressor, the valve element (91) can be easily closed in an operation state where the fluid flow rate is small or an operation state where the pressure of the suction fluid is low. Although the valve element (91) may come into contact with the open end (27a) of the suction pipe (27) to generate so-called chattering noise, the above-described configuration allows the valve element (91) to open compared to the related art. Since the degree is relatively large, chattering noise is less likely to occur.
  • the scroll compressor (10) of the first embodiment includes a movable scroll (35), a compression chamber (C) for compressing a fluid between the movable scroll (35), and the compression chamber (C).
  • a fixed scroll (31) formed with a suction passage (39) for guiding a fluid to the suction passage, a suction pipe (27) having one end inserted into the suction passage (39), and provided in the suction passage (39).
  • a suction check valve (90) for opening and closing the open end (27a) of the suction pipe (27).
  • the suction check valve (90) includes a valve body (91) that closes an open end (27a) of the suction pipe (27), and a valve body (91) that closes the open end (27a) of the suction pipe (27). ) And a pressing mechanism (92) for applying a pressing force to the valve body (91).
  • the pressing mechanism (92) is configured such that the closer the valve body (91) is to the opening end (27a) of the suction pipe (27), the smaller the pressing force and the rate of change (decrease rate) of the pressing force. Is configured to have a non-linear characteristic in which is reduced.
  • the pressing mechanism (92) for pressing the valve body (91) of the suction check valve (90) against the open end (27a) of the suction pipe (27) includes a valve body (92).
  • (91) approaches the opening end (27a) of the suction pipe (27) that is, as the opening of the valve element (91) decreases, the pressing force decreases and the rate of change (decrease rate) of the pressing force decreases.
  • a stop valve (90) can be provided.
  • the valve body (91) can be opened even in an operation state in which the fluid flow rate is low or an operation state in which the pressure of the suction fluid is low.
  • the degree is relatively large. Therefore, the suction pressure loss during operation can be reduced as compared with a conventional scroll compressor, and a decrease in compressor efficiency can be suppressed.
  • the pressing mechanism (92) increases. Accordingly, the pressing force acting on the valve element (91) increases, and the rate of change (rate of increase) increases. Therefore, when the valve element (91) is fully opened, a high pressing force is applied to the valve element (91) by the pressing mechanism (92), similarly to the conventional scroll compressor in which the linear element presses the valve element (91). be able to. Therefore, similarly to the conventional scroll compressor, even when the operation is stopped in an operation state in which the opening degree of the valve element (91) is large, the opening end of the suction pipe (27) is opened by the valve element (91). 27a) can be closed quickly.
  • valve element (91) when the valve element (91) is fully opened in contact with the support member (93), the valve element (91) and the support member (93) are in close contact with each other due to the oil film of the lubricating oil, but are difficult to separate. Even when the operation is stopped when the valve (91) is fully opened, a high pressing force is applied to the valve (91) by the pressing mechanism (92), so that the valve (91) is moved from the support member (93). The opening end (27a) of the suction pipe (27) cannot be closed. That is, according to the scroll compressor (10) of the first embodiment, as described above, even if the pressing mechanism (92) is configured so that the valve element (91) is easily opened, the compression chamber when the operation is stopped is stopped. The ability to prevent the fluid in (C) from flowing back to the suction pipe (27) side is not reduced.
  • valve element (91) when a linear spring having a high spring constant is used as in a conventional scroll compressor, the valve element (91) is easily closed in an operation state in which the fluid flow rate is low or an operation state in which the pressure of the suction fluid is low, The valve body (91) may come into contact with the open end (27a) of the suction pipe (27) to generate so-called chattering noise.
  • the valve element (91) is easily opened, and the operation state in which the fluid flow rate is small or the operation state in which the pressure of the suction fluid is low are low. Also, since the opening of the valve element (91) is relatively large, occurrence of chattering noise can be suppressed.
  • the pressing mechanism (92) reduces the pressing force as the valve body (91) approaches the open end (27a) of the suction pipe (27), and reduces the pressing force.
  • the coil spring (94) is configured to have a non-linear characteristic in which the rate of change (decrease rate) of the pressing force is reduced.
  • a coil spring (94) an unequal-pitch coil spring whose pitch changes while the coil diameter and the coil wire diameter are equal from one end to the other end in the expansion and contraction direction is used. I have.
  • the valve body (91) is constituted by a coil spring (94) having a pitch changed from one end to the other end in the expansion and contraction direction as the pressing mechanism (92). ) Is closer to the opening end (27a) of the suction pipe (27), the pressing force is reduced, and the rate of change (decrease rate) of the pressing force is reduced, so that a pressing mechanism (92) having a non-linear characteristic is easily configured. be able to.
  • suction check valve (90) in which the pressing force applied to the valve element (91) is smaller than that of the conventional scroll compressor, and is easy to open. Therefore, according to the scroll compressor provided with such a suction check valve (90), as in the conventional scroll compressor, the operation is stopped in the operation state in which the opening of the valve element (91) is large. Even in this case, the opening end (27a) of the suction pipe (27) can be quickly closed by the valve body (91), but the suction pressure loss during operation is reduced as compared with the conventional scroll compressor. be able to.
  • the ability to prevent the backflow of the fluid in the compression chamber (C) to the suction pipe (27) side when the operation is stopped is higher than that of the conventional scroll compressor.
  • the compressor efficiency can be improved as compared with the conventional scroll compressor without lowering the pressure.
  • Embodiment 2 ⁇ Embodiment 2 >> Embodiment 2 will be described.
  • the scroll compressor (10) of the second embodiment is obtained by partially changing the configuration of the suction check valve (90) in the scroll compressor (10) of the first embodiment.
  • the difference between the scroll compressor (10) of the present embodiment and the scroll compressor (10) of the first embodiment will be described.
  • the suction check valve (90) includes a valve element (91) for closing the open end (27a) of the suction pipe (27), and the valve element (91) is connected to the suction pipe (27).
  • the valve element (91) and the support member (93) are configured in the same manner as the first embodiment, and only the pressing mechanism (92) is different from the first embodiment.
  • the pressing mechanism (92) includes first and second permanent magnets (95 a) provided on the valve body (91) and the support member (93), respectively. , 95b).
  • the first and second permanent magnets (95a, 95b) are formed in an annular shape.
  • the first permanent magnet (95a) is fitted and fixed inside the cylindrical wall (91b) of the valve body (91).
  • the second permanent magnet (95b) is fitted and fixed inside the cylindrical wall (93b) of the support member (93).
  • the first permanent magnet (95a) and the second permanent magnet (95b) are provided such that magnetic poles of the same type face each other. For this reason, a repulsive force is generated between the first permanent magnet (95a) and the second permanent magnet (95b), and the repulsive force becomes smaller as the distance between the first permanent magnet (95a) and the second permanent magnet (95b) increases. Rate) decreases as the distance between each other increases.
  • the repulsive force acting on the first permanent magnet (95a) is reduced to a valve body.
  • (91) is a pressing force for pressing the opening end (27a) of the suction pipe (27).
  • the pressing mechanism (92) is configured such that as the valve body (91) approaches the opening end (27a) of the suction pipe (27), that is, as the opening of the valve body (91) decreases,
  • the valve body (91) is configured to have a non-linear characteristic in which the pressing force for pressing the valve body (91) against the opening end (27a) of the suction pipe (27) decreases and the rate of change (decrease rate) of the pressing force decreases.
  • the pressing mechanism (92) is connected to the first permanent magnet (95a) fixed to the valve body (91) and the suction passage (39).
  • a second permanent magnet (95b) fixed so as to repel the first permanent magnet (95a) is provided on a support member (93) provided at a position away from the open end (27a) of the pipe (27). It is constituted so that it may have.
  • the valve body (91) is provided with the suction pipe (91) by a repulsive force acting between the first permanent magnet (95a) and the second permanent magnet (95b). It is pressed against the open end (27a) of 27). Further, the repulsive force acting between the first permanent magnet (95a) and the second permanent magnet (95b) increases as the first permanent magnet (95a) moves away from the second permanent magnet (95b). That is, as the valve element (91) approaches the opening end (27a) of the suction pipe (27) and the degree of opening of the valve element (91) decreases, the degree of change (decrease rate) decreases as well.
  • the pressing mechanism (92) moves the valve body (91) closer to the open end (27a) of the suction pipe (27), that is, the valve body (91).
  • a pair of permanent magnets provided so that magnetic poles of the same type face each other generate a repulsive force therebetween, and the repulsive force becomes smaller as the distance between them increases, and the rate of change ( (Decrease rate) decreases as the distance between each other increases.
  • the pressing mechanism (92) As the pressing mechanism (92), the first and the second magnetic poles of the same type are provided between the valve body (91) and the support member (93) so as to face each other. As the valve element (91) approaches the opening end (27a) of the suction pipe (27), the pressing force decreases and the rate of change (decrease) of the pressing force decreases.
  • the pressing mechanism (92) having the non-linear characteristic of decreasing the rate can be easily configured.
  • the pressing force decreases and the rate of change (decrease rate) of the pressing force decreases.
  • the coil spring (94) configured as described above, an unequal-pitch coil spring in which the pitch changes while the coil diameter and the coil wire diameter are equal from one end to the other end in the expansion and contraction direction has been used.
  • the coil spring (94) is not limited to the unequal-pitch coil spring. While the coil wire diameter and the pitch are equal from one end to the other end in the expansion and contraction direction, a conical coil spring whose coil diameter changes may be used, and the coil diameter and the pitch are equal from one end to the other end in the expansion and contraction direction.
  • a tapered coil spring whose coil wire diameter changes may be used.
  • the coil spring (94) is formed of a conical coil spring or a tapered coil spring as described above, the spring load (restoring force) of the coil spring (94) increases as the amount of deflection (amount of contraction) increases.
  • the spring has a non-linear characteristic in which the change rate (increase rate) of the spring load becomes large, so that the same effect as that of the first embodiment can be obtained.
  • the suction check valve (90) includes the support member (93) for supporting the pressing mechanism (92) at a predetermined position in the suction passage (39).
  • the support member (93) may be omitted.
  • the support member (93) is omitted, and the other end (the lower end in FIG. 1) of the coil spring (94) constituting the pressing mechanism (92) is connected to the suction passage (39). It may be fixed to the closed end.
  • the support member (93) may be omitted, and the second permanent magnet (95b) constituting the pressing mechanism (92) may be fixed to the closed end of the suction passage (39).
  • the present disclosure is useful for a scroll compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A scroll compressor (10) comprising an intake check valve (90) that opens and closes an open end (27a) of an intake tube (27), wherein: the intake check valve (90) is configured so as to have a valve body (91) that closes off the open end (27a) of the intake tube (27), and a pressing mechanism (92) that imparts to the valve body (91) a pressing force for pressing the valve body (91) into the open end (27a) of the intake tube (27); and the pressing mechanism (92) is configured so as to have non-linear characteristics such that as the valve body (91) approaches the open end (27a) of the intake tube (27), the pressing force decreases and the rate of change in the pressing force decreases.

Description

スクロール圧縮機Scroll compressor
  本開示は、スクロール圧縮機に関するものである。 The present disclosure relates to a scroll compressor.
