WO2020008565A1 - Positive electrode, non-aqueous electrolyte battery, and battery pack - Google Patents

Positive electrode, non-aqueous electrolyte battery, and battery pack Download PDF

Info

Publication number
WO2020008565A1
WO2020008565A1 PCT/JP2018/025369 JP2018025369W WO2020008565A1 WO 2020008565 A1 WO2020008565 A1 WO 2020008565A1 JP 2018025369 W JP2018025369 W JP 2018025369W WO 2020008565 A1 WO2020008565 A1 WO 2020008565A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
containing layer
range
Prior art date
Application number
PCT/JP2018/025369
Other languages
French (fr)
Japanese (ja)
Inventor
尚己 西尾
泰章 村司
矢嶋 亨
夏希 中村
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2020528603A priority Critical patent/JP7024083B2/en
Priority to PCT/JP2018/025369 priority patent/WO2020008565A1/en
Publication of WO2020008565A1 publication Critical patent/WO2020008565A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiment of the present invention relates to a positive electrode, a non-aqueous electrolyte battery, and a battery pack.
  • the non-aqueous electrolyte battery When the non-aqueous electrolyte battery is in a high charge state, self-discharge occurs on the surface of the electrode, and a decomposition reaction of the electrolyte occurs. For example, an oxidation reaction occurs on the surface of the positive electrode to generate an oxidizing gas (for example, carbon dioxide). When gas is generated, the battery expands and the internal resistance increases. There is a problem that such gas generation can be a factor that lowers the safety of the battery.
  • an oxidizing gas for example, carbon dioxide
  • the problem to be solved by the present invention is to provide a positive electrode in which gas generation is suppressed, and a nonaqueous electrolyte battery and a battery pack including the positive electrode.
  • a positive electrode includes a positive electrode active material containing layer.
  • the positive electrode active material containing layer contains a positive electrode active material.
  • the positive electrode active material contains a lithium manganese composite oxide and lithium cobalt oxide.
  • the positive electrode active material-containing layer has a surface having a plurality of Al binding energy peaks in the range of 70 eV to 78 eV in the X-ray photoelectron spectroscopy spectrum.
  • the positive electrode active material-containing layer satisfies the relational expression of 0 ⁇ H / (G + H) ⁇ 0.1.
  • G is a weight ratio of the lithium manganese composite oxide in the positive electrode active material.
  • H is the weight ratio of lithium cobalt oxide in the positive electrode active material.
  • a non-aqueous electrolyte battery includes the positive electrode of the embodiment, a negative electrode, and a non-aqueous electrolyte.
  • a battery pack is provided. The battery pack includes the nonaqueous electrolyte battery of the embodiment.
  • FIG. 1 is a partially cutaway perspective view of an example of a nonaqueous electrolyte battery according to a second embodiment.
  • FIG. 2 is an enlarged sectional view of a portion A of the nonaqueous electrolyte battery shown in FIG.
  • FIG. 3 is an exploded perspective view of another example of the nonaqueous electrolyte battery according to the second embodiment.
  • FIG. 4 is an exploded perspective view of an example of the battery pack according to the third embodiment.
  • FIG. 5 is a block diagram showing an electric circuit of the battery pack shown in FIG.
  • FIG. 6 is one XPS spectrum of the positive electrode active material-containing layer of the positive electrode of Example 7.
  • FIG. 7 is another XPS spectrum of the positive electrode active material-containing layer of the positive electrode of Example 7.
  • a positive electrode includes a positive electrode active material containing layer.
  • the positive electrode active material containing layer contains a positive electrode active material.
  • the positive electrode active material contains a lithium manganese composite oxide and lithium cobalt oxide.
  • the positive electrode active material-containing layer has a surface having a plurality of Al binding energy peaks in the range of 70 eV to 78 eV in the X-ray photoelectron spectroscopy spectrum.
  • the positive electrode active material-containing layer satisfies the following formula (1).
  • G is a weight ratio of the lithium manganese composite oxide in the positive electrode active material.
  • H is the weight ratio of lithium cobalt oxide in the positive electrode active material.
  • a positive electrode active material containing a lithium manganese composite oxide and lithium cobalt oxide is brought into contact with a compound generated by a reaction between a nonaqueous electrolyte and a trace amount of water, which is an unavoidable impurity, such as hydrofluoric acid (HF).
  • a gas such as hydrogen or carbon monoxide is generated. Due to such gas generation, for example, in a non-aqueous electrolyte battery including a positive electrode including the above-described positive electrode active material, the internal resistance increases due to expansion of the non-aqueous electrolyte battery. Thereby, the safety of the nonaqueous electrolyte battery may be reduced.
  • the positive electrode active material-containing layer has a surface where a plurality of peaks of the binding energy of Al in the X-ray photoelectron spectroscopy spectrum are in the range of 70 eV to 78 eV.
  • This surface can prevent direct contact between the positive electrode active material and a compound generated by a reaction between the nonaqueous electrolyte and moisture. As a result, gas generation can be suppressed.
  • the positive electrode active material-containing layer satisfies the formula (1). Since the positive electrode active material-containing layer contains a predetermined amount of lithium cobalt oxide capable of absorbing a gas, the generated gas can be absorbed.
  • the positive electrode active material-containing layer has a surface where a plurality of peaks of Al binding energy in the X-ray photoelectron spectroscopy spectrum are in the range of 70 eV or more and 78 eV or less, and satisfies the expression (1) to reduce gas generation. Can be suppressed.
  • the positive electrode active material-containing layer has a surface in which a plurality of peaks of the binding energy of Al in the X-ray photoelectron spectroscopy spectrum are at least one in a range of 70 eV or more and less than 75 eV and in a range of 75 eV or more and 78 eV or less. .
  • the positive electrode active material-containing layer having a surface that satisfies this has a surface including a bond between Al and O and a bond between Al and F, the layer is generated by a reaction between the positive electrode active material, the nonaqueous electrolyte, and moisture. The effect of preventing direct contact with the compound is higher. As a result, gas generation can be suppressed.
  • the positive electrode satisfies the following formula (2).
  • A is the maximum peak height of the X-ray photoelectron spectroscopy spectrum within the range of the binding energy of Al of 70 eV or more and less than 75 eV.
  • B is the maximum peak height of the X-ray photoelectron spectroscopy spectrum in the range of Al binding energy of 75 eV or more and 78 eV or less.
  • C is the average peak height of the X-ray photoelectron spectroscopy spectrum in the range of the binding energy of Al of 65 eV or more and less than 70 eV.
  • the positive electrode active material-containing layer having a surface that satisfies this condition has a surface containing a predetermined ratio of a bond between Al and O and a bond between Al and F, the positive electrode active material, the nonaqueous electrolyte, The effect of preventing direct contact with the compound generated by the above reaction is further enhanced. As a result, gas generation can be suppressed.
  • the positive electrode satisfies the following formula (3).
  • D is the maximum peak height of the X-ray photoelectron spectroscopy spectrum in the range of the binding energy of Mn of 638 eV or more and 645 eV or less.
  • E is the average peak height of the X-ray photoelectron spectroscopy spectrum in the range of 635 eV to less than 638 eV of the binding energy of Mn.
  • the positive electrode active material-containing layer having a surface that satisfies the above condition has a surface containing a predetermined ratio of Al and F bonds to Mn and O bonds. Therefore, it is possible to prevent direct contact between the positive electrode active material and the compound generated by the reaction between the non-aqueous electrolyte and the water without significantly lowering the conductivity of Li ions of the positive electrode. As a result, gas generation can be suppressed.
  • the composition formula of the lithium manganese composite oxide is LiMn 2-x M x O 4 , where the subscript x is in the range of 0.1 ⁇ x ⁇ 0.7, and M is Mg, Ti, Cr, Desirably, it is at least one metal element selected from the group consisting of Fe, Co, Zn, Al and Ga.
  • the positive electrode active material-containing layer containing the lithium manganese composite oxide having the above composition and having the above-mentioned surface has an effect of preventing direct contact between the positive electrode active material and a compound generated by a reaction between the nonaqueous electrolyte and moisture. And the effect of suppressing gas generation is extremely high. As a result, gas generation can be significantly suppressed.
  • the positive electrode according to the first embodiment includes a positive electrode current collector and a positive electrode active material-containing layer supported on one or both surfaces of the positive electrode current collector.
  • the positive electrode active material containing layer contains a positive electrode active material.
  • the positive electrode active material-containing layer may further include a conductive agent and a binder.
  • the positive electrode active material includes a lithium manganese composite oxide and lithium cobalt oxide.
  • the composition formula of the lithium manganese composite oxide is preferably LiMn 2-x M x O 4 .
  • the subscript x is in the range of 0.1 ⁇ x ⁇ 0.7
  • M is at least one metal selected from the group consisting of Mg, Ti, Cr, Fe, Co, Zn, Al and Ga. It is preferably an element.
  • M is more preferably Al. More preferably, the lithium manganese composite oxide has a spinel type crystal structure.
  • Lithium cobaltate preferably has a composition formula of Li x CoO 2 .
  • the suffix x is preferably in the range of 0 ⁇ x ⁇ 1.
  • the positive electrode active material-containing layer preferably satisfies the following equation. 0 ⁇ H / (G + H) ⁇ 0.1 (1)
  • G is a weight ratio of the lithium manganese composite oxide in the positive electrode active material.
  • H is the weight ratio of lithium cobalt oxide in the positive electrode active material.
  • the positive electrode active material-containing layer can suppress gas generation by satisfying the expression (1).
  • the reason is described below.
  • H / (G + H) is larger than 0.1, the amount of lithium cobalt oxide weak to a high potential is large, and it is considered that the crystal structure of lithium cobalt oxide is destroyed by charging and discharging. Therefore, in addition to being unable to suppress gas generation, the charge / discharge cycle performance is reduced.
  • H / (G + H) is 0, that is, when lithium cobaltate is not included in the positive electrode active material, for example, the positive electrode active material cannot absorb gas inevitably generated by the reaction between the nonaqueous electrolyte and moisture. , Gas generation cannot be suppressed.
  • the positive electrode active material is, for example, in the form of particles.
  • the positive electrode active material may be primary particles, or may be secondary particles obtained by aggregating primary particles.
  • the particles of the lithium manganese composite oxide may be either primary particles or secondary particles in which the primary particles are aggregated, but preferably include secondary particles.
  • the average particle diameter (secondary particle diameter) of the secondary particles of the lithium manganese composite oxide is preferably 4 ⁇ m or more and 15 ⁇ m or less.
  • the lithium cobalt oxide particles may be either primary particles or secondary particles obtained by agglomeration of primary particles, but are preferably mainly composed of primary particles.
  • the average primary particle diameter of the lithium cobalt oxide particles is preferably 6 ⁇ m or more and 12 ⁇ m or less.
  • the type of the positive electrode active material can be one type or two or more types. Further, the positive electrode active material may include a positive electrode active material other than the lithium manganese composite oxide and lithium cobalt oxide.
  • the conductive agent can increase the electronic conductivity and suppress the contact resistance with the current collector.
  • Examples of the conductive agent include a carbon material such as acetylene black, carbon black, graphite, carbon nanofiber, or carbon nanotube.
  • the kind of the conductive agent used can be one kind or two or more kinds.
  • the binder can bind the active material and the conductive agent.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluorine-based rubber.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • fluorine-based rubber examples of the binder used can be one kind or two or more kinds.
  • the positive electrode active material-containing layer has a surface in which a plurality of peaks of Al binding energy in an X-ray photoelectron spectroscopy spectrum are in the range of 70 eV to 78 eV.
  • This surface can be, for example, a coating formed on the positive electrode active material-containing layer.
  • the peak of the binding energy of Al may be two or three or more within the range of 70 eV to 78 eV.
  • the surface of the positive electrode active material-containing layer is the main surface of the positive electrode active material-containing layer facing the surface where the positive electrode active material-containing layer and the positive electrode current collector are in contact with each other, and is in contact with the positive electrode current collector. No major surface.
  • the positive electrode active material-containing layer preferably has at least one peak in the range of 70 eV or more and less than 75 eV and in the range of 75 eV or more and 78 eV or less in the binding energy of Al.
  • the peak of the binding energy of Al in the range of 70 eV or more and less than 75 eV indicates that there is a bond between Al and O.
  • the peak of the binding energy of Al in the range of 75 eV or more and 78 eV or less indicates that there is a bond between Al and F.
  • the positive electrode active material-containing layer preferably satisfies the following equation. 0.3 ⁇ (BC) / (AC) ⁇ 2 (2)
  • A is the maximum peak height of the X-ray photoelectron spectroscopy spectrum within the range of the binding energy of Al of 70 eV or more and less than 75 eV.
  • B is the maximum peak height of the X-ray photoelectron spectrum within the range of Al binding energy of 75 eV or more and 78 eV or less.
  • C is the average peak height of the X-ray photoelectron spectroscopy spectrum in the range of the binding energy of Al of 65 eV or more and less than 70 eV.
  • the maximum peak height in each of the range of 70 eV or more and less than 75 eV and the range of 75 eV or more and 78 eV or less is the value of the spectral data having the highest peak height in the continuous spectrum data in that range of the X-ray photoelectron spectroscopy spectrum. Peak height.
  • the average peak height is a peak height obtained by averaging the peak heights of continuous X-ray photoelectron spectroscopy spectral data within the range of 65 eV or more and less than 70 eV.
  • the positive electrode active material-containing layer satisfies the following expression. 0.004 ⁇ (BC) / (DE) ⁇ 0.04 (3)
  • D is the maximum peak height of the X-ray photoelectron spectrum within the range of the binding energy of Mn from 638 eV to 645 eV.
  • E is the average peak height of the X-ray photoelectron spectrum in the range of 635 eV to less than 638 eV of the binding energy of Mn.
  • the peak of the binding energy of Mn in the range of 638 eV or more and 645 eV or less indicates that there is a bond between Mn and O.
  • the maximum peak height within the range of 638 eV or more and 645 eV or less is the peak height of the highest peak height spectral data in continuous spectral data within the range of the X-ray photoelectron spectroscopy spectrum.
  • the average peak height is a peak height obtained by averaging the peak heights of continuous X-ray photoelectron spectroscopy spectral data within the range of 635 eV to less than 638 eV.
  • the positive electrode current collector is desirably formed from an aluminum foil or an aluminum alloy foil.
  • the average crystal grain size of the aluminum foil and the aluminum alloy foil is preferably 50 ⁇ m or less. More preferably, it is 30 ⁇ m or less. More preferably, it is 5 ⁇ m or less.
  • the strength of the aluminum foil or aluminum alloy foil can be dramatically increased, and the density of the positive electrode can be increased with a high press pressure, thereby increasing the battery capacity. Can be done.
  • the thickness of the current collector is 20 ⁇ m or less, and more preferably 15 ⁇ m or less.
  • the purity of the aluminum foil is preferably at least 99% by weight.
  • As the aluminum alloy an alloy containing one or more elements selected from the group consisting of magnesium, zinc and silicon is preferable.
  • the content of transition metals such as iron, copper, nickel and chromium is preferably 1% by weight or less.
  • the mixing ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 80 to 95% by weight of the positive electrode active material, 3 to 18% by weight of the conductive agent, and 2 to 7% by weight of the binder.
  • the positive electrode active material-containing layer preferably has a porosity of 20% or more and 50% or less.
  • a positive electrode provided with a positive electrode active material-containing layer having such a porosity has high density and excellent affinity with a nonaqueous electrolyte. More preferable porosity is 25% or more and 40% or less.
  • the density of the positive electrode active material-containing layer is preferably set to 2.5 g / cm 3 or more.
  • the battery is completely discharged to bring the state of charge (SOC) to 0%.
  • This battery is disassembled, and the positive electrode is cut out to about 2 cm square.
  • the cut positive electrode is immersed in 50 cc (cm 3 ) of ethyl methyl carbonate and left for 1 hour. Thereafter, in order to dry the positive electrode, vacuum drying is performed for one hour to obtain a measurement sample.
  • the operations so far are performed in a glove box in an argon atmosphere.
  • a powder is collected as a measurement sample from the positive electrode active material-containing layer on the measurement sample obtained by the above method using a spatula or the like.
  • the obtained powder is washed with acetone and dried.
  • the obtained powder is dissolved in hydrochloric acid, the conductive agent is removed by filtration, then diluted with ion-exchanged water, and the metal content is calculated by inductively coupled plasma emission spectroscopy.
  • the presence of the lithium manganese composite oxide and lithium cobalt oxide is confirmed by X-ray diffraction and SEM-EDX.
  • a sample for measurement is obtained by the above-described method for removing the positive electrode.
  • the obtained sample for measurement is charged into an X-ray photoelectron spectrometer while being sealed in an argon atmosphere.
  • an XPS measuring device VG Theta Probe manufactured by Thermo Fisher Scientific
  • a device having a function equivalent thereto can be used.
  • the excitation X-ray source use is made of single-crystal spectral AlK ⁇ rays (light obtained by dispersing AlK ⁇ rays with a single crystal for better monochromaticity).
  • the excited X-ray source is irradiated so that the X-ray spot has an elliptical shape of 800 ⁇ 400 ⁇ m to obtain an X-ray photoelectron spectrum.
  • the X-ray photoelectron spectroscopy spectrum of the positive electrode active material containing layer is a spectrum of the surface of the positive electrode active material containing layer.
  • the maximum peak height A of the peak attributed to the 2p orbital of Al which appears in the binding energy region of 70 eV or more and less than 75 eV
  • 2p of Al which appears in the binding energy region of 75 eV or more and 78 eV or less
  • the maximum peak height B of the peak attributed to the orbit is determined, and the average peak intensity C is calculated from the peak in the binding energy region of 65 eV or more and less than 70 eV.
  • the maximum peak height D of the peak belonging to the 2p 3/2 orbital of Ti, which appears in the binding energy region of 638 eV or more and less than 645 eV, is determined, and the bond of 635 eV or more and less than 638 eV
  • the average peak intensity E is calculated from the peak in the energy region.
  • a positive electrode active material, a positive electrode conductive agent and a binder are suspended in an appropriate solvent, and the obtained slurry is applied to a positive electrode current collector and dried to form a positive electrode active material-containing layer. After making, press is applied.
  • the positive electrode active material, the positive electrode conductive agent, and the binder may be formed in a pellet shape and used as the positive electrode active material-containing layer.
  • the effect of the surface of the positive electrode that is, the surface of the positive electrode active material-containing layer in which a plurality of peaks of Al binding energy in the X-ray photoelectron spectroscopy spectrum are in the range of 70 eV or more and 78 eV or less is, for example, due to aging. It can also be realized by a coating formed on the surface of the layer.
  • a method for preparing the composition of the film formed on the surface of the positive electrode active material-containing layer will be described.
  • a nonaqueous electrolyte battery including a negative electrode and a nonaqueous electrolyte is manufactured.
  • the nonaqueous electrolyte, the positive electrode active material, and the positive electrode current collector contains Al.
  • the non-aqueous electrolyte preferably contains lithium aluminum tetrafluoride.
  • the concentration of lithium aluminum tetrafluoride is preferably from 0.001 mol / L to 0.1 mol / L, and more preferably from 0.002 mol / L to 0.03 mol / L.
  • the positive electrode active material preferably includes a lithium manganese composite oxide having a composition formula of LiMn 2-x M x O 4 .
  • the positive electrode current collector is preferably formed from an aluminum foil or an aluminum alloy foil.
  • a positive electrode includes a positive electrode active material containing layer containing a lithium manganese composite oxide and lithium cobalt oxide.
  • the positive electrode active material-containing layer has a surface having a plurality of Al binding energy peaks in the range of 70 eV to 78 eV in the X-ray photoelectron spectroscopy spectrum.
  • the positive electrode active material-containing layer satisfies the relational expression of 0 ⁇ H / (G + H) ⁇ 0.1.
  • a non-aqueous electrolyte battery according to the second embodiment includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and an exterior member.
  • the positive electrode of the first embodiment is used.
  • the positive electrode current collector may include a portion where the surface does not support the positive electrode active material-containing layer. This portion can serve as a positive electrode tab.
  • the positive electrode may include a positive electrode tab separate from the positive electrode current collector.
  • the negative electrode includes the negative electrode active material containing layer.
  • the negative electrode may further include a negative electrode current collector.
  • the negative electrode active material-containing layer can be supported on at least one surface of the negative electrode current collector. That is, the negative electrode current collector can support the negative electrode active material-containing layer on one or both surfaces.
  • the negative electrode current collector can include a portion where the surface does not support the negative electrode active material-containing layer. This portion can serve as a negative electrode tab.
  • the negative electrode may include a negative electrode tab separate from the negative electrode current collector.
  • the positive electrode and the negative electrode can form an electrode group.
  • the positive electrode active material-containing layer and the negative electrode active material-containing layer can face each other with a separator interposed therebetween, for example.
  • the electrode group can have various structures.
  • the electrode group can have a stack type structure.
  • An electrode group having a stacked structure can be obtained, for example, by alternately stacking a plurality of positive electrodes and a plurality of negative electrodes with a separator interposed between the positive electrode active material containing layer and the negative electrode active material containing layer.
  • the electrode group can have a wound type structure.
  • the wound electrode group is, for example, one separator, one negative electrode, another separator, and one positive electrode are laminated in this order to form a laminate, and this laminate is formed. It can be obtained by winding.
  • the nonaqueous electrolyte battery according to the second embodiment can further include a positive electrode terminal and a negative electrode terminal.
  • the positive electrode terminal can function as a conductor for electrons to move between the positive electrode and the external terminal by being electrically connected to a part of the positive electrode.
  • the positive electrode terminal can be connected to, for example, a positive electrode current collector, particularly a positive electrode tab.
  • the negative electrode terminal can function as a conductor for electrons to move between the negative electrode and the external terminal by being electrically connected to a part of the negative electrode.
  • the negative electrode terminal can be connected to, for example, a negative electrode current collector, particularly, a negative electrode tab.
  • the exterior member contains the electrode group and the non-aqueous electrolyte.
  • the non-aqueous electrolyte may be impregnated into the electrode group in the exterior member.
  • a part of each of the positive electrode terminal and the negative electrode terminal can also be extended from the exterior member.
  • the positive electrode the negative electrode, the non-aqueous electrolyte, the separator, and the exterior member will be described in more detail.
  • the positive electrode of the first embodiment is used.
  • the negative electrode has a negative electrode current collector and a negative electrode active material-containing layer supported on one or both surfaces of the negative electrode current collector and containing a negative electrode active material, a negative electrode conductive agent, and a binder.
  • the negative electrode active material contains a titanium-containing oxide.
  • the type of the negative electrode active material can be one type or two or more types.
  • titanium-containing oxides include lithium-titanium composite oxides, anatase-type titanium-containing oxides, rutile-type titanium-containing oxides, bronze-type titanium-containing oxides, orthorhombic-type titanium-containing oxides, and monoclinic titanium-containing oxides.
  • the lithium-titanium composite oxide includes lithium-titanium oxide and a lithium-titanium composite oxide in which some of the constituent elements of the lithium-titanium oxide are replaced with different elements.
  • the lithium titanium oxide include lithium titanate having a spinel structure (for example, Li 4 + x Ti 5 O 12 (x is a value that changes by charging and discharging, 0 ⁇ x ⁇ 3)), and ramsdellite-type titanic acid.
  • Lithium for example, Li 2 + y Ti 3 O 7 (y is a value that changes depending on charge and discharge, 0 ⁇ y ⁇ 3)
  • Lithium for example, Li 2 + y Ti 3 O 7 (y is a value that changes depending on charge and discharge, 0 ⁇ y ⁇ 3)
  • the molar ratio of oxygen is formally shown as 12 in spinel type Li 4 + x Ti 5 O 12 and 7 in ramsdellite type Li 2 + y Ti 3 O 7 , but these are influenced by oxygen nonstoichiometry and the like. Can vary.
  • metal composite oxides containing Ti and at least one element selected from the group consisting of P, V, Sn, Cu, Ni, Nb and Fe include, for example, TiO 2 —P 2 O 5 , TiO 2 2- V 2 O 5 , TiO 2 -P 2 O 5 -SnO 2 , TiO 2 -P 2 O 5 -MeO (Me is at least one element selected from the group consisting of Cu, Ni and Fe ). It is preferable that the metal composite oxide has low crystallinity, and has a microstructure in which a crystalline phase and an amorphous phase coexist or an amorphous phase exists alone. With such a microstructure, cycle performance can be significantly improved.
  • composition of anatase, rutile and bronze titanium-containing oxides can be represented by TiO 2 .
  • the orthorhombic titanium-containing oxide is represented by a general formula Li 2 + w Na 2 ⁇ x M1 y Ti 6 ⁇ z M2 z O 14 + ⁇ , M1 is Cs and / or K, and M2 is Zr, Sn, V , Nb, Ta, Mo, W, Fe, Co, Mn, and a compound containing at least one of Al, 0 ⁇ w ⁇ 4, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 6, ⁇ 0.5 ⁇ ⁇ ⁇ 0.5.
  • the monoclinic niobium titanium-containing oxide is represented by the general formula Li x Ti 1-y M3 y Nb 2-z M4 z O 7 + ⁇ , where M3 is composed of Zr, Si, Sn, Fe, Co, Mn and Ni. At least one selected from the group; M4 is a compound selected from the group consisting of V, Nb, Ta, Mo, W and Bi, and 0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 2, ⁇ 0.3 ⁇ ⁇ ⁇ 0.3.
  • a preferable negative electrode active material contains a lithium titanium composite oxide.
  • a negative electrode containing a titanium-containing oxide such as a lithium-titanium composite oxide has a Li occlusion potential of 0.4 V (vs. Li / Li + ) or higher. The precipitation of metallic lithium on the above can be prevented.
  • the negative electrode active material may contain an active material other than the lithium-titanium composite oxide. In this case, use an active material having a Li storage potential of 0.4 V (vs. Li / Li + ) or more. Is desirable.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, styrene-butadiene rubber (SBR), carboxymethylcellulose (CMC), polyimide, and polyamide.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • SBR styrene-butadiene rubber
  • CMC carboxymethylcellulose
  • polyimide polyimide
