WO2020008696A1 - Speed detection device of elevator and elevator - Google Patents

Speed detection device of elevator and elevator Download PDF

Info

Publication number
WO2020008696A1
WO2020008696A1 PCT/JP2019/016159 JP2019016159W WO2020008696A1 WO 2020008696 A1 WO2020008696 A1 WO 2020008696A1 JP 2019016159 W JP2019016159 W JP 2019016159W WO 2020008696 A1 WO2020008696 A1 WO 2020008696A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
car
elevator
speed detection
control unit
Prior art date
Application number
PCT/JP2019/016159
Other languages
French (fr)
Japanese (ja)
Inventor
健史 近藤
智久 早川
真輔 井上
野口 直昭
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020008696A1 publication Critical patent/WO2020008696A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/04Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed
    • B66B5/06Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed electrical

Definitions

  • the present invention relates to an elevator moving distance / speed detecting device for sensing a relative speed of a car with respect to a guide rail, and an elevator including the same.
  • the elevator detects the moving distance and the moving speed of the car one by one so that landing control with less deviation from the floor on the building side and power-off of the hoisting machine and safety equipment when the elevator exceeds the specified speed can be performed. Let it work. Conventionally, the moving distance and moving speed of the car have been measured by a mechanical governor or encoder. On the other hand, in order to reduce long objects in the hoistway, there is a measurement method using an image in the hoistway captured by an optical sensor or a camera.
  • the elevator position detection device is configured by an image acquisition device such as a car and a camera, and an arithmetic device that calculates a moving distance and a moving speed of the car. Also, on the surface of the detected shaft member (guide rail, shaft inner wall, fasteners of the member, etc.), for example, processing such as hammer finish painting on the rail so that the feature points of the acquired image can be extracted Is applied. Images of walls and guide rails in the hoistway are obtained by an image obtaining device installed in the car, and feature points are extracted from the surface state of the members in the hoistway. The absolute position of the car in the hoistway is detected by comparing with the image data stored in the control device.
  • a speed detector that detects the speed of the car inside the hoistway where the car moves up and down, and is a speed detection device that is attached to the car, and detects the surface condition of a pair of guide rails that are laid facing each other in the hoistway along the movement path of the car.
  • a detection unit for detecting an image, and a calculation unit for calculating the speed of the car from an image difference of the surface of the guide rail detected by the detection unit are provided.
  • the moving distance and speed of the car can be detected without processing the members in the hoistway. Further, since the moving distance and the speed of the car are calculated using the image difference of the surface of the guide rail which is always detected, the influence of the secular change of the detection target can be reduced.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of an elevator according to a first embodiment of the present invention.
  • FIG. 2 is a front view schematically showing the moving distance / speed detecting device shown in FIG.
  • FIG. 3 is a view for explaining a method in which the moving distance / speed detecting device and the control unit shown in FIG. Schematic showing the overall configuration of an elevator according to another embodiment
  • FIG. 1 is a schematic diagram showing the overall configuration of an elevator according to one embodiment of the present invention.
  • FIG. 2 is a front view schematically showing the moving distance / speed detecting device shown in FIG. The car 1 moves along guide rails 2 provided at both ends of the hoistway.
  • FIG. 2 is a front view schematically showing the speed detection device 3.
  • FIG. 3 is a top view schematically showing the speed detection device 3 shown in FIG.
  • a speed detection device 3 and a control unit 4 are provided above the car 1.
  • the speed detection device 3 senses the imaging range 10 and acquires image data. As shown in FIG. 3, if the speed detecting device 3 can continue sensing while securing a certain clearance with the guide rail 2 so as not to come into contact with the guide rail 2 when vibration of the car 1 occurs, (The upper part of the guide roller 5 in FIG. 2).
  • the speed detecting device 3 may detect any surface of the guide rail 2 as long as the speed detecting device 3 can sense the surface of the guide rail 2 according to the moving path of the car 1. Further, another component may be used as the object to be detected.
  • the speed detecting device 3 includes a speed detecting device 3a for one guide rail 2 and a speed detecting device 3b for the other guide rail 2.
  • the speed detecting device 3 senses the guide rail 2 as the car 1 moves, and calculates the moving speed of the car 1.
  • the control unit 4 includes a processing device that executes a control function related to the car 1, a memory that stores the moving speed data of the car 1 calculated by the speed detecting device 3, and a movement of the car 1 based on the stored moving speed data.
  • An arithmetic unit that calculates the distance, an abnormality determination device that performs an abnormality determination of the car 1 in real time, and a speed correction device that corrects the calculated speed value output by the speed detection device 3 are provided.
  • the speed detecting device 3 includes an optical sensor 6 and a calculation unit 7.
  • the speed detecting device 3a has an optical sensor 6a and an arithmetic unit 7a
  • the other speed detecting device 3b has an optical sensor 6b and an arithmetic unit 7b, and forms a so-called dual system.
  • the speed detecting device 3 is configured as a double system, but this is not necessarily essential, and a single system provided with only one speed detecting device may be used.
  • the optical sensor 6 includes an optical system and an image sensor for acquiring an image of the detection surface, and acquires a surface image of the guide rail 2 at regular intervals.
  • the optical sensor 6 includes a lighting device (not shown), a lens, and a photographing element.
  • the light source used in the illumination device only needs to be able to form an image on the image sensor via the lens, and may be, for example, an LED or a laser diode.
  • the lens is used for forming an image of the reflected illumination light on the image sensor, and detects a flaw or an adhering substance present on the surface of the guide rail 2. Further, for example, a telecentric lens may be used so that detection can be performed even when the distance between the optical sensor 6 and the detection surface changes.
  • the imaging element only needs to be able to convert the formed light into an electric signal, and for example, a CCD element or a CMOS element can be used.
  • the image information acquired by the optical sensor 6 is transmitted to the calculation unit 7.
  • the operation unit 7 extracts feature points of the transmitted image data.
  • the data of the extracted feature points is stored in a time series in a memory provided in the speed detection device 3, and the calculation unit 7 compares the stored data with newly obtained data.
  • the calculation unit 7 calculates the moving speed of the car 1 from the moving amount of the feature point that appears after the comparison. For example, a flaw of an image in a range captured at time t is detected as a feature point.
  • the arithmetic unit 7 extracts the same flaw as a feature point from the image captured at time t + ⁇ t, compares the images, and calculates the moving distance.
  • the calculating unit 7 transmits the moving speed of the car 1 calculated from the moving distance of the time difference to the control unit 4.
  • the control unit 4 stores the calculated speed values output from the speed detection device 3 in a memory in a time series. Thereafter, the calculation unit of the control unit 4 calculates the moving distance from the reference position of the car 1, for example, the lowest floor of the hoistway by integrating the calculated speed value stored in the memory.
  • the car 1 and the guide rail 2 keep a constant distance via the guide device, and the moving distance and the speed of the car 1 are always determined from the surface image difference of the detected guide rail 2. ,
  • the influence of the arrangement of the devices in the tower, the deformation of the building due to aging, and the aging of the detection surface can be reduced, and the moving distance and speed of the car 1 can be measured with high resolution.
  • the vibration direction of the car 1 is assumed to be the horizontal direction in the top view of FIG.
  • one speed detecting device 3a approaches the guide rail 2 and the other speed detecting device 3b moves from the guide rail 2 to the other.
  • An event such as the car moving sideways, such as going away, occurs.
  • the principle of the detection device for example, in the approaching state, an image enlarged from an image obtained at a distance between the optical sensor 6 and the guide rail 2 designed in advance (hereinafter referred to as a design distance) is obtained.
  • FIG. 4 is a flowchart showing the speed calculation process of the speed detection device 3 and the control unit 4. With reference to FIG. 4, a method of correcting the speed calculation value by the control unit 4 and a method of diagnosing an abnormality of the car 1 will be described.