  従来、運転停止時に圧縮室内の冷媒の吸入管側への逆流を阻止する吸入逆止弁が設けられたスクロール圧縮機が用いられている(下記の特許文献1を参照)。特許文献1のスクロール圧縮機では、吸入逆止弁は、圧縮機構の吸入通路に挿入された吸入管の開口端面を閉塞するための弁体と、弁体を吸入管の開口端面に向かって付勢する圧縮ばねとを有している。運転時には、吸入冷媒が弁体に及ぼす力が圧縮ばねの付勢力よりも大きくなると、圧縮ばねが収縮して弁体が開口端面から離れて圧縮室に冷媒が吸入される。一方、運転停止時には、収縮していた圧縮ばねが伸長して弁体を吸入管の開口端面に押し付けることによって吸入管を閉塞する。 Conventionally, a scroll compressor provided with a suction check valve that prevents the refrigerant in the compression chamber from flowing back to the suction pipe when the operation is stopped has been used (see Patent Document 1 below). In the scroll compressor of Patent Document 1, the suction check valve has a valve body for closing an opening end face of a suction pipe inserted into a suction passage of the compression mechanism, and a valve body facing the opening end face of the suction pipe. And a biasing compression spring. During operation, when the force exerted by the suctioned refrigerant on the valve body is greater than the urging force of the compression spring, the compression spring contracts, the valve body separates from the opening end face, and the refrigerant is sucked into the compression chamber. On the other hand, when the operation is stopped, the contracted compression spring expands and presses the valve body against the opening end surface of the suction pipe to close the suction pipe.
特開2009-281345号公報JP 2009-281345 A
  しかしながら、従来のスクロール圧縮機では、運転停止時に吸入管が迅速に閉塞されるようにばね定数が高く一定の線形ばねが用いられていた。そのため、スクロール圧縮機が接続された冷媒回路における冷媒循環量が少ない場合や吸入冷媒の密度が小さい、即ち、吸入冷媒の圧力が低い場合に、圧縮ばねの強い付勢力によって弁体が開き難く、圧力損失が生じて圧縮機効率を低下させていた。 However, in the conventional scroll compressor, a constant linear spring having a high spring constant is used so that the suction pipe is quickly closed when the operation is stopped. Therefore, when the refrigerant circulation amount in the refrigerant circuit to which the scroll compressor is connected is small or the density of the suction refrigerant is low, that is, when the pressure of the suction refrigerant is low, the valve body is difficult to open due to the strong urging force of the compression spring, A pressure loss has occurred, reducing the compressor efficiency.
  本開示の目的は、吸入逆止弁が設けられたスクロール圧縮機において、運転時における吸入圧力損失を低減することにある。 目的 An object of the present disclosure is to reduce a suction pressure loss during operation in a scroll compressor provided with a suction check valve.
  本開示の第1の態様は、可動スクロール(35)と、上記可動スクロール(35)との間において流体を圧縮する圧縮室(C)を形成すると共に、該圧縮室(C)に流体を導くための吸入通路(39)が形成された固定スクロール(31)と、一端部が上記吸入通路(39)に挿入された吸入管(27)と、上記吸入通路(39)に設けられ、上記吸入管(27)の開口端(27a)を開閉する吸入逆止弁(90)とを備えたスクロール圧縮機であって、上記吸入逆止弁(90)は、上記吸入管(27)の開口端(27a)を閉塞する弁体(91)と、該弁体(91)を該吸入管(27)の開口端(27a)に押し付けるための押し付け力を上記弁体(91)に付与する押し付け機構(92)とを有し、上記押し付け機構(92)は、上記押し付け力の変化率が、上記弁体(91)が上記吸入管(27)の開口端(27a)に近づくほど小さくなる非線形特性を有するように構成されている。 According to a first aspect of the present disclosure, a compression chamber (C) for compressing a fluid is formed between a movable scroll (35) and the movable scroll (35), and the fluid is guided to the compression chamber (C). Scroll (31) having a suction passage (39) formed therein, a suction pipe (27) having one end inserted into the suction passage (39), and the suction passage (39) provided in the suction passage (39). A suction check valve (90) for opening and closing an open end (27a) of the pipe (27), wherein the suction check valve (90) is an open end of the suction pipe (27). A valve element (91) for closing the valve body (27a), and a pressing mechanism for applying a pressing force to the valve element (91) to press the valve element (91) against the open end (27a) of the suction pipe (27). (92), wherein the pressing mechanism (92) is configured such that the rate of change of the pressing force is such that the valve element (91) is connected to the opening of the suction pipe (27). It is configured to have nonlinear characteristics that become smaller as it approaches the end (27a).
  第1の態様では、弁体(91)の低開度域において、弁体(91)が開き易くなるため、吸入逆止弁が設けられたスクロール圧縮機において、運転時における吸入圧力損失を低減することができる。 In the first aspect, since the valve element (91) is easily opened in the low opening degree range of the valve element (91), suction pressure loss during operation is reduced in the scroll compressor provided with the suction check valve. can do.
  本開示の第2の態様は、上記第1の態様において、上記押し付け機構(92)は、上記非線形特性を有するように構成されたコイルばね(94)である。 In a second aspect of the present disclosure, in the first aspect, the pressing mechanism (92) is a coil spring (94) configured to have the nonlinear characteristic.
  第2の態様では、上述のような非線形特性を有する押し付け機構(92)を容易に構成することができる。 In the second aspect, the pressing mechanism (92) having the above-described non-linear characteristics can be easily configured.
  本開示の第3の態様は、上記第1の態様において、上記押し付け機構(92)は、上記弁体(91)に固定された第1の永久磁石(95a)と、上記吸入通路(39)の上記吸入管(27)の開口端(27a)から離れた位置に、上記第1の永久磁石(95a)と反発するように設けられた第2の永久磁石(95b)とを有している。 According to a third aspect of the present disclosure, in the first aspect, the pressing mechanism (92) includes a first permanent magnet (95a) fixed to the valve body (91) and the suction passage (39). The first permanent magnet (95a) and a second permanent magnet (95b) provided to repel the first permanent magnet (95a) at a position apart from the open end (27a) of the suction pipe (27). .
  第3の態様では、上述のような非線形特性を有する押し付け機構(92)を容易に構成することができる。 In the third aspect, the pressing mechanism (92) having the above-described non-linear characteristics can be easily configured.
図1は、実施形態1のスクロール圧縮機の縦断面図である。FIG. 1 is a vertical sectional view of the scroll compressor according to the first embodiment. 図2は、図1の吸入通路部分の拡大図である。FIG. 2 is an enlarged view of the suction passage portion of FIG. 図3は、図2とは異なる角度から見た吸入通路部分の拡大図である。FIG. 3 is an enlarged view of a suction passage portion viewed from an angle different from FIG. 図4は、コイルばねのたわみ量とばね荷重との相関図である。FIG. 4 is a correlation diagram between the amount of deflection of the coil spring and the spring load. 図5は、実施形態2のスクロール圧縮機の吸入通路部分を拡大して示す縦断面図である。FIG. 5 is an enlarged longitudinal sectional view showing a suction passage portion of the scroll compressor according to the second embodiment. 図6は、図5とは異なる角度から見た吸入通路部分の拡大図である。FIG. 6 is an enlarged view of a suction passage portion viewed from an angle different from FIG.
  《実施形態1》
  本開示の実施形態1について説明する。
<< Embodiment 1 >>
Embodiment 1 of the present disclosure will be described.
  -全体構成-
  実施形態1のスクロール圧縮機(10)は、例えば、空気調和装置等の蒸気圧縮式の冷凍サイクルを行う冷媒回路(図示省略)に接続されている。このような冷媒回路では、スクロール圧縮機(10)で圧縮されて吐出された冷媒(流体)が、凝縮器(放熱器)で放熱して減圧機構で減圧された後、蒸発器で蒸発してスクロール圧縮機(10)に吸入され、圧縮される。上記冷媒回路では、このような冷凍サイクルが繰り返される。
-overall structure-
The scroll compressor (10) of the first embodiment is connected to a refrigerant circuit (not shown) for performing a vapor compression refrigeration cycle, such as an air conditioner. In such a refrigerant circuit, the refrigerant (fluid) compressed and discharged by the scroll compressor (10) releases heat in the condenser (radiator), is decompressed by the decompression mechanism, and then evaporates in the evaporator. It is sucked into the scroll compressor (10) and compressed. In the refrigerant circuit, such a refrigeration cycle is repeated.
  図1に示すように、スクロール圧縮機(10)は、縦長で円筒形の密閉容器であるケーシング(20)と、圧縮機構(30)と、駆動軸(40)と、ハウジング(50)と、電動機(60)と、下部軸受部材(70)と、油ポンプ(80)とを備えている。ケーシング(20)内には、上方から下方へ、圧縮機構(30)とハウジング(50)と電動機(60)と下部軸受部材(70)と油ポンプ(80)とがこの順に配置されている。 As shown in FIG. 1, the scroll compressor (10) includes a casing (20), which is a vertically long cylindrical hermetic container, a compression mechanism (30), a drive shaft (40), a housing (50), An electric motor (60), a lower bearing member (70), and an oil pump (80) are provided. In the casing (20), a compression mechanism (30), a housing (50), an electric motor (60), a lower bearing member (70), and an oil pump (80) are arranged in this order from above to below.
  [ケーシング]
  ケーシング(20)は、縦長の円筒状の密閉容器によって構成されている。具体的には、ケーシング(20)は、胴部(21)と、第1鏡板部(22)と、第2鏡板部(23)と、脚部(24)とを有している。胴部(21)は、軸方向の両端が開放する円筒状に形成されている。第1鏡板部(22)は、胴部(21)の軸方向の一端(図1では上端)を閉塞している。第2鏡板部(23)は、胴部(21)の軸方向の他端(図1では下端)を閉塞している。脚部(24)は、第2鏡板部(23)の下側に設けられ、ケーシング(20)を支持している。
[casing]
The casing (20) is constituted by a vertically long cylindrical closed container. Specifically, the casing (20) has a trunk (21), a first end plate (22), a second end plate (23), and a leg (24). The body (21) is formed in a cylindrical shape whose both ends in the axial direction are open. The first end plate part (22) closes one end (the upper end in FIG. 1) of the body part (21) in the axial direction. The second end plate (23) closes the other end (the lower end in FIG. 1) of the body (21) in the axial direction. The leg (24) is provided below the second end plate (23), and supports the casing (20).
  また、ケーシング(20)には、吸入管(27)と吐出管(図示省略)とが接続されている。吸入管(27)は、ケーシング(20)の第1鏡板部(22)を軸方向に貫通し、一端部(図1では下端部)が圧縮機構(30)の後述する吸入通路(39)内に圧入されている。図示が省略された吐出管は、ケーシング(20)の胴部(21)を径方向に貫通し、ハウジング(50)と電動機(60)との間の下方空間(25)に開口している。 吸入 A suction pipe (27) and a discharge pipe (not shown) are connected to the casing (20). The suction pipe (27) penetrates the first end plate (22) of the casing (20) in the axial direction, and has one end (lower end in FIG. 1) in a suction passage (39) of the compression mechanism (30) which will be described later. Is press-fitted. The discharge pipe, not shown, penetrates the body (21) of the casing (20) in the radial direction and opens to a lower space (25) between the housing (50) and the electric motor (60).
  ケーシング(20)の底部には、油貯留部(26)が設けられている。油貯留部(26)は、スクロール圧縮機(10)の内部の各摺動部を潤滑するための潤滑油を貯留する。 油 An oil reservoir (26) is provided at the bottom of the casing (20). The oil reservoir (26) stores lubricating oil for lubricating each sliding portion inside the scroll compressor (10).
  [圧縮機構]
  圧縮機構(30)は、ケーシング(20)内に設けられ、流体(例えば、冷媒等)を圧縮する。圧縮機構(30)は、固定スクロール(31)と、固定スクロール(31)に噛み合う可動スクロール(35)とを備えている。
[Compression mechanism]
The compression mechanism (30) is provided in the casing (20) and compresses a fluid (for example, a refrigerant or the like). The compression mechanism (30) includes a fixed scroll (31) and a movable scroll (35) that meshes with the fixed scroll (31).