  • polyamide polyamide
  • Examples of the negative electrode conductive agent include carbon black such as acetylene black and Ketjen black, graphite, carbon fiber, carbon nanotube, and fullerene.
  • the kind of the conductive agent can be one kind or two or more kinds.
  • the mixing ratio of the negative electrode active material, the conductive agent, and the binder in the negative electrode active material-containing layer is 70% by weight or more and 96% by weight or less of the negative electrode active material, 2% by weight or more and 28% by weight or less of the conductive agent, and 2% by weight of the binder. It is preferable that the content be at least 28% by weight.
  • the conductive agent in a proportion of 2% by weight or more, excellent large current characteristics due to high current collecting performance can be obtained.
  • the amount of the binder is 2% by weight or more, the binding property between the negative electrode active material-containing layer and the negative electrode current collector can be increased, and the cycle characteristics can be improved.
  • each of the negative electrode conductive agent and the binder is preferably 28% by weight or less.
  • the current collector is preferably an aluminum foil or an aluminum alloy foil which is electrochemically stable in a potential range noble than 1.0 V.
  • a negative electrode active material, a negative electrode conductive agent and a binder are suspended in an appropriate solvent, the obtained slurry is applied to a negative electrode current collector, and dried to form a negative electrode active material-containing layer. It is produced by applying a press.
  • the negative electrode active material, the negative electrode conductive agent, and the binder may be formed in a pellet shape and used as the negative electrode active material-containing layer.
  • the negative electrode active material-containing layer preferably has a porosity of 20% or more and 50% or less.
  • the negative electrode active material-containing layer having such a porosity is excellent in affinity with the nonaqueous electrolyte and can achieve high density. More preferable porosity is 25% or more and 40% or less.
  • the density of the negative electrode active material-containing layer is preferably set to 2.0 g / cm 3 or more.
  • Non-aqueous electrolyte examples include a liquid non-aqueous electrolyte prepared by dissolving the electrolyte in a non-aqueous solvent, and a gel non-aqueous electrolyte obtained by combining a liquid non-aqueous electrolyte and a polymer material.
  • the electrolyte is, for example, lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), lithium difluorophosphate Lithium salts such as (LiPO 2 F 2 ), lithium trifluorometasulfonic acid (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ], lithium aluminum tetrafluoride (LiAlF 4 ) Can be mentioned. These electrolytes may be used alone or in combination of two or more.
  • the electrolyte preferably contains lithium hexafluorophosphate or lithium aluminum tetrafluoride, and more preferably contains lithium hexafluorophosphate and lithium aluminum tetrafluoride.
  • the electrolyte is preferably dissolved in the nonaqueous solvent in a range of 0.5 mol / L to 2.5 mol / L.
  • Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC); chains such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) Cyclic ethers such as tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2MeTHF); chain ethers such as dimethoxyethane (DME); cyclic esters such as ⁇ -butyrolactone (BL); methyl acetate, ethyl acetate and methyl propionate And linear solvents such as ethyl propionate; organic solvents such as acetonitrile (AN) and sulfolane (SL). These organic solvents can be used alone or in the form of a mixture of two or more.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and
  • Examples of the polymer material used for the gel non-aqueous electrolyte include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), and polyethylene oxide (PEO).
  • PVdF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • PEO polyethylene oxide
  • the separator examples include a porous film containing polyethylene, polypropylene, cellulose, or polyvinylidene fluoride (PVdF), and a nonwoven fabric made of a synthetic resin.
  • PVdF polyvinylidene fluoride
  • the exterior member may be formed from a laminate film or a metal container. If a metal container is used, the lid can be integral with or separate from the container.
  • the thickness of the metal container is more preferably 0.5 mm or less, and more preferably 0.2 mm or less.
  • Examples of the shape of the exterior member include a flat type, a square type, a cylindrical type, a coin type, a button type, a sheet type, and a laminated type. In addition to a small battery mounted on a portable electronic device or the like, a large battery mounted on a two-wheeled or four-wheeled vehicle may be used.
  • the thickness of the laminate film exterior member is desirably 0.2 mm or less.
  • the laminate film include a multilayer film including a resin film and a metal layer disposed between the resin films.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
  • a polymer material such as polypropylene (PP), polyethylene (PE), nylon, or polyethylene terephthalate (PET) can be used.
  • the laminate film can be formed into a shape of an exterior member by performing sealing by heat fusion.
  • the metal container is made of aluminum or aluminum alloy.
  • the aluminum alloy an alloy containing an element such as magnesium, zinc, or silicon is preferable.
  • the content of transition metals such as iron, copper, nickel, and chromium is preferably 100 ppm or less in order to dramatically improve long-term reliability and heat dissipation under a high-temperature environment.
  • the metal container made of aluminum or an aluminum alloy preferably has an average crystal grain size of 50 ⁇ m or less, more preferably 30 ⁇ m or less, and still more preferably 5 ⁇ m or less.
  • the average crystal grain size By setting the average crystal grain size to 50 ⁇ m or less, the strength of a metal container made of aluminum or an aluminum alloy can be remarkably increased, and the thickness of the container can be further reduced. As a result, it is possible to realize a nonaqueous electrolyte battery that is lightweight, has a high output, and is excellent in long-term reliability and is suitable for a vehicle or the like.
  • FIG. 1 is a partially cutaway perspective view of an example of the nonaqueous electrolyte battery according to the second embodiment.
  • FIG. 2 is an enlarged sectional view of a portion A of the nonaqueous electrolyte battery shown in FIG.
  • the nonaqueous electrolyte battery 100 shown in FIGS. 1 and 2 includes a flat electrode group 1 and a package member 7 made of a laminated film.
  • the flat electrode group 1 includes a negative electrode 2, a positive electrode 3, and a separator 4.
  • the flat electrode group 1 is formed by winding a negative electrode 2 and a positive electrode 3 into a flat shape with a separator 4 interposed therebetween.
  • the negative electrode 2 includes a negative electrode current collector 21 and a negative electrode active material containing layer 22 supported on the negative electrode current collector 21.
  • a negative electrode active material-containing layer 22 is formed on a main surface of the two main surfaces of the negative electrode current collector 21 not facing the positive electrode 3. Not carried.
  • the negative electrode active material-containing layer 22 is supported on both main surfaces of the negative electrode current collector.
  • the positive electrode 3 includes a positive electrode current collector 31 and a positive electrode active material-containing layer 32 supported on two main surfaces of the positive electrode current collector 31.
  • a strip-shaped negative electrode terminal 5 is electrically connected to the negative electrode 2.
  • a strip-shaped positive electrode terminal 6 is electrically connected to the positive electrode 3.
  • the electrode group 1 is housed in the exterior member 7 made of a laminated film with the ends of the negative terminal 5 and the positive terminal 6 extending from the exterior member 7.
  • a non-aqueous electrolyte (not shown) is accommodated in the exterior member 7 made of a laminate film.
  • the non-aqueous electrolyte is impregnated in the electrode group 1.
  • the exterior member 7 made of a laminate film is sealed by heat-sealing the end portion and the two end portions 71 orthogonal to the end portion with the negative electrode terminal 5 and the positive electrode terminal 6 sandwiched at one end. Have been.
  • FIG. 3 is an exploded perspective view of another example of the nonaqueous electrolyte battery according to the second embodiment.
  • the non-aqueous electrolyte battery 100 shown in FIG. 3 includes the container body 7, the lid 8, and the electrode group 1.
  • the container body 7 is made of metal and has a shape of a bottomed rectangular tube having an opening.
  • a lid 8 is arranged at the opening of the container body 7 and is closed thereby.
  • the container body 7 contains the electrode group 1 and a non-aqueous electrolyte (not shown).
  • the container body 7 and the lid 8 constitute an exterior member.
  • the lid 8 has a sealing plate 81.
  • the sealing plate 81 is desirably made of the same type of metal as the container body 7.
  • the peripheral edge of the sealing plate 81 is welded to the peripheral edge of the opening of the container body 7.
  • the sealing plate 81 is provided with a safety valve 82 that can operate as a gas release structure.
  • the safety valve 82 includes a cross groove 83 provided on the bottom surface of a rectangular concave portion provided on the sealing plate 81.
  • the portion of the sealing plate 81 where the groove 83 is provided is particularly thin. Therefore, when the internal pressure of the container main body 7 increases, the groove 83 can be broken to release the gas in the container main body 7 to the outside.
  • the sealing plate 81 is provided with a liquid injection hole 81a.
  • a positive electrode terminal 84, a negative electrode terminal 85, two external insulating materials 86, two internal insulating materials (not shown), and two terminal leads 87 are fixed to the sealing plate 81.
  • the electrode group 1 includes a positive electrode (not shown), a negative electrode (not shown), and a separator (not shown).
  • a positive electrode and a negative electrode are wound in a flat shape with a separator interposed therebetween.
  • the electrode group 1 is impregnated with a non-aqueous electrolyte (not shown).
  • the positive electrode includes a belt-shaped positive electrode current collector and a positive electrode active material-containing layer formed on a part of the surface of the current collector.
  • the positive electrode current collector includes a plurality of positive electrode current collector tabs 33 each having no positive electrode active material-containing layer formed on the surface.
  • the plurality of positive electrode current collection tabs 33 extend from the end face of the electrode group 1 facing the lid 8. In FIG. 3, the plurality of positive electrode current collecting tabs 33 are described as one member 33 which is an aggregate.
  • the negative electrode includes a strip-shaped negative electrode current collector and a negative electrode active material-containing layer formed on a part of the surface of the current collector.
  • the negative electrode current collector includes a plurality of negative electrode current collector tabs 23 each having no negative electrode active material-containing layer formed on the surface.
  • the plurality of negative electrode current collection tabs 23 extend from the end face of the electrode group 1 facing the lid 8. In FIG. 3, the plurality of negative electrode current collecting tabs 23 are described as one member 23 which is an aggregate.
  • the two terminal leads 87 are fixed to the sealing plate 81 together with the positive terminal 84 and the negative terminal 85, two external insulating materials 86, and two internal insulating materials.
  • the positive terminal 84 and the negative terminal 85 are electrically insulated from the sealing plate 81, respectively.
  • the two terminal leads 87 are also insulated from the sealing plate 81.
  • the positive electrode terminal 84 is electrically connected to one terminal lead 87 fixed to the sealing plate 81 together with the positive electrode terminal 84.
  • the negative electrode terminal 85 is electrically connected to the other terminal lead 87 fixed to the sealing plate 81 together with the negative electrode terminal 85.
  • the injection hole 81 a provided in the sealing plate 81 forms a liquid injection passage for injecting the nonaqueous electrolyte from the outside into the inside of the nonaqueous electrolyte battery 100.
  • the liquid injection hole 81a is closed by a metal sealing lid 9. The peripheral edge of the sealing lid 9 is welded to the sealing plate 81.
  • the terminal lead 87 electrically connected to the positive electrode terminal 84 is electrically connected to the positive electrode current collecting tab 33.
  • the terminal lead 87 electrically connected to the negative terminal 85 is electrically connected to the negative current collecting tab 23.
  • the nonaqueous electrolyte battery according to the second embodiment includes the positive electrode according to the first embodiment, gas generation in the battery and an increase in battery resistance can be suppressed.
  • a battery pack including a non-aqueous electrolyte battery is provided.
  • the non-aqueous electrolyte battery according to the first embodiment is used as the non-aqueous electrolyte battery.
  • the number of nonaqueous electrolyte batteries (cells) included in the battery pack can be one or more.
  • a plurality of non-aqueous electrolyte batteries can be electrically connected in series, in parallel, or in a combination of series and parallel to form an assembled battery.
  • the battery pack may include a plurality of assembled batteries.
  • the battery pack may further include a protection circuit.
  • the protection circuit has a function of controlling charging and discharging of the nonaqueous electrolyte battery.
  • a circuit included in a device for example, an electronic device, an automobile, or the like
  • a protection circuit for the battery pack can be used as a protection circuit for the battery pack.
  • the battery pack may further include an external terminal for energization.
  • the external terminals for energization are for outputting a current from the nonaqueous electrolyte battery to the outside and for inputting a current to the nonaqueous electrolyte battery.
  • a current is supplied to the outside through an external terminal for conduction.
  • a charging current (including regenerative energy of the power of the vehicle) is supplied to the battery pack through an external terminal for power supply.
  • FIG. 4 is an exploded perspective view of an example of the battery pack according to the third embodiment.
  • FIG. 5 is a block diagram showing an electric circuit of the battery pack shown in FIG.
  • the battery pack 200 shown in FIGS. 4 and 5 includes a plurality of flat batteries 100 having the structure shown in FIGS.
  • the plurality of cells 100 are stacked so that the negative electrode external terminal 5 and the positive electrode external terminal 6 extending to the outside are aligned in the same direction, and are fastened with the adhesive tape 122, thereby forming the assembled battery 123. ing. These cells 100 are electrically connected to each other in series as shown in FIG.
  • the printed wiring board 124 is disposed to face the side surface of the plurality of unit cells 100 from which the negative electrode external terminals 5 and the positive electrode external terminals 6 extend. As shown in FIG. 5, a thermistor 125, a protection circuit 126, and a terminal 127 for energizing an external device are mounted on the printed wiring board 124. An insulating plate (not shown) is attached to the surface of the printed wiring board 124 facing the battery module 123 to avoid unnecessary connection with the wiring of the battery module 123.
  • a positive electrode lead 128 is connected to the positive electrode external terminal 6 of the cell 100 located at the lowermost layer of the assembled battery 123, and the tip is inserted into the positive electrode connector 129 of the printed wiring board 124 and electrically connected.
  • the negative electrode-side lead 130 is connected to the negative electrode external terminal 5 of the unit cell 100 located on the uppermost layer of the assembled battery 123, and the tip is inserted into the negative electrode-side connector 131 of the printed wiring board 124 to be electrically connected.
  • These connectors 129 and 131 are connected to the protection circuit 126 through wirings 132 and 133 formed on the printed wiring board 124, respectively.
  • the thermistor 125 detects the temperature of each of the cells 100 and transmits a detection signal to the protection circuit 126.
  • the protection circuit 126 can cut off the plus side wiring 134a and the minus side wiring 134b between the protection circuit 126 and the terminal 127 for energizing the external device under a predetermined condition.
  • An example of the predetermined condition is when a signal indicating that the temperature of the cell 100 is equal to or higher than the predetermined temperature is received from the thermistor 125, for example.
  • Another example of the predetermined condition is when overcharge, overdischarge, overcurrent, or the like of the cell 100 is detected. The detection of the overcharge or the like is performed for each single cell 100 or the whole single cell 100.
  • the battery voltage When detecting the individual cells 100, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each unit cell 100.
  • wiring 135 for voltage detection is connected to each of the cells 100, and a detection signal is transmitted to the protection circuit 126 through these wirings 135.
  • a protective sheet 136 made of rubber or resin is disposed on each of three sides of the battery pack 123 except for the side from which the positive external terminal 6 and the negative external terminal 5 protrude.
  • the battery pack 123 is stored in the storage container 137 together with the protective sheets 136 and the printed wiring board 124. That is, the protective sheets 136 are disposed on both the inner surfaces in the long side direction and the inner surfaces in the short side direction of the storage container 137, and the printed wiring board 124 is disposed on the inner surface on the opposite side in the short side direction. I have.
  • the assembled battery 123 is located in a space surrounded by the protection sheet 136 and the printed wiring board 124.
  • the lid 138 is attached to the upper surface of the storage container 137.
  • a heat-shrinkable tape may be used instead of the adhesive tape 122 for fixing the battery assembly 123.
  • the protective sheets are arranged on both sides of the battery pack, and the heat-shrinkable tube is made to rotate. Then, the heat-shrinkable tube is heat-shrinked to bind the battery pack.
  • the battery pack 200 shown in FIGS. 4 and 5 has a configuration in which a plurality of unit cells 100 are connected in series
  • the battery pack according to the third embodiment includes a plurality of unit cells 100 in order to increase the battery capacity. May be connected in parallel.
  • the battery pack according to the third embodiment may include a plurality of unit cells 100 connected by combining a series connection and a parallel connection. The assembled battery pack 200 can be further connected in series or in parallel.
  • the battery pack 200 shown in FIGS. 4 and 5 includes a plurality of single cells 100, but the battery pack according to the third embodiment may include one single cell 100.
  • the form of battery pack 200 is appropriately changed depending on the application.
  • a battery in which cycle characteristics with large current characteristics are desired is preferable.
  • Specific examples include a power source for a digital camera, a two-wheel or four-wheel hybrid electric vehicle, a two-wheel or four-wheel electric vehicle, and an on-board vehicle such as an assist bicycle.
  • the on-vehicle use is preferable.
  • the battery pack is for recovering, for example, regenerative energy of the power of the vehicle.
  • the battery pack of the third embodiment includes the nonaqueous electrolyte battery of the first embodiment. Therefore, the battery pack according to the third embodiment can suppress generation of gas in the battery and an increase in battery resistance.
  • Example 1 In Example 1, the positive electrode and the nonaqueous electrolyte battery of Example 1 were produced by the following procedure.
  • LiMn 1.9 Al 0.1 O 4 and lithium cobalt oxide (LCO) represented by the composition formula LiCoO 2 And the particles were prepared.
  • the LMO particles contained secondary particles, and the average secondary particle diameter was 10 ⁇ m.
  • the average particle size of the LCO primary particles was 8 ⁇ m.
  • acetylene black and graphite as conductive agents, and polyvinylidene fluoride (PVdF) as binders were prepared.
  • a positive electrode slurry was prepared. This positive electrode slurry was applied to both surfaces of a current collector made of an aluminum foil having a thickness of 15 ⁇ m, dried, and then pressed to produce a positive electrode having a positive electrode active material-containing layer having a basis weight of 80 g / m 2 on one surface.
  • NMP N-methylpyrrolidone
  • LTO spinel type lithium titanate
  • graphite as a conductive agent
  • PVdF as a binder
  • a negative electrode slurry was prepared. This negative electrode slurry was applied to both surfaces of a current collector made of an aluminum foil having a thickness of 15 ⁇ m, dried, and then pressed to produce a negative electrode having a negative electrode active material-containing layer having a basis weight of 40 g / m 2 on one surface.
  • ⁇ Preparation of electrode group> The positive electrode prepared as described above, the resin separator having a thickness of 15 ⁇ m, the negative electrode prepared as described above, and another separator were laminated in this order to obtain a laminate. This laminate was spirally wound so that the negative electrode was located at the outermost periphery, to produce an electrode group. After removing the core, the wound laminate was subjected to a hot press at 90 ° C. Thus, a flat electrode group having a width of 50 mm, a height of 95 mm, and a thickness of 10 mm was produced.
  • EMC Ethyl methyl carbonate
  • EC ethylene carbonate
  • LiPF 6 Li hexafluorophosphate
  • LiAlF 4 Li aluminum tetrafluoride
  • the electrode group in the outer container to which the sealing plate was attached was put into a drier, and vacuum-dried at 95 ° C. for 6 hours. After drying, it was transported to a glove box controlled at a dew point of ⁇ 50 ° C. or lower. 70 ml of the previously prepared non-aqueous electrolyte was injected from the inlet of the sealing plate. After the non-aqueous electrolyte was injected, the injection port was sealed with a sealing lid under a reduced pressure environment of -90 kPa.
  • the SOC was adjusted to 100% by charging at a rate of 1 C under an environment of 25 ° C. Next, it was left in a constant temperature bath at 70 ° C. for 24 hours to perform aging. After aging, the outer container was opened and sealed again under a reduced pressure environment of -90 kPa.
  • Example 2 In Example 2, as shown in Table 1, the non-aqueous electrolyte of Example 2 was prepared in the same manner as in Example 1 except that LiAlF 4 was dissolved at a concentration of 0.03 mol / L to prepare a non-aqueous electrolyte. A battery was manufactured.
  • Example 3 In Example 3, as shown in Table 1, the non-aqueous electrolyte of Example 3 was prepared in the same manner as in Example 1 except that LiAlF 4 was dissolved at a concentration of 0.002 mol / L to prepare a non-aqueous electrolyte. A battery was manufactured.
  • Example 4 In Example 4, as shown in Table 1, except for using particles of LMO represented by a composition formula LiMn 1.8 Al 0.2 O 4 in the same manner as in Example 1, a non-embodiment 4 A water electrolyte battery was manufactured.
  • Example 5 In Example 5, as shown in Table 1, for the use of the particles of the LMO represented by a composition formula LiMn 1.8 Al 0.2 O 4, and LiAlF 4 was dissolved at a concentration of 0.002 mol / L A non-aqueous electrolyte battery of Example 5 was produced in the same manner as in Example 1 except that the non-aqueous electrolyte was prepared.
  • Example 6 In Example 6, as shown in Table 1, except that particles of LMO represented by the composition formula LiMn 1.6 Al 0.4 O 4 were used, A water electrolyte battery was manufactured.
  • Example 7 In Example 7, as shown in Table 1, the LMO particles represented by the composition formula LiMn 1.6 Al 0.4 O 4 were used, and Example 1 was performed except that LiAlF 4 was not added. In the same manner as in the above, a non-aqueous electrolyte battery of Example 7 was produced.
  • Example 8 In Example 8, as shown in Table 1, a non-aqueous electrolyte battery of Example 8 was produced in the same manner as in Example 1 except that LiAlF 4 was not added.
  • Example 9 In Example 9, as shown in Table 1, the non-aqueous electrolyte of Example 9 was prepared in the same manner as in Example 1 except that LiAlF 4 was dissolved at a concentration of 0.1 mol / L to prepare a non-aqueous electrolyte. A battery was manufactured.
  • Example 10 In Example 10, after injecting and sealing under reduced pressure in the same manner as in Example 1, the voltage after sealing was adjusted to 2.4 V by charging at a 1C rate in an environment of 25 ° C. Next, it was left in a constant temperature bath at 70 ° C. for 24 hours to perform aging. After aging, the outer container was opened, and sealed again under a reduced pressure environment of -90 kPa to produce a nonaqueous electrolyte battery of Example 10.
  • Example 11 In Example 11, as shown in Table 1, the particles of LMO represented by the composition formula LiMn 1.6 Al 0.4 O 4 were used, and Example 1 was repeated except that LiAlF 4 was not added. After injecting and sealing under reduced pressure in the same manner as described above, the one after sealing was adjusted to 2.4 V by charging at a 1C rate in a 25 ° C. environment. Next, it was left in a constant temperature bath at 70 ° C. for 24 hours to perform aging. After aging, the outer container was opened and sealed again under a reduced pressure environment of -90 kPa, to produce a nonaqueous electrolyte battery of Example 11.
  • Comparative Example 1 was the same as Example 1 except that LMO particles represented by the composition formula LiMn 1.9 Al 0.1 O 4 were used and LCO particles were not added, as shown in Table 1. Thus, a non-aqueous electrolyte battery of Comparative Example 1 was produced.
  • FIGS. 6 and 7 show the results of subjecting the surface of the positive electrode active material-containing layer provided in the nonaqueous electrolyte battery of Example 7 to X-ray photoelectron spectroscopy measurement according to the method described above.
  • the spectra shown in FIGS. 6 and 7 are actually measured XPS spectra.
  • the horizontal axis is binding energy eV. 6 is counts / s (Resid ⁇ 2) (Counts / s (Resid ⁇ 2)), and the vertical scale of the residual is 2.
  • the spectrum shown in FIG. 6 has a peak P1 having a maximum peak height in the range of 70 eV or more and less than 75 eV with an Al binding energy of 73.6 eV, and a peak having a maximum peak height in the range of 75 eV or more and 78 eV or less.
  • the binding energy of Al of P2 was 75.5 eV. From this, it can be seen that one peak P1 and one peak P2 attributed to electrons in the 2p orbital of Al are included in the region of the binding energy in the range of 70 eV or more and less than 75 eV and in the range of 75 eV or more and 78 eV or less.
  • the Mn binding energy of the peak P3 having the maximum peak height in the range of 638 eV to 645 eV was 642.5 eV.
  • one region of the binding energy within the range of 638 eV or more and 645 eV or less contains one peak P3 attributed to the electron in the 2p3 / 2 orbit of Mn.
  • two peaks attributed to electrons in the 2p orbital of Al appear in a binding energy region of 70 eV or more and 78 eV or less, in a range of 70 eV or more and less than 75 eV. And that the binding energy in the range of 75 eV or more and 78 eV or less includes one peak each belonging to an electron in the 2p orbit of Al.
  • the binding energy in the range of 638 eV or more and 645 eV or less contains Mn It was confirmed that one peak attributed to 2p 3/2 orbital electrons was included, and that each element of Li, C, O, F, P, Ti, and Co was included in the positive electrode active material containing layer. confirmed.
  • Table 2 shows the results of measuring the 0.2 second discharge resistance of each of the nonaqueous electrolyte batteries of Examples 1 to 11 and Comparative Example 1 at 25 ° C after storage.
  • the non-aqueous electrolyte batteries of Examples 1 to 11 had smaller cell thickness after storage than the non-aqueous electrolyte batteries of Comparative Example 1. Further, the non-aqueous electrolyte batteries of Examples 1 to 11 exhibited the same 0.2-second resistance as that of Comparative Example 1 and the 0.2-second resistance after storage.
  • the nonaqueous electrolyte batteries of Examples 1 to 11 suppress gas generation as compared with the nonaqueous electrolyte batteries of Comparative Example 1. This is considered to be because the nonaqueous electrolyte battery of Comparative Example 1 did not contain LiCoO 2 in the positive electrode active material, so that the generated gas could not be absorbed.
  • non-aqueous electrolyte batteries of Examples 1 to 7 all had small cell thickness after storage, discharge resistance for 0.2 second, and resistance for 0.2 second after storage.
  • the positive electrode according to at least one of the embodiments and examples described above includes a positive electrode active material-containing layer containing a positive electrode active material including a lithium manganese composite oxide and lithium cobalt oxide, and includes a positive electrode active material-containing layer.
  • a positive electrode active material-containing layer containing a positive electrode active material including a lithium manganese composite oxide and lithium cobalt oxide
  • G is the weight ratio of the lithium manganese composite oxide in the positive electrode active material.
  • H is the weight ratio of lithium cobalt oxide in the positive electrode active material.
  • the nonaqueous electrolyte battery provided with this positive electrode can suppress gas generation while suppressing an increase in resistance value. As a result, this non-aqueous electro

