WO2020008805A1 - Cell division device - Google Patents

Cell division device Download PDF

Info

Publication number
WO2020008805A1
WO2020008805A1 PCT/JP2019/022761 JP2019022761W WO2020008805A1 WO 2020008805 A1 WO2020008805 A1 WO 2020008805A1 JP 2019022761 W JP2019022761 W JP 2019022761W WO 2020008805 A1 WO2020008805 A1 WO 2020008805A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh
flow path
cell
cell suspension
path section
Prior art date
Application number
PCT/JP2019/022761
Other languages
French (fr)
Japanese (ja)
Inventor
淳史 稲田
伸彦 加藤
英俊 高山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020008805A1 publication Critical patent/WO2020008805A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/02Tissue, human, animal or plant cell, or virus culture apparatus with means providing suspensions

Definitions

  • the disclosed technology relates to a cell division device.
  • the following technology is known as a technology relating to a cell dividing device that divides a cell aggregate (cell mass) in which a plurality of cells aggregate into smaller cell aggregates.
  • Patent Document 1 describes an apparatus for reducing the size of a macroscopic aggregate of cells to a smaller cell aggregate having a size equal to or smaller than a predetermined value.
  • the apparatus has a first reduced size mesh located near the inlet in the cleaning chamber and a second reduced size mesh located near the outlet in the cleaning chamber.
  • the opening of the first reduced mesh is larger than the opening of the second reduced mesh.
  • Patent Document 2 describes a culture system having a passage filter portion having a mesh capable of dividing a cell mass of pluripotent stem cells.
  • Patent Document 3 discloses a first dividing mechanism for dividing a cell mass composed of stem cells established by an initialization culture device into a plurality of cell masses, and a method for expanding and culturing cells by an expansion culture device. There is described a stem cell manufacturing system including a second dividing mechanism for dividing a cell mass composed of stem cells into a plurality of cell masses. At least one of the first and second dividing mechanisms includes a divider having a through hole therein, and the through hole has a large hole diameter portion and a small hole diameter portion alternately.
  • iPS cells induced pluripotent stem cells
  • the size of cell aggregates (spheres) generated by culturing the cells becomes excessive, the cell aggregates adhere and fuse to each other, and the cells start to differentiate. Or the cells in the central part of the cell aggregate are necrotic. Therefore, in order to prevent the size of the cell aggregate from becoming excessively large, the cell aggregate is divided (disintegrated) into a plurality of smaller-sized cell aggregates at an appropriate time during the cell culture period. Division processing is being performed.
  • the disclosed technology has been made in view of the above points, and has as its object to suppress the accumulation of cell aggregates on the mesh surface.
  • the cell dividing device includes a channel through which a cell suspension flows, a first mesh having a first pore diameter disposed in the channel, and a first mesh in the channel.
  • a second mesh having a pore diameter smaller than the first pore diameter, the second mesh being arranged downstream in the flow direction of the cell suspension, and reaching the first mesh from the upstream side in the flow direction with respect to the first mesh.
  • a flow path section The linear velocity of the cell suspension flowing through the second channel section when the cell suspension reaches the second mesh is determined by the linear velocity of the cell suspension flowing through the first channel section reaching the first mesh. When the linear velocity of the cell suspension is the same or less.
  • the area of the second mesh may be equal to or larger than the area of the first mesh.
  • the linear velocity of the cell suspension flowing through the second flow path section when the cell suspension reaches the second mesh is reduced by the cell suspension flowing through the first flow path section. It can be the same or less than the linear velocity of the cell suspension when it reaches the mesh.
  • the pressure difference between the upstream side and the downstream side of the second mesh is equal to or smaller than the pressure difference between the upstream side and the downstream side of the first mesh. You may.
  • the linear velocity of the cell suspension flowing through the second flow path section when the cell suspension reaches the second mesh is reduced by the cell suspension flowing through the first flow path section. It can be the same or less than the linear velocity of the cell suspension when it reaches the mesh.
  • the length of the first flow path section along the flow direction is the length of the flow path in the direction intersecting the flow direction at the portion where the first mesh is arranged. It is preferably at least 0.3 times. This allows the cell suspension flowing through the first flow path section to stabilize its flow before it reaches the first mesh, stably dividing the cell aggregate by the first mesh. It can be carried out.
  • the length of the second flow path section along the flow direction is the length of the flow path in the direction intersecting the flow direction at the portion where the second mesh is arranged. It is preferably at least 0.3 times. This allows the cell suspension flowing through the second channel section to stabilize its flow before it reaches the second mesh, stably dividing the cell aggregate by the second mesh. It can be carried out.
  • the area of the cross section that intersects the flow direction of the first flow path section extends over the entire first flow path section, and the portion where the first mesh of the flow path is arranged May be the same as the area of the cross section intersecting the flow direction.
  • the cell division device includes a first division module including a first channel section and a first mesh, a second division section including a second channel section and a second mesh, and a first division module. May include a second divided module configured as a separate body, and a pipe connecting the first divided module and the second divided module.
  • the first divided module and the second divided module can be individually exchanged. Further, it is possible to flexibly cope with a case where the pore size of at least one of the first mesh and the second mesh is adjusted according to the size of the cell aggregate contained in the cell suspension to be treated. It is. Further, it is possible to flexibly cope with a case where another divided module is provided between the first divided module and the second divided module.
  • the opening ratio of the first mesh is preferably 60% or more and 80% or less, and the opening ratio of the second mesh is preferably 55% or more and 77% or less.
  • the first mesh and the second mesh are each configured to include a fibrous member, and are at least 4.5 times the wire diameter of the fibrous member constituting itself. It is preferable to have a plurality of openings having a large hole diameter.
  • FIG. 4 is a plan view of a first mesh and a second mesh according to an embodiment of the disclosed technology. It is an enlarged view of the part enclosed with the broken line in FIG. 2A. It is sectional drawing which shows the mode of the division
  • FIG. 1 is a cross-sectional view illustrating an example of a configuration of a cell division device 1 according to the first embodiment of the disclosed technology.
  • the cell dividing device 1 has the container 10 that forms the cell suspension flow path 30. At one end of the container 10, an inlet 11 for introducing a cell suspension containing cell aggregates into the inside of the container 10 is provided, and at the other end of the container 10, a divided cell suspension An outlet 12 for allowing the liquid to flow out of the container 10 is provided.
  • the cross section of each position of the flow path 30 that intersects the flow direction F1 of the cell suspension is, for example, circular.
  • the cell division device 1 has a first mesh 21 and a second mesh 22 disposed between the inflow port 11 and the outflow port 12 in the middle of the channel 30.
  • 2A is a plan view of the first mesh 21 and the second mesh 22, and
  • FIG. 2B is an enlarged view of a portion P1 surrounded by a broken line in FIG. 2A.
  • each of the first mesh 21 and the second mesh 22 has a plurality of openings (mesh) 201 formed by, for example, plain weaving a plurality of fibrous members 200.
  • the weaving method of the fibrous member 200 is not limited to plain weaving.
  • the material of the fibrous member 200 is not particularly limited, but is preferably made of a material having high corrosion resistance. For example, nylon or stainless steel can be suitably used.
  • the outer shapes of the first mesh 21 and the second mesh 22 are circular in conformity with the cross-sectional shape of the flow channel 30 that intersects the flow direction F1 of the cell suspension.
  • the mesh used in the cell division device according to the embodiment of the disclosed technology does not include a nonwoven fabric.
  • the first mesh 21 and the second mesh 22 are installed in the container 10 such that the main surface having the plurality of openings 201 extends in a direction intersecting with the flow direction F1 of the cell suspension. .
  • the cell aggregates contained in the cell suspension are mechanically divided. That is, the cell aggregate is divided by a two-stage division process using two meshes.
  • the second mesh 22 is disposed downstream of the first mesh 21 in the flow direction F1 of the cell suspension. That is, the first mesh 21 is provided on the inflow port 11 side of the channel 30, and the second mesh 22 is provided on the outflow port 12 side of the channel 30. Therefore, the cell suspension flowing in the flow path 30 along the flow direction F1 passes through the first mesh 21 and then passes through the second mesh 22.
  • the diameter of the opening 201 of the first mesh 21 (hereinafter, referred to as the pore diameter L) is, for example, smaller than the average diameter of the cell aggregate before the division processing.
  • the pore size L of the second mesh 22 is smaller than the pore size L of the first mesh 21, and is determined according to the target size of the cell aggregate after the division.
  • the hole diameter L is preferably at least 4.5 times the wire diameter d of the fibrous member 200 constituting the mesh. This makes it possible to appropriately divide the cell aggregate in each of the first mesh 21 and the second mesh 22.
  • the opening ratio of the first mesh 21 is preferably 60% or more and 80% or less, and the opening ratio of the second mesh 21 is preferably 55% or more and 77% or less.
  • the aperture ratio A of the first and second meshes can be represented by the following equation (1). However, in equation (1), B is the total area of the openings of the mesh, and C is the area of the entire mesh.
  • the aperture ratios of the first and second meshes may be calculated by deriving a hole diameter L and a wire diameter d from a microscopic image of the mesh, and inputting the derived hole diameters L and the wire diameter d into computer software. Good. By setting the range of the aperture ratio of the first mesh 21 and the second mesh 22 to the above range, appropriate division processing can be performed, and accumulation of cell aggregates on the mesh surface can be suppressed.
  • A B / C (1)
  • the cell dividing device 1 has a first flow path section 31 extending from the upstream side in the flow direction F1 of the cell suspension to the first mesh 21 with respect to the first mesh 21.
  • the cell dividing device 1 is a flow path section between the first mesh 21 and the second mesh 22, and from the upstream side in the flow direction F1 of the cell suspension with respect to the second mesh 22. It has a second flow path section 32 leading to the second mesh 22.
  • the linear velocity V2 [cm / s] of the cell suspension when the cell suspension flowing through the second flow path section 32 reaches (contacts) the second mesh 22 is equal to the first flow path section 31. It is preferable that the linear velocity V1 of the cell suspension when the flowing cell suspension reaches the first mesh 21 is equal to or smaller than V1.
  • the linear velocities V1 and V2 can be expressed by the following equations (2) and (3), respectively.
  • V1 [cm / s] Q1 [mL / s] / S1 [cm 2 ] (2)
  • V2 [cm / s] Q2 [mL / s] / S2 [cm 2 ] (3)
  • Q1 [mL / s] is a flow rate of the cell suspension reaching the first mesh 21 per unit time.
  • S1 is an area of a cross section of the flow channel 30 where the first mesh 21 is arranged, which crosses the flow direction F1 of the cell suspension.
  • the area S1 is the same as the effective area of the first mesh 21.
  • Q2 [mL / s] is a flow rate of the cell suspension reaching the second mesh 22 per unit time.
  • S2 is an area of a cross section of the flow channel 30 where the second mesh 22 is arranged, which crosses the flow direction F1 of the cell suspension.
  • the area S2 is the same as the effective area of the second mesh 22.
  • the effective area of the first mesh 21 and the second mesh 22 is an area of a region of the mesh that can come into contact with the cell suspension.
  • the flow rate of the cell suspension passing through an arbitrary cross section per unit time is constant, so that Q1 and Q2 are equal.
  • the linear velocities V1 and V2 can be controlled by, for example, the areas S1 and S2. For example, by making the area S1 and the area S2 the same, the linear velocity V1 and the linear velocity V2 can be made the same. According to the cell division device 1 according to the present embodiment, since the area S1 and the area S2 are the same, the linear velocity V1 and the linear velocity V2 become equal. On the other hand, by making the area S2 larger than the area S1, the linear velocity V2 can be made smaller than the linear velocity V1 (see FIG. 8).
  • the pressure difference (transmembrane pressure) ⁇ P2 between the upstream side and the downstream side of the second mesh 22 is equal to the pressure difference (transmembrane pressure) ⁇ P1 between the upstream side and the downstream side of the first mesh 21.
  • it is the same or smaller.
  • the pressure difference (transmembrane pressure) ⁇ P2 and the pressure difference (transmembrane pressure) ⁇ P1 can be made the same.
  • the linear velocity V2 smaller than the linear velocity V1
  • the pressure difference (transmembrane pressure difference) ⁇ P2 can be made smaller than the pressure difference (transmembrane pressure difference) ⁇ P1.
  • the first channel section 31 is an approach section until the cell suspension flowing from the inlet 11 contacts the first mesh 21.
  • the length A1 of the first flow path section 31 along the flow direction F1 is the length W1 (first length) of the flow path 30 in the direction intersecting the flow direction F1 at the portion where the first mesh 21 is arranged. It is preferably at least 0.3 times (equivalent to the diameter of the mesh 21).
  • the first flow path section 31 is defined by the cylindrical portion of the container 10. Therefore, the area of the cross section of the first flow path section 31 that intersects with the flow direction F1 of the cell suspension extends over the entire area of the first flow path section 31 and the first mesh 21 of the flow path 30. Is the same as the cross-sectional area S1 (corresponding to the effective area of the first mesh 21) of the cross-section that intersects with the flow direction F1 of the cell suspension at the position where is disposed. In this way, by making the area of the cross section of the first flow path section 31 that intersects with the flow direction F1 of the cell suspension constant, the flow of the cell suspension flowing through the first flow path section 31 is reduced. The effect of stabilization can be promoted.
  • the second flow path section 32 is a run-up section until the cell suspension that has passed through the first mesh 21 contacts the second mesh 22.
  • the second flow path section 32 is a run-up section until the cell suspension that has passed through the first mesh 21 contacts the second mesh 22.
  • the length A2 of the second flow path section 32 along the flow direction F1 is the length W2 of the flow path 30 in the direction intersecting the flow direction F1 at the portion where the second mesh 22 is arranged (the second length W2). It is preferably at least 0.3 times (equivalent to the diameter of the mesh 22).
  • the second flow path section 32 is defined by the cylindrical portion of the container 10. Accordingly, the area of the cross section of the second flow path section 32 that intersects with the flow direction F1 of the cell suspension extends over the entire area of the second flow path section 32 so that the second mesh 22 of the flow path 30 is formed. Is the same as the area S2 (corresponding to the effective area of the second mesh 22) of the cross section intersecting with the flow direction F1 of the cell suspension at the position where is disposed. As described above, by keeping the area of the cross section of the second flow path section 32 that intersects with the flow direction F1 of the cell suspension constant, the flow of the cell suspension flowing through the second flow path section 32 is reduced. The effect of stabilization can be promoted.
  • FIG. 3 is a cross-sectional view showing a state of a dividing process using the cell dividing device 1.
  • the cell suspension 101 containing the cell aggregates 100 that has flowed into the container 10 from the inlet 11 reaches the first mesh 21 via the first channel section 31.
  • the cell aggregate 100 is divided by passing through the first mesh 21, and the average diameter of the cell aggregate 100 is reduced.
  • the cell suspension 101 reaches the second mesh 22 via the second channel section 32.
  • the cell aggregate 100 is divided by passing through the second mesh 22, and the average diameter of the cell aggregate 100 is further reduced.
  • the cell suspension 101 that has passed through the second mesh 22 is discharged to the outside of the container 10 via the outlet 12.
  • the cell aggregate 100 is divided by a two-stage division process using two meshes.
  • the hole diameter L of the second mesh 22 is smaller than the hole diameter L of the first mesh 21. Therefore, the average diameter of the cell aggregate 100 before the division treatment is X1, the average diameter of the cell aggregate 100 after passing through the first mesh 21 is X2, and the cell aggregate 100 after passing through the second mesh 22.
  • FIG. 4 is a cross-sectional view showing a state of a division process using the cell division device 1X according to the comparative example.
  • the cell division device 1X according to the comparative example has a single mesh 22X.
  • the pore size of the mesh 22X is the same as the pore size of the second mesh 22 provided in the cell division device 1 according to the embodiment of the disclosed technology.
  • the divergence between the average diameter of the cell aggregate to be subjected to the division processing and the pore size of the mesh is larger than that of the cell division device 1 according to the embodiment of the disclosed technology.
  • the cell aggregate 100 is more likely to be deposited on the surface of the mesh 22X. Therefore, when a large number of cells are processed using the cell division device 1X according to the comparative example, the area of the region effectively functioning as a mesh and the pore size of the mesh 22X change every moment as the cumulative processing amount increases. As a result, there is a possibility that the size of the cell aggregate 100 after the division processing varies greatly.
  • the ratio of the cell aggregates 100 whose size after the division process deviates from the target size increases. Further, as shown in FIG. 4, a part of the cells deposited on the surface of the mesh 22X is extruded and deformed by the subsequent cell suspension 101, and as a result, the quality of the cells is reduced, and the proliferation of the cells is reduced. May decrease.
  • the cell aggregate 100 is divided stepwise so that the average diameter gradually decreases, Of the cell aggregate 100 can be suppressed. Therefore, even when a large number of cells are processed using the cell division device 1, the area and the hole diameter L of the effective area of the first mesh 21 and the second mesh 22 change with an increase in the cumulative processing amount. Can be suppressed. As a result, as compared with the cell division device 1X according to the comparative example, the variation in the size of the cell aggregate 100 after the division processing can be reduced.
  • the cell dividing device 1 since the accumulation of the cell aggregates 100 on the mesh surface can be suppressed, a part of the cells deposited on the mesh surface can be removed from the subsequent cell suspension. It can be prevented from being deformed by being pushed out by the suspension 101. Therefore, it is possible to suppress a decrease in cell quality and a decrease in cell proliferation.
  • the cell suspension 101 flowing through the second flow path section 32 reaches the second mesh 22 when the line of the cell suspension 101 is drawn.
  • the velocity V2 is the same as the linear velocity V1 of the cell suspension 101 when the cell suspension 101 flowing through the first flow path section 31 reaches the first mesh 21.
  • damage to the cells can be reduced as compared with the case where the linear velocity V2 is higher than the linear velocity V1.
  • the plurality of cells constituting the cell aggregate 100 are considered to be damaged to some extent by passing through the first mesh 21. Therefore, the cells that pass through the second mesh 22 are further suppressed from being damaged, so that the cell survival rate can be increased.
  • the length A1 of the first channel section 31 along the flow direction F1 is the portion of the channel 30 where the first mesh 21 is arranged. Is 0.3 times or more the length W1 (corresponding to the diameter of the first mesh 21) in the direction intersecting the flow direction F1.
  • the cell suspension 101 flowing through the first flow path section 31 is converted into a first mesh.
  • the flow can be stabilized, and the cell aggregate 100 can be stably divided by the first mesh 21.
  • the length A2 of the second flow path section 32 along the flow direction F1 is the same as the second mesh 22 of the flow path 30.
