WO2020006981A1 - 一种g-m型低温制冷机旋转阀体及其制备方法 - Google Patents

一种g-m型低温制冷机旋转阀体及其制备方法 Download PDF

Info

Publication number
WO2020006981A1
WO2020006981A1 PCT/CN2018/119584 CN2018119584W WO2020006981A1 WO 2020006981 A1 WO2020006981 A1 WO 2020006981A1 CN 2018119584 W CN2018119584 W CN 2018119584W WO 2020006981 A1 WO2020006981 A1 WO 2020006981A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
rotary valve
cylindrical structure
temperature refrigerator
aluminum alloy
Prior art date
Application number
PCT/CN2018/119584
Other languages
English (en)
French (fr)
Inventor
张吉阜
陈兴驰
刘敏
代明江
邓春明
邓畅光
Original Assignee
广东省新材料研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省新材料研究所 filed Critical 广东省新材料研究所
Priority to US17/253,112 priority Critical patent/US12000497B2/en
Publication of WO2020006981A1 publication Critical patent/WO2020006981A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/04Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members
    • F16K3/06Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages
    • F16K3/08Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages with circular plates rotatable around their centres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/04Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members
    • F16K3/06Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages
    • F16K3/08Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages with circular plates rotatable around their centres
    • F16K3/085Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages with circular plates rotatable around their centres the axis of supply passage and the axis of discharge passage being coaxial and parallel to the axis of rotation of the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86815Multiple inlet with single outlet
    • Y10T137/86823Rotary valve

Definitions

  • the present application relates to the technical field of material processing, and in particular, to a G-M type low temperature refrigerator rotary valve body and a preparation method thereof.
  • Rotary valve is the core component of G-M low temperature refrigerator, which is used to control the inlet and exhaust sequence of refrigerator.
  • the rotor and stator in a rotary valve usually have close mechanical contact, and there will be a large friction on the contact surface, which will cause serious wear of the valve core.
  • the valve core also requires a large torque, which will increase the motor load.
  • the problem of valve core wear will become more prominent, which will directly affect the performance and even the service life of the refrigerator.
  • the friction pairs of refrigerators are mostly metal-metal and metal-plastic. After using for a period of time, the unavoidable frictional loss causes the gap to increase, the air leakage and cross-flow will increase, reducing the cooling efficiency and life. Therefore, the use of new materials to improve the life of refrigerators is of great significance.
  • the traditional rotary valve core is made of Rulon (polytetrafluoride material), which has a self-lubricating effect.
  • This valve has a simple structure, but requires high accuracy.
  • the steel valve seat and the PTFE material core are always in a state of rotary friction.
  • the vent hole on the valve body It is relatively sharp without chamfering.
  • the valve core valve cavity wear will occur.
  • the actual machining error will cause the valve to be unevenly stressed and the wear will be intensified.
  • the operation reliability of the rotary valve is poor and the life is not long, which will directly affect the operation reliability of the refrigerator.
  • Advanced ceramic materials have been used in many fields due to their high specific strength, specific stiffness, good dimensional stability and abrasion resistance.
  • due to the nature of the chemical bonding of ceramic materials there is no other mechanism to absorb the fracture work when cracks propagate in the material, and only the surface energy of the fracture to form a new surface to consume the crack propagation energy, so the toughness of ceramics is very low.
  • the use of block ceramic materials to produce the valve core is difficult to process, dimensional accuracy is difficult to guarantee, and the cost is high, which limits its application characteristics.
  • the GM-type cryogenic refrigerator rotary valve body has at least a small starting torque, high working surface hardness, good abrasion resistance, good sealing performance and long service life. Long advantages.
  • the second object of the present application is to provide a method for preparing the above-mentioned GM-type low-temperature refrigerator rotary valve body.
  • the method is simple, easy to operate, and at least can effectively prevent the inclusion particles in the gas from damaging the surface of the valve body, and has better performance. Sealing effect.
  • the present application proposes a G-M type low temperature refrigerator rotary valve body, which includes an aluminum alloy rotary valve body and an alumina ceramic membrane.
  • the aluminum alloy rotary valve body includes a valve body, a high-pressure opening, a working boss, a low-pressure groove, a vent hole, and an air chamber.
  • the valve body has a first surface for setting the working boss and a second surface opposite to the first surface. Both the high-pressure opening and the low-pressure groove are provided on the working boss. The high-pressure opening is along the first surface to the second surface. The direction penetrates the valve body body; the vent hole is provided on the first surface and penetrates the valve body body in a direction from the first surface to the second surface; the air chamber is opened on the second surface.
  • Alumina ceramic film is plated on the surface of aluminum alloy rotary valve body.
  • the height of the working boss protruding from the first surface is 0.4-0.6 mm.
  • the thickness of the alumina ceramic film is 60-80 ⁇ m
  • the thickness of the dense layer in the alumina ceramic film is greater than or equal to 50 ⁇ m.
  • the surface roughness Ra of the working boss in the rotary valve body of the G-M cryogenic refrigerator is less than or equal to 0.1 ⁇ m, and the roughness of the remaining surfaces is less than or equal to 3 ⁇ m.
  • the cross-sectional shape of the high-pressure opening is a half-moon shape.
  • the valve body includes a first cylindrical structure and a second cylindrical structure, the first cylindrical structure and the second cylindrical structure are coaxially arranged and connected to each other, and the diameter of the first cylindrical structure is larger than that of the first cylindrical structure.
  • the diameter of the second cylindrical structure, an end surface of the first cylindrical structure far from the second cylindrical structure forms a first surface, and an end surface of the second cylindrical structure far from the first cylindrical structure forms a second surface.
  • an outer contour of the working boss is cylindrical, and a diameter of the working boss is smaller than a diameter of the first cylindrical structure and the second cylindrical structure.
  • a cross-sectional shape of the low-pressure groove is a long shape, and two ends of the low-pressure groove are arc-shaped.
  • the low-pressure groove is provided in the middle of the working boss, and the high-pressure opening is provided at an edge of the working boss.
  • the vent hole is a circular hole, and the vent hole is disposed at a distance from the high-pressure opening.
  • the air chamber is a circular groove, and an opening at the opening of the air chamber is provided with a flare structure inclined outward.
  • This application also proposes a method for preparing the above-mentioned GM-type low-temperature refrigerator rotary valve body, including the following steps: using a micro-arc oxidation process to plate an alumina ceramic film on the surface of an aluminum alloy rotary valve body, the micro-arc oxidation process includes: The aluminum alloy rotary valve body placed in the electrolyte is used as a processing anode, and a forward voltage of 400-550V with a duty cycle of 20-50% and a negative voltage of 50-200V with a duty cycle of 30-80% are applied. The treatment is performed at a frequency of 100-1000 Hz and an electrolyte temperature of 25-60 ° C for 60-90min.