Abstract

According to an embodiment, provided is a positive electrode. The positive electrode includes a positive electrode active material-containing layer, the positive electrode active material including a lithium manganese composite oxide and a lithium cobalt oxide. The positive electrode active material-containing layer has a surface in which a plurality of peaks of Al binding energy in the X-ray photoelectron spectroscopy spectrum are in the range of 70-78 eV. The positive electrode active material-containing layer satisfies the relational formula of 0<H/(G+H)≤0.1. Here, G is the weight percentage of the lithium manganese composite oxide in the positive electrode active material. H is the weight percentage of the lithium cobalt oxide in the positive electrode active material.

Description

正極、非水電解質電池、及び電池パックPositive electrode, non-aqueous electrolyte battery, and battery pack
 本発明の実施形態は、正極、非水電解質電池、及び電池パックに関する。 The embodiment of the present invention relates to a positive electrode, a non-aqueous electrolyte battery, and a battery pack.
 非水電解質電池は、高充電状態にすると、電極の表面において自己放電が起こることで、電解液の分解反応が生じる。例えば、正極の表面では酸化反応が生じて酸化性ガス(例えば二酸化炭素)が発生する。ガスが発生すると、電池が膨張し、内部抵抗が上昇する。このようなガス発生は、電池の安全性を低下させる要因となり得るという問題がある。 When the non-aqueous electrolyte battery is in a high charge state, self-discharge occurs on the surface of the electrode, and a decomposition reaction of the electrolyte occurs. For example, an oxidation reaction occurs on the surface of the positive electrode to generate an oxidizing gas (for example, carbon dioxide). When gas is generated, the battery expands and the internal resistance increases. There is a problem that such gas generation can be a factor that lowers the safety of the battery.
特開2010-232001号公報JP 2010-23001 A 特開2016-48671号公報JP 2016-48671 A
 本発明が解決しようとする課題は、ガス発生が抑制された正極と、この正極を含む非水電解質電池及び電池パックとを提供することである。 The problem to be solved by the present invention is to provide a positive electrode in which gas generation is suppressed, and a nonaqueous electrolyte battery and a battery pack including the positive electrode.
 実施形態によれば、正極が提供される。正極は、正極活物質含有層を含む。正極活物質含有層は、正極活物質を含む。正極活物質は、リチウムマンガン複合酸化物とコバルト酸リチウムとを含む。正極活物質含有層は、X線光電子分光スペクトルにおけるAlの結合エネルギーの複数のピークが70eV以上78eV以下の範囲内にある表面を有する。正極活物質含有層は、0<H/(G+H)≦0.1の関係式を満たす。ここで、Gは、正極活物質中のリチウムマンガン複合酸化物の重量比率である。Hは、正極活物質中のコバルト酸リチウムの重量比率である。
 他の実施形態によれば、非水電解質電池が提供される。非水電解質電池は、実施形態の正極と、負極と、非水電解質とを備える。
 他の実施形態によれば、電池パックが提供される。電池パックは、実施形態の非水電解質電池を備える。
According to an embodiment, a positive electrode is provided. The positive electrode includes a positive electrode active material containing layer. The positive electrode active material containing layer contains a positive electrode active material. The positive electrode active material contains a lithium manganese composite oxide and lithium cobalt oxide. The positive electrode active material-containing layer has a surface having a plurality of Al binding energy peaks in the range of 70 eV to 78 eV in the X-ray photoelectron spectroscopy spectrum. The positive electrode active material-containing layer satisfies the relational expression of 0 <H / (G + H) ≦ 0.1. Here, G is a weight ratio of the lithium manganese composite oxide in the positive electrode active material. H is the weight ratio of lithium cobalt oxide in the positive electrode active material.
According to another embodiment, a non-aqueous electrolyte battery is provided. The non-aqueous electrolyte battery includes the positive electrode of the embodiment, a negative electrode, and a non-aqueous electrolyte.
According to another embodiment, a battery pack is provided. The battery pack includes the nonaqueous electrolyte battery of the embodiment.
図1は、第2の実施形態に係る非水電解質電池の一例の一部切欠斜視図である。FIG. 1 is a partially cutaway perspective view of an example of a nonaqueous electrolyte battery according to a second embodiment. 図2は、図1に示す非水電解質電池のA部の拡大断面図である。FIG. 2 is an enlarged sectional view of a portion A of the nonaqueous electrolyte battery shown in FIG. 図3は、第2の実施形態に係る非水電解質電池の別の例の分解斜視図である。FIG. 3 is an exploded perspective view of another example of the nonaqueous electrolyte battery according to the second embodiment. 図4は、第3の実施形態に係る電池パックの一例の分解斜視図である。FIG. 4 is an exploded perspective view of an example of the battery pack according to the third embodiment. 図5は、図4に示す電池パックの電気回路を示すブロック図である。FIG. 5 is a block diagram showing an electric circuit of the battery pack shown in FIG. 図6は、実施例7の正極の正極活物質含有層についての1つのXPSスペクトルである。FIG. 6 is one XPS spectrum of the positive electrode active material-containing layer of the positive electrode of Example 7. 図7は、実施例7の正極の正極活物質含有層についての別のXPSスペクトルである。FIG. 7 is another XPS spectrum of the positive electrode active material-containing layer of the positive electrode of Example 7.
 以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。 Hereinafter, embodiments will be described with reference to the drawings. It is to be noted that the same reference numerals are given to the same components throughout the embodiments, and redundant description will be omitted. In addition, each drawing is a schematic diagram for promoting the explanation and understanding of the embodiment, and the shape, dimensions, ratio, and the like are different from the actual device. In consideration of the above, the design can be changed as appropriate.
 (第1の実施形態)
 第1の実施形態によれば、正極が提供される。正極は、正極活物質含有層を含む。正極活物質含有層は、正極活物質を含む。正極活物質は、リチウムマンガン複合酸化物とコバルト酸リチウムとを含む。正極活物質含有層は、X線光電子分光スペクトルにおけるAlの結合エネルギーの複数のピークが70eV以上78eV以下の範囲内にある表面を有する。正極活物質含有層は、下記式(1)を満たす。
(1st Embodiment)
According to a first embodiment, a positive electrode is provided. The positive electrode includes a positive electrode active material containing layer. The positive electrode active material containing layer contains a positive electrode active material. The positive electrode active material contains a lithium manganese composite oxide and lithium cobalt oxide. The positive electrode active material-containing layer has a surface having a plurality of Al binding energy peaks in the range of 70 eV to 78 eV in the X-ray photoelectron spectroscopy spectrum. The positive electrode active material-containing layer satisfies the following formula (1).
 0<H/(G+H)≦0.1 (1)
 ここで、Gは、正極活物質中のリチウムマンガン複合酸化物の重量比率である。Hは、正極活物質中のコバルト酸リチウムの重量比率である。
0 <H / (G + H) ≦ 0.1 (1)
Here, G is a weight ratio of the lithium manganese composite oxide in the positive electrode active material. H is the weight ratio of lithium cobalt oxide in the positive electrode active material.
 リチウムマンガン複合酸化物とコバルト酸リチウムとを含む正極活物質は、非水電解質及び不可避不純物である微量の水分が反応することで発生する化合物、例えばフッ酸(HF)などと接触することにより、例えば、水素や一酸化炭素などのガスを発生する。このようなガス発生により、例えば、上記の正極活物質を含む正極を備える非水電解質電池では、非水電解質電池が膨張することによって内部抵抗が上昇する。これにより、非水電解質電池の安全性が低下する可能性がある。 A positive electrode active material containing a lithium manganese composite oxide and lithium cobalt oxide is brought into contact with a compound generated by a reaction between a nonaqueous electrolyte and a trace amount of water, which is an unavoidable impurity, such as hydrofluoric acid (HF). For example, a gas such as hydrogen or carbon monoxide is generated. Due to such gas generation, for example, in a non-aqueous electrolyte battery including a positive electrode including the above-described positive electrode active material, the internal resistance increases due to expansion of the non-aqueous electrolyte battery. Thereby, the safety of the nonaqueous electrolyte battery may be reduced.
 そこで、正極活物質含有層が、X線光電子分光スペクトルにおけるAlの結合エネルギーの複数のピークが70eV以上78eV以下の範囲内にある表面を有するようにする。この表面は、上記の正極活物質と、非水電解質及び水分の反応により発生する化合物とが直接接触するのを防止することができる。その結果、ガス発生を抑制することができる。 Therefore, the positive electrode active material-containing layer has a surface where a plurality of peaks of the binding energy of Al in the X-ray photoelectron spectroscopy spectrum are in the range of 70 eV to 78 eV. This surface can prevent direct contact between the positive electrode active material and a compound generated by a reaction between the nonaqueous electrolyte and moisture. As a result, gas generation can be suppressed.
 また、正極活物質含有層は、式(1)を満たす。この正極活物質含有層は、ガスを吸収することができるコバルト酸リチウムを所定量含んでいるため、発生したガスを吸収することができる。 (4) The positive electrode active material-containing layer satisfies the formula (1). Since the positive electrode active material-containing layer contains a predetermined amount of lithium cobalt oxide capable of absorbing a gas, the generated gas can be absorbed.
 よって、正極活物質含有層が、X線光電子分光スペクトルにおけるAlの結合エネルギーの複数のピークが70eV以上78eV以下の範囲内にある表面を有すると共に、式(1)を満たすことにより、ガス発生を抑制することができる。 Therefore, the positive electrode active material-containing layer has a surface where a plurality of peaks of Al binding energy in the X-ray photoelectron spectroscopy spectrum are in the range of 70 eV or more and 78 eV or less, and satisfies the expression (1) to reduce gas generation. Can be suppressed.
 正極活物質含有層は、X線光電子分光スペクトルにおけるAlの結合エネルギーの複数のピークが、70eV以上75eV未満の範囲内及び75eV以上78eV以下の範囲内にそれぞれ少なくとも1つある表面を有することが望ましい。 It is preferable that the positive electrode active material-containing layer has a surface in which a plurality of peaks of the binding energy of Al in the X-ray photoelectron spectroscopy spectrum are at least one in a range of 70 eV or more and less than 75 eV and in a range of 75 eV or more and 78 eV or less. .
 これを満たす表面を有する正極活物質含有層は、AlとOとの結合及びAlとFとの結合を含む表面を有しているため、正極活物質と、非水電解質及び水分の反応により発生する化合物とが直接接触するのを防止する効果がより高い。その結果、ガス発生を抑制することができる。 Since the positive electrode active material-containing layer having a surface that satisfies this has a surface including a bond between Al and O and a bond between Al and F, the layer is generated by a reaction between the positive electrode active material, the nonaqueous electrolyte, and moisture. The effect of preventing direct contact with the compound is higher. As a result, gas generation can be suppressed.
 正極は、下記式(2)を満たすことが望ましい。 It is desirable that the positive electrode satisfies the following formula (2).
 0.3≦(B-C)/(A-C)≦2 (2)
 ここで、Aは、Alの結合エネルギーの70eV以上75eV未満の範囲内におけるX線光電子分光スペクトルの最大ピーク高さである。Bは、Alの結合エネルギーの75eV以上78eV以下の範囲内におけるX線光電子分光スペクトルの最大ピーク高さである。Cは、Alの結合エネルギーの65eV以上70eV未満の範囲内におけるX線光電子分光スペクトルの平均ピーク高さである。
0.3 ≦ (BC) / (AC) ≦ 2 (2)
Here, A is the maximum peak height of the X-ray photoelectron spectroscopy spectrum within the range of the binding energy of Al of 70 eV or more and less than 75 eV. B is the maximum peak height of the X-ray photoelectron spectroscopy spectrum in the range of Al binding energy of 75 eV or more and 78 eV or less. C is the average peak height of the X-ray photoelectron spectroscopy spectrum in the range of the binding energy of Al of 65 eV or more and less than 70 eV.
 これを満たす表面を有する正極活物質含有層は、AlとOとの結合及びAlとFとの結合を所定の割合で含む表面を有しているため、正極活物質と、非水電解質及び水分の反応により発生する化合物とが直接接触するのを防止する効果が一層高い。その結果、ガス発生を抑制することができる。 Since the positive electrode active material-containing layer having a surface that satisfies this condition has a surface containing a predetermined ratio of a bond between Al and O and a bond between Al and F, the positive electrode active material, the nonaqueous electrolyte, The effect of preventing direct contact with the compound generated by the above reaction is further enhanced. As a result, gas generation can be suppressed.
 正極は、下記式(3)を満たすことが望ましい。 It is desirable that the positive electrode satisfies the following formula (3).
 0.004≦(B-C)/(D-E)≦0.04 (3)
 ここで、Dは、Mnの結合エネルギーの638eV以上645eV以下の範囲内におけるX線光電子分光スペクトルの最大ピーク高さである。Eは、Mnの結合エネルギーの635eV以上638eV未満の範囲内におけるX線光電子分光スペクトルの平均ピーク高さである。
0.004 ≦ (BC) / (DE) ≦ 0.04 (3)
Here, D is the maximum peak height of the X-ray photoelectron spectroscopy spectrum in the range of the binding energy of Mn of 638 eV or more and 645 eV or less. E is the average peak height of the X-ray photoelectron spectroscopy spectrum in the range of 635 eV to less than 638 eV of the binding energy of Mn.
 これを満たす表面を有する正極活物質含有層は、MnとOとの結合に対するAlとFとの結合を所定の割合で含む表面を有する。そのため、正極のLiイオンの伝導性が大きく低下することなく、正極活物質と、非水電解質及び水分の反応により発生する化合物とが直接接触するのを防止することができる。その結果、ガス発生を抑制することができる。 正極 The positive electrode active material-containing layer having a surface that satisfies the above condition has a surface containing a predetermined ratio of Al and F bonds to Mn and O bonds. Therefore, it is possible to prevent direct contact between the positive electrode active material and the compound generated by the reaction between the non-aqueous electrolyte and the water without significantly lowering the conductivity of Li ions of the positive electrode. As a result, gas generation can be suppressed.
 リチウムマンガン複合酸化物の組成式がLiMn2-xであり、ここで、添字xは0.1≦x≦0.7の範囲内にあり、Mは、Mg、Ti、Cr、Fe、Co、Zn、Al及びGaからなる群より選ばれる少なくとも1種の金属元素であることが望ましい。 The composition formula of the lithium manganese composite oxide is LiMn 2-x M x O 4 , where the subscript x is in the range of 0.1 ≦ x ≦ 0.7, and M is Mg, Ti, Cr, Desirably, it is at least one metal element selected from the group consisting of Fe, Co, Zn, Al and Ga.
 上記組成のリチウムマンガン複合酸化物を含み、かつ上述した表面を有する正極活物質含有層は、正極活物質と、非水電解質及び水分の反応により発生する化合物とが直接接触するのを防止する効果がより一層高く、ガス発生の抑制効果が非常に高い。その結果、ガス発生を大幅に抑制することができる。 The positive electrode active material-containing layer containing the lithium manganese composite oxide having the above composition and having the above-mentioned surface has an effect of preventing direct contact between the positive electrode active material and a compound generated by a reaction between the nonaqueous electrolyte and moisture. And the effect of suppressing gas generation is extremely high. As a result, gas generation can be significantly suppressed.
 第1の実施形態に係る正極について、以下に詳細に説明する。 正極 The positive electrode according to the first embodiment will be described in detail below.
 第1の実施形態に係る正極は、正極集電体と、正極集電体の片面又は両面に担持された正極活物質含有層とを備える。正極活物質含有層は、正極活物質を含む。また、正極活物質含有層は、導電剤及び結着剤をさらに含んでいてもよい。 The positive electrode according to the first embodiment includes a positive electrode current collector and a positive electrode active material-containing layer supported on one or both surfaces of the positive electrode current collector. The positive electrode active material containing layer contains a positive electrode active material. Further, the positive electrode active material-containing layer may further include a conductive agent and a binder.
 正極活物質は、リチウムマンガン複合酸化物及びコバルト酸リチウムを含む。 The positive electrode active material includes a lithium manganese composite oxide and lithium cobalt oxide.
 リチウムマンガン複合酸化物は、組成式がLiMn2-xであるとよい。ここで、添字xは0.1≦x≦0.7の範囲内にあり、Mは、Mg、Ti、Cr、Fe、Co、Zn、Al及びGaからなる群より選ばれる少なくとも1種の金属元素であることが好ましい。MはAlであることがより好ましい。リチウムマンガン複合酸化物は、スピネル型結晶構造を有することがより好ましい。 The composition formula of the lithium manganese composite oxide is preferably LiMn 2-x M x O 4 . Here, the subscript x is in the range of 0.1 ≦ x ≦ 0.7, and M is at least one metal selected from the group consisting of Mg, Ti, Cr, Fe, Co, Zn, Al and Ga. It is preferably an element. M is more preferably Al. More preferably, the lithium manganese composite oxide has a spinel type crystal structure.
 コバルト酸リチウムは、組成式がLiCoOであるとよい。ここで、添え字xは0<x≦1の範囲内であることが好ましい。 Lithium cobaltate preferably has a composition formula of Li x CoO 2 . Here, the suffix x is preferably in the range of 0 <x ≦ 1.
 正極活物質含有層は、次の式を満たすことが好ましい。
 0<H/(G+H)≦0.1 (1)
 ここで、Gは、正極活物質中のリチウムマンガン複合酸化物の重量比率である。Hは、正極活物質中のコバルト酸リチウムの重量比率である。
The positive electrode active material-containing layer preferably satisfies the following equation.
0 <H / (G + H) ≦ 0.1 (1)
Here, G is a weight ratio of the lithium manganese composite oxide in the positive electrode active material. H is the weight ratio of lithium cobalt oxide in the positive electrode active material.
 上述したように、正極活物質含有層は式(1)を満たすことでガス発生を抑制することができる。下記にその理由について述べる。H/(G+H)が0.1より大きいと、高電位に弱いコバルト酸リチウムの量が多く、充放電によりコバルト酸リチウムの結晶構造が破壊されると考えられる。そのため、ガス発生を抑制できないことに加えて、充放電サイクル性能が低下する。H/(G+H)が0の場合、すなわち、正極活物質中にコバルト酸リチウムを含まない場合、例えば、正極活物質が、非水電解質及び水分の反応により不可避的に発生するガスを吸収できないため、ガス発生を抑制することができない。 し た As described above, the positive electrode active material-containing layer can suppress gas generation by satisfying the expression (1). The reason is described below. When H / (G + H) is larger than 0.1, the amount of lithium cobalt oxide weak to a high potential is large, and it is considered that the crystal structure of lithium cobalt oxide is destroyed by charging and discharging. Therefore, in addition to being unable to suppress gas generation, the charge / discharge cycle performance is reduced. When H / (G + H) is 0, that is, when lithium cobaltate is not included in the positive electrode active material, for example, the positive electrode active material cannot absorb gas inevitably generated by the reaction between the nonaqueous electrolyte and moisture. , Gas generation cannot be suppressed.
 正極活物質は、例えば、粒子状である。粒子状である場合には、正極活物質は、一次粒子であってもよいし、又は一次粒子の凝集した二次粒子であってもよい。 The positive electrode active material is, for example, in the form of particles. When the positive electrode active material is in the form of particles, the positive electrode active material may be primary particles, or may be secondary particles obtained by aggregating primary particles.
 リチウムマンガン複合酸化物の粒子は、一次粒子、一次粒子が凝集した二次粒子のいずれであってもよいが、二次粒子を含むことが好ましい。リチウムマンガン複合酸化物の二次粒子の平均粒子径(二次粒子径)は4μm以上15μm以下であることが好ましい。 粒子 The particles of the lithium manganese composite oxide may be either primary particles or secondary particles in which the primary particles are aggregated, but preferably include secondary particles. The average particle diameter (secondary particle diameter) of the secondary particles of the lithium manganese composite oxide is preferably 4 μm or more and 15 μm or less.
 コバルト酸リチウムの粒子は、一次粒子、一次粒子が凝集した二次粒子のいずれであってもよいが、一次粒子を主体とすることが好ましい。コバルト酸リチウムの粒子の一次粒子の平均粒子径は6μm以上12μm以下であることが好ましい。 The lithium cobalt oxide particles may be either primary particles or secondary particles obtained by agglomeration of primary particles, but are preferably mainly composed of primary particles. The average primary particle diameter of the lithium cobalt oxide particles is preferably 6 μm or more and 12 μm or less.
 正極活物質の種類は、1種類又は2種類以上とすることができる。また、正極活物質は、リチウムマンガン複合酸化物及びコバルト酸リチウム以外の正極活物質を含んでもよい。 種類 The type of the positive electrode active material can be one type or two or more types. Further, the positive electrode active material may include a positive electrode active material other than the lithium manganese composite oxide and lithium cobalt oxide.
 導電剤は、電子導電性を高め、集電体との接触抵抗を抑え得る。導電剤としては、例えば、アセチレンブラック、カーボンブラック、黒鉛、カーボンナノファイバー又はカーボンナノチューブなどの炭素材料が含まれる。使用する導電剤の種類は、1種又は2種以上にすることができる。 The conductive agent can increase the electronic conductivity and suppress the contact resistance with the current collector. Examples of the conductive agent include a carbon material such as acetylene black, carbon black, graphite, carbon nanofiber, or carbon nanotube. The kind of the conductive agent used can be one kind or two or more kinds.
 結着剤は、活物質と導電剤とを結着させ得る。結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、又はフッ素系ゴムが含まれる。使用する結着剤の種類は、1種又は2種以上にすることができる。 The binder can bind the active material and the conductive agent. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluorine-based rubber. The kind of the binder used can be one kind or two or more kinds.
 正極活物質含有層は、X線光電子分光スペクトルにおけるAlの結合エネルギーの複数のピークが70eV以上78eV以下の範囲内にある表面を有する。この表面は、例えば、正極活物質含有層の上に形成される被膜であり得る。Alの結合エネルギーのピークは、70eV以上78eV以下の範囲内に2つあっても又は3つ以上あってもよい。ここで、正極活物質含有層の表面とは、正極活物質含有層と正極集電体とが互いに接する面に対向する正極活物質含有層の主面であって、正極集電体と接していない主面を表す。 (4) The positive electrode active material-containing layer has a surface in which a plurality of peaks of Al binding energy in an X-ray photoelectron spectroscopy spectrum are in the range of 70 eV to 78 eV. This surface can be, for example, a coating formed on the positive electrode active material-containing layer. The peak of the binding energy of Al may be two or three or more within the range of 70 eV to 78 eV. Here, the surface of the positive electrode active material-containing layer is the main surface of the positive electrode active material-containing layer facing the surface where the positive electrode active material-containing layer and the positive electrode current collector are in contact with each other, and is in contact with the positive electrode current collector. No major surface.
 正極活物質含有層は、Alの結合エネルギーにおいて、70eV以上75eV未満の範囲内及び75eV以上78eV以下の範囲内にそれぞれ少なくとも1つピークを持つことが好ましい。70eV以上75eV未満の範囲内におけるAlの結合エネルギーのピークはAlとOとの結合が存在することを示す。75eV以上78eV以下の範囲内におけるAlの結合エネルギーのピークはAlとFとの結合が存在することを示す。70eV以上75eV未満及び75eV以上78eV以下のそれぞれの範囲内に、ピークは1つあっても2つ以上あってもよい。各範囲に存在するピークの数は、同じでも異なっていてもよい。 (4) The positive electrode active material-containing layer preferably has at least one peak in the range of 70 eV or more and less than 75 eV and in the range of 75 eV or more and 78 eV or less in the binding energy of Al. The peak of the binding energy of Al in the range of 70 eV or more and less than 75 eV indicates that there is a bond between Al and O. The peak of the binding energy of Al in the range of 75 eV or more and 78 eV or less indicates that there is a bond between Al and F. There may be one peak or two or more peaks in the respective ranges of 70 eV or more and less than 75 eV and 75 eV or more and 78 eV or less. The number of peaks present in each range may be the same or different.
 上述したように、上記範囲内にそれぞれ少なくとも1つピークをもつことにより、ガス発生を抑制することができる。これは、正極活物質含有層の表面がAlとFとの結合を含むことで、正極活物質と、非水電解質及び水分の反応により発生する化合物との接触を避けることができるためであると考えられる。 ガ ス As described above, by having at least one peak in each of the above ranges, gas generation can be suppressed. This is because when the surface of the positive electrode active material-containing layer contains a bond between Al and F, contact between the positive electrode active material and the compound generated by the reaction between the nonaqueous electrolyte and moisture can be avoided. Conceivable.
 正極活物質含有層は、次の式を満たすことが好ましい。
 0.3≦(B-C)/(A-C)≦2 (2)
 ここで、Aは、Alの結合エネルギーの70eV以上75eV未満の範囲内におけるX線光電子分光スペクトルの最大ピーク高さである。Bは、Alの結合エネルギーの75eV以上78eV以下の範囲内におけるX線光電子スペクトルの最大ピーク高さである。Cは、Alの結合エネルギーの65eV以上70eV未満の範囲内におけるX線光電子分光スペクトルの平均ピーク高さである。70eV以上75eV未満の範囲内及び75eV以上78eV以下の範囲内それぞれでの最大ピーク高さは、X線光電子分光スペクトルのその範囲内の連続的なスペクトルデータにおいて、最もピーク高さが高いスペクトルデータのピーク高さである。平均ピーク高さは、65eV以上70eV未満の範囲内の連続的なX線光電子分光のスペクトルデータのピーク高さを平均したピーク高さである。
The positive electrode active material-containing layer preferably satisfies the following equation.
0.3 ≦ (BC) / (AC) ≦ 2 (2)
Here, A is the maximum peak height of the X-ray photoelectron spectroscopy spectrum within the range of the binding energy of Al of 70 eV or more and less than 75 eV. B is the maximum peak height of the X-ray photoelectron spectrum within the range of Al binding energy of 75 eV or more and 78 eV or less. C is the average peak height of the X-ray photoelectron spectroscopy spectrum in the range of the binding energy of Al of 65 eV or more and less than 70 eV. The maximum peak height in each of the range of 70 eV or more and less than 75 eV and the range of 75 eV or more and 78 eV or less is the value of the spectral data having the highest peak height in the continuous spectrum data in that range of the X-ray photoelectron spectroscopy spectrum. Peak height. The average peak height is a peak height obtained by averaging the peak heights of continuous X-ray photoelectron spectroscopy spectral data within the range of 65 eV or more and less than 70 eV.
 上述したように、式(2)を満たすことで、ガス発生を抑制することができる。下記にその理由について述べる。(B-C)/(A-C)の値が0.3以上2以下である場合、正極活物質含有層の表面の被膜にAlとFとの結合が適度に含まれているため、充放電性能を維持したまま、非水電解質及び水分の反応で不可避的に発生する化合物と正極活物質含有層との反応を抑制することができる。その結果、内部抵抗の上昇とガス発生とを抑制することができると考えられる。 As described above, by satisfying the expression (2), gas generation can be suppressed. The reason is described below. When the value of (BC) / (AC) is 0.3 or more and 2 or less, the film on the surface of the positive electrode active material-containing layer contains bonding between Al and F moderately, so While maintaining the discharge performance, it is possible to suppress the reaction between the compound inevitably generated by the reaction between the nonaqueous electrolyte and the water and the positive electrode active material-containing layer. As a result, it is considered that an increase in internal resistance and generation of gas can be suppressed.
 正極活物質含有層は、次の式を満たすことがより好ましい。
 0.004≦(B-C)/(D-E)≦0.04 (3)
 ここで、Dは、Mnの結合エネルギーの638eV以上645eV以下の範囲内におけるX線光電子スペクトルの最大ピーク高さである。Eは、Mnの結合エネルギーの635eV以上638eV未満の範囲内におけるX線光電子スペクトルの平均ピーク高さである。638eV以上645eV以下の範囲内のMnの結合エネルギーのピークはMnとOとの結合が存在することを示す。638eV以上645eV以下の範囲内の最大ピーク高さは、X線光電子分光スペクトルのその範囲内の連続的なスペクトルデータにおいて、最もピーク高さが高いスペクトルデータのピーク高さである。平均ピーク高さは、635eV以上638eV未満の範囲内の連続的なX線光電子分光のスペクトルデータのピーク高さを平均したピーク高さである。
More preferably, the positive electrode active material-containing layer satisfies the following expression.
0.004 ≦ (BC) / (DE) ≦ 0.04 (3)