  固定スクロール(31)は、固定側鏡板部(32)と、固定側ラップ(33)と、外周壁部(34)とを有している。固定側鏡板部(32)は、円板状に形成されている。固定側ラップ(33)は、インボリュート曲線を描く渦巻き壁状に形成され、固定側鏡板部(32)の前面(図1では下面)から突出している。外周壁部(34)は、固定側ラップ(33)の外周側を囲むように形成され、固定側ラップ(33)の先端面と略面一になっている。 The fixed scroll (31) has a fixed-side end plate (32), a fixed-side wrap (33), and an outer peripheral wall (34). The fixed side end plate (32) is formed in a disk shape. The fixed-side wrap (33) is formed in a spiral wall shape that draws an involute curve, and protrudes from the front surface (the lower surface in FIG. 1) of the fixed-side end plate portion (32). The outer peripheral wall (34) is formed so as to surround the outer peripheral side of the fixed wrap (33), and is substantially flush with the distal end surface of the fixed wrap (33).
  可動スクロール(35)は、可動側鏡板部(36)と、可動側ラップ(37)と、ボス部(38)とを有している。可動側鏡板部(36)は、円板状に形成されている。可動側ラップ(37)は、インボリュート曲線を描く渦巻き壁状に形成され、可動側鏡板部(36)の前面(図1では上面)から突出している。ボス部(38)は、円筒状に形成され、可動側鏡板部(36)の背面(図1では下面)の中央部に配置されている。また、ボス部(38)の内周側には、滑り軸受(38a)が嵌め込まれ、その内周側に後述する駆動軸(40)の偏心部(42)が嵌め込まれている。 The movable scroll (35) has a movable-side end plate (36), a movable-side wrap (37), and a boss (38). The movable end plate (36) is formed in a disk shape. The movable side wrap (37) is formed in a spiral wall shape drawing an involute curve, and protrudes from the front surface (the upper surface in FIG. 1) of the movable side end plate portion (36). The boss (38) is formed in a cylindrical shape, and is arranged at the center of the rear surface (the lower surface in FIG. 1) of the movable end plate (36). A sliding bearing (38a) is fitted on the inner peripheral side of the boss (38), and an eccentric part (42) of a drive shaft (40) described later is fitted on the inner peripheral side.
  圧縮機構(30)では、可動スクロール(35)と固定スクロール(31)とは、固定側鏡板部(32)と可動側鏡板部(36)の前面どうしが対向し、可動側ラップ(37)と固定側ラップ(33)とが噛み合うように設けられている。このような構成により、圧縮機構(30)では、固定側鏡板部(32)と可動側鏡板部(36)との間には、固定側ラップ(33)と可動側ラップ(37)とに囲まれて流体を圧縮する圧縮室(C)が形成されている。 In the compression mechanism (30), the movable scroll (35) and the fixed scroll (31) face each other on the front surfaces of the fixed end plate (32) and the movable end plate (36), and the movable wrap (37) The fixed side wrap (33) is provided so as to mesh with the fixed side wrap (33). With such a configuration, in the compression mechanism (30), the fixed side wrap (33) and the movable side wrap (37) are surrounded between the fixed side end plate (32) and the movable side end plate (36). A compression chamber (C) for compressing the fluid is formed.
  また、固定側鏡板部(32)には、流体を圧縮室(C)に導くための吸入通路(39)が形成されている。吸入通路(39)は、固定側鏡板部(32)の外周側の外周壁部(34)に、駆動軸(40)の軸方向(図1の上下方向)に延びるように形成されている。吸入通路(39)は、一端(図1では上端)が固定側鏡板部(32)の上面において開口する開口端となり、他端(図1では下端)が固定側鏡板部(32)の下端部によって閉塞された閉塞端に構成されている。また、図2及び図3に示すように、固定側鏡板部(32)において吸入通路(39)の駆動軸(40)寄りの側壁を構成する部分には、吸入ポート(P1)が設けられ、吸入通路(39)は、この吸入ポート(P1)を介して圧縮室(C)と連通している。 吸入 Further, a suction passage (39) for guiding the fluid to the compression chamber (C) is formed in the fixed side end plate (32). The suction passage (39) is formed in the outer peripheral wall portion (34) on the outer peripheral side of the fixed side end plate portion (32) so as to extend in the axial direction of the drive shaft (40) (vertical direction in FIG. 1). One end (the upper end in FIG. 1) of the suction passage (39) is an open end that opens on the upper surface of the fixed end plate (32), and the other end (the lower end in FIG. 1) is the lower end of the fixed end plate (32). It is configured at the closed end closed by. As shown in FIGS. 2 and 3, a suction port (P1) is provided in a portion of the fixed side end plate (32) which constitutes a side wall of the suction passage (39) near the drive shaft (40), The suction passage (39) communicates with the compression chamber (C) via the suction port (P1).
  吸入通路(39)の一端部(図1では上端部)には、上述した吸入管(27)の一端部(図1では下端部)が圧入されている。また、吸入通路(39)には、運転停止時に、吸入管(27)の一端部の開口端(27a)を閉塞することによって、圧縮室(C)内の流体の吸入管(27)側への逆流を防止する吸入逆止弁(90)が設けられている。なお、吸入逆止弁(90)の詳細については後述する。 一端 One end (the lower end in FIG. 1) of the above-described suction pipe (27) is press-fitted into one end (the upper end in FIG. 1) of the suction passage (39). In addition, when the operation is stopped, the opening end (27a) of the suction pipe (27) is closed in the suction passage (39) to move the fluid in the compression chamber (C) toward the suction pipe (27). A suction check valve (90) for preventing backflow of the air is provided. The details of the suction check valve (90) will be described later.
  また、固定側鏡板部(32)には、吐出ポート(P2)と吐出チャンバ(S)とが形成されている。吐出ポート(P2)は、固定側鏡板部(32)の中央部を軸方向に貫通して圧縮室(C)と連通している。吐出チャンバ(S)は、固定側鏡板部(32)の背面(図1では上面)に形成され、吐出ポート(P2)と連通している。また、吐出チャンバ(S)は、固定スクロール(31)及びハウジング(50)に形成された吐出通路(図示省略)を通じてハウジング(50)の下方空間(25)と連通している。つまり、ハウジング(50)の下方空間(25)は、高圧流体(例えば、高圧の吐出冷媒)で満たされる高圧空間を構成している。 吐出 Further, a discharge port (P2) and a discharge chamber (S) are formed in the fixed end plate (32). The discharge port (P2) penetrates the center of the fixed side end plate (32) in the axial direction and communicates with the compression chamber (C). The discharge chamber (S) is formed on the back surface (the upper surface in FIG. 1) of the fixed end plate (32), and communicates with the discharge port (P2). The discharge chamber (S) communicates with the space (25) below the housing (50) through a discharge passage (not shown) formed in the fixed scroll (31) and the housing (50). That is, the space (25) below the housing (50) forms a high-pressure space filled with a high-pressure fluid (for example, high-pressure discharge refrigerant).
  [駆動軸]
  駆動軸(40)は、ケーシング(20)内を上下方向に延びている。具体的には、駆動軸(40)は、ケーシング(20)の胴部(21)の上端からケーシング(20)の底部となる油貯留部(26)に亘って、ケーシング(20)の軸方向(図1では上下方向)に延びている。本実施形態では、駆動軸(40)は、主軸部(41)と偏心部(42)とを有している。主軸部(41)は、ケーシング(20)の軸方向(図1では上下方向)に延びている。偏心部(42)は、主軸部(41)の上端に設けられている。また、偏心部(42)は、その外径が主軸部(41)の外径よりも小径に形成され、その軸心が主軸部(41)の軸心に対して所定距離だけ偏心している。
[Drive shaft]
The drive shaft (40) extends vertically inside the casing (20). Specifically, the drive shaft (40) extends in the axial direction of the casing (20) from the upper end of the body (21) of the casing (20) to the oil reservoir (26) serving as the bottom of the casing (20). (Vertically in FIG. 1). In the present embodiment, the drive shaft (40) has a main shaft portion (41) and an eccentric portion (42). The main shaft portion (41) extends in the axial direction of the casing (20) (the vertical direction in FIG. 1). The eccentric part (42) is provided at the upper end of the main shaft part (41). The eccentric portion (42) is formed to have an outer diameter smaller than the outer diameter of the main shaft portion (41), and the axis is eccentric by a predetermined distance from the axis of the main shaft portion (41).
  駆動軸(40)は、その上端部を構成する偏心部(42)が可動スクロール(35)のボス部(38)と摺動可能に連結されている。本実施形態では、偏心部(42)は、滑り軸受(38a)を介して可動スクロール(35)のボス部(38)に回転可能に支持されている。 The drive shaft (40) has an eccentric portion (42) constituting the upper end thereof slidably connected to the boss (38) of the movable scroll (35). In the present embodiment, the eccentric portion (42) is rotatably supported by the boss portion (38) of the movable scroll (35) via a slide bearing (38a).
  [ハウジング]
  ハウジング(50)は、その全周がケーシング(20)の胴部(21)内面に接合されている。ハウジング(50)は、上側部分(51)と下側部分(52)とによって構成されている。これら上側部分(51)及び下側部分(52)は、順に上から下へ連続して形成されている。上側部分(51)は、略円筒状に形成され、その上面中央には、可動スクロール(35)のボス部(38)を収容するクランク室を構成する凹部が形成されている。一方、下側部分(52)は、上側部分(51)よりも小径の略円筒状に形成され、上側部分(51)の下面から下方へ突出している。下側部分(52)は、内周側に滑り軸受(52a)が嵌合され、さらにその内周側に駆動軸(40)の主軸部(41)が挿通され、主軸部(41)を回転自在に支持する主軸受部を構成している。
[housing]
The entire periphery of the housing (50) is joined to the inner surface of the body (21) of the casing (20). The housing (50) includes an upper part (51) and a lower part (52). The upper part (51) and the lower part (52) are formed continuously from top to bottom. The upper part (51) is formed in a substantially cylindrical shape, and a concave part that forms a crank chamber that houses the boss (38) of the orbiting scroll (35) is formed in the center of the upper surface. On the other hand, the lower part (52) is formed in a substantially cylindrical shape having a smaller diameter than the upper part (51), and protrudes downward from the lower surface of the upper part (51). In the lower part (52), a sliding bearing (52a) is fitted on the inner peripheral side, and the main shaft part (41) of the drive shaft (40) is inserted through the inner peripheral side to rotate the main shaft part (41). It constitutes a main bearing part that supports freely.
  また、ハウジング(50)の上面には、可動スクロール(35)の自転を阻止するためのオルダム継手(図示省略)が設けられている。このオルダム継手は、可動スクロール(35)の可動側鏡板部(36)とハウジング(50)との間に摺動可能に嵌め込まれている。 オ ル An Oldham coupling (not shown) is provided on the upper surface of the housing (50) to prevent the movable scroll (35) from rotating. The Oldham coupling is slidably fitted between the movable end plate (36) of the movable scroll (35) and the housing (50).
  [電動機]
  電動機(60)は、ケーシング(20)内においてハウジング(50)の下方に設けられている。電動機(60)は、ステータ(61)とロータ(62)とを有している。ステータ(61)は、円筒状に形成されてケーシング(20)の胴部(21)に固定されている。ロータ(62)は、円筒状に形成され、ステータ(61)の内周側に設けられている。ロータ(62)は、駆動軸(40)が挿通され、該駆動軸(40)を回転駆動する。
[Electric motor]
The electric motor (60) is provided below the housing (50) in the casing (20). The electric motor (60) has a stator (61) and a rotor (62). The stator (61) is formed in a cylindrical shape, and is fixed to the body (21) of the casing (20). The rotor (62) is formed in a cylindrical shape, and is provided on the inner peripheral side of the stator (61). The drive shaft (40) is inserted into the rotor (62), and the rotor (62) rotationally drives the drive shaft (40).