  • the optical sensors 6a and 6b each acquire a surface image of the guide rail 2.
  • the calculation units 7a and 7b calculate the moving speed from the surface image.
  • the moving speed data of the car 1 calculated by the speed detecting device 3 is transmitted to the control unit 4.
  • the control unit 4 compares the calculated speed values output from the speed detection devices 3a and 3b. At the time of comparison, a difference between the moving speeds output by the speed detecting devices 3a and 3b is calculated. If the difference after the calculation is equal to or smaller than a preset threshold, the abnormality determination device determines that the output results of the left and right speed detection devices 3 are equal. Therefore, in S4, the abnormality determination device of the control unit 4 determines that the speed detection device 3 is outputting a normal value, and ends the process without correcting the calculated speed data.
  • the speed data is stored in a memory provided in the control unit 4.
  • the cause may be a failure of the speed detecting device 3 or an unbalanced load or vibration of the car 1 for each of the causes.
  • the displacement of the distance between the speed detection device 3 and the guide rail 2 can be considered. If the displacement of the distance between the speed detection device 3 and the guide rail 2 due to the unbalanced load or vibration of the car 1 affects, it is desired to correct the value to a normal value and continue the operation. Therefore, in S5, it is determined whether or not the difference between the respective calculated speeds is due to a change in the distance between the speed detection device 3 and the guide rail 2 due to the lateral displacement of the car.
  • the speed calculation value output when the distance is longer differs.
  • the calculated speed calculation value of the car 1 becomes larger than the actual speed.
  • the calculated speed value of the car 1 is smaller than the actual speed.
  • the distance between each of the guide rails 2 and the speed detectors 3a and 3b is equal to the distance between them. Therefore, when the distance between the car and the guide rail changes due to vibration or the like, and the speed detected by the speed detecting device 3a and the speed detected by the speed detecting device 3b are different, the guide rail and the optical There is a certain relationship that correlates to the distance of the sensor. Further, the maximum distance and the minimum distance between the guide rail 2 and the speed detecting devices 3a and 3b are determined.
  • the above relationship is stored in advance in a memory provided in the control unit 4 as advance information, and it is determined whether the speed detected by the speed detection device 3a and the speed detected by the speed detection device 3b satisfy this relationship. Thus, it is determined whether the change is caused by a change in the distance between the speed detection device 3 and the guide rail 2.
  • the relationship between the speed detected by the speed detection device 3a and the speed detected by the speed detection device 3b is detected for each distance between the guide rail 2 and the optical sensor 6.
  • the relationship between the moving speed and the actual speed may be measured in advance, or may be derived by calculation or the like and stored in a memory provided in the control unit 4.
  • the control unit 4 determines how much the measurement speed when the distance between the optical sensor 6 and the guide rail 2 is maximum or close to the reference value due to the vibration of the car may deviate from the actual speed is a vibration influence standard. It is stored in the memory provided by. The speed determined as a normal value in S4 after the previous measurement stored in the memory provided in the control unit 4 is set as a reference speed, and it is determined whether a deviation from this speed is within a vibration influence standard. It can also be determined that the variation is in accordance with the characteristics.
  • the calculated value is corrected in accordance with the distance between the sensor and the detection surface.
  • the speed detected by the speed detection device 3a and the speed detected by the speed detection device 3b are determined based on two variables, that is, the distance between the sensor and the detection surface and the actual speed of the car. Since the car speed is naturally the same, and the distance between the sensor and the detection surface is also determined if one is determined, the speed detected by the speed detection device 3a and the speed detected by the speed detection device 3b are two expressions. The simultaneous formation enables calculation of the car speed and the distance between the sensor and the detection surface. If a calculated speed characteristic (correction value) with respect to the distance between the detection surface and the speed detection device 3 is obtained in advance, it is possible to perform correction according to the distance from the guide rail 2 to the speed detection devices 3a and 3b.
  • control unit 4 determines that an abnormal value is to be calculated, for example, it outputs a command signal for stopping the elevator to the nearest floor or urgently stopping it, or issues failure information.
  • the two speed detectors 3 target the pair of guide rails 2 as detection targets, so that the control unit 4 specifies the detection error due to the lateral vibration or the unbalanced load of the car 1, and the speed detector 3 Can be corrected. Therefore, it is possible to prevent the speed detection error of the car 1 when the car vibration occurs.
  • FIG. 5 is a schematic diagram showing the overall configuration of an elevator according to another embodiment.
  • the car position detector 9 detects the detection plate 8 and updates the position information of the car 1 to correct the moving distance of the car 1 calculated by the control unit 4 up to FIG. This is different from the first embodiment described above.
  • the detection plate 8 is installed on, for example, the guide rail 2 along the movement path of the car 1.
  • the detection plate 8 may be installed on each floor, or may be installed on a part such as the top floor and the bottom floor.
  • the car position detector 9 is installed in the car 1, and transmits the position information of the car 1 in the hoistway to the control unit 4 by detecting the detection plate 8.
  • the car position detector 9 detects the detection plate 8 by various methods such as a laser transmission type and an eddy current type.
  • the speed detecting device 3 is installed on the car 1, senses the surface condition of the guide rail 2, and acquires an image of the imaging range 10.
  • the configuration of the speed detection device 3 is the same as that of the first embodiment, and a description thereof will be omitted.
  • the speed detecting device 3 may be provided at two places on both sides as in the first embodiment.
  • the control unit 4 includes a processing device that executes a plurality of controls related to the car 1, a memory that stores the moving speed data of the car 1 calculated by the speed detecting device 3, and a moving distance of the car 1 based on the stored moving speed data. And a calculation unit that corrects the moving distance of the car 1 calculated from the speed calculated by the speed detection device 3 based on the signal from the car position detection device 9.
  • the speed detecting device 3 transmits the moving speed of the car 1 to the control unit 4.
  • the car position is calculated by adding or subtracting (stacking) the moving distance calculated by the control unit 4 and by calculating how much the car has moved from a certain reference position, for example, the lowest floor. Therefore, the more the car 1 moves away from the reference position, the more errors in calculation are accumulated, and the larger the output error of the moving distance becomes.
  • the car position detecting device 9 detects the detecting plate 8. At this time, the car position detection device 9 transmits to the control unit 4 that the detection plate 8 has been detected.
  • the control unit 4 separately stores in the memory which position of the detection plate is installed in the hoistway in the memory, and sets the position of the detection plate that has passed at this time to the current position information of the car 1 as positive and stores it in the memory. Record.
  • the moving distance of the car 1 calculated from the detected speed value output by the speed detecting device 3 is obtained, and the current position is calculated by adding or subtracting the position information of the car 1 recorded in the memory.
  • the moving distance of the car 1 calculated from the speed calculated by the speed detecting device 3 can be corrected, and the position of the car 1 in the hoistway can be corrected. Can be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Elevator Control (AREA)

Abstract

In this elevator, the traveling speed of a cage is detected without processing of an elevator hoistway internal member. This speed detection device detects the speed of a cage inside an elevator hoistway through which the cage moves up and down, and is attached to the cage. The speed detection device is provided with: a detection unit which detects, from images, the surface conditions of a pair of guide rails installed so as to face each other in the elevator hoistway along a traveling path of the cage; and a calculation unit which executes a calculation of the speed of the cage from a difference between images of surfaces of the guide rails detected by the detection unit.