  • the length W2 (corresponding to the diameter of the second mesh 22) in the direction intersecting with the flow direction F1 at the portion where the flow has occurred is 0.3 times or more.
  • the first channel section 31 and the second channel section 32 each have a cross section that intersects the flow direction F1 of the cell suspension.
  • the area is fixed. Thereby, the effect of stabilizing the flow of the cell suspension 101 flowing through the first channel section 31 and the second channel section 32 is promoted.
  • FIG. 5 is a cross-sectional view illustrating an example of a configuration of a cell division device 1A according to the second embodiment of the disclosed technology.
  • the cell division device 1A further includes a third mesh 23.
  • the third mesh 23 is disposed between the first mesh 21 and the second mesh 22.
  • the hole diameter L of the third mesh 23 is smaller than the hole diameter L of the first mesh 21 and larger than the hole diameter L of the second mesh 22.
  • the cell division device 1A has a first flow path section 31 extending from the upstream side in the flow direction F1 of the cell suspension to the first mesh 21 with respect to the first mesh 21.
  • the cell dividing device 1A is a flow path section between the first mesh 21 and the third mesh 23, and is located on the upstream side in the flow direction F1 of the cell suspension with respect to the third mesh 23. It has a second flow path section 32 reaching the third mesh 23.
  • the cell dividing device 1A is a flow path section between the third mesh 23 and the second mesh 22, which is located on the upstream side in the flow direction F1 of the cell suspension with respect to the second mesh 22. It has a third flow path section 33 leading to the second mesh 22.
  • the linear velocity V2 [cm / s] of the cell suspension when the cell suspension flowing through the second flow path section 32 reaches (contacts) the third mesh 23 is less than the first flow path section 31. It is preferable that the linear velocity V1 of the cell suspension when the flowing cell suspension reaches the first mesh 21 is equal to or smaller than V1.
  • the linear velocity V3 [cm / s] of the cell suspension when the cell suspension flowing through the third flow path section 33 reaches (contacts) the second mesh 22 is determined by the second flow path section. It is preferable that the linear velocity V2 of the cell suspension when it reaches the third mesh 23 is equal to or smaller than the linear velocity V2.
  • the cell aggregate has three meshes arranged such that the pore diameter decreases stepwise along the flow direction F1 of the cell suspension. Are divided by three-stage division processing. Thereby, the effect of suppressing the accumulation of cell aggregation on the mesh surface can be promoted.
  • the number of mesh steps may be four or more.
  • the pore diameter of the mesh arranged on the downstream side in the flow direction F1 of the cell suspension is preferably smaller than the pore diameter of the mesh arranged on the upstream side.
  • the linear velocity of the cell suspension when the cell suspension reaches the mesh arranged on the downstream side is determined by the linear velocity of the cell suspension when the cell suspension reaches the mesh arranged on the upstream side. Preferably, it is equal to or less than the linear velocity.
  • the cross-sectional area of the flow channel 30 at the portion where the mesh on the downstream side is arranged is equal to or greater than the cross-sectional area of the flow channel 30 at the portion where the mesh on the upstream side is arranged. May be larger.
  • FIG. 6 is a cross-sectional view illustrating an example of a configuration of a cell division device 1B according to the third embodiment of the disclosed technology.
  • the cell dividing device 1B includes a first dividing module 41 and a second dividing module 42.
  • the first division module 41 and the second division module 42 are configured separately from each other, and are connected to each other via a pipe 50.
  • the first division module 41 and the second division module 42 can be separated from each other.
  • the first division module 41 has a first container 10A that forms the flow path 30 of the cell suspension. At one end of the first container 10A, a first inlet 11A for introducing a cell suspension containing cell aggregates into the inside of the first container 10A is provided. At the end, there is provided a first outlet 12A for allowing the cell suspension to flow out of the first container 10A.
  • the first division module 41 has the first mesh 21 disposed between the first inlet 11A and the first outlet 12A in the flow channel 30.
  • the second division module 42 has the second container 10B that forms the cell suspension flow path 30. At one end of the second container 10B, a second inlet 11B for introducing a cell suspension containing cell aggregates into the inside of the second container 10B is provided. A second outlet 12B for discharging the cell suspension to the outside of the second container 10B is provided at the end.
  • the second division module 42 has the second mesh 22 disposed between the second inlet 11B and the second outlet 12B in the flow channel 30.
  • the pore diameter L of the first mesh 21 is, for example, smaller than the average diameter of the cell aggregate before the division processing.
  • the pore size L of the second mesh 22 is smaller than the pore size L of the first mesh 21, and is determined according to the target size of the cell aggregate after the division.
  • the first outlet 12A of the first split module 41 and the second inlet 11B of the second split module 42 are connected by a pipe 50.
  • the pipe 50 is preferably made of, for example, a flexible member.
  • the first division module 41 has the first flow path section 31 extending from the upstream side in the flow direction F1 of the cell suspension to the first mesh 21 with respect to the first mesh 21.
  • the second division module 42 is a flow path section between the first mesh 21 and the second mesh 22 and is located on the second mesh 22 from the upstream side in the flow direction F1 of the cell suspension. It has a second flow path section 32 leading to the second mesh 22.
  • the linear velocity V2 [cm / s] of the cell suspension when the cell suspension flowing through the second flow path section 32 reaches (contacts) the second mesh 22 is equal to the first flow path section 31. It is preferable that the linear velocity V1 of the cell suspension when the flowing cell suspension reaches the first mesh 21 is equal to or smaller than V1.
  • the linear velocities V1 and V2 can be represented by the above equations (2) and (3), respectively.
  • the area S1 in the expression (2) is the same as the effective area of the first mesh 21.
  • the area S2 in the equation (3) is the same as the effective area of the second mesh 22.
  • the linear velocities V1 and V2 can be controlled by, for example, the areas S1 and S2. For example, by making the area S1 and the area S2 the same, the linear velocity V1 and the linear velocity V2 can be made the same. According to the cell dividing device 1B according to the present embodiment, since the area S1 and the area S2 are the same, the linear velocity V1 and the linear velocity V2 are equal. On the other hand, by making the area S2 larger than the area S1, the linear velocity V2 can be made smaller than the linear velocity V1 (see FIG. 8).
  • the first channel section 31 is a run section until the cell suspension flowing from the inlet 11A comes into contact with the first mesh 21.
  • the length A1 of the first flow path section 31 along the flow direction F1 is the length W1 (first length) of the flow path 30 in the direction intersecting the flow direction F1 at the portion where the first mesh 21 is arranged. It is preferably at least 0.3 times (equivalent to the diameter of the mesh 21).
  • the first flow path section 31 is defined by the cylindrical portion of the container 10. Therefore, the area of the cross section of the first flow path section 31 that intersects with the flow direction F1 of the cell suspension extends over the entire area of the first flow path section 31 and the first mesh 21 of the flow path 30. Is the same as the cross-sectional area S1 (corresponding to the effective area of the first mesh 21) of the cross-section that intersects with the flow direction F1 of the cell suspension at the position where is disposed. In this way, by making the area of the cross section of the first flow path section 31 that intersects with the flow direction F1 of the cell suspension constant, the flow of the cell suspension flowing through the first flow path section 31 is reduced. The effect of stabilization can be promoted.
  • the second flow path section 32 is a run-up section until the cell suspension that has passed through the first mesh 21 contacts the second mesh 22.
  • the cell suspension flowing through the second flow path section 32 is transferred to the second mesh 22.
  • the length A2 of the second flow path section 32 along the flow direction F1 is the length W2 of the flow path 30 in the direction intersecting the flow direction F1 at the portion where the second mesh 22 is arranged (the second length W2). It is preferably at least 0.3 times (equivalent to the diameter of the mesh 22).
  • the second flow path section 32 is defined by the cylindrical portion of the container 10. Accordingly, the area of the cross section of the second flow path section 32 that intersects with the flow direction F1 of the cell suspension extends over the entire area of the second flow path section 32 so that the second mesh 22 of the flow path 30 is formed. Is the same as the area S2 (corresponding to the effective area of the second mesh 22) of the cross section intersecting with the flow direction F1 of the cell suspension at the position where is disposed. As described above, by keeping the area of the cross section of the second flow path section 32 that intersects with the flow direction F1 of the cell suspension constant, the flow of the cell suspension flowing through the second flow path section 32 is reduced. The effect of stabilization can be promoted.
  • FIG. 7 is a cross-sectional view showing a state of a dividing process using the cell dividing device 1B.
  • the cell suspension 101 including the cell aggregates 100 flowing into the first division module 41 from the first inlet 11A reaches the first mesh 21 via the first channel section 31. .
  • the cell aggregate 100 is divided by passing through the first mesh 21, and the average diameter of the cell aggregate 100 is reduced.
  • the cell suspension 101 that has passed through the first mesh 21 flows into the second divided module 42 via the first outlet 12A, the pipe 50, and the second inlet 11B.
  • the cell suspension 101 flowing into the second division module 42 reaches the second mesh 22 via the second flow path section 32.
  • the cell aggregate 100 is divided by passing through the second mesh 22, and the average diameter of the cell aggregate 100 is further reduced.
  • the cell suspension 101 that has passed through the second mesh 22 is discharged to the outside of the second division module 42 via the second outlet 12B.
  • the cell aggregate 100 is divided by a two-stage division process using two meshes.
  • the hole diameter L of the second mesh 22 is smaller than the hole diameter L of the first mesh 21. Therefore, the average diameter of the cell aggregate 100 before the division treatment is X1, the average diameter of the cell aggregate 100 after passing through the first mesh 21 is X2, and the cell aggregate 100 after passing through the second mesh 22.
  • the cell division device 1B According to the cell division device 1B according to the present embodiment, it is possible to suppress the accumulation of cell aggregates on the mesh surface, as in the cell division device 1 according to the first embodiment.
  • the first division module 41 and the second division module 42 are configured separately from each other and can be separated from each other. Therefore, the first divided module 41 and the second divided module 42 can be individually exchanged. Also, it is possible to flexibly adjust the pore diameter L of at least one of the first mesh 21 and the second mesh 22 according to the size of the cell aggregate 100 included in the cell suspension 101 to be treated. It is possible to respond. Moreover, it is possible to flexibly cope with a case where another divided module is provided between the first divided module 41 and the second divided module 42.
  • the pipe 50 connecting the first divided module 41 and the second divided module 42 with a flexible material, for example, a cell culture that automatically performs a series of processes required for cell culture
  • a cell culture that automatically performs a series of processes required for cell culture
  • FIG. 8 is a cross-sectional view illustrating an example of a configuration of a cell division device 1C according to a fourth embodiment of the disclosed technology. Similar to the cell division device 1B according to the third embodiment, the cell division device 1C includes a first division module 41 having a first mesh 21 and a first flow path section 31, and a second flow path section 32. And a second division module 42 having the second mesh 22.
  • S1 be the area of the cross section of the flow channel 30 where the first mesh 21 is arranged, which crosses the flow direction F1 of the cell suspension.
  • the area of the cross section of the flow channel 30 where the second mesh 22 is arranged, which crosses the flow direction F1 of the cell suspension, is defined as S2.
  • the area S ⁇ b> 1 is the same as the effective area of the first mesh 21, and the area S ⁇ b> 2 is the same as the effective area of the second mesh 22.
  • the area S2 (effective area of the second mesh 22) is larger than the area S1 (effective area of the first mesh 21).
  • the cell dividing device 1C according to the present embodiment similarly to the cell dividing device 1 according to the first embodiment, it is possible to suppress the accumulation of cell aggregates on the mesh surface.
  • FIG. 9 is a cross-sectional view illustrating an example of a configuration of a cell division device 1D according to a fifth embodiment of the disclosed technology.
  • the cell division device 1D further includes a third division module 43.
  • the third division module 43 is disposed between the first division module 41 and the second division module 42.
  • the first division module 41, the second division module 42, and the third division module 43 are configured separately from each other, and are connected to each other via pipes 50A and 50B.
  • the first division module 41, the second division module 42, and the third division module 43 can be separated from each other.
  • the third division module 43 has a third container 10C that forms the flow path 30 of the cell suspension.
  • a third inflow port 11C for introducing a cell suspension containing cell aggregates into the inside of the third container 10C is provided.
  • a third outlet 12C for allowing the cell suspension to flow out of the third container 10C is provided.
  • the first outlet 12A of the first split module 41 and the third inlet 11C of the third split module 43 are connected by a pipe 50A.
  • the third outlet 12C of the third split module 43 and the second inlet 11B of the second split module 42 are connected by a pipe 50B. It is preferable that each of the pipes 50A and 50B is formed of a flexible member.
  • the third division module 43 has the third mesh 23 disposed between the third inflow port 11C and the third outflow port 12C in the flow path 30. That is, the third mesh 23 is disposed between the first mesh 21 and the second mesh 22.
  • the hole diameter L of the third mesh 23 is smaller than the hole diameter L of the first mesh 21 and larger than the hole diameter L of the second mesh 22.
  • the first division module 41 has the first flow path section 31 extending from the upstream side in the flow direction F1 of the cell suspension to the first mesh 21 with respect to the first mesh 21.
  • the third division module 43 is a flow path section between the first mesh 21 and the third mesh 23, and is located on the third mesh 23 from the upstream side in the flow direction F1 of the cell suspension. It has a second flow path section 32 reaching the third mesh 23.
  • the second division module 42 is a flow path section between the third mesh 23 and the second mesh 22, and from the upstream side in the flow direction F ⁇ b> 1 of the cell suspension with respect to the second mesh 22. It has a third flow path section 33 leading to the second mesh 22.
  • S1 be the area of the cross section of the flow channel 30 where the first mesh 21 is arranged, which crosses the flow direction F1 of the cell suspension.
  • the area of the cross section of the flow channel 30 where the second mesh 22 is arranged, which crosses the flow direction F1 of the cell suspension, is defined as S2.
  • the area of the cross section of the flow channel 30 where the third mesh 23 is arranged and which crosses the flow direction F1 of the cell suspension is S3.
  • the area S1 is the same as the effective area of the first mesh 21
  • the area S2 is the same as the effective area of the second mesh 22
  • the area S3 is 3 is the same as the effective area of the mesh 23.
  • the area S3 (the effective area of the third mesh 23) is larger than the area S1 (the effective area of the first mesh 21).
  • the area S2 (effective area of the second mesh 22) is larger than the area S3 (effective area of the third mesh 23).
  • the linear velocity V2 [cm / s] of the cell suspension when the cell suspension flowing through the third flow path section 33 reaches (contacts) the second mesh 22 is determined by the second flow path section.
  • the linear velocity V3 of the cell suspension when it reaches the third mesh 23 when flowing through the cell 32 becomes smaller.
  • the cell aggregate has three meshes arranged such that the pore diameter decreases stepwise along the flow direction F1 of the cell suspension. Are divided by three-stage division processing. Thereby, the effect of suppressing the accumulation of the cell aggregate 100 on the mesh surface can be promoted. Further, by setting the linear velocity V3 to be lower than the linear velocity V1 and setting the linear velocity V2 to be lower than the linear velocity V3, damage to cells can be reduced.
  • Example 1 The cell culture was performed under a plurality of conditions in which the number of mesh stages, the pore size and the opening ratio, and the linear velocity of the cell suspension when reaching each mesh were varied. The evaluation results are shown in Table 1 below. The evaluation was performed from the viewpoint of the recovery rate and the quality of the cells after culture. The quality of the cells is reflected in the shape and size of the cell aggregates. Since the variation in the size of the cell aggregate immediately after the division greatly affects the variation in the size after the culture, the quality was evaluated based on the variation in the size of the cell aggregate immediately after the division. The cell recovery rate was a value obtained by dividing the cell count measurement result after the division treatment by the cell count measurement result before the division treatment.
  • the variation in cell aggregate size is calculated by sampling a predetermined amount of the cell suspension after the division process, measuring the diameter by approximating the sphere diameter of all the cell aggregates included in the image analysis, and calculating the variation coefficient by statistical processing. (Standard deviation ⁇ mean) was applied.
  • the size of cell aggregates can be determined by capturing all cell aggregates contained in a given amount of cell suspension into an image using Cell Imager (SCREEN), determining the viability, and determining the cell diameter distribution of only viable cells. And the arithmetic mean was calculated.
  • the aperture ratio of the mesh was calculated from the derived hole diameter L and wire diameter d by deriving the hole diameter L and wire diameter d of the mesh from a microscope image of the mesh.
  • the criteria for the recovery are as follows. A: The recovery rate is 75% or more B: The recovery rate is 60% or more and less than 75% C: The recovery rate is less than 60%
  • the evaluation criteria for the quality are as follows. A: Coefficient of variation of diameter distribution of cell aggregate is less than 0.32 B: Coefficient of variation of diameter distribution of cell aggregate is 0.32 or more and less than 0.35 C: Coefficient of variation of diameter distribution of cell aggregate is 0. 35 or more
  • Example 1 the number of mesh steps was two, and in Example 4, the number of mesh steps was three.
  • each mesh was arranged so that the pore diameter of the mesh gradually decreased from the upstream side to the downstream side in the flow direction of the cell suspension.
  • the linear velocity when the cell suspension reached the mesh on the upstream side was the same as the linear velocity when the cell suspension reached the mesh on the downstream side.
  • the linear velocity when the cell suspension reached the downstream mesh was set lower than the linear velocity when the cell suspension reached the upstream mesh.
  • Comparative Example 1 the number of mesh steps was one. In Comparative Example 2, the number of mesh steps was set to two, and the linear velocity when the cell suspension reached the downstream mesh was higher than the linear velocity when the cell suspension reached the upstream mesh. did.
  • the cell dividing device is configured so that the pore size of the mesh gradually decreases, and when the cell suspension reaches the downstream side mesh.
  • the linear velocity was the same as or lower than the linear velocity when the cell suspension reached the mesh on the upstream side
  • the A judgment was made for at least one of the recovery rate and the quality. No C-determination was obtained.
  • Comparative Example 1 both the recovery rate and the quality were determined to be C
  • Comparative Example 2 both the recovery rate and the quality were determined to be B.
  • Cell dividing device 10 Container 11 Inflow port 11A First inflow port 11B Second inflow port 12 Outflow port 12A First outflow port 12B Second outflow port 50, 50A, 50B Piping 21 First mesh 22 Second mesh 22X Mesh 23 Third mesh 30 Flow path 31 First flow path section 32 Second flow path section 33 Third flow path section 41 First split module 42 Second Division module 43 Third division module 100 Cell aggregate 101 Cell suspension 200 Fibrous member 201 Opening F1 Flow direction L Hole diameter d Wire diameter