  • the electrolyte contains 10-40 g / L sodium silicate, 5-15 g / L sodium tetraborate, and 2-10 g / L sodium hydroxide.
  • the electrolyte further contains 2-10 g / L sodium tungstate and 15-30 g / L sodium metaaluminate.
  • the electrolyte further contains 5-30 g / L of disodium ethylenediamine tetraacetate and 5-30 g / L of sodium citrate.
  • a first polishing treatment is included.
  • the first polishing treatment is performed at a polishing speed of 1500-2000 rpm. 1 -2h to remove the oxide film loose layer on the surface of the workpiece.
  • a second polishing treatment is also included.
  • the second polishing treatment is to polish at a speed of 1500-2000 rpm for 0.5-1 h and make the roughness Ra of the working boss ⁇ 0.05 ⁇ m.
  • the rotary valve body of the G-M type low temperature refrigerator provided by the preferred embodiment of the present application is made of a light-weight aluminum alloy material with a small density, which has a small starting torque and a small motor load.
  • micro-arc oxidation process is used to ceramicize the surface of the aluminum alloy valve body, which has high hardness, good wear resistance and long service life.
  • the sealing effect is good; and after the surface is ceramicized, it can effectively avoid the inclusion particles in the gas from damaging the surface of the valve body and prevent the sealing effect from decreasing.
  • FIG. 1 is a schematic structural view of a rotary valve body of a G-M cryogenic refrigerator in Embodiment 1 from a first perspective;
  • FIG. 2 is a schematic structural view of a rotary valve body of a G-M cryogenic refrigerator in Embodiment 1 from a second perspective;
  • FIG. 3 is a micro-morphology diagram of a rotary valve body of a G-M type low temperature refrigerator obtained in Example 2 in Test Example 1.
  • FIG. 3 is a micro-morphology diagram of a rotary valve body of a G-M type low temperature refrigerator obtained in Example 2 in Test Example 1.
  • Icon 20-GM low temperature refrigerator rotary valve body; 10-aluminum alloy rotary valve body; 11-valve body; 12-high pressure opening; 13-work boss; 14-low pressure tank; 15-ventilation hole; 16 -Air chamber; 17-first surface; 18-second surface.
  • the G-M type low temperature refrigerator rotary valve body and the preparation method thereof in the embodiments of the present application will be specifically described below.
  • the G-M type low temperature refrigerator rotary valve body provided in the embodiment of the present application includes an aluminum alloy rotary valve body and an alumina ceramic membrane.
  • the aluminum alloy rotary valve body 10 includes a valve body body 11, a high-pressure opening 12, a working boss 13, a low-pressure groove 14, a vent hole 15, and an air chamber 16. Making the aluminum alloy rotary valve body 10 from a lighter aluminum alloy material with a lower density has the advantages of at least a small starting torque and a small motor load.
  • the valve body 11 has a first surface 17 for setting the working boss 13 and a second surface 18 opposite to the first surface 17.
  • the distance between the first surface 17 and the second surface 18 may be 14-16 mm.
  • the height of the working boss 13 protruding from the first surface 17 may be 0.4-0.6 mm, such as 0.4 mm, 0.5 mm, and 0.6 mm.
  • the valve body 11 is composed of a first cylindrical structure and a second cylindrical structure.
  • the first cylindrical structure and the second cylindrical structure are coaxially connected to each other.
  • the diameter of the first cylindrical structure is larger than the diameter of the second cylindrical structure.
  • An end surface of the cylindrical structure far from the second cylindrical structure forms a first surface 17, and an end surface of the second cylindrical structure far from the first cylindrical structure forms a second surface 18.
  • the outer contour of the working boss 13 is cylindrical, and the diameter of the working boss 13 is smaller than the diameters of the first cylindrical structure and the second cylindrical structure.
  • the high-pressure opening 12 and the low-pressure groove 14 are both disposed on the working boss, and the high-pressure opening 12 penetrates the valve body body in a direction from the first surface to the second surface.
  • the high-pressure opening 12 is mainly used to connect the high-pressure gas source when the valve is opened
  • the low-pressure groove 14 is mainly used to connect the low-pressure gas source when the valve is opened.
  • the cross-sectional shape of the high-pressure opening 12 may be, for example, a half-moon shape.
  • the cross-sectional shape of the low-pressure groove 14 may be a long shape, and both ends of the low-pressure groove 14 are arc-shaped.
  • the low-pressure groove 14 is provided in the middle of the working boss 13, and the high-pressure opening is provided at the edge of the working boss 13.
  • the vent hole 15 is disposed on the first surface and penetrates the valve body body in a direction from the first surface to the second surface.
  • the diameter of the vent hole 15 may be 2.8-3.2 mm.
  • the air chamber is opened on the second surface, and the diameter of the air chamber 16 can be 8-8.5mm.
  • the vent hole 15 is a circular hole, and the vent hole 15 is disposed at a distance from the high-pressure opening 12.
  • the air chamber 16 is a circular groove, and the opening of the air chamber 16 is provided with a flared structure inclined outward.
  • the high-pressure opening 12, the vent hole 15 and the air chamber 16 are spaced apart from each other, and the high-pressure opening 12 and the air chamber 16 are opposite to each other.
  • the alumina ceramic film is plated on the surface of the aluminum alloy rotary valve body.
  • the thickness of the alumina ceramic film may be 60-80 ⁇ m, and the thickness of the dense layer is preferably 50 ⁇ m or more.
  • the surface of the aluminum alloy rotary valve body By coating the surface of the aluminum alloy rotary valve body with an aluminum oxide ceramic film within the above thickness range, on the one hand, it can effectively prevent the inclusion particles in the gas from damaging the surface of the valve body and improve the sealing effect; on the other hand, it can improve the GM type.
  • the hardness and abrasion resistance of the rotary valve body of the cryogenic refrigerator extend its service life.
  • the surface roughness of the working boss in the rotary valve body of the G-M cryogenic refrigerator can be controlled to Ra ⁇ 0.1 ⁇ m, and the roughness of the other surfaces can be controlled to Ra ⁇ 3 ⁇ m to improve the precision of the workpiece.
  • the embodiment of the present application also provides a method for preparing the above-mentioned GM-type low-temperature refrigerator rotary valve body.
  • the preparation method is simple, easy to operate, and can effectively prevent the inclusion particles in the gas from damaging the surface of the valve body.