Description

エレベーターの速度検出装置及びエレベーターElevator speed detection device and elevator
 本発明は、ガイドレールに対するかごの相対速度をセンシングするエレベーターの移動距離・速度検出装置及びそれを備えるエレベーターに関する。 The present invention relates to an elevator moving distance / speed detecting device for sensing a relative speed of a car with respect to a guide rail, and an elevator including the same.
 エレベーターでは、かごの移動距離、移動速度を逐次検出することで、建屋側の床とずれの少ない着床制御やエレベーターが規定の速度を超過する場合に、巻上機の電源遮断や安全装置を動作させる。従来では、機械式のガバナや、エンコーダによりかごの移動距離、移動速度を計測していた。一方、昇降路内の長尺物を削減するために、光学センサやカメラで撮像した昇降路内の画像を用いた計測手法が存在する。 The elevator detects the moving distance and the moving speed of the car one by one so that landing control with less deviation from the floor on the building side and power-off of the hoisting machine and safety equipment when the elevator exceeds the specified speed can be performed. Let it work. Conventionally, the moving distance and moving speed of the car have been measured by a mechanical governor or encoder. On the other hand, in order to reduce long objects in the hoistway, there is a measurement method using an image in the hoistway captured by an optical sensor or a camera.
 特許文献1に係るエレベーターの位置検出装置は、かご、カメラなどの画像取得装置、かごの移動距離と移動速度を算出する演算装置で構成される。また、検出される昇降路内部材(ガイドレール、昇降路内壁、部材の留め具等)の表面には、取得した画像の特徴点を抽出できるように、例えば、レールにハンマーフィニッシュ塗装などの加工を施す。かごに設置された画像取得装置により昇降路内の壁やガイドレールの画像を取得し、昇降路内部材の表面状態から特徴点を抜き出す。昇降路内のかごの絶対位置は、制御装置に保存された画像データと比較することで検出する。 エ レ ベ ー タ ー The elevator position detection device according to Patent Document 1 is configured by an image acquisition device such as a car and a camera, and an arithmetic device that calculates a moving distance and a moving speed of the car. Also, on the surface of the detected shaft member (guide rail, shaft inner wall, fasteners of the member, etc.), for example, processing such as hammer finish painting on the rail so that the feature points of the acquired image can be extracted Is applied. Images of walls and guide rails in the hoistway are obtained by an image obtaining device installed in the car, and feature points are extracted from the surface state of the members in the hoistway. The absolute position of the car in the hoistway is detected by comparing with the image data stored in the control device.
国際公開第2016/096698号パンフレットInternational Publication No. WO 2016/096669 pamphlet
 しかし、特許文献1による方式でかごの絶対位置を検出する場合、昇降路内部材の表面に、例えばハンマーフィニッシュ塗装や粉体塗装などの加工を施し、計測時にこれらの加工跡を検出する必要がある。よって、昇降路内部材の加工にコストがかかる。また、経年変化による表面状態の変化により、計測時に誤ったかご位置検出を行うことが考えられる。 However, when the absolute position of the car is detected by the method according to Patent Document 1, it is necessary to apply processing such as hammer finish coating or powder coating to the surface of the shaft member and to detect these processing marks during measurement. is there. Therefore, the cost of processing the members in the hoistway is high. In addition, it is conceivable to detect an incorrect car position at the time of measurement due to a change in the surface state due to aging.
 以上より、昇降路内部材への加工を行わずにかごの移動距離、移動速度を検出することが求められている。 From the above, it is required to detect the moving distance and the moving speed of the car without processing the members in the hoistway.
 かごが昇降する昇降路内部のかごの速度を検出し、かごに取り付けられる速度検出装置であり、かごの移動経路に沿って昇降路内に対向して敷設される一対のガイドレールの表面状態を画像検出する検出部と、検出部が検出したガイドレール表面の画像差分からかごの速度算出を実行する演算部と、を備える。 A speed detector that detects the speed of the car inside the hoistway where the car moves up and down, and is a speed detection device that is attached to the car, and detects the surface condition of a pair of guide rails that are laid facing each other in the hoistway along the movement path of the car. A detection unit for detecting an image, and a calculation unit for calculating the speed of the car from an image difference of the surface of the guide rail detected by the detection unit are provided.
 上記の構成により、昇降路内部材の加工を行うことなく、かごの移動距離・速度を検出することができる。また、常に検出したガイドレール表面の画像差分を用いてかごの移動距離や速度を算出するため、検出対象の経年変化による影響を低減することができる。 With the above configuration, the moving distance and speed of the car can be detected without processing the members in the hoistway. Further, since the moving distance and the speed of the car are calculated using the image difference of the surface of the guide rail which is always detected, the influence of the secular change of the detection target can be reduced.
本発明の実施形態1に係るエレベーターの全体構成を示す概略図FIG. 1 is a schematic diagram illustrating an overall configuration of an elevator according to a first embodiment of the present invention. 図1に示した移動距離・速度検出装置を概略的に示す正面図FIG. 2 is a front view schematically showing the moving distance / speed detecting device shown in FIG. 図1に示した移動距離・速度検出装置を概略的に示す上面図Top view schematically showing the moving distance / speed detecting device shown in FIG. 図3に示した移動距離・速度検出装置と制御部がかごの速度を補正する方法を説明する図FIG. 3 is a view for explaining a method in which the moving distance / speed detecting device and the control unit shown in FIG. 別の形態に係るエレベーターの全体構成を示す概略図Schematic showing the overall configuration of an elevator according to another embodiment
 図1は、本発明の一実施形態であるエレベーターの全体構成を示す概略図である。図2は、図1に示した移動距離・速度検出装置を概略的に示す正面図である。かご1は、昇降路の両端に設けられたガイドレール2に沿って移動する。図2は速度検出装置3を概略的に示す正面図である。図3は図1に示した速度検出装置3を概略的に示す上面図である。 FIG. 1 is a schematic diagram showing the overall configuration of an elevator according to one embodiment of the present invention. FIG. 2 is a front view schematically showing the moving distance / speed detecting device shown in FIG. The car 1 moves along guide rails 2 provided at both ends of the hoistway. FIG. 2 is a front view schematically showing the speed detection device 3. FIG. 3 is a top view schematically showing the speed detection device 3 shown in FIG.
 かご1の上部には、速度検出装置3と制御部4が設けられる。速度検出装置3は撮像範囲10をセンシングし、画像データを取得する。図3に示す様に、前記速度検出装置3は、かご1の振動が発生した場合にガイドレール2と接触しないよう、ガイドレール2と一定のクリアランスを確保してセンシングし続けられれば、かご1のどの部分に設置してもよい(図2ではガイドローラ5の上部)。 速度 A speed detection device 3 and a control unit 4 are provided above the car 1. The speed detection device 3 senses the imaging range 10 and acquires image data. As shown in FIG. 3, if the speed detecting device 3 can continue sensing while securing a certain clearance with the guide rail 2 so as not to come into contact with the guide rail 2 when vibration of the car 1 occurs, (The upper part of the guide roller 5 in FIG. 2).
 また、速度検出装置3はかご1の移動経路に従って前記ガイドレール2の表面をセンシングできるのであれば、ガイドレールのどの面を検出してもよい。また、別の部品を被検出体としても良い。 The speed detecting device 3 may detect any surface of the guide rail 2 as long as the speed detecting device 3 can sense the surface of the guide rail 2 according to the moving path of the car 1. Further, another component may be used as the object to be detected.
 速度検出装置3は、一方のガイドレール2に対する速度検出装置3aと、他方のガイドレール2に対する速度検出装置3bを含む。速度検出装置3はかご1の移動に伴いガイドレール2をセンシングし、かご1の移動速度を算出する。 The speed detecting device 3 includes a speed detecting device 3a for one guide rail 2 and a speed detecting device 3b for the other guide rail 2. The speed detecting device 3 senses the guide rail 2 as the car 1 moves, and calculates the moving speed of the car 1.