Abstract

This cell division device includes: a flow path through which a cell suspension flows; a first mesh that has a first pore diameter and is disposed in the flow path; a second mesh that has a smaller pore diameter than the first pore diameter and is disposed in the flow path at a location downstream of the first mesh in the flow direction of the cell suspension; a first flow path section extending from the upstream side of the first mesh in the flow direction to the first mesh; and a second flow path section extending from the upstream side of the second mesh to the second mesh, the second flow path section being a flow path section between the first mesh and the second mesh. The linear velocity of the cell suspension when the cell suspension flowing through the second flow path section reaches the second mesh is equal to or less than the linear velocity of the cell suspension when the cell suspension flowing through the first flow path section reaches the first mesh.

Description

細胞分割装置Cell division device
 開示の技術は、細胞分割装置に関する。 技術 The disclosed technology relates to a cell division device.
 複数の細胞が凝集した細胞凝集体(細胞塊)を、よりサイズの小さい細胞凝集体に分割する細胞分割装置に関する技術として、例えば、以下の技術が知られている。 The following technology is known as a technology relating to a cell dividing device that divides a cell aggregate (cell mass) in which a plurality of cells aggregate into smaller cell aggregates.
 例えば、特開2016-136956号公報(特許文献1)には、細胞の巨視的凝集体の寸法を所定値以下の寸法のより小さい細胞凝集体へと縮小するための装置が記載されている。この装置は、洗浄チャンバ内の入口に近い位置に設けられた第1の寸法縮小網と、洗浄チャンバ内の出口に近い位置に設けられた、第2の寸法縮小網を有する。第1の寸法縮小網の開口部は、第2の寸法縮小網の開口部よりも大きい。 For example, Japanese Patent Application Laid-Open No. 2016-136956 (Patent Document 1) describes an apparatus for reducing the size of a macroscopic aggregate of cells to a smaller cell aggregate having a size equal to or smaller than a predetermined value. The apparatus has a first reduced size mesh located near the inlet in the cleaning chamber and a second reduced size mesh located near the outlet in the cleaning chamber. The opening of the first reduced mesh is larger than the opening of the second reduced mesh.
 また、国際公開第2014/136581号(特許文献2)には、多能性幹細胞の細胞塊を分割可能なメッシュを有する継代用フィルタ部を有する培養システムが記載されている。 Furthermore, WO 2014/136581 (Patent Document 2) describes a culture system having a passage filter portion having a mesh capable of dividing a cell mass of pluripotent stem cells.
 特開2017-221187号公報(特許文献3)には、初期化培養装置で樹立された幹細胞からなる細胞塊を複数の細胞塊に分割する第1の分割機構と、拡大培養装置で拡大培養された幹細胞からなる細胞塊を複数の細胞塊に分割する第2の分割機構を備えた幹細胞製造システムが記載されている。第1及び第2の分割機構の少なくとも一方が、内部に貫通孔を有する分割器を備え、貫通孔が、大孔径部と、小孔径部と、を交互に有する。 Japanese Patent Application Laid-Open No. 2017-22187 (Patent Document 3) discloses a first dividing mechanism for dividing a cell mass composed of stem cells established by an initialization culture device into a plurality of cell masses, and a method for expanding and culturing cells by an expansion culture device. There is described a stem cell manufacturing system including a second dividing mechanism for dividing a cell mass composed of stem cells into a plurality of cell masses. At least one of the first and second dividing mechanisms includes a divider having a through hole therein, and the through hole has a large hole diameter portion and a small hole diameter portion alternately.
 iPS細胞(induced pluripotent stem cells)等の幹細胞の培養においては、細胞を培養することによって生じる細胞凝集体(スフェア)のサイズが過大となると、細胞凝集体同士が接着融合し、細胞が分化を開始したり、細胞凝集体の中心部の細胞が壊死したりするといった問題が生じる。従って、細胞凝集体のサイズが過大となることを防止するために、細胞の培養期間中の適切な時期に、細胞凝集体を、より小さいサイズの複数の細胞凝集体に分割(解砕)する分割処理が行われている。 In culturing stem cells such as iPS cells (induced pluripotent stem cells), if the size of cell aggregates (spheres) generated by culturing the cells becomes excessive, the cell aggregates adhere and fuse to each other, and the cells start to differentiate. Or the cells in the central part of the cell aggregate are necrotic. Therefore, in order to prevent the size of the cell aggregate from becoming excessively large, the cell aggregate is divided (disintegrated) into a plurality of smaller-sized cell aggregates at an appropriate time during the cell culture period. Division processing is being performed.
 細胞凝集体を分割する手法として、細胞凝集体を含む細胞懸濁液を、複数の開口部(網目)を有するメッシュに通過させることで細胞凝集体を機械的に分割する手法が提案されている。しかしながら、この手法によれば、処理量の増加に伴ってメッシュ表面に細胞が堆積する問題がある。この問題は、大量培養を実施した場合により顕著となる。すなわち、大量培養を実施すると、累積処理量の増加に伴って、メッシュ表面に堆積する細胞の量が増加し、メッシュの実質的な孔径が刻々と変化し、メッシュとして有効に機能する領域の面積が刻々と変化する。その結果、分割処理後における細胞凝集体のサイズのばらつきが大きくなるおそれがある。また、分割処理後におけるサイズが目標サイズから乖離した細胞凝集体の割合が大きくなるおそれがある。更に、メッシュ表面に堆積した細胞が、後続の細胞懸濁液によって押し出されて変形し、これよって、細胞の品質が低下し、細胞の増殖性が低下するといった問題が生じるおそれがある。 As a method of dividing the cell aggregate, a method of mechanically dividing the cell aggregate by passing a cell suspension containing the cell aggregate through a mesh having a plurality of openings (mesh) has been proposed. . However, according to this method, there is a problem that cells accumulate on the mesh surface as the throughput increases. This problem becomes more pronounced when mass culture is performed. That is, when a large-scale culture is performed, the amount of cells deposited on the mesh surface increases with an increase in the cumulative processing amount, the substantial pore diameter of the mesh changes every moment, and the area of a region effectively functioning as a mesh. Changes every moment. As a result, the size variation of the cell aggregate after the division processing may be large. In addition, there is a possibility that the ratio of cell aggregates whose size after the splitting process deviates from the target size becomes large. In addition, cells deposited on the mesh surface may be extruded and deformed by the subsequent cell suspension, which may cause a problem such that cell quality is reduced and cell proliferation is reduced.
 開示の技術は、上記の点に鑑みてなされたものであり、メッシュ表面への細胞凝集体の堆積を抑制することを目的とする。 技術 The disclosed technology has been made in view of the above points, and has as its object to suppress the accumulation of cell aggregates on the mesh surface.
 開示の技術に係る細胞分割装置は、細胞懸濁液が流れる流路と、流路内に配置された第1の孔径を有する第1のメッシュと、流路内において、第1のメッシュに対して細胞懸濁液の流れ方向の下流側に配置され、第1の孔径よりも小さい孔径を有する第2のメッシュと、第1のメッシュに対して流れ方向の上流側から第1のメッシュに至る第1の流路区間と、第1のメッシュと第2のメッシュとの間の流路区間であって、第2のメッシュに対して流れ方向の上流側から第2のメッシュに至る第2の流路区間と、を含む。第2の流路区間を流れる細胞懸濁液が第2のメッシュに到達するときの細胞懸濁液の線速度が、第1の流路区間を流れる細胞懸濁液が第1のメッシュに到達するときの細胞懸濁液の線速度と同じか、これよりも小さい。 The cell dividing device according to the disclosed technology includes a channel through which a cell suspension flows, a first mesh having a first pore diameter disposed in the channel, and a first mesh in the channel. A second mesh having a pore diameter smaller than the first pore diameter, the second mesh being arranged downstream in the flow direction of the cell suspension, and reaching the first mesh from the upstream side in the flow direction with respect to the first mesh. A first channel section, a channel section between the first mesh and the second mesh, and a second channel extending from the upstream side in the flow direction to the second mesh with respect to the second mesh. And a flow path section. The linear velocity of the cell suspension flowing through the second channel section when the cell suspension reaches the second mesh is determined by the linear velocity of the cell suspension flowing through the first channel section reaching the first mesh. When the linear velocity of the cell suspension is the same or less.
 これにより、メッシュ表面への細胞凝集体の堆積を抑制することが可能となる。 This makes it possible to suppress the accumulation of cell aggregates on the mesh surface.
 開示の技術に係る細胞分割装置において、第2のメッシュの面積が、第1のメッシュの面積と同じか、これよりも大きくてもよい。 に お い て In the cell division device according to the disclosed technology, the area of the second mesh may be equal to or larger than the area of the first mesh.
 これにより、第2の流路区間を流れる細胞懸濁液が第2のメッシュに到達するときの細胞懸濁液の線速度を、第1の流路区間を流れる細胞懸濁液が第1のメッシュに到達するときの細胞懸濁液の線速度と同じか、これよりも小さくすることができる。 Accordingly, the linear velocity of the cell suspension flowing through the second flow path section when the cell suspension reaches the second mesh is reduced by the cell suspension flowing through the first flow path section. It can be the same or less than the linear velocity of the cell suspension when it reaches the mesh.
 開示の技術に係る細胞分割装置において、第2のメッシュの上流側と下流側との圧力の差が、第1のメッシュの上流側と下流側との圧力の差と同じか、これよりも小さくてもよい。 In the cell division device according to the disclosed technology, the pressure difference between the upstream side and the downstream side of the second mesh is equal to or smaller than the pressure difference between the upstream side and the downstream side of the first mesh. You may.
 これにより、第2の流路区間を流れる細胞懸濁液が第2のメッシュに到達するときの細胞懸濁液の線速度を、第1の流路区間を流れる細胞懸濁液が第1のメッシュに到達するときの細胞懸濁液の線速度と同じか、これよりも小さくすることができる。 Accordingly, the linear velocity of the cell suspension flowing through the second flow path section when the cell suspension reaches the second mesh is reduced by the cell suspension flowing through the first flow path section. It can be the same or less than the linear velocity of the cell suspension when it reaches the mesh.
 開示の技術に係る細胞分割装置において、第1の流路区間の流れ方向に沿った長さが、流路の、第1のメッシュが配置された部位における流れ方向と交差する方向の長さの0.3倍以上であることが好ましい。これにより、第1の流路区間を流れる細胞懸濁液が、第1のメッシュに到達するまでに、その流れを安定させることができ、第1のメッシュによる細胞凝集体の分割を安定して行うことができる。 In the cell division device according to the disclosed technology, the length of the first flow path section along the flow direction is the length of the flow path in the direction intersecting the flow direction at the portion where the first mesh is arranged. It is preferably at least 0.3 times. This allows the cell suspension flowing through the first flow path section to stabilize its flow before it reaches the first mesh, stably dividing the cell aggregate by the first mesh. It can be carried out.
 開示の技術に係る細胞分割装置において、第2の流路区間の流れ方向に沿った長さが、流路の、第2のメッシュが配置された部位における流れ方向と交差する方向の長さの0.3倍以上であることが好ましい。これにより、第2の流路区間を流れる細胞懸濁液が、第2のメッシュに到達するまでに、その流れを安定させることができ、第2のメッシュによる細胞凝集体の分割を安定して行うことができる。 In the cell division device according to the disclosed technology, the length of the second flow path section along the flow direction is the length of the flow path in the direction intersecting the flow direction at the portion where the second mesh is arranged. It is preferably at least 0.3 times. This allows the cell suspension flowing through the second channel section to stabilize its flow before it reaches the second mesh, stably dividing the cell aggregate by the second mesh. It can be carried out.
 開示の技術に係る細胞分割装置において、第1の流路区間の流れ方向と交差する断面の面積が、第1の流路区間の全域に亘り、流路の第1のメッシュが配置された部位における流れ方向と交差する断面の面積と同じであってもよい。 In the cell division device according to the disclosed technology, the area of the cross section that intersects the flow direction of the first flow path section extends over the entire first flow path section, and the portion where the first mesh of the flow path is arranged May be the same as the area of the cross section intersecting the flow direction.
 これにより、第1の流路区間を流れる細胞懸濁液の流れを安定化させる効果を促進させることができる。 Thereby, the effect of stabilizing the flow of the cell suspension flowing through the first channel section can be promoted.
 開示の技術に係る細胞分割装置は、第1の流路区間及び第1のメッシュを含む第1の分割モジュールと、第2の流路区間及び第2のメッシュを含み、第1の分割モジュールとは別体として構成された第2の分割モジュールと、第1の分割モジュールと第2の分割モジュールとを連結する配管と、を含んでいてもよい。 The cell division device according to the disclosed technology includes a first division module including a first channel section and a first mesh, a second division section including a second channel section and a second mesh, and a first division module. May include a second divided module configured as a separate body, and a pipe connecting the first divided module and the second divided module.
 これにより、第1の分割モジュール及び第2の分割モジュールを、個別に交換することが可能である。また、処理対象となる細胞懸濁液に含まれる細胞凝集体のサイズ等に応じて、第1のメッシュ及び第2のメッシュの少なくとも一方の孔径を調整する場合にも柔軟に対応することが可能である。また、第1の分割モジュールと第2の分割モジュールの間に、更に別の分割モジュールを設ける場合にも柔軟に対応することが可能である。 Thereby, the first divided module and the second divided module can be individually exchanged. Further, it is possible to flexibly cope with a case where the pore size of at least one of the first mesh and the second mesh is adjusted according to the size of the cell aggregate contained in the cell suspension to be treated. It is. Further, it is possible to flexibly cope with a case where another divided module is provided between the first divided module and the second divided module.
 開示の技術に係る細胞分割装置において、第1のメッシュの開口率が60%以上80%以下であることが好ましく、第2のメッシュの開口率が55%以上77%以下であることが好ましい。 に お い て In the cell division device according to the disclosed technology, the opening ratio of the first mesh is preferably 60% or more and 80% or less, and the opening ratio of the second mesh is preferably 55% or more and 77% or less.
 これにより、適切な分割処理が可能となり、メッシュ表面への細胞凝集体の堆積を抑制することができる。 This makes it possible to perform an appropriate division process, and suppress the accumulation of cell aggregates on the mesh surface.
 開示の技術に係る細胞分割装置において、第1のメッシュ及び第2のメッシュは、それぞれ、繊維状部材を含んで構成され、且つ自身を構成する繊維状部材の線径の4.5倍以上の大きさの孔径を有する複数の開口部を有することが好ましい。 In the cell division device according to the disclosed technology, the first mesh and the second mesh are each configured to include a fibrous member, and are at least 4.5 times the wire diameter of the fibrous member constituting itself. It is preferable to have a plurality of openings having a large hole diameter.
 これにより、第1のメッシュ及び第2のメッシュのそれぞれにおいて、細胞凝集体の分割を適切に行うことが可能となる。 This makes it possible to appropriately divide the cell aggregate in each of the first mesh and the second mesh.
 開示の技術によれば、メッシュ表面への細胞凝集体の堆積を抑制することが可能となる。 According to the disclosed technique, it is possible to suppress the accumulation of cell aggregates on the mesh surface.
開示の技術の実施形態に係る細胞分割装置の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the cell division | segmentation apparatus which concerns on embodiment of the technique of indication. 開示の技術の実施形態に係る第1のメッシュ及び第2のメッシュの平面図である。FIG. 4 is a plan view of a first mesh and a second mesh according to an embodiment of the disclosed technology. 図2Aにおいて破線で囲んだ部分の拡大図である。It is an enlarged view of the part enclosed with the broken line in FIG. 2A. 開示の技術の実施形態に係る細胞分割装置を用いた分割処理の様子を示す断面図である。It is sectional drawing which shows the mode of the division | segmentation process using the cell division | segmentation apparatus which concerns on embodiment of the technique of indication. 比較例に係る細胞分割装置を用いた分割処理の様子を示す断面図である。It is sectional drawing which shows the mode of the division | segmentation process using the cell division | segmentation apparatus which concerns on a comparative example. 開示の技術の実施形態に係る細胞分割装置の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the cell division | segmentation apparatus which concerns on embodiment of the technique of indication. 開示の技術の実施形態に係る細胞分割装置の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the cell division | segmentation apparatus which concerns on embodiment of the technique of indication. 開示の技術の実施形態に係る細胞分割装置を用いた分割処理の様子を示す断面図である。It is sectional drawing which shows the mode of the division | segmentation process using the cell division | segmentation apparatus which concerns on embodiment of the technique of indication. 開示の技術の実施形態に係る細胞分割装置の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the cell division | segmentation apparatus which concerns on embodiment of the technique of indication. 開示の技術の実施形態に係る細胞分割装置の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the cell division | segmentation apparatus which concerns on embodiment of the technique of indication.
 以下、開示の技術の実施形態について図面を参照しつつ説明する。尚、各図面において、実質的に同一又は等価な構成要素又は部分には同一の参照符号を付している。 Hereinafter, embodiments of the disclosed technology will be described with reference to the drawings. In the drawings, substantially the same or equivalent components or portions are denoted by the same reference numerals.
[第1の実施形態]
 図1は、開示の技術の第1の実施形態に係る細胞分割装置1の構成の一例を示す断面図である。
[First Embodiment]
FIG. 1 is a cross-sectional view illustrating an example of a configuration of a cell division device 1 according to the first embodiment of the disclosed technology.
 細胞分割装置1は、細胞懸濁液の流路30を形成する容器10を有する。容器10の一端部には、細胞凝集体を含む細胞懸濁液を容器10の内部に導入するための流入口11が設けられ、容器10の他端部には、分割処理済みの細胞懸濁液を容器10の外部に流出させるための流出口12が設けられている。流路30の各位置における、細胞懸濁液の流れ方向F1と交差する断面の形状は、例えば円形である。 The cell dividing device 1 has the container 10 that forms the cell suspension flow path 30. At one end of the container 10, an inlet 11 for introducing a cell suspension containing cell aggregates into the inside of the container 10 is provided, and at the other end of the container 10, a divided cell suspension An outlet 12 for allowing the liquid to flow out of the container 10 is provided. The cross section of each position of the flow path 30 that intersects the flow direction F1 of the cell suspension is, for example, circular.
 細胞分割装置1は、流路30の途中の、流入口11と流出口12との間に配置された第1のメッシュ21及び第2のメッシュ22を有する。図2Aは、第1のメッシュ21及び第2のメッシュ22の平面図、図2Bは、図2Aにおいて破線で囲んだ部分P1の拡大図である。第1のメッシュ21及び第2のメッシュ22は、それぞれ、図2Bに示すように、複数の繊維状部材200を例えば平織りすることによって形成された複数の開口部(網目)201を有する。なお、繊維状部材200の織り方は、平織りに限定されない。繊維状部材200の材質は、特に限定されるものではないが、耐食性の高い材料で構成されていることが好ましく、例えばナイロンまたはステンレスを好適に用いることができる。本実施形態において、第1のメッシュ21及び第2のメッシュ22の外形は、流路30の、細胞懸濁液の流れ方向F1と交差する断面の形状に合わせて円形とされている。なお、開示の技術の実施形態に係る細胞分割装置において使用されるメッシュとしては、不織布は除かれる。 The cell division device 1 has a first mesh 21 and a second mesh 22 disposed between the inflow port 11 and the outflow port 12 in the middle of the channel 30. 2A is a plan view of the first mesh 21 and the second mesh 22, and FIG. 2B is an enlarged view of a portion P1 surrounded by a broken line in FIG. 2A. As shown in FIG. 2B, each of the first mesh 21 and the second mesh 22 has a plurality of openings (mesh) 201 formed by, for example, plain weaving a plurality of fibrous members 200. The weaving method of the fibrous member 200 is not limited to plain weaving. The material of the fibrous member 200 is not particularly limited, but is preferably made of a material having high corrosion resistance. For example, nylon or stainless steel can be suitably used. In the present embodiment, the outer shapes of the first mesh 21 and the second mesh 22 are circular in conformity with the cross-sectional shape of the flow channel 30 that intersects the flow direction F1 of the cell suspension. The mesh used in the cell division device according to the embodiment of the disclosed technology does not include a nonwoven fabric.