  • the sealing effect may include, for example, the following steps: using a micro-arc oxidation process to plate an alumina ceramic film on the surface of the aluminum alloy rotary valve body.
  • the micro-arc oxidation process may include, for example, using an aluminum alloy rotary valve body placed in an electrolyte as a processing anode, applying a forward voltage of 400-550V with a duty cycle of 20-50% and a duty cycle of 30-80%.
  • a negative voltage of 50-200V is processed at a frequency of 100-1000Hz and an electrolyte temperature of 25-60 ° C for 60-90min.
  • the forward voltage duty cycle can be any suitable value such as 20%, 25%, 30%, 35%, 40%, 45%, or 50%.
  • the forward voltage can be 400V, 420V, 440V, 460V, 480V. , 500V, 520V, 540V, or 550V, any suitable value;
  • the negative voltage duty cycle can be 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75 Any suitable value such as%, 80%, etc.
  • the negative voltage can be any suitable value such as 50V, 70V, 90V, 110V, 130V, 150V, 170V, 190V or 200V
  • the frequency can be 100Hz, 200Hz, 300Hz, 400Hz, 500Hz , 600Hz, 700Hz, 800Hz, 900Hz or 1000Hz
  • the electrolyte temperature can be any suitable value such as 25 °C, 30 °C, 35 °C, 40 °C, 45 °C, 50 °C, 55 °C or 60 °C
  • the processing time can be any suitable value such as 60min, 65min, 70min, 75min, 80min, 85min or 90min.
  • the above electrolyte solution may contain, for example, 10-40 g / L sodium silicate, 5-15 g / L sodium tetraborate, and 2-10 g / L sodium hydroxide. These three substances constitute the main film-forming salts in the electrolyte. It is worth noting that the concentrations at the above positions refer to the concentration in the electrolytic solution, for example, 10-40 g / L sodium silicate means that the concentration of sodium silicate in the electrolytic solution is 10-40 g / L.
  • sodium silicate can be any suitable value such as 10g / L, 15g / L, 20g / L, 25g / L, 30g / L, 35g / L, or 40g / L, etc.
  • sodium tetraborate can be 5g / L, 7g / L, 9g / L, 11g / L, 13g / L, or 15g / L and other suitable values
  • sodium hydroxide can be 2g / L, 4g / L, 6g / L, 8g / L, or 10g / L, etc. Suitable value.
  • the above electrolytic solution may further contain sodium tungstate and sodium metaaluminate, and the concentrations of the two in the electrolytic solution may be 2-10 g / L and 15-30 g / L, respectively.
  • concentrations of the two in the electrolytic solution may be 2-10 g / L and 15-30 g / L, respectively.
  • sodium tungstate can be any suitable value such as 2g / L, 4g / L, 6g / L, 8g / L, or 10g / L
  • sodium metaaluminate can be 15g / L, 20g / L, 25g / L, or Any suitable value such as 30g / L.
  • the above electrolytic solution may further contain disodium ethylenediamine tetraacetate and sodium citrate, and the concentration of both in the electrolytic solution may be 5-30 g / L.
  • concentration of both in the electrolytic solution may be 5-30 g / L.
  • disodium ethylenediamine tetraacetate can be any suitable value such as 5g / L, 10g / L, 15g / L, 20g / L, 25g / L, or 30g / L
  • sodium citrate can be 5g / L, 10g Any suitable value such as / L, 15g / L, 20g / L, 25g / L, or 30g / L.
  • the total thickness of the alumina ceramic film can reach 60-80 ⁇ m, and the thickness of the dense layer is not less than 50 ⁇ m.
  • the above-mentioned micro-arc oxidation process applies a voltage to the workpiece by using a special micro-arc oxidation power source, so that the metal (Al) on the surface of the workpiece interacts with the electrolyte solution to form a micro-arc discharge on the surface of the workpiece.
  • Alumina ceramic film is formed on the surface of the aluminum alloy rotary valve body to achieve the purpose of strengthening the surface of the workpiece.
  • the alumina ceramic membrane is firmly combined with the aluminum alloy rotary valve body, with a dense structure and high toughness. It has good wear resistance, corrosion resistance, high temperature impact resistance, and electrical insulation.
  • the method before being placed in the electrolyte, the method further includes degreasing and degreasing the aluminum alloy rotary valve body.
  • the first polishing treatment may be performed after the alumina ceramic film is plated on the surface of the aluminum alloy rotary valve body.
  • the first polishing treatment can be polished with W40 diamond polishing paste for 1-2 hours at a polishing speed of 1500-2000 rpm to remove the loose oxide layer on the surface of the workpiece.
  • the polishing speed can be any suitable value such as 1500 rpm, 1600 rpm, 1700 rpm, 1800 rpm, 1900 rpm or 2000 rpm, etc.
  • the polishing time can be 1h, 1.2h, 1.4h , 1.6h, 1.8h, or 2h.
  • a second polishing treatment may be included.
  • the second polishing treatment may be polished with a W10 diamond polishing paste at a speed of 1500-2000 rpm for 0.5-1h to make the working boss
  • the roughness Ra is ⁇ 0.1 ⁇ m, and preferably Ra ⁇ 0.05 ⁇ m.
  • the second polishing speed can be any suitable value such as 1500 rpm, 1600 rpm, 1700 rpm, 1800 rpm, 1900 rpm or 2000 rpm, and the polishing time can be 0.5h, 0.6 Any suitable value such as h, 0.7h, 0.8h, 0.9h or 1h.
  • the working surface of the rotary valve body of G-M type low temperature refrigerator is mirror effect.
  • the thickness of the remaining alumina ceramic layer after polishing is ⁇ 40 ⁇ m, and the hardness is ⁇ 1000HV.
  • the GM-type low temperature refrigerator rotary valve body 20 includes an aluminum alloy rotary valve body 10 and an alumina ceramic film (not shown). ).
  • the aluminum alloy rotary valve body 10 includes a valve body body 11, a high-pressure opening 12, a working boss 13, a low-pressure groove 14, a vent hole 15, and an air chamber 16.
  • the valve body 11 has a first surface 17 for setting the working boss 13 and a second surface 18 opposite to the first surface 17.
  • the distance between the first surface 17 and the second surface 18 is 15 mm.
  • the working boss 13 The height of the protruding first surface 17 is 0.5 mm.
  • the high-pressure opening 12 and the low-pressure groove 14 are both disposed on the working boss 13.
  • the cross-section of the high-pressure opening 12 has a half-moon shape.
  • the high-pressure opening 12 penetrates the valve body 11 in a direction from the first surface 17 to the second surface 18.