 制御部4は、かご1に関連する制御機能を実行する処理装置と、前記速度検出装置3が算出したかご1の移動速度データを保存するメモリと、保存された移動速度データからかご1の移動距離を算出する演算装置と、リアルタイムにかご1の異常判断を実行する異常判定装置と、速度検出装置3が出力した速度算出値を補正する速度補正装置を備える。 The control unit 4 includes a processing device that executes a control function related to the car 1, a memory that stores the moving speed data of the car 1 calculated by the speed detecting device 3, and a movement of the car 1 based on the stored moving speed data. An arithmetic unit that calculates the distance, an abnormality determination device that performs an abnormality determination of the car 1 in real time, and a speed correction device that corrects the calculated speed value output by the speed detection device 3 are provided.
 速度検出装置3は光学センサ6と演算部7を備える。速度検出装置3aは光学センサ6aと演算部7aを備え、他方の速度検出装置3bは光学センサ6bと演算部7bを備えた、いわゆる二重系を構成している。ここで、本実施例は速度検出装置3を二重系で構成しているがこれは必ずしも必須ではなく、一つだけ速度検出装置を設けた片系としてもよい。 The speed detecting device 3 includes an optical sensor 6 and a calculation unit 7. The speed detecting device 3a has an optical sensor 6a and an arithmetic unit 7a, and the other speed detecting device 3b has an optical sensor 6b and an arithmetic unit 7b, and forms a so-called dual system. Here, in this embodiment, the speed detecting device 3 is configured as a double system, but this is not necessarily essential, and a single system provided with only one speed detecting device may be used.
 光学センサ6は、検出面の画像を取得するための光学系、撮像素子を備え、ガイドレール2の表面画像を一定周期ごとに取得する。また、光学センサ6は不図示の照明装置とレンズおよび撮影素子を備える。照明装置に使用する光源はレンズを介して撮像素子に結像できればよく、例えばLEDやレーザーダイオードなどでもよい。レンズは、反射した照明光を撮像素子に結像するために用いられ、ガイドレール2の表面に存在する傷や付着物を検出する。また、光学センサ6と検出面との距離が変動した場合でも検出できるように、例えばテレセントリックレンズを使用してもよい。撮像素子は、結像した光を電気信号に変換することができればよく、例えば、CCD素子やCMOS素子などを利用することができる。光学センサ6が取得した画像情報は、演算部7に伝送される。 The optical sensor 6 includes an optical system and an image sensor for acquiring an image of the detection surface, and acquires a surface image of the guide rail 2 at regular intervals. The optical sensor 6 includes a lighting device (not shown), a lens, and a photographing element. The light source used in the illumination device only needs to be able to form an image on the image sensor via the lens, and may be, for example, an LED or a laser diode. The lens is used for forming an image of the reflected illumination light on the image sensor, and detects a flaw or an adhering substance present on the surface of the guide rail 2. Further, for example, a telecentric lens may be used so that detection can be performed even when the distance between the optical sensor 6 and the detection surface changes. The imaging element only needs to be able to convert the formed light into an electric signal, and for example, a CCD element or a CMOS element can be used. The image information acquired by the optical sensor 6 is transmitted to the calculation unit 7.
 演算部7では、伝送された画像データの特徴点を抽出する。抽出された特徴点のデータは速度検出装置3が備えるメモリに時系列に保存しておき、演算部7は保存済のデータと新しく取得したデータを比較する。演算部7は比較後に現れた特徴点の移動量からかご1の移動速度を算出する。例えば、時間tに撮像した範囲の画像の傷を特徴点として検出する。次に演算部7は時間t+Δtの撮像した画像から同じ傷を特徴点として抽出し、画像を比較して移動距離を算出する。演算部7は、この時間差の移動距離から算出されたかご1の移動速度を制御部4へ伝送する。 The operation unit 7 extracts feature points of the transmitted image data. The data of the extracted feature points is stored in a time series in a memory provided in the speed detection device 3, and the calculation unit 7 compares the stored data with newly obtained data. The calculation unit 7 calculates the moving speed of the car 1 from the moving amount of the feature point that appears after the comparison. For example, a flaw of an image in a range captured at time t is detected as a feature point. Next, the arithmetic unit 7 extracts the same flaw as a feature point from the image captured at time t + Δt, compares the images, and calculates the moving distance. The calculating unit 7 transmits the moving speed of the car 1 calculated from the moving distance of the time difference to the control unit 4.
 制御部4は、速度検出装置3が出力した速度算出値を時系列にメモリに保存する。その後、制御部4の演算部はメモリに保存された速度算出値を積分処理することでかご1の基準位置、例えば昇降路の最下階からの移動距離を算出する。 (4) The control unit 4 stores the calculated speed values output from the speed detection device 3 in a memory in a time series. Thereafter, the calculation unit of the control unit 4 calculates the moving distance from the reference position of the car 1, for example, the lowest floor of the hoistway by integrating the calculated speed value stored in the memory.
 上記のように構成される速度検出装置3では、かご1とガイドレール2は、ガイド装置を介して一定の距離を保ち、常に検出したガイドレール2の表面画像差分からかご1の移動距離や速度を算出するため、塔内の機器の配置や建屋の経年による変形、検出面の経年変化の影響を低減し、かご1の移動距離や速度を高分解能に計測することが可能となる。 In the speed detecting device 3 configured as described above, the car 1 and the guide rail 2 keep a constant distance via the guide device, and the moving distance and the speed of the car 1 are always determined from the surface image difference of the detected guide rail 2. , The influence of the arrangement of the devices in the tower, the deformation of the building due to aging, and the aging of the detection surface can be reduced, and the moving distance and speed of the car 1 can be measured with high resolution.
 次にかご1の振動による影響を補正する方法について記述する。ここで、かご1の振動方向は、図3の上面図中の左右方向を仮定する。この方向にかご1が振動した場合や、かご内の乗客の偏りによる偏荷重が発生した場合に、一方の速度検出装置3aがガイドレール2に近づき、他方の速度検出装置3bがガイドレール2から遠ざかるなどかごが横方向に変異する事象が発生する。検出装置の原理によると、例えば、近づいた状態では、あらかじめ設計した光学センサ6とガイドレール2の距離(以下設計距離)で取得した画像より拡大された画像が得られるため、光学センサ6が一定周期で取得した画像差分の変動は大きく、演算されたかご1の速度算出値は実速度よりも大きくなる。遠ざかる場合にはこの逆の事象が発生する。これは、左右の検出装置で出力される速度値に差が発生することを示唆している。以下、これによる速度検出装置3a、3bの検出速度を等しくし、補正する方法について詳細に記述する。 Next, a method for correcting the influence of the vibration of the car 1 will be described. Here, the vibration direction of the car 1 is assumed to be the horizontal direction in the top view of FIG. When the car 1 vibrates in this direction, or when an eccentric load occurs due to an unbalanced passenger in the car, one speed detecting device 3a approaches the guide rail 2 and the other speed detecting device 3b moves from the guide rail 2 to the other. An event such as the car moving sideways, such as going away, occurs. According to the principle of the detection device, for example, in the approaching state, an image enlarged from an image obtained at a distance between the optical sensor 6 and the guide rail 2 designed in advance (hereinafter referred to as a design distance) is obtained. The fluctuation of the image difference obtained in the cycle is large, and the calculated speed calculation value of the car 1 is larger than the actual speed. In the case of going away, the opposite event occurs. This suggests that a difference occurs between the speed values output by the left and right detection devices. Hereinafter, a method for equalizing and correcting the detection speeds of the speed detection devices 3a and 3b will be described in detail.
 図4は速度検出装置3と制御部4の速度算出処理を表すフローチャートである。図4を用いて、制御部4による速度算出値の補正方法と、かご1の異常診断の方法について説明する。始めに、S1で光学センサ6a、6bがそれぞれガイドレール2の表面画像を取得する。 FIG. 4 is a flowchart showing the speed calculation process of the speed detection device 3 and the control unit 4. With reference to FIG. 4, a method of correcting the speed calculation value by the control unit 4 and a method of diagnosing an abnormality of the car 1 will be described. First, in S1, the optical sensors 6a and 6b each acquire a surface image of the guide rail 2.
 次に、S2で演算部7a、7bが表面画像からそれぞれ移動速度を算出する。速度検出装置3が算出したかご1の移動速度データは制御部4に伝送される。 Next, in S2, the calculation units 7a and 7b calculate the moving speed from the surface image. The moving speed data of the car 1 calculated by the speed detecting device 3 is transmitted to the control unit 4.