 第1のメッシュ21及び第2のメッシュ22は、複数の開口部201を有する主面が、細胞懸濁液の流れ方向F1と交差する方向に延在するように容器10内に設置されている。細胞懸濁液が、第1のメッシュ21及び第2のメッシュ22を通過することで、細胞懸濁液に含まれる細胞凝集体が機械的に分割される。すなわち、細胞凝集体は、2つのメッシュによる2段階の分割処理によって分割される。 The first mesh 21 and the second mesh 22 are installed in the container 10 such that the main surface having the plurality of openings 201 extends in a direction intersecting with the flow direction F1 of the cell suspension. . When the cell suspension passes through the first mesh 21 and the second mesh 22, the cell aggregates contained in the cell suspension are mechanically divided. That is, the cell aggregate is divided by a two-stage division process using two meshes.
 第2のメッシュ22は、第1のメッシュ21に対して、細胞懸濁液の流れ方向F1の下流側に配置されている。すなわち、第1のメッシュ21は、流路30の流入口11側に設けられ、第2のメッシュ22は、流路30内の流出口12側に設けられている。従って、流路30を流れ方向F1に沿って流れる細胞懸濁液は、第1のメッシュ21を通過した後、第2のメッシュ22を通過する。 The second mesh 22 is disposed downstream of the first mesh 21 in the flow direction F1 of the cell suspension. That is, the first mesh 21 is provided on the inflow port 11 side of the channel 30, and the second mesh 22 is provided on the outflow port 12 side of the channel 30. Therefore, the cell suspension flowing in the flow path 30 along the flow direction F1 passes through the first mesh 21 and then passes through the second mesh 22.
 第1のメッシュ21の開口部201の径(以下、孔径Lと称する)は、例えば、分割処理前の細胞凝集体の平均径よりも小さい大きさとされる。第2のメッシュ22の孔径Lは、第1のメッシュ21の孔径Lよりも小さく、分割処理後の細胞凝集体の目標サイズに応じて定められる。第1のメッシュ21及び第2のメッシュ22のそれぞれにおいて、孔径Lは、当該メッシュを構成する繊維状部材200の線径dの4.5倍以上であることが好ましい。これにより、第1のメッシュ21及び第2のメッシュ22のそれぞれにおいて、細胞凝集体の分割を適切に行うことが可能となる。 径 The diameter of the opening 201 of the first mesh 21 (hereinafter, referred to as the pore diameter L) is, for example, smaller than the average diameter of the cell aggregate before the division processing. The pore size L of the second mesh 22 is smaller than the pore size L of the first mesh 21, and is determined according to the target size of the cell aggregate after the division. In each of the first mesh 21 and the second mesh 22, the hole diameter L is preferably at least 4.5 times the wire diameter d of the fibrous member 200 constituting the mesh. This makes it possible to appropriately divide the cell aggregate in each of the first mesh 21 and the second mesh 22.
 第1のメッシュ21の開口率は60%以上80%以下であることが好ましく、第2のメッシュの開口率は55%以上77%以下であることが好ましい。なお、第1及び第2のメッシュの開口率Aは、下記の(1)式によって表わすことができる。但し(1)式において、Bは当該メッシュの開口部の面積の総和であり、Cは当該メッシュ全体の面積である。第1及び第2のメッシュの開口率は、当該メッシュを撮影した顕微鏡画像から孔径L及び線径dを導出し、導出した孔径L及び線径dをコンピュータソフトウェアに入力することにより算出してもよい。第1のメッシュ21及び第2のメッシュ22の開口率の範囲を、上記の範囲とすることで、適切な分割処理が可能となり、メッシュ表面への細胞凝集体の堆積を抑制することができる。
A=B/C ・・・(1)
The opening ratio of the first mesh 21 is preferably 60% or more and 80% or less, and the opening ratio of the second mesh 21 is preferably 55% or more and 77% or less. The aperture ratio A of the first and second meshes can be represented by the following equation (1). However, in equation (1), B is the total area of the openings of the mesh, and C is the area of the entire mesh. The aperture ratios of the first and second meshes may be calculated by deriving a hole diameter L and a wire diameter d from a microscopic image of the mesh, and inputting the derived hole diameters L and the wire diameter d into computer software. Good. By setting the range of the aperture ratio of the first mesh 21 and the second mesh 22 to the above range, appropriate division processing can be performed, and accumulation of cell aggregates on the mesh surface can be suppressed.
A = B / C (1)
 細胞分割装置1は、第1のメッシュ21に対して細胞懸濁液の流れ方向F1の上流側から第1のメッシュ21に至る第1の流路区間31を有する。また、細胞分割装置1は、第1のメッシュ21と第2のメッシュ22との間の流路区間であって、第2のメッシュ22に対して細胞懸濁液の流れ方向F1の上流側から第2のメッシュ22に至る第2の流路区間32を有する。 The cell dividing device 1 has a first flow path section 31 extending from the upstream side in the flow direction F1 of the cell suspension to the first mesh 21 with respect to the first mesh 21. In addition, the cell dividing device 1 is a flow path section between the first mesh 21 and the second mesh 22, and from the upstream side in the flow direction F1 of the cell suspension with respect to the second mesh 22. It has a second flow path section 32 leading to the second mesh 22.
 第2の流路区間32を流れる細胞懸濁液が第2のメッシュ22に到達(接触)するときの細胞懸濁液の線速度V2[cm/s]が、第1の流路区間31を流れる細胞懸濁液が第1のメッシュ21に到達するときの細胞懸濁液の線速度V1と同じか、これよりも小さいことが好ましい。なお、線速度V1及びV2は、それぞれ、下記の(2)式及び(3)式によって表わすことができる。
V1[cm/s]=Q1[mL/s]/S1[cm] ・・・(2)
V2[cm/s]=Q2[mL/s]/S2[cm] ・・・(3)
The linear velocity V2 [cm / s] of the cell suspension when the cell suspension flowing through the second flow path section 32 reaches (contacts) the second mesh 22 is equal to the first flow path section 31. It is preferable that the linear velocity V1 of the cell suspension when the flowing cell suspension reaches the first mesh 21 is equal to or smaller than V1. The linear velocities V1 and V2 can be expressed by the following equations (2) and (3), respectively.
V1 [cm / s] = Q1 [mL / s] / S1 [cm 2 ] (2)
V2 [cm / s] = Q2 [mL / s] / S2 [cm 2 ] (3)
 但し、(2)式において、Q1[mL/s]は、第1のメッシュ21に到達する細胞懸濁液の単位時間当たりの流量である。(2)式において、S1は、流路30の、第1のメッシュ21が配置された部位における、細胞懸濁液の流れ方向F1と交差する断面の面積である。本実施形態に係る細胞分割装置1において、面積S1は、第1のメッシュ21の有効面積と同じである。(3)式において、Q2[mL/s]は、第2のメッシュ22に到達する細胞懸濁液の単位時間当たりの流量である。(3)式において、S2は、流路30の、第2のメッシュ22が配置された部位における、細胞懸濁液の流れ方向F1と交差する断面の面積である。本実施形態に係る細胞分割装置1において、面積S2は、第2のメッシュ22の有効面積と同じである。なお、第1のメッシュ21及び第2のメッシュ22の有効面積とは、当該メッシュの、細胞懸濁液と接触し得る領域の面積である。また、流路30内において、任意の断面を通過する細胞懸濁液の単位時間当たりの流量は一定であるから、Q1とQ2は等しい。 However, in the expression (2), Q1 [mL / s] is a flow rate of the cell suspension reaching the first mesh 21 per unit time. In the equation (2), S1 is an area of a cross section of the flow channel 30 where the first mesh 21 is arranged, which crosses the flow direction F1 of the cell suspension. In the cell division device 1 according to the present embodiment, the area S1 is the same as the effective area of the first mesh 21. In the equation (3), Q2 [mL / s] is a flow rate of the cell suspension reaching the second mesh 22 per unit time. In the equation (3), S2 is an area of a cross section of the flow channel 30 where the second mesh 22 is arranged, which crosses the flow direction F1 of the cell suspension. In the cell division device 1 according to the present embodiment, the area S2 is the same as the effective area of the second mesh 22. In addition, the effective area of the first mesh 21 and the second mesh 22 is an area of a region of the mesh that can come into contact with the cell suspension. In the channel 30, the flow rate of the cell suspension passing through an arbitrary cross section per unit time is constant, so that Q1 and Q2 are equal.
 線速度V1及びV2は、例えば、面積S1及びS2によって制御することが可能である。例えば、面積S1と面積S2とを同じにすることで、線速度V1と線速度V2とを同じにすることができる。本実施形態に係る細胞分割装置1によれば、面積S1と面積S2とが同じであるので、線速度V1と線速度V2とが等しくなる。一方、面積S2を面積S1よりも大きくすることで、線速度V2を線速度V1よりも小さくすることができる(図8参照)。 The linear velocities V1 and V2 can be controlled by, for example, the areas S1 and S2. For example, by making the area S1 and the area S2 the same, the linear velocity V1 and the linear velocity V2 can be made the same. According to the cell division device 1 according to the present embodiment, since the area S1 and the area S2 are the same, the linear velocity V1 and the linear velocity V2 become equal. On the other hand, by making the area S2 larger than the area S1, the linear velocity V2 can be made smaller than the linear velocity V1 (see FIG. 8).
 また、第2のメッシュ22の、上流側と下流側との圧力差(膜間差圧)ΔP2が、第1のメッシュ21の上流側と下流側との圧力差(膜間差圧)ΔP1と同じか、これよりも小さいことが好ましい。線速度V1と線速度V2とを同じにすることで、圧力差(膜間差圧)ΔP2と、圧力差(膜間差圧)ΔP1とを同じにすることができる。また、線速度V2を線速度V1よりも小さくすることで、圧力差(膜間差圧)ΔP2を、圧力差(膜間差圧)ΔP1よりも小さくすることができる。 The pressure difference (transmembrane pressure) ΔP2 between the upstream side and the downstream side of the second mesh 22 is equal to the pressure difference (transmembrane pressure) ΔP1 between the upstream side and the downstream side of the first mesh 21. Preferably, it is the same or smaller. By making the linear velocity V1 and the linear velocity V2 the same, the pressure difference (transmembrane pressure) ΔP2 and the pressure difference (transmembrane pressure) ΔP1 can be made the same. Further, by making the linear velocity V2 smaller than the linear velocity V1, the pressure difference (transmembrane pressure difference) ΔP2 can be made smaller than the pressure difference (transmembrane pressure difference) ΔP1.
 第1の流路区間31は、流入口11から流入した細胞懸濁液が、第1のメッシュ21と接触するまでの助走区間である。第1の流路区間31の、流れ方向F1に沿った長さとして、適切な長さが確保されることで、第1の流路区間31を流れる細胞懸濁液が、第1のメッシュ21に到達するまでに、その流れを安定させることができ、第1のメッシュ21による細胞凝集体の分割を安定して行うことができる。第1の流路区間31の流れ方向F1に沿った長さA1は、流路30の、第1のメッシュ21が配置された部位における流れ方向F1と交差する方向の長さW1(第1のメッシュ21の直径に相当)の0.3倍以上であることが好ましい。 {Circle around (1)} The first channel section 31 is an approach section until the cell suspension flowing from the inlet 11 contacts the first mesh 21. By securing an appropriate length as the length of the first flow path section 31 along the flow direction F1, the cell suspension flowing through the first flow path section 31 is converted into the first mesh 21. By the time, the flow can be stabilized, and the cell aggregate can be stably divided by the first mesh 21. The length A1 of the first flow path section 31 along the flow direction F1 is the length W1 (first length) of the flow path 30 in the direction intersecting the flow direction F1 at the portion where the first mesh 21 is arranged. It is preferably at least 0.3 times (equivalent to the diameter of the mesh 21).
 また、本実施形態において、第1の流路区間31は、容器10の円柱形状部分によって画定されている。従って、第1の流路区間31の、細胞懸濁液の流れ方向F1と交差する断面の面積が、第1の流路区間31の全域に亘って、流路30の、第1のメッシュ21が配置された部位における、細胞懸濁液の流れ方向F1と交差する断面の面積S1(第1のメッシュ21の有効面積に相当)と同じである。このように、第1の流路区間31の、細胞懸濁液の流れ方向F1と交差する断面の面積を一定とすることで、第1の流路区間31を流れる細胞懸濁液の流れを安定化させる効果を促進させることができる。 In addition, in the present embodiment, the first flow path section 31 is defined by the cylindrical portion of the container 10. Therefore, the area of the cross section of the first flow path section 31 that intersects with the flow direction F1 of the cell suspension extends over the entire area of the first flow path section 31 and the first mesh 21 of the flow path 30. Is the same as the cross-sectional area S1 (corresponding to the effective area of the first mesh 21) of the cross-section that intersects with the flow direction F1 of the cell suspension at the position where is disposed. In this way, by making the area of the cross section of the first flow path section 31 that intersects with the flow direction F1 of the cell suspension constant, the flow of the cell suspension flowing through the first flow path section 31 is reduced. The effect of stabilization can be promoted.
 同様に、第2の流路区間32は、第1のメッシュ21を通過した細胞懸濁液が、第2のメッシュ22と接触するまでの助走区間である。第2の流路区間32の、流れ方向F1に沿った長さとして、適切な長さが確保されることで、第2の流路区間32を流れる細胞懸濁液が第2のメッシュ22に到達するまでに、その流れを安定させることができ、第2のメッシュ22による細胞凝集体の分割を安定して行うことができる。第2の流路区間32の流れ方向F1に沿った長さA2は、流路30の、第2のメッシュ22が配置された部位における流れ方向F1と交差する方向の長さW2(第2のメッシュ22の直径に相当)の0.3倍以上であることが好ましい。 Similarly, the second flow path section 32 is a run-up section until the cell suspension that has passed through the first mesh 21 contacts the second mesh 22. By securing an appropriate length as the length of the second flow path section 32 along the flow direction F1, the cell suspension flowing through the second flow path section 32 is transferred to the second mesh 22. By this time, the flow can be stabilized, and the cell aggregates can be stably divided by the second mesh 22. The length A2 of the second flow path section 32 along the flow direction F1 is the length W2 of the flow path 30 in the direction intersecting the flow direction F1 at the portion where the second mesh 22 is arranged (the second length W2). It is preferably at least 0.3 times (equivalent to the diameter of the mesh 22).
 また、本実施形態において、第2の流路区間32は、容器10の円柱形状部分によって画定されている。従って、第2の流路区間32の、細胞懸濁液の流れ方向F1と交差する断面の面積が、第2の流路区間32の全域に亘って、流路30の、第2のメッシュ22が配置された部位における、細胞懸濁液の流れ方向F1と交差する断面の面積S2(第2のメッシュ22の有効面積に相当)と同じである。このように、第2の流路区間32の、細胞懸濁液の流れ方向F1と交差する断面の面積を一定とすることで、第2の流路区間32を流れる細胞懸濁液の流れを安定化させる効果を促進させることができる。 In addition, in the present embodiment, the second flow path section 32 is defined by the cylindrical portion of the container 10. Accordingly, the area of the cross section of the second flow path section 32 that intersects with the flow direction F1 of the cell suspension extends over the entire area of the second flow path section 32 so that the second mesh 22 of the flow path 30 is formed. Is the same as the area S2 (corresponding to the effective area of the second mesh 22) of the cross section intersecting with the flow direction F1 of the cell suspension at the position where is disposed. As described above, by keeping the area of the cross section of the second flow path section 32 that intersects with the flow direction F1 of the cell suspension constant, the flow of the cell suspension flowing through the second flow path section 32 is reduced. The effect of stabilization can be promoted.
 図3は、細胞分割装置1を用いた分割処理の様子を示す断面図である。流入口11から容器10内に流入した細胞凝集体100を含む細胞懸濁液101は、第1の流路区間31を経由して、第1のメッシュ21に到達する。細胞凝集体100は、第1のメッシュ21を通過することで分割され、細胞凝集体100の平均径が小さくなる。その後、細胞懸濁液101は、第2の流路区間32を経由して、第2のメッシュ22に到達する。細胞凝集体100は、第2のメッシュ22を通過することで分割され、細胞凝集体100の平均径が更に小さくなる。第2のメッシュ22を通過した細胞懸濁液101は、流出口12を経由して、容器10の外部に排出される。 FIG. 3 is a cross-sectional view showing a state of a dividing process using the cell dividing device 1. The cell suspension 101 containing the cell aggregates 100 that has flowed into the container 10 from the inlet 11 reaches the first mesh 21 via the first channel section 31. The cell aggregate 100 is divided by passing through the first mesh 21, and the average diameter of the cell aggregate 100 is reduced. After that, the cell suspension 101 reaches the second mesh 22 via the second channel section 32. The cell aggregate 100 is divided by passing through the second mesh 22, and the average diameter of the cell aggregate 100 is further reduced. The cell suspension 101 that has passed through the second mesh 22 is discharged to the outside of the container 10 via the outlet 12.
 本実施形態に係る細胞分割装置1によれば、細胞凝集体100は、2つのメッシュによる2段階の分割処理によって分割される。第2のメッシュ22の孔径Lは、第1のメッシュ21の孔径Lよりも小さい。従って、分割処理前の細胞凝集体100の平均径をX1、第1のメッシュ21を通過した後の細胞凝集体100の平均径をX2、第2のメッシュ22を通過した後の細胞凝集体100の平均径をX3とした場合、X1>X2>X3となる。 According to the cell division device 1 according to the present embodiment, the cell aggregate 100 is divided by a two-stage division process using two meshes. The hole diameter L of the second mesh 22 is smaller than the hole diameter L of the first mesh 21. Therefore, the average diameter of the cell aggregate 100 before the division treatment is X1, the average diameter of the cell aggregate 100 after passing through the first mesh 21 is X2, and the cell aggregate 100 after passing through the second mesh 22. X1> X2> X3 when the average diameter of X3 is X3.
 ここで、図4は、比較例に係る細胞分割装置1Xを用いた分割処理の様子を示す断面図である。比較例に係る細胞分割装置1Xは、単一のメッシュ22Xを有する。メッシュ22Xの孔径は、開示の技術の実施形態に係る細胞分割装置1が備える第2のメッシュ22の孔径と同じである。 Here, FIG. 4 is a cross-sectional view showing a state of a division process using the cell division device 1X according to the comparative example. The cell division device 1X according to the comparative example has a single mesh 22X. The pore size of the mesh 22X is the same as the pore size of the second mesh 22 provided in the cell division device 1 according to the embodiment of the disclosed technology.
 比較例に係る細胞分割装置1Xによれば、開示の技術の実施形態に係る細胞分割装置1と比較して、分割処理対象の細胞凝集体の平均径とメッシュの孔径との乖離が大きくなる。その結果、図4に示すように、メッシュ22Xの表面に細胞凝集体100が堆積しやすくなる。従って、比較例に係る細胞分割装置1Xを用いて大量の細胞を処理すると、累積処理量の増加に伴って、メッシュとして有効に機能する領域の面積及びメッシュ22Xの孔径が、刻々と変化する。その結果、分割処理後における細胞凝集体100のサイズのばらつきが大きくなるおそれがある。また、分割処理後におけるサイズが目標サイズから乖離した細胞凝集体100の割合が大きくなる。更に、図4に示すように、メッシュ22Xの表面に堆積した細胞の一部が、後続の細胞懸濁液101によって押し出されて変形し、その結果、細胞の品質が低下し、細胞の増殖性が低下するおそれがある。 According to the cell division device 1X according to the comparative example, the divergence between the average diameter of the cell aggregate to be subjected to the division processing and the pore size of the mesh is larger than that of the cell division device 1 according to the embodiment of the disclosed technology. As a result, as shown in FIG. 4, the cell aggregate 100 is more likely to be deposited on the surface of the mesh 22X. Therefore, when a large number of cells are processed using the cell division device 1X according to the comparative example, the area of the region effectively functioning as a mesh and the pore size of the mesh 22X change every moment as the cumulative processing amount increases. As a result, there is a possibility that the size of the cell aggregate 100 after the division processing varies greatly. In addition, the ratio of the cell aggregates 100 whose size after the division process deviates from the target size increases. Further, as shown in FIG. 4, a part of the cells deposited on the surface of the mesh 22X is extruded and deformed by the subsequent cell suspension 101, and as a result, the quality of the cells is reduced, and the proliferation of the cells is reduced. May decrease.