  • the vent hole 15 is disposed on the first surface 17 and penetrates the valve body body 11 in a direction from the first surface 17 to the second surface 18.
  • the diameter of the vent hole 15 is 3 mm.
  • the air chamber 16 is opened on the second surface 18, and the diameter of the air chamber 16 is 8.2 mm.
  • An alumina ceramic film is plated on the surface of the aluminum alloy rotary valve body 10.
  • the 6061 aluminum alloy material is used to manufacture the rotary valve body provided in Example 1.
  • the roughness Ra of the working convex surface after processing is about 0.04 ⁇ m, and the remaining surface roughness Ra is about 2.5 ⁇ m.
  • the components of the electrolytic solution for micro-arc oxidation treatment are: sodium silicate 25g / L, sodium tetraborate 15g / L, sodium hydroxide 2g / L, sodium tungstate 2g / L, sodium metaaluminate 30g / L, ethylenediamine tetraacetic acid Disodium 30g / L and sodium citrate 30g / L.
  • the thickness of the alumina ceramic film after the treatment is about 68 ⁇ m, and the thickness of the dense layer is about 50 ⁇ m.
  • the roughness of the working convexity Ra 0.045 ⁇ m
  • the thickness of the ceramic layer is about 53 ⁇ m
  • the average surface microhardness is 1207 HV.
  • the components of the electrolytic solution for micro-arc oxidation treatment are: sodium silicate 40g / L, sodium tetraborate 15g / L, sodium hydroxide 10g / L, sodium tungstate 10g / L, sodium metaaluminate 30g / L, and ethylenediamine tetraacetic acid Disodium 30g / L and sodium citrate 30g / L.
  • the thickness of the alumina ceramic film after the treatment is about 78 ⁇ m, and the thickness of the dense layer is about 50 ⁇ m.
  • the roughness of the working convexity Ra 0.04 ⁇ m
  • the thickness of the ceramic layer is about 55 ⁇ m
  • the average surface microhardness is 1117 HV.
  • the components of the electrolytic solution for micro-arc oxidation treatment are: sodium silicate 15g / L, sodium tetraborate 5g / L, sodium hydroxide 4g / L, sodium tungstate 5g / L, sodium metaaluminate 15g / L, ethylenediamine tetraacetic acid Disodium 30g / L, sodium citrate 30g / L.
  • the thickness of the alumina ceramic film after the treatment is about 71 ⁇ m, and the thickness of the dense layer is about 50 ⁇ m.
  • the roughness of the working convexity Ra 0.041 ⁇ m
  • the thickness of the ceramic layer is about 48 ⁇ m
  • the average surface microhardness is 1275 HV.
  • the 6061 aluminum alloy material is used to manufacture the rotary valve body provided in Example 1.
  • the roughness Ra of the working convex surface after processing is about 0.05 ⁇ m, and the remaining surface roughness Ra is about 2 ⁇ m.
  • the components of the electrolytic solution for micro-arc oxidation treatment are: sodium silicate 10g / L, sodium tetraborate 10g / L, sodium hydroxide 6g / L, sodium tungstate 6g / L, sodium metaaluminate 20g / L, and ethylenediamine tetraacetic acid Disodium 5g / L and sodium citrate 5g / L.
  • the thickness of the alumina ceramic film after the treatment is about 60 ⁇ m, and the thickness of the dense layer is about 55 ⁇ m.
  • the roughness of the working surface Ra 0.05 ⁇ m
  • the thickness of the ceramic layer is about 45 ⁇ m
  • the average surface microhardness is 1125HV.
  • the 6061 aluminum alloy material is used to manufacture the rotary valve body provided in Example 1.
  • the roughness Ra of the working convex surface after processing is about 0.1 ⁇ m, and the remaining surface roughness Ra is about 3 ⁇ m.
  • the components of the electrolytic solution for micro-arc oxidation treatment are: sodium silicate 20g / L, sodium tetraborate 15g / L, sodium hydroxide 2g / L, sodium tungstate 8g / L, sodium metaaluminate 25g / L, ethylenediamine tetraacetic acid Disodium 20g / L and sodium citrate 20g / L.
  • the thickness of the alumina ceramic film after the treatment is about 80 ⁇ m, and the thickness of the dense layer is about 50 ⁇ m.
  • the roughness of the working convexity Ra 0.1 ⁇ m
  • the thickness of the ceramic layer is about 40 ⁇ m
  • the average surface micro-hardness is 1213 HV.
  • Example 2 microscopic morphology observation of the obtained G-M low temperature refrigerator rotary valve body was performed, and the results are shown in FIG. 3.
  • the alumina ceramic membrane in the rotary valve body of the G-M type low temperature refrigerator obtained according to the method of the present application has a dense structure, a uniform thickness, and is basically composed of a dense layer.
  • Example 2 a control group 1-5 is set.
  • the difference between the control group 1-5 and Example 2 is that the electrolyte of the control group 1 does not contain sodium tungstate and sodium metaaluminate;
  • the electrolyte did not contain disodium ethylenediamine tetraacetate and sodium citrate;
  • the electrolyte of control group 3 did not contain sodium tungstate, sodium metaaluminate, disodium ethylenediamine tetraacetate, and sodium citrate;
  • the material of the rotary valve body in 4 is stainless steel, and the rotary valve body in the control group 5 is not plated with an alumina ceramic film.
  • the surface microhardness average values of the finished products obtained in the control group 1-5 and the G-M type cryogenic refrigerator rotary valve body obtained in Example 2 were measured. The results are shown in Table 1.
  • control group 1-3 is thinner than the surface film of the rotary valve body of the GM cryogenic refrigerator obtained in Example 2.
  • the inner layer coverage is low, and the average micro hardness is significantly lower.
  • the electrolyte contains sodium tungstate, sodium metaaluminate, disodium ethylenediaminetetraacetate, and sodium citrate, which is beneficial to improve the work film coverage, abrasion resistance, and sealability.
  • simultaneously containing the above four substances is more effective in improving the hardness of the workpiece than containing only tungstate and sodium metaaluminate, or only ethylenediamine tetraacetate disodium and sodium citrate.
  • the average microhardness of the surface of the rotary valve body of the GM-type low temperature refrigerator obtained in Example 2 is about 4.8 times higher than that of the control group 4. This shows that the use of aluminum alloy as the valve body material and micro-arc oxidation treatment is beneficial to improve the hardness .
  • the average micro hardness of the surface of the rotary valve body of the G-M cryogenic refrigerator obtained in Example 2 compared with the control group 5 is about 7.5 times higher, which indicates that coating the alumina ceramic film on the rotary valve body can significantly improve the hardness of the workpiece.