 S3では、制御部4は速度検出装置3aと速度検出装置3bから出力された速度算出値を比較する。比較の際には、速度検出装置3aと速度検出装置3bが出力した移動速度の差を演算する。異常判定装置は演算後の差分があらかじめ設定した閾値以下であれば、左右の速度検出装置3の出力結果が等しいと判定する。従って、S4で制御部4の異常判定装置は速度検出装置3が正常値を出力していると判断し、演算後の速度データに補正を行わずに処理を終了する。なお本速度データを制御部4の備えるメモリに格納する。 In S3, the control unit 4 compares the calculated speed values output from the speed detection devices 3a and 3b. At the time of comparison, a difference between the moving speeds output by the speed detecting devices 3a and 3b is calculated. If the difference after the calculation is equal to or smaller than a preset threshold, the abnormality determination device determines that the output results of the left and right speed detection devices 3 are equal. Therefore, in S4, the abnormality determination device of the control unit 4 determines that the speed detection device 3 is outputting a normal value, and ends the process without correcting the calculated speed data. The speed data is stored in a memory provided in the control unit 4.
 もし、速度検出装置3aと速度検出装置3bが出力した移動速度の差が設定した閾値を上回った場合には、その原因として速度検出装置3の故障もしくは、かご1の偏荷重や振動によるそれぞれの速度検出装置3とガイドレール2の距離の変位が考えられる。かご1の偏荷重や振動によるそれぞれの速度検出装置3とガイドレール2の距離の変位が影響であれば、正常な値に補正し運転を継続させたい。そこで、S5でそれぞれの速度算出値の差異が、かごの横方向の変位による速度検出装置3とガイドレール2の距離の変動によるものかを判定する。 If the difference between the moving speeds output by the speed detecting device 3a and the speed detecting device 3b exceeds the set threshold value, the cause may be a failure of the speed detecting device 3 or an unbalanced load or vibration of the car 1 for each of the causes. The displacement of the distance between the speed detection device 3 and the guide rail 2 can be considered. If the displacement of the distance between the speed detection device 3 and the guide rail 2 due to the unbalanced load or vibration of the car 1 affects, it is desired to correct the value to a normal value and continue the operation. Therefore, in S5, it is determined whether or not the difference between the respective calculated speeds is due to a change in the distance between the speed detection device 3 and the guide rail 2 due to the lateral displacement of the car.
 先に示したように、光学センサ6とガイドレール2の距離が設計距離より近づく場合、遠ざかる場合で出力される速度算出値が異なる。例えば、光学センサ6とガイドレール2の距離が近づく場合は、演算されたかご1の速度算出値は実速度よりも大きくなる。一方、光学センサ6とガイドレール2の距離が設計時よりも遠い場合は、演算されたかご1の速度算出値は実速度よりも小さくなる。ここで、左右のガイドレール2が対向しており、速度検出装置3a、3bがこの同一線上に配置される位置関係に着目する。かご1に振動や偏荷重で傾きが発生した場合、それぞれのガイドレール2と速度検出装置3a、3bの近づく距離と遠ざかる距離が等しくなる。よって、振動等によりかごとガイドレールの距離が変化し、速度検出装置3aが検出した速度と、速度検出装置3bが検出した速度が異なった場合、この二つの速度の間にはガイドレールと光学センサの距離に相関する一定の関係が存在する。また、ガイドレール2と速度検出装置3a、3bの最大距離及び、最少距離は決まっている。よって、事前情報として制御部4の備えるメモリに上記の関係を事前に記憶しておき、速度検出装置3aが検出した速度と、速度検出装置3bが検出した速度がこの関係を満たすかを判断することで、速度検出装置3とガイドレール2の距離の変動によるものかを判別する。ここで、かごとガイドレールの距離が変化した場合の、速度検出装置3aが検出した速度と、速度検出装置3bが検出した速度の関係は、ガイドレール2と光学センサ6の距離毎に、検出される移動速度および実速度の関係を事前に実測してもよいし、演算により導出するなどによって、制御部4の備えるメモリに格納しておく。 As described above, when the distance between the optical sensor 6 and the guide rail 2 is shorter than the designed distance, the speed calculation value output when the distance is longer differs. For example, when the distance between the optical sensor 6 and the guide rail 2 approaches, the calculated speed calculation value of the car 1 becomes larger than the actual speed. On the other hand, when the distance between the optical sensor 6 and the guide rail 2 is longer than the design time, the calculated speed value of the car 1 is smaller than the actual speed. Here, attention is paid to a positional relationship in which the left and right guide rails 2 face each other, and the speed detectors 3a and 3b are arranged on the same line. When the car 1 is tilted due to vibration or unbalanced load, the distance between each of the guide rails 2 and the speed detectors 3a and 3b is equal to the distance between them. Therefore, when the distance between the car and the guide rail changes due to vibration or the like, and the speed detected by the speed detecting device 3a and the speed detected by the speed detecting device 3b are different, the guide rail and the optical There is a certain relationship that correlates to the distance of the sensor. Further, the maximum distance and the minimum distance between the guide rail 2 and the speed detecting devices 3a and 3b are determined. Therefore, the above relationship is stored in advance in a memory provided in the control unit 4 as advance information, and it is determined whether the speed detected by the speed detection device 3a and the speed detected by the speed detection device 3b satisfy this relationship. Thus, it is determined whether the change is caused by a change in the distance between the speed detection device 3 and the guide rail 2. Here, when the distance between the car and the guide rail changes, the relationship between the speed detected by the speed detection device 3a and the speed detected by the speed detection device 3b is detected for each distance between the guide rail 2 and the optical sensor 6. The relationship between the moving speed and the actual speed may be measured in advance, or may be derived by calculation or the like and stored in a memory provided in the control unit 4.
 なお、光学センサ6とガイドレール2の距離がかごの振動により基準値から最大離れた又は近づいた時の計測速度が実速度からどの程度離れる可能性があるかを振動影響基準として、制御部4の備えるメモリに格納している。制御部4の備えるメモリに格納されている前回の計測後S4で正常値と判断された速度を基準速度として、この速度からのずれが振動影響基準以内かを判断し、基準内の場合、距離特性に従った変動と判断することもできる。 The control unit 4 determines how much the measurement speed when the distance between the optical sensor 6 and the guide rail 2 is maximum or close to the reference value due to the vibration of the car may deviate from the actual speed is a vibration influence standard. It is stored in the memory provided by. The speed determined as a normal value in S4 after the previous measurement stored in the memory provided in the control unit 4 is set as a reference speed, and it is determined whether a deviation from this speed is within a vibration influence standard. It can also be determined that the variation is in accordance with the characteristics.
 S5でそれぞれの速度算出値の差異が、速度検出装置3とガイドレール2の距離の変動によるものでないと判断された場合、S8に進む。 If it is determined in S5 that the difference between the calculated speed values is not due to a change in the distance between the speed detection device 3 and the guide rail 2, the process proceeds to S8.
 S5でそれぞれの速度算出値の差異が、速度検出装置3とガイドレール2の距離の変動によるものと判断された場合、S6でセンサと検出面の距離に応じた算出値補正を行う。速度検出装置3aが検出した速度と、速度検出装置3bが検出した速度はそれぞれ、センサと検出面の距離と、実際のかごの速度の二つの変数にもとづいて決定される。かご速度は当然同じであり、センサと検出面の距離も一方が決まれば他方も決まる関係であるため、速度検出装置3aが検出した速度と、速度検出装置3bが検出した速度、二つの式を連立させることで、かご速度と、センサと検出面の距離を算出することが出来る。検出面と速度検出装置3の距離に対する算出速度特性(補正値)をあらかじめ求めておけば、これを用いてガイドレール2から速度検出装置3a、3bの距離に応じた補正を行なうことができる。 If it is determined in S5 that the difference between the calculated speed values is due to a change in the distance between the speed detection device 3 and the guide rail 2, in S6, the calculated value is corrected in accordance with the distance between the sensor and the detection surface. The speed detected by the speed detection device 3a and the speed detected by the speed detection device 3b are determined based on two variables, that is, the distance between the sensor and the detection surface and the actual speed of the car. Since the car speed is naturally the same, and the distance between the sensor and the detection surface is also determined if one is determined, the speed detected by the speed detection device 3a and the speed detected by the speed detection device 3b are two expressions. The simultaneous formation enables calculation of the car speed and the distance between the sensor and the detection surface. If a calculated speed characteristic (correction value) with respect to the distance between the detection surface and the speed detection device 3 is obtained in advance, it is possible to perform correction according to the distance from the guide rail 2 to the speed detection devices 3a and 3b.