 一方、開示の技術の実施形態に係る細胞分割装置1によれば、上記のように、細胞凝集体100は、平均径が徐々に小さくなるように、段階的に分割されるので、メッシュ表面への細胞凝集体100の堆積を抑制することができる。従って、細胞分割装置1を用いて大量の細胞を処理する場合でも、累積処理量の増加に伴って、第1のメッシュ21及び第2のメッシュ22の有効領域の面積及び孔径Lが変化することを抑制することができる。その結果、比較例に係る細胞分割装置1Xと比較して、分割処理後における細胞凝集体100のサイズのばらつきを小さくすることができる。また、開示の技術の実施形態に係る細胞分割装置1によれば、メッシュ表面への細胞凝集体100の堆積を抑制することができるので、メッシュ表面に堆積した細胞の一部が後続の細胞懸濁液101に押し出されて変形することを抑制することができる。従って、細胞の品質の低下を抑制し、細胞の増殖性の低下を抑制することができる。 On the other hand, according to the cell dividing device 1 according to the embodiment of the disclosed technology, as described above, the cell aggregate 100 is divided stepwise so that the average diameter gradually decreases, Of the cell aggregate 100 can be suppressed. Therefore, even when a large number of cells are processed using the cell division device 1, the area and the hole diameter L of the effective area of the first mesh 21 and the second mesh 22 change with an increase in the cumulative processing amount. Can be suppressed. As a result, as compared with the cell division device 1X according to the comparative example, the variation in the size of the cell aggregate 100 after the division processing can be reduced. In addition, according to the cell dividing device 1 according to the embodiment of the disclosed technology, since the accumulation of the cell aggregates 100 on the mesh surface can be suppressed, a part of the cells deposited on the mesh surface can be removed from the subsequent cell suspension. It can be prevented from being deformed by being pushed out by the suspension 101. Therefore, it is possible to suppress a decrease in cell quality and a decrease in cell proliferation.
 また、開示の技術の実施形態に係る細胞分割装置1によれば、第2の流路区間32を流れる細胞懸濁液101が第2のメッシュ22に到達するときの細胞懸濁液101の線速度V2が、第1の流路区間31を流れる細胞懸濁液101が第1のメッシュ21に到達するときの細胞懸濁液101の線速度V1と同じとされる。これにより、線速度V2が線速度V1よりも大きくなる場合と比較して、細胞が受けるダメージを小さくすることができる。細胞凝集体100を構成する複数の細胞は、第1のメッシュ21を通過することで、ある程度のダメージを受けるものと考えられる。従って、第2のメッシュ22を通過する細胞が、更に受けるダメージを抑制することで、細胞の生存率を高めることができる。 Further, according to the cell division device 1 according to the embodiment of the disclosed technology, the cell suspension 101 flowing through the second flow path section 32 reaches the second mesh 22 when the line of the cell suspension 101 is drawn. The velocity V2 is the same as the linear velocity V1 of the cell suspension 101 when the cell suspension 101 flowing through the first flow path section 31 reaches the first mesh 21. As a result, damage to the cells can be reduced as compared with the case where the linear velocity V2 is higher than the linear velocity V1. The plurality of cells constituting the cell aggregate 100 are considered to be damaged to some extent by passing through the first mesh 21. Therefore, the cells that pass through the second mesh 22 are further suppressed from being damaged, so that the cell survival rate can be increased.
 開示の技術の実施形態に係る細胞分割装置1によれば、第1の流路区間31の流れ方向F1に沿った長さA1が、流路30の、第1のメッシュ21が配置された部位における流れ方向F1と交差する方向の長さW1(第1のメッシュ21の直径に相当)の0.3倍以上とされる。第1の流路区間31の、流れ方向F1に沿った長さとして、適切な長さが確保されることで、第1の流路区間31を流れる細胞懸濁液101が、第1のメッシュ21に到達するまでに、その流れを安定させることができ、第1のメッシュ21による細胞凝集体100の分割を安定して行うことができる。 According to the cell division device 1 according to the embodiment of the disclosed technology, the length A1 of the first channel section 31 along the flow direction F1 is the portion of the channel 30 where the first mesh 21 is arranged. Is 0.3 times or more the length W1 (corresponding to the diameter of the first mesh 21) in the direction intersecting the flow direction F1. By ensuring an appropriate length as the length of the first flow path section 31 along the flow direction F1, the cell suspension 101 flowing through the first flow path section 31 is converted into a first mesh. By the time the flow reaches the cell 21, the flow can be stabilized, and the cell aggregate 100 can be stably divided by the first mesh 21.
 また、開示の技術の実施形態に係る細胞分割装置1によれば、第2の流路区間32の流れ方向F1に沿った長さA2が、流路30の、第2のメッシュ22が配置された部位における流れ方向F1と交差する方向の長さW2(第2のメッシュ22の直径に相当)の0.3倍以上とされる。第2の流路区間32の、流れ方向F1に沿った長さとして、適切な長さが確保されることで、第2の流路区間32を流れる細胞懸濁液101が、第2のメッシュ22に到達するまでに、その流れを安定させることができ、第2のメッシュ22による細胞凝集体100の分割を安定して行うことができる。 Further, according to the cell division device 1 according to the embodiment of the disclosed technology, the length A2 of the second flow path section 32 along the flow direction F1 is the same as the second mesh 22 of the flow path 30. The length W2 (corresponding to the diameter of the second mesh 22) in the direction intersecting with the flow direction F1 at the portion where the flow has occurred is 0.3 times or more. By securing an appropriate length as the length of the second flow path section 32 along the flow direction F1, the cell suspension 101 flowing through the second flow path section 32 is converted into a second mesh. By the time the flow reaches the cell 22, the flow can be stabilized, and the cell aggregate 100 can be stably divided by the second mesh 22.
 また、開示の技術の実施形態に係る細胞分割装置1によれば、第1の流路区間31及び第2の流路区間32は、それぞれ、細胞懸濁液の流れ方向F1と交差する断面の面積が一定とされる。これにより、第1の流路区間31及び第2の流路区間32を流れる細胞懸濁液101の流れを安定化させる効果が促進される。 Further, according to the cell division device 1 according to the embodiment of the disclosed technology, the first channel section 31 and the second channel section 32 each have a cross section that intersects the flow direction F1 of the cell suspension. The area is fixed. Thereby, the effect of stabilizing the flow of the cell suspension 101 flowing through the first channel section 31 and the second channel section 32 is promoted.
[第2の実施形態]
 図5は、開示の技術の第2の実施形態に係る細胞分割装置1Aの構成の一例を示す断面図である。細胞分割装置1Aは、第3のメッシュ23を更に含む。第3のメッシュ23は、第1のメッシュ21と第2のメッシュ22との間に配置されている。第3のメッシュ23の孔径Lは、第1のメッシュ21の孔径Lよりも小さく、且つ第2のメッシュ22の孔径Lよりも大きい。
[Second embodiment]
FIG. 5 is a cross-sectional view illustrating an example of a configuration of a cell division device 1A according to the second embodiment of the disclosed technology. The cell division device 1A further includes a third mesh 23. The third mesh 23 is disposed between the first mesh 21 and the second mesh 22. The hole diameter L of the third mesh 23 is smaller than the hole diameter L of the first mesh 21 and larger than the hole diameter L of the second mesh 22.
 また、細胞分割装置1Aは、第1のメッシュ21に対して細胞懸濁液の流れ方向F1の上流側から第1のメッシュ21に至る第1の流路区間31を有する。また、細胞分割装置1Aは、第1のメッシュ21と第3のメッシュ23との間の流路区間であって、第3のメッシュ23に対して細胞懸濁液の流れ方向F1の上流側から第3のメッシュ23に至る第2の流路区間32を有する。また、細胞分割装置1Aは、第3のメッシュ23と第2のメッシュ22との間の流路区間であって、第2のメッシュ22に対して細胞懸濁液の流れ方向F1の上流側から第2のメッシュ22に至る第3の流路区間33を有する。 {Circle around (1)} The cell division device 1A has a first flow path section 31 extending from the upstream side in the flow direction F1 of the cell suspension to the first mesh 21 with respect to the first mesh 21. In addition, the cell dividing device 1A is a flow path section between the first mesh 21 and the third mesh 23, and is located on the upstream side in the flow direction F1 of the cell suspension with respect to the third mesh 23. It has a second flow path section 32 reaching the third mesh 23. Further, the cell dividing device 1A is a flow path section between the third mesh 23 and the second mesh 22, which is located on the upstream side in the flow direction F1 of the cell suspension with respect to the second mesh 22. It has a third flow path section 33 leading to the second mesh 22.
 第2の流路区間32を流れる細胞懸濁液が第3のメッシュ23に到達(接触)するときの細胞懸濁液の線速度V2[cm/s]が、第1の流路区間31を流れる細胞懸濁液が第1のメッシュ21に到達するときの細胞懸濁液の線速度V1と同じか、これよりも小さいことが好ましい。また、第3の流路区間33を流れる細胞懸濁液が第2のメッシュ22に到達(接触)するときの細胞懸濁液の線速度V3[cm/s]が、第2の流路区間32を流れる細胞懸濁液が第3のメッシュ23に到達するときの細胞懸濁液の線速度V2と同じか、これよりも小さいことが好ましい。 The linear velocity V2 [cm / s] of the cell suspension when the cell suspension flowing through the second flow path section 32 reaches (contacts) the third mesh 23 is less than the first flow path section 31. It is preferable that the linear velocity V1 of the cell suspension when the flowing cell suspension reaches the first mesh 21 is equal to or smaller than V1. The linear velocity V3 [cm / s] of the cell suspension when the cell suspension flowing through the third flow path section 33 reaches (contacts) the second mesh 22 is determined by the second flow path section. It is preferable that the linear velocity V2 of the cell suspension when it reaches the third mesh 23 is equal to or smaller than the linear velocity V2.
 開示の技術の第2の実施形態に係る細胞分割装置1Aによれば、細胞凝集体は、細胞懸濁液の流れ方向F1に沿って孔径が段階的に小さくなるように配置された3つのメッシュによる3段階の分割処理によって分割される。これにより、メッシュ表面への細胞凝集の堆積を抑制する効果を促進させることができる。 According to the cell division device 1A according to the second embodiment of the disclosed technology, the cell aggregate has three meshes arranged such that the pore diameter decreases stepwise along the flow direction F1 of the cell suspension. Are divided by three-stage division processing. Thereby, the effect of suppressing the accumulation of cell aggregation on the mesh surface can be promoted.
 なお、メッシュの段数を、4段以上とすることも可能である。この場合、細胞懸濁液の流れ方向F1の下流側に配置されたメッシュの孔径は、上流側に配置されたメッシュの孔径よりも小さくすることが好ましい。また、細胞懸濁液が下流側に配置されたメッシュに到達するときの細胞懸濁液の線速度は、細胞懸濁液が上流側に配置されたメッシュに到達するときの細胞懸濁液の線速度と同じか、これよりも小さいことが好ましい。これを実現するために、例えば、下流側のメッシュが配置された部位における流路30の断面積を、上流側のメッシュが配置された部位における流路30の断面積と同じか、これよりも大きくしてもよい。 The number of mesh steps may be four or more. In this case, the pore diameter of the mesh arranged on the downstream side in the flow direction F1 of the cell suspension is preferably smaller than the pore diameter of the mesh arranged on the upstream side. The linear velocity of the cell suspension when the cell suspension reaches the mesh arranged on the downstream side is determined by the linear velocity of the cell suspension when the cell suspension reaches the mesh arranged on the upstream side. Preferably, it is equal to or less than the linear velocity. In order to realize this, for example, the cross-sectional area of the flow channel 30 at the portion where the mesh on the downstream side is arranged is equal to or greater than the cross-sectional area of the flow channel 30 at the portion where the mesh on the upstream side is arranged. May be larger.
[第3の実施形態]
 図6は、開示の技術の第3の実施形態に係る細胞分割装置1Bの構成の一例を示す断面図である。細胞分割装置1Bは、第1の分割モジュール41及び第2の分割モジュール42を含んで構成されている。第1の分割モジュール41及び第2の分割モジュール42は、互いに別体として構成されており、配管50を介して互いに連結されている。第1の分割モジュール41及び第2の分割モジュール42は、互いに切り離し可能である。
[Third Embodiment]
FIG. 6 is a cross-sectional view illustrating an example of a configuration of a cell division device 1B according to the third embodiment of the disclosed technology. The cell dividing device 1B includes a first dividing module 41 and a second dividing module 42. The first division module 41 and the second division module 42 are configured separately from each other, and are connected to each other via a pipe 50. The first division module 41 and the second division module 42 can be separated from each other.
 第1の分割モジュール41は、細胞懸濁液の流路30を形成する第1の容器10Aを有する。第1の容器10Aの一端部には、細胞凝集体を含む細胞懸濁液を第1の容器10Aの内部に導入するための第1の流入口11Aが設けられ、第1の容器10Aの他端部には、細胞懸濁液を第1の容器10Aの外部に流出させるための第1の流出口12Aが設けられている。第1の分割モジュール41は、流路30内の第1の流入口11Aと第1の流出口12Aとの間に配置された第1のメッシュ21を有する。 The first division module 41 has a first container 10A that forms the flow path 30 of the cell suspension. At one end of the first container 10A, a first inlet 11A for introducing a cell suspension containing cell aggregates into the inside of the first container 10A is provided. At the end, there is provided a first outlet 12A for allowing the cell suspension to flow out of the first container 10A. The first division module 41 has the first mesh 21 disposed between the first inlet 11A and the first outlet 12A in the flow channel 30.
 第2の分割モジュール42は、細胞懸濁液の流路30を形成する第2の容器10Bを有する。第2の容器10Bの一端部には、細胞凝集体を含む細胞懸濁液を第2の容器10Bの内部に導入するための第2の流入口11Bが設けられ、第2の容器10Bの他端部には、細胞懸濁液を第2の容器10Bの外部に流出させるための第2の流出口12Bが設けられている。第2の分割モジュール42は、流路30内の第2の流入口11Bと第2の流出口12Bとの間に配置された第2のメッシュ22を有する。 2The second division module 42 has the second container 10B that forms the cell suspension flow path 30. At one end of the second container 10B, a second inlet 11B for introducing a cell suspension containing cell aggregates into the inside of the second container 10B is provided. A second outlet 12B for discharging the cell suspension to the outside of the second container 10B is provided at the end. The second division module 42 has the second mesh 22 disposed between the second inlet 11B and the second outlet 12B in the flow channel 30.
 第1のメッシュ21の孔径Lは、例えば、分割処理前の細胞凝集体の平均径よりも小さい大きさとされる。第2のメッシュ22の孔径Lは、第1のメッシュ21の孔径Lよりも小さく、分割処理後の細胞凝集体の目標サイズに応じて定められる。 孔 The pore diameter L of the first mesh 21 is, for example, smaller than the average diameter of the cell aggregate before the division processing. The pore size L of the second mesh 22 is smaller than the pore size L of the first mesh 21, and is determined according to the target size of the cell aggregate after the division.
 第1の分割モジュール41の第1の流出口12Aと、第2の分割モジュール42の第2の流入口11Bは、配管50によって接続されている。配管50は、例えば、可撓性を有する部材で構成されていることが好ましい。 1The first outlet 12A of the first split module 41 and the second inlet 11B of the second split module 42 are connected by a pipe 50. The pipe 50 is preferably made of, for example, a flexible member.
 第1の分割モジュール41は、第1のメッシュ21に対して細胞懸濁液の流れ方向F1の上流側から第1のメッシュ21に至る第1の流路区間31を有する。第2の分割モジュール42は、第1のメッシュ21と第2のメッシュ22との間の流路区間であって、第2のメッシュ22に対して細胞懸濁液の流れ方向F1の上流側から第2のメッシュ22に至る第2の流路区間32を有する。 The first division module 41 has the first flow path section 31 extending from the upstream side in the flow direction F1 of the cell suspension to the first mesh 21 with respect to the first mesh 21. The second division module 42 is a flow path section between the first mesh 21 and the second mesh 22 and is located on the second mesh 22 from the upstream side in the flow direction F1 of the cell suspension. It has a second flow path section 32 leading to the second mesh 22.
 第2の流路区間32を流れる細胞懸濁液が第2のメッシュ22に到達(接触)するときの細胞懸濁液の線速度V2[cm/s]が、第1の流路区間31を流れる細胞懸濁液が第1のメッシュ21に到達するときの細胞懸濁液の線速度V1と同じか、これよりも小さいことが好ましい。線速度V1及びV2は、それぞれ、上記の(2)式及び(3)式によって表わすことができる。本実施形態において、(2)式における面積S1は、第1のメッシュ21の有効面積と同じである。(3)式における面積S2は、第2のメッシュ22の有効面積と同じである。 The linear velocity V2 [cm / s] of the cell suspension when the cell suspension flowing through the second flow path section 32 reaches (contacts) the second mesh 22 is equal to the first flow path section 31. It is preferable that the linear velocity V1 of the cell suspension when the flowing cell suspension reaches the first mesh 21 is equal to or smaller than V1. The linear velocities V1 and V2 can be represented by the above equations (2) and (3), respectively. In the present embodiment, the area S1 in the expression (2) is the same as the effective area of the first mesh 21. The area S2 in the equation (3) is the same as the effective area of the second mesh 22.
 線速度V1及びV2は、例えば、面積S1及びS2によって制御することが可能である。例えば、面積S1と面積S2とを同じにすることで、線速度V1と線速度V2とを同じにすることができる。本実施形態に係る細胞分割装置1Bによれば、面積S1と面積S2とが同じであるので、線速度V1と線速度V2とが等しくなる。一方、面積S2を面積S1よりも大きくすることで、線速度V2を線速度V1よりも小さくすることができる(図8参照)。 The linear velocities V1 and V2 can be controlled by, for example, the areas S1 and S2. For example, by making the area S1 and the area S2 the same, the linear velocity V1 and the linear velocity V2 can be made the same. According to the cell dividing device 1B according to the present embodiment, since the area S1 and the area S2 are the same, the linear velocity V1 and the linear velocity V2 are equal. On the other hand, by making the area S2 larger than the area S1, the linear velocity V2 can be made smaller than the linear velocity V1 (see FIG. 8).
 第1の流路区間31は、流入口11Aから流入した細胞懸濁液が、第1のメッシュ21と接触するまでの助走区間である。第1の流路区間31の、流れ方向F1に沿った長さとして、適切な長さが確保されることで、第1の流路区間31を流れる細胞懸濁液が、第1のメッシュ21に到達するまでに、その流れを安定させることができる。これにより、第1のメッシュ21による細胞凝集体の分割を安定して行うことができる。第1の流路区間31の流れ方向F1に沿った長さA1は、流路30の、第1のメッシュ21が配置された部位における流れ方向F1と交差する方向の長さW1(第1のメッシュ21の直径に相当)の0.3倍以上であることが好ましい。 {Circle around (1)} The first channel section 31 is a run section until the cell suspension flowing from the inlet 11A comes into contact with the first mesh 21. By securing an appropriate length as the length of the first flow path section 31 along the flow direction F1, the cell suspension flowing through the first flow path section 31 is converted into the first mesh 21. By the time, the flow can be stabilized. Thereby, division of the cell aggregate by the first mesh 21 can be performed stably. The length A1 of the first flow path section 31 along the flow direction F1 is the length W1 (first length) of the flow path 30 in the direction intersecting the flow direction F1 at the portion where the first mesh 21 is arranged. It is preferably at least 0.3 times (equivalent to the diameter of the mesh 21).
 また、本実施形態において、第1の流路区間31は、容器10の円柱形状部分によって画定されている。従って、第1の流路区間31の、細胞懸濁液の流れ方向F1と交差する断面の面積が、第1の流路区間31の全域に亘って、流路30の、第1のメッシュ21が配置された部位における、細胞懸濁液の流れ方向F1と交差する断面の面積S1(第1のメッシュ21の有効面積に相当)と同じである。このように、第1の流路区間31の、細胞懸濁液の流れ方向F1と交差する断面の面積を一定とすることで、第1の流路区間31を流れる細胞懸濁液の流れを安定化させる効果を促進させることができる。 In addition, in the present embodiment, the first flow path section 31 is defined by the cylindrical portion of the container 10. Therefore, the area of the cross section of the first flow path section 31 that intersects with the flow direction F1 of the cell suspension extends over the entire area of the first flow path section 31 and the first mesh 21 of the flow path 30. Is the same as the cross-sectional area S1 (corresponding to the effective area of the first mesh 21) of the cross-section that intersects with the flow direction F1 of the cell suspension at the position where is disposed. In this way, by making the area of the cross section of the first flow path section 31 that intersects with the flow direction F1 of the cell suspension constant, the flow of the cell suspension flowing through the first flow path section 31 is reduced. The effect of stabilization can be promoted.
 同様に、第2の流路区間32は、第1のメッシュ21を通過した細胞懸濁液が、第2のメッシュ22と接触するまでの助走区間である。第2の流路区間32の、流れ方向F1に沿った長さとして、適切な長さが確保されることで、第2の流路区間32を流れる細胞懸濁液が第2のメッシュ22に到達するまでに、その流れを安定させることができる。これにより、第2のメッシュ22による細胞凝集体の分割を安定して行うことができる。第2の流路区間32の流れ方向F1に沿った長さA2は、流路30の、第2のメッシュ22が配置された部位における流れ方向F1と交差する方向の長さW2(第2のメッシュ22の直径に相当)の0.3倍以上であることが好ましい。 Similarly, the second flow path section 32 is a run-up section until the cell suspension that has passed through the first mesh 21 contacts the second mesh 22. By securing an appropriate length as the length of the second flow path section 32 along the flow direction F1, the cell suspension flowing through the second flow path section 32 is transferred to the second mesh 22. By the time it reaches, its flow can be stabilized. Thereby, division of the cell aggregate by the second mesh 22 can be performed stably. The length A2 of the second flow path section 32 along the flow direction F1 is the length W2 of the flow path 30 in the direction intersecting the flow direction F1 at the portion where the second mesh 22 is arranged (the second length W2). It is preferably at least 0.3 times (equivalent to the diameter of the mesh 22).