  • the GM cryogenic refrigerator rotary valve body provided in the embodiments of the present application has a small starting torque, high working surface hardness, good abrasion resistance, good sealing performance and long service life. advantage.
  • the preparation method is simple and easy to operate, and can effectively prevent the inclusion particles in the gas from damaging the surface of the valve body, and has better sealing effect.
  • the G-M type low temperature refrigerator rotary valve body provided in the embodiments of the present application has small starting torque, high working surface hardness, high wear resistance, high sealing performance and long service life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Multiple-Way Valves (AREA)
  • Sliding Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

一种G-M型低温制冷机旋转阀体(20)及其制备方法,属于材料加工技术领域。G-M型低温制冷机旋转阀体(20)包括铝合金旋转阀体(10)和氧化铝陶瓷膜。铝合金旋转阀体(10)的阀体本体(11)具有用于设置工作凸台(13)的第一表面(17)以及与第一表面(17)相对的第二表面(18),高压开孔(12)和低压槽(14)均设置于工作凸台(13),通气孔(15)设置于第一表面(17),高压开孔(12)和通气孔(15)均贯穿阀体本体(11),气室(16)开设于第二表面(18)。氧化铝陶瓷膜镀于铝合金旋转阀体(10)的表面。旋转阀体(20)具有启动扭矩小,工作面硬度高、耐磨性好,密封性能好及使用寿命长等优点。制备方法包括:采用微弧氧化工艺将氧化铝陶瓷膜镀于铝合金旋转阀体(10)的表面。该方法简单,易操作,能有效避免气体中的夹杂物颗粒对阀体表面造成损伤,具有较佳的密封效果。

Description

一种G-M型低温制冷机旋转阀体及其制备方法
相关申请的交叉引用
本申请要求于2018年07月02日提交中国专利局的申请号为201810712877.1、名称为“一种G-M型低温制冷机旋转阀体及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及材料加工技术领域,且特别涉及一种G-M型低温制冷机旋转阀体及其制备方法。
背景技术
旋转阀是G-M型低温制冷机的核心部件,用以控制制冷机进排气时序。旋转阀中的转子和定子通常具有紧密的机械接触,在接触面上会有较大的摩擦力,造成阀芯磨损严重;同时阀芯旋转也需要较大扭矩,引起电机负荷增大。当制冷机长时间运行时,阀芯磨损的问题就越加突出,将直接影响制冷机的性能甚至使用寿命。
目前制冷机的摩擦副大多是金属-金属和金属-塑料等。使用一段时间后,不可避免的摩擦损耗导致间隙增大,漏气、串气加重,降低制冷效率和寿命。因而采用新材料提高制冷机寿命的工作具有重要意义。
传统旋转阀芯采用Rulon(聚四氟材料)材料制作,它具有自润滑作用。这种阀结构简单,但精度要求较高,在制冷机工作过程中,钢质阀座与聚四氟材料阀芯始终处于旋转摩擦状态,为了保证配气角的精确,阀体上的通气孔没有倒角比较锋利,长时间运行后会发生阀芯配气腔磨损,实际加工误差的存在使得配气阀受力不均,磨损加剧,配气腔磨损后无法补偿,使串气加重,导致旋转阀运转的可靠性较差,寿命不长,这将直接影响到制冷机的运行可靠性。
先进陶瓷材料由于具有高的比强度、比刚度,良好的尺寸稳定性和耐磨擦性,已经在很多领域得到应用。但由于陶瓷材料化学键的本质,使得在材料中裂纹扩展时没有其它的机制可以吸收断裂功,只有依赖断裂形成新表面的表面能来消耗裂纹的扩展能量,因而陶瓷的韧性很低。此外采用块体陶瓷材料制作阀芯,加工难度大,尺寸精度难以保证,且成本较高,限制了其应用特点。
申请内容
本申请的目的之一在于提供一种G-M型低温制冷机旋转阀体,该G-M型低温制冷机旋转阀体至少具有启动扭矩小,工作面硬度高、耐磨性好,密封性能好及使用寿命长等优点。
本申请的目的之二在于提供一种上述G-M型低温制冷机旋转阀体的制备方法,该方法简单,易操作,至少能有效避免气体中的夹杂物颗粒对阀体表面造成损伤,具有较佳的密封效果。
本申请解决其技术问题是采用以下技术方案来实现的:
本申请提出一种G-M型低温制冷机旋转阀体,其包括铝合金旋转阀体和氧化铝陶瓷膜。
铝合金旋转阀体包括阀体本体、高压开孔、工作凸台、低压槽、通气孔和气室。
阀体本体具有用于设置工作凸台的第一表面以及与第一表面相对的第二表面,高压开孔和低压槽均设置于工作凸台,高压开孔沿第一表面到第二表面的方向贯穿阀体本体;通气孔设置于第一表面并沿第一表面到第二表面的方向贯穿阀体本体;气室开设于第二表面。
氧化铝陶瓷膜镀于铝合金旋转阀体的表面。
可选的,所述工作凸台凸出所述第一表面的高度为0.4-0.6mm。
可选的,所述氧化铝陶瓷膜的厚度为60-80μm;
可选的,所述氧化铝陶瓷膜中致密层厚度大于等于50μm。
可选的,所述G-M型低温制冷机旋转阀体中所述工作凸台的表面粗糙度Ra≤0.1μm,其余表面的粗糙度Ra≤3μm。
可选的,所述高压开孔的截面形状为呈半月型。