 S7では、補正後の速度算出値が等しいか判定する。補正後に比較した速度算出値が等しければ、S4で速度検出装置3が正常値を出力していると判断する。 In S7, it is determined whether the corrected speed calculated values are equal. If the speed calculation values compared after the correction are equal, it is determined in S4 that the speed detection device 3 outputs a normal value.
 S5でそれぞれの速度算出値が所定の特性に従って変動していない場合や、S7で補正後の速度算出値が等しくならなかった場合は、S8で異常値を算出していると判断する。制御部4が異常値算出を判断した場合、例えば、エレベーターを最寄階に停止する、もしくは緊急停止させるなどの指令信号を出力することや、故障情報を発報する。 If the calculated speed values do not fluctuate according to the predetermined characteristics in S5, or if the corrected speed values are not equal in S7, it is determined that an abnormal value is calculated in S8. When the control unit 4 determines that an abnormal value is to be calculated, for example, it outputs a command signal for stopping the elevator to the nearest floor or urgently stopping it, or issues failure information.
 以上によれば、二つの速度検出装置3が、一対のガイドレール2をそれぞれ検出対象とすることで、制御部4がかご1の横振動や偏荷重による検出誤差を特定し、速度検出装置3の出力結果を補正することができる。従って、かご振動が発生した場合のかご1の速度検出誤りを防止することができる。 According to the above, the two speed detectors 3 target the pair of guide rails 2 as detection targets, so that the control unit 4 specifies the detection error due to the lateral vibration or the unbalanced load of the car 1, and the speed detector 3 Can be corrected. Therefore, it is possible to prevent the speed detection error of the car 1 when the car vibration occurs.
 図5は別の形態に係るエレベーターの全体構成を示す概略図である。本実施形態2では、かご位置検出器9が検出板8を検出し、かご1の位置情報を更新することで、前記制御部4の算出するかご1の移動距離を補正する点が図4までで説明した実施形態1と異なる。 FIG. 5 is a schematic diagram showing the overall configuration of an elevator according to another embodiment. In the second embodiment, the car position detector 9 detects the detection plate 8 and updates the position information of the car 1 to correct the moving distance of the car 1 calculated by the control unit 4 up to FIG. This is different from the first embodiment described above.
 検出板8は、かご1の移動経路に沿って、例えばガイドレール2に設置される。前記検出板8は各階床ごとに設置、もしくは最上階と最下階など一部に設置してもよい。かご位置検出器9はかご1に設置され、前記検出板8の検出を行うことで、昇降路内におけるかご1の位置情報を制御部4に伝送する。なお、前記かご位置検出器9は、レーザ透過型、渦電流式など種々の方法で検出板8の検出を行う。 The detection plate 8 is installed on, for example, the guide rail 2 along the movement path of the car 1. The detection plate 8 may be installed on each floor, or may be installed on a part such as the top floor and the bottom floor. The car position detector 9 is installed in the car 1, and transmits the position information of the car 1 in the hoistway to the control unit 4 by detecting the detection plate 8. The car position detector 9 detects the detection plate 8 by various methods such as a laser transmission type and an eddy current type.
 速度検出装置3はかご1に設置され、ガイドレール2の表面状態をセンシングし、撮像範囲10の画像を取得する。速度検出装置3の構成は実施例1と同様のため省略する。なお、速度検出装置3は実施形態1と同様に両側二か所に設けても良い。制御部4は、かご1に関する複数の制御を実行する処理装置と、前記速度検出装置3が算出したかご1の移動速度データを保存するメモリと、保存された移動速度データからかご1の移動距離を算出する演算装置と、かご位置検出装置9からの信号を基に、速度検出装置3の算出速度から演算したかご1の移動距離を補正する演算部を備える。前記速度検出装置3は、かご1の移動速度を制御部4に伝送する。 The speed detecting device 3 is installed on the car 1, senses the surface condition of the guide rail 2, and acquires an image of the imaging range 10. The configuration of the speed detection device 3 is the same as that of the first embodiment, and a description thereof will be omitted. The speed detecting device 3 may be provided at two places on both sides as in the first embodiment. The control unit 4 includes a processing device that executes a plurality of controls related to the car 1, a memory that stores the moving speed data of the car 1 calculated by the speed detecting device 3, and a moving distance of the car 1 based on the stored moving speed data. And a calculation unit that corrects the moving distance of the car 1 calculated from the speed calculated by the speed detection device 3 based on the signal from the car position detection device 9. The speed detecting device 3 transmits the moving speed of the car 1 to the control unit 4.
 かご位置は、前記制御部4によって演算される移動距離の加減算(積み重ね)により、ある基準位置、例えば最下階からどの程度移動したかによってかご位置を算出する。従って、かご1が基準位置から離れるほど演算時の誤差が蓄積され、移動距離の出力誤差が大きくなる。 The car position is calculated by adding or subtracting (stacking) the moving distance calculated by the control unit 4 and by calculating how much the car has moved from a certain reference position, for example, the lowest floor. Therefore, the more the car 1 moves away from the reference position, the more errors in calculation are accumulated, and the larger the output error of the moving distance becomes.
 そこで、前記検出板8とかご位置検出装置9を用いたかご1の移動距離の補正方法について説明する。かご1が前記ガイドレール2に沿って昇降する際に、前記かご位置検出装置9は前記検出板8を検出する。このとき、かご位置検出装置9は検出板8を検出した旨を制御部4へ伝送する。制御部4は、前記検出板がそれぞれ昇降路内のどの位置に設置されているかを別途メモリに記憶しており、この時通過した検出板の位置をかご1の現在位置情報を正としメモリに記録する。 Therefore, a method of correcting the moving distance of the car 1 using the detection plate 8 and the car position detecting device 9 will be described. When the car 1 moves up and down along the guide rail 2, the car position detecting device 9 detects the detecting plate 8. At this time, the car position detection device 9 transmits to the control unit 4 that the detection plate 8 has been detected. The control unit 4 separately stores in the memory which position of the detection plate is installed in the hoistway in the memory, and sets the position of the detection plate that has passed at this time to the current position information of the car 1 as positive and stores it in the memory. Record.
 その後、速度検出装置3が出力した速度検出値から演算されたかご1の移動距離を求め、メモリに記録されたかご1の位置情報に加減算することで、現在位置を算出する。 Thereafter, the moving distance of the car 1 calculated from the detected speed value output by the speed detecting device 3 is obtained, and the current position is calculated by adding or subtracting the position information of the car 1 recorded in the memory.
 以上によれば、かご位置検出装置9と検出板8を用いることで、速度検出装置3の算出速度から演算されたかご1の移動距離を補正することができ、昇降路内のかご1の位置検出をすることができる。 According to the above, by using the car position detecting device 9 and the detecting plate 8, the moving distance of the car 1 calculated from the speed calculated by the speed detecting device 3 can be corrected, and the position of the car 1 in the hoistway can be corrected. Can be detected.
1 かご、2 ガイドレール、3,3a,3b 速度検出装置、4 制御部、10 撮像範囲、5 ガイドローラ、6,6a,6b 光学センサ、7,7a,7b 演算部、8 検出板、9 かご位置検出装置 1 car, 2 guide rail, 3, 3a, 3b speed detection device, 4 control unit, 10 imaging range, 5 guide roller, 6, 6a, 6b optical sensor, 7, 7a, 7b operation unit, 8 detection plate, 9 car Position detection device