  [下部軸受部材]
  下部軸受部材(70)は、ケーシング(20)の軸方向(図1では上下方向)に延びる円筒状に形成され、ケーシング(20)内において電動機(60)とケーシング(20)の底部となる油貯留部(26)との間に設けられている。下部軸受部材(70)は、上側部分(71)と下側部分(72)とを有している。下部軸受部材(70)の上側部分(71)は、外周面の一部が径方向外方に突出してケーシング(20)の胴部(21)の内周面に固定されている。また、下部軸受部材(70)の上側部分(71)の内周側には、滑り軸受(71a)が嵌合され、上側部分(71)は、滑り軸受(71a)を介して駆動軸(40)の主軸部(41)を回転自在に支持している。下部軸受部材(70)の下側部分(72)の内周側には、駆動軸(40)の主軸部(41)の下端部が収容されている。
[Lower bearing member]
The lower bearing member (70) is formed in a cylindrical shape extending in the axial direction (the vertical direction in FIG. 1) of the casing (20), and the electric motor (60) and the oil serving as the bottom of the casing (20) in the casing (20). It is provided between the storage part (26). The lower bearing member (70) has an upper part (71) and a lower part (72). The upper part (71) of the lower bearing member (70) has a part of the outer peripheral surface protruding radially outward and fixed to the inner peripheral surface of the trunk (21) of the casing (20). A sliding bearing (71a) is fitted on the inner peripheral side of the upper part (71) of the lower bearing member (70), and the upper part (71) is connected to the drive shaft (40) via the sliding bearing (71a). ) Is rotatably supported. The lower end of the main shaft (41) of the drive shaft (40) is housed on the inner peripheral side of the lower part (72) of the lower bearing member (70).
  [油ポンプ]
  油ポンプ(80)は、駆動軸(40)の下端部に設けられ、下部軸受部材(70)の下側部分(72)の下端を閉塞するように下部軸受部材(70)の下面に取り付けられている。また、油ポンプ(80)は、油貯留部(26)から駆動軸(40)の内部に形成された給油路(43)へ潤滑油を搬送し、給油路と同様に駆動軸(40)の内部に形成された排油路(44)から油貯留部(26)へ潤滑油を搬送するように構成されている。
[Oil pump]
The oil pump (80) is provided at the lower end of the drive shaft (40), and is attached to the lower surface of the lower bearing member (70) so as to close the lower end of the lower portion (72) of the lower bearing member (70). ing. The oil pump (80) transports the lubricating oil from the oil reservoir (26) to an oil supply passage (43) formed inside the drive shaft (40), and supplies the lubricating oil to the drive shaft (40) in the same manner as the oil supply passage. The lubricating oil is configured to be conveyed from an oil drainage passage (44) formed therein to an oil reservoir (26).
  -吸入逆止弁の詳細-
  図2及び図3に示すように、吸入逆止弁(90)は、吸入管(27)の開口端(27a)を閉塞するための弁体(91)と、該弁体(91)を吸入管(27)の開口端(27a)に押し付けるための押し付け力を弁体(91)に付与する押し付け機構(92)と、該押し付け機構(92)を吸入通路(39)内の所定の位置で支持するための支持部材(93)とを有している。
-Details of suction check valve-
As shown in FIGS. 2 and 3, the suction check valve (90) includes a valve body (91) for closing the open end (27a) of the suction pipe (27) and a suction valve (91). A pressing mechanism (92) for applying a pressing force to the valve body (91) to press the opening end (27a) of the pipe (27), and pressing the pressing mechanism (92) at a predetermined position in the suction passage (39). And a supporting member (93) for supporting.
  弁体(91)は、円板状の本体部(91a)と、該本体部(91a)の外周縁に連続する円筒状の円筒壁部(91b)とを有している。 The valve element (91) has a disk-shaped main body (91a) and a cylindrical cylindrical wall (91b) continuous with the outer peripheral edge of the main body (91a).
  本体部(91a)は、吸入管(27)の開口端(27a)を閉塞可能な大きさ、即ち、吸入管(27)の開口端(27a)の内径よりも大径に形成されている。また、本体部(91a)は、吸入通路(39)内において該吸入通路(39)の延伸方向(図2の上下方向)に略垂直な姿勢でこの延伸方向に往復移動可能な大きさ、即ち、吸入通路(39)の内径よりも小径に形成されている。本体部(91a)の吸入管(27)側の面(図2では上面)は、吸入管(27)の開口端(27a)に当接して該開口端(27a)を閉塞する閉塞面となる。 The main body (91a) is formed to have a size that can close the open end (27a) of the suction pipe (27), that is, a diameter larger than the inner diameter of the open end (27a) of the suction pipe (27). Further, the main body (91a) has a size within the suction passage (39) capable of reciprocating in the direction in which the suction passage (39) extends in a direction substantially perpendicular to the direction in which the suction passage (39) extends (vertical direction in FIG. 2). , Formed with a smaller diameter than the inner diameter of the suction passage (39). The surface (the upper surface in FIG. 2) of the main body portion (91a) on the side of the suction pipe (27) comes into contact with the open end (27a) of the suction pipe (27) and serves as a closed surface for closing the open end (27a). .
  円筒壁部(91b)は、本体部(91a)の吸入管(27)とは逆側の面(図2では下面)の外周縁から突出するように形成されている。円筒壁部(91b)は、吸入通路(39)内において本体部(91a)と共に該吸入通路(39)の延伸方向(図1の上下方向)に往復移動可能な大きさ、即ち、外径が吸入通路(39)の内径よりも小径に形成されている。円筒壁部(91b)は、吸入通路(39)の内壁に沿って延びている。このような吸入通路(39)の内壁に沿う円筒壁部(91b)により、吸入通路(39)内において往復移動中の本体部(91a)が傾き難くなり、該吸入通路(39)の延伸方向に略垂直な姿勢が保持される。また、円筒壁部(91b)は、後述する押し付け機構(92)を構成するコイルばね(94)の一端部を収納可能な大きさ、即ち、内径がコイルばね(94)の外径よりも大径に形成されている。 The cylindrical wall portion (91b) is formed so as to protrude from the outer peripheral edge of the surface (the lower surface in FIG. 2) of the main body portion (91a) on the side opposite to the suction pipe (27). The cylindrical wall portion (91b) has a size capable of reciprocating in the extension direction of the suction passage (39) together with the main body portion (91a) in the suction passage (39) in the extending direction (vertical direction in FIG. 1), that is, the outer diameter thereof. The diameter is formed smaller than the inner diameter of the suction passage (39). The cylindrical wall (91b) extends along the inner wall of the suction passage (39). Such a cylindrical wall portion (91b) along the inner wall of the suction passage (39) makes it difficult for the body portion (91a) reciprocating in the suction passage (39) to tilt, and the extending direction of the suction passage (39). A substantially vertical posture is maintained. The cylindrical wall portion (91b) is large enough to accommodate one end of a coil spring (94) constituting a pressing mechanism (92) described later, that is, the inner diameter is larger than the outer diameter of the coil spring (94). The diameter is formed.
  押し付け機構(92)は、弁体(91)と支持部材(93)との間に設けられたコイルばね(94)によって構成されている。コイルばね(94)は、常時、弁体(91)を吸入管(27)の開口端(27a)に押し付けるための押し付け力を弁体(91)に付与するように、収縮した状態で弁体(91)と支持部材(93)との間に設けられている。つまり、コイルばね(94)は、弁体(91)が吸入管(27)の開口端(27a)に押し付けられた全閉時にも、弁体(91)に押し付け力を付与するように構成されている。 The pressing mechanism (92) is constituted by a coil spring (94) provided between the valve body (91) and the support member (93). The coil spring (94) is always in a contracted state so as to apply a pressing force to the valve body (91) to press the valve body (91) against the open end (27a) of the suction pipe (27). (91) and the supporting member (93). That is, the coil spring (94) is configured to apply a pressing force to the valve body (91) even when the valve body (91) is fully closed when the valve body (91) is pressed against the open end (27a) of the suction pipe (27). ing.
  本実施形態では、コイルばね(94)は、図4に実線で示すように、コイルばね(94)のたわみ量(収縮量)が大きくなるほど、コイルばね(94)のばね荷重(復元力)が大きくなると共に該ばね荷重の変化率(増加率)が大きくなる非線形特性を有するように構成されている。具体的には、図2に示すように、コイルばね(94)は、伸縮方向の一端から他端に亘ってコイル径及びコイル線径は等しい一方、ピッチが変化する不等ピッチコイルばねによって構成されている。本実施形態では、コイルばね(94)は、第1コイル部(94a)と、該第1コイル部(94a)よりもピッチが小さい第2コイル部(94b)とで構成されている。 In the present embodiment, as shown by the solid line in FIG. 4, the spring load (restoring force) of the coil spring (94) increases as the amount of deflection (contraction) of the coil spring (94) increases. It is configured to have a non-linear characteristic in which the rate of change (increase rate) of the spring load increases as the rate increases. Specifically, as shown in FIG. 2, the coil spring (94) is formed by an unequal-pitch coil spring in which the coil diameter and the coil wire diameter are equal from one end to the other end in the expansion and contraction direction, but the pitch changes. Have been. In the present embodiment, the coil spring (94) includes a first coil part (94a) and a second coil part (94b) having a smaller pitch than the first coil part (94a).
  図4に示すように、コイルばね(94)は、全閉時におけるばね荷重f、即ち、押し付け機構(92)が弁体(91)を吸入管(27)の開口端(27a)に押し付ける押し付け力が、従来の線形ばねの全閉時におけるばね荷重f(=押し付け力)よりも小さく、全開時におけるばね荷重f(=押し付け力)が、従来の線形ばねの全開時におけるばね荷重(押し付け力)と同等になるように構成されている。具体的には、本実施形態では、第1コイル部(94a)は、ばね定数が図4に破線で示す従来押し付け機構(92)として用いていた線形ばねのばね定数Kの2倍(2K)になるように構成され、第2コイル部(94b)は、ばね定数が従来の線形ばねのばね定数Kの2/3倍(2K/3)になるように構成されている。 As shown in FIG. 4, the coil spring (94) has a spring load f 1 when fully closed, that is, the pressing mechanism (92) presses the valve element (91) against the open end (27a) of the suction pipe (27). pressing force, the spring load f 2 in the fully closed of a conventional linear spring (= pressing force) smaller than the spring load f 3 when fully open (= pressing force), the spring load at the time of full opening of the conventional linear spring (Pressing force). Specifically, in the present embodiment, the first coil portion (94a) has a spring constant twice (2K) the spring constant K of a linear spring used as a conventional pressing mechanism (92) indicated by a broken line in FIG. The second coil portion (94b) is configured such that the spring constant is 2/3 times (2K / 3) the spring constant K of the conventional linear spring.
  このようなコイルばね(94)によれば、弁体(91)に作用する吸入管(27)の開口端(27a)から離反させる力(図1では下向きの力)が、コイルばね(94)のばね荷重(復元力)よりも大きくなると、コイルばね(94)が収縮し、弁体(91)が吸入管(27)の開口端(27a)から離れることによって吸入管(27)が開放される。そして、弁体(91)の開き初め、即ち、低開度域では、第1コイル部(94a)及び第2コイル部(94b)も収縮するが、ばね定数の小さい第2コイル部(94b)の方が先に大きく収縮し、弁体(91)の開度が所定開度以上になると、第2コイル部(94b)がコイルばねとして機能しなくなることにより、コイルばね(94)のばね荷重の変化率(増加率)が大きくなる。 According to such a coil spring (94), the force (downward force in FIG. 1) acting on the valve body (91) for separating from the open end (27a) of the suction pipe (27) is applied to the coil spring (94). When the spring load (restoring force) becomes larger, the coil spring (94) contracts, and the valve body (91) moves away from the open end (27a) of the suction pipe (27) to open the suction pipe (27). You. Then, at the beginning of opening of the valve element (91), that is, in the low opening range, the first coil part (94a) and the second coil part (94b) also contract, but the second coil part (94b) having a small spring constant. When the opening of the valve element (91) exceeds a predetermined opening, the second coil portion (94b) does not function as a coil spring, and the spring load of the coil spring (94) is reduced. Change rate (increase rate) becomes large.