可选的,所述阀体本体包括第一圆柱结构和第二圆柱结构,所述第一圆柱结构与所述第二圆柱结构同轴设置且相互连接,所述第一圆柱结构的直径大于所述第二圆柱结构的直径,所述第一圆柱结构远离所述第二圆柱结构的端面形成第一表面,所述第二圆柱结构远离所述第一圆柱结构的端面形成第二表面。
可选的,所述工作凸台的外轮廓为圆柱状,所述工作凸台的直径小于第一圆柱结构和第二圆柱结构的直径。
可选的,所述低压槽的截面形状为长条型,且所述低压槽的两端为圆弧状。
可选的,所述低压槽设置在所述工作凸台的中部,所述高压开孔设置在所述工作凸台的边缘处。
可选的,所述通气孔为圆形孔,并且所述通气孔与所述高压开孔间隔设置。
可选的,所述气室为圆形槽,所述气室的开口处设有向外倾斜的扩口结构。
本申请还提出一种上述G-M型低温制冷机旋转阀体的制备方法,包括以下步骤:采用微弧氧化工艺将氧化铝陶瓷膜镀于铝合金旋转阀体的表面,微弧氧化工艺包括:以置于电解液中的铝合金旋转阀体作为处理阳极,施加占空比为20-50%的400-550V正向电压以及占空比为30-80%的50-200V的负向电压,于频率为100-1000Hz以及电解液温度为25-60℃的条件下处理60-90min。
可选的,所述电解液中含有10-40g/L的硅酸钠、5-15g/L的四硼酸钠以及2-10g/L氢氧化钠。
可选的,所述电解液中还含有2-10g/L的钨酸钠和15-30g/L的偏铝酸钠。
可选的,所述电解液中还含有5-30g/L的乙二胺四乙酸二钠和5-30g/L的柠檬酸钠。
可选的,在氧化铝陶瓷膜镀于所述铝合金旋转阀体的表面之后还包括第一次抛光处理,第一次抛光处理是于抛光转速为1500-2000转/分钟的条件下抛光1-2h以去除工件表面的氧化膜疏松层。
可选的,第一次抛光处理后还包括第二次抛光处理,第二次抛光处理是于1500-2000转/分钟的条件下抛光0.5-1h并使所述工作凸台的粗糙度Ra≤0.05μm。
本申请较佳实施例提供的G-M型低温制冷机旋转阀体及其制备方法的有益效果至少包括:
本申请较佳实施例提供的G-M型低温制冷机旋转阀体采用密度较小的铝合金轻质材料制作阀体,启动扭矩小,电机负荷小。
采用微弧氧化工艺对铝合金阀体进行表面陶瓷化处理,硬度高,耐磨性好,使用寿命长。
通过精密加工,密封效果好;且表面陶瓷化后可有效避免气体中的夹杂物颗粒对阀体表面造成损伤,避免密封效果下降。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,以下将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为实施例1中G-M型低温制冷机旋转阀体在第一视角下的结构示意图;
图2为实施例1中G-M型低温制冷机旋转阀体在第二视角下的结构示意图;
图3为试验例1中实施例2所得的G-M型低温制冷机旋转阀体的微观形貌图。
图标:20-G-M型低温制冷机旋转阀体;10-铝合金旋转阀体;11-阀体本体;12-高压开孔;13-工作凸台;14-低压槽;15-通气孔;16-气室;17-第一表面;18-第二表面。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将对本申请实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本申请实施例的G-M型低温制冷机旋转阀体及其制备方法进行具体说明。
本申请实施例提供的G-M型低温制冷机旋转阀体包括铝合金旋转阀体和氧化铝陶瓷膜。铝合金旋转阀体10包括阀体本体11、高压开孔12、工作凸台13、低压槽14、通气孔15和气室16。以密度较小的铝合金轻质材料制作铝合金旋转阀体10,至少具有启动扭矩小以及电机负荷小的优势。
其中,阀体本体11具有用于设置工作凸台13的第一表面17以及与第一表面17相对的第二表面18。较佳地,第一表面17与第二表面18之间的距离可以为14-16mm。工作凸台13凸出第一表 面17的高度可以为0.4-0.6mm,例如0.4mm、0.5mm和0.6mm。
其中,阀体本体11由第一圆柱结构和第二圆柱结构组成,第一圆柱结构与第二圆柱结构同轴设置且相互连接,第一圆柱结构的直径大于第二圆柱结构的直径,第一圆柱结构远离第二圆柱结构的端面形成第一表面17,第二圆柱结构远离第一圆柱结构的端面形成第二表面18。
工作凸台13的外轮廓为圆柱状,并且工作凸台13的直径小于第一圆柱结构和第二圆柱结构的直径。
高压开孔12和低压槽14均设置于工作凸台,高压开孔12沿第一表面到第二表面的方向贯穿阀体本体。高压开孔12主要用于阀门开启时接通高压气源,低压槽14主要用于阀门开启时接通低压气源。作为可选地,本申请中,高压开孔12的截面形状例如可以呈半月型。
低压槽14的截面形状可以为长条型,并且低压槽14的两端为圆弧状。低压槽14设置在工作凸台13的中部,高压开孔设置在工作凸台13的边缘处。
通气孔15设置于第一表面并沿第一表面到第二表面的方向贯穿阀体本体。可参考地,通气孔15的直径可以为2.8-3.2mm。气室开设于第二表面,气室16的直径可以为8-8.5mm。
通气孔15为圆形孔,并且通气孔15与高压开孔12间隔设置。
气室16为圆形槽,并且气室16的开口处设有向外倾斜的扩口结构,高压开孔12、通气孔15和气室16间隔设置,并且高压开孔12和气室16相对设置。氧化铝陶瓷膜镀于铝合金旋转阀体的表面,较佳地,本申请中,氧化铝陶瓷膜的厚度可以为60-80μm,其中致密层的厚度优选大于等于50μm。通过于铝合金旋转阀体的表面镀上上述厚度范围内的氧化铝陶瓷膜,一方面能够有效避免气体中的夹杂物颗粒对阀体表面造成损伤,提高密封效果;另一方面能够提高G-M型低温制冷机旋转阀体的硬度和耐磨性,延长其使用寿命。
在一些实施方式中,G-M型低温制冷机旋转阀体中工作凸台的表面粗糙度可控制在Ra≤0.1μm,其余表面的粗糙度可控制在Ra≤3μm,以提高工件的精密度。
本申请实施例还提供了一种上述G-M型低温制冷机旋转阀体的制备方法,其制备方法简单,易操作,能有效避免气体中的夹杂物颗粒对阀体表面造成损伤,具有较佳的密封效果,例如可以包括以下步骤:采用微弧氧化工艺将氧化铝陶瓷膜镀于上述铝合金旋转阀体的表面。