Claims (7)

  1.  かごが昇降する昇降路内部の前記かごの速度を検出し、かごに取り付けられる速度検出装置であり、前記かごの移動経路に沿って前記昇降路内に対向して敷設される一対のガイドレールの表面状態を画像検出する検出部と、前記検出部が検出したガイドレール表面の画像差分から前記かごの速度算出を実行する演算部と、を備える速度検出装置。 A speed detecting device that detects the speed of the car inside the hoistway where the car moves up and down, and is a speed detecting device attached to the car, and a pair of guide rails laid opposite to each other in the hoistway along the movement path of the car. A speed detection device, comprising: a detection unit that detects an image of a surface state; and a calculation unit that calculates the speed of the car from an image difference of the surface of the guide rail detected by the detection unit.
  2.  請求項1に記載の速度検出装置と、前記かごと、前記一対のガイドレールを備えるエレベーターであって、前記一対のガイドレールにそれぞれ対応する前記速度検出装置を複数備えることを特徴とするエレベーター。 An elevator comprising the speed detection device according to claim 1, the car, and the pair of guide rails, the elevator including a plurality of the speed detection devices respectively corresponding to the pair of guide rails.
  3.  請求項2に記載のエレベーターであって、さらに制御部を備え、前記制御部は、前記速度検出装置が前記かごの速度を保存するメモリと、前記メモリに記憶された移動速度データからかご1の移動距離を算出する演算装置と、を備えることを特徴とするエレベーター。 3. The elevator according to claim 2, further comprising a control unit, wherein the control unit detects a speed of the car 1 from a memory in which the speed detection device stores the speed of the car and moving speed data stored in the memory. An elevator, comprising: a calculating device for calculating a moving distance.
  4.  請求項3に記載のエレベーターであって、さらに前記制御部は異常判断を実行する異常判定装置を備え、前記異常判定装置は複数の前記速度検出装置が出力する速度の差分があらかじめ設定した閾値以下であるかを判断することを特徴とするエレベーター。 4. The elevator according to claim 3, wherein the control unit further includes an abnormality determination device that performs an abnormality determination, wherein the abnormality determination device is configured such that a difference between the speeds output by the plurality of speed detection devices is equal to or less than a preset threshold. The elevator characterized in that it is determined whether or not.
  5.  請求項4に記載のエレベーターであって、前記異常判定装置が複数の前記速度検出装置が出力する速度の差分があらかじめ設定した閾値以下より大きいと判断した場合、前記制御部は前記差分が前記かごの横方向の変位によるものかを判断し、前記かごの横方向の変位によるものでない場合異常と判定し、前記制御部の備える前記かごの制御機能を実行する処理装置は、前記かごを停止する制御を行うことを特徴とするエレベーター。 5. The elevator according to claim 4, wherein when the abnormality determination device determines that the difference between the speeds output by the plurality of speed detection devices is greater than or equal to a predetermined threshold, the control unit determines that the difference is the car It is determined whether or not due to the lateral displacement of the car, and if not due to the lateral displacement of the car, it is determined to be abnormal, and the processing device that executes the control function of the car provided by the control unit stops the car. An elevator characterized by performing control.
  6.  請求項5に記載のエレベーターであって、
     前記メモリには、前記複数の速度検出装置がそれぞれ算出する速度と前記ガイドレールと光学センサの距離に相関する関係が記憶され、前記制御部は前記差分が前記かごの横方向の変位によるものかの判断は、前記複数の速度検出装置がそれぞれ算出した速度が、前記メモリに格納された前記複数の速度検出装置がそれぞれ算出した速度間の関係であって前記ガイドレールと光学センサの距離に相関する関係を満たす場合に、前記差分が前記かごの横方向の変位によるものと判断することを特徴とするエレベーター。
    The elevator according to claim 5, wherein
    The memory stores a relationship between the speed calculated by each of the plurality of speed detection devices and a distance between the guide rail and the optical sensor, and the control unit determines whether the difference is due to a lateral displacement of the car. The determination is that the speed calculated by each of the plurality of speed detection devices is a relationship between the speeds respectively calculated by the plurality of speed detection devices stored in the memory and correlated with the distance between the guide rail and the optical sensor. An elevator, wherein the difference is determined to be due to a lateral displacement of the car when the following relationship is satisfied.
  7.  請求項5に記載のエレベーターであって、前記制御部は、前記差分が前記かごの横方向の変位によるものかを判断し、前記かごの横方向の変位によるものと判断した場合、前記メモリに格納された前記複数の速度検出装置がそれぞれ算出した速度間の関係であって前記ガイドレールと光学センサの距離に相関する関係に基づいて、前記複数の速度検出装置がそれぞれ算出した速度に基づいて補正する速度補正装置を備えることを特徴とするエレベーター。 6. The elevator according to claim 5, wherein the control unit determines whether the difference is due to a lateral displacement of the car, and determines that the difference is due to a lateral displacement of the car. Based on the relationship between the speeds respectively calculated by the plurality of stored speed detection devices and the correlation between the distance between the guide rail and the optical sensor, based on the speeds respectively calculated by the plurality of speed detection devices. An elevator comprising a speed correction device for correcting.
PCT/JP2019/016159 2018-07-06 2019-04-15 Speed detection device of elevator and elevator WO2020008696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018128717A JP7100515B2 (en) 2018-07-06 2018-07-06 Elevator
JP2018-128717 2018-07-06