 また、本実施形態において、第2の流路区間32は、容器10の円柱形状部分によって画定されている。従って、第2の流路区間32の、細胞懸濁液の流れ方向F1と交差する断面の面積が、第2の流路区間32の全域に亘って、流路30の、第2のメッシュ22が配置された部位における、細胞懸濁液の流れ方向F1と交差する断面の面積S2(第2のメッシュ22の有効面積に相当)と同じである。このように、第2の流路区間32の、細胞懸濁液の流れ方向F1と交差する断面の面積を一定とすることで、第2の流路区間32を流れる細胞懸濁液の流れを安定化させる効果を促進させることができる。 In addition, in the present embodiment, the second flow path section 32 is defined by the cylindrical portion of the container 10. Accordingly, the area of the cross section of the second flow path section 32 that intersects with the flow direction F1 of the cell suspension extends over the entire area of the second flow path section 32 so that the second mesh 22 of the flow path 30 is formed. Is the same as the area S2 (corresponding to the effective area of the second mesh 22) of the cross section intersecting with the flow direction F1 of the cell suspension at the position where is disposed. As described above, by keeping the area of the cross section of the second flow path section 32 that intersects with the flow direction F1 of the cell suspension constant, the flow of the cell suspension flowing through the second flow path section 32 is reduced. The effect of stabilization can be promoted.
 図7は、細胞分割装置1Bを用いた分割処理の様子を示す断面図である。第1の流入口11Aから第1の分割モジュール41内に流入した細胞凝集体100を含む細胞懸濁液101は、第1の流路区間31を経由して、第1のメッシュ21に到達する。細胞凝集体100は、第1のメッシュ21を通過することで分割され、細胞凝集体100の平均径が小さくなる。第1のメッシュ21を通過した細胞懸濁液101は、第1の流出口12A、配管50及び第2の流入口11Bを経由して第2の分割モジュール42内に流入する。第2の分割モジュール42内に流入した細胞懸濁液101は、第2の流路区間32を経由して、第2のメッシュ22に到達する。細胞凝集体100は、第2のメッシュ22を通過することで分割され、細胞凝集体100の平均径が更に小さくなる。第2のメッシュ22を通過した細胞懸濁液101は、第2の流出口12Bを経由して、第2の分割モジュール42の外部に排出される。 FIG. 7 is a cross-sectional view showing a state of a dividing process using the cell dividing device 1B. The cell suspension 101 including the cell aggregates 100 flowing into the first division module 41 from the first inlet 11A reaches the first mesh 21 via the first channel section 31. . The cell aggregate 100 is divided by passing through the first mesh 21, and the average diameter of the cell aggregate 100 is reduced. The cell suspension 101 that has passed through the first mesh 21 flows into the second divided module 42 via the first outlet 12A, the pipe 50, and the second inlet 11B. The cell suspension 101 flowing into the second division module 42 reaches the second mesh 22 via the second flow path section 32. The cell aggregate 100 is divided by passing through the second mesh 22, and the average diameter of the cell aggregate 100 is further reduced. The cell suspension 101 that has passed through the second mesh 22 is discharged to the outside of the second division module 42 via the second outlet 12B.
 以上のように、本実施形態に係る細胞分割装置1Bによれば、細胞凝集体100は、2つのメッシュによる2段階の分割処理によって分割される。第2のメッシュ22の孔径Lは、第1のメッシュ21の孔径Lよりも小さい。従って、分割処理前の細胞凝集体100の平均径をX1、第1のメッシュ21を通過した後の細胞凝集体100の平均径をX2、第2のメッシュ22を通過した後の細胞凝集体100の平均径をX3とした場合、X1>X2>X3となる。 As described above, according to the cell division device 1B according to the present embodiment, the cell aggregate 100 is divided by a two-stage division process using two meshes. The hole diameter L of the second mesh 22 is smaller than the hole diameter L of the first mesh 21. Therefore, the average diameter of the cell aggregate 100 before the division treatment is X1, the average diameter of the cell aggregate 100 after passing through the first mesh 21 is X2, and the cell aggregate 100 after passing through the second mesh 22. X1> X2> X3 when the average diameter of X3 is X3.
 本実施形態に係る細胞分割装置1Bによれば、第1の実施形態に係る細胞分割装置1と同様、メッシュ表面への細胞凝集体の堆積を抑制することが可能となる。 According to the cell division device 1B according to the present embodiment, it is possible to suppress the accumulation of cell aggregates on the mesh surface, as in the cell division device 1 according to the first embodiment.
 また、第1の分割モジュール41と第2の分割モジュール42とは、互いに別体として構成されており、互いに切り離し可能である。従って、第1の分割モジュール41及び第2の分割モジュール42を、個別に交換することが可能である。また、処理対象となる細胞懸濁液101に含まれる細胞凝集体100のサイズ等に応じて、第1のメッシュ21及び第2のメッシュ22の少なくとも一方の孔径Lを調整する場合にも柔軟に対応することが可能である。また、第1の分割モジュール41と第2の分割モジュール42の間に、更に別の分割モジュールを設ける場合にも柔軟に対応することが可能である。また、第1の分割モジュール41と第2の分割モジュール42を連結する配管50を、可撓性を有する材料で構成することで、例えば、細胞培養に必要な一連の処理を自動で行う細胞培養装置(図示せず)に、本実施形態に係る細胞分割装置1Bを組み込む場合に、細胞分割装置1Bの配置の自由度を高めることができる。 The first division module 41 and the second division module 42 are configured separately from each other and can be separated from each other. Therefore, the first divided module 41 and the second divided module 42 can be individually exchanged. Also, it is possible to flexibly adjust the pore diameter L of at least one of the first mesh 21 and the second mesh 22 according to the size of the cell aggregate 100 included in the cell suspension 101 to be treated. It is possible to respond. Moreover, it is possible to flexibly cope with a case where another divided module is provided between the first divided module 41 and the second divided module 42. Further, by forming the pipe 50 connecting the first divided module 41 and the second divided module 42 with a flexible material, for example, a cell culture that automatically performs a series of processes required for cell culture When the cell dividing device 1B according to the present embodiment is incorporated in a device (not shown), the degree of freedom in the arrangement of the cell dividing device 1B can be increased.
[第4の実施形態]
 図8は、開示の技術の第4の実施形態に係る細胞分割装置1Cの構成の一例を示す断面図である。細胞分割装置1Cは、第3の実施形態に係る細胞分割装置1Bと同様、第1のメッシュ21及び第1の流路区間31を有する第1の分割モジュール41と、第2の流路区間32及び第2のメッシュ22を有する第2の分割モジュール42と、を含んで構成されている。
[Fourth embodiment]
FIG. 8 is a cross-sectional view illustrating an example of a configuration of a cell division device 1C according to a fourth embodiment of the disclosed technology. Similar to the cell division device 1B according to the third embodiment, the cell division device 1C includes a first division module 41 having a first mesh 21 and a first flow path section 31, and a second flow path section 32. And a second division module 42 having the second mesh 22.
 ここで、流路30の、第1のメッシュ21が配置された部位における、細胞懸濁液の流れ方向F1と交差する断面の面積をS1とする。また、流路30の、第2のメッシュ22が配置された部位における、細胞懸濁液の流れ方向F1と交差する断面の面積をS2とする。本実施形態に係る細胞分割装置1Cにおいて、面積S1は、第1のメッシュ21の有効面積と同じであり、面積S2は、第2のメッシュ22の有効面積と同じである。また、本実施形態に係る細胞分割装置1Cにおいて、面積S2(第2のメッシュ22の有効面積)は、面積S1(第1のメッシュ21の有効面積)よりも大きい。これにより、第2の流路区間32を流れる細胞懸濁液が第2のメッシュ22に到達(接触)するときの細胞懸濁液の線速度V2[cm/s]が、第1の流路区間31を流れる細胞懸濁液が第1のメッシュ21に到達するときの細胞懸濁液の線速度V1よりも小さくなる。 Here, let S1 be the area of the cross section of the flow channel 30 where the first mesh 21 is arranged, which crosses the flow direction F1 of the cell suspension. The area of the cross section of the flow channel 30 where the second mesh 22 is arranged, which crosses the flow direction F1 of the cell suspension, is defined as S2. In the cell division device 1 </ b> C according to the present embodiment, the area S <b> 1 is the same as the effective area of the first mesh 21, and the area S <b> 2 is the same as the effective area of the second mesh 22. In the cell dividing device 1C according to the present embodiment, the area S2 (effective area of the second mesh 22) is larger than the area S1 (effective area of the first mesh 21). Thereby, the linear velocity V2 [cm / s] of the cell suspension when the cell suspension flowing through the second flow path section 32 reaches (contacts) the second mesh 22 is reduced by the first flow path. The linear velocity V1 of the cell suspension when the cell suspension flowing in the section 31 reaches the first mesh 21 becomes smaller.
 このように、線速度V2を線速度V1よりも小さくすることで、線速度V2が線速度V1よりも大きくなる場合と比較して、細胞が受けるダメージを小さくすることができる。細胞凝集体を構成する複数の細胞は、第1のメッシュ21を通過することで、ある程度のダメージを受けるものと考えられる。従って、第2のメッシュ22を通過する細胞が、更に受けるダメージを抑制することで、細胞の生存率を高めることができる。 す る As described above, by making the linear velocity V2 lower than the linear velocity V1, damage to cells can be reduced as compared with the case where the linear velocity V2 becomes higher than the linear velocity V1. The plurality of cells constituting the cell aggregate are considered to be damaged to some extent by passing through the first mesh 21. Therefore, the cells that pass through the second mesh 22 are further suppressed from being damaged, so that the cell survival rate can be increased.
 また、本実施形態に係る細胞分割装置1Cによれば、第1の実施形態に係る細胞分割装置1と同様、メッシュ表面への細胞凝集体の堆積を抑制することが可能となる。 According to the cell dividing device 1C according to the present embodiment, similarly to the cell dividing device 1 according to the first embodiment, it is possible to suppress the accumulation of cell aggregates on the mesh surface.
[第5の実施形態]
 図9は、開示の技術の第5の実施形態に係る細胞分割装置1Dの構成の一例を示す断面図である。細胞分割装置1Dは、第3の分割モジュール43を更に備える。第3の分割モジュール43は、第1の分割モジュール41と第2の分割モジュール42との間に配置されている。
[Fifth Embodiment]
FIG. 9 is a cross-sectional view illustrating an example of a configuration of a cell division device 1D according to a fifth embodiment of the disclosed technology. The cell division device 1D further includes a third division module 43. The third division module 43 is disposed between the first division module 41 and the second division module 42.
 第1の分割モジュール41、第2の分割モジュール42及び第3の分割モジュール43は、互いに別体として構成されており、配管50A、50Bを介して互いに連結されている。第1の分割モジュール41、第2の分割モジュール42及び第3の分割モジュール43は、互いに切り離し可能である。 The first division module 41, the second division module 42, and the third division module 43 are configured separately from each other, and are connected to each other via pipes 50A and 50B. The first division module 41, the second division module 42, and the third division module 43 can be separated from each other.
 第3の分割モジュール43は、細胞懸濁液の流路30を形成する第3の容器10Cを有する。第3の容器10Cの一端部には、細胞凝集体を含む細胞懸濁液を第3の容器10Cの内部に導入するための第3の流入口11Cが設けられ、第3の容器10Cの他端部には、細胞懸濁液を第3の容器10Cの外部に流出させるための第3の流出口12Cが設けられている。 3The third division module 43 has a third container 10C that forms the flow path 30 of the cell suspension. At one end of the third container 10C, a third inflow port 11C for introducing a cell suspension containing cell aggregates into the inside of the third container 10C is provided. At the end, a third outlet 12C for allowing the cell suspension to flow out of the third container 10C is provided.
 第1の分割モジュール41の第1の流出口12Aと、第3の分割モジュール43の第3の流入口11Cは、配管50Aによって接続されている。第3の分割モジュール43の第3の流出口12Cと、第2の分割モジュール42の第2の流入口11Bは、配管50Bによって接続されている。配管50A及び50Bは、それぞれ、可撓性を有する部材で構成されていることが好ましい。 The first outlet 12A of the first split module 41 and the third inlet 11C of the third split module 43 are connected by a pipe 50A. The third outlet 12C of the third split module 43 and the second inlet 11B of the second split module 42 are connected by a pipe 50B. It is preferable that each of the pipes 50A and 50B is formed of a flexible member.
 第3の分割モジュール43は、流路30内の第3の流入口11Cと第3の流出口12Cとの間に配置された第3のメッシュ23を有する。すなわち、第3のメッシュ23は、第1のメッシュ21と第2のメッシュ22との間に配置されている。第3のメッシュ23の孔径Lは、第1のメッシュ21の孔径Lよりも小さく、且つ第2のメッシュ22の孔径Lよりも大きい。 The third division module 43 has the third mesh 23 disposed between the third inflow port 11C and the third outflow port 12C in the flow path 30. That is, the third mesh 23 is disposed between the first mesh 21 and the second mesh 22. The hole diameter L of the third mesh 23 is smaller than the hole diameter L of the first mesh 21 and larger than the hole diameter L of the second mesh 22.
 第1の分割モジュール41は、第1のメッシュ21に対して細胞懸濁液の流れ方向F1の上流側から第1のメッシュ21に至る第1の流路区間31を有する。第3の分割モジュール43は、第1のメッシュ21と第3のメッシュ23との間の流路区間であって、第3のメッシュ23に対して細胞懸濁液の流れ方向F1の上流側から第3のメッシュ23に至る第2の流路区間32を有する。第2の分割モジュール42は、第3のメッシュ23と第2のメッシュ22との間の流路区間であって、第2のメッシュ22に対して細胞懸濁液の流れ方向F1の上流側から第2のメッシュ22に至る第3の流路区間33を有する。 The first division module 41 has the first flow path section 31 extending from the upstream side in the flow direction F1 of the cell suspension to the first mesh 21 with respect to the first mesh 21. The third division module 43 is a flow path section between the first mesh 21 and the third mesh 23, and is located on the third mesh 23 from the upstream side in the flow direction F1 of the cell suspension. It has a second flow path section 32 reaching the third mesh 23. The second division module 42 is a flow path section between the third mesh 23 and the second mesh 22, and from the upstream side in the flow direction F <b> 1 of the cell suspension with respect to the second mesh 22. It has a third flow path section 33 leading to the second mesh 22.
 ここで、流路30の、第1のメッシュ21が配置された部位における、細胞懸濁液の流れ方向F1と交差する断面の面積をS1とする。また、流路30の、第2のメッシュ22が配置された部位における、細胞懸濁液の流れ方向F1と交差する断面の面積をS2とする。流路30の、第3のメッシュ23が配置された部位における、細胞懸濁液の流れ方向F1と交差する断面の面積をS3とする Here, let S1 be the area of the cross section of the flow channel 30 where the first mesh 21 is arranged, which crosses the flow direction F1 of the cell suspension. The area of the cross section of the flow channel 30 where the second mesh 22 is arranged, which crosses the flow direction F1 of the cell suspension, is defined as S2. The area of the cross section of the flow channel 30 where the third mesh 23 is arranged and which crosses the flow direction F1 of the cell suspension is S3.
 本実施形態に係る細胞分割装置1Dにおいて、面積S1は、第1のメッシュ21の有効面積と同じであり、面積S2は、第2のメッシュ22の有効面積と同じであり、面積S3は、第3のメッシュ23の有効面積と同じである。また、本実施形態に係る細胞分割装置1Dにおいて、面積S3(第3のメッシュ23の有効面積)は、面積S1(第1のメッシュ21の有効面積)よりも大きい。また、面積S2(第2のメッシュ22の有効面積)は、面積S3(第3のメッシュ23の有効面積)よりも大きい。これにより、第2の流路区間32を流れる細胞懸濁液が第3のメッシュ23に到達(接触)するときの細胞懸濁液の線速度V3[cm/s]が、第1の流路区間31を流れる細胞懸濁液が第1のメッシュ21に到達するときの細胞懸濁液の線速度V1よりも小さくなる。また、第3の流路区間33を流れる細胞懸濁液が第2のメッシュ22に到達(接触)するときの細胞懸濁液の線速度V2[cm/s]が、第2の流路区間32を流れる細胞懸濁液が第3のメッシュ23に到達するときの細胞懸濁液の線速度V3よりも小さくなる。 In the cell division device 1D according to the present embodiment, the area S1 is the same as the effective area of the first mesh 21, the area S2 is the same as the effective area of the second mesh 22, and the area S3 is 3 is the same as the effective area of the mesh 23. In the cell division device 1D according to the present embodiment, the area S3 (the effective area of the third mesh 23) is larger than the area S1 (the effective area of the first mesh 21). The area S2 (effective area of the second mesh 22) is larger than the area S3 (effective area of the third mesh 23). Thereby, the linear velocity V3 [cm / s] of the cell suspension when the cell suspension flowing through the second flow path section 32 reaches (contacts) the third mesh 23 is reduced by the first flow path. The linear velocity V1 of the cell suspension when the cell suspension flowing in the section 31 reaches the first mesh 21 becomes smaller. The linear velocity V2 [cm / s] of the cell suspension when the cell suspension flowing through the third flow path section 33 reaches (contacts) the second mesh 22 is determined by the second flow path section. The linear velocity V3 of the cell suspension when it reaches the third mesh 23 when flowing through the cell 32 becomes smaller.
 開示の技術の第5の実施形態に係る細胞分割装置1Dによれば、細胞凝集体は、細胞懸濁液の流れ方向F1に沿って孔径が段階的に小さくなるように配置された3つのメッシュによる3段階の分割処理によって分割される。これにより、メッシュ表面への細胞凝集体100の堆積を抑制する効果を促進させることができる。また、線速度V3を線速度V1よりも小さくし、線速度V2を線速度V3よりも小さくすることで、細胞が受けるダメージを小さくすることができる。 According to the cell division device 1D according to the fifth embodiment of the disclosed technology, the cell aggregate has three meshes arranged such that the pore diameter decreases stepwise along the flow direction F1 of the cell suspension. Are divided by three-stage division processing. Thereby, the effect of suppressing the accumulation of the cell aggregate 100 on the mesh surface can be promoted. Further, by setting the linear velocity V3 to be lower than the linear velocity V1 and setting the linear velocity V2 to be lower than the linear velocity V3, damage to cells can be reduced.
[実施例]
 メッシュの段数、孔径及び開口率、並びに各メッシュに到達するときの細胞懸濁液の線速度を異ならせた、複数の条件で細胞培養を行った。その評価結果を下記の表1に示す。評価は、培養後の細胞の回収率及び品質の観点から行った。細胞の品質は、細胞凝集体の形状やサイズに反映されるが、サイズのばらつきが大きいと品質低下の懸念が大きくなる。分割直後の細胞凝集体のサイズのばらつきは、培養後のサイズばらつきに大きく影響することから、品質の評価は、分割直後の細胞凝集体のサイズのばらつきに基づいて判定した。
 細胞の回収率は、分割処理後の細胞数計測結果を分割処理前の細胞数計測結果で割った値とした。
 細胞凝集体サイズのばらつきは、分割処理後の細胞懸濁液を所定量サンプリングし,画像解析によって含まれる全ての細胞凝集体を球径近似して直径を測定し、統計処理によって算出した変動係数(標準偏差÷平均)を適用した。
 細胞凝集体のサイズは、所定量の細胞懸濁液に含まれる全ての細胞凝集体をCell Imager(SCREEN社)を用いて画像に取り込み、さらに生死判定をして、生細胞のみの細胞径分布を出して、算術平均値を算出した。
 メッシュの開口率は、メッシュを撮影した顕微鏡画像から当該メッシュの孔径L及び線径dを導出し、導出した孔径L及び線径dから算出した。
[Example]
The cell culture was performed under a plurality of conditions in which the number of mesh stages, the pore size and the opening ratio, and the linear velocity of the cell suspension when reaching each mesh were varied. The evaluation results are shown in Table 1 below. The evaluation was performed from the viewpoint of the recovery rate and the quality of the cells after culture. The quality of the cells is reflected in the shape and size of the cell aggregates. Since the variation in the size of the cell aggregate immediately after the division greatly affects the variation in the size after the culture, the quality was evaluated based on the variation in the size of the cell aggregate immediately after the division.
The cell recovery rate was a value obtained by dividing the cell count measurement result after the division treatment by the cell count measurement result before the division treatment.
The variation in cell aggregate size is calculated by sampling a predetermined amount of the cell suspension after the division process, measuring the diameter by approximating the sphere diameter of all the cell aggregates included in the image analysis, and calculating the variation coefficient by statistical processing. (Standard deviation ÷ mean) was applied.
The size of cell aggregates can be determined by capturing all cell aggregates contained in a given amount of cell suspension into an image using Cell Imager (SCREEN), determining the viability, and determining the cell diameter distribution of only viable cells. And the arithmetic mean was calculated.
The aperture ratio of the mesh was calculated from the derived hole diameter L and wire diameter d by deriving the hole diameter L and wire diameter d of the mesh from a microscope image of the mesh.
 回収率についての判定基準は、以下のとおりである。
A:回収率が75%以上
B:回収率が60%以上75%未満
C:回収率が60%未満
 品質についての評価基準は以下のとおりである。
A:細胞凝集体の径分布の変動係数が0.32未満
B:細胞凝集体の径分布の変動係数が0.32以上0.35未満
C:細胞凝集体の径分布の変動係数が0.35以上
Figure JPOXMLDOC01-appb-T000001