  具体的には、コイルばね(94)は、たわみ量が全閉時のXから第2コイル部(94b)全体が線間接触してそれ以上収縮できないXになるまでは、第1コイル部(94a)と第2コイル部(94b)とが直列に接続されたばね定数K/2のコイルばねとして機能する。そして、たわみ量がX以上になると、第2コイル部(94b)が機能しなくなり、ばね定数2Kの第1コイルばね(94a)のみが機能することとなる。そのため、上記コイルばね(94)では、コイルばね(94)のたわみ量が大きくなるほど、ばね荷重が大きくなると共に該ばね荷重の変化率(増加率)が大きくなる。言い換えると、上記コイルばね(94)では、コイルばね(94)のたわみ量が小さくなるほど、ばね荷重が小さくなると共に該ばね荷重の変化率(減少率)が小さくなる。 Specifically, the coil spring (94), the amount of deflection from X 0 fully closed until the entire second coil portion (94b) is X 1 which can not shrink more in contact between the lines, the first coil The portion (94a) and the second coil portion (94b) function as a coil spring having a spring constant K / 2 and connected in series. Then, the amount of deflection becomes the X 1 or more, the second coil portion (94b) is no longer functional, only the first coil spring of spring constant 2K (94a) is to function. Therefore, in the coil spring (94), as the amount of deflection of the coil spring (94) increases, the spring load increases and the rate of change (increase rate) of the spring load increases. In other words, in the coil spring (94), as the amount of deflection of the coil spring (94) decreases, the spring load decreases and the rate of change (decrease rate) of the spring load decreases.
  本実施形態では、このような不等ピッチコイルばね(94)を押し付け機構(92)として用いることにより、押し付け機構(92)は、弁体(91)が吸入管(27)の開口端(27a)に近づくほど、即ち、弁体(91)の開度が小さくなるほど、弁体(91)を吸入管(27)の開口端(27a)に押し付ける押し付け力が小さくなると共に該押し付け力の変化率(減少率)が小さくなる非線形特性を有するように構成される。 In the present embodiment, by using such an unequal-pitch coil spring (94) as the pressing mechanism (92), the pressing mechanism (92) is configured such that the valve element (91) has the open end (27a) of the suction pipe (27). ), That is, as the opening of the valve element (91) decreases, the pressing force for pressing the valve element (91) against the open end (27a) of the suction pipe (27) decreases, and the rate of change of the pressing force decreases. It is configured to have a non-linear characteristic in which the (decrease rate) decreases.
  なお、弁体(91)の開度とは、弁体(91)の吸入管(27)の開口端(27a)に対する位置を言い、弁体(91)が吸入管(27)の開口端(27a)を閉塞する全閉時を0%、弁体(91)が支持部材(93)に当接する全開時を100%とする。 The opening degree of the valve element (91) refers to the position of the valve element (91) with respect to the open end (27a) of the suction pipe (27), and the valve element (91) is connected to the open end of the suction pipe (27). The time when the valve 27a) is fully closed is 0%, and the time when the valve element (91) is in the fully open state where the valve body (91) contacts the support member (93) is 100%.
  支持部材(93)は、吸入通路(39)の上記吸入管(27)の開口端(27a)から離れた位置に設けられている。具体的には、支持部材(93)は、吸入通路(39)の吸入管(27)の一端部(図1では下端部)が圧入された開口端(図1では上端)とは逆側の閉塞端(図1では下端)に設けられている。支持部材(93)は、弁体(91)と対応する形状に形成され、円板状の本体部(93a)と、該本体部(93a)の外周縁に連続する円筒状の円筒壁部(93b)とを有している。 The support member (93) is provided at a position in the suction passage (39) away from the opening end (27a) of the suction pipe (27). Specifically, the support member (93) is opposite to the open end (the upper end in FIG. 1) into which one end (the lower end in FIG. 1) of the suction pipe (27) of the suction passage (39) is press-fitted. It is provided at the closed end (the lower end in FIG. 1). The support member (93) is formed in a shape corresponding to the valve element (91), and has a disk-shaped main body (93a) and a cylindrical cylindrical wall (continuous to the outer peripheral edge of the main body (93a)). 93b).
  本体部(93a)は、弁体(91)の本体部(91a)と同様に、吸入通路(39)の内径よりも小径に形成されている。本体部(93a)は、吸入通路(39)の閉塞端面(図1では下端面)に沿うように設けられている。 The main body (93a) is formed smaller in diameter than the inner diameter of the suction passage (39), similarly to the main body (91a) of the valve body (91). The main body (93a) is provided along the closed end face (the lower end face in FIG. 1) of the suction passage (39).
  円筒壁部(93b)は、本体部(93a)の吸入通路(39)の閉塞端とは逆側の面(図1では上面)の外周縁から突出するように形成されている。円筒壁部(93b)は、外径が吸入通路(39)の内径よりも小径に形成され、吸入通路(39)の内壁に沿って延びている。また、円筒壁部(93b)は、押し付け機構(92)を構成するコイルばね(94)の他端部(図1では下端部)を収納可能な大きさ、即ち、内径がコイルばね(94)の外径よりも大径に形成されている。 The cylindrical wall portion (93b) is formed so as to protrude from the outer peripheral edge of the surface (the upper surface in FIG. 1) of the main body portion (93a) on the side opposite to the closed end of the suction passage (39). The cylindrical wall (93b) has an outer diameter smaller than the inner diameter of the suction passage (39), and extends along the inner wall of the suction passage (39). The cylindrical wall portion (93b) is large enough to accommodate the other end (the lower end in FIG. 1) of the coil spring (94) constituting the pressing mechanism (92), that is, the inner diameter is the coil spring (94). Is formed to have a larger diameter than the outer diameter.
  このように、吸入逆止弁(90)は、弁体(91)と支持部材(93)との間に、上述のような非線形特性を有するように構成されたコイルばね(94)を設けることにより、弁体(91)の開度が小さい低開度域では、コイルばね(94)によって弁体(91)に付与される押し付け力が比較的小さいため、流体流量(冷媒循環量)が少ない運転状態や吸入流体(低圧ガス冷媒)の圧力が低い運転状態であっても、弁体(91)が開き易くなる。一方、弁体(91)の開度が大きい大開度域では、コイルばね(94)によって弁体(91)に付与される押し付け力が低開度域に比べて著しく大きくなる。よって、弁体(91)が全開の運転状態から運転が停止された場合であっても、弁体(91)には大きな押し付け力が付与されるため、吸入管(27)の開口端(27a)が迅速に閉塞される。 As described above, the suction check valve (90) includes the coil spring (94) configured to have the above-described non-linear characteristic between the valve body (91) and the support member (93). Accordingly, in the low opening range where the opening of the valve element (91) is small, the pressing force applied to the valve element (91) by the coil spring (94) is relatively small, so that the fluid flow rate (refrigerant circulation amount) is small. The valve body (91) can be easily opened even in an operation state or an operation state in which the pressure of the suction fluid (low-pressure gas refrigerant) is low. On the other hand, in the large opening range where the opening of the valve element (91) is large, the pressing force applied to the valve body (91) by the coil spring (94) is significantly larger than in the low opening degree area. Therefore, even when the operation is stopped from the fully opened operation state of the valve element (91), a large pressing force is applied to the valve element (91), and the open end (27a) of the suction pipe (27) is applied. ) Is quickly blocked.
  -運転動作-
  次に、スクロール圧縮機(10)の運転動作について説明する。
-Driving operation-
Next, the operation of the scroll compressor (10) will be described.
  まず、電動機(60)が起動すると、駆動軸(40)が回転して圧縮機構(30)の可動スクロール(35)が駆動される。可動スクロール(35)は、オルダム継手(図示省略)によって自転が規制された状態で駆動軸(40)の軸心を中心に公転する。可動スクロール(35)の公転により、圧縮室(C)の容積が周期的に増減し、吸入管(27)から圧縮機構(30)の吸入通路(39)を通じて圧縮室(C)に低圧流体(例えば、低圧ガス冷媒)が吸入されて圧縮される。 First, when the electric motor (60) starts, the drive shaft (40) rotates and the movable scroll (35) of the compression mechanism (30) is driven. The orbiting scroll (35) revolves around the axis of the drive shaft (40) in a state where rotation is restricted by an Oldham coupling (not shown). Due to the revolution of the movable scroll (35), the volume of the compression chamber (C) periodically increases and decreases, and the low-pressure fluid (from the suction pipe (27) to the compression chamber (C) through the suction passage (39) of the compression mechanism (30). For example, a low-pressure gas refrigerant is sucked and compressed.
  具体的には、吸入逆止弁(90)の弁体(91)には、低圧流体によって、押し付け機構(92)による押し付け力とは逆向き(図1では下向き)の力、即ち、流体抗力(1/2×抗力係数×流体密度×流体速度の2乗×弁体流路面積)が作用する。また、弁体(91)には、押し付け力とは逆向きに重力が作用する。そのため、上述の流体抗力と重力とを足し合わせた弁体(91)に作用する逆向きの力が押し付け機構(92)による押し付け力(本実施形態では、コイルばね(94)の復元力)よりも大きくなると、吸入管(27)の開口端(27a)を閉塞していた弁体(91)が、開口端(27a)から離れることによって吸入管(27)が開放される。これにより、吸入管(27)と吸入通路(39)とが連通し、吸入管(27)内の低圧流体が吸入通路(39)を介して圧縮室(C)に吸い込まれる。 Specifically, the low pressure fluid acts on the valve body (91) of the suction check valve (90) in a direction opposite to the pressing force by the pressing mechanism (92) (downward in FIG. 1), that is, the fluid drag. (1/2 × drag coefficient × fluid density × square of fluid velocity × valve flow path area) acts. In addition, gravity acts on the valve element (91) in a direction opposite to the pressing force. Therefore, the opposite force acting on the valve element (91) obtained by adding the above-mentioned fluid drag and gravity is generated by the pressing force (in the present embodiment, the restoring force of the coil spring (94)) of the pressing mechanism (92). When the valve body (91) also becomes large, the valve body (91) closing the open end (27a) of the suction pipe (27) moves away from the open end (27a), so that the suction pipe (27) is opened. Thereby, the suction pipe (27) communicates with the suction passage (39), and the low-pressure fluid in the suction pipe (27) is sucked into the compression chamber (C) via the suction passage (39).
  圧縮室(C)に吸い込まれた低圧流体は、圧縮室(C)の容積の減少に伴い、圧縮される。そして、圧縮室(C)において圧縮された流体(すなわち、高圧流体)は、固定スクロール(31)の吐出ポート(P2)を通じて吐出チャンバ(S)へ吐出される。吐出チャンバ(S)に流入した高圧流体(例えば、高圧ガス冷媒)は、固定スクロール(31)及びハウジング(50)に形成された図示しない吐出通路を通じてハウジング(50)の下方空間(25)に流出する。下方空間(25)に流入した高圧流体は、図示しない吐出管を通じてケーシング(20)の外部(例えば、冷媒回路の凝縮器)へ吐出される。 低 The low-pressure fluid sucked into the compression chamber (C) is compressed as the volume of the compression chamber (C) decreases. The fluid (that is, the high-pressure fluid) compressed in the compression chamber (C) is discharged to the discharge chamber (S) through the discharge port (P2) of the fixed scroll (31). The high-pressure fluid (for example, high-pressure gas refrigerant) flowing into the discharge chamber (S) flows out to a space (25) below the housing (50) through a discharge passage (not shown) formed in the fixed scroll (31) and the housing (50). I do. The high-pressure fluid flowing into the lower space (25) is discharged to the outside of the casing (20) (for example, a condenser of a refrigerant circuit) through a discharge pipe (not shown).