微弧氧化工艺例如可以包括:以置于电解液中的铝合金旋转阀体作为处理阳极,施加占空比为20-50%的400-550V正向电压以及占空比为30-80%的50-200V的负向电压,于频率为100-1000Hz以及电解液温度为25-60℃的条件下处理60-90min。
其中,正向电压占空比可以为20%、25%、30%、35%、40%、45%或50%等任意适合的数值,正向电压可以为400V、420V、440V、460V、480V、500V、520V、540V或550V等任意适合的数值;负向电压占空比可以为30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%等 任意适合的数值,负向电压可以为50V、70V、90V、110V、130V、150V、170V、190V或200V等任意适合的数值,频率可以为100Hz、200Hz、300Hz、400Hz、500Hz、600Hz、700Hz、800Hz、900Hz或1000Hz等任意适合的数值,电解液温度可以为25℃、30℃、35℃、40℃、45℃、50℃、55℃或60℃等任意适合的数值,处理时间可以为60min、65min、70min、75min、80min、85min或90min等任意适合的数值。
可参考地,上述电解液中例如可以含有10-40g/L的硅酸钠、5-15g/L的四硼酸钠以及2-10g/L氢氧化钠。该三种物质构成电解液中的主要成膜盐。值得说明的是,上述各位置的浓度是指在电解液中的浓度,例如10-40g/L的硅酸钠指硅酸钠在电解液中的浓度为10-40g/L。
其中,硅酸钠可以为10g/L、15g/L、20g/L、25g/L、30g/L、35g/L或40g/L等任意适合的数值,四硼酸钠可以为5g/L、7g/L、9g/L、11g/L、13g/L或15g/L等任意适合的数值,氢氧化钠可以为2g/L、4g/L、6g/L、8g/L或10g/L等任意适合的数值。
较佳地,上述电解液中还可以含有钨酸钠和偏铝酸钠,二者在电解液中的浓度依次分别可以为2-10g/L和15-30g/L。通过加入钨酸钠和偏铝酸钠,可有效改善膜层的显微硬度和耐磨性。
其中,钨酸钠可以为2g/L、4g/L、6g/L、8g/L或10g/L等任意适合的数值,偏铝酸钠可以为15g/L、20g/L、25g/L或30g/L等任意适合的数值。
较佳地,上述电解液中还可以含有乙二胺四乙酸二钠和柠檬酸钠,二者在电解液中的浓度均可以为5-30g/L。通过加入乙二胺四乙酸二钠和柠檬酸钠,可有效改善工件内孔成膜的均镀性和深镀性。
其中,乙二胺四乙酸二钠可以为5g/L、10g/L、15g/L、20g/L、25g/L或30g/L等任意适合的数值,柠檬酸钠可以为5g/L、10g/L、15g/L、20g/L、25g/L或30g/L等任意适合的数值。
经上述处理后,可使氧化铝陶瓷膜总厚度达到60-80μm,其中致密层的厚度不低于50μm。
上述微弧氧化工艺通过用专用的微弧氧化电源在工件上施加电压,使工件表面的金属(Al)与电解质溶液相互作用,在工件表面形成微弧放电,在高温、电场等因素的作用下,铝合金旋转阀体表面形成氧化铝陶瓷膜,达到工件表面强化的目的。氧化铝陶瓷膜与铝合金旋转阀体结合牢固,结构致密,韧性高,具有良好的耐磨、耐腐蚀、耐高温冲击和电绝缘等性能。
在一些实施方式中,置于电解液中之前,还包括对铝合金旋转阀体进行脱脂除油处理。
进一步地,还可在氧化铝陶瓷膜镀于铝合金旋转阀体的表面之后进行第一次抛光处理。可参考地,第一次抛光处理可以于抛光转速为1500-2000转/分钟的条件下用W40号金刚石抛光膏抛光1-2h,以去除工件表面的氧化膜疏松层。
抛光转速可以为1500转/分钟、1600转/分钟、1700转/分钟、1800转/分钟、1900转/分钟或2000转/分钟等任意适合的数值,抛光时间可以为1h、1.2h、1.4h、1.6h、1.8h或2h等任意适合的数值。
进一步地,第一次抛光处理后还可包括第二次抛光处理,第二次抛光处理可以于1500-2000转/ 分钟的条件下用W10号金刚石抛光膏抛光0.5-1h,以使工作凸台的粗糙度Ra≤0.1μm,优选Ra≤0.05μm。
第二次抛光转速可以为1500转/分钟、1600转/分钟、1700转/分钟、1800转/分钟、1900转/分钟或2000转/分钟等任意适合的数值,抛光时间可以为0.5h、0.6h、0.7h、0.8h、0.9h或1h等任意适合的数值。
抛光后G-M型低温制冷机旋转阀体的工作面呈镜面效果,抛光后剩余的氧化铝陶瓷层厚度≥40μm,硬度≥1000HV。
以下结合实施例对本申请的特征和性能作进一步的详细描述。
实施例1
本实施例提供一种G-M型低温制冷机旋转阀体20,请参照图1与图2,该G-M型低温制冷机旋转阀体20包括铝合金旋转阀体10和氧化铝陶瓷膜(图未示)。
其中,铝合金旋转阀体10包括阀体本体11、高压开孔12、工作凸台13、低压槽14、通气孔15和气室16。
阀体本体11具有用于设置工作凸台13的第一表面17以及与第一表面17相对的第二表面18,第一表面17与第二表面18之间的距离为15mm,工作凸台13凸出第一表面17的高度为0.5mm。
高压开孔12和低压槽14均设置于工作凸台13,高压开孔12的截面呈半月形,高压开孔12沿第一表面17到第二表面18的方向贯穿阀体本体11。通气孔15设置于第一表面17并沿第一表面17到第二表面18的方向贯穿阀体本体11,通气孔15的直径为3mm。气室16开设于第二表面18,气室16的直径为8.2mm。
氧化铝陶瓷膜镀于铝合金旋转阀体10的表面。
实施例2
(1)采用6061铝合金材料加工制作如实施例1提供的旋转阀体,加工后工作凸面的粗糙度Ra约为0.04μm,其余面粗糙度Ra约为2.5μm。
(2)将脱脂除油后的铝合金阀体放入盛装电解液的不锈钢槽中作为处理阳极,施加正向电压450V,正向占空比25%,负向电压80V,负向占空比45%,频率600Hz,槽液温度40-50℃,处理时间90分钟。微弧氧化处理电解液成分为:硅酸钠25g/L,四硼酸钠15g/L,氢氧化钠2g/L,钨酸钠2g/L,偏铝酸钠30g/L,乙二胺四乙酸二钠30g/L以及柠檬酸钠30g/L。处理后氧化铝陶瓷膜厚度约68μm,致密层厚度约为50μm。