 
The criteria for the recovery are as follows.
A: The recovery rate is 75% or more B: The recovery rate is 60% or more and less than 75% C: The recovery rate is less than 60% The evaluation criteria for the quality are as follows.
A: Coefficient of variation of diameter distribution of cell aggregate is less than 0.32 B: Coefficient of variation of diameter distribution of cell aggregate is 0.32 or more and less than 0.35 C: Coefficient of variation of diameter distribution of cell aggregate is 0. 35 or more
Figure JPOXMLDOC01-appb-T000001

 実施例1~3ではメッシュの段数を2段とし、実施例4ではメッシュの段数を3段とした。実施例1~4のそれぞれにおいて、細胞懸濁液の流れ方向の上流側から下流側に向けて、メッシュの孔径が段階的に小さくなるように各メッシュを配置した。実施例1では、細胞懸濁液が上流側のメッシュに到達するときの線速度と、細胞懸濁液が下流側のメッシュに到達するときの線速度とを同じとした。実施例2~4では、細胞懸濁液が下流側のメッシュに到達するときの線速度を、細胞懸濁液が上流側のメッシュに到達するときの線速度よりも小さくした。 で は In Examples 1 to 3, the number of mesh steps was two, and in Example 4, the number of mesh steps was three. In each of Examples 1 to 4, each mesh was arranged so that the pore diameter of the mesh gradually decreased from the upstream side to the downstream side in the flow direction of the cell suspension. In Example 1, the linear velocity when the cell suspension reached the mesh on the upstream side was the same as the linear velocity when the cell suspension reached the mesh on the downstream side. In Examples 2 to 4, the linear velocity when the cell suspension reached the downstream mesh was set lower than the linear velocity when the cell suspension reached the upstream mesh.
 比較例1では、メッシュの段数を1段とした。比較例2では、メッシュの段数を2段とし、細胞懸濁液が下流側のメッシュに到達するときの線速度を、細胞懸濁液が上流側のメッシュに到達するときの線速度よりも大きくした。 In Comparative Example 1, the number of mesh steps was one. In Comparative Example 2, the number of mesh steps was set to two, and the linear velocity when the cell suspension reached the downstream mesh was higher than the linear velocity when the cell suspension reached the upstream mesh. did.
 細胞懸濁液の流れ方向の上流側から下流側に向けて、メッシュの孔径が段階的に小さくなるように細胞分割装置を構成し、且つ細胞懸濁液が下流側のメッシュに到達するときの線速度を、細胞懸濁液が上流側のメッシュに到達するときの線速度と同じとするか、これよりも小さくした実施例1~4においては、回収率及び品質の少なくとも一方についてA判定が得られ、C判定となるものはなかった。一方、比較例1では、回収率及び品質の双方がC判定となり、比較例2では、回収率及び品質の双方がB判定となった。 From the upstream side to the downstream side in the flow direction of the cell suspension, the cell dividing device is configured so that the pore size of the mesh gradually decreases, and when the cell suspension reaches the downstream side mesh. In Examples 1 to 4 in which the linear velocity was the same as or lower than the linear velocity when the cell suspension reached the mesh on the upstream side, the A judgment was made for at least one of the recovery rate and the quality. No C-determination was obtained. On the other hand, in Comparative Example 1, both the recovery rate and the quality were determined to be C, and in Comparative Example 2, both the recovery rate and the quality were determined to be B.
 日本出願特願2018-128454号の開示はその全体が参照により本明細書に取り込まれる。 The disclosure of Japanese Patent Application No. 2018-128454 is incorporated herein by reference in its entirety.
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards described herein are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.
1、1A、1B、1C、1D 細胞分割装置
10 容器
11 流入口
11A 第1の流入口
11B 第2の流入口
12 流出口
12A 第1の流出口
12B 第2の流出口
50、50A、50B 配管
21 第1のメッシュ
22 第2のメッシュ
22X メッシュ
23 第3のメッシュ
30 流路
31 第1の流路区間
32 第2の流路区間
33 第3の流路区間
41 第1の分割モジュール
42 第2の分割モジュール
43 第3の分割モジュール
100 細胞凝集体
101 細胞懸濁液
200 繊維状部材
201 開口部
F1 流れ方向
L 孔径
d 線径
1, 1A, 1B, 1C, 1D Cell dividing device 10 Container 11 Inflow port 11A First inflow port 11B Second inflow port 12 Outflow port 12A First outflow port 12B Second outflow port 50, 50A, 50B Piping 21 First mesh 22 Second mesh 22X Mesh 23 Third mesh 30 Flow path 31 First flow path section 32 Second flow path section 33 Third flow path section 41 First split module 42 Second Division module 43 Third division module 100 Cell aggregate 101 Cell suspension 200 Fibrous member 201 Opening F1 Flow direction L Hole diameter d Wire diameter