Here, D is the maximum peak height of the X-ray photoelectron spectrum within the range of the binding energy of Mn from 638 eV to 645 eV. E is the average peak height of the X-ray photoelectron spectrum in the range of 635 eV to less than 638 eV of the binding energy of Mn. The peak of the binding energy of Mn in the range of 638 eV or more and 645 eV or less indicates that there is a bond between Mn and O. The maximum peak height within the range of 638 eV or more and 645 eV or less is the peak height of the highest peak height spectral data in continuous spectral data within the range of the X-ray photoelectron spectroscopy spectrum. The average peak height is a peak height obtained by averaging the peak heights of continuous X-ray photoelectron spectroscopy spectral data within the range of 635 eV to less than 638 eV.
 上述したように、式(3)を満たすことで、ガス発生を抑制することができる。下記にその理由について述べる。(B-C)/(D-E)の値が0.004以上0.04以下である場合、正極活物質含有層に含まれるMnとOとの結合に対して、正極活物質含有層上の被膜にAlとFとの結合が十分に存在する。この被膜は、正極のLiイオンのイオン伝導性を維持したまま、すなわち充放電性能を維持したまま、非水電解質及び水分の反応で不可避的に発生する化合物と正極活物質含有層との反応を抑制することができると考えられる。 As described above, by satisfying the expression (3), gas generation can be suppressed. The reason is described below. When the value of (BC) / (DE) is 0.004 or more and 0.04 or less, the bond between Mn and O contained in the positive electrode active material-containing layer is Al and F are sufficiently bonded in the film of No. This coating maintains the ionic conductivity of the Li ions of the positive electrode, that is, the reaction between the compound inevitably generated by the reaction between the nonaqueous electrolyte and the water and the positive electrode active material-containing layer while maintaining the charge / discharge performance. It is thought that it can be suppressed.
 正極集電体は、アルミニウム箔若しくはアルミニウム合金箔から形成されることが望ましい。アルミニウム箔及びアルミニウム合金箔の平均結晶粒径は50μm以下であることが好ましい。より好ましくは、30μm以下である。更に好ましくは5μm以下である。平均結晶粒径が50μm以下であることにより、アルミニウム箔またはアルミニウム合金箔の強度を飛躍的に増大させることができ、正極を高いプレス圧で高密度化することが可能になり、電池容量を増大させることができる。 The positive electrode current collector is desirably formed from an aluminum foil or an aluminum alloy foil. The average crystal grain size of the aluminum foil and the aluminum alloy foil is preferably 50 μm or less. More preferably, it is 30 μm or less. More preferably, it is 5 μm or less. When the average crystal grain size is 50 μm or less, the strength of the aluminum foil or aluminum alloy foil can be dramatically increased, and the density of the positive electrode can be increased with a high press pressure, thereby increasing the battery capacity. Can be done.
 集電体の厚さは、20μm以下、より好ましくは15μm以下である。アルミニウム箔の純度は99重量%以上が好ましい。アルミニウム合金としては、マグネシウム、亜鉛及びケイ素よりなる群から選択される1種類以上の元素を含む合金が好ましい。一方、鉄、銅、ニッケル、クロムなどの遷移金属の含有量は1重量%以下にすることが好ましい。 厚 The thickness of the current collector is 20 μm or less, and more preferably 15 μm or less. The purity of the aluminum foil is preferably at least 99% by weight. As the aluminum alloy, an alloy containing one or more elements selected from the group consisting of magnesium, zinc and silicon is preferable. On the other hand, the content of transition metals such as iron, copper, nickel and chromium is preferably 1% by weight or less.
 正極活物質、導電剤及び結着剤の配合比は、正極活物質80~95重量%、導電剤3~18重量%、結着剤2~7重量%の範囲にすることが好ましい。 配合 The mixing ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 80 to 95% by weight of the positive electrode active material, 3 to 18% by weight of the conductive agent, and 2 to 7% by weight of the binder.
 正極活物質含有層は、20%以上50%以下の気孔率を有することが好ましい。このような気孔率を有する正極活物質含有層を備えた正極は高密度で、かつ非水電解質との親和性に優れる。より好ましい気孔率は、25%以上40%以下である。 (4) The positive electrode active material-containing layer preferably has a porosity of 20% or more and 50% or less. A positive electrode provided with a positive electrode active material-containing layer having such a porosity has high density and excellent affinity with a nonaqueous electrolyte. More preferable porosity is 25% or more and 40% or less.
 正極活物質含有層の密度は、2.5g/cm以上にすることが好ましい。 The density of the positive electrode active material-containing layer is preferably set to 2.5 g / cm 3 or more.
 次いで、式(1)においてG、Hで示す正極活物質の重量割合、及び正極活物質含有層についてのX線光電子分光の測定方法を説明する。まず、正極の取り出し方法を説明する。 Next, the weight ratio of the positive electrode active material represented by G and H in the formula (1) and the method of measuring X-ray photoelectron spectroscopy for the positive electrode active material-containing layer will be described. First, a method for taking out the positive electrode will be described.
 <正極の取り出し方法>
 電池を完全放電して充電状態(State of charge(SOC))を0%にする。この電池を解体し、正極を2cm角程度切り出す。切り出した正極を50cc(cm)のエチルメチルカーボネートに浸漬し、1時間放置する。その後、正極を乾燥するため、1時間真空乾燥し、測定試料を得る。ここまでの操作は、アルゴン雰囲気のグローブボックス内で行う。
<How to remove the positive electrode>
The battery is completely discharged to bring the state of charge (SOC) to 0%. This battery is disassembled, and the positive electrode is cut out to about 2 cm square. The cut positive electrode is immersed in 50 cc (cm 3 ) of ethyl methyl carbonate and left for 1 hour. Thereafter, in order to dry the positive electrode, vacuum drying is performed for one hour to obtain a measurement sample. The operations so far are performed in a glove box in an argon atmosphere.
 <重量割合の測定方法>
 上述の方法により得た測定試料上の正極活物質含有層からスパチュラなどを使用して測定サンプルとして粉末を採取する。得られた粉末をアセトンで洗浄し乾燥する。得られた粉末を塩酸で溶解し、導電剤をろ過して除いた後、イオン交換水で希釈して誘導結合プラズマ発光分光分析法により含有金属比を算出する。同時に、X線回折法及びSEM-EDXによりリチウムマンガン複合酸化物及びコバルト酸リチウムの存在を確認する。求めた金属比からリチウムマンガン複合酸化物及びコバルト酸リチウムそれぞれの化学式及び式量を算出し、採取した所定重量の正極活物質含有層に含まれるリチウムマンガン複合酸化物及びコバルト酸リチウムの重量比率を求める。得られた値をG、Hとする。
<Method of measuring weight ratio>
A powder is collected as a measurement sample from the positive electrode active material-containing layer on the measurement sample obtained by the above method using a spatula or the like. The obtained powder is washed with acetone and dried. The obtained powder is dissolved in hydrochloric acid, the conductive agent is removed by filtration, then diluted with ion-exchanged water, and the metal content is calculated by inductively coupled plasma emission spectroscopy. At the same time, the presence of the lithium manganese composite oxide and lithium cobalt oxide is confirmed by X-ray diffraction and SEM-EDX. Calculate the respective chemical formulas and formula weights of the lithium manganese composite oxide and the lithium cobaltate from the obtained metal ratio, and calculate the weight ratio of the lithium manganese composite oxide and the lithium cobaltate contained in the collected positive electrode active material-containing layer of a predetermined weight. Ask. The obtained values are G and H.
 <正極活物質含有層についてのX線光電子分光測定>
 次に、正極活物質含有層についてのX線光電子分光測定の手順を説明する。
<X-ray photoelectron spectroscopy measurement of positive electrode active material containing layer>
Next, the procedure of X-ray photoelectron spectroscopy measurement on the positive electrode active material containing layer will be described.
 上述した正極の取り出し方法により、測定用試料を得る。得られた測定用の試料を、アルゴン雰囲気に封入したまま、X線光電子分光器に装入する。分光器としては、例えば、XPS測定装置(Thermo Fisher Scientific社製VG Theta Probe)又はこれと等価な機能を有する装置を用いることができる。 (4) A sample for measurement is obtained by the above-described method for removing the positive electrode. The obtained sample for measurement is charged into an X-ray photoelectron spectrometer while being sealed in an argon atmosphere. As the spectroscope, for example, an XPS measuring device (VG Theta Probe manufactured by Thermo Fisher Scientific) or a device having a function equivalent thereto can be used.
 励起X線源としては、単結晶分光AlKα線(単色性をよりよくするために、AlKα線を単結晶で分光した光)を用いる。この励起X線源を、X線スポットが800×400μmの楕円形になるように照射して、X線光電子スペクトルを得る。 (4) As the excitation X-ray source, use is made of single-crystal spectral AlKα rays (light obtained by dispersing AlKα rays with a single crystal for better monochromaticity). The excited X-ray source is irradiated so that the X-ray spot has an elliptical shape of 800 × 400 μm to obtain an X-ray photoelectron spectrum.
 XPS測定では、サンプルの実表面からの例えば0~10nmの深さまでの領域を測定できる。そのため、XPS測定によると、正極活物質含有層の表面から0~10nmの深さまでの情報を得ることができる。言い換えると、正極活物質含有層についてのX線光電子分光スペクトルは、正極活物質含有層の表面についてのスペクトルであるということもできる。 In the XPS measurement, a region from the actual surface of the sample to a depth of, for example, 0 to 10 nm can be measured. Therefore, according to the XPS measurement, information from the surface of the positive electrode active material containing layer to a depth of 0 to 10 nm can be obtained. In other words, it can be said that the X-ray photoelectron spectroscopy spectrum of the positive electrode active material containing layer is a spectrum of the surface of the positive electrode active material containing layer.
 得られたX線光電子スペクトルから、70eV以上75eV未満の結合エネルギー領域に現れる、Alの2p軌道に帰属されるピークの最大ピーク高さA、75eV以上78eV以下の結合エネルギー領域に現れる、Alの2p軌道に帰属されるピークの最大ピーク高さBを決定し、65eV以上70eV未満の結合エネルギー領域のピークから平均ピーク強度Cを算出する。 From the obtained X-ray photoelectron spectrum, the maximum peak height A of the peak attributed to the 2p orbital of Al, which appears in the binding energy region of 70 eV or more and less than 75 eV, 2p of Al, which appears in the binding energy region of 75 eV or more and 78 eV or less The maximum peak height B of the peak attributed to the orbit is determined, and the average peak intensity C is calculated from the peak in the binding energy region of 65 eV or more and less than 70 eV.
 また、得られたX線光電子スペクトルから、638eV以上645eV未満の結合エネルギー領域に現れる、Tiの2p3/2軌道に帰属されるピークの最大ピーク高さDを決定し、635eV以上638eV未満の結合エネルギー領域のピークから平均ピーク強度Eを算出する。 Further, from the obtained X-ray photoelectron spectrum, the maximum peak height D of the peak belonging to the 2p 3/2 orbital of Ti, which appears in the binding energy region of 638 eV or more and less than 645 eV, is determined, and the bond of 635 eV or more and less than 638 eV The average peak intensity E is calculated from the peak in the energy region.
 <正極の製造方法>
 正極の製造では、まず、例えば正極活物質、正極導電剤及び結着剤を適当な溶媒に懸濁させ、得られたスラリーを正極集電体に塗布して乾燥させることにより正極活物質含有層を作成した後、プレスを施す。その他、正極活物質、正極導電剤及び結着剤をペレット状に形成し、正極活物質含有層として用いてもよい。
<Method of manufacturing positive electrode>
In the production of the positive electrode, first, for example, a positive electrode active material, a positive electrode conductive agent and a binder are suspended in an appropriate solvent, and the obtained slurry is applied to a positive electrode current collector and dried to form a positive electrode active material-containing layer. After making, press is applied. In addition, the positive electrode active material, the positive electrode conductive agent, and the binder may be formed in a pellet shape and used as the positive electrode active material-containing layer.
 正極の表面、すなわち、X線光電子分光スペクトルにおけるAlの結合エネルギーの複数のピークが70eV以上78eV以下の範囲内にある正極活物質含有層の表面の有する効果は、例えば、エージングにより正極活物質含有層の表面に形成される被膜によっても実現することができる。以下では、正極活物質含有層の表面に形成される被膜の組成調製方法について述べる。 The effect of the surface of the positive electrode, that is, the surface of the positive electrode active material-containing layer in which a plurality of peaks of Al binding energy in the X-ray photoelectron spectroscopy spectrum are in the range of 70 eV or more and 78 eV or less is, for example, due to aging. It can also be realized by a coating formed on the surface of the layer. Hereinafter, a method for preparing the composition of the film formed on the surface of the positive electrode active material-containing layer will be described.
 上述したように作製した正極を用いて、例えば、負極と、非水電解質とを含む非水電解質電池を作製する。正極の表面に所定の被膜を形成するため、非水電解質、正極活物質、及び正極集電体のうち少なくともいずれかがAlを含むことが望ましい。非水電解質は、四フッ化アルミニウムリチウムを含むことが好ましい。四フッ化アルミニウムリチウムの濃度は、0.001mol/L以上0.1mol/L以下が好ましく、0.002mol/L以上0.03mol/L以下がより好ましい。また、正極活物質は、組成式がLiMn2-xであるリチウムマンガン複合酸化物を含むことが好ましい。正極集電体は、アルミニウム箔若しくはアルミニウム合金箔から形成されることが好ましい。 Using the positive electrode manufactured as described above, for example, a nonaqueous electrolyte battery including a negative electrode and a nonaqueous electrolyte is manufactured. In order to form a predetermined film on the surface of the positive electrode, it is preferable that at least one of the nonaqueous electrolyte, the positive electrode active material, and the positive electrode current collector contains Al. The non-aqueous electrolyte preferably contains lithium aluminum tetrafluoride. The concentration of lithium aluminum tetrafluoride is preferably from 0.001 mol / L to 0.1 mol / L, and more preferably from 0.002 mol / L to 0.03 mol / L. In addition, the positive electrode active material preferably includes a lithium manganese composite oxide having a composition formula of LiMn 2-x M x O 4 . The positive electrode current collector is preferably formed from an aluminum foil or an aluminum alloy foil.
 作製した非水電解質電池に、例えば、初充電後、充電状態で、高温(例えば70℃)で長時間(例えば24時間)にわたりエージングを行う。これらの調整の一例として、実施例に示すエージングの条件が挙げられる。このようにすることで、正極活物質含有層の表面に形成される被膜の組成を調製することができる。 (4) Aging is performed on the produced nonaqueous electrolyte battery at a high temperature (for example, 70 ° C.) for a long time (for example, 24 hours) in a charged state after the initial charge. An example of these adjustments is the aging condition described in the embodiment. By doing so, the composition of the film formed on the surface of the positive electrode active material-containing layer can be adjusted.
 以上説明した第1の実施形態によれば、正極が提供される。正極は、リチウムマンガン複合酸化物とコバルト酸リチウムとを含む正極活物質含有層を含む。正極活物質含有層は、X線光電子分光スペクトルにおけるAlの結合エネルギーの複数のピークが70eV以上78eV以下の範囲内にある表面を有する。正極活物質含有層は、0<H/(G+H)≦0.1の関係式を満たす。 According to the first embodiment described above, a positive electrode is provided. The positive electrode includes a positive electrode active material containing layer containing a lithium manganese composite oxide and lithium cobalt oxide. The positive electrode active material-containing layer has a surface having a plurality of Al binding energy peaks in the range of 70 eV to 78 eV in the X-ray photoelectron spectroscopy spectrum. The positive electrode active material-containing layer satisfies the relational expression of 0 <H / (G + H) ≦ 0.1.
 このような構成を有するため、第1の実施形態に係る正極では、ガス発生を抑制することができると共に、抵抗上昇を抑えることができる。 た め With such a configuration, in the positive electrode according to the first embodiment, gas generation can be suppressed and a rise in resistance can be suppressed.
 (第2の実施形態) (Second embodiment)
 第2の実施形態に係る非水電解質電池は、正極と、負極と、非水電解質と、外装部材とを具備する。 非 A non-aqueous electrolyte battery according to the second embodiment includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and an exterior member.
 正極には、例えば、第1実施形態の正極が用いられる。正極集電体は、表面に正極活物質含有層を担持していない部分を含むことができる。この部分は、正極タブとして働くことができる。或いは、正極は、正極集電体とは別体の正極タブを含むこともできる。 正極 For the positive electrode, for example, the positive electrode of the first embodiment is used. The positive electrode current collector may include a portion where the surface does not support the positive electrode active material-containing layer. This portion can serve as a positive electrode tab. Alternatively, the positive electrode may include a positive electrode tab separate from the positive electrode current collector.
 負極は、負極活物質含有層を含む。負極は、負極集電体を更に含むこともできる。負極活物質含有層は、負極集電体の少なくとも一方の表面に担持されることができる。すなわち、負極集電体は、片面又は両面に負極活物質含有層を担持することができる。また、負極集電体は、表面に負極活物質含有層を担持していない部分を含むことができる。この部分は、負極タブとして働くことができる。或いは、負極は、負極集電体とは別体の負極タブを含むこともできる。 The negative electrode includes the negative electrode active material containing layer. The negative electrode may further include a negative electrode current collector. The negative electrode active material-containing layer can be supported on at least one surface of the negative electrode current collector. That is, the negative electrode current collector can support the negative electrode active material-containing layer on one or both surfaces. In addition, the negative electrode current collector can include a portion where the surface does not support the negative electrode active material-containing layer. This portion can serve as a negative electrode tab. Alternatively, the negative electrode may include a negative electrode tab separate from the negative electrode current collector.
 正極と負極とは、電極群を構成することができる。電極群においては、正極活物質含有層と負極活物質含有層とが、例えば、セパレータを介して対向することができる。 (4) The positive electrode and the negative electrode can form an electrode group. In the electrode group, the positive electrode active material-containing layer and the negative electrode active material-containing layer can face each other with a separator interposed therebetween, for example.
 電極群は、様々な構造を有することができる。例えば、電極群は、スタック型の構造を有することができる。スタック型構造の電極群は、例えば、複数の正極及び複数の負極を、正極活物質含有層と負極活物質含有層との間にセパレータを挟んで交互に積層することによって得ることができる。或いは、電極群は、捲回型の構造を有することができる。捲回型の電極群は、例えば、一枚のセパレータと、一枚の負極と、もう一枚のセパレータと、一枚の正極とをこの順で積層させて積層体を作り、この積層体を捲回することによって得ることができる。 The electrode group can have various structures. For example, the electrode group can have a stack type structure. An electrode group having a stacked structure can be obtained, for example, by alternately stacking a plurality of positive electrodes and a plurality of negative electrodes with a separator interposed between the positive electrode active material containing layer and the negative electrode active material containing layer. Alternatively, the electrode group can have a wound type structure. The wound electrode group is, for example, one separator, one negative electrode, another separator, and one positive electrode are laminated in this order to form a laminate, and this laminate is formed. It can be obtained by winding.
 第2の実施形態に係る非水電解質電池は、正極端子及び負極端子を更に具備することができる。正極端子は、その一部が正極の一部に電気的に接続されることによって、正極と外部端子との間で電子が移動するための導体として働くことができる。正極端子は、例えば、正極集電体、特に正極タブに接続することができる。同様に、負極端子は、その一部が負極の一部に電気的に接続されることによって、負極と外部端子との間で電子が移動するための導体として働くことができる。負極端子は、例えば、負極集電体、特に負極タブに接続することができる。 非 The nonaqueous electrolyte battery according to the second embodiment can further include a positive electrode terminal and a negative electrode terminal. The positive electrode terminal can function as a conductor for electrons to move between the positive electrode and the external terminal by being electrically connected to a part of the positive electrode. The positive electrode terminal can be connected to, for example, a positive electrode current collector, particularly a positive electrode tab. Similarly, the negative electrode terminal can function as a conductor for electrons to move between the negative electrode and the external terminal by being electrically connected to a part of the negative electrode. The negative electrode terminal can be connected to, for example, a negative electrode current collector, particularly, a negative electrode tab.
 外装部材は、電極群及び非水電解質を収容する。非水電解質は、外装部材内で、電極群に含浸され得る。正極端子及び負極端子のそれぞれの一部は、外装部材から延出させることもできる。 The exterior member contains the electrode group and the non-aqueous electrolyte. The non-aqueous electrolyte may be impregnated into the electrode group in the exterior member. A part of each of the positive electrode terminal and the negative electrode terminal can also be extended from the exterior member.
 以下、正極、負極、非水電解質、セパレータ及び外装部材を、より詳細に説明する。 Hereinafter, the positive electrode, the negative electrode, the non-aqueous electrolyte, the separator, and the exterior member will be described in more detail.
 <正極> <Positive electrode>
 正極には、例えば、第1の実施形態の正極が用いられる。 正極 For the positive electrode, for example, the positive electrode of the first embodiment is used.
 <負極>
 負極は、負極集電体と、負極集電体の片面もしくは両面に担持され、負極活物質、負極導電剤及び結着剤を含む負極活物質含有層とを有する。
<Negative electrode>
The negative electrode has a negative electrode current collector and a negative electrode active material-containing layer supported on one or both surfaces of the negative electrode current collector and containing a negative electrode active material, a negative electrode conductive agent, and a binder.
 負極活物質は、チタン含有酸化物を含む。負極活物質の種類は1種類または2種類以上にすることができる。 The negative electrode active material contains a titanium-containing oxide. The type of the negative electrode active material can be one type or two or more types.
 チタン含有酸化物の例には、リチウムチタン複合酸化物、アナターゼ型のチタン含有酸化物、ルチル型のチタン含有酸化物、ブロンズ型のチタン含有酸化物、斜方晶型チタン含有酸化物、単斜晶型ニオブチタン含有酸化物、並びにTiとP、V、Sn、Cu、Ni、Nb及びFeよりなる群から選択される少なくとも1種類の元素とを含有する金属複合酸化物が含まれる。 Examples of titanium-containing oxides include lithium-titanium composite oxides, anatase-type titanium-containing oxides, rutile-type titanium-containing oxides, bronze-type titanium-containing oxides, orthorhombic-type titanium-containing oxides, and monoclinic titanium-containing oxides. Includes crystalline niobium titanium-containing oxides and metal composite oxides containing Ti and at least one element selected from the group consisting of P, V, Sn, Cu, Ni, Nb and Fe.
 リチウムチタン複合酸化物には、リチウムチタン酸化物、リチウムチタン酸化物の構成元素の一部を異種元素で置換したリチウムチタン複合酸化物が含まれる。リチウムチタン酸化物には、例えば、スピネル型構造を有するチタン酸リチウム(例えばLi4+xTi12(xは充放電により変化する値で、0≦x≦3))、ラムスデライト型のチタン酸リチウム(例えばLi2+yTi(yは充放電により変化する値で、0≦y≦3))等を挙げることができる。一方、酸素のモル比についてはスピネル型Li4+xTi12では、12、ラムスデライト型Li2+yTiでは7と形式的には示しているが、酸素ノンストイキオメトリーなどの影響によってこれらの値は変化し得る。 The lithium-titanium composite oxide includes lithium-titanium oxide and a lithium-titanium composite oxide in which some of the constituent elements of the lithium-titanium oxide are replaced with different elements. Examples of the lithium titanium oxide include lithium titanate having a spinel structure (for example, Li 4 + x Ti 5 O 12 (x is a value that changes by charging and discharging, 0 ≦ x ≦ 3)), and ramsdellite-type titanic acid. Lithium (for example, Li 2 + y Ti 3 O 7 (y is a value that changes depending on charge and discharge, 0 ≦ y ≦ 3)) and the like can be given. On the other hand, the molar ratio of oxygen is formally shown as 12 in spinel type Li 4 + x Ti 5 O 12 and 7 in ramsdellite type Li 2 + y Ti 3 O 7 , but these are influenced by oxygen nonstoichiometry and the like. Can vary.
 Tiと、P、V、Sn、Cu、Ni、Nb及びFeよりなる群から選択される少なくとも1種類の元素とを含有する金属複合酸化物としては、例えば、TiO-P、TiO-V、TiO-P-SnO、TiO-P-MeO(Meは、Cu、Ni及びFeよりなる群から選択される少なくとも1種類の元素である)などを挙げることができる。この金属複合酸化物は、結晶性が低く、結晶相とアモルファス相とが共存もしくは、アモルファス相単独で存在したミクロ構造であることが好ましい。このようなミクロ構造であることによりサイクル性能を大幅に向上させることができる。 Examples of metal composite oxides containing Ti and at least one element selected from the group consisting of P, V, Sn, Cu, Ni, Nb and Fe include, for example, TiO 2 —P 2 O 5 , TiO 2 2- V 2 O 5 , TiO 2 -P 2 O 5 -SnO 2 , TiO 2 -P 2 O 5 -MeO (Me is at least one element selected from the group consisting of Cu, Ni and Fe ). It is preferable that the metal composite oxide has low crystallinity, and has a microstructure in which a crystalline phase and an amorphous phase coexist or an amorphous phase exists alone. With such a microstructure, cycle performance can be significantly improved.
 アナターゼ型、ルチル型、ブロンズ型のチタン含有酸化物の組成は、TiOで表すことができる。 The composition of anatase, rutile and bronze titanium-containing oxides can be represented by TiO 2 .
 斜方晶型チタン含有酸化物としては、一般式Li2+wNa2-xM1Ti6-zM214+δで表され、M1はCs及び/又はKであり、M2はZr,Sn,V,Nb,Ta,Mo,W,Fe,Co,Mn,及びAlのうち少なくとも1つを含む化合物が挙げられ、0≦w≦4、0≦x≦2、0≦y≦2、0≦z<6、-0.5≦δ≦0.5である。 The orthorhombic titanium-containing oxide is represented by a general formula Li 2 + w Na 2−x M1 y Ti 6−z M2 z O 14 + δ , M1 is Cs and / or K, and M2 is Zr, Sn, V , Nb, Ta, Mo, W, Fe, Co, Mn, and a compound containing at least one of Al, 0 ≦ w ≦ 4, 0 ≦ x ≦ 2, 0 ≦ y ≦ 2, 0 ≦ z <6, −0.5 ≦ δ ≦ 0.5.
 単斜晶型ニオブチタン含有酸化物としては、一般式LiTi1-yM3Nb2-zM47+δで表され、M3はZr、Si、Sn、Fe、Co、Mn及びNiから成る群から選択される少なくとも1つであり、M4はV,Nb,Ta,Mo,W及びBiから成る群から選択される少なくとも1つである化合物が挙げられ、0≦x≦5、0≦y<1、0≦z≦2、-0.3≦δ≦0.3である。 The monoclinic niobium titanium-containing oxide is represented by the general formula Li x Ti 1-y M3 y Nb 2-z M4 z O 7 + δ , where M3 is composed of Zr, Si, Sn, Fe, Co, Mn and Ni. At least one selected from the group; M4 is a compound selected from the group consisting of V, Nb, Ta, Mo, W and Bi, and 0 ≦ x ≦ 5, 0 ≦ y <1, 0 ≦ z ≦ 2, −0.3 ≦ δ ≦ 0.3.
 好ましい負極活物質は、リチウムチタン複合酸化物を含むものである。 (4) A preferable negative electrode active material contains a lithium titanium composite oxide.
 リチウムチタン複合酸化物のようなチタン含有酸化物を含む負極は、Li吸蔵電位が0.4V(vs.Li/Li)以上であるため、大電流での入出力を繰り返した際の負極表面上での金属リチウムの析出を防止することができる。負極活物質には、リチウムチタン複合酸化物以外の活物質が含まれていてもよいが、その場合、Li吸蔵電位が0.4V(vs.Li/Li)以上の活物質を使用することが望ましい。 A negative electrode containing a titanium-containing oxide such as a lithium-titanium composite oxide has a Li occlusion potential of 0.4 V (vs. Li / Li + ) or higher. The precipitation of metallic lithium on the above can be prevented. The negative electrode active material may contain an active material other than the lithium-titanium composite oxide. In this case, use an active material having a Li storage potential of 0.4 V (vs. Li / Li + ) or more. Is desirable.
 結着剤は、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリイミド、ポリアミドなどを挙げることができる。結着剤の種類は1種類または2種類以上にすることができる。 Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, styrene-butadiene rubber (SBR), carboxymethylcellulose (CMC), polyimide, and polyamide. The kind of the binder can be one kind or two or more kinds.
 負極導電剤としては、例えばアセチレンブラック、ケッチェンブラックなどのカーボンブラック、黒鉛、炭素繊維、カーボンナノチューブ、フラーレンなどを挙げることができる。導電剤の種類は1種類または2種類以上にすることができる。 Examples of the negative electrode conductive agent include carbon black such as acetylene black and Ketjen black, graphite, carbon fiber, carbon nanotube, and fullerene. The kind of the conductive agent can be one kind or two or more kinds.
 負極活物質含有層における負極活物質、導電剤および結着剤の配合割合は、負極活物質70重量%以上96重量%以下、導電剤2重量%以上28重量%以下および結着剤2重量%以上28重量%以下にすることが好ましい。導電剤は、2重量%以上の割合で配合することにより高い集電性能による優れた大電流特性が得られる。また、結着剤量を2重量%以上にすることにより、負極活物質含有層と負極集電体の結着性を高くしてサイクル特性を向上することができる。一方、高容量化の観点から、負極導電剤および結着剤はそれぞれ28重量%以下であることが好ましい。 The mixing ratio of the negative electrode active material, the conductive agent, and the binder in the negative electrode active material-containing layer is 70% by weight or more and 96% by weight or less of the negative electrode active material, 2% by weight or more and 28% by weight or less of the conductive agent, and 2% by weight of the binder. It is preferable that the content be at least 28% by weight. By blending the conductive agent in a proportion of 2% by weight or more, excellent large current characteristics due to high current collecting performance can be obtained. When the amount of the binder is 2% by weight or more, the binding property between the negative electrode active material-containing layer and the negative electrode current collector can be increased, and the cycle characteristics can be improved. On the other hand, from the viewpoint of increasing the capacity, each of the negative electrode conductive agent and the binder is preferably 28% by weight or less.
 集電体は、1.0Vよりも貴である電位範囲において電気化学的に安定であるアルミニウム箔またはアルミニウム合金箔であることが好ましい。 The current collector is preferably an aluminum foil or an aluminum alloy foil which is electrochemically stable in a potential range noble than 1.0 V.
 負極は、例えば負極活物質、負極導電剤及び結着剤を適当な溶媒に懸濁し、得られたスラリーを、負極集電体に塗布し、乾燥し、負極活物質含有層を作製した後、プレスを施すことにより作製される。その他、負極活物質、負極導電剤及び結着剤をペレット状に形成し、負極活物質含有層として用いてもよい。 For the negative electrode, for example, a negative electrode active material, a negative electrode conductive agent and a binder are suspended in an appropriate solvent, the obtained slurry is applied to a negative electrode current collector, and dried to form a negative electrode active material-containing layer. It is produced by applying a press. In addition, the negative electrode active material, the negative electrode conductive agent, and the binder may be formed in a pellet shape and used as the negative electrode active material-containing layer.
 負極活物質含有層は、20%以上50%以下の気孔率を有することが好ましい。このような気孔率を有する負極活物質含有層は、非水電解質との親和性に優れ、かつ高密度化を図ることが可能になる。より好ましい気孔率は、25%以上40%以下である。 The negative electrode active material-containing layer preferably has a porosity of 20% or more and 50% or less. The negative electrode active material-containing layer having such a porosity is excellent in affinity with the nonaqueous electrolyte and can achieve high density. More preferable porosity is 25% or more and 40% or less.
 負極活物質含有層の密度は、2.0g/cm以上にすることが好ましい。 The density of the negative electrode active material-containing layer is preferably set to 2.0 g / cm 3 or more.
 <非水電解質>
 非水電解質は、電解質を非水溶媒に溶解し調整される液状非水電解質、液状非水電解質と高分子材料を複合化したゲル状非水電解質等が挙げられる。
<Non-aqueous electrolyte>
Examples of the non-aqueous electrolyte include a liquid non-aqueous electrolyte prepared by dissolving the electrolyte in a non-aqueous solvent, and a gel non-aqueous electrolyte obtained by combining a liquid non-aqueous electrolyte and a polymer material.
 電解質は、例えば、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、ジフルオロリン酸リチウム(LiPO)、トリフルオロメタスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]、四フッ化アルミニウムリチウム(LiAlF)などのリチウム塩を挙げることができる。これらの電解質は、単独または2種類以上を混合してもよい。電解質は、六フッ化リン酸リチウム又は四フッ化アルミニウムリチウムを含むものが好ましく、六フッ化リン酸リチウム及び四フッ化アルミニウムリチウムを含むものがより好ましい。 The electrolyte is, for example, lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), lithium difluorophosphate Lithium salts such as (LiPO 2 F 2 ), lithium trifluorometasulfonic acid (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ], lithium aluminum tetrafluoride (LiAlF 4 ) Can be mentioned. These electrolytes may be used alone or in combination of two or more. The electrolyte preferably contains lithium hexafluorophosphate or lithium aluminum tetrafluoride, and more preferably contains lithium hexafluorophosphate and lithium aluminum tetrafluoride.
 電解質は、非水溶媒に対して0.5mol/L以上2.5mol/L以下の範囲で溶解させることが好ましい。 (4) The electrolyte is preferably dissolved in the nonaqueous solvent in a range of 0.5 mol / L to 2.5 mol / L.
 非水溶媒は、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)などの環状カーボネート;ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)などの鎖状カーボネート;テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)などの環状エーテル;ジメトキシエタン(DME)などの鎖状エーテル;γ-ブチロラクトン(BL)などの環状エステル;酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチルなどの鎖状エステル;アセトニトリル(AN);スルホラン(SL)等の有機溶媒を挙げることができる。これらの有機溶媒は、単独または2種以上の混合物の形態で用いることができる。 Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC); chains such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) Cyclic ethers such as tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2MeTHF); chain ethers such as dimethoxyethane (DME); cyclic esters such as γ-butyrolactone (BL); methyl acetate, ethyl acetate and methyl propionate And linear solvents such as ethyl propionate; organic solvents such as acetonitrile (AN) and sulfolane (SL). These organic solvents can be used alone or in the form of a mixture of two or more.
 ゲル状非水電解質に用いる高分子材料としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキシド(PEO)等を挙げることができる。 高分子 Examples of the polymer material used for the gel non-aqueous electrolyte include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), and polyethylene oxide (PEO).
 <セパレータ>
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン、セルロース、またはポリフッ化ビニリデン(PVdF)を含む多孔質フィルム、合成樹脂製不織布などを挙げることができる。
<Separator>
Examples of the separator include a porous film containing polyethylene, polypropylene, cellulose, or polyvinylidene fluoride (PVdF), and a nonwoven fabric made of a synthetic resin.
 <外装部材>
 外装部材は、ラミネートフィルムから形成しても金属製容器で構成してもよい。金属製容器を用いる場合、蓋は容器と一体または別部材にすることができる。金属製容器の肉厚は0.5mm以下、0.2mm以下であるとより好ましい。外装部材の形状としては、扁平型、角型、円筒型、コイン型、ボタン型、シート型、積層型などが挙げられる。携帯用電子機器などに積載される小型電池の他、二輪ないしは四輪の自動車に積載される大型電池でもよい。
<Exterior material>
The exterior member may be formed from a laminate film or a metal container. If a metal container is used, the lid can be integral with or separate from the container. The thickness of the metal container is more preferably 0.5 mm or less, and more preferably 0.2 mm or less. Examples of the shape of the exterior member include a flat type, a square type, a cylindrical type, a coin type, a button type, a sheet type, and a laminated type. In addition to a small battery mounted on a portable electronic device or the like, a large battery mounted on a two-wheeled or four-wheeled vehicle may be used.
 ラミネートフィルム製外装部材の肉厚は0.2mm以下であることが望ましい。ラミネートフィルムの例には、樹脂フィルムと樹脂フィルム間に配置された金属層とを含む多層フィルムが挙げられる。金属層は、軽量化のためにアルミニウム箔もしくはアルミニウム合金箔が好ましい。樹脂フィルムは、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)などの高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に成形することができる。 外 装 The thickness of the laminate film exterior member is desirably 0.2 mm or less. Examples of the laminate film include a multilayer film including a resin film and a metal layer disposed between the resin films. The metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction. For the resin film, for example, a polymer material such as polypropylene (PP), polyethylene (PE), nylon, or polyethylene terephthalate (PET) can be used. The laminate film can be formed into a shape of an exterior member by performing sealing by heat fusion.
 金属製容器は、アルミニウムまたはアルミニウム合金などから作られる。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素などの元素を含む合金が好ましい。アルミニウムまたはアルミニウム合金において、鉄、銅、ニッケル、クロムなどの遷移金属の含有量は100ppm以下にすることが高温環境下での長期信頼性、放熱性を飛躍的に向上させる上で好ましい。 The metal container is made of aluminum or aluminum alloy. As the aluminum alloy, an alloy containing an element such as magnesium, zinc, or silicon is preferable. In aluminum or an aluminum alloy, the content of transition metals such as iron, copper, nickel, and chromium is preferably 100 ppm or less in order to dramatically improve long-term reliability and heat dissipation under a high-temperature environment.
 アルミニウムまたはアルミニウム合金からなる金属製容器は、平均結晶粒径が50μm以下、より好ましくは30μm以下、さらに好ましくは5μm以下であることが望ましい。平均結晶粒径を50μm以下とすることによって、アルミニウムまたはアルミニウム合金からなる金属製容器の強度を飛躍的に増大させることができ、容器のより一層の薄肉化が可能になる。その結果、軽量かつ高出力で長期信頼性に優れた車載などに適切な非水電解質電池を実現することができる。 金属 The metal container made of aluminum or an aluminum alloy preferably has an average crystal grain size of 50 μm or less, more preferably 30 μm or less, and still more preferably 5 μm or less. By setting the average crystal grain size to 50 μm or less, the strength of a metal container made of aluminum or an aluminum alloy can be remarkably increased, and the thickness of the container can be further reduced. As a result, it is possible to realize a nonaqueous electrolyte battery that is lightweight, has a high output, and is excellent in long-term reliability and is suitable for a vehicle or the like.
 次に、実施形態に係る非水電解質電池の具体例を、図面を参照しながら説明する。 Next, a specific example of the nonaqueous electrolyte battery according to the embodiment will be described with reference to the drawings.
 まず、図1及び図2を参照しながら、実施形態に係る第1の例の非水電解質電池を説明する。 First, a nonaqueous electrolyte battery of a first example according to the embodiment will be described with reference to FIGS. 1 and 2.
 図1は、第2の実施形態に係る非水電解質電池の一例の一部切欠斜視図である。図2は、図1に示す非水電解質電池のA部の拡大断面図である。 FIG. 1 is a partially cutaway perspective view of an example of the nonaqueous electrolyte battery according to the second embodiment. FIG. 2 is an enlarged sectional view of a portion A of the nonaqueous electrolyte battery shown in FIG.
 図1及び図2に示す非水電解質電池100は、扁平型の電極群1とラミネートフィルム製の外装部材7を具備する。扁平型の電極群1は、負極2と、正極3と、セパレータ4とを含む。扁平型の電極群1は、負極2と正極3とがその間にセパレータ4を介して扁平形状に捲回されたものである。 非 The nonaqueous electrolyte battery 100 shown in FIGS. 1 and 2 includes a flat electrode group 1 and a package member 7 made of a laminated film. The flat electrode group 1 includes a negative electrode 2, a positive electrode 3, and a separator 4. The flat electrode group 1 is formed by winding a negative electrode 2 and a positive electrode 3 into a flat shape with a separator 4 interposed therebetween.
 負極2は、図2に示すように、負極集電体21と、負極集電体21上に担持された負極活物質含有層22とを具備する。なお、図2に示すように、負極2の最外側に位置する部分では、負極集電体21の2つの主面のうち正極3と向き合わない主面上には、負極活物質含有層22が担持されていない。負極2のその他の部分では、負極集電体の両方の主面上に、負極活物質含有層22が担持されている。正極3は、図2に示すように、正極集電体31と、正極集電体31の2つの主面上に担持された正極活物質含有層32とを具備する。 (2) As shown in FIG. 2, the negative electrode 2 includes a negative electrode current collector 21 and a negative electrode active material containing layer 22 supported on the negative electrode current collector 21. As shown in FIG. 2, in a portion located on the outermost side of the negative electrode 2, a negative electrode active material-containing layer 22 is formed on a main surface of the two main surfaces of the negative electrode current collector 21 not facing the positive electrode 3. Not carried. In other portions of the negative electrode 2, the negative electrode active material-containing layer 22 is supported on both main surfaces of the negative electrode current collector. As shown in FIG. 2, the positive electrode 3 includes a positive electrode current collector 31 and a positive electrode active material-containing layer 32 supported on two main surfaces of the positive electrode current collector 31.
 負極2には帯状の負極端子5が電気的に接続されている。正極3には帯状の正極端子6が電気的に接続されている。 帯 A strip-shaped negative electrode terminal 5 is electrically connected to the negative electrode 2. A strip-shaped positive electrode terminal 6 is electrically connected to the positive electrode 3.
 電極群1は、ラミネートフィルム製の外装部材7内に、負極端子5及び正極端子6の端部を外装部材7から延出させた状態で収容されている。ラミネートフィルム製外装部材7内には、図示しない非水電解質が収容されている。非水電解質は、電極群1に含浸されている。ラミネートフィルム製の外装部材7は、一端部に負極端子5と正極端子6とを挟んだ状態で、この端部及びこの端部と直交する二端部71それぞれを熱融着させることにより封止されている。 (4) The electrode group 1 is housed in the exterior member 7 made of a laminated film with the ends of the negative terminal 5 and the positive terminal 6 extending from the exterior member 7. A non-aqueous electrolyte (not shown) is accommodated in the exterior member 7 made of a laminate film. The non-aqueous electrolyte is impregnated in the electrode group 1. The exterior member 7 made of a laminate film is sealed by heat-sealing the end portion and the two end portions 71 orthogonal to the end portion with the negative electrode terminal 5 and the positive electrode terminal 6 sandwiched at one end. Have been.
 次に、図3を参照しながら、実施形態に係る第2の例の非水電解質電池を説明する。 Next, a second example of the nonaqueous electrolyte battery according to the embodiment will be described with reference to FIG.
 図3は、第2の実施形態に係る非水電解質電池の別の例の分解斜視図である。 FIG. 3 is an exploded perspective view of another example of the nonaqueous electrolyte battery according to the second embodiment.
 図3に示す非水電解質電池100は、容器本体7と、蓋体8と、電極群1とを具備する。 非 The non-aqueous electrolyte battery 100 shown in FIG. 3 includes the container body 7, the lid 8, and the electrode group 1.
 容器本体7は、金属製であり、開口部を有する有底角筒形状を有している。容器本体7の開口部には、蓋体8が配置されており、それによって塞がれている。容器本体7は、電極群1及び非水電解質(図示しない)を収容している。容器本体7と蓋体8とは、外装部材を構成している。 The container body 7 is made of metal and has a shape of a bottomed rectangular tube having an opening. A lid 8 is arranged at the opening of the container body 7 and is closed thereby. The container body 7 contains the electrode group 1 and a non-aqueous electrolyte (not shown). The container body 7 and the lid 8 constitute an exterior member.
 蓋体8は封口板81を備えている。封口板81は、容器本体7と同じ種類の金属からなることが望ましい。封口板81の周縁部は、容器本体7の開口部の周縁部に溶接されている。封口板81にはガス開放構造として作動できる安全弁82が設けられている。 The lid 8 has a sealing plate 81. The sealing plate 81 is desirably made of the same type of metal as the container body 7. The peripheral edge of the sealing plate 81 is welded to the peripheral edge of the opening of the container body 7. The sealing plate 81 is provided with a safety valve 82 that can operate as a gas release structure.
 安全弁82は、封口板81に設けられた矩形の凹部の底面に設けられた十字の溝83を含む。封口板81のうち溝83が設けられた部分は特に肉薄となっている。そのため、溝83は、容器本体7の内部圧力が上昇した際に、破断することによって容器本体7内のガスを外に放出することができる。 The safety valve 82 includes a cross groove 83 provided on the bottom surface of a rectangular concave portion provided on the sealing plate 81. The portion of the sealing plate 81 where the groove 83 is provided is particularly thin. Therefore, when the internal pressure of the container main body 7 increases, the groove 83 can be broken to release the gas in the container main body 7 to the outside.
 また、封口板81には、安全弁82の他に、注液孔81aが設けられている。封口板81には、正極端子84、負極端子85、2つの外部絶縁材86、図示しない2つの内部絶縁材及び2つの端子リード87が固定されている。 口 In addition to the safety valve 82, the sealing plate 81 is provided with a liquid injection hole 81a. A positive electrode terminal 84, a negative electrode terminal 85, two external insulating materials 86, two internal insulating materials (not shown), and two terminal leads 87 are fixed to the sealing plate 81.
 電極群1は、図示しない正極と、図示しない負極と、図示しないセパレータとを含む。扁平型の電極群1は、正極と負極とがその間にセパレータを介して扁平形状に捲回されたものである。電極群1には図示しない非水電解質が含浸されている。 The electrode group 1 includes a positive electrode (not shown), a negative electrode (not shown), and a separator (not shown). In the flat electrode group 1, a positive electrode and a negative electrode are wound in a flat shape with a separator interposed therebetween. The electrode group 1 is impregnated with a non-aqueous electrolyte (not shown).
 正極は、帯状の正極集電体と、集電体の表面の一部に形成された正極活物質含有層とを備える。正極集電体は、表面に正極活物質含有層が形成されていない、複数の正極集電タブ33を備える。複数の正極集電タブ33は、電極群1の蓋体8に対向する端面から延出している。なお、図3では、複数の正極集電タブ33を集合体である1つの部材33として記載している。 The positive electrode includes a belt-shaped positive electrode current collector and a positive electrode active material-containing layer formed on a part of the surface of the current collector. The positive electrode current collector includes a plurality of positive electrode current collector tabs 33 each having no positive electrode active material-containing layer formed on the surface. The plurality of positive electrode current collection tabs 33 extend from the end face of the electrode group 1 facing the lid 8. In FIG. 3, the plurality of positive electrode current collecting tabs 33 are described as one member 33 which is an aggregate.
 負極は、帯状の負極集電体と、集電体の表面の一部に形成された負極活物質含有層とを備える。負極集電体は、表面に負極活物質含有層が形成されていない、複数の負極集電タブ23を備える。複数の負極集電タブ23は、電極群1の蓋体8に対向する端面から延出している。なお、図3では、複数の負極集電タブ23を集合体である1つの部材23として記載している。 The negative electrode includes a strip-shaped negative electrode current collector and a negative electrode active material-containing layer formed on a part of the surface of the current collector. The negative electrode current collector includes a plurality of negative electrode current collector tabs 23 each having no negative electrode active material-containing layer formed on the surface. The plurality of negative electrode current collection tabs 23 extend from the end face of the electrode group 1 facing the lid 8. In FIG. 3, the plurality of negative electrode current collecting tabs 23 are described as one member 23 which is an aggregate.
 2つの端子リード87は、正極端子84及び負極端子85、2つの外部絶縁材86、並びに2つの内部絶縁材と共に、封口板81に固定されている。 The two terminal leads 87 are fixed to the sealing plate 81 together with the positive terminal 84 and the negative terminal 85, two external insulating materials 86, and two internal insulating materials.
 正極端子84及び負極端子85はそれぞれ封口板81から電気的に絶縁されている。また、2つの端子リード87も、封口板81から絶縁されている。 (4) The positive terminal 84 and the negative terminal 85 are electrically insulated from the sealing plate 81, respectively. The two terminal leads 87 are also insulated from the sealing plate 81.
 一方、正極端子84は、これと共に封口板81に固定された一方の端子リード87に電気的に接続されている。同様に、負極端子85は、これと共に封口板81に固定された他方の端子リード87に電気的に接続されている。 On the other hand, the positive electrode terminal 84 is electrically connected to one terminal lead 87 fixed to the sealing plate 81 together with the positive electrode terminal 84. Similarly, the negative electrode terminal 85 is electrically connected to the other terminal lead 87 fixed to the sealing plate 81 together with the negative electrode terminal 85.
 図3に示す非水電解質電池100において、封口板81に設けられた注液孔81aは、外部から非水電解質電池100の内部へと非水電解質を注入するための注液通路を構成している。注液孔81aは、金属製の封止蓋9によって塞がれている。封止蓋9はその周縁が封口板81に溶接されている。 In the nonaqueous electrolyte battery 100 shown in FIG. 3, the injection hole 81 a provided in the sealing plate 81 forms a liquid injection passage for injecting the nonaqueous electrolyte from the outside into the inside of the nonaqueous electrolyte battery 100. I have. The liquid injection hole 81a is closed by a metal sealing lid 9. The peripheral edge of the sealing lid 9 is welded to the sealing plate 81.
 図3に示す非水電解質電池100では、正極端子84に電気的に接続された端子リード87は、正極集電タブ33に電気的に接続されている。また、負極端子85に電気的に接続された端子リード87は、負極集電タブ23に電気的に接続されている。 非 In the nonaqueous electrolyte battery 100 shown in FIG. 3, the terminal lead 87 electrically connected to the positive electrode terminal 84 is electrically connected to the positive electrode current collecting tab 33. The terminal lead 87 electrically connected to the negative terminal 85 is electrically connected to the negative current collecting tab 23.
 第2の実施形態に係る非水電解質電池は、第1の実施形態に係る正極を備えているため、電池内のガス発生と電池抵抗の上昇を抑制することができる。 非 Since the nonaqueous electrolyte battery according to the second embodiment includes the positive electrode according to the first embodiment, gas generation in the battery and an increase in battery resistance can be suppressed.
 (第3の実施形態)
 第3の実施形態によれば、非水電解質電池を含む電池パックが提供される。非水電解質電池には、第1の実施形態に係る非水電解質電池が使用される。電池パックに含まれる非水電解質電池(単電池)の数は、1個または複数にすることができる。
(Third embodiment)
According to the third embodiment, a battery pack including a non-aqueous electrolyte battery is provided. The non-aqueous electrolyte battery according to the first embodiment is used as the non-aqueous electrolyte battery. The number of nonaqueous electrolyte batteries (cells) included in the battery pack can be one or more.
 複数の非水電解質電池は、電気的に直列、並列、又は直列及び並列を組み合わせて接続されて組電池を構成することができる。電池パックは、複数の組電池を含んでいてもよい。 A plurality of non-aqueous electrolyte batteries can be electrically connected in series, in parallel, or in a combination of series and parallel to form an assembled battery. The battery pack may include a plurality of assembled batteries.
 電池パックは、保護回路を更に具備することができる。保護回路は、非水電解質電池の充放電を制御する機能を有する。また、電池パックを電源として使用する装置(例えば、電子機器、自動車等)に含まれる回路を、電池パックの保護回路として使用することができる。 The battery pack may further include a protection circuit. The protection circuit has a function of controlling charging and discharging of the nonaqueous electrolyte battery. Further, a circuit included in a device (for example, an electronic device, an automobile, or the like) that uses the battery pack as a power supply can be used as a protection circuit for the battery pack.
 また、電池パックは、通電用の外部端子を更に具備することもできる。通電用の外部端子は、非水電解質電池からの電流を外部に出力するため、及び非水電解質電池に電流を入力するためのものである。言い換えれば、電池パックを電源として使用する際、電流が通電用の外部端子を通して外部に供給される。また、電池パックを充電する際、充電電流(自動車の動力の回生エネルギーを含む)は通電用の外部端子を通して電池パックに供給される。 (4) The battery pack may further include an external terminal for energization. The external terminals for energization are for outputting a current from the nonaqueous electrolyte battery to the outside and for inputting a current to the nonaqueous electrolyte battery. In other words, when the battery pack is used as a power supply, a current is supplied to the outside through an external terminal for conduction. Further, when charging the battery pack, a charging current (including regenerative energy of the power of the vehicle) is supplied to the battery pack through an external terminal for power supply.
 次に、第3の実施形態に係る電池パックの一例を、図面を参照して説明する。 Next, an example of the battery pack according to the third embodiment will be described with reference to the drawings.
 図4は、第3の実施形態に係る電池パックの一例の分解斜視図である。図5は、図4に示す電池パックの電気回路を示すブロック図である。 FIG. 4 is an exploded perspective view of an example of the battery pack according to the third embodiment. FIG. 5 is a block diagram showing an electric circuit of the battery pack shown in FIG.
 図4及び図5に示す電池パック200は、図1及び図2に示した構造を有する複数個の扁平型電池100を含む。 The battery pack 200 shown in FIGS. 4 and 5 includes a plurality of flat batteries 100 having the structure shown in FIGS.
 複数個の単電池100は、外部に延出した負極外部端子5及び正極外部端子6が同じ向きに揃えられるように積層され、粘着テープ122で締結されており、それにより組電池123を構成している。これらの単電池100は、図5に示すように互いに電気的に直列に接続されている。 The plurality of cells 100 are stacked so that the negative electrode external terminal 5 and the positive electrode external terminal 6 extending to the outside are aligned in the same direction, and are fastened with the adhesive tape 122, thereby forming the assembled battery 123. ing. These cells 100 are electrically connected to each other in series as shown in FIG.
 プリント配線基板124が、複数の単電池100の負極外部端子5及び正極外部端子6が延出している側面に対向して配置されている。プリント配線基板124には、図5に示すように、サーミスタ125、保護回路126及び外部機器への通電用端子127が搭載されている。なお、プリント配線基板124の組電池123と対向する面には、組電池123の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。 (4) The printed wiring board 124 is disposed to face the side surface of the plurality of unit cells 100 from which the negative electrode external terminals 5 and the positive electrode external terminals 6 extend. As shown in FIG. 5, a thermistor 125, a protection circuit 126, and a terminal 127 for energizing an external device are mounted on the printed wiring board 124. An insulating plate (not shown) is attached to the surface of the printed wiring board 124 facing the battery module 123 to avoid unnecessary connection with the wiring of the battery module 123.
 組電池123の最下層に位置する単電池100の正極外部端子6に正極側リード128が接続されており、その先端はプリント配線基板124の正極側コネクタ129に挿入されて電気的に接続されている。組電池123の最上層に位置する単電池100の負極外部端子5に負極側リード130が接続されており、その先端はプリント配線基板124の負極側コネクタ131に挿入されて電気的に接続されている。これらのコネクタ129及び131は、プリント配線基板124に形成された配線132及び133をそれぞれ通して保護回路126に接続されている。 A positive electrode lead 128 is connected to the positive electrode external terminal 6 of the cell 100 located at the lowermost layer of the assembled battery 123, and the tip is inserted into the positive electrode connector 129 of the printed wiring board 124 and electrically connected. I have. The negative electrode-side lead 130 is connected to the negative electrode external terminal 5 of the unit cell 100 located on the uppermost layer of the assembled battery 123, and the tip is inserted into the negative electrode-side connector 131 of the printed wiring board 124 to be electrically connected. I have. These connectors 129 and 131 are connected to the protection circuit 126 through wirings 132 and 133 formed on the printed wiring board 124, respectively.