  なお、上述したように、本実施形態1では、押し付け機構(92)は、弁体(91)が吸入管(27)の開口端(27a)に近づくほど、弁体(91)を吸入管(27)の開口端(27a)に押し付ける押し付け力が小さくなると共に該押し付け力の変化率(減少率)が小さくなる非線形特性を有するコイルばね(94)によって構成されている。また、コイルばね(94)は、全閉時におけるばね荷重f(=押し付け力)が、従来の線形ばねの全閉時におけるばね荷重f(=押し付け力)よりも小さく、全開時におけるばね荷重f(=押し付け力)が、従来の線形ばねの全開時におけるばね荷重f(押し付け力)と同等になるように構成されている。 As described above, in the first embodiment, as the valve body (91) approaches the opening end (27a) of the suction pipe (27), the pressing mechanism (92) moves the valve body (91) toward the suction pipe (27). The coil spring (94) has a non-linear characteristic in which the pressing force for pressing the opening end (27a) of the 27) decreases and the rate of change (decrease rate) of the pressing force decreases. Also, the coil spring (94) has a spring load f 1 (= pressing force) when fully closed, which is smaller than a spring load f 2 (= pressing force) when the conventional linear spring is fully closed, and the spring when fully open. The load f 3 (= pressing force) is configured to be equal to the spring load f 3 (pressing force) when the conventional linear spring is fully opened.
  このような構成により、弁体(91)の全開時には、押し付け機構(92)が弁体(91)に作用させる押し付け力が従来の線形ばねと同等の比較的大きな押し付け力となる。そのため、スクロール圧縮機(10)の運転が停止された場合には、従来と同様に、迅速に吸入管(27)の開口端(27a)が閉塞されることとなる。一方、弁体(91)の開度が小さい低開度域では、コイルばね(94)のばね定数が従来の線形ばねに比べて小さくなるため、押し付け機構(92)が弁体(91)に作用させる押し付け力も従来の線形ばねよりも小さくなる。よって、流体流量が少ない運転状態や吸入流体の圧力が低い運転状態であっても、従来に比べて弁体(91)が開き易くなり、吸入圧力損失が従来よりも低くなる。また、従来のスクロール圧縮機のように、ばね定数の高い線形ばねを用いると、流体流量が少ない運転状態や吸入流体の圧力が低い運転状態の際には、弁体(91)が閉じ易く、弁体(91)が吸入管(27)の開口端(27a)と接触して、所謂、チャタリング異音を発生させるおそれがあるが、上記構成により、従来に比べて弁体(91)の開度が比較的大きくなるため、チャタリング異音が生じ難くなる。 With this configuration, when the valve element (91) is fully opened, the pressing force applied by the pressing mechanism (92) to the valve element (91) is a relatively large pressing force equivalent to that of a conventional linear spring. Therefore, when the operation of the scroll compressor (10) is stopped, the opening end (27a) of the suction pipe (27) is quickly closed as in the related art. On the other hand, in the low opening range where the opening of the valve element (91) is small, the spring constant of the coil spring (94) is smaller than that of the conventional linear spring, so that the pressing mechanism (92) is attached to the valve element (91). The pressing force to be applied is smaller than that of the conventional linear spring. Therefore, even in an operation state in which the fluid flow rate is low or an operation state in which the pressure of the suction fluid is low, the valve element (91) is easily opened as compared with the related art, and the suction pressure loss is lower than in the related art. Further, when a linear spring having a high spring constant is used as in a conventional scroll compressor, the valve element (91) can be easily closed in an operation state where the fluid flow rate is small or an operation state where the pressure of the suction fluid is low. Although the valve element (91) may come into contact with the open end (27a) of the suction pipe (27) to generate so-called chattering noise, the above-described configuration allows the valve element (91) to open compared to the related art. Since the degree is relatively large, chattering noise is less likely to occur.
  -実施形態1の効果-
  本実施形態1のスクロール圧縮機(10)は、可動スクロール(35)と、該可動スクロール(35)との間において流体を圧縮する圧縮室(C)を形成すると共に、該圧縮室(C)に流体を導くための吸入通路(39)が形成された固定スクロール(31)と、一端部が上記吸入通路(39)に挿入された吸入管(27)と、上記吸入通路(39)に設けられ、上記吸入管(27)の開口端(27a)を開閉する吸入逆止弁(90)とを備える。上記吸入逆止弁(90)は、上記吸入管(27)の開口端(27a)を閉塞する弁体(91)と、該弁体(91)を該吸入管(27)の開口端(27a)に押し付けるための押し付け力を上記弁体(91)に付与する押し付け機構(92)とを有している。また、上記押し付け機構(92)は、上記弁体(91)が上記吸入管(27)の開口端(27a)に近づくほど、上記押し付け力が小さくなると共に該押し付け力の変化率(減少率)が小さくなる非線形特性を有するように構成されている。
-Effects of Embodiment 1-
The scroll compressor (10) of the first embodiment includes a movable scroll (35), a compression chamber (C) for compressing a fluid between the movable scroll (35), and the compression chamber (C). A fixed scroll (31) formed with a suction passage (39) for guiding a fluid to the suction passage, a suction pipe (27) having one end inserted into the suction passage (39), and provided in the suction passage (39). A suction check valve (90) for opening and closing the open end (27a) of the suction pipe (27). The suction check valve (90) includes a valve body (91) that closes an open end (27a) of the suction pipe (27), and a valve body (91) that closes the open end (27a) of the suction pipe (27). ) And a pressing mechanism (92) for applying a pressing force to the valve body (91). The pressing mechanism (92) is configured such that the closer the valve body (91) is to the opening end (27a) of the suction pipe (27), the smaller the pressing force and the rate of change (decrease rate) of the pressing force. Is configured to have a non-linear characteristic in which is reduced.
  本実施形態1のスクロール圧縮機(10)では、吸入逆止弁(90)の弁体(91)を吸入管(27)の開口端(27a)に押し付ける押し付け機構(92)が、弁体(91)が吸入管(27)の開口端(27a)に近づくほど、即ち、弁体(91)の開度が小さくなるほど、押し付け力が小さくなると共に押し付け力の変化率(減少率)が小さくなる非線形特性を有するように構成されている。このような構成により、弁体(91)の開度が比較的低い低開度域では、従来のスクロール圧縮機に比べて弁体(91)に付与される押し付け力が小さく、開き易い吸入逆止弁(90)を提供することができる。従って、このような吸入逆止弁(90)が設けられたスクロール圧縮機によれば、流体流量が少ない運転状態や吸入流体の圧力が低い運転状態であっても、弁体(91)の開度が比較的大きくなる。従って、従来のスクロール圧縮機に比べて、運転時における吸入圧力損失を低減することができ、圧縮機効率の低下を抑制することができる。 In the scroll compressor (10) of the first embodiment, the pressing mechanism (92) for pressing the valve body (91) of the suction check valve (90) against the open end (27a) of the suction pipe (27) includes a valve body (92). As (91) approaches the opening end (27a) of the suction pipe (27), that is, as the opening of the valve element (91) decreases, the pressing force decreases and the rate of change (decrease rate) of the pressing force decreases. It is configured to have non-linear characteristics. With such a configuration, in the low opening range where the opening of the valve element (91) is relatively low, the pressing force applied to the valve element (91) is small as compared with the conventional scroll compressor, and the suction reverse opening is easy to open. A stop valve (90) can be provided. Therefore, according to the scroll compressor provided with such a suction check valve (90), the valve body (91) can be opened even in an operation state in which the fluid flow rate is low or an operation state in which the pressure of the suction fluid is low. The degree is relatively large. Therefore, the suction pressure loss during operation can be reduced as compared with a conventional scroll compressor, and a decrease in compressor efficiency can be suppressed.
  また、本実施形態1のスクロール圧縮機(10)によれば、弁体(91)の開度が大きい高開度域では、弁体(91)の開度が大きくなるほど、押し付け機構(92)によって弁体(91)に作用する押し付け力が大きくなると共にその変化率(増加率)が大きくなる。そのため、弁体(91)の全開時には、線形ばねで弁体(91)を押し付けていた従来のスクロール圧縮機と同様に、押し付け機構(92)によって弁体(91)に高い押し付け力を作用させることができる。従って、従来のスクロール圧縮機と同様に、弁体(91)の開度が大きい運転状態において運転が停止された場合であっても、弁体(91)で吸入管(27)の開口端(27a)を迅速に閉塞することができる。また、弁体(91)が支持部材(93)に当接する全開時には、潤滑油の油膜によって弁体(91)と支持部材(93)とが密着して離れ難くなるが、このような弁体(91)の全開時に運転が停止された場合であっても、弁体(91)には押し付け機構(92)によって高い押し付け力が作用するため、弁体(91)が支持部材(93)から離れ、吸入管(27)の開口端(27a)を閉塞できなくなることがない。つまり、本実施形態1のスクロール圧縮機(10)によれば、上述のように、弁体(91)が開き易くなるように押し付け機構(92)を構成しても、運転停止時における圧縮室(C)内の流体の吸入管(27)側への逆流を阻止する能力を低下させることがない。 Further, according to the scroll compressor (10) of the first embodiment, in the high opening range where the opening of the valve element (91) is large, as the opening of the valve element (91) increases, the pressing mechanism (92) increases. Accordingly, the pressing force acting on the valve element (91) increases, and the rate of change (rate of increase) increases. Therefore, when the valve element (91) is fully opened, a high pressing force is applied to the valve element (91) by the pressing mechanism (92), similarly to the conventional scroll compressor in which the linear element presses the valve element (91). be able to. Therefore, similarly to the conventional scroll compressor, even when the operation is stopped in an operation state in which the opening degree of the valve element (91) is large, the opening end of the suction pipe (27) is opened by the valve element (91). 27a) can be closed quickly. In addition, when the valve element (91) is fully opened in contact with the support member (93), the valve element (91) and the support member (93) are in close contact with each other due to the oil film of the lubricating oil, but are difficult to separate. Even when the operation is stopped when the valve (91) is fully opened, a high pressing force is applied to the valve (91) by the pressing mechanism (92), so that the valve (91) is moved from the support member (93). The opening end (27a) of the suction pipe (27) cannot be closed. That is, according to the scroll compressor (10) of the first embodiment, as described above, even if the pressing mechanism (92) is configured so that the valve element (91) is easily opened, the compression chamber when the operation is stopped is stopped. The ability to prevent the fluid in (C) from flowing back to the suction pipe (27) side is not reduced.
  ところで、従来のスクロール圧縮機のように、ばね定数の高い線形ばねを用いると、流体流量が少ない運転状態や吸入流体の圧力が低い運転状態の際には、弁体(91)が閉じ易く、弁体(91)が吸入管(27)の開口端(27a)と接触して、所謂、チャタリング異音を発生させるおそれがあった。 By the way, when a linear spring having a high spring constant is used as in a conventional scroll compressor, the valve element (91) is easily closed in an operation state in which the fluid flow rate is low or an operation state in which the pressure of the suction fluid is low, The valve body (91) may come into contact with the open end (27a) of the suction pipe (27) to generate so-called chattering noise.
  しかしながら、本実施形態1のスクロール圧縮機(10)によれば、上述のように、弁体(91)が開き易くなり、流体流量が少ない運転状態や吸入流体の圧力が低い運転状態であっても、弁体(91)の開度が比較的大きくなるため、チャタリング異音の発生を抑制することができる。 However, according to the scroll compressor (10) of the first embodiment, as described above, the valve element (91) is easily opened, and the operation state in which the fluid flow rate is small or the operation state in which the pressure of the suction fluid is low are low. Also, since the opening of the valve element (91) is relatively large, occurrence of chattering noise can be suppressed.