Claims (10)

  1.  細胞懸濁液が流れる流路と、
     前記流路内に配置された第1の孔径を有する第1のメッシュと、
     前記流路内において、前記第1のメッシュに対して前記細胞懸濁液の流れ方向の下流側に配置され、前記第1の孔径よりも小さい孔径を有する第2のメッシュと、
     前記第1のメッシュに対して前記流れ方向の上流側から前記第1のメッシュに至る第1の流路区間と、
     前記第1のメッシュと前記第2のメッシュとの間の流路区間であって、前記第2のメッシュに対して前記流れ方向の上流側から前記第2のメッシュに至る第2の流路区間と、
     を含み、
     前記第2の流路区間を流れる前記細胞懸濁液が前記第2のメッシュに到達するときの前記細胞懸濁液の線速度が、前記第1の流路区間を流れる前記細胞懸濁液が前記第1のメッシュに到達するときの前記細胞懸濁液の線速度と同じか、これよりも小さい
     細胞分割装置。
    A channel through which the cell suspension flows,
    A first mesh having a first hole diameter arranged in the flow path;
    A second mesh having a pore diameter smaller than the first pore diameter, the second mesh being arranged on the downstream side in the flow direction of the cell suspension with respect to the first mesh in the flow channel;
    A first flow path section extending from the upstream side in the flow direction to the first mesh with respect to the first mesh,
    A second flow path section between the first mesh and the second mesh, the second flow path section extending from the upstream side in the flow direction to the second mesh with respect to the second mesh; When,
    Including
    When the linear velocity of the cell suspension flowing through the second flow path section reaches the second mesh, the cell suspension flowing through the first flow path section has a linear velocity. A cell division device that is equal to or less than the linear velocity of the cell suspension when reaching the first mesh.
  2.  前記第2のメッシュの面積が、前記第1のメッシュの面積と同じか、これよりも大きい
     請求項1に記載の細胞分割装置。
    The cell division device according to claim 1, wherein the area of the second mesh is equal to or larger than the area of the first mesh.
  3.  前記第2のメッシュの上流側と下流側との圧力差が、前記第1のメッシュの上流側と下流側との圧力差と同じか、これよりも小さい
     請求項1または請求項2に記載の細胞分割装置。
    The pressure difference between the upstream side and the downstream side of the second mesh is the same as or smaller than the pressure difference between the upstream side and the downstream side of the first mesh. Cell division device.
  4.  前記第1の流路区間の前記流れ方向に沿った長さが、前記流路の、前記第1のメッシュが配置された部位における前記流れ方向と交差する方向の長さの0.3倍以上である
     請求項1から請求項3のいずれか1項に記載の細胞分割装置。
    The length of the first flow path section along the flow direction is at least 0.3 times the length of the flow path in a direction intersecting the flow direction at a portion where the first mesh is arranged. The cell division device according to any one of claims 1 to 3.
  5.  前記第2の流路区間の前記流れ方向に沿った長さが、前記流路の、前記第2のメッシュが配置された部位における前記流れ方向と交差する方向の長さの0.3倍以上である
     請求項1から請求項3のいずれか1項に記載の細胞分割装置。
    The length of the second flow path section along the flow direction is at least 0.3 times the length of the flow path in a direction intersecting the flow direction at a portion where the second mesh is arranged. The cell division device according to any one of claims 1 to 3.
  6.  前記第1の流路区間の前記流れ方向と交差する断面の面積が、前記第1の流路区間の全域に亘り、前記流路の前記第1のメッシュが配置された部位における前記流れ方向と交差する断面の面積と同じである
     請求項1から請求項5のいずれか1項に記載の細胞分割装置。
    The area of the cross section of the first flow path section that intersects with the flow direction is over the entire area of the first flow path section, and the flow direction at the portion of the flow path where the first mesh is arranged. The cell division device according to any one of claims 1 to 5, wherein the cell division device has the same area as an intersecting cross section.
  7.  前記第1の流路区間及び前記第1のメッシュを含む第1の分割モジュールと、
     前記第2の流路区間及び前記第2のメッシュを含み、前記第1の分割モジュールとは別体として構成された第2の分割モジュールと、
     前記第1の分割モジュールと前記第2の分割モジュールとを連結する配管と、
     を含む請求項1から請求項6のいずれか1項に記載の細胞分割装置。
    A first division module including the first flow path section and the first mesh;
    A second division module including the second flow path section and the second mesh and configured as a separate body from the first division module;
    Piping connecting the first split module and the second split module;
    The cell division device according to any one of claims 1 to 6, comprising:
  8.  前記第1のメッシュの開口率は、60%以上80%以下であり、
     前記第2のメッシュの開口率は、55%以上77%以下である
     請求項1から請求項7のいずれか1項に記載の細胞分割装置。
    An aperture ratio of the first mesh is 60% or more and 80% or less;
    The cell division device according to any one of claims 1 to 7, wherein an aperture ratio of the second mesh is 55% or more and 77% or less.
  9.  前記第1のメッシュ及び前記第2のメッシュは、それぞれ、繊維状部材を含んで構成され、自身を構成する繊維状部材の線径の4.5倍以上の大きさの孔径を有する複数の開口部を有する
     請求項1から請求項8のいずれか1項に記載の細胞分割装置。
    The first mesh and the second mesh are each configured to include a fibrous member, and have a plurality of openings having a hole diameter 4.5 times or more the wire diameter of the fibrous member constituting the first mesh and the second mesh. The cell division device according to any one of claims 1 to 8, comprising a unit.
  10.  前記流路内において、前記第1のメッシュと前記第2のメッシュの間に配置され、前記第1の孔径よりも小さく且つ前記第2のメッシュの孔径よりも大きい孔径を有する第3のメッシュと、
     前記第1のメッシュと前記第3のメッシュとの間の流路区間であって前記第3のメッシュに対して前記流れ方向の上流側から前記第3のメッシュに至る第3の流路区間と、
     を更に含み、
     前記第3の流路区間を流れる前記細胞懸濁液が前記第3のメッシュに到達するときの前記細胞懸濁液の線速度が、前記第1の流路区間を流れる前記細胞懸濁液が前記第1のメッシュに到達するときの前記細胞懸濁液の線速度と同じか、これよりも小さく、
     前記第2の流路区間を流れる前記細胞懸濁液が前記第2のメッシュに到達するときの前記細胞懸濁液の線速度が、前記第3の流路区間を流れる前記細胞懸濁液が前記第3のメッシュに到達するときの前記細胞懸濁液の線速度と同じか、これよりも小さい
     請求項1から請求項9のいずれか1項に記載の細胞分割装置。
    A third mesh having a pore size smaller than the first pore size and larger than the second mesh size, disposed between the first mesh and the second mesh in the flow path; ,
    A third flow path section between the first mesh and the third mesh, the third flow path section extending from the upstream side in the flow direction to the third mesh with respect to the third mesh; ,
    Further comprising
    When the linear velocity of the cell suspension flowing through the third flow path section reaches the third mesh, the cell suspension flows through the first flow path section. The same or less than the linear velocity of the cell suspension when reaching the first mesh,
    When the linear velocity of the cell suspension flowing through the second flow path section reaches the second mesh, the cell suspension flowing through the third flow path section is The cell dividing device according to any one of claims 1 to 9, wherein the linear velocity of the cell suspension when reaching the third mesh is equal to or smaller than the linear velocity.
PCT/JP2019/022761 2018-07-05 2019-06-07 Cell division device WO2020008805A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-128454 2018-07-05
JP2018128454 2018-07-05

Publications (1)

Publication Number Publication Date
WO2020008805A1 true WO2020008805A1 (en) 2020-01-09

Family

ID=69059682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022761 WO2020008805A1 (en) 2018-07-05 2019-06-07 Cell division device

Country Status (1)

Country Link
WO (1) WO2020008805A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022096917A1 (en) * 2020-11-03 2022-05-12 The Duke Limited Fat fragmentation device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136581A1 (en) * 2013-03-06 2014-09-12 国立大学法人京都大学 Culture system for pluripotent stem cells and method for subculturing pluripotent stem cells
JP2016136956A (en) * 2010-05-20 2016-08-04 リポジェムズ インターナショナル ソシエタ ペル アチオニ Apparatus and method for preparing tissue for transplant from lobular fat extracted by liposuction, particularly lipid tissue
JP2017518767A (en) * 2014-06-13 2017-07-13 チルドレンズ メディカル センター コーポレイション Products and methods for isolating mitochondria
WO2017159367A1 (en) * 2016-03-18 2017-09-21 株式会社村田製作所 Metallic porous membrane, and classifying method and classifying device using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016136956A (en) * 2010-05-20 2016-08-04 リポジェムズ インターナショナル ソシエタ ペル アチオニ Apparatus and method for preparing tissue for transplant from lobular fat extracted by liposuction, particularly lipid tissue
WO2014136581A1 (en) * 2013-03-06 2014-09-12 国立大学法人京都大学 Culture system for pluripotent stem cells and method for subculturing pluripotent stem cells
JP2017518767A (en) * 2014-06-13 2017-07-13 チルドレンズ メディカル センター コーポレイション Products and methods for isolating mitochondria
WO2017159367A1 (en) * 2016-03-18 2017-09-21 株式会社村田製作所 Metallic porous membrane, and classifying method and classifying device using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022096917A1 (en) * 2020-11-03 2022-05-12 The Duke Limited Fat fragmentation device and method

Similar Documents

Publication Publication Date Title
KR101651581B1 (en) Hot gas filtration system and process for regenerating said system
US7270690B1 (en) Separator with vane assembly and filter arrangement
WO2020008805A1 (en) Cell division device
US6080228A (en) Gas transfer pipe arrangement
JP2001525722A (en) Particle manipulation
JP5386408B2 (en) Electrode manufacturing equipment
CN110541241B (en) Apparatus and method for making spunbond nonwoven fabrics from continuous filaments
US5968433A (en) Process for spinning of solutions of cellulose carbamate
KR101998320B1 (en) Water flow distribution device of water treatment facility
KR101965329B1 (en) Stretching structure droplet extractor
CN208757311U (en) Air-dispersing general pipeline, air diffusion apparatus, membrane module
US20020007859A1 (en) Flow deflecting device
KR102470527B1 (en) flow divider
JP6171589B2 (en) Filtration system and method of operating filtration system
CN217119758U (en) Integral type gravity separator
JP6283021B2 (en) Powder classification device and powder classification system
JP6165316B2 (en) Flow distribution equipment
JPH0826518B2 (en) Method and apparatus for concentrating a fiber suspension
JPH09192532A (en) Powder classifying apparatus
KR101984553B1 (en) Equi-flow distribution device
CN207532935U (en) Soy peptide powder production impurity piece-rate system
CN108854859B (en) Suspension gas-liquid phase reaction device and operation method
JP2008156808A (en) Rectangular spinning pack and method for spinning synthetic fibers using the rectangular spinning pack
US4776864A (en) Electrostatic precipitator
CN212759704U (en) Material processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19829848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP