WO2020007128A1 - 联合传输方法及通信装置 - Google Patents

联合传输方法及通信装置 Download PDF

Info

Publication number
WO2020007128A1
WO2020007128A1 PCT/CN2019/087084 CN2019087084W WO2020007128A1 WO 2020007128 A1 WO2020007128 A1 WO 2020007128A1 CN 2019087084 W CN2019087084 W CN 2019087084W WO 2020007128 A1 WO2020007128 A1 WO 2020007128A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
access point
cache
msdu
instruction
Prior art date
Application number
PCT/CN2019/087084
Other languages
English (en)
French (fr)
Inventor
杨懋
李波
李云波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19830086.5A priority Critical patent/EP3806535A4/en
Publication of WO2020007128A1 publication Critical patent/WO2020007128A1/zh
Priority to US17/142,764 priority patent/US11671864B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a communication device for a joint transmission method.
  • An access point is an access point for a wireless network
  • a wireless AP is an access point that enables a wireless terminal device to enter a wired network.
  • APs can implement multiple cooperative APs to jointly transmit data to stations (Stations, STAs) in a cooperative manner.
  • the cooperation method in the prior art mainly adopts: before the master AP sends data to the STA, the master AP sends the data to the cooperative AP, and then, in the case where joint transmission is required, the master AP notifies the cooperative AP to perform joint transmission, that is, The master AP notifies the cooperating AP to send the buffered data to the STA at the same time as the master AP.
  • the present application provides a joint transmission method and communication device, which can avoid, to a certain extent, the problem of occupying a large amount of air interface resources or a large air interface delay when the first AP shares the first data with the second AP.
  • a communication device applied to a first access point AP may specifically include a sending module and a processing module.
  • the sending module is configured to send a buffering instruction to at least one second access point AP, and the buffering instruction is used to instruct at least one second access point AP to buffer the first data sent by the first access point AP; the sending module may also use
  • the first data is sent to at least one station STA, where the first data includes: data of at least one STA; a processing module in the communication device is configured to determine whether a joint transmission process needs to be started based on a response frame returned by the at least one STA.
  • the sending module may be further configured to send a joint transmission instruction to at least one third AP when the processing module determines to start the joint transmission process, and the joint transmission instruction is used to instruct the at least one third AP to send the second data to the at least one STA.
  • at least one third AP is one or more of at least one second AP; and the sending module may be further configured to send the second data, and the sending module sends the sending time of the second data It is the same as the sending time of the second data sent by at least one third AP.
  • the first AP sends a buffering instruction to the second AP, so that the second AP buffers data during the process in which the first AP sends data to at least one STA. Therefore, it is possible to reduce the air interface resource occupation and shorten the delay while effectively improving the user experience.
  • the cache indication may include: first identification information, which is used to indicate at least one second AP that caches the first data.
  • the first AP can flexibly specify a second AP that needs to buffer the first data.
  • the cache indication may include: second identification information, used to indicate at least one STA corresponding to the first data buffered by at least one second AP.
  • the second AP is enabled to cache data of the designated STA, and it is not necessary to cache data sent by the first AP to all STAs, thereby saving memory overhead.
  • the first data sent by the first AP includes at least one MAC service data unit MSDU;
  • the cache indication may further include: a first data unit identifier, used to indicate at least one second AP cached first At least one MSDU in the data.
  • the second AP caches the designated MSDU, which saves memory overhead.
  • the first data unit identifier may include: a service identifier of at least one MSDU; a sequence number of the MSDU starting in the at least one MSDU, and continuous buffering starting from the MSDU indicated by the starting sequence number The number of MSDUs.
  • the second AP can buffer multiple MSDUs consecutively from the start MSDU sequence number without having to cache all MSDUs, saving memory overhead, and the first AP does not need to cache all MSDUs that need to be cached.
  • the serial number is carried in the buffer indication, which saves signaling overhead.
  • the first AP and at least one second AP belong to the same collaboration set; in this implementation manner, the first identification information is an ID of the collaboration set.
  • the first AP instructs the second AP in the cooperation set to cache the first data through the cooperation set, so that the first AP can flexibly specify the second AP that needs to cache the first data.
  • the cache indication is included in a physical layer preamble of the first data, or the cache indication is included in an A-Control field of the first data.
  • the first AP can issue a cache instruction to the second AP through the first data, and it is no longer necessary to send a cache instruction to the second AP separately, which effectively improves the processing rate.
  • the joint transmission instruction further includes a combination of one or more of the following:
  • Third identification information used to indicate at least one third AP that sends the second data
  • Fourth identification information used to indicate the STA corresponding to the second data jointly transmitted by at least one third AP;
  • the second data unit identifier is used to indicate an MSDU in the second data sent by at least one third AP, and the second data includes at least one MSDU.
  • the first AP can flexibly select the second AP participating in joint transmission.
  • the first AP may indicate the second buffered data.
  • the AP can send only the data indicated in the joint transmission instruction without sending all buffered data, which saves the overhead on the air interface.
  • the sending module may be further configured to send a cooperation set establishment request frame to at least one second AP, where the request frame includes an ID of the cooperation set, and, an ID of at least one second AP and a first AP's ID; the processing module may be further configured to determine that the first AP and the at least one second AP successfully set up the cooperation set if the cooperation set establishment response frame sent by the at least one second AP is received.
  • the sending module may be further configured to send a clear cache indication to at least one second AP, where the cache indication is used to instruct the at least one second AP to clear all or part of the first cache of the at least one second AP. data.
  • an embodiment of the present application provides a communication device applied to a second access point AP.
  • the communication device includes a receiving module, a buffer module, and a sending module.
  • the receiving module may be configured to receive a buffering instruction sent by the first access point AP.
  • the buffering instruction may be used to instruct at least one second access point AP to buffer the first data sent by the first access point AP.
  • the buffering module may be configured to cache the first data sent by the first access point AP.
  • buffering first data sent by the first AP includes: data of at least one station STA; the receiving module may be further configured to receive a joint transmission instruction sent by the first AP, the joint transmission instruction is used to indicate at least one second The AP sends second data to at least one STA, and the second data is all or part of the first data; the sending module may be further configured to send the second data to the at least one STA according to the joint transmission instruction, and the time when the sending module sends the second data Same time as the first AP sends the second data.
  • the first AP sends a buffering instruction to the second AP, so that the second AP buffers data during the process in which the first AP sends data to at least one STA. Therefore, it is possible to reduce the air interface resource occupation and shorten the delay while effectively improving the user experience.
  • the cache indication may include: first identification information, which is used to indicate at least one second AP that caches the first data.
  • the first AP can flexibly specify a second AP that needs to buffer the first data.
  • the cache indication may include: second identification information used to indicate at least one STA corresponding to the first data cached by at least one second AP; correspondingly, the cache module may be further configured to It is instructed to buffer data of at least one STA indicated by the second identification information in the first data.
  • the second AP is enabled to cache data of the designated STA, and it is not necessary to cache data sent by the first AP to all STAs, thereby saving memory overhead.
  • the first data may include at least one MAC service data unit MSDU
  • the buffer indication may include: a first data unit identifier, used to indicate at least one of the first data buffered by at least one second AP.
  • MSDU MAC service data unit
  • the cache module may be further configured to cache at least one MSDU indicated by the first data unit identifier in the first data according to the cache instruction.
  • the second AP caches the designated MSDU, which saves memory overhead.
  • the first data unit identifier may include: a service identifier of at least one MSDU; a sequence number of the MSDU starting in the at least one MSDU, and continuous buffering starting from the MSDU indicated by the starting sequence number The number of MSDUs.
  • the second AP can buffer multiple MSDUs consecutively from the start MSDU sequence number without having to cache all MSDUs, saving memory overhead, and the first AP does not need to cache all MSDUs that need to be cached.
  • the serial number is carried in the buffer indication, which saves signaling overhead.
  • the first AP and at least one second AP belong to the same collaboration set; the first identification information is an ID of the collaboration set.
  • the first AP instructs the second AP in the cooperation set to cache the first data through the cooperation set, so that the first AP can flexibly specify the second AP that needs to cache the first data.
  • the cache indication is included in a preamble of a physical layer data unit PPDU carrying the first data, or the cache indication is included in an A-Control field of the first data.
  • the first AP can issue a cache instruction to the second AP through the first data, and it is no longer necessary to send a cache instruction to the second AP separately, which effectively improves the processing rate.
  • the joint transmission instruction may further include a combination of one or more of the following:
  • the third identification information is used to indicate at least one second AP that sends the second data.
  • Fourth identification information used to indicate the STA corresponding to the second data sent by at least one second AP
  • the second data unit identifier is used to indicate at least one MSDU in the second data sent by the at least one second AP, and the second data includes at least one MSDU.
  • the first AP can flexibly select the second AP participating in joint transmission.
  • the first AP may indicate the second buffered data.
  • the AP can send only the data indicated in the joint transmission instruction without sending all buffered data, which saves the overhead on the air interface.
  • the receiving module may be further configured to receive a cooperation set establishment request frame sent by the first AP, where the request frame includes an ID of the cooperation set, and, an ID of at least one second AP, and an ID of the first AP;
  • the sending module may be further configured to send a cooperation set establishment response frame to the first AP, which is used to indicate that the first AP and the second AP successfully establish a cooperation set.
  • the communication device may further include a clearing module, configured to receive a clear cache instruction sent by the first AP, and clear all or part of the first data in the cache according to the clear cache instruction.
  • a clearing module configured to receive a clear cache instruction sent by the first AP, and clear all or part of the first data in the cache according to the clear cache instruction.
  • an embodiment of the present application provides a joint transmission method, which may specifically include: the first AP sends a buffer indication to at least one second access point AP, and the buffer indication is used to indicate at least one second access point AP buffer First data sent by the first access point AP; then, the first AP sends first data to at least one site STA, where the first data includes: data of at least one STA; then, the first AP returns based on the at least one STA Response frame to confirm whether the joint transmission process needs to be started.
  • the first AP when the first AP determines to start the joint transmission process, the first AP sends a joint transmission instruction to at least one third AP, and the joint transmission instruction is used to instruct the at least one third AP to send the second data to the at least one STA.
  • the two data are all or part of the first data, and the at least one third AP is one or more of the at least one second AP; then, the first AP sends the second data, and the sending time of the first AP sending the second data Same sending time as the second data sent by at least one third AP
  • the first AP sends a buffering instruction to the second AP, so that the second AP buffers data during the process in which the first AP sends data to at least one STA. Therefore, it is possible to reduce the air interface resource occupation and shorten the delay while effectively improving the user experience.
  • the cache indication may include: first identification information, which is used to indicate at least one second AP that caches the first data.
  • the first AP can flexibly specify a second AP that needs to buffer the first data.
  • the cache indication may include: second identification information, used to indicate at least one STA corresponding to the first data buffered by at least one second AP.
  • the second AP is enabled to cache data of the designated STA, and it is not necessary to cache data sent by the first AP to all STAs, thereby saving memory overhead.
  • the first data sent by the first AP includes at least one MAC service data unit MSDU;
  • the cache indication may further include: a first data unit identifier, used to indicate at least one second AP cached first At least one MSDU in the data.
  • the second AP caches the designated MSDU, which saves memory overhead.
  • the first data unit identifier may include: a service identifier of at least one MSDU; a sequence number of the MSDU starting in the at least one MSDU, and continuous buffering starting from the MSDU indicated by the starting sequence number The number of MSDUs.
  • the second AP can buffer multiple MSDUs consecutively from the start MSDU sequence number without having to cache all MSDUs, saving memory overhead, and the first AP does not need to cache all MSDUs that need to be cached.
  • the serial number is carried in the buffer indication, which saves signaling overhead.
  • the first AP and at least one second AP belong to the same collaboration set; in this implementation manner, the first identification information is an ID of the collaboration set.
  • the first AP instructs the second AP in the cooperation set to cache the first data through the cooperation set, so that the first AP can flexibly specify the second AP that needs to cache the first data.
  • the cache indication is included in a physical layer preamble of the first data, or the cache indication is included in an A-Control field of the first data.
  • the first AP can issue a cache instruction to the second AP through the first data, and it is no longer necessary to send a cache instruction to the second AP separately, which effectively improves the processing rate.
  • the joint transmission instruction further includes a combination of one or more of the following:
  • Third identification information used to indicate at least one third AP that sends the second data
  • Fourth identification information used to indicate the STA corresponding to the second data jointly transmitted by at least one third AP;
  • the second data unit identifier is used to indicate an MSDU in the second data sent by at least one third AP, and the second data includes at least one MSDU.
  • the first AP can flexibly select the second AP participating in joint transmission.
  • the first AP may indicate the second buffered data.
  • the AP can send only the data indicated in the joint transmission instruction without sending all buffered data, which saves the overhead on the air interface.
  • the method may further include: the first AP sends a cooperation set establishment request frame to the at least one second AP, and the request frame includes the cooperation set And the ID of the at least one second AP and the ID of the first AP; and if the first AP receives the cooperation set establishment response frame sent by the at least one second AP, it determines that the first AP and the at least one second AP The AP set up the collaboration set successfully.
  • the method may further include: the first AP sends a cache clear indication to the at least one second AP, which is used to instruct the at least one second AP to clear all or part of the first data of the at least one second AP cache .
  • an embodiment of the present application provides a joint transmission method applied to a second access point AP, which may specifically include: the second access point AP receives a buffer indication sent by the first access point AP, and the buffer indication is used for For instructing at least one second access point AP to buffer the first data sent by the first access point AP; the second AP caches the first data sent by the first AP according to the buffering instruction, and the first data includes: Data; the second AP receives a joint transmission instruction sent by the first AP, the joint transmission instruction is used to instruct at least one second AP to send second data to at least one STA, and the second data is all or part of the first data; according to the joint transmission It is indicated that the second AP sends second data to at least one STA, and the second AP sends the second data at the same time as the first AP sends the second data.
  • the first AP sends a buffering instruction to the second AP, so that the second AP buffers data during the process in which the first AP sends data to at least one STA. Therefore, it is possible to reduce the air interface resource occupation and shorten the delay while effectively improving the user experience.
  • the cache indication may include: first identification information, which is used to indicate at least one second AP that caches the first data.
  • the first AP can flexibly specify a second AP that needs to buffer the first data.
  • the cache indication may include: second identification information used to indicate at least one STA corresponding to the first data cached by at least one second AP; the second AP caches the first AP according to the cache indication
  • the first data sent specifically includes: the second AP caches data of at least one station STA indicated by the second identification information in the first data according to the cache instruction.
  • the second AP is enabled to cache data of the designated STA, and it is not necessary to cache data sent by the first AP to all STAs, thereby saving memory overhead.
  • the first data may include at least one MAC service data unit MSDU
  • the buffer indication may include: a first data unit identifier, used to indicate at least one of the first data buffered by at least one second AP.
  • MSDU the second AP caches the first data sent by the first AP according to the cache instruction, and specifically includes: the second AP caches at least one MSDU indicated by the first data unit identifier in the first data according to the cache instruction.
  • the second AP caches the designated MSDU, which saves memory overhead.
  • the first data unit identifier may include: a service identifier of at least one MSDU; a sequence number of the MSDU starting in the at least one MSDU, and continuous buffering starting from the MSDU indicated by the starting sequence number The number of MSDUs.
  • the second AP can buffer multiple MSDUs consecutively from the start MSDU sequence number without having to cache all MSDUs, saving memory overhead, and the first AP does not need to cache all MSDUs that need to be cached.
  • the serial number is carried in the buffer indication, which saves signaling overhead.
  • the first AP and at least one second AP belong to the same collaboration set; the first identification information is an ID of the collaboration set.
  • the first AP instructs the second AP in the cooperation set to cache the first data through the cooperation set, so that the first AP can flexibly specify the second AP that needs to cache the first data.
  • the cache indication is included in a preamble of a physical layer data unit PPDU carrying the first data, or the cache indication is included in an A-Control field of the first data.
  • the first AP can issue a cache instruction to the second AP through the first data, and it is no longer necessary to send a cache instruction to the second AP separately, which effectively improves the processing rate.
  • the joint transmission instruction may further include a combination of one or more of the following:
  • the third identification information is used to indicate at least one second AP that sends the second data.
  • Fourth identification information used to indicate the STA corresponding to the second data sent by at least one second AP
  • the second data unit identifier is used to indicate at least one MSDU in the second data sent by the at least one second AP, and the second data includes at least one MSDU.
  • the first AP can flexibly select the second AP participating in joint transmission.
  • the first AP may indicate the second buffered data.
  • the AP can send only the data indicated in the joint transmission instruction without sending all buffered data, which saves the overhead on the air interface.
  • the method may further include: the second AP receives the cooperation set establishment request frame sent by the first AP, and the request frame includes an ID of the cooperation set , And, the ID of at least one second AP and the ID of the first AP; the second AP sends a cooperation set establishment response frame to the first AP to indicate that the first AP and the second AP successfully establish a cooperation set.
  • the method may further include: the second AP receives the cache clearing instruction sent by the first AP, and the second AP clears all or part of the first data in the cache according to the cache clearing instruction.
  • an embodiment of the present application provides a communication device on a first access point side.
  • the device may be a first access point device or a chip in the first access point.
  • the device has the function of realizing the first aspect related to the first access point. This function can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the first access point when the device is a first access point, the first access point includes a processor and a transceiver, and the processor is configured to support the first access point AP to perform the foregoing operations.
  • the transceiver is used to support communication between the first access point AP and the second access point AP, and sends the information or instructions involved in the above method to the second access point.
  • the first access point may further include a memory, which is used for coupling with the processor, and stores the program instructions and data necessary for the first access point.
  • the apparatus includes: a processor, a baseband circuit, a radio frequency circuit, and an antenna.
  • the processor is used to control the functions of various circuits, and the baseband circuit is used to generate various types of signaling and messages, such as buffering instruction messages.
  • the analog circuits are converted, filtered, amplified, and up-converted through the RF circuit, they are sent through the antenna.
  • the device may further include a memory, which stores program instructions and data necessary for the first access point.
  • the device may include a processor and a modem.
  • the processor may be used for instructions or an operating system to control the function of the first access point, and the modem may encapsulate and edit data according to a protocol. Decoding, modulation, demodulation, equalization, etc. to generate signaling information, such as buffering instructions, joint transmission instructions, etc., to support the first access point AP to perform the corresponding functions in the first aspect.
  • the chip when the device is a chip in a first access point, the chip includes a processing module and a transceiver module.
  • the processing module may be, for example, a processor.
  • the processor is configured to generate each Type messages and signaling, and encode, modulate, amplify and process all kinds of messages after encapsulation according to the protocol.
  • the processor can also be used to demodulate, decode, and decapsulate to obtain signaling and messages.
  • the module may be, for example, an input / output interface, a pin, or a circuit on the chip.
  • the processing module can execute computer execution instructions stored in the storage unit to support the first access point AP to perform corresponding functions in the above aspects.
  • the storage unit may be a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the first access point, such as Read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM).
  • ROM Read-only memory
  • RAM random access memory
  • the apparatus includes a processor, which is configured to be coupled with a memory, read an instruction in the memory, and execute the method related to the first access point AP according to the first aspect according to the instruction.
  • the memory can be located inside the processor or external to the processor.
  • the processor mentioned above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or A plurality of integrated circuits for controlling program execution of the above-mentioned spatial multiplexing method.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the present application provides a communication device on a second access point side.
  • the device may be a second access point or a chip in a second device.
  • the device has the function of implementing the second access point in the second aspect. This function can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the second access point when the device is a second access point, the second access point includes a processor and a transceiver, and the processor is configured to support the second access point AP to perform the foregoing method. Corresponding function.
  • the transceiver is used to support the communication between the second access point AP and the second access point AP or the station, and receive the information or instructions involved in the above method sent by the second access point, such as a cache instruction, a joint transmission instruction, etc.
  • the second access point may further include a memory, which is used for coupling with the processor, and stores the program instructions and data necessary for the second access point.
  • the apparatus includes: a processor, a baseband circuit, a radio frequency circuit, and an antenna.
  • the processor is used to control the functions of various circuits, and the radio frequency circuit can digitally convert, filter, amplify, and downconvert data packets (such as data packets carrying buffer instructions) sent by the first access point received via the antenna. After processing, it is decoded via the baseband circuit and decapsulated according to the protocol to obtain signaling information.
  • the device further includes a memory, which stores program instructions and data necessary for the second access point.
  • the device includes a processor and a modem.
  • the processor may be used for instructions or an operating system to control the function of the second access point.
  • the modem may encapsulate, encode, and decode data according to a protocol. , Modulation, demodulation, equalization, etc. to generate second data, or parsing buffer instructions, parsing joint transmission instructions, etc. to support the second access point AP to perform the corresponding functions in the second aspect.
  • the chip when the device is a chip in the second access point, the chip includes: a processing module and a transceiver module.
  • the processing module may be, for example, a processor, and the processor may be used to communicate with
  • the data packet (for example, a data packet containing a scheduling request message) received by the transceiver module, which carries signaling or data information, is processed for filtering, demodulation, power amplification, and decoding.
  • the transceiver module may be an input on the chip / Output interface, pin or circuit, etc.
  • the processing module can execute computer execution instructions stored in the storage unit to support the second access point AP to perform the corresponding functions in the fourth aspect.
  • the storage unit may be a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the second access point, such as Read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM).
  • ROM Read-only memory
  • RAM random access memory
  • the apparatus includes a processor, which is configured to be coupled to the memory, read an instruction in the memory, and execute the method described in the second aspect according to the instruction.
  • the memory can be located inside the processor or external to the processor.
  • the processor mentioned above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or A plurality of integrated circuits for controlling program execution of the above-mentioned spatial multiplexing method.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and the instructions may be executed by one or more processors on a processing circuit.
  • the computer When running on a computer, the computer is caused to perform the method in any one of the third aspect or the fourth aspect described above or any possible implementation thereof.
  • a computer program product containing instructions which when run on a computer, causes the computer to perform the method in any one of the third or fourth aspects described above or any possible implementation thereof.
  • the present application provides a chip system including a processor, which is configured to support a data sending device to implement the functions involved in the foregoing aspects, such as generating or processing data involved in the foregoing aspects and / or information.
  • the chip system further includes a memory, and the memory is configured to store program instructions and data necessary for the data sending device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a wireless communication system.
  • the system includes a first access point and at least one second access point according to the foregoing aspect.
  • FIG. 1 is a schematic flowchart of a joint transmission method by way of example
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 3 is one of the flowcharts of a joint transmission method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a frame structure of a buffer indication provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a frame structure of a joint transmission indication according to an embodiment of the present application.
  • FIG. 7 is a third flowchart of a joint transmission method according to an embodiment of the present application.
  • FIG. 8 is one of the structural schematic diagrams of some data frames provided by an embodiment of the present application.
  • FIG. 9 is a second schematic structural diagram of a partial data frame according to an embodiment of the present application.
  • FIG. 10 is a fourth flowchart of a joint transmission method according to an embodiment of the present application.
  • FIG. 11 is one of the frame structure diagrams of a request frame for a cooperation set according to an embodiment of the present application.
  • FIG. 12 is a second schematic diagram of a frame structure of a cooperation set request frame according to an embodiment of the present application.
  • FIG. 13 is a third frame structure diagram of a cooperation set request frame according to an embodiment of the present application.
  • 15 is a sixth flowchart of a joint transmission method provided by an embodiment of the present application.
  • FIG. 16 is one of the schematic block diagrams of a device on a first access point side according to an embodiment of the present application.
  • 17 is a second schematic block diagram of a device on a first access point side according to an embodiment of the present application.
  • FIG. 18 is one of schematic block diagrams of a device on a second access point side according to an embodiment of the present application.
  • FIG. 19 is a second schematic block diagram of a device on a second access point side according to an embodiment of the present application.
  • first and second in the specification and claims of the embodiments of the present application are used to distinguish different objects, rather than to describe a specific order of the objects.
  • first target object and the second target object are used to distinguish different target objects, rather than to describe a specific order of the target objects.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present application should not be construed as more preferred or more advantageous than other embodiments or designs. Rather, the use of the words “exemplary” or “for example” is intended to present the relevant concept in a concrete manner.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • FIG. 1 is a schematic flowchart of a joint transmission method in a prior art embodiment, specifically:
  • AP1 and AP2 are cooperative APs. If AP1 needs to send data to the STA, AP1 will share the data in advance by wire or wirelessly (to distinguish it from the data during retransmission, the data sent by AP1 to AP2 is called data1) and share it with AP2, and AP2 will This data is cached locally. AP1 then sends the data 1 to the STA. AP1 waits for the STA's response frame (BA (Block) (block acknowledgement) frame). If the response frame indicates that the STA has received data incorrectly, for example, data is missing, AP1 will send it to AP2 according to the indication in the response frame.
  • BA Block
  • Block acknowledgement block acknowledgement
  • a synchronization frame (herein described as aspect, referred to as Sync for short) to notify AP2 what data needs to be sent to the STA.
  • the Sync frame may also be a control frame or a management frame in other embodiments.
  • AP1 and AP2 associate that is, AP1 and AP2 send data to the STA at the same time at the same time
  • the required data that is, data 2, data 1 and data 2 can be the same, Can be different.
  • the STA returns a response frame again to confirm whether the data 2 is successfully received.
  • the cooperation method in the prior art embodiment requires the master AP (ie, AP1) to send data to the cooperative AP (ie, AP2) in advance, and then the data transmission to the STA and the joint transmission process with the cooperative AP are performed.
  • the master AP shares data with the cooperating AP in a wired manner, a large amount of data transmission will occupy a large amount of air interface resources.
  • the transmission of data to the STA requires millisecond delay, which seriously affects the quality of service (QoS) / quality of experience (QoE) and increases the network. load.
  • QoS quality of service
  • QoE quality of experience
  • This application proposes a joint transmission method to solve the above-mentioned defects in the prior art.
  • FIG. 2 a schematic diagram of an application scenario according to an embodiment of the present application is shown.
  • This application scenario includes AP1-5 (where AP1-5 refers to: AP1, AP2, AP3, AP4, AP5), and the reference numbers in the figure are 11, 12, 13, 14, and 15, and they include: STA1- 3 (where STA1-3 refers to STA1, STA2, and STA3), the numbers in the figure are 16, 17, and 18 in order.
  • STA1-3 may be devices such as a computer and a smart phone. It should be noted that, in actual applications, the number of APs and STAs may be one or more, and the number of STAs and APs in the application scenario shown in FIG. 2 is only a schematic example.
  • AP1 is the first AP and AP2-4 in this embodiment of the present application are examples of this application.
  • the second AP and AP2 in the description are described in detail as an example of the third AP in the embodiment of the present application.
  • the first AP may be any AP in FIG. 2
  • the second AP may be any AP other than the first AP in FIG. 2.
  • the manner in which AP1 sends cache instructions to AP2-4 may include multiple methods.
  • AP1 may notify the AP2-4 to cache the first data sent by the AP1 to the STA1-3 by sending a cache instruction frame carrying the cache instruction to the AP2-4.
  • scenario two see details of this embodiment, see scenario two.
  • AP1 may send the first data carrying the cache indication to AP2-4 to notify AP2-4 to cache the first data sent by AP1 to STA1-3.
  • AP2-4 may send the first data carrying the cache indication to AP2-4 to notify AP2-4 to cache the first data sent by AP1 to STA1-3.
  • AP1 may establish a cooperative relationship with AP2-4, and in the process of establishing the cooperative relationship, send a cooperative set establishment request carrying a cache indication to AP2-4 to notify APA2-4 to send to AP1. Cache the first data of STA1-3.
  • AP2-4 may establish a cooperative relationship with AP2-4, and in the process of establishing the cooperative relationship, send a cooperative set establishment request carrying a cache indication to AP2-4 to notify APA2-4 to send to AP1. Cache the first data of STA1-3.
  • AP1 may establish a cooperative relationship with AP2-4, and after establishing the cooperative relationship, send a cache indication frame carrying a cache indication to AP2-4 (the information carried in the cache indication is the same as that in scenario two). The information carried in the buffering instruction is different) to notify the AP2-4 to buffer the first data sent by the AP1 to the STA1-3.
  • scenario 5 For details of this embodiment, see scenario 5.
  • AP1 may establish a cooperative relationship with AP2-4, and after establishing the cooperative relationship, send first data carrying a cache indication to AP2-4 (the information carried in the cache indication in this scenario and scenario three The buffering instructions carry different information) to notify AP2-4 to buffer the first data sent by AP1 to STA1-3.
  • scenario six For specific details of this embodiment, see scenario six.
  • FIG. 3 is a flowchart of a joint transmission method according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a joint transmission method according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a joint transmission method according to an embodiment of the present application.
  • the first access point AP sends a buffering instruction to at least one second access point AP.
  • the buffering instruction is used to instruct at least one second access point AP to buffer the first data sent by the first AP.
  • the first AP may send a buffer indication to at least one second AP in a unicast or broadcast manner, so as to notify the at least one second AP to listen to the channel through the buffer indication, and listen to the data indicated in the cache indication, that is, When the first data is sent by the first AP, the first data is buffered.
  • the parameters included in the cache indication may include one or a combination of the following:
  • the identification information of the second AP is used to indicate at least one second AP that needs to buffer the first data.
  • the identification information of the at least one second AP may be Media Access Control (MAC) address information of the AP. For example, if AP1 instructs AP2-5 to cache the first data, the MAC instructions of the four APs AP2-5 may be included in the cache instruction.
  • MAC Media Access Control
  • the identification information of at least one STA is used to indicate that the second AP needs to buffer data of which STAs the first AP sends.
  • the identification information of the STA is used to uniquely identify the corresponding STA.
  • the identification information of the STA may be MAC address information of the STA.
  • the identification information of the STA may also be an association identifier (AID) of the STA.
  • AID association identifier
  • the first data unit identification information includes at least one MAC service data unit (MAC service data unit, MSDU).
  • the first data unit identification information may be used to indicate a data unit that the second AP needs to buffer.
  • the first data unit identification information may include: a service identifier (TID) of at least one MSDU, a starting sequence number (Staring sequence number) of the MSDU in at least one MSDU, and an indication from the starting sequence number
  • the MSDU starts the number of MSDUs that are continuously buffered.
  • the TID is used to identify the MSDU, and the start sequence number is used to indicate the start sequence number of the MSDU that needs to be cached.
  • the start sequence number combined with the number of MSDUs can be used to indicate which MSDUs are cached by the second AP.
  • the data sent by AP1 to STA1 includes TID1 and TID2.
  • TID1 and TID2 each include MSDU1, MSDU2, MSDU3, and MSDU4. If the TID in the data unit identifier in the cache instruction sent by AP1 to AP2-4 is TID1, the Staring Sequence number is 1, and the number of MSDUs is 4, AP2-4 will cache MSDU1-4 in TID1.
  • the second AP only buffers the specified data unit, which further reduces the memory overhead of the second AP.
  • AP2-4 will cache the data sent by AP1.
  • AP2-4 caches the data sent by AP1 to STA1 and STA2.
  • the cache instruction sent by AP1 to AP2-5 includes the MAC address information of AP2-4, the MAC address information of STA1 and STA2, and the data unit identification information, wherein the parameters in the data unit identification information are specific For: TID is 1, Staring Sequence number is 1, MSDU number is 4, then AP2-4 will buffer MSDU1-4 in TID1 of the data sent by buffer AP1 to STA1 and STA2.
  • the first AP sends first data to at least one STA.
  • AP1 sends the first data to STA1-3.
  • the first data sent by AP1 to STA1-3 includes information such as sending address information, receiving address information, and a data portion.
  • the data part includes at least data of STA1-3.
  • the first AP determines whether a joint transmission process needs to be started based on a response frame returned by at least one STA. Specifically, the first AP may determine whether the data received by at least one STA is correct based on the response frame to determine whether a joint transmission process needs to be started.
  • STA1-3 detects whether the received data is complete. For specific detection methods, reference may be made to the technical solutions in the prior art embodiments, which are not described in this application.
  • STA1-3 after receiving the first data, STA1-3 returns a response frame to AP1.
  • the response frame will carry information identifying the data error.
  • the data error may include that the received data is incomplete.
  • AP1 indicates that the first data includes MSDU1-4 in the control field in the data frame to which the first data belongs, and STA1 actually only receives MSDU1-3. Make sure data reception is incomplete.
  • the data error can also be the received data sequence error.
  • the first data sent by AP1 to STA1-3 includes MSDU1-4 as an example.
  • the data sequence is MSDU1, 3, 2, and 4
  • STA1 confirms that the data receiving sequence is wrong, and the data error can also be of other types, which are not illustrated here one by one in this application.
  • the response frame returned by STA1 to the first AP specifically specifies which data is received incorrectly.
  • the response frame returned by the STA to AP1 indicates that MSDU2 and 4 were received correctly and MSDU1 and 3 were received incorrectly.
  • the response frame will carry corresponding indication information.
  • AP1 may determine whether a joint transmission process needs to be started according to the response frame returned by STA1-3. For example, if AP1 confirms that STA1 and STA2 have received data errors according to the response frame returned by STA1-3, it is confirmed that the joint transmission process needs to be started. Otherwise, it is confirmed that the joint transmission process does not need to be started.
  • the first AP sends a joint transmission instruction to at least one third AP according to the response frame.
  • the joint transmission instruction is used to instruct at least one third AP to send second data to at least one STA, where the second data may be all the first data or part of the first data, and, in this application, In an embodiment, the at least one third AP may be one or more of the at least one second AP.
  • the parameters in the joint transmission instruction may include, but are not limited to, one or more of the following:
  • Third identification information used to indicate at least one third AP that sends the second data. For example, if AP1 sends a joint transmission instruction carrying AP2's MAC address information to AP2-5, then AP2 will send the second data together with AP1.
  • the fourth identification information is used to indicate the STA corresponding to the second data sent by at least one third AP. For example, if AP1 sends a joint transmission instruction carrying the MAC address information of STA1 and STA2 to AP2-5, then AP2-5 will send second data to STA1 and STA2 at the same time as AP1. In this way, the third AP can send data to the designated STA to save the occupation of air interface resources.
  • a second data unit identifier used to indicate the MSDU in the second data sent by at least one third AP.
  • the second data includes at least one MSDU.
  • the joint transmission instruction includes, but is not limited to, identification information of at least one STA, a TID, a Staring Sequence number, a data bitmap, and transmission parameters.
  • the transmission parameters include, but are not limited to, parameter information such as bandwidth, space-time stream number, guard interval, modulation and coding system, and scrambling code seed.
  • the identification information of the STA is the MAC address information of STA1 and STA2.
  • TID is TID1 (that is, the first data)
  • Staring Sequence number is 1
  • Data bitmap is 1000.
  • the "1" in the Data bitmap indicates that the corresponding MSDU has been received successfully
  • the "0" indicates that the corresponding MSDU has failed to receive. Therefore, if the Data bitmap is 1000, it means that the MSDU1 in the MDSU1-4 of TID1 starting from MSDU1 has successfully transmitted MSDU1 and failed to transmit MSDU2-4.
  • AP2 After receiving the joint transmission instruction, AP2 confirms that it needs to send the second data to AP1 and STA2 with AP1 at the same time, that is, MSDU2-4 of TID1.
  • transmission parameters including parameters required by the third AP to generate the second data and / or parameters required to transmit the second data, wherein the transmission parameters may include, but are not limited to, transmission bandwidth, space-time stream number, guard interval, modulation Parameter information such as coding system and scrambling code.
  • AP1 sends a union to one or more APs of AP2-4 that cache the data of STA1 and STA2.
  • Transmission instructions a detailed description is given by taking a joint transmission instruction sent by AP1 to AP2, that is, a combination of AP1 sending the MAC address information of AP2 and the MAC address information of STA1 and STA2 to AP2 Transmission instructions.
  • joint transmission means that the first AP and at least one third AP collectively send the same data to at least one STA at the same time, that is, the second data in the embodiment of the present application.
  • AP1 sends a joint transmission instruction to AP2 to notify AP2 that the joint transmission process is about to start. That is, the same as the above-mentioned prior art embodiment, after receiving the joint transmission instruction, AP2 sends the second data specified in the joint transmission instruction to STA1 and STA2 at the same time with AP1, thereby realizing joint transmission.
  • the second data may be all or part of the first data.
  • the "simultaneous" in the embodiments of the present application is a substantial “simultaneous”. There is no time difference between the sending time of the second data sent by the second AP, and it is only necessary to satisfy that the above processing is substantially the same in the time dimension.
  • the first AP and at least one second AP send the second data “simultaneously”, which can improve the receiving power of the receiving end, improve the quality of the received signal at the receiving site, and avoid the problem of asynchronous transmission. It is beneficial for the station receiving the second data to cause interference.
  • the designated time may also be the agreed time of all APs in the system.
  • the designated time may be the first AP to send a joint transmission instruction frame end short frame interval (Short interframe space, SIFS).
  • SIFS joint transmission instruction frame end short frame interval
  • the specified time can also be carried in the joint transmission instruction, which is indicated to the third AP that needs to perform joint transmission in a displayed manner, so that the third AP can determine the transmission time of the joint transmission of the second data, and to a certain extent, the first AP It can also control the air interface transmission time of joint transmission.
  • STA1 and STA2 after STA1 and STA2 receive the data jointly transmitted by AP1 and AP2, they can return a response frame to AP1 again. Then, AP1 can confirm whether to continue to start the joint transmission process according to the response frame, that is, loop S104 -S105, until the response frames returned by STA1 and STA2 indicate that all data is successfully received. In the embodiment of the present application, if AP1 confirms that it is necessary to continue the joint transmission process, AP1 may also select an AP other than AP2 (for example, AP3) among APs that have buffered the first data of STA1-3. ) Perform a joint transmission process with AP1 to avoid joint transmission failure due to an error at AP2.
  • AP3 an AP other than AP2
  • the first AP sends a buffering instruction to at least one second AP to notify the at least one second AP to buffer the data sent by the first AP, thereby effectively reducing The occupation of the airspace resources will not affect the delay while improving the user experience.
  • FIG. 4 is a flowchart of a joint transmission method according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a joint transmission method according to an embodiment of the present application.
  • the first AP sends a buffering instruction to at least one second access point AP.
  • the cache indication includes, but is not limited to, one or more of the following combinations: identification information of at least one second AP, identification information of at least one STA, and identification information of the first data unit.
  • the TID of the first data is TID1
  • the first data includes MSDU1, MSDU2, MSDU3, and MSDU4
  • the cache instruction includes the MAC address information of AP2-4, the MAC address information of STA1-3, and the first data.
  • a data unit identifier, in which the TID in the first data unit identifier is TID1, the starting MSDU sequence number Staring Sequence number is 1, and the MSDU number is 4 are taken as examples for detailed description.
  • AP1 sends a SyncForBuffer (that is, a buffer indication in the embodiment of the present application) frame to AP2-4, and the frame structure of the SyncForBuffer frame is shown in FIG. 5.
  • a SyncForBuffer that is, a buffer indication in the embodiment of the present application
  • AP1 may record the MAC address information of AP2-4, the MAC address information of STA1-3, and the data unit identifier in the local list. In this way, AP1 can determine which MSDUs in the first data sent to STA1-3 are cached by searching the local list.
  • At least one second AP caches information in the instruction. Specifically, taking AP2 receiving the buffer indication as an example, after receiving the SyncForBuffer frame sent by AP1, AP2 reads the AP identification information carried in the SyncForBuffer frame, and after confirming that the SyncForBuffer frame includes the MAC address information of AP2, caches the SyncForBuffer.
  • the address information of AP1 carried in the frame (the address information of AP1 in the embodiment of the present application may be the IP address information or the MAC address information of AP1. In this embodiment and the following embodiments, the address information of AP1 is used as the MAC address.
  • AP5 confirms that the SyncForBuffer frame does not include the MAC address information of AP5, so it is not necessary to cache the address information of AP1 carried in the SyncForBuffer frame.
  • the first AP sends first data to at least one STA.
  • AP1 sends the first data to STA1-3, wherein the first data sent by AP1 to STA1-3 carries the sending address information and the receiving address information.
  • the following uses the AP1 to send the first data to the STA1 as an example for detailed description.
  • the AP1 sends first data to the STA1, and the first data carries sending address information (that is, MAC address information of the AP1) and receiving address information (that is, MAC address information of the STA1).
  • AP2-5 monitors the channel in real time.
  • AP2-5 monitors the first data.
  • the AP 2-5 reads the receiving address information and the sending address information in the first data, and matches the locally stored information (that is, the information stored in step S202).
  • AP2-4 has locally cached relevant information in step S202, including: MAC address information of AP1 and address information of STA1-3 And a first data unit identifier, where the TID in the first data unit identifier is TID1, the starting MSDU sequence number Staring Sequence number is 1, and the number of MSDUs is 4.
  • AP2-4 matches the received address information (MAC address information of STA1) and the sent address information (MAC address information of AP1) in the first data read with the parameters stored locally, and the matching is successful.
  • AP5 since AP5 does not store the above parameters locally (ie, the MAC address information of AP1 and the MAC address information of STA1), AP5 matches the received address information in the first data read with the transmitted address information. Failure, AP5 does nothing.
  • AP2-4 caches the MSDU1-4 with the TID of 1 in the first data according to the indication of the first data unit identifier included in the first data. It can be understood that the data of STA2 or STA3 in the first data buffered by AP2-4 is similar to the data of STA1 in the first data buffered by AP2-4, and details are not described herein again.
  • the first AP determines whether a joint transmission process needs to be started based on a response frame returned by at least one STA.
  • STA1 and STA2 receive data incorrectly, and the specific data error is: the first data includes MSDU1-4, but STA1 and STA2 only receive MSDU1, and STA3 receives the data correctly as an example Explain in detail.
  • AP1 receives the response frames returned by STA1 and STA2, and both of the response frames indicate the MSDU2-4 reception error in the first data. Therefore, AP1 confirms to start the joint transmission process. AP1 retrieves the local list to determine that AP2-4 caches the first data sent to STA1 and STA2.
  • the first AP sends a joint transmission instruction to at least one third AP according to the response frame.
  • the at least one third AP is one or more of at least one second AP that buffers the first data.
  • AP1 sends a joint transmission instruction to AP2 of AP2-4 in which the first data is buffered.
  • the frame structure of the joint transmission indication is shown in FIG. 6.
  • the joint transmission indication includes, but is not limited to, one or more of identification information of at least one third AP, a cooperation data indication, and a cooperation transmission parameter indication.
  • the cooperation data indication field includes an object indicating that at least one third AP sends the second data, and which MSDUs in the second data are sent.
  • the STA ID is the MAC address information of STA1 and STA2.
  • the TID is TID1
  • the Staring Sequence number is 1
  • the Data bitmap is 1000.
  • the "1" in the Data bitmap indicates that the corresponding MSDU has been received successfully, and the "0" indicates that the corresponding MSDU has failed to receive. Therefore, if the Data bitmap is 1000, it means that the MSDU1 in the MDSU1-4 of TID1 starting from MSDU1 has successfully transmitted MSDU1 and failed to transmit MSDU2-4.
  • AP2 After receiving the joint transmission instruction, AP2 confirms that it needs to send the second data to STA1 and STA2, that is, MSDU2-4 of TID1, at the SIFS time after the joint transmission instruction ends.
  • the first AP and the at least one third AP jointly transmit the second data.
  • AP1 and AP2 simultaneously send second data to STA1 and STA2, that is, MSDU2-4 of TID1, at the SIFS time after the joint transmission instruction ends.
  • FIG. 7 a flowchart of a joint transmission method according to an embodiment of the present application is shown.
  • FIG. 7 a flowchart of a joint transmission method according to an embodiment of the present application is shown.
  • the first AP sends the first data carrying the buffer indication to at least one second AP.
  • the buffering instruction is included in the first data, and the buffering instruction is sent to the at least one second AP in synchronization with the first data.
  • the cache indication includes, but is not limited to, identification information of at least one second AP to instruct the at least one second AP to cache all the first data.
  • the cache indication includes, but is not limited to, identification information of the at least one second AP and second data unit identification information to instruct the at least one second AP to cache the second data according to the indication of the second data unit identification information. Part of the MSDU.
  • AP1 sends the first data to STA1-3, where the first data carries the sending address information (the MAC address information of AP1) and the receiving address information (STA1 -3 MAC address information) and cache instructions.
  • the cache instruction includes the MAC address information of AP2-4 and the first data unit identifier.
  • parameters such as TID in the first data unit identifier indicate that the AP2-4 caches MSDU1-4 of TID1 of the first data.
  • AP2-5 Take AP2-5 to cache the first data as an example.
  • AP2-5 listens to the first data sent by AP1, it reads the MAC address information of the AP included in the cache instruction carried by the first data, and performs the same with its own MAC address information. match.
  • AP2 reads the MAC address information of the AP included in the cache instruction carried in the first data, that is, the MAC address information of AP2-4, and matches it with the MAC address information of AP2 itself.
  • AP2 caches the specific MSDU indicated by the first data unit identifier included in the cache instruction carried by the first data. That is, MSDU1-4 of TID1. That is, in this embodiment, AP2-4 buffers MSDU1-4 of TID1 sent by AP1 to STA1-3.
  • the manner in which the first data carries the cache indication may be: modifying a physical layer frame structure of the first data.
  • the cache indication may be included in a preamble of a physical layer data unit (Physical Data Unit) that carries the first data.
  • Physical Data Unit Physical Data Unit
  • FIG. 8 a physical layer frame structure of the first data is shown.
  • the physical layer frame structure includes: a non-high-throughput short training field (L-STF). ), Non-high-throughput long training field (L-LTF), non-high-throughput signaling (L-SIG), frame format detection field (XSymbol), signaling Indication field.
  • the MAC address information of AP2-4 and the data unit identifier may be included in the signaling indication field, so that AP2-4 reads the information contained in the signaling indication field to determine whether AP2-4
  • the specified data part in the first data to which the signaling indication field belongs needs to be buffered (ie, the MSDU indicated in the data unit identifier).
  • the manner in which the first data carries the buffer indication may be: modifying a MAC layer frame structure of the first data.
  • the MAC layer frame structure can refer to the definition in the IEEE802.11 standard, where the A-Control field in the MAC layer frame structure can be used to carry control information.
  • A-Control has defined 7 types of control information, and 9 types of control information are reserved.
  • Figure 9 is a schematic diagram of the format of each type of control signaling in the A-Control field.
  • a control ID field (Control ID) is used to identify a type of control signaling
  • a control information field Control Information
  • the Control ID value is 7-15 as a reservation type. Therefore, one of the reservation types can be selected to carry the MAC address information of AP2-4 and the data unit identifier.
  • the corresponding ControlInformation field includes AP2- The specific value of the MAC address information of 4 and the specific value of the data unit identification.
  • the first AP determines whether a joint transmission process needs to be started based on a response frame returned by at least one STA.
  • the first AP sends a joint transmission instruction to at least one third AP according to the response frame.
  • the first AP and the at least one third AP jointly transmit the second data.
  • FIG. 10 a flowchart of a joint transmission method according to an embodiment of the present application is shown.
  • FIG. 10 a flowchart of a joint transmission method according to an embodiment of the present application is shown.
  • a first access point AP sends a cooperation set establishment request frame to at least one second access point AP.
  • the cooperation set establishment request includes identification information of the cooperation set and identification information of at least one second AP to instruct the at least one second AP to establish a cooperation set with the first AP, and may also be used for It indicates that at least one second AP belonging to the same cooperation set as the first AP buffers the first data sent by the first AP. For example, if AP1 establishes a cooperative relationship with AP2-4, the AP2-4 caches the first data carrying the MAC address of AP1.
  • the cooperation set establishment request may further include a cache indication.
  • the cache indication includes but is not limited to: identification information of at least one STA, which is used to instruct at least one second AP to cache the first AP to send to the at least one STA.
  • First data The cache indication may further include the number of at least one STA, which is used to indicate the number of at least one STA participating in the cooperation set, so that the second AP can quickly calculate the length of the cache indication after receiving the cooperation set establishment request. .