 サーミスタ125は、単電池100の各々の温度を検出し、その検出信号を保護回路126に送信する。保護回路126は、所定の条件で保護回路126と外部機器への通電用端子127との間のプラス側配線134a及びマイナス側配線134bを遮断することができる。所定の条件の例は、例えばサーミスタ125から、単電池100の温度が所定温度以上であるとの信号を受信したときである。また、所定の条件の他の例は、単電池100の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池100又は単電池100全体について行われる。個々の単電池100を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、参照極として用いるリチウム電極を個々の単電池100に挿入する。図4及び図5の電池パック200では、単電池100それぞれに電圧検出のための配線135が接続されており、これら配線135を通して検出信号が保護回路126に送信される。 The thermistor 125 detects the temperature of each of the cells 100 and transmits a detection signal to the protection circuit 126. The protection circuit 126 can cut off the plus side wiring 134a and the minus side wiring 134b between the protection circuit 126 and the terminal 127 for energizing the external device under a predetermined condition. An example of the predetermined condition is when a signal indicating that the temperature of the cell 100 is equal to or higher than the predetermined temperature is received from the thermistor 125, for example. Another example of the predetermined condition is when overcharge, overdischarge, overcurrent, or the like of the cell 100 is detected. The detection of the overcharge or the like is performed for each single cell 100 or the whole single cell 100. When detecting the individual cells 100, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each unit cell 100. In the battery pack 200 of FIG. 4 and FIG. 5, wiring 135 for voltage detection is connected to each of the cells 100, and a detection signal is transmitted to the protection circuit 126 through these wirings 135.
 正極外部端子6及び負極外部端子5が突出する側面を除く組電池123の三側面には、ゴムもしくは樹脂からなる保護シート136がそれぞれ配置されている。 保護 A protective sheet 136 made of rubber or resin is disposed on each of three sides of the battery pack 123 except for the side from which the positive external terminal 6 and the negative external terminal 5 protrude.
 組電池123は、各保護シート136及びプリント配線基板124と共に収納容器137内に収納されている。すなわち、収納容器137の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート136が配置されており、短辺方向の反対側の内側面にプリント配線基板124が配置されている。組電池123は、保護シート136及びプリント配線基板124で囲まれた空間内に位置する。蓋138は、収納容器137の上面に取り付けられている。 (4) The battery pack 123 is stored in the storage container 137 together with the protective sheets 136 and the printed wiring board 124. That is, the protective sheets 136 are disposed on both the inner surfaces in the long side direction and the inner surfaces in the short side direction of the storage container 137, and the printed wiring board 124 is disposed on the inner surface on the opposite side in the short side direction. I have. The assembled battery 123 is located in a space surrounded by the protection sheet 136 and the printed wiring board 124. The lid 138 is attached to the upper surface of the storage container 137.
 なお、組電池123の固定には粘着テープ122に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮チューブを周回させた後、熱収縮チューブを熱収縮させて組電池を結束させる。 Note that a heat-shrinkable tape may be used instead of the adhesive tape 122 for fixing the battery assembly 123. In this case, the protective sheets are arranged on both sides of the battery pack, and the heat-shrinkable tube is made to rotate. Then, the heat-shrinkable tube is heat-shrinked to bind the battery pack.
 図4及び図5に示した電池パック200は複数の単電池100を直列接続した形態を有するが、第3の実施形態に係る電池パックは、電池容量を増大させるために、複数の単電池100を並列に接続してもよい。或いは、第3の実施形態に係る電池パックは、直列接続と並列接続とを組合せて接続された複数の単電池100を備えてもよい。組み上がった電池パック200をさらに直列又は並列に接続することもできる。 Although the battery pack 200 shown in FIGS. 4 and 5 has a configuration in which a plurality of unit cells 100 are connected in series, the battery pack according to the third embodiment includes a plurality of unit cells 100 in order to increase the battery capacity. May be connected in parallel. Alternatively, the battery pack according to the third embodiment may include a plurality of unit cells 100 connected by combining a series connection and a parallel connection. The assembled battery pack 200 can be further connected in series or in parallel.
 また、図4及び図5に示した電池パック200は複数の単電池100を備えているが、第3の実施形態に係る電池パックは1つの単電池100を備えるものでもよい。 The battery pack 200 shown in FIGS. 4 and 5 includes a plurality of single cells 100, but the battery pack according to the third embodiment may include one single cell 100.
 また、電池パック200の態様は用途により適宜変更される。電池パック200の用途としては、大電流特性でのサイクル特性が望まれるものが好ましい。具体的には、デジタルカメラの電源用や、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用が挙げられる。特に、車載用が好適である。 態 様 The form of battery pack 200 is appropriately changed depending on the application. As a use of the battery pack 200, a battery in which cycle characteristics with large current characteristics are desired is preferable. Specific examples include a power source for a digital camera, a two-wheel or four-wheel hybrid electric vehicle, a two-wheel or four-wheel electric vehicle, and an on-board vehicle such as an assist bicycle. In particular, the on-vehicle use is preferable.
 本実施形態に係る電池パックを搭載した自動車において、電池パックは、例えば、自動車の動力の回生エネルギーを回収するものである。 自動 車 In the vehicle equipped with the battery pack according to the present embodiment, the battery pack is for recovering, for example, regenerative energy of the power of the vehicle.
 第3の実施形態の電池パックは、第1の実施形態の非水電解質電池を含む。したがって、第3の実施形態に係る電池パックは、電池内のガス発生及び電池抵抗の上昇を抑制することができる。 電池 The battery pack of the third embodiment includes the nonaqueous electrolyte battery of the first embodiment. Therefore, the battery pack according to the third embodiment can suppress generation of gas in the battery and an increase in battery resistance.
[実施例]
 以下に例を挙げ、実施形態をさらに詳しく説明するが、発明の主旨を超えない限り実施形態は以下に掲載される実施例に限定されるものではない。
[Example]
The embodiments will be described in more detail with reference to the following examples, but the embodiments are not limited to the examples described below without departing from the gist of the invention.
 (実施例1)
 実施例1では、以下の手順により、実施例1の正極及び非水電解質電池を作製した。
(Example 1)
In Example 1, the positive electrode and the nonaqueous electrolyte battery of Example 1 were produced by the following procedure.
 <正極の作成>
 正極活物質として、組成式LiMn1.9Al0.1で表されるスピネル型リチウムマンガン複合酸化物(LMO)の粒子と、組成式LiCoOで表されるコバルト酸リチウム(LCO)の粒子とを準備した。LMOの粒子は二次粒子を含むもので、平均二次粒子径は10μmであった。LCOの一次粒子の平均粒子径は8μmであった。また、導電剤としてのアセチレンブラック及びグラファイトと、結着剤としてのポリフッ化ビニリデン(PVdF)とを準備した。これらを、LMOの粒子:LCOの粒子:アセチレンブラック:グラファイト:PVdFの混合比が重量比で90:10:4:1:4となるように、N-メチルピロリドン(NMP)に加えて混合した。かくして、正極スラリーを調製した。この正極スラリーを厚さ15μmのアルミニウム箔からなる集電体の両面に塗布し、乾燥した後、プレスすることにより片面目付量80g/mの正極活物質含有層を備える正極を作製した。
<Creation of positive electrode>
As the positive electrode active material, particles of spinel-type lithium manganese composite oxide (LMO) represented by the composition formula LiMn 1.9 Al 0.1 O 4 and lithium cobalt oxide (LCO) represented by the composition formula LiCoO 2 And the particles were prepared. The LMO particles contained secondary particles, and the average secondary particle diameter was 10 μm. The average particle size of the LCO primary particles was 8 μm. In addition, acetylene black and graphite as conductive agents, and polyvinylidene fluoride (PVdF) as binders were prepared. These were added and mixed with N-methylpyrrolidone (NMP) such that the mixing ratio of LMO particles: LCO particles: acetylene black: graphite: PVdF was 90: 10: 4: 1: 4 by weight. . Thus, a positive electrode slurry was prepared. This positive electrode slurry was applied to both surfaces of a current collector made of an aluminum foil having a thickness of 15 μm, dried, and then pressed to produce a positive electrode having a positive electrode active material-containing layer having a basis weight of 80 g / m 2 on one surface.
 <負極の作成>
 負極活物質として、組成式LiTi12で表されるスピネル型チタン酸リチウム(LTO)の粒子を準備した。また、導電剤としてのグラファイトと、結着剤としてのPVdFとを準備した。これらをLTOの粒子:グラファイト:PVdFの混合比が重量比で100:9:4となるように、NMPに加えて混合した。かくして、負極スラリーを調製した。この負極スラリーを厚さ15μmのアルミニウム箔からなる集電体の両面に塗布し、乾燥した後、プレスすることにより片面目付量40g/mである負極活物質含有層を備える負極を作製した。
<Preparation of negative electrode>
As the negative electrode active material, spinel type lithium titanate (LTO) particles represented by the composition formula Li 4 Ti 5 O 12 were prepared. In addition, graphite as a conductive agent and PVdF as a binder were prepared. These were added to NMP and mixed such that the mixing ratio of LTO particles: graphite: PVdF was 100: 9: 4 by weight. Thus, a negative electrode slurry was prepared. This negative electrode slurry was applied to both surfaces of a current collector made of an aluminum foil having a thickness of 15 μm, dried, and then pressed to produce a negative electrode having a negative electrode active material-containing layer having a basis weight of 40 g / m 2 on one surface.
 <電極群の作製>
 上記のように作製した正極と、厚さが15μmの樹脂製セパレータと、上記のように作製した負極と、もう一枚のセパレータとをこの順で積層し、積層体を得た。この積層体を、負極が最外周に位置するように渦巻き状に捲回して、電極群を作製した。巻き芯を抜いた後、捲回した積層体を90℃で加熱プレスに供した。かくして、幅が50mmであり、高さが95mmであり、厚さが10mmである偏平状電極群を作製した。
<Preparation of electrode group>
The positive electrode prepared as described above, the resin separator having a thickness of 15 μm, the negative electrode prepared as described above, and another separator were laminated in this order to obtain a laminate. This laminate was spirally wound so that the negative electrode was located at the outermost periphery, to produce an electrode group. After removing the core, the wound laminate was subjected to a hot press at 90 ° C. Thus, a flat electrode group having a width of 50 mm, a height of 95 mm, and a thickness of 10 mm was produced.
 <非水電解液の調製>
 エチルメチルカーボネート(EMC)とエチレンカーボネート(EC)とを体積比で1:1になるように混合して混合溶媒を調製した。この混合溶媒に1.0mol/Lの六フッ化リン酸リチウム(LiPF)と0.01mol/Lの四フッ化アルミニウムリチウム(LiAlF)を溶解して、非水電解液を調製した。
<Preparation of non-aqueous electrolyte>
Ethyl methyl carbonate (EMC) and ethylene carbonate (EC) were mixed at a volume ratio of 1: 1 to prepare a mixed solvent. In this mixed solvent, 1.0 mol / L lithium hexafluorophosphate (LiPF 6 ) and 0.01 mol / L lithium aluminum tetrafluoride (LiAlF 4 ) were dissolved to prepare a non-aqueous electrolyte.
 <電池の作製>
 上記のように作製した扁平状電極群を、厚さ0.3mmのアルミニウムからなる有底矩形筒形状の缶(外装容器)に挿入した。
<Production of battery>
The flat electrode group produced as described above was inserted into a bottomed rectangular cylindrical can (outer container) made of aluminum having a thickness of 0.3 mm.
 封口板を取り付けた外装容器内の電極群を乾燥機に投入し、95℃で6時間真空乾燥した。乾燥後、露点-50℃以下に管理されたグローブボックスに運んだ。封口板の注液口から、先に調整した非水電解液を70ml注入した。非水電解液を注入した後、-90kPaの減圧環境下において注液口を封止蓋により封止した。 (4) The electrode group in the outer container to which the sealing plate was attached was put into a drier, and vacuum-dried at 95 ° C. for 6 hours. After drying, it was transported to a glove box controlled at a dew point of −50 ° C. or lower. 70 ml of the previously prepared non-aqueous electrolyte was injected from the inlet of the sealing plate. After the non-aqueous electrolyte was injected, the injection port was sealed with a sealing lid under a reduced pressure environment of -90 kPa.
 <エージング>
 封止後のものを、25℃環境下1Cレートの充電によりSOC100%に調整した。次に、70℃の恒温槽に24時間にわたって放置し、エージングを行った。エージング後、外装容器を開封し、再度-90kPaの減圧環境下において封止した。
<Aging>
After sealing, the SOC was adjusted to 100% by charging at a rate of 1 C under an environment of 25 ° C. Next, it was left in a constant temperature bath at 70 ° C. for 24 hours to perform aging. After aging, the outer container was opened and sealed again under a reduced pressure environment of -90 kPa.
 かくして、実施例1の非水電解質電池を作製した。 Thus, a non-aqueous electrolyte battery of Example 1 was produced.
 (実施例2)
 実施例2では、表1に示すように、LiAlFを0.03mol/Lの濃度で溶解して非水電解質を調製したこと以外は実施例1と同様にして、実施例2の非水電解質電池を作製した。
(Example 2)
In Example 2, as shown in Table 1, the non-aqueous electrolyte of Example 2 was prepared in the same manner as in Example 1 except that LiAlF 4 was dissolved at a concentration of 0.03 mol / L to prepare a non-aqueous electrolyte. A battery was manufactured.
 (実施例3)
 実施例3では、表1に示すように、LiAlFを0.002mol/Lの濃度で溶解して非水電解質を調製したこと以外は実施例1と同様にして、実施例3の非水電解質電池を作製した。
(Example 3)
In Example 3, as shown in Table 1, the non-aqueous electrolyte of Example 3 was prepared in the same manner as in Example 1 except that LiAlF 4 was dissolved at a concentration of 0.002 mol / L to prepare a non-aqueous electrolyte. A battery was manufactured.
 (実施例4)
 実施例4では、表1に示すように、組成式LiMn1.8Al0.2で表されるLMOの粒子を用いたこと以外は実施例1と同様にして、実施例4の非水電解質電池を作製した。
(Example 4)
In Example 4, as shown in Table 1, except for using particles of LMO represented by a composition formula LiMn 1.8 Al 0.2 O 4 in the same manner as in Example 1, a non-embodiment 4 A water electrolyte battery was manufactured.
 (実施例5)
 実施例5では、表1に示すように、組成式LiMn1.8Al0.2で表されるLMOの粒子を用いたこと、及びLiAlFを0.002mol/Lの濃度で溶解して非水電解質を調製したこと以外は実施例1と同様にして、実施例5の非水電解質電池を作製した。
(Example 5)
In Example 5, as shown in Table 1, for the use of the particles of the LMO represented by a composition formula LiMn 1.8 Al 0.2 O 4, and LiAlF 4 was dissolved at a concentration of 0.002 mol / L A non-aqueous electrolyte battery of Example 5 was produced in the same manner as in Example 1 except that the non-aqueous electrolyte was prepared.
 (実施例6)
 実施例6では、表1に示すように、組成式LiMn1.6Al0.4で表されるLMOの粒子を用いたこと以外は実施例1と同様にして、実施例6の非水電解質電池を作製した。
(Example 6)
In Example 6, as shown in Table 1, except that particles of LMO represented by the composition formula LiMn 1.6 Al 0.4 O 4 were used, A water electrolyte battery was manufactured.
 (実施例7)
 実施例7では、表1に示すように、組成式LiMn1.6Al0.4で表されるLMOの粒子を用いたこと、及びLiAlFを添加しなかったこと以外は実施例1と同様にして、実施例7の非水電解質電池を作製した。
(Example 7)
In Example 7, as shown in Table 1, the LMO particles represented by the composition formula LiMn 1.6 Al 0.4 O 4 were used, and Example 1 was performed except that LiAlF 4 was not added. In the same manner as in the above, a non-aqueous electrolyte battery of Example 7 was produced.
 (実施例8)
 実施例8では、表1に示すように、LiAlFを添加しなかったこと以外は実施例1と同様にして、実施例8の非水電解質電池を作製した。
(Example 8)
In Example 8, as shown in Table 1, a non-aqueous electrolyte battery of Example 8 was produced in the same manner as in Example 1 except that LiAlF 4 was not added.
 (実施例9)
 実施例9では、表1に示すように、LiAlFを0.1mol/Lの濃度で溶解して非水電解質を調製したこと以外は実施例1と同様にして、実施例9の非水電解質電池を作製した。
(Example 9)
In Example 9, as shown in Table 1, the non-aqueous electrolyte of Example 9 was prepared in the same manner as in Example 1 except that LiAlF 4 was dissolved at a concentration of 0.1 mol / L to prepare a non-aqueous electrolyte. A battery was manufactured.
 (実施例10)
 実施例10では、実施例1と同様に注液、減圧封止した後、封止後のものを、25℃環境下1Cレートの充電により2.4Vに調整した。次に、70℃の恒温槽に24時間にわたって放置し、エージングを行った。エージング後、外装容器を開封し、再度-90kPaの減圧環境下において封止し、実施例10の非水電解質電池を作製した。
(Example 10)
In Example 10, after injecting and sealing under reduced pressure in the same manner as in Example 1, the voltage after sealing was adjusted to 2.4 V by charging at a 1C rate in an environment of 25 ° C. Next, it was left in a constant temperature bath at 70 ° C. for 24 hours to perform aging. After aging, the outer container was opened, and sealed again under a reduced pressure environment of -90 kPa to produce a nonaqueous electrolyte battery of Example 10.
 (実施例11)
 実施例11では、表1に示すように、組成式LiMn1.6Al0.4で表されるLMOの粒子を用いたこと、LiAlFを添加しなかったこと以外は、実施例1と同様に注液、減圧封止した後、封止後のものを、25℃環境下1Cレートの充電により2.4Vに調整した。次に、70℃の恒温槽に24時間にわたって放置し、エージングを行った。エージング後、外装容器を開封し、再度-90kPaの減圧環境下において封止し、実施例11の非水電解質電池を作製した。
(Example 11)
In Example 11, as shown in Table 1, the particles of LMO represented by the composition formula LiMn 1.6 Al 0.4 O 4 were used, and Example 1 was repeated except that LiAlF 4 was not added. After injecting and sealing under reduced pressure in the same manner as described above, the one after sealing was adjusted to 2.4 V by charging at a 1C rate in a 25 ° C. environment. Next, it was left in a constant temperature bath at 70 ° C. for 24 hours to perform aging. After aging, the outer container was opened and sealed again under a reduced pressure environment of -90 kPa, to produce a nonaqueous electrolyte battery of Example 11.
 (比較例1)
 比較例1では、表1に示すように、組成式LiMn1.9Al0.1で表されるLMOの粒子を用い、LCOの粒子を添加しなかったこと以外は実施例1と同様にして、比較例1の非水電解質電池を作製した。
(Comparative Example 1)
Comparative Example 1 was the same as Example 1 except that LMO particles represented by the composition formula LiMn 1.9 Al 0.1 O 4 were used and LCO particles were not added, as shown in Table 1. Thus, a non-aqueous electrolyte battery of Comparative Example 1 was produced.
 (正極の表面についてのX線光電子分光測定)
 実施例7の非水電解質電池が備える正極活物質含有層の表面を先に説明した方法に従うX線光電子分光測定に供した結果を図6及び図7に示す。図6及び図7に示すスペクトルは、実測のXPSスペクトルである。横軸は結合エネルギー(Binding energy)eVである。図6の縦軸はカウント/秒(残差×2)(Counts/s(Resid×2)であり、残差の縦軸の倍率は2倍である。図7の縦軸はカウント/秒(残差×5)(Counts/s(Resid×5))であり、残差の縦軸の倍率は5倍である。図6に示すスペクトルから、70eV以上78eV以下の範囲内の結合エネルギーの領域にAlの2p軌道の電子に帰属されるピークP1及びP2が2つ含まれることがわかる。
(X-ray photoelectron spectroscopy measurement of positive electrode surface)
FIGS. 6 and 7 show the results of subjecting the surface of the positive electrode active material-containing layer provided in the nonaqueous electrolyte battery of Example 7 to X-ray photoelectron spectroscopy measurement according to the method described above. The spectra shown in FIGS. 6 and 7 are actually measured XPS spectra. The horizontal axis is binding energy eV. 6 is counts / s (Resid × 2) (Counts / s (Resid × 2)), and the vertical scale of the residual is 2. The vertical axis of FIG. (Residual × 5) (Counts / s (Resid × 5)), and the magnification of the vertical axis of the residual is 5. From the spectrum shown in Fig. 6, a binding energy region in the range of 70 eV to 78 eV. Contains two peaks P1 and P2 attributed to electrons in the 2p orbit of Al.
 また、図6に示すスペクトルは、70eV以上75eV未満の範囲内における最大ピーク高さとなるピークP1のAlの結合エネルギーが73.6eVであり、75eV以上78eV以下の範囲内における最大ピーク高さとなるピークP2のAlの結合エネルギーが75.5eVであった。これより、70eV以上75eV未満の範囲内及び75eV以上78eV以下の範囲内の結合エネルギーの領域に、Alの2p軌道の電子に帰属されるピークP1及びP2がそれぞれ1つ含まれることがわかる。 The spectrum shown in FIG. 6 has a peak P1 having a maximum peak height in the range of 70 eV or more and less than 75 eV with an Al binding energy of 73.6 eV, and a peak having a maximum peak height in the range of 75 eV or more and 78 eV or less. The binding energy of Al of P2 was 75.5 eV. From this, it can be seen that one peak P1 and one peak P2 attributed to electrons in the 2p orbital of Al are included in the region of the binding energy in the range of 70 eV or more and less than 75 eV and in the range of 75 eV or more and 78 eV or less.
 さらに、図7に示すスペクトルは、638eV以上645eV以下の範囲内における最大ピーク高さとなるピークP3のMnの結合エネルギーが642.5eVであった。これより、638eV以上645eV以下の範囲内の結合エネルギーの領域に、Mnの2p3/2軌道の電子に帰属されるピークP3が1つ含まれることがわかる。 Further, in the spectrum shown in FIG. 7, the Mn binding energy of the peak P3 having the maximum peak height in the range of 638 eV to 645 eV was 642.5 eV. Thus, it can be seen that one region of the binding energy within the range of 638 eV or more and 645 eV or less contains one peak P3 attributed to the electron in the 2p3 / 2 orbit of Mn.
 図示していないが、上記のX線光電子分光測定により、正極活物質含有層にLi、C、O、F、P、Ti、及びCoの各元素が含まれていることを確認した。 が Although not shown, it was confirmed by the above-mentioned X-ray photoelectron spectroscopy that each element of Li, C, O, F, P, Ti, and Co was contained in the positive electrode active material containing layer.
 実施例1~6、8~11及び比較例1についても、Alの2p軌道の電子に帰属されるピークが70eV以上78eV以下の結合エネルギーの領域に2つ現れること、70eV以上75eV未満の範囲内及び75eV以上78eV以下の範囲内の結合エネルギーの領域に、Alの2p軌道の電子に帰属されるピークがそれぞれ1つ含まれること、638eV以上645eV以下の範囲内の結合エネルギーの領域に、Mnの2p3/2軌道の電子に帰属されるピークが1つ含まれること、及び正極活物質含有層にLi、C、O、F、P、Ti、及びCoの各元素が含まれていることを確認した。 Also in Examples 1 to 6, 8 to 11, and Comparative Example 1, two peaks attributed to electrons in the 2p orbital of Al appear in a binding energy region of 70 eV or more and 78 eV or less, in a range of 70 eV or more and less than 75 eV. And that the binding energy in the range of 75 eV or more and 78 eV or less includes one peak each belonging to an electron in the 2p orbit of Al. The binding energy in the range of 638 eV or more and 645 eV or less contains Mn It was confirmed that one peak attributed to 2p 3/2 orbital electrons was included, and that each element of Li, C, O, F, P, Ti, and Co was included in the positive electrode active material containing layer. confirmed.
 また、上記X線光電子分光測定に供した結果から、先に説明した手順により、(B-C)/(A-C)及び(B-C)/(D-E)を算出した結果を表2に示す。 In addition, the results of calculating (BC) / (AC) and (BC) / (DE) from the results of the above X-ray photoelectron spectroscopy by the above-described procedure are shown. It is shown in FIG.
 (0.2秒放電抵抗)
 実施例1~11及び比較例1の非水電解質電池の電圧をSOC50%の電圧に調整した後、25℃環境下、1C及び10Cの電流をそれぞれ0.2秒、連続で流したときの電圧をV1、V2とする場合に、次の式で算出した0.2秒抵抗を表2に示す。
0.2秒抵抗(Ω)=(V1-V2)/(10-1)
(0.2 second discharge resistance)
After adjusting the voltage of the non-aqueous electrolyte batteries of Examples 1 to 11 and Comparative Example 1 to a voltage of 50% SOC, a voltage when a current of 1 C and 10 C was continuously passed for 0.2 seconds each in an environment of 25 ° C. Table 2 shows the 0.2 second resistance calculated by the following formulas when V1 and V2 are V1 and V2.
0.2 second resistance (Ω) = (V1-V2) / (10-1)
 (貯蔵後のセル厚み及び0.2秒放電抵抗)
 実施例1~11及び比較例1のそれぞれの非水電解質電池をSOC100%に調整し、75℃で1週間貯蔵した。貯蔵後、25℃環境下でセル厚みを測定し、貯蔵前のセル厚みとの差分(mm)を算出した結果を表2に示す。
(Cell thickness after storage and 0.2 second discharge resistance)
Each of the nonaqueous electrolyte batteries of Examples 1 to 11 and Comparative Example 1 was adjusted to an SOC of 100% and stored at 75 ° C. for one week. After storage, the cell thickness was measured under a 25 ° C. environment, and the difference (mm) from the cell thickness before storage was calculated.
 また、貯蔵後に25℃環境下で、実施例1~11及び比較例1のそれぞれの非水電解質電池の0.2秒放電抵抗を測定した結果を表2に示す。 Table 2 shows the results of measuring the 0.2 second discharge resistance of each of the nonaqueous electrolyte batteries of Examples 1 to 11 and Comparative Example 1 at 25 ° C after storage.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、実施例1~11の非水電解質電池は、比較例1の非水電解質電池よりも貯蔵後セル厚みが小さかった。また、実施例1~11の非水電解質電池は、比較例1と同程度の0.2秒抵抗及び貯蔵後0.2秒抵抗を示した。 As shown in Table 2, the non-aqueous electrolyte batteries of Examples 1 to 11 had smaller cell thickness after storage than the non-aqueous electrolyte batteries of Comparative Example 1. Further, the non-aqueous electrolyte batteries of Examples 1 to 11 exhibited the same 0.2-second resistance as that of Comparative Example 1 and the 0.2-second resistance after storage.
 これらの結果から、実施例1~11の非水電解質電池は、比較例1の非水電解質電池と比べて、ガス発生が抑制されていることがわかる。これは、比較例1の非水電解質電池では、正極活物質中にLiCoOが含まれていないため、発生したガスを吸収することができなかったためと考えられる。 From these results, it can be seen that the nonaqueous electrolyte batteries of Examples 1 to 11 suppress gas generation as compared with the nonaqueous electrolyte batteries of Comparative Example 1. This is considered to be because the nonaqueous electrolyte battery of Comparative Example 1 did not contain LiCoO 2 in the positive electrode active material, so that the generated gas could not be absorbed.
 また、実施例1~7の非水電解質電池は、貯蔵後セル厚み、0.2秒放電抵抗、及び貯蔵後0.2秒抵抗がいずれも小さかった。これは、(B-C)/(A-C)が0.3以上2以下の範囲内にあること、及び、(B-C)/(D-E)が0.004以上0.04以下の範囲内にあることにより、正極のLiイオンの伝導性が正極活物質含有層上に形成された被膜により大きく低下することなく、ガス発生が抑制されたためと考えられる。 Further, the non-aqueous electrolyte batteries of Examples 1 to 7 all had small cell thickness after storage, discharge resistance for 0.2 second, and resistance for 0.2 second after storage. This means that (BC) / (AC) is in the range of 0.3 or more and 2 or less, and that (BC) / (DE) is 0.004 or more and 0.04 or less. It is considered that when the content is within the range, gas generation was suppressed without the Li ion conductivity of the positive electrode being significantly reduced by the coating formed on the positive electrode active material-containing layer.
 すなわち、以上に説明した少なくとも一つの実施形態及び実施例に係る正極は、リチウムマンガン複合酸化物とコバルト酸リチウムとを含む正極活物質を含有する正極活物質含有層を含み、正極活物質含有層は、X線光電子分光スペクトルにおけるAlの結合エネルギーの複数のピークが70eV以上78eV以下の範囲内にある表面を有し、0<H/(G+H)≦0.1の関係式を満たす。Gは、正極活物質中のリチウムマンガン複合酸化物の重量比率である。Hは、正極活物質中のコバルト酸リチウムの重量比率である。この正極を備える非水電解質電池は、抵抗値の上昇を抑えながら、ガス発生を抑制することができる。その結果、この非水電解質電池は、優れた入出力特性、優れた寿命特性、及び向上した安全性を示すことができる。 That is, the positive electrode according to at least one of the embodiments and examples described above includes a positive electrode active material-containing layer containing a positive electrode active material including a lithium manganese composite oxide and lithium cobalt oxide, and includes a positive electrode active material-containing layer. Has a surface with a plurality of Al binding energy peaks in the range of 70 eV to 78 eV in the X-ray photoelectron spectroscopy spectrum, and satisfies the relational expression of 0 <H / (G + H) ≦ 0.1. G is the weight ratio of the lithium manganese composite oxide in the positive electrode active material. H is the weight ratio of lithium cobalt oxide in the positive electrode active material. The nonaqueous electrolyte battery provided with this positive electrode can suppress gas generation while suppressing an increase in resistance value. As a result, this non-aqueous electrolyte battery can exhibit excellent input / output characteristics, excellent life characteristics, and improved safety.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. These new embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (7)