  また、本実施形態1のスクロール圧縮機(10)において、押し付け機構(92)は、弁体(91)が吸入管(27)の開口端(27a)に近づくほど、押し付け力が小さくなると共に該押し付け力の変化率(減少率)が小さくなる非線形特性を有するように構成されたコイルばね(94)で構成されている。また、本実施形態1では、そのようなコイルばね(94)として、伸縮方向の一端から他端に亘ってコイル径及びコイル線径は等しい一方、ピッチが変化する不等ピッチコイルばねを用いている。 In the scroll compressor (10) of the first embodiment, the pressing mechanism (92) reduces the pressing force as the valve body (91) approaches the open end (27a) of the suction pipe (27), and reduces the pressing force. The coil spring (94) is configured to have a non-linear characteristic in which the rate of change (decrease rate) of the pressing force is reduced. Further, in the first embodiment, as such a coil spring (94), an unequal-pitch coil spring whose pitch changes while the coil diameter and the coil wire diameter are equal from one end to the other end in the expansion and contraction direction is used. I have.
  ところで、一般に、コイルばねは、コイル内径、ピッチ、コイル線径のいずれかを変化させることにより、コイルばねのたわみ量が大きくなるほど、コイルばねのばね荷重(復元力)が大きくなると共に該ばね荷重の変化率(増加率)が大きくなる非線形特性を有するようになる。 By the way, generally, by changing any of the coil inner diameter, the pitch, and the coil wire diameter, as the amount of deflection of the coil spring increases, the spring load (restoring force) of the coil spring increases and the spring load increases. Has a non-linear characteristic in which the rate of change (increase rate) increases.
  本実施形態1のスクロール圧縮機(10)では、押し付け機構(92)として、伸縮方向の一端から他端に亘ってピッチを変化させたコイルばね(94)で構成することにより、弁体(91)が吸入管(27)の開口端(27a)に近づくほど、押し付け力が小さくなると共に該押し付け力の変化率(減少率)が小さくなる非線形特性を有する押し付け機構(92)を容易に構成することができる。 In the scroll compressor (10) of the first embodiment, the valve body (91) is constituted by a coil spring (94) having a pitch changed from one end to the other end in the expansion and contraction direction as the pressing mechanism (92). ) Is closer to the opening end (27a) of the suction pipe (27), the pressing force is reduced, and the rate of change (decrease rate) of the pressing force is reduced, so that a pressing mechanism (92) having a non-linear characteristic is easily configured. be able to.
  また、本実施形態1のスクロール圧縮機(10)では、押し付け機構(92)を構成するコイルばね(94)が、全閉時におけるばね荷重f(=押し付け力)が、従来の線形ばねの全閉時におけるばね荷重f(=押し付け力)よりも小さく、全開時におけるばね荷重f(=押し付け力)が、従来の線形ばねの全開時におけるばね荷重(押し付け力)と同等になるように構成されている。そのため、弁体(91)の全開時には従来のスクロール圧縮機と同様に弁体(91)に高い押し付け力が付与される一方、弁体(91)の開度が比較的低い低開度域では、従来のスクロール圧縮機に比べて弁体(91)に付与される押し付け力が小さく、開き易い吸入逆止弁(90)を提供することができる。従って、このような吸入逆止弁(90)が設けられたスクロール圧縮機によれば、従来のスクロール圧縮機と同様に、弁体(91)の開度が大きい運転状態において運転が停止された場合であっても、弁体(91)で吸入管(27)の開口端(27a)を迅速に閉塞することができる一方、従来のスクロール圧縮機に比べて運転時における吸入圧力損失を低減することができる。よって、本実施形態1のスクロール圧縮機(10)によれば、運転停止時における圧縮室(C)内の流体の吸入管(27)側への逆流を阻止する能力を従来のスクロール圧縮機よりも低下させることなく、従来のスクロール圧縮機よりも圧縮機効率を向上させることができる。 In the scroll compressor (10) of the first embodiment, the coil spring (94) constituting the pressing mechanism (92) has a spring load f 1 (= pressing force) when fully closed, which is smaller than that of the conventional linear spring. It is smaller than the spring load f 2 (= pressing force) when fully closed, and the spring load f 3 (= pressing force) when fully opened is equal to the spring load (pressing force) when the conventional linear spring is fully opened. Is configured. Therefore, when the valve element (91) is fully opened, a high pressing force is applied to the valve element (91) as in the conventional scroll compressor, while in the low opening area where the opening degree of the valve element (91) is relatively low. In addition, it is possible to provide a suction check valve (90) in which the pressing force applied to the valve element (91) is smaller than that of the conventional scroll compressor, and is easy to open. Therefore, according to the scroll compressor provided with such a suction check valve (90), as in the conventional scroll compressor, the operation is stopped in the operation state in which the opening of the valve element (91) is large. Even in this case, the opening end (27a) of the suction pipe (27) can be quickly closed by the valve body (91), but the suction pressure loss during operation is reduced as compared with the conventional scroll compressor. be able to. Therefore, according to the scroll compressor (10) of the first embodiment, the ability to prevent the backflow of the fluid in the compression chamber (C) to the suction pipe (27) side when the operation is stopped is higher than that of the conventional scroll compressor. The compressor efficiency can be improved as compared with the conventional scroll compressor without lowering the pressure.
  《実施形態2》
  実施形態2について説明する。本実施形態2のスクロール圧縮機(10)は、実施形態1のスクロール圧縮機(10)において、吸入逆止弁(90)の構成を一部変更したものである。ここでは、本実施形態のスクロール圧縮機(10)について、実施形態1のスクロール圧縮機(10)と異なる点を説明する。
<< Embodiment 2 >>
Embodiment 2 will be described. The scroll compressor (10) of the second embodiment is obtained by partially changing the configuration of the suction check valve (90) in the scroll compressor (10) of the first embodiment. Here, the difference between the scroll compressor (10) of the present embodiment and the scroll compressor (10) of the first embodiment will be described.
  実施形態2においても、吸入逆止弁(90)は、吸入管(27)の開口端(27a)を閉塞するための弁体(91)と、該弁体(91)を吸入管(27)の開口端(27a)に押し付けるための押し付け力を弁体(91)に付与する押し付け機構(92)と、該押し付け機構(92)を吸入通路(39)内の所定の位置で支持するための支持部材(93)とを有している。そして、実施形態2では、弁体(91)と支持部材(93)は、実施形態1と同様に構成され、押し付け機構(92)のみが実施形態1と異なる。 Also in the second embodiment, the suction check valve (90) includes a valve element (91) for closing the open end (27a) of the suction pipe (27), and the valve element (91) is connected to the suction pipe (27). A pressing mechanism (92) for applying a pressing force to the valve body (91) for pressing against the open end (27a) of the valve, and a mechanism for supporting the pressing mechanism (92) at a predetermined position in the suction passage (39). A supporting member (93). In the second embodiment, the valve element (91) and the support member (93) are configured in the same manner as the first embodiment, and only the pressing mechanism (92) is different from the first embodiment.
  図5及び図6に示すように、実施形態2では、押し付け機構(92)は、弁体(91)と支持部材(93)とのそれぞれに設けられた第1及び第2の永久磁石(95a,95b)によって構成されている。 As shown in FIGS. 5 and 6, in the second embodiment, the pressing mechanism (92) includes first and second permanent magnets (95 a) provided on the valve body (91) and the support member (93), respectively. , 95b).
  第1及び第2の永久磁石(95a,95b)は、環状に形成されている。第1の永久磁石(95a)は、弁体(91)の円筒壁部(91b)の内側に嵌め込まれて固定されている。第2の永久磁石(95b)は、支持部材(93)の円筒壁部(93b)の内側に嵌め込まれて固定されている。第1の永久磁石(95a)と第2の永久磁石(95b)とは、同種の磁極が互いに対向するように設けられている。そのため、第1の永久磁石(95a)と第2の永久磁石(95b)との間には、反発力が生じ、その反発力は、互いの距離が増加するほど小さくなり、その変化率(減少率)は、互いの距離が増加するほど小さくなる。 The first and second permanent magnets (95a, 95b) are formed in an annular shape. The first permanent magnet (95a) is fitted and fixed inside the cylindrical wall (91b) of the valve body (91). The second permanent magnet (95b) is fitted and fixed inside the cylindrical wall (93b) of the support member (93). The first permanent magnet (95a) and the second permanent magnet (95b) are provided such that magnetic poles of the same type face each other. For this reason, a repulsive force is generated between the first permanent magnet (95a) and the second permanent magnet (95b), and the repulsive force becomes smaller as the distance between the first permanent magnet (95a) and the second permanent magnet (95b) increases. Rate) decreases as the distance between each other increases.
  実施形態2では、このような第1及びの第2永久磁石(95a,95b)を押し付け機構(92)として用いることにより、第1の永久磁石(95a)に作用する上記反発力が、弁体(91)を吸入管(27)の開口端(27a)に押し付ける押し付け力となる。そして、実施形態2においても、押し付け機構(92)は、弁体(91)が吸入管(27)の開口端(27a)に近づくほど、即ち、弁体(91)の開度が小さくなるほど、弁体(91)を吸入管(27)の開口端(27a)に押し付ける押し付け力が小さくなると共に該押し付け力の変化率(減少率)が小さくなる非線形特性を有するように構成されることとなる。 In the second embodiment, by using such first and second permanent magnets (95a, 95b) as the pressing mechanism (92), the repulsive force acting on the first permanent magnet (95a) is reduced to a valve body. (91) is a pressing force for pressing the opening end (27a) of the suction pipe (27). Also in the second embodiment, the pressing mechanism (92) is configured such that as the valve body (91) approaches the opening end (27a) of the suction pipe (27), that is, as the opening of the valve body (91) decreases, The valve body (91) is configured to have a non-linear characteristic in which the pressing force for pressing the valve body (91) against the opening end (27a) of the suction pipe (27) decreases and the rate of change (decrease rate) of the pressing force decreases. .
  以上のように、実施形態2のスクロール圧縮機(10)では、押し付け機構(92)を、弁体(91)に固定された第1の永久磁石(95a)と、吸入通路(39)の吸入管(27)の開口端(27a)から離れた位置に設けられた支持部材(93)に、第1の永久磁石(95a)と反発するように固定された第2の永久磁石(95b)とを有するように構成している。 As described above, in the scroll compressor (10) of the second embodiment, the pressing mechanism (92) is connected to the first permanent magnet (95a) fixed to the valve body (91) and the suction passage (39). A second permanent magnet (95b) fixed so as to repel the first permanent magnet (95a) is provided on a support member (93) provided at a position away from the open end (27a) of the pipe (27). It is constituted so that it may have.
  実施形態2のスクロール圧縮機(10)によれば、弁体(91)は、第1の永久磁石(95a)と第2の永久磁石(95b)との間に作用する反発力によって吸入管(27)の開口端(27a)に押し付けられる。また、第1の永久磁石(95a)と第2の永久磁石(95b)との間に作用する反発力は、第1の永久磁石(95a)が第2の永久磁石(95b)から離れるほど、即ち、弁体(91)が吸入管(27)の開口端(27a)に近づいて弁体(91)の開度が小さくなるほど、小さくなると共にその変化率(減少率)が小さくなる。つまり、実施形態2においても、実施形態1と同様に、押し付け機構(92)が、弁体(91)が吸入管(27)の開口端(27a)に近づくほど、即ち、弁体(91)の開度が小さくなるほど、押し付け力が小さくなると共に押し付け力の変化率(減少率)が小さくなる非線形特性を有するように構成されることとなる。従って、実施形態2においても、実施形態1と同様の効果を奏することができる。 According to the scroll compressor (10) of the second embodiment, the valve body (91) is provided with the suction pipe (91) by a repulsive force acting between the first permanent magnet (95a) and the second permanent magnet (95b). It is pressed against the open end (27a) of 27). Further, the repulsive force acting between the first permanent magnet (95a) and the second permanent magnet (95b) increases as the first permanent magnet (95a) moves away from the second permanent magnet (95b). That is, as the valve element (91) approaches the opening end (27a) of the suction pipe (27) and the degree of opening of the valve element (91) decreases, the degree of change (decrease rate) decreases as well. That is, also in the second embodiment, as in the first embodiment, the pressing mechanism (92) moves the valve body (91) closer to the open end (27a) of the suction pipe (27), that is, the valve body (91). The smaller the opening degree is, the smaller the pressing force is and the smaller the change rate (decrease rate) of the pressing force is. Therefore, also in the second embodiment, the same effects as in the first embodiment can be obtained.