  • AP2-4 may be referred to as a cooperative AP of AP1.
  • the cooperation set request frame includes, but is not limited to, the following implementation manners:
  • a cooperation set request frame may only include information used to establish one cooperation set. When multiple cooperation sets need to be established, multiple cooperation set request frames may be sent in series in sequence.
  • the frame structure of the cooperative set request message sent by AP1 is shown in FIG. 11.
  • the frame structure of the cooperative set request message includes, but is not limited to, the ID of the cooperative set, and the STAs participating in the cooperative set. The number (in this embodiment, the number of STAs participating in the cooperation is 3), and the MAC address information of the STAs participating in the cooperation set (that is, the MAC address information of STA1-3).
  • the cooperation set request frame further includes a receiving address, that is, address information of AP2-4.
  • AP1 sends the cooperative set request frame to the designated cooperative AP in a unicast manner, that is, AP2-4.
  • a collaboration request frame may include information for establishing multiple collaboration sets, and when multiple collaboration sets need to be established, this collaboration set request frame may be sent.
  • the frame structure of the cooperation set request frame sent by AP1 is shown in FIG. 12.
  • the frame structure of the cooperation set request frame includes a plurality of cooperation set establishment instructions.
  • the frame structure is the same, and all include: the ID of the cooperative set, the address information of the cooperative APs participating in the cooperative set, the number of STAs participating in the cooperative set, and the MAC address information of the STAs participating in the cooperative set.
  • the ID of the collaboration set established by AP1 and AP2 is collaboration set 1.
  • the STA participating in collaboration set 1 includes STA1-3, the ID of the collaboration set established by AP1 and AP3 is collaboration set 2, and the STA participating in collaboration set 2 includes STA2. -3.
  • the cooperation set establishment frame sent by AP1 includes: cooperation set 1, the address information of AP2, the number of STAs is 3, and the MAC address information of STA1, the MAC address information of STA2, and the MAC address information of STA3.
  • the address information of AP3, the data of STA is 2, and the MAC address information of STA2 and the MAC address information of STA3.
  • AP1 establishes multiple collaboration sets, and the collaboration object corresponding to each collaboration set is the collaboration AP indicated in the establishment instruction for each collaboration set. Moreover, in this embodiment, AP1 broadcasts the cooperative set request frame to AP1-5 in a broadcast manner, and AP1-5 reads the MAC address information of the AP indicated in the cooperative set request frame and recognizes the MAC address of the AP. When the information includes own MAC address information, the information indicated in the cooperation set establishment instruction corresponding to the own MAC address information is cached.
  • the cooperation set establishment request frame includes the address information of AP2, it reads the information in the cooperation set establishment instruction described in the address information of AP2, that is, the data of cooperation set 1, STA is 3, and MAC address information of STA1, MAC address information of STA2, and MAC address information of STA3.
  • the number of STAs participating in the cooperation set indicated in the frame structure clearly indicates the length of the MAC address information of the STAs participating in the cooperation set in the frame structure, so that the cooperative AP can cache its corresponding cooperation set list when , The starting point of the corresponding collaboration set can be calculated by the number of STAs.
  • the cooperative set request message of AP1 may also be sent to multiple second APs in a broadcast manner.
  • the frame structure of the cooperative set request message sent by the master AP is shown in FIG. 13
  • the frame structure includes, but is not limited to, the ID of the cooperative set, the number of cooperative APs participating in the cooperative set, MAC address information of the cooperative APs participating in the cooperative set, and MAC address information of the STAs participating in the cooperative set.
  • AP1 and AP2-4 establish a cooperation set, and indicate the STAs participating in the cooperation set, namely STA1-3, in the cooperation set establishment request frame.
  • indicating the number of cooperative APs and the number of STAs in the cooperation set establishment request frame facilitates the cooperative AP, that is, AP2-4 quickly calculates the length of the frame after receiving the request frame.
  • the AP2-4 caches the information indicated in the cache instruction locally.
  • At least one second AP returns a cooperation set establishment response frame to AP1. Specifically, after receiving the cooperation set establishment request frame sent by AP1, AP2-4 returns a cooperation set establishment response frame to AP1. And, the AP2-4 caches the information carried in the cooperative set request frame, including: the address information of AP1, the ID of the cooperative set, and the STA participating in the cooperative set.
  • the first AP sends first data to at least one STA. Specifically, in this embodiment, AP1 sends the first data to STA1-3. When AP2-4 listens to the first data transmitted in the channel, it identifies the receiving address information (MAC of STA1-3 in the first data). Address information) and send address information (MAC address information of AP1), and match the information stored locally. In this embodiment, if AP2-4 matches successfully, AP2-4 buffers the first data sent by the first AP to STA1-3.
  • MAC of STA1-3 In this embodiment, if AP2-4 matches successfully, AP2-4 buffers the first data sent by the first AP to STA1-3.
  • the first AP determines whether a joint transmission process needs to be started based on a response frame returned by at least one STA.
  • This step is similar to the foregoing step S204, and is not repeated here.
  • the first AP sends a joint transmission instruction to at least one third AP according to the response frame.
  • the joint transmission instruction includes, but is not limited to, identification information of the cooperation set, identification information of at least one STA, and identification information of the second data unit. Send the second data to at least one STA with the at least one third AP belonging to the cooperation set in the joint transmission instruction indicated.
  • the joint transmission instruction may include: identification information of at least one third AP, identification information of at least one STA, and identification information of the second data unit, the functions of which are the same as those in the foregoing embodiment, and are not described herein again.
  • the joint transmission instruction includes, but is not limited to, the ID of the cooperative set (that is, cooperative set 1) and / or the MAC address information of the cooperative AP (that is, the MAC of AP2). Address information), MAC address information of STA1 and STA2, TID (TID is 1 in this embodiment), Staring Sequence number (Staring Sequence number is 1 in this embodiment), Data bitmap (Data bitmap is 1000), and transmission parameter.
  • AP2 after receiving the joint transmission instruction, AP2 matches the ID of the cooperative set in the joint transmission instruction and / or the MAC address information of the cooperative AP with the locally buffered information. After the matching is successful, the joint transmission instruction is then sent again.
  • the sending address information (MAC address information of AP1) carried in the matching is performed.
  • the reason for matching the address information of AP1 is: in the case that there are multiple first APs in the system, different first APs may have a collaboration set with the same collaboration set ID, and if AP2 only matches the collaboration set ID, it may be cached
  • the data sent by other first APs increases the load on the device, and there is a risk of buffer overflow.
  • the first AP and the at least one third AP jointly transmit the second data.
  • This step is similar to the foregoing step S206, and is not repeated here.
  • FIG. 14 is a flowchart of a joint transmission method according to an embodiment of the present application.
  • FIG. 14 :
  • a first access point AP sends a cooperation set establishment request frame to at least one second access point AP.
  • AP1 sends a cooperation set establishment request frame to AP2-4, which is different from the cooperation set establishment request frame in scenario 4.
  • the cooperation set request in this embodiment does not carry a cache indication, and only carries Send the address information (MAC address information of AP1), the ID of the cooperative set, and the MAC address information of AP2-4. That is, the STA participating in the cooperation set is not indicated in the cooperation set request.
  • step S401 Other relevant details of this step are similar to step S401 and will not be repeated here.
  • At least one second AP returns a cooperation set establishment response frame to AP1.
  • This step is similar to the foregoing step S402, and is not repeated here.
  • the first AP sends a buffering instruction to at least one second access point AP.
  • AP1 sends a SyncForBuffer frame (that is, a cache indication) to AP2-4.
  • the SyncForBuffer frame carries the MAC address information of AP1 and the cache indication.
  • the cache indication includes, but is not limited to, the ID of the collaboration set, STA1 -3 MAC address information and first data unit identification.
  • a collaboration set is established between AP1 and AP2-4, and the ID of the collaboration set is collaboration set 1.
  • the AP participating in the cooperation set 1 that is, AP2-4 will buffer the first data when it listens to the first data carrying the MAC address information of STA1-3 and the MAC address information of AP1.
  • the first AP sends first data to at least one STA.
  • This step is similar to the foregoing step S403, and is not repeated here.
  • the first AP determines whether a joint transmission process needs to be started based on a response frame returned by at least one STA.
  • This step is similar to the foregoing step S204, and is not repeated here.
  • the first AP sends a joint transmission instruction to at least one third AP according to the response frame.
  • AP1 sends a joint transmission instruction to AP2.
  • the joint transmission instruction includes, but is not limited to, the ID of the cooperative set (that is, cooperative set 1), the MAC address information of STA1 and STA2, and the TID (in this implementation).
  • TID is 1), Staring sequence number (in this embodiment, Staring sequence number is 1), Data bitmap (Data bitmap is 1000), and transmission parameters.
  • This step is similar to the foregoing step S405, and is not repeated here.
  • the first AP and the at least one third AP jointly transmit the second data.
  • This step is similar to the foregoing step S206, and is not repeated here.
  • FIG. 15 is a flowchart of a joint transmission method according to an embodiment of the present application.
  • FIG. 15 :
  • the first access point AP sends a cooperation set establishment request frame to at least one second access point AP.
  • This step is similar to the foregoing step S501, and is not repeated here.
  • At least one second AP returns a cooperation set establishment response frame to AP1.
  • This step is similar to the foregoing step S402, and is not repeated here.
  • the first AP sends the first data carrying the buffer indication to at least one second access point AP.
  • AP1 sends the first data to STA1-3.
  • the cache indication includes the ID of the collaboration set.
  • the cache indication may further include the first data.
  • the MSDU specified in the data For example, if AP1 and AP2-4 both belong to cooperation set 1, when AP2-4 receives a cache instruction including cooperation set 1, it caches the data sent by AP1 according to the cache instruction.
  • the cache indication may be carried in a physical layer preamble of the first data, and optionally, may be carried in a signaling field added in the physical layer preamble; for example, a newly added signaling field may include A collaboration ID field.
  • the collaboration ID in the cache indication may be carried in the A-Control field of the first data.
  • the A-Control field can carry various types of control information. Currently, there are 7 types of control information in the 11ax standard, and 9 types of control information are reserved. We can use one of these reservation types to indicate the collaboration ID.
  • the A-control field includes a control ID field (Control ID) and a control information field (Control information).
  • the Control information field is used to carry the specific content of the control signaling. Specifically, we can use one of the values of Control ID 7-15 to indicate the new collaboration ID indication, and the corresponding Control ID information field places the value of the collaboration ID. For example, the Control ID value is 7, and the corresponding Control information value is the ID of the collaboration set 1.
  • the second AP receiving the cache indication finds that the collaboration ID matches the collaboration ID that it has established, it may determine that it may be a collaboration AP. In order to further confirm whether it is a collaboration AP, the AP may continue to parse the first AP. The MAC frame header of the data. When it is found that the sending address in the MAC header of the first data matches the MAC address of the first AP of the collaboration ID set, then it confirms that it is a cooperative AP, and then caches all or part of the first Data; on the contrary, if the sending address does not match the MAC address of the first AP of the cooperative set ID, then it is confirmed that it is not a cooperative AP, and the parsing may be stopped.
  • the cooperation ID field can also be set to an unassigned collaboration ID, or a special collaboration ID value (such as all 0 or all 1). This value indicates that any cooperative AP does not need to cache the first data.
  • the first AP determines whether a joint transmission process needs to be started based on a response frame returned by at least one STA.
  • This step is similar to the foregoing step S204, and is not repeated here.
  • the first AP sends a joint transmission instruction to at least one third AP according to the response frame.
  • This step is similar to the foregoing step S405, and is not repeated here.
  • the first AP and the at least one third AP jointly transmit the second data.
  • This step is similar to the foregoing step S206, and is not repeated here.
  • the second AP may also send a clear cache indication to at least one second AP, where the clear cache indication is used to instruct the at least one second AP to clear all or part of the buffered data.
  • the parameters in the clear cache instruction may include one or a combination of the following:
  • Identification information of at least one second AP is used to indicate which second APs need to clear data. For example, if AP1 sends a clear cache instruction to AP2-5, which carries the MAC address information of AP2-4, then AP2-4 clears all the data sent by cached AP1.
  • the identification information of at least one STA is used to indicate that the second AP needs to clear the data corresponding to which STAs that have been buffered. For example, if AP1 sends a clear cache indication to the AP2, which carries the MAC address information of STA1-3, then AP2 clears the cached data sent by AP1 to STA1-3.
  • the identification information of at least one MSDU is used to indicate which MSDUs are cleared by the second AP. For example, if AP1 sends a clear cache indication carrying TID1 and MSDU1-4 to AP2, then AP2 clears MSDU1-4 of TID1 sent by AP1.
  • the clear cache instruction may be sent by the first AP to the second AP at a specified time, or a clear instruction may be issued to the second AP through a joint transmission instruction.
  • AP1 can agree with all APs. If the Sarting sequence number in the joint transmission instruction is greater than the Sequence number cached by AP2-5, AP2-5 clears the data corresponding to the STA (STA1-3) specified in the joint transmission instruction. Then, in actual application, AP1 can instruct the AP2-5 to specify the STA by setting the Starting Sequence number in the joint transmission instruction sent to AP2-5 to be greater than the maximum Sequence number of the MSDU cached by AP2-5. The data is cleared.
  • the above instruction clearing step can be applied to any of the scenes 1 to 5.
  • the pressure on the AP can be reduced, and the risk of buffer overflow caused by excessive cache data of the AP can be avoided.
  • the AP includes a hardware structure and / or a software module corresponding to each function.
  • the embodiments of the present invention can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. A professional technician can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • the AP may be divided into functional modules according to the foregoing method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in the embodiment of the present invention is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 16 shows a possible structural diagram of the device 200 on the first access point side involved in the foregoing embodiment.
  • the device 200 It may include: a sending module 21 and a processing module 22.
  • the sending module 21 may be used to support the first access point to perform steps S101, S201, S301, S503, and S603 in the above embodiments, that is, the steps of "sending a cache indication"; or it may also be used to support the first access Click to execute steps S102, S203, S403, and S504 in the above embodiment, that is, the steps of "sending the first data”; or, it can also be used to support the first access point to execute S104, S205, S303, and S405 in the above embodiment , S506, S605, that is, the steps of "sending joint transmission instructions"; can also be used to support the first access point to execute S105, S206, S304, S406, S507, and S606 in the above embodiment, that is, "send second data" Alternatively, it may also be used to support the first access point to perform steps S401, S501, and S601 in the above embodiments, that is, the steps of "sending a cooperation establishment request".
  • the processing module 22
  • the device 200 may further include a receiving module 23, which may be used to support the first access point to perform S402, S502, and S602 in the foregoing embodiment, that is, “receiving a cooperation set establishment response frame” step.
  • a receiving module 23 which may be used to support the first access point to perform S402, S502, and S602 in the foregoing embodiment, that is, “receiving a cooperation set establishment response frame” step.
  • FIG. 17 shows a schematic block diagram of another communication device 300 on the first access point side according to an embodiment of the present application.
  • the apparatus 300 in the embodiment of the present application may be the first access point in the foregoing method embodiment, and the apparatus 300 may be configured to perform some or all functions of the first access point in the foregoing method embodiment.
  • the device 300 may include a processor 31, a baseband circuit 33, a radio frequency circuit 34, and an antenna 35.
  • the device 300 may further include a memory 32.
  • the various components of the device 300 are coupled together by a bus 36.
  • the bus system 36 also includes a power bus, a control bus, and a status signal bus. However, for the sake of clarity, various buses are marked as the bus system 36 in the figure.
  • the processor 31 may be configured to implement control on the first access point, and is configured to execute the processing performed by the first access point in the foregoing embodiment, and may execute the processing process involving the first access point in the foregoing method embodiment and / Or other processes used for the technology described in this application, it can also run an operating system, be responsible for managing the bus, and can execute programs or instructions stored in memory.
  • the baseband circuit 33, the radio frequency circuit 34, and the antenna 35 can be used to support the transmission and reception of information between the first access point and the second access point or site involved in the above embodiment, so as to support the first access point and other nodes.
  • the buffer instruction encoded by the baseband circuit 33 and packaged according to the protocol is subjected to analog conversion, filtering, amplification, and up-conversion through the radio frequency circuit, and then sent to the second access point via the antenna 35.
  • the cooperation response message sent from the second access point is received via the antenna 35, and filtered, amplified, downconverted, and digitized by the radio frequency circuit 34, and then decoded by the baseband circuit 33 and decapsulated according to the protocol After waiting for baseband processing, the processor 31 performs processing to recover the service data and signaling information sent by the station.
  • the baseband circuit 33, the radio frequency circuit 34, and the antenna 35 can also be used to support the first access point to communicate with other network entities, for example, to support the first access point to communicate with network elements on the core network side. .
  • the memory 32 may be used to store the program code and data of the first access point. Those skilled in the art can easily understand that the memory 32 or any part thereof may be located outside the device 300.
  • the memory 32 may include transmission lines and / or computer products separated from the wireless nodes, and these media may be accessed by the processor 31 through the bus interface 36.
  • the memory 32 or any part thereof may be integrated into the processor 31, for example, it may be a cache and / or a general-purpose register.
  • FIG. 17 shows only a simplified design of the first access point.
  • the first access point may include any number of transmitters, receivers, processors, memories, etc., and all the first access points that can implement the present invention are within the protection scope of the present invention. .
  • FIG. 18 is a schematic block diagram of a device 400 on a second access point side according to an embodiment of the present application.
  • the device 400 shown in FIG. 18 may correspond to the device on the second access point side in the foregoing method embodiment, and may have any function of the second access point in the method.
  • the apparatus 400 in the embodiment of the present application may be a second access point, or a chip in the second access point.
  • the apparatus 400 may include a processing module 41 and a transceiver module 42.
  • the apparatus 400 may further include a storage module 43.
  • the storage module 43 may be configured to cache all or part of the first data indicated in the cache instruction.
  • the processing module 41 may be configured to execute the step of buffering the first data in the foregoing method embodiment, or used to execute step S202.
  • the processing module 41 may be further configured to instruct the storage module 33 to cache all or part of the first data indicated in the cache instruction.
  • the transceiver module 42 can be understood to include a receiving module and a sending module.
  • the receiving module may be used to receive steps S101, S102, S104, S201, S203, S205, S301, S303, S401, S403, S403, Signaling or data sent in S405, S501, S503, S504, S506, S601, S603, S605.
  • the sending module may be further configured to perform steps S105, S206, S304, S406, S502, S507, S602, and S606 in the foregoing method embodiment.
  • the device 400 may correspond to the second access point in each method of the foregoing embodiment, and the above and other management operations and / or functions of each module in the device 400 are respectively for achieving the foregoing The corresponding steps of each method are omitted here for brevity.
  • the device 400 may be configured as a general-purpose processing system, such as a chip, and the processing module 41 may include one or more processors that provide processing functions; the transceiver module 42 may be, for example, an input / output interface, The input / output interface can be used for the information interaction between the chip system and the outside, such as pins or circuits. For example, the input / output interface can process the dispatch request message output from other modules outside the chip to the chip.
  • the processing module may execute computer execution instructions stored in the storage module to implement the function of the second access point in the foregoing method embodiment.
  • the optional storage module 43 included in the device 400 may be a storage unit in a chip, such as a register, a cache, etc.
  • the storage module 43 may also be a storage unit located outside the chip, such as a read-only memory ( read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM).
  • ROM read-only memory
  • RAM random access memory
  • FIG. 19 shows a schematic block diagram of another communication device 500 on the second access point side according to an embodiment of the present application.
  • the apparatus 500 in the embodiment of the present application may be the second access point in the foregoing method embodiment, and the apparatus 500 may be configured to perform some or all functions of the second access point in the foregoing method embodiment.
  • the device 500 may include a processor 51, a baseband circuit 54, a radio frequency circuit 54, and an antenna 55.
  • the device 500 may further include a memory 52.
  • the various components of the device 500 are coupled together by a bus 56.
  • the bus system 56 includes a power bus, a control bus, and a status signal bus in addition to a data bus. However, for the sake of clarity, various buses are marked as the bus system 56 in the figure.
  • the processor 51 may be configured to implement control on the second access point, and is configured to execute the processing performed by the second access point in the foregoing embodiment, and may execute the processing process involving the second access point in the foregoing method embodiment and / Or other processes used for the technology described in this application, it can also run an operating system, be responsible for managing the bus, and can execute programs or instructions stored in memory.
  • the baseband circuit 53, the radio frequency circuit 54, and the antenna 55 may be used to support the sending and receiving of information between the second access point and the first access point or site involved in the above embodiments to support the second access point with other nodes.
  • the buffer instruction sent from the first access point is received via the antenna 55, and filtered, amplified, down-converted, and digitized by the radio frequency circuit 54, and then processed by the baseband circuit 53 to decode and decapsulate data according to the protocol.
  • the processor 51 performs processing to recover the service data and signaling information sent by the site.
  • the cooperation response message sent by the second access point can be processed by the processor 51 and pressed by the baseband circuit 53.
  • Baseband processing such as protocol encapsulation and encoding is further sent to the first access point AP via the antenna 55 after the RF circuit 54 performs analog conversion, filtering, amplification, and up-conversion radio frequency processing.
  • the baseband circuit 53, the radio frequency circuit 54, and the antenna 55 can also be used to support the second access point to communicate with other network entities, for example, to support the second access point to communicate with network elements on the core network side. .
  • the memory 52 may be used to store the program code and data of the second access point, and the memory 52 may be the storage module 43 in FIG. 18.
  • the memory 52 is shown as being separate from the processor 51 in FIG. 19, however, it will be readily apparent to those skilled in the art that the memory 52 or any portion thereof may be located outside the device 500.
  • the memory 52 may include transmission lines and / or computer products separated from the wireless nodes, and these media may be accessed by the processor 51 through the bus interface 56.
  • the memory 52 or any part thereof may be integrated into the processor 51, for example, it may be a cache and / or a general-purpose register.
  • FIG. 19 only shows a simplified design of the second access point.
  • the second access point may include any number of transmitters, receivers, processors, memories, etc., and all the second access points that can implement the present invention are within the protection scope of the present invention. .
  • An embodiment of the present application further provides a computer storage medium.
  • the computer-readable storage medium stores instructions, and the instructions may be executed by one or more processors on a processing circuit. When run on a computer, the computer is caused to perform the methods described in the above aspects.
  • An embodiment of the present application further provides a chip system including a processor, which is configured to support a distributed unit, a centralized unit, and a first access point or a second access point to implement the above-mentioned embodiments. Functions such as generating or processing the data and / or information involved in the above methods.
  • the chip system may further include a memory, where the memory is configured to store a distributed unit, a centralized unit, and program instructions and data necessary for the first access point or the second access point.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • An embodiment of the present application further provides a processor, configured to be coupled to a memory, and configured to execute a method and a function related to the first access point AP in any of the foregoing embodiments.
  • An embodiment of the present application further provides a processor, configured to be coupled to a memory, and configured to execute a method and a function related to a second access point AP in any of the foregoing embodiments.
  • An embodiment of the present application further provides a computer program product containing instructions, which when run on a computer, causes the computer to execute and execute the methods and functions related to the first access point AP in any of the foregoing embodiments.
  • the embodiment of the present application also provides a computer program product containing instructions, which when run on a computer, causes the computer to execute and execute the methods and functions related to the second access point AP in any of the foregoing embodiments.
  • An embodiment of the present application further provides a wireless communication system, which includes the first access point and at least one second access point involved in the foregoing embodiments.
  • the steps of the method or algorithm described in connection with the disclosure of the embodiments of the present invention may be implemented in a hardware manner, or may be implemented in a manner that a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules.
  • Software modules can be stored in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), and erasable programmable read-only memory (ROM). Erasable (Programmable ROM, EPROM), electrically erasable programmable read-only memory (EPROM), registers, hard disks, mobile hard disks, read-only optical disks (CD-ROMs), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC can reside in an AP.
  • the processor and storage medium can also exist in the AP as discrete
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种联合传输方法及AP,涉及通信领域,在本申请提供的联合传输方法中,第一AP通过向第二AP发送缓存指示,使第二AP在第一AP向至少一个STA发送数据的过程中,对数据进行缓存。从而能够实现减少空口资源占用的同时缩短时延,有效提升了用户体验。

Description

联合传输方法及通信装置
本申请要求于2018年7月6日提交中国专利局、申请号为201810737325.6、申请名称为“联合传输方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种联合传输方法通信装置。
背景技术
接入点(Access Point,AP)是用于无线网络的接入点,无线AP是使无线终端设备进入有线网络的接入点。AP可通过协作的方式,实现多个协作AP向站点(Station,STA)联合传输数据。
已有技术中的协作方式,主要是采用:主AP在向STA发送数据之前,先将数据发送给协作AP,随后,在需要进行联合传输的情况下,主AP通知协作AP进行联合传输,即,主AP通知协作AP将已经缓存的数据与主AP同时发送给STA。
但是,在已有技术的协作方式中,主AP向协作AP发送数据时,如果采用无线方式共享,由于数据传输量大,将会占用大量的空口资源。如果采用有线方式共享,则时延较大,将会影响传输质量,并增大网络负荷。
发明内容
本申请提供一种联合传输方法及通信装置,能够在一定程度上避免第一AP将第一数据共享给第二AP时,占用大量的空口资源或空口时延较大的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种应用于第一接入点AP的通信装置,具体可以包括:发送模块和处理模块。其中,发送模块用于向至少一个第二接入点AP发送缓存指示,缓存指示用于指示至少一个第二接入点AP缓存第一接入点AP发送的第一数据;发送模块还可以用于向至少一个站点STA发送第一数据,其中,第一数据包括:至少一个STA的数据;通信装置中的处理模块,用于基于至少一个STA返回的响应帧,确认是否需要启动联合传输流程。发送模块还可以用于当处理模块确定启动联合传输流程时,向至少一个第三AP发送联合传输指示,联合传输指示用于指示至少一个第三AP向至少一个STA发送第二数据,第二数据为全部或部分的第一数据,至少一个第三AP为至少一个第二AP中的一个或多个;以及,发送模块还可以用于发送第二数据,且发送模块发送第二数据的发送时间与至少一个第三AP发送第二数据的发送时间相同。
在本申请中,第一AP通过向第二AP发送缓存指示,使第二AP在第一AP向至少一个STA发送数据的过程中,对数据进行缓存。从而能够实现减少空口资源占用的同时缩短时延,有效提升了用户体验。
在一种可能的实现方式中,缓存指示可以包括:第一标识信息,用于指示缓存第一数据的至少一个第二AP。
基于第一标识信息,使得第一AP可灵活的指定需要缓存第一数据的第二AP。
在一种可能的实现方式中,缓存指示可以包括:第二标识信息,用于指示至少一个第二AP缓存的第一数据所对应的至少一个STA。
通过上述方式,实现了第二AP对指定STA的数据进行缓存,无需对第一AP发送给所有STA的数据进行缓存,节省了内存开销。
在一种可能的实现方式中,第一AP发送的第一数据包括至少一个MAC服务数据单元MSDU;缓存指示还可以包括:第一数据单元标识,用于指示至少一个第二AP缓存的第一数据中的至少一个MSDU。
通过上述方式,实现了第二AP对指定MSDU进行缓存,节省了内存开销。
在一种可能的实现方式中,第一数据单元标识可以包括:至少一个MSDU的业务标识;至少一个MSDU中起始的MSDU的序列号,以及,从起始序列号所指示的MSDU开始连续缓存的MSDU的数目。
通过上述方式,第二AP可缓存从起始MSDU序列号开始的连续的多个MSDU,而不需要缓存所有的MSDU,节省了内存开销,并且,第一AP不需要将需要缓存的所有的MSDU的序列号都携带在缓存指示中,节省了信令开销。
在一种可能的实现方式中,第一AP和至少一个第二AP属于同一个协作集;在该种实现方式中,第一标识信息为协作集的ID。
通过上述方式,实现了第一AP通过协作集指示协作集中的第二AP对第一数据进行缓存,使得第一AP可灵活的指定需要缓存第一数据的第二AP。
在一种可能的实现方式中,缓存指示包含于第一数据的物理层前导中,或,缓存指示包含于第一数据的A-Control字段中。
通过上述方式,实现了第一AP可通过第一数据向第二AP下达缓存指示,无需再单独向第二AP发送缓存指示,有效提升了处理速率。
在一种可能的实现方式中,联合传输指示还包括以下一项或多项的组合:
第三标识信息,用于指示发送第二数据的至少一个第三AP;
第四标识信息,用于指示至少一个第三AP联合传输的第二数据所对应的STA;
第二数据单元标识,用于指示至少一个第三AP发送的第二数据中的MSDU,第二数据包括至少一个MSDU。
通过上述方式,基于第三标识,使得第一AP可灵活性的选择参与联合传输的第二AP,基于第四标识和/或第二数据单元标识,第一AP可指示缓存了数据的第二AP可仅发送联合传输指示中所指的数据,而不需要发送所有缓存的数据,节省了空口上的开销。
在一种可能的实现方式中,发送模块还可以用于向至少一个第二AP发送协作集建立请求帧,请求帧包括协作集的ID,和,至少一个第二AP的ID以及第一AP的ID;处理模块还可以用于若接收到至少一个第二AP发送的协作集建立响应帧,则确定第一AP与至少一个第二AP建立协作集成功。
在一种可能的实现方式中,发送模块还可以用于向至少一个第二AP发送清除缓存指示,该缓存指示用于指示至少一个第二AP清除至少一个第二AP缓存的全部或部分第一数据。
通过上述方式,实现了减轻第二AP的负载压力,有效提升资源利用率。
第二方面,本申请实施例提供一种应用于第二接入点AP的通信装置,该通信装置包括:接收模块、缓存模块以及发送模块。其中,接收模块可用于接收第一接入点AP发送的缓存指示,缓存指示用于指示至少一个第二接入点AP缓存第一接入点AP发送的第一数据;缓存模块可用于根据缓存指示,缓存第一AP发送的第一数据,第一数据包括:至少一个站点STA的数据;接收模块还可以用于接收第一AP发送的联合传输指示,联合传输指示用于指示至少一个第二AP向至少一个STA发送第二数据,第二数据为全部或部分的第一数据;发送模块还可以用于根据联合传输指示,向至少一个STA发送第二数据,发送模块发送第二数据的时间与第一AP发送第二数据的时间相同。
在本申请中,第一AP通过向第二AP发送缓存指示,使第二AP在第一AP向至少一个STA发送数据的过程中,对数据进行缓存。从而能够实现减少空口资源占用的同时缩短时延,有效提升了用户体验。
在一种可能的实现方式中,缓存指示可以包括:第一标识信息,用于指示缓存第一数据的至少一个第二AP。
基于第一标识信息,使得第一AP可灵活的指定需要缓存第一数据的第二AP。
在一种可能的实现方式中,缓存指示可以包括:第二标识信息,用于指示至少一个第二AP缓存的第一数据所对应的至少一个STA;相应的,缓存模块还可以用于根据缓存指示,缓存第一数据中第二标识信息所指示的至少一个STA的数据。
通过上述方式,实现了第二AP对指定STA的数据进行缓存,无需对第一AP发送给所有STA的数据进行缓存,节省了内存开销。
在一种可能的实现方式中,第一数据可以包括至少一个MAC服务数据单元MSDU;缓存指示可以包括:第一数据单元标识,用于指示至少一个第二AP缓存的第一数据中的至少一个MSDU;相应的,缓存模块还可以用于根据缓存指示,缓存第一数据中第一数据单元标识所指示的至少一个MSDU。
通过上述方式,实现了第二AP对指定MSDU进行缓存,节省了内存开销。
在一种可能的实现方式中,第一数据单元标识可以包括:至少一个MSDU的业务标识;至少一个MSDU中起始的MSDU的序列号,以及,从起始序列号所指示的MSDU开始连续缓存的MSDU的数目。
通过上述方式,第二AP可缓存从起始MSDU序列号开始的连续的多个MSDU,而不需要缓存所有的MSDU,节省了内存开销,并且,第一AP不需要将需要缓存的所有的MSDU的序列号都携带在缓存指示中,节省了信令开销。
在一种可能的实现方式中,第一AP和至少一个第二AP属于同一个协作集;第一标识信息为协作集的ID。
通过上述方式,实现了第一AP通过协作集指示协作集中的第二AP对第一数据进行缓存,使得第一AP可灵活的指定需要缓存第一数据的第二AP。
在一种可能的实现方式中,缓存指示包含于承载第一数据的物理层数据单元PPDU的前导中,或,缓存指示包含于第一数据的A-Control字段中。
通过上述方式,实现了第一AP可通过第一数据向第二AP下达缓存指示,无需再单独向第二AP发送缓存指示,有效提升了处理速率。
在一种可能的实现方式中,联合传输指示还可以包括以下一项或多项的组合:
第三标识信息,用于指示发送第二数据的至少一个第二AP。
第四标识信息,用于指示至少一个第二AP发送的第二数据所对应的STA;
第二数据单元标识,用于指示至少一个第二AP发送的第二数据中的至少一个MSDU,第二数据包括至少一个MSDU。
通过上述方式,基于第三标识,使得第一AP可灵活性的选择参与联合传输的第二AP,基于第四标识和/或第二数据单元标识,第一AP可指示缓存了数据的第二AP可仅发送联合传输指示中所指的数据,而不需要发送所有缓存的数据,节省了空口上的开销。
在一种可能的实现方式中,接收模块还可以用于接收第一AP发送协作集建立请求帧,请求帧包括协作集的ID,和,至少一个第二AP的ID,第一AP的ID;发送模块还可以用于向第一AP发送协作集建立响应帧,用于指示第一AP与第二AP建立协作集成功。
在一种可能的实现方式中,通信装置还可以包括清除模块,用于接收第一AP发送的清除缓存指示,并依据清除缓存指示清除缓存的全部或部分第一数据。
通过上述方式,实现了减轻第二AP的负载压力,有效提升资源利用率。
第三方面,本申请实施例提供了一种联合传输方法,具体可以包括:第一AP向至少一个第二接入点AP发送缓存指示,缓存指示用于指示至少一个第二接入点AP缓存第一接入点AP发送的第一数据;随后,第一AP向至少一个站点STA发送第一数据,其中,第一数据包括:至少一个STA的数据;接着,第一AP基于至少一个STA返回的响应帧,确认是否需要启动联合传输流程。以及,当第一AP确定启动联合传输流程时,第一AP向至少一个第三AP发送联合传输指示,联合传输指示用于指示至少一个第三AP向至少一个STA发送第二数据,其中,第二数据为全部或部分的第一数据,至少一个第三AP为至少一个第二AP中的一个或多个;然后,第一AP发送第二数据,且第一AP发送第二数据的发送时间与至少一个第三AP发送第二数据的发送时间相同
在本申请中,第一AP通过向第二AP发送缓存指示,使第二AP在第一AP向至少一个STA发送数据的过程中,对数据进行缓存。从而能够实现减少空口资源占用的同时缩短时延,有效提升了用户体验。
在一种可能的实现方式中,缓存指示可以包括:第一标识信息,用于指示缓存第一数据的至少一个第二AP。
基于第一标识信息,使得第一AP可灵活的指定需要缓存第一数据的第二AP。
在一种可能的实现方式中,缓存指示可以包括:第二标识信息,用于指示至少一个第二AP缓存的第一数据所对应的至少一个STA。
通过上述方式,实现了第二AP对指定STA的数据进行缓存,无需对第一AP发送给所有STA的数据进行缓存,节省了内存开销。
在一种可能的实现方式中,第一AP发送的第一数据包括至少一个MAC服务数据单元MSDU;缓存指示还可以包括:第一数据单元标识,用于指示至少一个第二AP缓存的第一数据中的至少一个MSDU。
通过上述方式,实现了第二AP对指定MSDU进行缓存,节省了内存开销。
在一种可能的实现方式中,第一数据单元标识可以包括:至少一个MSDU的业务标识;至少一个MSDU中起始的MSDU的序列号,以及,从起始序列号所指示的MSDU开始连 续缓存的MSDU的数目。
通过上述方式,第二AP可缓存从起始MSDU序列号开始的连续的多个MSDU,而不需要缓存所有的MSDU,节省了内存开销,并且,第一AP不需要将需要缓存的所有的MSDU的序列号都携带在缓存指示中,节省了信令开销。
在一种可能的实现方式中,第一AP和至少一个第二AP属于同一个协作集;在该种实现方式中,第一标识信息为协作集的ID。
通过上述方式,实现了第一AP通过协作集指示协作集中的第二AP对第一数据进行缓存,使得第一AP可灵活的指定需要缓存第一数据的第二AP。
在一种可能的实现方式中,缓存指示包含于第一数据的物理层前导中,或,缓存指示包含于第一数据的A-Control字段中。
通过上述方式,实现了第一AP可通过第一数据向第二AP下达缓存指示,无需再单独向第二AP发送缓存指示,有效提升了处理速率。
在一种可能的实现方式中,联合传输指示还包括以下一项或多项的组合:
第三标识信息,用于指示发送第二数据的至少一个第三AP;
第四标识信息,用于指示至少一个第三AP联合传输的第二数据所对应的STA;
第二数据单元标识,用于指示至少一个第三AP发送的第二数据中的MSDU,第二数据包括至少一个MSDU。
通过上述方式,基于第三标识,使得第一AP可灵活性的选择参与联合传输的第二AP,基于第四标识和/或第二数据单元标识,第一AP可指示缓存了数据的第二AP可仅发送联合传输指示中所指的数据,而不需要发送所有缓存的数据,节省了空口上的开销。
在一种可能的实现方式中,在第一AP向至少一个第二AP发送缓存指示之前,方法还可以包括:第一AP向至少一个第二AP发送协作集建立请求帧,请求帧包括协作集的ID,和,至少一个第二AP的ID以及第一AP的ID;以及,第一AP若接收到至少一个第二AP发送的协作集建立响应帧,则确定第一AP与至少一个第二AP建立协作集成功。
在一种可能的实现方式中,方法还可以包括:第一AP向至少一个第二AP发送清除缓存指示,用于指示至少一个第二AP清除至少一个第二AP缓存的全部或部分第一数据。
通过上述方式,实现了减轻第二AP的负载压力,有效提升资源利用率。
第四方面,本申请实施例中提供一种应用于第二接入点AP的联合传输方法,具体可以包括:第二接入点AP接收第一接入点AP发送的缓存指示,缓存指示用于指示至少一个第二接入点AP缓存第一接入点AP发送的第一数据;第二AP根据缓存指示,缓存第一AP发送的第一数据,第一数据包括:至少一个站点STA的数据;第二AP接收第一AP发送的联合传输指示,联合传输指示用于指示至少一个第二AP向至少一个STA发送第二数据,第二数据为全部或部分的第一数据;根据联合传输指示,第二AP向至少一个STA发送第二数据,第二AP发送第二数据的时间与第一AP发送第二数据的时间相同。
本申请提供的联合传输方法,第一AP通过向第二AP发送缓存指示,使第二AP在第一AP向至少一个STA发送数据的过程中,对数据进行缓存。从而能够实现减少空口资源占用的同时缩短时延,有效提升了用户体验。
在一种可能的实现方式中,缓存指示可以包括:第一标识信息,用于指示缓存第一数据的至少一个第二AP。
基于第一标识信息,使得第一AP可灵活的指定需要缓存第一数据的第二AP。
在一种可能的实现方式中,缓存指示可以包括:第二标识信息,用于指示至少一个第二AP缓存的第一数据所对应的至少一个STA;第二AP根据缓存指示,缓存第一AP发送的第一数据,具体包括:第二AP根据缓存指示,缓存第一数据中第二标识信息所指示的至少一个站点STA的数据。
通过上述方式,实现了第二AP对指定STA的数据进行缓存,无需对第一AP发送给所有STA的数据进行缓存,节省了内存开销。
在一种可能的实现方式中,第一数据可以包括至少一个MAC服务数据单元MSDU;缓存指示可以包括:第一数据单元标识,用于指示至少一个第二AP缓存的第一数据中的至少一个MSDU;第二AP根据缓存指示,缓存第一AP发送的第一数据,具体包括:第二AP根据缓存指示,缓存第一数据中第一数据单元标识所指示的至少一个MSDU。
通过上述方式,实现了第二AP对指定MSDU进行缓存,节省了内存开销。
在一种可能的实现方式中,第一数据单元标识可以包括:至少一个MSDU的业务标识;至少一个MSDU中起始的MSDU的序列号,以及,从起始序列号所指示的MSDU开始连续缓存的MSDU的数目。
通过上述方式,第二AP可缓存从起始MSDU序列号开始的连续的多个MSDU,而不需要缓存所有的MSDU,节省了内存开销,并且,第一AP不需要将需要缓存的所有的MSDU的序列号都携带在缓存指示中,节省了信令开销。
在一种可能的实现方式中,第一AP和至少一个第二AP属于同一个协作集;第一标识信息为协作集的ID。
通过上述方式,实现了第一AP通过协作集指示协作集中的第二AP对第一数据进行缓存,使得第一AP可灵活的指定需要缓存第一数据的第二AP。
在一种可能的实现方式中,缓存指示包含于承载第一数据的物理层数据单元PPDU的前导中,或,缓存指示包含于第一数据的A-Control字段中。
通过上述方式,实现了第一AP可通过第一数据向第二AP下达缓存指示,无需再单独向第二AP发送缓存指示,有效提升了处理速率。
在一种可能的实现方式中,联合传输指示还可以包括以下一项或多项的组合:
第三标识信息,用于指示发送第二数据的至少一个第二AP。
第四标识信息,用于指示至少一个第二AP发送的第二数据所对应的STA;
第二数据单元标识,用于指示至少一个第二AP发送的第二数据中的至少一个MSDU,第二数据包括至少一个MSDU。
通过上述方式,基于第三标识,使得第一AP可灵活性的选择参与联合传输的第二AP,基于第四标识和/或第二数据单元标识,第一AP可指示缓存了数据的第二AP可仅发送联合传输指示中所指的数据,而不需要发送所有缓存的数据,节省了空口上的开销。
在一种可能的实现方式中,在第一AP向至少一个第二AP发送缓存指示之前,方法还可以包括:第二AP接收第一AP发送协作集建立请求帧,请求帧包括协作集的ID,和,至少一个第二AP的ID,第一AP的ID;第二AP向第一AP发送协作集建立响应帧,用于指示第一AP与第二AP建立协作集成功。
在一种可能的实现方式中,方法还可以包括:第二AP接收第一AP发送的清除缓存指 示,以及,第二AP依据清除缓存指示清除缓存的全部或部分第一数据。
通过上述方式,实现了减轻第二AP的负载压力,有效提升资源利用率。
第五方面,本申请实施例提供一种第一接入点侧的通信装置,该装置可以是第一接入点设备,也可以是第一接入点内的芯片。该装置具有实现上述第一方面涉及第一接入点的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实现方式中,当该装置为第一接入点时,第一接入点包括:处理器和收发器,所述处理器被配置为支持第一接入点AP执行上述各方面中相应的功能。收发器用于支持第一接入点AP和第二接入点AP之间的通信,向第二接入点发送上述方法中所涉及的信息或指令。可选的,第一接入点还可以包括存储器,所述存储器用于与处理器耦合,其保存第一接入点必要的程序指令和数据。
在一种可能的实现方式中,该装置包括:处理器,基带电路,射频电路和天线。其中处理器用于实现对各个电路部分功能的控制,基带电路用于生成各类信令和消息,例如缓存指示消息,经由射频电路进行模拟转换、滤波、放大和上变频等处理后,经由天线发送给第二接入点AP。可选的,该装置还可包括存储器,其保存第一接入点必要的程序指令和数据。
在一种可能的实现方式中,该装置可以包括处理器和调制解调器,处理器可以用于指令或操作系统,以实现对第一接入点功能的控制,调制解调器可以按协议对数据进行封装、编解码、调制解调、均衡等以生成信令信息,例如,缓存指示,联合传输指示等,以支持第一接入点AP执行上述第一方面中相应的功能。
在一个可能的实现方式中,当该装置为第一接入点内的芯片时,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,例如,此处理器用于生成各类消息和信令,并对各类消息按照协议封装后,进行编码,调制,放大等处理,所述处理器还可以用于解调,解码,解封装后获得信令和消息,所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令,以支持第一接入点AP执行上述各方面中相应的功能。可选地,所述存储单元可以为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述第一接入点内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,简称ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,简称RAM)等。
在一种可能的实现方式中,该装置包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行上述第一方面中涉及第一接入点AP的方法。该存储器可以位于该处理器内部,还可以位于该处理器外部。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(Central Processing Unit,简称CPU),微处理器,特定应用集成电路(application-specific integrated circuit,简称ASIC),或一个或多个用于控制上述各方面空间复用方法的程序执行的集成电路。
第六方面,本申请提供一种第二接入点侧的通信装置,该装置可以是第二接入点,也可以是第二设备内的芯片。该装置具有实现上述第二方面中涉及第二接入点的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实现方式中,当该装置为第二接入点时,第二接入点包括:处理器和收发器,所述处理器被配置为支持第二接入点AP执行上述方法中相应的功能。收发器用于支持第二接入点AP与第二接入点AP或站点之间的通信,接收第二接入点发送上述方法中所涉及的信息或指令,例如,缓存指示,联合传输指示等。可选的,第二接入点还可以包括存储器,所述存储器用于与处理器耦合,其保存第二接入点必要的程序指令和数据。
在一种可能的实现方式中,该装置包括:处理器,基带电路,射频电路和天线。其中处理器用于实现对各个电路部分功能的控制,射频电路可以对经由天线接收到的第一接入点发送的数据分组(例如承载缓存指示的数据分组)进行数字转换、滤波、放大和下变频等处理后,经由基带电路进行解码按协议解封装以获取信令信息。可选的,该装置还包括存储器,其保存第二接入点必要的程序指令和数据。
在一种可能的实现方式中,该装置包括处理器和调制解调器,处理器可以用于指令或操作系统,以实现对第二接入点功能的控制,调制解调器可以按协议对数据进行封装、编解码、调制解调、均衡等以生成第二数据,或,解析缓存指示,解析联合传输指示等,以支持第二接入点AP执行上述第二方面中相应的功能。
在一个可能的实现方式中,当该装置为第二接入点内的芯片时,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,此处理器可以用于对经由收发模块接收到的承载信令或数据信息的数据分组(例如包含调度请求消息的数据分组),进行滤波、解调、功率放大、解码等处理,所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令,以支持第二接入点AP执行上述第四方面相应的功能。可选地,所述存储单元可以为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述第二接入点内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,简称ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,简称RAM)等。
在一种可能的实现方式中,该装置包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行上述第二方面中所述的方法。该存储器可以位于该处理器内部,还可以位于该处理器外部。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(Central Processing Unit,简称CPU),微处理器,特定应用集成电路(application-specific integrated circuit,简称ASIC),或一个或多个用于控制上述各方面空间复用方法的程序执行的集成电路。
第七方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令可以由处理电路上的一个或多个处理器执行。当其在计算机上运行时,使得计算机执行上述第三方面或第四方面中任一方面或其任意可能的实现方式中的方法。
第八方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第三方面或第四方面中的任一方面或其任意可能的实现方式中的方法。
第九方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持数据发送设备实现上述方面中所涉及的功能,例如生成或处理上述各方面中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存数据发送设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,本申请实施例提供一种无线通信系统,该系统包括上述方面涉及的第一接 入点和,至少一个第二接入点。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是示例性示出的一种联合传输方法的流程示意图;
图2是本申请一个实施例提供的应用场景示意图;
图3是本申请一个实施例提供的联合传输方法的流程图之一;
图4是本申请一个实施例提供的联合传输方法的流程图之二;
图5是本申请一个实施例提供的缓存指示的帧结构示意图;
图6是本申请一个实施例提供的联合传输指示的帧结构示意图;
图7是本申请一个实施例提供的联合传输方法的流程图之三;
图8是本申请一个实施例提供的部分数据帧的结构示意图之一;
图9是本申请一个实施例提供的部分数据帧的结构示意图之二;
图10是本申请一个实施例提供的联合传输方法的流程图之四;
图11是本申请一个实施例提供的协作集请求帧的帧结构示意图之一;
图12是本申请一个实施例提供的协作集请求帧的帧结构示意图之二;
图13是本申请一个实施例提供的协作集请求帧的帧结构示意图之三;
图14是本申请一个实施例提供的联合传输方法的流程图之五;
图15是本申请一个实施例提供的联合传输方法的流程图之六;
图16是本申请一个实施例提供的第一接入点侧的装置的示意性框图之一;
图17是本申请一个实施例提供的第一接入点侧的装置的示意性框图之二;
图18是本申请一个实施例提供的第二接入点侧的装置的示意性框图之一;
图19是本申请一个实施例提供的第二接入点侧的装置的示意性框图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为 比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
如图1所示为已有技术实施例中的联合传输方法的流程示意图,具体为:
AP1与AP2为协作AP。若AP1需要将数据发送给STA,则AP1预先将数据通过有线或者无线的方式将数据(为与重传时的数据进行区分,AP1发送给AP2的数据称为数据1)共享给AP2,AP2将该数据1缓存至本地。随后,AP1向STA发送所述数据1。AP1等待STA的响应帧(BA(Block ACK,区块确认)帧),其中,若响应帧中指示STA的数据接收错误,例如:数据缺失等,AP1将根据响应帧中的指示,向AP2发送同步帧(这里为方面描述,简称为Sync),以通知AP2需要向STA发送的哪些数据。需要说明的是,Sync帧在其它实施例中也可以成为控制帧或管理帧等。然后,在Sync帧结束后的指定时刻,AP1与AP2联合(即,AP1与AP2在指定时刻同时向STA发送数据)向STA发送所需数据(即数据2,数据1与数据2可以相同,也可以不相同)。随后,STA再次返回响应帧,以确认数据2是否接收成功。
已有技术实施例中的协作方法,需要主AP(即AP1)预先将数据定向发送给协作AP(即AP2),然后再进行对STA传输数据以及与协作AP的联合传输过程。然而,如果主AP通过有线方式向协作AP共享数据,由于数据传输量大,将会占用大量的空口资源。而如果通过无线方式向协作AP共享数据,则数据传输至STA端需要毫秒级时延,严重影响服务质量QoS(Quality of service,QoS)/体验质量(Quality of experience,QoE),并且增大网络负荷。
本申请提出一种联合传输方法,以解决已有技术中的上述缺陷。
在对本申请实施例的技术方案说明之前,首先结合附图对本申请实施例的应用场景进行说明。参见图2,为本申请实施例提供的一种应用场景示意图。该应用场景中包括AP1-5(其中AP1-5指的是:AP1,AP2,AP3,AP4,AP5),在图中的标号依次为11、12、13、14、15,还包括:STA1-3(其中STA1-3指的是STA1,STA2,STA3),在图中的标号依次为16、17、18。本申请实施例具体实施的过程中,STA1-3可以为电脑、智能手机等设备。需要说明的是,在实际应用中,AP和STA的数量均可以为一个或多个,图2所示应用场景的STA和AP的数量仅为示意性举例。
结合上述如图2所示的应用场景示意图,下面介绍本申请的具体实施方案,其中,在下面的场景中,以AP1为本申请实施例中的第一AP、AP2-4为本申请实施例中的第二AP、AP2为本申请实施例中的第三AP为例进行详细阐述。需要说明的时,在本申请的实施例中,第一AP可以为图2中的任一AP,第二AP可以为图2中除第一AP以外的任一AP。
结合上述如图2所示的应用场景,AP1向AP2-4发送缓存指示的方式,可以包括多种。在一个实施例中,AP1可通过向AP2-4发送携带有该缓存指示的缓存指示帧,以通知AP2-4对AP1发送给STA1-3的第一数据进行缓存。该实施例的具体细节详见场景二。
在另一个实施例中,AP1可通过向AP2-4发送携带有该缓存指示的第一数据,以通知AP2-4对AP1发送给STA1-3的第一数据进行缓存。该实施例的具体细节详见场景三。
在又一个实施例中,AP1可与AP2-4建立协作关系,并在建立协作关系的过程中,通 过向AP2-4发送携带有缓存指示的协作集建立请求,以通知APA2-4对AP1发送给STA1-3的第一数据进行缓存。该实施例的具体细节详见场景四。
在又一个实施例中,AP1可与AP2-4建立协作关系,并在建立协作关系之后,向AP2-4发送携带有缓存指示的缓存指示帧(该缓存指示中携带的信息与场景二中的缓存指示中携带的信息不同),以通知AP2-4对AP1发送给STA1-3的第一数据进行缓存。该实施例的具体细节详见场景五。
在又一个实施例中,AP1可与AP2-4建立协作关系,并在建立协作关系之后,向AP2-4发送携带有缓存指示的第一数据(该场景中缓存指示中携带的信息与场景三中缓存指示携带的信息不同),以通知AP2-4对AP1发送给STA1-3的第一数据进行缓存。该实施例的具体细节详见场景六。
场景一
如图3所示为本申请实施例中的联合传输方法的流程图,在图3中:
S101、第一接入点AP向至少一个第二接入点AP发送缓存指示。
具体的,在本申请的实施例中,缓存指示用于指示至少一个第二接入点AP对第一AP发送的第一数据进行缓存。第一AP可通过单播或者广播的方式向至少一个第二AP发送缓存指示,以通过该缓存指示通知至少一个第二AP对信道进行监听,并在监听到符合缓存指示中指示的数据,即第一AP发出的第一数据时,对第一数据进行缓存。
在本申请的实施例中,缓存指示中包括的参数可以包括以下一项或者多项的组合:
1.第二AP的标识信息,用于指示需要缓存第一数据的至少一个第二AP。在本申请的实施例中,至少一个第二AP的标识信息可以为AP的媒体访问控制(Media Access Control,MAC)地址信息。举例来说,若AP1指示AP2-5缓存第一数据,则在缓存指示中可包括AP2-5这4个AP的MAC地址。
2.至少一个STA的标识信息,用于指示第二AP需要缓存第一AP发送给哪些STA的数据。STA的标识信息用于唯一标识对应的STA,在一个实施例中,STA的标识信息可以为STA的MAC地址信息。在另一个实施例中,STA的标识信息还可以为该STA的关联标识符(association identifier,AID)。举例说明:若AP1向AP2-5发送携带有STA1-3的标识信息的缓存指示,则,AP2-5缓存AP1发送给STA1-3的数据,这样接收到该缓存指示的第二AP,可以根据此标识信息,确定自身该缓存哪些STA的数据,使得第二AP不用缓存第一数据中所有STA的数据,降低了第二AP的内存开销。
3.第一数据单元标识信息。在本申请的实施例中,第一数据包括有至少一个MAC服务数据单元(MAC service data unit,MSDU)。第一数据单元标识信息可用于指示第二AP需要缓存的数据单元。其中,第一数据单元标识信息可以包括:至少一个MSDU的业务标识(Traffic identifier,TID),至少一个MSDU中起始的MSDU的序列号(Staring Sequence number),以及,从起始序列号所指示的MSDU开始连续缓存的MSDU的数目。其中,TID用于标识MSDU,起始序列号用于指示需要缓存的MSDU的起始序号,起始序列号结合MSDU数量即可用于指示第二AP缓存哪些MSDU。举例说明:AP1发送给STA1的数据包括TID1和TID2,其中,TID1和TID2均包括MSDU1、MSDU2、MSDU3和MSDU4。若AP1发送给AP2-4的缓存指示中的数据单元标识中的TID为TID1,Staring Sequence number为1,MSDU数量为4,则AP2-4将缓存TID1中的MSDU1-4。从而使第二AP仅 缓存指定的数据单元,进一步降低了第二AP的内存开销。
下面结合图2中的应用场景对缓存指示中包括的参数进行详细说明。
在一个实施例中,若AP1发送给AP2-5的缓存指示中包括AP2-4的MAC地址信息,则AP2-4将缓存AP1发送的数据。
在另一个实施例中,若AP1发送给AP2-5的缓存指示中包括AP2-4的MAC地址信息以及STA1-2的MAC地址信息,则AP2-4缓存AP1发送给STA1和STA2的数据。
在又一个实施例中,若AP1发送给AP2-5的缓存指示中包括AP2-4的MAC地址信息、STA1和STA2的MAC地址信息以及数据单元标识信息,其中,数据单元标识信息中的参数具体为:TID为1,Staring Sequence number为1,MSDU数量为4,则AP2-4将缓存AP1发送给STA1和STA2的数据的TID1中的MSDU1-4。
S102,第一AP向至少一个STA发送第一数据。
具体的,在本申请的实施例中,AP1将第一数据发送给STA1-3。在本申请的实施例中,AP1发送给STA1-3的第一数据包括发送地址信息、接收地址信息等信息,以及数据部分。其中,数据部分中至少包括STA1-3的数据。
S103,第一AP基于至少一个STA返回的响应帧,确认是否需要启动联合传输流程。具体的,第一AP可基于响应帧判断至少一个STA接收到的数据是否正确,来确定是否需要启动联合传输流程。在本申请的实施例中,STA1-3接收到AP1发送的第一数据后,检测接收到的数据是否完整。具体检测方式可参照已有技术实施例中的技术方案,本申请不再赘述。
在本申请的实施例中,STA1-3接收到第一数据之后,向AP1返回响应帧。以STA1为例,在一个实施例中,若STA1检测到接收的第一数据出现错误,则响应帧中将携带有标识数据错误的信息。其中,数据错误可以包括接收到的数据不完整,例如:AP1在第一数据所属的数据帧中的控制字段中指示第一数据包括MSDU1-4,而STA1实际仅接收到MSDU1-3,即可确定数据接收不完整。数据错误还可以为接收到的数据顺序错误,举例说明:仍以AP1发送给STA1-3的第一数据包括MSDU1-4为例,STA1在接收到数据时,数据顺序为MSDU1、3、2、4,则STA1确认数据接收顺序错误,数据错误还可以为其它类型,本申请在此不一一举例说明。以及,在本申请的实施例中,STA1向第一AP返回的响应帧中将具体指明哪些数据接收错误。举例说明:若AP1发送给STA1的数据包括MSDU1-4,而STA1仅接收到MSDU2和4。则,STA向AP1返回的响应帧中指示MSDU2和4正确接收,MSDU1和3错误接收。在另一个实施例中,若STA1检测到接收的数据全部正确,则响应帧中将携带相应的指示信息。
在本申请的实施例中,AP1可依据STA1-3返回的响应帧,判断是否需要启动联合传输流程。例如,若AP1依据接收到的STA1-3返回的响应帧,确认STA1和STA2出现数据接收错误,则确认需要启动联合传输流程。反之,则确认不需要启动联合传输流程。
S104,第一AP根据响应帧,向至少一个第三AP发送联合传输指示。
具体的,联合传输指示用于指示至少一个第三AP向至少一个STA发送第二数据,其中,第二数据可以为全部的第一数据,也可以为部分的第一数据,以及,在本申请的实施例中,至少一个第三AP可以为至少一个第二AP中的一个或者多个。
联合传输指示中的参数可以包括但不限于以下一项或者多项的组合:
1.第三标识信息,用于指示发送第二数据的至少一个第三AP。举例说明:AP1向AP2-5发送携带有AP2的MAC地址信息的联合传输指示,则AP2将与AP1一起发送第二数据。
2.第四标识信息,用于指示至少一个第三AP发送的第二数据对应的STA。举例说明:AP1向AP2-5发送携带有STA1和STA2的MAC地址信息的联合传输指示,则,AP2-5将与AP1同时向STA1和STA2发送第二数据。从而能够使第三AP向指定的STA发送数据,以节省空口资源的占用。
3.第二数据单元标识,用于指示至少一个第三AP发送的第二数据中的MSDU。在本申请的实施例中,第二数据包括至少一个MSDU。联合传输指示中包括但不限于:至少一个STA的标识信息、TID、Staring Sequence number、数据位图(Data bitmap)、以及传输参数。其中,传输参数包括但不限于带宽、时空流数、保护间隔、调制编码制式和扰码种子等参数信息。举例说明:AP1向AP2发送的联合传输指示中,STA的标识信息为STA1和STA2的MAC地址信息。TID为TID1(即第一数据)、Staring Sequence number为1,Data bitmap为1000。其中,Data bitmap中的“1”标识对应的MSDU接收成功,“0”则表示对应的MSDU接收失败。因此,Data bitmap为1000即表示TID1的MDSU1-4中从MSDU1开始的MSDU中,MSDU1传输成功、MSDU2-4均传输失败。AP2接收到联合传输指示后,确认需要在同一时刻与AP1一起向STA1和STA2发送第二数据,即TID1的MSDU2-4。
4.其他传输参数,包括第三AP生成第二数据所需的参数和/或传输第二数据所需的参数,其中,传输参数可以包括但不限于传输带宽、时空流数、保护间隔、调制编码制式和扰码种子等参数信息。
具体的,在本申请的实施例中的一个示例中,例如:若AP1确认STA1和STA2发生数据接收错误,则AP1向缓存了STA1和STA2数据的AP2-4中的一个或一个以上AP发送联合传输指示,在本实施例以及下面的实施例中,以AP1向AP2发送联合传输指示为例进行详细说明,即AP1向AP2发送携带有AP2的MAC地址信息、STA1和STA2的MAC地址信息的联合传输指示。
S105,第一AP与至少一个第三AP联合传输第二数据。具体的,在本申请的实施例中,联合传输即指第一AP和至少一个第三AP在同一时刻共同向至少一个STA发送相同的数据,即本申请实施例中的第二数据。例如:AP1向AP2发送联合传输指示,以通知AP2即将启动联合传输过程。即,与上述已有技术的实施例相同,AP2在接收到联合传输指示后,在指定时刻,与AP1同时向STA1和STA2发送联合传输指示中指定的第二数据,从而实现联合传输。在本申请的实施例中,第二数据可以为全部或部分的第一数据。
需要说明的是,基于收发机的工作原理,本申请实施例中的“同时”是实质的“同时”,“同时”和“发送时间相同”不需要严格限定上述第一AP发送的第二数据和第二AP发送的第二数据的发送时间没有任何时间上的差异,只需要满足整体上上述处理在时间维度大致相同即可。且本申请实施例方案中第一AP和至少一个第二AP“同时”发送第二数据,可以提升接收端的接收功率,可提升接收站点的接收到的信号质量,并且避免了异步传输时,对接收该第二数据的站点造成干扰,是有益的。
在本申请的实施例中,指定时刻还可以为系统中的所有AP的约定时刻,在一个实施例中,指定时刻可以为第一AP发送联合传输指示帧结束短帧间间隔(Short interframe space, SIFS)之后。指定时间还可以携带在联合传输指示中,通过显示的方式指示给需要进行联合传输的第三AP,以便于第三AP确定联合传输第二数据的传输时间,且在一定程度上,第一AP还可以实现对联合传输的空口传输时间的控制。
在本申请的实施例中,STA1和STA2接收到AP1与AP2联合传输的数据后,可以再次向AP1返回响应帧,随后,AP1可根据响应帧,确认是否需要继续启动联合传输流程,即循环S104-S105,直至STA1和STA2返回的响应帧中指示数据全部接收成功。在本申请的实施例中,如果AP1确认需要继续启动联合传输流程,则AP1还可在已缓存有STA1-3的第一数据的AP,即AP2-5中选择除AP2的其它AP(例如AP3)与AP1进行联合传输过程,从而避免由于AP2端发生错误而导致的联合传输失败。
综上所述,本申请实施例中提供的联合传输方法,第一AP通过向至少一个第二AP发送缓存指示,以通知至少一个第二AP缓存第一AP发送的数据,从而在有效减少了口空资源的占用的同时不会对时延产生影响,进而提升了用户体验。
场景二
结合图2,如图4所示为本申请实施例中的联合传输方法的流程图,在图4中:
S201,第一AP向至少一个第二接入点AP发送缓存指示。具体的,在本实施例中,缓存指示包括但不限于以下一个或多个的组合:至少一个第二AP的标识信息、至少一个STA的标识信息以及第一数据单元标识信息。
在本实施例中,以第一数据的TID为TID1,第一数据包括MSDU1、MSDU2、MSDU3、MSDU4,并且,缓存指示中包括AP2-4的MAC地址信息、STA1-3的MAC地址信息和第一数据单元标识,其中,第一数据单元标识中的TID为TID1,起始的MSDU的序列号Staring Sequence number为1,MSDU数量为4为例进行详细说明。具体的,AP1向AP2-4发送SyncForBuffer(即本申请实施例中的缓存指示)帧,SyncForBuffer帧的帧结构如图5所示。
在本实施例中,AP1在发送缓存指示后,可以将AP2-4的MAC地址信息和STA1-3的MAC地址信息以及数据单元标识对应记录在本地列表中。从而能够使AP1通过检索本地列表,确认是哪些AP缓存有发送给STA1-3的第一数据中的哪些MSDU。
S202,至少一个第二AP缓存缓存指示中的信息。具体的,以接收到缓存指示的AP2为例,AP2接收到AP1发送的SyncForBuffer帧后,读取SyncForBuffer帧中携带的AP的标识信息,并在确认SyncForBuffer帧包括AP2的MAC地址信息后,缓存SyncForBuffer帧中携带的AP1的地址信息(在本申请的实施例中AP1的地址信息可以为AP1的IP地址信息或MAC地址信息,在本实施例以及下面的实施例中以AP1的地址信息为MAC地址信息为例进行详细阐述),以及,SyncForBuffer帧中包括的STA1-3的MAC地址信息以及第一数据单元标识。相反的,AP5在接收到缓存指示后,确认SyncForBuffer帧不包括AP5的MAC地址信息,因此不需要缓存SyncForBuffer帧中携带的AP1的地址信息。
S203,第一AP向至少一个STA发送第一数据。
具体的,在本实施例中,AP1向STA1-3发送第一数据,其中,AP1发送给STA1-3的第一数据中携带有发送地址信息以及接收地址信息。下面以AP1向STA1发送第一数据为例进行详细说明。具体的,AP1向STA1发送第一数据,第一数据中携带有发送地址信息(即AP1的MAC地址信息)以及接收地址信息(即STA1的MAC地址信息)。
AP2-5实时监听信道,在本实施例中,AP2-5均监听到该第一数据。AP2-5读取第一数据中的接收地址信息以及发送地址信息,并与本地存储的信息(即步骤S202中存储的信息)进行匹配。以AP2-4缓存第一数据中STA1的数据为例,在本实施例中,AP2-4在步骤S202中已在本地缓存有相关信息,包括:AP1的MAC地址信息、STA1-3的地址信息以及第一数据单元标识,其中,第一数据单元标识中的TID为TID1,起始的MSDU的序列号Staring Sequence number为1,MSDU数量为4。AP2-4将读取到的第一数据中的接收地址信息(STA1的MAC地址信息)以及发送地址信息(AP1的MAC地址信息)与本地存储的参数进行匹配,并匹配成功。在本实施例中,由于AP5在本地未存储上述参数(即AP1的MAC地址信息和STA1的MAC地址信息),因此,AP5对读取到的第一数据中的接收地址信息与发送地址信息匹配失败,AP5不作任何处理。
接着,AP2-4按照第一数据中包括的第一数据单元标识的指示,缓存第一数据中的TID为1的MSDU1-4。可以理解的,AP2-4缓存第一数据中STA2或STA3的数据与AP2-4缓存第一数据中STA1的数据相类似,此处不再赘述。
S204,第一AP基于至少一个STA返回的响应帧,确认是否需要启动联合传输流程。在本实施例与下面的实施例中,以STA1和STA2接收数据错误,并且具体数据错误为:第一数据包括MSDU1-4,但是,STA1和STA2仅接收到MSDU1,而STA3接收数据正确为例进行详细说明。
具体的,AP1接收到STA1和STA2返回的响应帧,并且响应帧中均指示第一数据中的MSDU2-4接收错误。因此,AP1确认启动联合传输流程。AP1通过检索本地列表,确定AP2-4缓存有发送给STA1和STA2的第一数据。
S205,第一AP根据响应帧,向至少一个第三AP发送联合传输指示。该至少一个第三AP为缓存了第一数据的至少一个第二AP中的一个或多个。具体的,在本实施例中,AP1向缓存了第一数据的AP2-4中的AP2发送联合传输指示。在本申请的实施例中,联合传输指示的帧结构如图6所示,联合传输指示包括但不限于至少一个第三AP的标识信息、协作数据指示以及协作发送参数指示中的一个或多个。其中,协作数据指示字段中包含有指示至少一个第三AP发送第二数据的对象,以及发送第二数据中的哪些MSDU。在本实施例中,AP1向AP2发送的联合传输指示中,STA ID即为STA1和STA2的MAC地址信息。TID为TID1、Staring Sequence number为1,Data bitmap为1000。其中,Data bitmap中的“1”标识对应的MSDU接收成功,“0”则表示对应的MSDU接收失败。因此,Data bitmap为1000即表示TID1的MDSU1-4中从MSDU1开始的MSDU中,MSDU1传输成功、MSDU2-4均传输失败。
AP2接收到联合传输指示后,确认需要在联合传输指示结束后的SIFS时刻,向STA1和STA2发送第二数据,即TID1的MSDU2-4。
S206,第一AP与至少一个第三AP联合传输第二数据。具体的,在本实施例中,AP1与AP2在联合传输指示结束后的SIFS时刻,同时向STA1和STA2发送第二数据,即,TID1的MSDU2-4。
场景三
结合图2,如图7所示为本申请实施例中的联合传输方法的流程图,在图7中:
S301,第一AP向至少一个第二AP发送携带有缓存指示的第一数据。
也就是说,缓存指示包含于第一数据中,且缓存指示与第一数据同步发送给至少一个第二AP。在本实施例中的一个示例中,缓存指示包括但不限于:至少一个第二AP的标识信息,以指示至少一个第二AP将第一数据全部缓存。在另一个示例中,缓存指示包括但不限于:至少一个第二AP的标识信息、第二数据单元标识信息,以指示至少一个第二AP按照第二数据单元标识信息的指示缓存第二数据中的部分MSDU。
具体的,在本实施例中的一个示例中,例如:AP1向STA1-3发送第一数据,其中,第一数据的中携带有发送地址信息(AP1的MAC地址信息)和接收地址信息(STA1-3的MAC地址信息)以及缓存指示。在本实施例中,缓存指示中包括AP2-4的MAC地址信息以及第一数据单元标识。其中,在本实施例中,第一数据单元标识中的TID等参数指示AP2-4缓存第一数据的TID1的MSDU1-4。
以AP2-5缓存第一数据为例,AP2-5监听到AP1发送的第一数据时,读取第一数据携带的缓存指示中包括的AP的MAC地址信息,并与自身的MAC地址信息进行匹配。以AP2为例,AP2读取第一数据携带的缓存指示中包括的AP的MAC地址信息,即,AP2-4的MAC地址信息,并与AP2自身的MAC地址信息进行匹配,在确定匹配成功后,AP2缓存第一数据携带的缓存指示中包括的第一数据单元标识所指示的具体MSDU。即,TID1的MSDU1-4。即,在本实施例中,AP2-4均缓存AP1发送给STA1-3的TID1的MSDU1-4。
在一个实施例中,第一数据携带缓存指示的方式可以为:修改第一数据的物理层帧结构。具体的,缓存指示可以包含于携带第一数据的物理层数据单元(Physical Protocol Data Unit,PPDU)的前导中。具体的,如图8所示为第一数据的物理层部分帧结构示意图,在图8中,物理层部分帧结构包括:非高吞吐量短训练域(Non-HT short training field,L-STF)、非高吞吐量长训练域(Non-HT long training field,L-LTF)、非高吞吐量信令(Non-HT signal,L-SIG)、帧格式检测字段(X Symbol)、信令指示字段。在本实施例中,可以将AP2-4的MAC地址信息以及数据单元标识包含于信令指示字段中,从而使AP2-4通过读取信令指示字段中包含的信息,以确定AP2-4是否需要缓存信令指示字段所属的第一数据中的指定数据部分(即数据单元标识中指示的MSDU)。
在另一个实施例中,第一数据携带缓存指示的方式可以为:修改第一数据的MAC层帧结构。MAC层帧结构可参照IEEE802.11标准中的定义,其中,MAC层帧结构中的A-Control字段可用于携带控制信息。在协议中,A-Control已定义有7种控制信息,尚有9种类型的控制信息预留。如图9所示为A-Control字段中每一种控制信令的格式示意图。在图9中,控制ID字段(Control ID)用于标识控制信令的类型,控制信息字段(Control Information)用于承载该控制信令的具体内容。在协议中,Control ID取值7-15为预留类型,因此,可选择预留类型中的其中一种携带AP2-4的MAC地址信息以及数据单元标识,对应的Control Information字段中包括AP2-4的MAC地址信息的具体数值以及数据单元标识的具体数值。
S302,第一AP基于至少一个STA返回的响应帧,确认是否需要启动联合传输流程。
S303,第一AP根据响应帧,向至少一个第三AP发送联合传输指示。
S304,第一AP与至少一个第三AP联合传输第二数据
S302-S304的相关细节可参照前述步骤S204-206,此处不赘述。
场景四
结合图2,如图10所示为本申请实施例中的联合传输方法的流程图,在图10中:
S401,第一接入点AP向至少一个第二接入点AP发送协作集建立请求帧。在本申请的实施例中,协作集建立请求中包括:协作集的标识信息、至少一个第二AP的标识信息,以指示至少一个第二AP与第一AP建立协作集,并且还可以用于指示与第一AP属于同一协作集的至少一个第二AP,缓存第一AP发送的第一数据。举例说明:AP1与AP2-4建立协作关系,则,AP2-4缓存携带有AP1的MAC地址的第一数据。
在一个实施例中,协作集建立请求中还可以包括有缓存指示,缓存指示中包括但不限于:至少一个STA的标识信息,用于指示至少一个第二AP缓存第一AP发送给至少一个STA的第一数据。缓存指示中还可以包括有至少一个STA的个数,用于指示参与协作集的至少一个STA的个数,以使第二AP在接收到协作集建立请求后,能够迅速计算出缓存指示的长度。
具体的,在本实施例的一个示例中,例如:AP1向AP2-4发送协作集建立请求帧,从而与AP2-4建立协作集,则AP2-4可以称为AP1的协作AP。
在本申请的实施例中,协作集请求帧包括但不限于如下实施方式:
在一个实施例中,一个协作集请求帧可以只包括用于建立一个协作集的信息,当需要建立多个协作集时,可以依次串行的发送多个协作集请求帧。在一个实施例中,AP1发送的协作集请求消息的帧结构如图11所示,在图11中,协作集请求消息的帧结构包括但不限于:协作集的ID、参与协作集的STA的数量(在本实施例中,参与协作及的STA的数量为3)、以及参与协作集的STA的MAC地址信息(即STA1-3的MAC地址信息)。在该实施例中,协作集请求帧中还包括有接收地址,即AP2-4的地址信息。在该实施例中,AP1以单播的方式将协作集请求帧发送给指定的协作AP,即AP2-4。
在另一个实施例中,一个协作请求帧可以包括用于建立多个协作集的信息,当需要建立多个协作集时,可以发送此协作集请求帧。在一个实例中,AP1发送的协作集请求帧的帧结构如图12所示,在图12中,协作集请求帧的帧结构中包括多个协作集建立指示,每个协作集建立指示中的帧结构相同,均包括:协作集的ID、参与协作集的协作AP的地址信息、参与协作集的STA的数量、以及参与协作集的STA的MAC地址信息。举例说明:AP1与AP2建立的协作集的ID为协作集1,参与协作集1的STA包括STA1-3,AP1与AP3建立的协作集的ID为协作集2,参与协作集2的STA包括STA2-3。则,AP1发送的协作集建立帧中包括:协作集1、AP2的地址信息、STA的数目为3、以及STA1的MAC地址信息、STA2的MAC地址信息和STA3的MAC地址信息,协作集2、AP3的地址信息、STA的数据为2、以及STA2的MAC地址信息和STA3的MAC地址信息。
在本实施例中,AP1建立多个协作集,每个协作集对应的协作对象即为每个协作集建立指示中指示的协作AP。并且,在该实施例中,AP1以广播的方式将协作集请求帧广播给AP1-5,AP1-5读取协作集请求帧中指示的AP的MAC地址信息,并在识别到AP的MAC地址信息中包含自己的MAC地址信息的情况下,缓存与自己的MAC地址信息对应的协作集建立指示中指示的信息。举例说明:AP2在识别到协作集建立请求帧中包括AP2的地址信息后,读取AP2的地址信息所述的协作集建立指示中的信息,即包括:协作集1、STA的数据为3以及STA1的MAC地址信息、STA2的MAC地址信息和STA3的MAC地址信 息。此外,在该实施例中,帧结构中指示的参与协作集的STA数量明确指示帧结构中参与协作集的STA的MAC地址信息的长度,从而能使协作AP在缓存自己对应的协作集列表时,能够通过STA的数量计算出对应的协作集的起始点。
在又一个实施例中,AP1的协作集请求消息还可以发送采用广播的方式,发送给多个第二AP,一个实施例中,主AP发送的协作集请求消息的帧结构如图13所示,在图13中,帧结构中包括但不限于:协作集的ID、参与协作集的协作AP的数量、参与协作集的协作AP的MAC地址信息、参与协作集的STA的MAC地址信息。AP1与AP2-4建立一个协作集,并在协作集建立请求帧中指示参与协作集的STA,即STA1-3。同样,在协作集建立请求帧中指示协作AP的数量和STA的数量便于协作AP,即AP2-4在接收到该请求帧后,迅速计算出该帧的长度。
同样,在本实施例中,AP2-4将缓存指示中指示的信息缓存于本地。
S402,至少一个第二AP向AP1返回协作集建立响应帧。具体的,AP2-4接收到AP1发送的协作集建立请求帧后,向AP1返回协作集建立响应帧。以及,AP2-4缓存协作集请求帧中携带的信息,包括:AP1的地址信息、协作集的ID、参与协作集的STA等信息。
S403,第一AP向至少一个STA发送第一数据。具体的,在本实施例中,AP1向STA1-3发送第一数据,AP2-4在监听到传输于信道中的第一数据时,识别第一数据中的接收地址信息(STA1-3的MAC地址信息)和发送地址信息(AP1的MAC地址信息),并与本地存储的信息进行匹配。在本实施例中,AP2-4匹配成功,则AP2-4缓存第一AP发送给STA1-3的第一数据。
S404,第一AP基于至少一个STA返回的响应帧,确认是否需要启动联合传输流程。
此步骤与前述步骤S204相似,此处不赘述。
S405,第一AP根据响应帧,向至少一个第三AP发送联合传输指示。在本实施例中,联合传输指示包括但不限于:协作集的标识信息、至少一个STA的标识信息以及第二数据单元标识信息。以指示属于联合传输指示中的协作集中的至少一个第三AP向至少一个STA发送第二数据。或者,联合传输指示中可以包括:至少一个第三AP的标识信息、至少一个STA的标识信息以及第二数据单元标识信息,其作用与前述实施例中相同,此处不赘述。
具体的,AP1向AP2发送联合传输指示,在本实施例中,联合传输指示中包括但不限于:协作集的ID(即协作集1)和/或协作AP的MAC地址信息(即AP2的MAC地址信息)、STA1和STA2的MAC地址信息、TID(在本实施例中TID为1)、Staring Sequence number(在本实施例中Staring Sequence number为1)、Data bitmap(Data bitmap为1000)以及传输参数。
在本实施例中,AP2接收到联合传输指示后,将联合传输指示中的协作集的ID和/或协作AP的MAC地址信息与本地缓存的信息进行匹配,匹配成功后,再对联合传输指示中携带的发送地址信息(AP1的MAC地址信息)进行匹配。对AP1的地址信息进行匹配的原因为:在系统中存在多个第一AP的情况下,不同的第一AP可能具有相同协作集ID的协作集,若AP2仅匹配协作集ID,则可能缓存其它第一AP发送的数据,而增加设备负担,存在缓存溢出的风险。
S406,第一AP与至少一个第三AP联合传输第二数据。
此步骤与前述步骤S206相似,此处不赘述。
场景五
结合图2,如图14所示为本申请实施例中的联合传输方法的流程图,在图14中:
S501,第一接入点AP向至少一个第二接入点AP发送协作集建立请求帧。具体的,在本实施例中,AP1向AP2-4发送协作集建立请求帧,与场景四中的协作集建立请求帧不同,本实施例中的协作集请求中不携带缓存指示,仅携带有发送地址信息(AP1的MAC地址信息)、协作集的ID、以及AP2-4的MAC地址信息。即,协作集请求中不指示参与协作集的STA。
此步骤的其它相关细节与步骤S401类似,此处不赘述。
S502,至少一个第二AP向AP1返回协作集建立响应帧。
此步骤与前述步骤S402类似,此处不赘述。
S503,第一AP向至少一个第二接入点AP发送缓存指示。具体的,AP1向AP2-4发送SyncForBuffer帧(即缓存指示),在本实施例中,SyncForBuffer帧中携带AP1的MAC地址信息以及缓存指示,缓存指示中包括但不限于:协作集的ID、STA1-3的MAC地址信息、以及第一数据单元标识。在本实施例以及下面的实施例中,以AP1与AP2-4建立协作集,并且协作集的ID为协作集1为例,则,在本实施例中,缓存指示中包括的协作集的ID为协作集1。则参与协作集1的AP,即AP2-4将会在监听到携带有STA1-3的MAC地址信息和AP1的MAC地址信息的第一数据时,缓存第一数据。
S504,第一AP向至少一个STA发送第一数据。
此步骤与前述步骤S403类似,此处不赘述。
S505,第一AP基于至少一个STA返回的响应帧,确认是否需要启动联合传输流程。
此步骤与前述步骤S204相似,此处不赘述。
S506,第一AP根据响应帧,向至少一个第三AP发送联合传输指示。具体的,AP1向AP2发送联合传输指示,在本实施例中,联合传输指示中包括但不限于:协作集的ID(即协作集1)、STA1和STA2的MAC地址信息、TID(在本实施例中TID为1)、Staring Sequence number(在本实施例中Staring Sequence number为1)、Data bitmap(Data bitmap为1000)以及传输参数。
此步骤与前述步骤S405类似,此处不赘述。
S507,第一AP与至少一个第三AP联合传输第二数据。
此步骤与前述步骤S206相似,此处不赘述。
场景六
结合图2,如图15所示为本申请实施例中的联合传输方法的流程图,在图15中:
S601,第一接入点AP向至少一个第二接入点AP发送协作集建立请求帧。
此步骤与前述步骤S501相似,此处不赘述。
S602,至少一个第二AP向AP1返回协作集建立响应帧。
此步骤与前述步骤S402类似,此处不赘述。
S603,第一AP向至少一个第二接入点AP发送携带有缓存指示的第一数据。具体的,AP1向STA1-3发送第一数据,与场景三中的步骤S301不同的是,本实施例中,缓存指示 中包括协作集的ID,可选的,缓存指示还可以包括第一数据单元标识,而不包括AP2-4的MAC地址信息。从而使AP2-4在识别到携带有协作集1的缓存指示时,按照缓存指示的指示,在监听到携带有AP1的地址信息、STA1-3的MAC地址信息的第一数据时,缓存第一数据中指定的MSDU。举例来说,AP1与AP2-4同属于协作集1,则AP2-4接收到包括协作集1的缓存指示时,则根据缓存指示对AP1发送的数据进行缓存。
一个示例中,该缓存指示可以携带在第一数据的物理层前导,可选的,可以携带在物理层前导中新增的一个信令字段中;例如,新增加的一个信令字段中可以包括一个协作ID字段。
另一个示例中,该缓存指示中的协作ID可以携带在第一数据的A-Control字段中。A-Control字段可以携带各种类型的控制信息,目前11ax标准中已经有7种类型的控制信息,尚有9种类型的控制信息是预留的。我们可以用其中的一种预留类型来指示协作ID。A-control字段包括控制ID字段(Control ID)和控制信息字段(Control Information),其中,Control information字段用于承载该控制信令的具体内容。具体地我们可以使用Control ID取值7-15中的一种来指示新增的协作ID指示,而对应的Control information字段中放置协作ID的数值。例如,Control ID取值为7,对应的Control information取值为协作集1的ID。
当该接收该缓存指示的第二AP发现该协作ID与自身已建立的协作ID匹配的时候,则可以判断自身可能是协作AP,为了进一步确认自身是否为协作AP,该AP可以继续解析第一数据的MAC帧头,当发现第一数据的MAC头中的发送地址与该协作ID集合的第一AP的MAC地址匹配的时候则确认自己是协作AP,则根据缓存指示缓存全部或部分的第一数据;反之,如果发送地址与该协作集ID的第一AP的MAC地址不匹配的时候,则确认自己不是协作AP,可以将停止解析。
当第一AP不需要第二AP(协作AP)缓存第一数据时的时候,也可以将协作ID字段设置为一个未分配的协作ID,或者在标准中定义一个特殊的协作ID数值(例如全0或全1),该数值代表任何协作AP都不需要缓存该第一数据。
此步骤的其它细节与前述步骤S301类似,此处不赘述。
S604,第一AP基于至少一个STA返回的响应帧,确认是否需要启动联合传输流程。
此步骤与前述步骤S204相似,此处不赘述。
S605,第一AP根据响应帧,向至少一个第三AP发送联合传输指示。
此步骤与前述步骤S405类似,此处不赘述。
S606,第一AP与至少一个第三AP联合传输第二数据。
此步骤与前述步骤S206相似,此处不赘述。
此外,在本申请的实施例中,第二AP还可以向至少一个第二AP发送清除缓存指示,该清除缓存指示用于指示至少一个第二AP清除已缓存的全部或部分数据。其中,清除缓存指示中的参数可以包括以下一项或者多项的组合:
至少一个第二AP的标识信息,用于指示哪些第二AP需要清除数据。举例说明:AP1向AP2-5发送携带有AP2-4的MAC地址信息的清除缓存指示,则AP2-4清除已缓存的AP1发送的所有数据。
至少一个STA的标识信息,用于指示第二AP需要清除已缓存的哪些STA对应的数据。 举例说明:AP1向AP2发送携带有STA1-3的MAC地址信息的清除缓存指示,则AP2清除已缓存的AP1发送给STA1-3的数据。
至少一个MSDU的标识信息,用于指示第二AP清除哪些MSDU。举例说明:AP1向AP2发送携带有TID1、MSDU1-4的清除缓存指示,则AP2清除AP1发送的TID1的MSDU1-4。
在本申请的实施例中,清除缓存指示可以为第一AP在指定时刻向第二AP送发送,或者,通过联合传输指示向第二AP下达清除指示。
举例说明:1)AP1向AP2-5发送的联合传输指示中的Data bitmap字段全部为0,即,STA1-3全部数据接收正确,则AP2-5清除本地缓存的与联合传输指示中指定的STA(STA1-3)对应的数据。
2)AP1可与所有AP约定,若联合传输指示中的Sarting Sequence number大于AP2-5缓存的Sequence number,则AP2-5清除该联合传输指示中指定的STA(STA1-3)对应的数据。则在实际应用中,AP1可通过将发送给AP2-5的联合传输指示中的Starting Sequence number设置为大于AP2-5缓存的MSDU的最大的Sequence number,即可指示AP2-5对指定的STA的数据进行清除。
上述指示清除步骤可以应用到场景一至场景五中的任意场景中。通过引入清除操作,从而能够减轻AP的压力,避免AP缓存数据过多而造成的缓存溢出的风险。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,AP为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本发明实施例可以根据上述方法示例对AP进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图16示出了上述实施例中所涉及的第一接入点侧的装置200的一种可能的结构示意图,如图16所示,装置200可以包括:发送模块21、处理模块22。其中,发送模块21可以用于支持第一接入点执行上述实施例中的S101、S201、S301、S503、S603,即“发送缓存指示”的步骤;或者,还可以用于支持第一接入点执行上述实施例中的S102、S203、S403、S504,即“发送第一数据”的步骤;或者,还可以用于支持第一接入点执行上述实施例中的S104、S205、S303、S405、S506、S605,即“发送联合传输指示”的步骤;还可以用于支持第一接入点执行上述实施例中的S105、S206、S304、S406、S507、S606,即“发送第二数据”的步骤;或者,还可以用于支持第一接入点执行上述实施例中的S401、S501、S601,即“发送协作建立请求”的步骤。处理模块22,可以用于支持第一接入点执行上述实施例中的S103、S204、S302、S404、S505、 S604,即“确认是否启动联合传输流程”的步骤。
可选的,如图16所示,装置200还可以包括接收模块23,可以用于支持第一接入点执行上述实施例中的S402、S502、S602,即“接收协作集建立响应帧”的步骤。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在另一个示例中,图17示出了本申请实施例的另一种第一接入点侧的通信装置300的示意性框图。本申请实施例的装置300可以是上述方法实施例中的第一接入点,装置300可以用于执行上述方法实施例中的第一接入点的部分或全部功能。该装置300可以包括:处理器31,基带电路33,射频电路34以及天线35,可选的,该装置300还可以包括存储器32。装置300的各个组件通过总线36耦合在一起,其中总线系统36除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统36。
处理器31可用于实现对第一接入点的控制,用于执行上述实施例中由第一接入点进行的处理,可以执行上述方法实施例中涉及第一接入点的处理过程和/或用于本申请所描述的技术的其他过程,还可以运行操作系统,负责管理总线以及可以执行存储在存储器中的程序或指令。
基带电路33、射频电路34以及天线35可以用于支持第一接入点和上述实施例中涉及的第二接入点或站点之间收发信息,以支持第一接入点与其他节点之间进行无线通信。一个示例中,由基带电路33编码,按协议封装后生成的缓存指示,经由射频电路进行模拟转换、滤波、放大和上变频等处理后,再经由天线35发送给第二接入点。又一个示例中,来自第二接入点发送的协作响应消息经由天线35接收,由射频电路34进行滤波、放大、下变频以及数字化等处理后,再经由基带电路33解码、按协议解封装数据等基带处理后,由处理器31进行处理来恢复站点所发送的业务数据和信令信息。可以理解的,基带电路33、射频电路34以及天线35还可以用于支持第一接入点与其他网络实体进行通信,例如,用于支持第一接入点与核心网侧的网元进行通信。
存储器32可以用于存储第一接入点的程序代码和数据,本领域技术人员很容易明白,存储器32或其任意部分可位于装置300之外。举例来说,存储器32可以包括传输线、和/或与无线节点分离开的计算机制品,这些介质均可以由处理器31通过总线接口36来访问。可替换地,存储器32或其任意部分可以集成到处理器31中,例如,可以是高速缓存和/或通用寄存器。
可以理解的是,图17仅仅示出了第一接入点的简化设计。例如,在实际应用中,第一接入点可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本发明的第一接入点都在本发明的保护范围之内。
如图18所示为本申请实施例的第二接入点侧的装置400的示意性框图。在一个实施例中,图18所示的装置400可以对应于上述方法实施例中的第二接入点侧的装置,可以具有方法中的第二接入点的任意功能,可选地,本申请实施例的装置400可以是第二接入点,也可以是第二接入点内的芯片。该装置400可以包括处理模块41和收发模块42,可选的,该装置400还可以包括存储模块43。存储模块43可以用于缓存在缓存指示中所指的全部或部分的第一数据。
例如,该处理模块41,可以用于执行前述方法实施例中缓存第一数据的步骤,或者用于执行步骤S202。处理模块41还可以用于指示存储模块33缓存在缓存指示中所指的全部或部分的第一数据。
该收发模块42,可以理解的,可以包括接收模块和发送模块,接收模块可以用于接收前述方法实施例中的步骤S101、S102、S104、S201、S203、S205、S301、S303、S401、S403、S405、S501、S503、S504,S506、S601、S603、S605中发送的信令或数据。发送模块还可以用于执行前述方法实施例中的步骤S105,S206,S304,S406,S502,S507,S602,S606。应理解,根据本申请实施例的装置400可对应于前述的实施例的各方法中的第二接入点,并且装置400中的各个模块的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,为了简洁,在此不再赘述。
可以替换的,装置400也可配置成通用处理系统,例如通称为芯片,该处理模块41可以包括:提供处理功能的一个或多个处理器;所述收发模块42例如可以是输入/输出接口、管脚或电路等,输入/输出接口可用于负责此芯片系统与外界的信息交互,例如,此输入/输出接口可对由芯片外的其他模块输入给此芯片的调度请求消息输出进行处理。该处理模块可执行存储模块中存储的计算机执行指令以实现上述方法实施例中第二接入点的功能。在一个示例中,装置400中可选的包括的存储模块43可以为芯片内的存储单元,如寄存器、缓存等,所述存储模块43还可以是位于芯片外部的存储单元,如只读存储器(read-only memory,简称ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,简称RAM)等。
在另一个示例中,图19示出了本申请实施例的另一种第二接入点侧的通信装置500的示意性框图。本申请实施例的装置500可以是上述方法实施例中的第二接入点,装置500可以用于执行上述方法实施例中的第二接入点的部分或全部功能。该装置500可以包括:处理器51,基带电路54,射频电路54以及天线55,可选的,该装置500还可以包括存储器52。装置500的各个组件通过总线56耦合在一起,其中总线系统56除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统56。
处理器51可用于实现对第二接入点的控制,用于执行上述实施例中由第二接入点进行的处理,可以执行上述方法实施例中涉及第二接入点的处理过程和/或用于本申请所描述的技术的其他过程,还可以运行操作系统,负责管理总线以及可以执行存储在存储器中的程序或指令。
基带电路53、射频电路54以及天线55可以用于支持第二接入点和上述实施例中涉及的第一接入点或站点之间收发信息,以支持第二接入点与其他节点之间进行无线通信。一个示例中,来自第一接入点发送的缓存指示经由天线55接收,由射频电路54进行滤波、放大、下变频以及数字化等处理后,再经由基带电路53解码、按协议解封装数据等基带处理后,由处理器51进行处理来恢复站点所发送的业务数据和信令信息;又一个示例中,第二接入点发送的协作响应消息可由处理器51进行处理,经由基带电路53进行按协议封装,编码等基带处理,进一步由射频电路54进行模拟转换、滤波、放大和上变频等射频处理后,经由天线55发送给第一接入点AP。可以理解的,基带电路53、射频电路54以及天线55还可以用于支持第二接入点与其他网络实体进行通信,例如,用于支持第二接入点与核心网 侧的网元进行通信。
存储器52可以用于存储第二接入点的程序代码和数据,存储器52可以是图18中的存储模块43。图19中存储器52被示为与处理器51分离,然而,本领域技术人员很容易明白,存储器52或其任意部分可位于装置500之外。举例来说,存储器52可以包括传输线、和/或与无线节点分离开的计算机制品,这些介质均可以由处理器51通过总线接口56来访问。可替换地,存储器52或其任意部分可以集成到处理器51中,例如,可以是高速缓存和/或通用寄存器。
可以理解的是,图19仅仅示出了第二接入点的简化设计。例如,在实际应用中,第二接入点可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本发明的第二接入点都在本发明的保护范围之内。
本申请实施例还提供一种计算机存储介质,该计算机可读存储介质中存储有指令,所述指令可以由处理电路上的一个或多个处理器执行。当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持分布式单元、集中式单元、以及第一接入点或第二接入点以实现上述实施例中所涉及的功能,例如生成或处理上述方法中所涉及的数据和/或信息。
在一种可能的设计中,所述芯片系统还可以包括存储器,所述存储器,用于保存分布式单元、集中式单元以及第一接入点或第二接入点必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一实施例中涉及第一接入点AP的方法和功能。
本申请实施例还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一实施例中涉及第二接入点AP的方法和功能。
本申请实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行执行上述各实施例中任一实施例中涉及第一接入点AP的方法和功能。
本申请实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行执行上述各实施例中任一实施例中涉及第二接入点AP的方法和功能。
本申请实施例还提供一种无线通信系统,该系统包括上述实施例中涉及的第一接入点和至少一个第二接入点。
结合本发明实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于AP中。当然,处理器和存储介质也可以作为分立组件 存在于AP中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (41)

  1. 一种应用于第一接入点AP的通信装置,其特征在于,包括:
    发送模块,用于向至少一个第二接入点AP发送缓存指示,所述缓存指示用于指示所述至少一个第二接入点AP缓存所述第一接入点AP发送的第一数据;
    所述发送模块,还用于向至少一个站点STA发送所述第一数据,所述第一数据包括:所述至少一个STA的数据;
    处理模块,用于基于所述至少一个STA返回的响应帧,确认是否需要启动联合传输流程;
    所述发送模块,还用于当所述处理模块确定启动联合传输流程时,向至少一个第三AP发送联合传输指示,所述联合传输指示用于指示所述至少一个第三AP向所述至少一个STA发送所述第二数据,所述第二数据为全部或部分的所述第一数据,所述至少一个第三AP为所述至少一个第二AP中的一个或多个;
    所述发送模块,还用于发送所述第二数据,且所述发送模块发送所述第二数据的发送时间与所述至少一个第三AP发送所述第二数据的发送时间相同。
  2. 根据权利要求1所述的通信装置,其特征在于,所述缓存指示包括:
    第一标识信息,用于指示缓存所述第一数据的所述至少一个第二AP。
  3. 根据权利要求1或2所述的通信装置,其特征在于,所述缓存指示包括:
    第二标识信息,用于指示所述至少一个第二AP缓存的所述第一数据所对应的所述至少一个STA。
  4. 根据权利要求1至3中任一项所述的通信装置,其特征在于,所述第一数据包括至少一个MAC服务数据单元MSDU;
    所述缓存指示包括:第一数据单元标识,用于指示所述至少一个第二AP缓存的所述第一数据中的所述至少一个MSDU。
  5. 根据权利要求4所述的通信装置,其特征在于,所述第一数据单元标识包括:所述至少一个MSDU的业务标识;所述至少一个MSDU中起始的MSDU的序列号,以及,从所述起始序列号所指示的MSDU开始连续缓存的MSDU的数目。
  6. 根据权利要求2所述的通信装置,其特征在于,所述第一AP和所述至少一个第二AP属于同一个协作集;所述第一标识信息为所述协作集的ID。
  7. 根据权利要求1至6中任一项所述的通信装置,其特征在于,所述缓存指示包含于所述第一数据的物理层前导中,或,所述缓存指示包含于所述第一数据的A-Control字段中。
  8. 根据权利要求1至7中任一项所述的通信装置,其特征在于,所述联合传输指示还包括以下一项或多项的组合:
    第三标识信息,用于指示发送所述第二数据的所述至少一个第三AP;
    第四标识信息,用于指示所述至少一个第三AP联合传输的所述第二数据所对应的STA;
    第二数据单元标识,用于指示所述至少一个第三AP发送的所述第二数据中的MSDU,所述第二数据包括至少一个MSDU。
  9. 一种应用于第二接入点AP侧的通信装置,其特征在于,包括:
    接收模块,用于接收第一接入点AP发送的缓存指示,所述缓存指示用于指示至少一个 所述第二接入点AP缓存所述第一接入点AP发送的第一数据;
    缓存模块,用于根据所述缓存指示,缓存所述第一AP发送的所述第一数据,所述第一数据包括:至少一个站点STA的数据;
    所述接收模块,还用于接收所述第一AP发送的联合传输指示,所述联合传输指示用于指示至少一个所述第二AP向所述至少一个STA发送所述第二数据,所述第二数据为全部或部分的所述第一数据;
    发送模块,用于根据所述联合传输指示,向所述至少一个STA发送所述第二数据,所述发送模块发送所述第二数据的时间与所述第一AP发送所述第二数据的时间相同。
  10. 根据权利要求9所述的通信装置,其特征在于,所述缓存指示包括:第一标识信息,用于指示缓存所述第一数据的至少一个所述第二AP。
  11. 根据权利要求9或10所述的通信装置,其特征在于,所述缓存指示包括:
    第二标识信息,用于指示所述至少一个第二AP缓存的所述第一数据所对应的所述至少一个STA;
    相应的,所述缓存模块,还用于根据所述缓存指示,缓存所述第一数据中所述第二标识信息所指示的至少一个所述STA的数据。
  12. 根据权利要求9至11任一项所述的通信装置,其特征在于,所述第一数据包括至少一个MAC服务数据单元MSDU;
    所述缓存指示包括:第一数据单元标识,用于指示所述至少一个第二AP缓存的所述第一数据中的所述至少一个MSDU;
    相应的,所述缓存模块,还用于根据所述缓存指示,缓存所述第一数据中所述第一数据单元标识所指示的所述至少一个MSDU。
  13. 根据权利要求12所述的通信装置,其特征在于,所述第一数据单元标识包括:所述至少一个MSDU的业务标识;所述至少一个MSDU中起始的MSDU的序列号,以及,从所述起始序列号所指示的MSDU开始连续缓存的MSDU的数目。
  14. 根据权利要求10所述的通信装置,其特征在于,所述第一AP和至少一个所述第二AP属于同一个协作集;所述第一标识信息为所述协作集的ID。
  15. 根据权利要求9至14中任一项所述的通信装置,其特征在于,所述缓存指示包含于承载所述第一数据的物理层数据单元PPDU的前导中,或,所述缓存指示包含于所述第一数据的A-Control字段中。
  16. 根据权利要求9至15中任一项所述的通信装置,其特征在于,所述联合传输指示还包括以下一项或多项的组合:
    第三标识信息,用于指示发送所述第二数据的至少一个所述第二AP。
    第四标识信息,用于指示至少一个所述第二AP发送的所述第二数据所对应的STA;
    第二数据单元标识,用于指示至少一个所述第二AP发送的所述第二数据中的至少一个MSDU,所述第二数据包括所述至少一个MSDU。
  17. 一种联合传输方法,其特征在于,包括:
    第一接入点AP向至少一个第二接入点AP发送缓存指示,所述缓存指示用于指示所述至少一个第二接入点AP缓存所述第一接入点AP发送的第一数据;
    所述第一AP向至少一个站点STA发送所述第一数据,所述第一数据包括:所述至少 一个STA的数据;
    基于所述至少一个STA返回的响应帧,确认是否需要启动联合传输流程;
    当所述第一AP确定启动联合传输流程时,所述第一AP向至少一个第三AP发送联合传输指示,所述联合传输指示用于指示所述至少一个第三AP向所述至少一个STA发送所述第二数据,所述第二数据为全部或部分的所述第一数据,所述至少一个第三AP为所述至少一个第二AP中的一个或多个;
    所述第一AP发送所述第二数据,且所述第一AP发送所述第二数据的发送时间与所述至少一个第三AP发送所述第二数据的发送时间相同。
  18. 根据权利要求17所述的方法,其特征在于,所述缓存指示包括:
    第一标识信息,用于指示缓存所述第一数据的所述至少一个第二AP。
  19. 根据权利要求17或18所述的方法,其特征在于,所述缓存指示包括:
    第二标识信息,用于指示所述至少一个第二AP缓存的所述第一数据所对应的所述至少一个STA。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述第一数据包括至少一个MAC服务数据单元MSDU;
    所述缓存指示包括:第一数据单元标识,用于指示所述至少一个第二AP缓存的所述第一数据中的所述至少一个MSDU。
  21. 根据权利要求20所述的方法,其特征在于,所述第一数据单元标识包括:所述至少一个MSDU的业务标识;所述至少一个MSDU中起始的MSDU的序列号,以及,从所述起始序列号所指示的MSDU开始连续缓存的MSDU的数目。
  22. 根据权利要求18所述的方法,其特征在于,所述第一AP和所述至少一个第二AP属于同一个协作集;所述第一标识信息为所述协作集的ID。
  23. 根据权利要求17至22中任一项所述的方法,其特征在于,所述缓存指示包含于所述第一数据的物理层前导中,或,所述缓存指示包含于所述第一数据的A-Control字段中。
  24. 根据权利要求17至23中任一项所述的方法,其特征在于,所述联合传输指示还包括以下一项或多项的组合:
    第三标识信息,用于指示发送所述第二数据的所述至少一个第三AP;
    第四标识信息,用于指示所述至少一个第三AP联合传输的所述第二数据所对应的STA;
    第二数据单元标识,用于指示所述至少一个第三AP发送的所述第二数据中的MSDU,所述第二数据包括至少一个MSDU。
  25. 一种第二接入点侧的联合传输方法,其特征在于,包括:
    第二接入点AP接收第一接入点AP发送的缓存指示,所述缓存指示用于指示至少一个所述第二接入点AP缓存所述第一接入点AP发送的第一数据;
    所述第二AP根据所述缓存指示,缓存所述第一AP发送的所述第一数据,所述第一数据包括:至少一个站点STA的数据;
    所述第二AP接收所述第一AP发送的联合传输指示,所述联合传输指示用于指示至少一个所述第二AP向所述至少一个STA发送所述第二数据,所述第二数据为全部或部分的所述第一数据;
    根据所述联合传输指示,所述第二AP向所述至少一个STA发送所述第二数据,所述 第二AP发送所述第二数据的时间与所述第一AP发送所述第二数据的时间相同。
  26. 根据权利要求25所述的方法,其特征在于,所述缓存指示包括:第一标识信息,用于指示缓存所述第一数据的至少一个所述第二AP。
  27. 根据权利要求25或26所述的方法,其特征在于,所述缓存指示包括:
    第二标识信息,用于指示所述至少一个第二AP缓存的所述第一数据所对应的所述至少一个STA;
    所述第二AP根据所述缓存指示,缓存所述第一AP发送的所述第一数据,具体包括:
    所述第二AP根据所述缓存指示,缓存所述第一数据中所述第二标识信息所指示的至少一个所述STA的数据。
  28. 根据权利要求25至27任一项所述的方法,其特征在于,所述第一数据包括至少一个MAC服务数据单元MSDU;
    所述缓存指示包括:第一数据单元标识,用于指示所述至少一个第二AP缓存的所述第一数据中的所述至少一个MSDU;
    所述第二AP根据所述缓存指示,缓存所述第一AP发送的所述第一数据,具体包括:
    所述第二AP根据所述缓存指示,缓存所述第一数据中所述第一数据单元标识所指示的所述至少一个MSDU。
  29. 根据权利要求28所述的方法,其特征在于,所述第一数据单元标识包括:所述至少一个MSDU的业务标识;所述至少一个MSDU中起始的MSDU的序列号,以及,从所述起始序列号所指示的MSDU开始连续缓存的MSDU的数目。
  30. 根据权利要求26所述的方法,其特征在于,所述第一AP和至少一个所述第二AP属于同一个协作集;所述第一标识信息为所述协作集的ID。
  31. 根据权利要求25至30中任一项所述的方法,其特征在于,所述缓存指示包含于承载所述第一数据的物理层数据单元PPDU的前导中,或,所述缓存指示包含于所述第一数据的A-Control字段中。
  32. 根据权利要求25至31中任一项所述的方法,其特征在于,所述联合传输指示还包括以下一项或多项的组合:
    第三标识信息,用于指示发送所述第二数据的至少一个所述第二AP。
    第四标识信息,用于指示至少一个所述第二AP发送的所述第二数据所对应的STA;
    第二数据单元标识,用于指示至少一个所述第二AP发送的所述第二数据中的至少一个MSDU,所述第二数据包括所述至少一个MSDU。
  33. 一种第一接入点,其特征在于,包括:
    存储器,用于保存指令和数据;
    与所述存储器耦合的处理器,所述处理器用于执行所述指令;其中,所述指令用于控制所述第一接入点执行权利要求17至24任一项所述的方法。
  34. 一种第二接入点,其特征在于,包括:
    存储器,用于保存指令和数据;
    与所述存储器耦合的处理器,所述处理器用于执行所述指令;其中,所述指令用于控制所述第二接入点执行权利要求25至32任一项所述的方法。
  35. 一种芯片,其特征在于,包括处理模块、收发模块和存储模块;其中,所述处理模块与所述收发模块相互通信,以及,所述处理模块用于执行所述存储模块中存储的指令,其中,所述指令用于控制所述第一接入点执行权利要求17至24任一项所述的方法。
  36. 一种芯片,其特征在于,包括处理模块、收发模块和存储模块;其中,所述处理模块与所述收发模块相互通信,以及,所述处理模块用于执行所述存储模块中存储的指令,其中,所述指令用于控制所述第二接入点执行权利要求25至32任一项所述的方法。
  37. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令由第一接入点执行,以控制所述第一接入点执行权利要求17-24任一项所述的方法。
  38. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令由第二接入点执行,以控制所述第二接入点执行权利要求25-32任一项所述的方法。
  39. 一种计算机程序,当所述计算机程序被第一接入点执行时,用于执行权利要求17-24任一项所述的方法。
  40. 一种计算机程序,当所述计算机程序被第二接入点执行时,用于执行权利要求25-32任一项所述的方法。
  41. 一种无线通信系统,其特征在于,包括:
    第一接入点,所述第一接入点用于执行权利要求17-24任一项所述的方法。
    至少一个第二接入点,所述第二接入点用于执行权利要求25-32任一项所述的方法。
PCT/CN2019/087084 2018-07-06 2019-05-15 联合传输方法及通信装置 WO2020007128A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19830086.5A EP3806535A4 (en) 2018-07-06 2019-05-15 PROCEDURE FOR COMMON TRANSMISSION AND COMMUNICATION DEVICE
US17/142,764 US11671864B2 (en) 2018-07-06 2021-01-06 Joint transmission method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810737325.6 2018-07-06
CN201810737325.6A CN110691381B (zh) 2018-07-06 2018-07-06 联合传输方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/142,764 Continuation US11671864B2 (en) 2018-07-06 2021-01-06 Joint transmission method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020007128A1 true WO2020007128A1 (zh) 2020-01-09

Family

ID=69059341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087084 WO2020007128A1 (zh) 2018-07-06 2019-05-15 联合传输方法及通信装置

Country Status (4)

Country Link
US (1) US11671864B2 (zh)
EP (1) EP3806535A4 (zh)
CN (1) CN110691381B (zh)
WO (1) WO2020007128A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220330059A1 (en) * 2019-09-12 2022-10-13 Zte Corporation Transmission method and device, and computer-readable storage medium

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110740023B (zh) * 2018-07-20 2022-04-29 中兴通讯股份有限公司 控制信令的发送方法及装置、服务基站、存储介质
SG10201903821UA (en) 2019-04-26 2020-11-27 Panasonic Ip Corp America Communication apparatus and communication method for multi-ap joint transmission
EP4293927A3 (en) * 2019-05-10 2024-03-13 Sony Group Corporation Coordinated transmission performed to simultaneously transmit frames comprising the same data
SG10201904246SA (en) * 2019-05-10 2020-12-30 Panasonic Ip Corp America Communication Apparatus And Communication Method For Multi-AP Joint Re-Transmission
EP3972322A4 (en) * 2019-07-05 2022-06-29 Sony Group Corporation Wireless communication device and wireless communication method therefor
WO2021045396A1 (ko) * 2019-09-05 2021-03-11 엘지전자 주식회사 멀티 ap 시스템에서 데이터 공유
JP2021114720A (ja) 2020-01-20 2021-08-05 株式会社東芝 無線通信装置、方法、および無線通信システム
WO2022036604A1 (zh) * 2020-08-19 2022-02-24 华为技术有限公司 数据传输方法及装置
US20240014861A1 (en) * 2020-10-13 2024-01-11 Sony Group Corporation Communication apparatus and communication method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025403A (zh) * 2009-09-09 2011-04-20 华为技术有限公司 一种多点协作发射接收方法、设备及系统
CN104144475A (zh) * 2013-05-10 2014-11-12 华为技术有限公司 实现多点协作传输的方法、接入点与站点
US9560694B2 (en) * 2013-01-17 2017-01-31 The Hong Kong University Of Science And Technology Cache-induced opportunistic MIMO cooperation for wireless networks
CN107040356A (zh) * 2016-02-04 2017-08-11 中兴通讯股份有限公司 无线局域网中协作传输的方法及装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064915B (zh) 2006-04-29 2016-10-05 上海贝尔股份有限公司 在无线通信网络中用于多中继站联合中继的方法及装置
US9179444B2 (en) 2010-09-03 2015-11-03 Nokia Solutions And Networks Oy Cooperative relay system
EP2676467B1 (en) 2011-02-17 2018-08-29 BlackBerry Limited Packet delay optimization in the uplink of a multi-hop cooperative relay-enabled wireless network
WO2013122162A1 (ja) * 2012-02-14 2013-08-22 京セラ株式会社 移動通信システム、基地局、及び通信制御方法
WO2014074919A1 (en) * 2012-11-08 2014-05-15 Interdigital Patent Holdings, Inc. A method and apparatus for medium access control for uniform multiple access points coverage in wireless local area networks
CN104396302B (zh) * 2013-01-18 2018-10-30 华为技术有限公司 传输数据的方法、基站和用户设备
US9184871B2 (en) 2013-06-25 2015-11-10 Lg Electronics Inc. Method for network coding for cooperative relay network in wireless communication system
US9455808B2 (en) * 2013-07-03 2016-09-27 Broadcom Corporation Wireless communication system with coordinated multipoint operation and methods for use therewith
JP6377744B2 (ja) * 2013-07-29 2018-08-22 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてNIB CoMP方法及び装置
CN105309018B (zh) * 2013-10-31 2019-07-09 华为技术有限公司 一种传输方法和装置
US10389498B2 (en) * 2014-08-04 2019-08-20 Lg Electronics Inc. Signaling method for CoMP operation in wireless communication system and device therefor
WO2016054070A1 (en) 2014-09-29 2016-04-07 Huawei Technologies Co., Ltd. System and method for joint mimo transmission and compression for interference mitigation with cooperative relay
US20170311310A1 (en) * 2014-10-13 2017-10-26 Lg Electronics Inc. Method and device for allocating uplink transmission resource on basis of buffer status information in wireless lan
US10230650B2 (en) * 2015-06-26 2019-03-12 Huawei Technologies Co., Ltd. Joint radio link control (RLC) signaling with network coding
WO2017012125A1 (zh) * 2015-07-23 2017-01-26 华为技术有限公司 无线接入点同步协作方法、设备及系统
CN107534999B (zh) * 2015-08-26 2020-07-24 华为技术有限公司 一种数据传输方法及接入点、站点
CN107302774A (zh) * 2016-04-14 2017-10-27 华为技术有限公司 一种数据帧的传输方法和设备
US10631329B2 (en) * 2016-08-12 2020-04-21 Qualcomm Incorporated Non-coherent joint transmission techniques
US11089444B2 (en) * 2017-03-29 2021-08-10 Intel Corporation Cooperative V2X communication
US11012915B2 (en) * 2018-03-26 2021-05-18 Qualcomm Incorporated Backpressure signaling for wireless communications
US10856167B2 (en) * 2018-03-30 2020-12-01 Intel Corporation Enhanced multiple access point coordination
EP3809774A4 (en) * 2018-06-18 2022-01-12 Ntt Docomo, Inc. USER TERMINAL

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025403A (zh) * 2009-09-09 2011-04-20 华为技术有限公司 一种多点协作发射接收方法、设备及系统
US9560694B2 (en) * 2013-01-17 2017-01-31 The Hong Kong University Of Science And Technology Cache-induced opportunistic MIMO cooperation for wireless networks
CN104144475A (zh) * 2013-05-10 2014-11-12 华为技术有限公司 实现多点协作传输的方法、接入点与站点
CN107040356A (zh) * 2016-02-04 2017-08-11 中兴通讯股份有限公司 无线局域网中协作传输的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3806535A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220330059A1 (en) * 2019-09-12 2022-10-13 Zte Corporation Transmission method and device, and computer-readable storage medium

Also Published As

Publication number Publication date
CN110691381A (zh) 2020-01-14
EP3806535A1 (en) 2021-04-14
EP3806535A4 (en) 2021-08-04
US11671864B2 (en) 2023-06-06
CN110691381B (zh) 2023-01-13
US20210127290A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
WO2020007128A1 (zh) 联合传输方法及通信装置
US10880874B2 (en) Method for transmitting a response request frame and a response frame in a multi-user based wireless communication system
EP3968731A1 (en) Communication method applicable to multiple links, and related devices
EP4228370A1 (en) Method and wireless communication terminal for transmitting/receiving frame in wireless communication system
WO2021244090A1 (zh) 数据发送方法及装置、数据接收方法及装置
EP3214788B1 (en) Method for transmitting and receiving multiple user block acknowledgement frame in wireless lan system, and apparatus therefor
JP6437653B2 (ja) 無線lanにおけるデータフレームの再送信なしにエラーを回復する方法及び装置
KR100678274B1 (ko) 무선통신 시스템에서 전송 시간 구간의 할당 방법
WO2020253492A1 (zh) 信道探测方法及通信装置
JP5677307B2 (ja) マルチキャスト通信のためのデータ速度適合の方法
US10104617B2 (en) Power save mode-based operating method and device in WLAN
WO2021043228A1 (zh) 多链路传输、接收方法及装置、存储介质、终端
US20100002646A1 (en) Communication apparatus and method
JP4836840B2 (ja) 無線通信基地局装置
EP4149198A1 (en) Wireless communication method using multiple links, and wireless communication terminal using same
US11438188B2 (en) Multicast packets for a wireless local area network
JP6283113B2 (ja) 無線lanにおけるパワーセーブモードに基づく動作方法及び装置
WO2006106634A1 (ja) 無線lanシステム、その基地局および端末局
TWI834823B (zh) 無線通訊裝置及方法
AU2015401078A1 (en) Method for transmitting channel state information, access point, and station
WO2020001237A1 (zh) 传输调度的方法、相关装置及系统
CN113784392A (zh) 通信方法、装置及系统
WO2010003275A1 (zh) 无线网络中处理协议数据单元的方法和装置
WO2017076069A1 (zh) 无线通信方法和设备
KR20150016630A (ko) 짧은 물리-계층 제어 프레임들

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019830086

Country of ref document: EP

Effective date: 20210111