Publications (1)

Publication Number Publication Date
WO2020008696A1 true WO2020008696A1 (en) 2020-01-09

Family

ID=69059579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016159 WO2020008696A1 (en) 2018-07-06 2019-04-15 Speed detection device of elevator and elevator

Country Status (2)

Country Link
JP (1) JP7100515B2 (en)
WO (1) WO2020008696A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113307115A (en) * 2020-02-27 2021-08-27 株式会社日立制作所 Measuring device, elevator system and measuring method
WO2022259417A1 (en) * 2021-06-09 2022-12-15 株式会社日立製作所 Car position detection device and elevator safety device using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4094116A1 (en) 2020-01-20 2022-11-30 Ricoh Company, Ltd. Light guide and virtual-image display device
WO2022259398A1 (en) * 2021-06-09 2022-12-15 株式会社日立製作所 Car position detection device and elevator using same
WO2023079734A1 (en) * 2021-11-08 2023-05-11 株式会社日立製作所 Action testing method and action testing device of governor system for elevator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127851A (en) * 1992-10-14 1994-05-10 Mitsubishi Electric Corp Speed controller for elevator
JP2002274765A (en) * 2001-02-20 2002-09-25 Inventio Ag Method for generating elevator shaft information to conduct elevator control
JP2010275078A (en) * 2009-05-29 2010-12-09 Mitsubishi Electric Corp Elevator control device
JP2015059014A (en) * 2013-09-19 2015-03-30 株式会社日立製作所 Elevator control system
CN105173949A (en) * 2015-10-22 2015-12-23 日立电梯(中国)有限公司 System and method for detecting relative position and speed of elevator car

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127851A (en) * 1992-10-14 1994-05-10 Mitsubishi Electric Corp Speed controller for elevator
JP2002274765A (en) * 2001-02-20 2002-09-25 Inventio Ag Method for generating elevator shaft information to conduct elevator control
JP2010275078A (en) * 2009-05-29 2010-12-09 Mitsubishi Electric Corp Elevator control device
JP2015059014A (en) * 2013-09-19 2015-03-30 株式会社日立製作所 Elevator control system
CN105173949A (en) * 2015-10-22 2015-12-23 日立电梯(中国)有限公司 System and method for detecting relative position and speed of elevator car

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113307115A (en) * 2020-02-27 2021-08-27 株式会社日立制作所 Measuring device, elevator system and measuring method
WO2022259417A1 (en) * 2021-06-09 2022-12-15 株式会社日立製作所 Car position detection device and elevator safety device using same

Also Published As

Publication number Publication date
JP7100515B2 (en) 2022-07-13
JP2020007085A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2020008696A1 (en) Speed detection device of elevator and elevator
CN108946367B (en) Elevator operation detection method and device based on relative air pressure and altitude error correction
RU2699744C2 (en) Method and system for determining position of elevator cabin
JP4853288B2 (en) Elevator equipment
KR102463647B1 (en) Position-determining system for an elevator
CA2370883C (en) Method of generating hoistway information to serve an elevator control
US10315885B2 (en) Method for the position detection of an elevator car using an accelerometer and a door sensor
TWI473965B (en) Thickness measurement system and thickness measurement method
EP3452396B1 (en) System and method for enhancing elevator positioning
JP2015508367A (en) Method and control device for monitoring movement of elevator car
ITMI20100517A1 (en) METHOD AND DETERMINATION AND DETERMINATION SYSTEM OF GEOMETRIC, DIMENSIONAL AND POSITIONAL CHARACTERISTICS OF PRODUCTS TRANSPORTED BY A CONTINUOUS CONVEYOR, IN PARTICULAR RAW, ROUGHED, SEPARATED OR SEMI-FINISHED PRODUCTS
US20140318246A1 (en) Inertia estimating method and inertia estimating appartus of position control apparatus
JP2007008675A (en) Device for measuring guide rail installation precision of elevator
KR20210013287A (en) Inspection device with the function of presenting the internal condition of the elevator hoistway
JP5814734B2 (en) Gap size inspection device for elevator landing device and clearance size inspection method for elevator landing device
JP6692305B2 (en) Passenger conveyor automatic clearance measuring device and passenger conveyor automatic clearance measuring method
JPWO2018229901A1 (en) Monitoring system of step chain for passenger conveyor
CN113874310A (en) Elevator installation
WO2022269893A1 (en) Car position detection device and elevator safety device using same
WO2022259398A1 (en) Car position detection device and elevator using same
JP2005298171A (en) Elevator abnormality detecting device
JP2015105052A (en) Vehicle stop position detector
WO2022259417A1 (en) Car position detection device and elevator safety device using same
JP6464993B2 (en) Elevator equipment
CN116620973A (en) Robot elevator taking control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830198

Country of ref document: EP

Kind code of ref document: A1