  1.  リチウムマンガン複合酸化物とコバルト酸リチウムとを含む正極活物質を含有する正極活物質含有層を含み、
     前記正極活物質含有層は、X線光電子分光スペクトルにおけるAlの結合エネルギーの複数のピークが70eV以上78eV以下の範囲内にある表面を有し、
     下記式(1)を満たす正極:
     0<H/(G+H)≦0.1 (1)
     ここで、Gは、前記正極活物質中の前記リチウムマンガン複合酸化物の重量比率であり、Hは、前記正極活物質中の前記コバルト酸リチウムの重量比率である。
    Includes a positive electrode active material-containing layer containing a positive electrode active material containing lithium manganese composite oxide and lithium cobalt oxide,
    The positive electrode active material-containing layer has a surface having a plurality of peaks of Al binding energy in the range of 70 eV or more and 78 eV or less in an X-ray photoelectron spectroscopy spectrum,
    Positive electrode satisfying the following formula (1):
    0 <H / (G + H) ≦ 0.1 (1)
    Here, G is a weight ratio of the lithium manganese composite oxide in the positive electrode active material, and H is a weight ratio of the lithium cobalt oxide in the positive electrode active material.
  2.  前記正極活物質含有層は、前記X線光電子分光スペクトルにおける前記Alの結合エネルギーの前記複数のピークが70eV以上75eV未満の範囲内及び75eV以上78eV以下の範囲内にそれぞれ少なくとも1つ存在する前記表面を有する請求項1に記載の正極。 The positive electrode active material-containing layer, wherein the plurality of peaks of the binding energy of Al in the X-ray photoelectron spectroscopy spectrum are each at least one in a range of 70 eV or more and less than 75 eV and in a range of 75 eV or more and 78 eV or less. The positive electrode according to claim 1, comprising:
  3.  下記式(2)を満たす請求項1又は2に記載の正極:
     0.3≦(B-C)/(A-C)≦2 (2)
     ここで、Aは、Alの結合エネルギーの70eV以上75eV未満の範囲内における前記X線光電子分光スペクトルの最大ピーク高さであり、
     Bは、Alの結合エネルギーの75eV以上78eV以下の範囲内における前記X線光電子分光スペクトルの最大ピーク高さであり、
     Cは、Alの結合エネルギーの65eV以上70eV未満の範囲内における前記X線光電子分光スペクトルの平均ピーク高さである。
    The positive electrode according to claim 1 or 2, wherein the following formula (2) is satisfied:
    0.3 ≦ (BC) / (AC) ≦ 2 (2)
    Here, A is the maximum peak height of the X-ray photoelectron spectroscopy spectrum within the range of Al binding energy of 70 eV or more and less than 75 eV,
    B is the maximum peak height of the X-ray photoelectron spectroscopy spectrum in the range of 75 eV to 78 eV of the binding energy of Al;
    C is the average peak height of the X-ray photoelectron spectroscopy spectrum within the range of Al binding energy of 65 eV or more and less than 70 eV.
  4.  下記式(3)を満たす請求項1~3の何れか1項に記載の正極:
     0.004≦(B-C)/(D-E)≦0.04 (3)
     ここで、Dは、Mnの結合エネルギーの638eV以上645eV以下の範囲内における前記X線光電子分光スペクトルの最大ピーク高さであり、
     Eは、Mnの結合エネルギーの635eV以上638eV未満の範囲内における前記X線光電子分光スペクトルの平均ピーク高さである。
    The positive electrode according to any one of claims 1 to 3, which satisfies the following formula (3):
    0.004 ≦ (BC) / (DE) ≦ 0.04 (3)
    Here, D is the maximum peak height of the X-ray photoelectron spectroscopy spectrum in the range of the binding energy of Mn of 638 eV or more and 645 eV or less,
    E is the average peak height of the X-ray photoelectron spectroscopy spectrum in the range of 635 eV or more and less than 638 eV of the binding energy of Mn.
  5.  前記リチウムマンガン複合酸化物の組成式がLiMn2-xであり、ここで、添字xは0.1≦x≦0.7の範囲内にあり、Mは、Mg、Ti、Cr、Fe、Co、Zn、Al及びGaからなる群より選ばれる少なくとも1種の金属元素である請求項1~4の何れか1項に記載の正極。 The composition formula of the lithium manganese composite oxide is LiMn 2-x M x O 4 , where the subscript x is in the range of 0.1 ≦ x ≦ 0.7, and M is Mg, Ti, Cr 5. The positive electrode according to claim 1, wherein the positive electrode is at least one metal element selected from the group consisting of Fe, Co, Zn, Al, and Ga.
  6.  請求項1~5の何れか1項に記載の正極と、負極と、非水電解質とを備える非水電解質電池。 <6> A non-aqueous electrolyte battery comprising the positive electrode according to any one of claims 1 to 5, a negative electrode, and a non-aqueous electrolyte.
  7.  請求項6に記載の非水電解質電池を備える電池パック。 A battery pack comprising the nonaqueous electrolyte battery according to claim 6.
PCT/JP2018/025369 2018-07-04 2018-07-04 Positive electrode, non-aqueous electrolyte battery, and battery pack WO2020008565A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020528603A JP7024083B2 (en) 2018-07-04 2018-07-04 Positive electrode, non-aqueous electrolyte battery, and battery pack
PCT/JP2018/025369 WO2020008565A1 (en) 2018-07-04 2018-07-04 Positive electrode, non-aqueous electrolyte battery, and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025369 WO2020008565A1 (en) 2018-07-04 2018-07-04 Positive electrode, non-aqueous electrolyte battery, and battery pack