  上述のように、同種の磁極が対向するように設けられた一対の永久磁石は、互いの間に反発力を生じ、その反発力は、互いの距離が増加するほど小さくなり、その変化率(減少率)は、互いの距離が増加するほど小さくなる。 As described above, a pair of permanent magnets provided so that magnetic poles of the same type face each other generate a repulsive force therebetween, and the repulsive force becomes smaller as the distance between them increases, and the rate of change ( (Decrease rate) decreases as the distance between each other increases.
  本実施形態2のスクロール圧縮機(10)では、押し付け機構(92)として、弁体(91)と支持部材(93)との間に同種の磁極が対向するように設けられた第1及び第2の永久磁石(95a,95b)で構成することにより、弁体(91)が吸入管(27)の開口端(27a)に近づくほど、押し付け力が小さくなると共に該押し付け力の変化率(減少率)が小さくなる非線形特性を有する押し付け機構(92)を容易に構成することができる。 In the scroll compressor (10) of the second embodiment, as the pressing mechanism (92), the first and the second magnetic poles of the same type are provided between the valve body (91) and the support member (93) so as to face each other. As the valve element (91) approaches the opening end (27a) of the suction pipe (27), the pressing force decreases and the rate of change (decrease) of the pressing force decreases. The pressing mechanism (92) having the non-linear characteristic of decreasing the rate can be easily configured.
  《その他の実施形態》
  上記実施形態1では、弁体(91)が吸入管(27)の開口端(27a)に近づくほど、押し付け力が小さくなると共に該押し付け力の変化率(減少率)が小さくなる非線形特性を有するように構成されたコイルばね(94)として、伸縮方向の一端から他端に亘ってコイル径及びコイル線径は等しい一方、ピッチが変化する不等ピッチコイルばねを用いていた。しかしながら、上記コイルばね(94)は、不等ピッチコイルばねに限られない。伸縮方向の一端から他端に亘ってコイル線径及びピッチは等しい一方、コイル径が変化する円錐コイルばねを用いてもよく、伸縮方向の一端から他端に亘ってコイル径及びピッチは等しい一方、コイル線径が変化するテーパコイルばねを用いてもよい。このようにコイルばね(94)を円錐コイルばねやテーパコイルばねで構成した場合であっても、コイルばね(94)は、たわみ量(収縮量)が大きくなるほど、ばね荷重(復元力)が大きくなると共に該ばね荷重の変化率(増加率)が大きくなる非線形特性を有するものとなるため、実施形態1と同様の効果を奏することとなる。
<< Other embodiments >>
In the first embodiment, as the valve element (91) approaches the opening end (27a) of the suction pipe (27), the pressing force decreases and the rate of change (decrease rate) of the pressing force decreases. As the coil spring (94) configured as described above, an unequal-pitch coil spring in which the pitch changes while the coil diameter and the coil wire diameter are equal from one end to the other end in the expansion and contraction direction has been used. However, the coil spring (94) is not limited to the unequal-pitch coil spring. While the coil wire diameter and the pitch are equal from one end to the other end in the expansion and contraction direction, a conical coil spring whose coil diameter changes may be used, and the coil diameter and the pitch are equal from one end to the other end in the expansion and contraction direction. Alternatively, a tapered coil spring whose coil wire diameter changes may be used. Even when the coil spring (94) is formed of a conical coil spring or a tapered coil spring as described above, the spring load (restoring force) of the coil spring (94) increases as the amount of deflection (amount of contraction) increases. At the same time, the spring has a non-linear characteristic in which the change rate (increase rate) of the spring load becomes large, so that the same effect as that of the first embodiment can be obtained.
  また、上記各実施形態では、吸入逆止弁(90)は、押し付け機構(92)を吸入通路(39)内の所定の位置で支持するための支持部材(93)を備えていたが、該支持部材(93)は省略してもよい。具体的には、実施形態1では、支持部材(93)を省略し、押し付け機構(92)を構成するコイルばね(94)の他端部(図1では下端部)を吸入通路(39)の閉塞端に固定してもよい。また、実施形態2では、支持部材(93)を省略し、押し付け機構(92)を構成する第2の永久磁石(95b)を吸入通路(39)の閉塞端に固定してもよい。 In each of the above embodiments, the suction check valve (90) includes the support member (93) for supporting the pressing mechanism (92) at a predetermined position in the suction passage (39). The support member (93) may be omitted. Specifically, in the first embodiment, the support member (93) is omitted, and the other end (the lower end in FIG. 1) of the coil spring (94) constituting the pressing mechanism (92) is connected to the suction passage (39). It may be fixed to the closed end. In the second embodiment, the support member (93) may be omitted, and the second permanent magnet (95b) constituting the pressing mechanism (92) may be fixed to the closed end of the suction passage (39).
  以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。 Although the embodiments and modifications have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the claims. In addition, the above-described embodiments and modified examples may be appropriately combined or replaced as long as the functions of the present disclosure are not impaired.
  以上説明したように、本開示は、スクロール圧縮機について有用である。 As described above, the present disclosure is useful for a scroll compressor.
     10   スクロール圧縮機
     27   吸入管
     27a  開口端
     31   固定スクロール
     35   可動スクロール
     39   吸入通路
     90   吸入逆止弁
     91   弁体
     92   押し付け機構
     94   コイルばね
     95a  第1の永久磁石
     95b  第2の永久磁石
     C    圧縮室
Reference Signs List 10 scroll compressor 27 suction pipe 27a open end 31 fixed scroll 35 movable scroll 39 suction passage 90 suction check valve 91 valve element 92 pressing mechanism 94 coil spring 95a first permanent magnet 95b second permanent magnet C compression chamber

Claims (3)

  1.   可動スクロール(35)と、
      上記可動スクロール(35)との間において流体を圧縮する圧縮室(C)を形成すると共に、該圧縮室(C)に流体を導くための吸入通路(39)が形成された固定スクロール(31)と、
      一端部が上記吸入通路(39)に挿入された吸入管(27)と、
      上記吸入通路(39)に設けられ、上記吸入管(27)の開口端(27a)を開閉する吸入逆止弁(90)とを備えたスクロール圧縮機であって、
      上記吸入逆止弁(90)は、上記吸入管(27)の開口端(27a)を閉塞する弁体(91)と、該弁体(91)を該吸入管(27)の開口端(27a)に押し付けるための押し付け力を上記弁体(91)に付与する押し付け機構(92)とを有し、
      上記押し付け機構(92)は、上記弁体(91)が上記吸入管(27)の開口端(27a)に近づくほど、上記押し付け力が小さくなると共に該押し付け力の変化率が小さくなる非線形特性を有するように構成されている
    ことを特徴とするスクロール圧縮機。
    Movable scroll (35),
    A fixed scroll (31) in which a compression chamber (C) for compressing a fluid is formed between the movable scroll (35) and a suction passage (39) for guiding the fluid to the compression chamber (C). When,
    A suction pipe (27) having one end inserted into the suction passage (39);
    A scroll check valve (90) provided in the suction passage (39) for opening and closing an open end (27a) of the suction pipe (27);
    The suction check valve (90) includes a valve body (91) for closing an open end (27a) of the suction pipe (27), and a valve body (91) for closing the open end (27a) of the suction pipe (27). And a pressing mechanism (92) for applying a pressing force for pressing the valve body (91) to the valve body (91).
    The pressing mechanism (92) has a non-linear characteristic in which as the valve body (91) approaches the opening end (27a) of the suction pipe (27), the pressing force decreases and the rate of change of the pressing force decreases. A scroll compressor characterized by having a scroll compressor.
  2.   請求項1において、
      上記押し付け機構(92)は、上記非線形特性を有するように構成されたコイルばね(94)である
    ことを特徴とするスクロール圧縮機。
    In claim 1,
    The scroll compressor, wherein the pressing mechanism (92) is a coil spring (94) configured to have the non-linear characteristic.
  3.   請求項1において、
      上記押し付け機構(92)は、上記弁体(91)に固定された第1の永久磁石(95a)と、上記吸入通路(39)の上記吸入管(27)の開口端(27a)から離れた位置に、上記第1の永久磁石(95a)と反発するように設けられた第2の永久磁石(95b)とを有している
    ことを特徴とするスクロール圧縮機。
    In claim 1,
    The pressing mechanism (92) is separated from the first permanent magnet (95a) fixed to the valve body (91) and the open end (27a) of the suction pipe (27) of the suction passage (39). A scroll compressor comprising, at a position, the first permanent magnet (95a) and a second permanent magnet (95b) provided to repel.
PCT/JP2019/023897 2018-07-05 2019-06-17 Scroll compressor WO2020008849A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018128539A JP2020007945A (en) 2018-07-05 2018-07-05 Scroll compressor
JP2018-128539 2018-07-05

Publications (1)

Publication Number Publication Date
WO2020008849A1 true WO2020008849A1 (en) 2020-01-09

Family

ID=69060197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023897 WO2020008849A1 (en) 2018-07-05 2019-06-17 Scroll compressor

Country Status (2)

Country Link
JP (1) JP2020007945A (en)
WO (1) WO2020008849A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118076810B (en) 2021-10-28 2024-09-10 大金工业株式会社 Scroll compressor and refrigeration device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914325U (en) * 1982-07-16 1984-01-28 株式会社東芝 Rectifier transformer
JPH01180068U (en) * 1988-06-08 1989-12-25
JP2001323881A (en) * 2000-05-16 2001-11-22 Hitachi Ltd Compressor
JP2004353591A (en) * 2003-05-30 2004-12-16 Calsonic Compressor Inc Gas compressor and intake check valve therefor
JP2014206060A (en) * 2013-04-11 2014-10-30 日立アプライアンス株式会社 Scroll compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914325U (en) * 1982-07-16 1984-01-28 株式会社東芝 Rectifier transformer
JPH01180068U (en) * 1988-06-08 1989-12-25
JP2001323881A (en) * 2000-05-16 2001-11-22 Hitachi Ltd Compressor
JP2004353591A (en) * 2003-05-30 2004-12-16 Calsonic Compressor Inc Gas compressor and intake check valve therefor
JP2014206060A (en) * 2013-04-11 2014-10-30 日立アプライアンス株式会社 Scroll compressor

Also Published As

Publication number Publication date
JP2020007945A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP4614009B1 (en) Scroll compressor
US9850904B2 (en) Scroll compressor
KR100730250B1 (en) Scroll compressor
US9145891B2 (en) Scroll compressor
US7381037B2 (en) Apparatus for varying capacity of scroll compressor
US11566620B2 (en) Motor driven compressor apparatus including swing pin
JP6291533B2 (en) High-pressure compressor and refrigeration cycle apparatus including the same
CN105697371B (en) Compressor with a compressor housing having a plurality of compressor blades
JP4638762B2 (en) Scroll compressor
US9291164B2 (en) Scroll compressor having a bush bearing provided on a boss of orbiting scroll
JP2010285973A (en) Screw compressor
KR100920980B1 (en) Capacity varying device for scroll compressor
JP2018048649A (en) Scroll compressor
WO2020008849A1 (en) Scroll compressor
JPWO2016189598A1 (en) Scroll compressor
JP4930022B2 (en) Fluid machinery
JP2016017438A (en) Single screw compressor
JP4644495B2 (en) Scroll compressor
JP2016020651A (en) Screw compressor
US20070148018A1 (en) Reciprocating compressor
JP2013177868A (en) Screw compressor
JP5660151B2 (en) Scroll compressor
JP2005180317A (en) Rotary compressor
JP2013231356A (en) Compressor
JP2016109095A (en) Screw compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19829856

Country of ref document: EP

Kind code of ref document: A1