Publications (1)

Publication Number Publication Date
WO2020008565A1 true WO2020008565A1 (en) 2020-01-09

Family

ID=69060232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025369 WO2020008565A1 (en) 2018-07-04 2018-07-04 Positive electrode, non-aqueous electrolyte battery, and battery pack

Country Status (2)

Country Link
JP (1) JP7024083B2 (en)
WO (1) WO2020008565A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132436A1 (en) * 2015-02-16 2016-08-25 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
WO2016143123A1 (en) * 2015-03-12 2016-09-15 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
WO2016147872A1 (en) * 2015-03-17 2016-09-22 株式会社Adeka Non-aqueous electrolyte, and non-aqueous electrolyte secondary cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132436A1 (en) * 2015-02-16 2016-08-25 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
WO2016143123A1 (en) * 2015-03-12 2016-09-15 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
WO2016147872A1 (en) * 2015-03-17 2016-09-22 株式会社Adeka Non-aqueous electrolyte, and non-aqueous electrolyte secondary cell

Also Published As

Publication number Publication date
JP7024083B2 (en) 2022-02-22
JPWO2020008565A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP5178111B2 (en) Non-aqueous electrolyte battery and pack battery
EP3145018A1 (en) Secondary battery, composite electrolyte, battery pack, and vehicle
JP5694221B2 (en) Nonaqueous electrolyte battery and battery pack
WO2017046895A1 (en) Assembled battery and battery pack
WO2015040747A1 (en) Non-aqueous electrolyte battery electrode, non-aqueous electrolyte battery, and battery pack
EP3300145B1 (en) Electrode, nonaqueous electrolyte battery, battery pack, and vehicle
JP6334308B2 (en) Non-aqueous electrolyte battery, battery pack, and car
US10978691B2 (en) Electrode group, secondary battery, battery pack, and vehicle
EP2980908A1 (en) Nonaqueous electrolyte battery and battery pack
JP6629110B2 (en) Non-aqueous electrolyte battery, battery pack and vehicle
US11239457B2 (en) Nonaqueous electrolyte battery and battery pack comprising a spinel type lithium-manganese composite oxide
JP6933771B2 (en) Electrode group, battery and battery pack
JP6970281B2 (en) Non-aqueous electrolyte batteries and battery packs
CN110024197B (en) Nonaqueous electrolyte battery and battery pack
JP6081604B2 (en) Non-aqueous electrolyte battery, battery pack and automobile
US20210399307A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP6054540B2 (en) Positive electrode active material, non-aqueous electrolyte battery, and battery pack
JP6113852B2 (en) Non-aqueous electrolyte battery, battery pack and car
JP7024083B2 (en) Positive electrode, non-aqueous electrolyte battery, and battery pack
JP7467162B2 (en) Nonaqueous electrolyte battery and battery pack
JP7106749B2 (en) Electrodes, batteries and battery packs
WO2021186601A1 (en) Secondary battery and battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528603

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925655

Country of ref document: EP

Kind code of ref document: A1