(3)采用平面磨床对阀体的工作凸面进行抛光处理。先用W40号金刚石抛光膏去除工件表面的氧化膜疏松层,抛光转速为2000转/分钟,抛光时间为1小时;再用W10号金刚石抛光膏对工作凸面抛至镜面光泽,抛光转速为1500转/分钟,抛光时间约0.5小时。
抛光处理后工作凸面粗糙度Ra=0.045μm,陶瓷层厚度约53μm,表面显微硬度平均值为1207HV。
实施例3
(1)旋转阀体加工要求同实施例2。
(2)将脱脂除油后的铝合金阀体放入盛装电解液的不锈钢槽中作为处理阳极,施加正向电压550V,正向占空比20%,负向电压150V,负向占空比50%,频率1000Hz,槽液温度40-50℃,处理时间90分钟。微弧氧化处理电解液成分为:硅酸钠40g/L,四硼酸钠15g/L,氢氧化钠10g/L,钨酸钠10g/L,偏铝酸钠30g/L,乙二胺四乙酸二钠30g/L以及柠檬酸钠30g/L。处理后氧化铝陶瓷膜厚度约78μm,致密层厚度约为50μm。
(3)采用平面磨床对阀体的工作凸面进行抛光处理。先用W40号金刚石抛光膏去除工件表面的氧化膜疏松层,抛光转速为2000转/分钟,抛光时间为1小时;再用W10号金刚石抛光膏对工作凸面抛至镜面光泽,抛光转速为1500转/分钟,抛光时间约0.5小时。
抛光处理后工作凸面粗糙度Ra=0.04μm,陶瓷层厚度约55μm,表面显微硬度平均值为1117HV。
实施例4
(1)旋转阀体加工要求同实施例2。
(2)将脱脂除油后的铝合金阀体放入盛装电解液的不锈钢槽中作为处理阳极,施加正向电压450V,正向占空比25%,负向电压150V,负向占空比50%,频率1000Hz,槽液温度40-50℃,处理时间90分钟。微弧氧化处理电解液成分为:硅酸钠15g/L,四硼酸钠5g/L,氢氧化钠4g/L,钨酸钠5g/L,偏铝酸钠15g/L,乙二胺四乙酸二钠30g/L,柠檬酸钠30g/L。处理后氧化铝陶瓷膜厚度约71μm,致密层厚度约为50μm。
(3)采用平面磨床对阀体的工作凸面进行抛光处理。先用W40号金刚石抛光膏去除工件表面的氧化膜疏松层,抛光转速为2000转/分钟,抛光时间为1小时;再用W10号金刚石抛光膏对工作凸面抛至镜面光泽,抛光转速为1500转/分钟,抛光时间约0.5小时。
抛光处理后工作凸面粗糙度Ra=0.041μm,陶瓷层厚度约48μm,表面显微硬度平均值为1275HV。
实施例5
(1)采用6061铝合金材料加工制作如实施例1所提供的旋转阀体,加工后工作凸面的粗糙度Ra约为0.05μm,其余面粗糙度Ra约为2μm。
(2)将脱脂除油后的铝合金阀体放入盛装电解液的不锈钢槽中作为处理阳极,施加正向电压400V,正向占空比50%,负向电压50V,负向占空比30%,频率600Hz,槽液温度25-40℃,处理时间60分钟。微弧氧化处理电解液成分为:硅酸钠10g/L,四硼酸钠10g/L,氢氧化钠6g/L,钨酸 钠6g/L,偏铝酸钠20g/L,乙二胺四乙酸二钠5g/L以及柠檬酸钠5g/L。处理后氧化铝陶瓷膜厚度约60μm,致密层厚度约为55μm。
(3)采用平面磨床对阀体的工作凸面进行抛光处理。先用W40号金刚石抛光膏去除工件表面的氧化膜疏松层,抛光转速为1500转/分钟,抛光时间为2小时;再用W10号金刚石抛光膏对工作凸面抛至镜面光泽,抛光转速为2000转/分钟,抛光时间约1小时。
抛光处理后工作凸面粗糙度Ra=0.05μm,陶瓷层厚度约45μm,表面显微硬度平均值为1125HV。
实施例6
(1)采用6061铝合金材料加工制作如实施例1所提供的旋转阀体,加工后工作凸面的粗糙度Ra约为0.1μm,其余面粗糙度Ra约为3μm。
(2)将脱脂除油后的铝合金阀体放入盛装电解液的不锈钢槽中作为处理阳极,施加正向电压400V,正向占空比20%,负向电压200V,负向占空比80%,频率600Hz,槽液温度45-60℃,处理时间75分钟。微弧氧化处理电解液成分为:硅酸钠20g/L,四硼酸钠15g/L,氢氧化钠2g/L,钨酸钠8g/L,偏铝酸钠25g/L,乙二胺四乙酸二钠20g/L以及柠檬酸钠20g/L。处理后氧化铝陶瓷膜厚度约80μm,致密层厚度约为50μm。
(3)采用平面磨床对阀体的工作凸面进行抛光处理。先用W40号金刚石抛光膏去除工件表面的氧化膜疏松层,抛光转速为1800转/分钟,抛光时间为1.5小时;再用W10号金刚石抛光膏对工作凸面抛至镜面光泽,抛光转速为1800转/分钟,抛光时间约0.8小时。
抛光处理后工作凸面粗糙度Ra=0.1μm,陶瓷层厚度约40μm,表面显微硬度平均值为1213HV。
试验例1
重复实施上述实施例2-5,得到足够多的G-M型低温制冷机旋转阀体。
以实施例2为例,对所得的G-M型低温制冷机旋转阀体进行微观形貌观察,其结果如图3所示。
由图3可以看出,按本申请方法所得的G-M型低温制冷机旋转阀体中氧化铝陶瓷膜结构致密,厚度均匀,基本由致密层构成。
试验例2
以实施例2为例,设置对照组1-5,其中对照组1-5与实施例2的区别在于:对照组1的电解液中不含钨酸钠和偏铝酸钠;对照组2的电解液中不含乙二胺四乙酸二钠和柠檬酸钠;对照组3的电解液中同时不含钨酸钠、偏铝酸钠、乙二胺四乙酸二钠和柠檬酸钠;对照组4中旋转阀体的材料为不锈钢类,对照组5中旋转阀体未镀有氧化铝陶瓷膜。测定对照组1-5所得的成品与实施例2所得的G-M型低温制冷机旋转阀体的表面显微硬度平均值,其结果如表1所示。
表1不同旋转阀体性能比较
Figure PCTCN2018119584-appb-000001
由表1可以看出,对照组1-3均较实施例2所得的G-M型低温制冷机旋转阀体的表面膜致密层薄,内孔覆盖率低,显微硬度平均值明显更低,说明电解液中含有钨酸钠、偏铝酸钠、乙二胺四乙酸二钠和柠檬酸钠有利于提高工件膜层覆盖率、耐磨性和密封性。并且,同时含有以上四种物质较仅含有其中的钨酸钠和偏铝酸钠或仅含有其中的乙二胺四乙酸二钠和柠檬酸钠对工件硬度提高更加有效。
实施例2较对照组4所得的G-M型低温制冷机旋转阀体的表面显微硬度平均值高出4.8倍左右,说明以铝合金为阀体材料并经过微弧氧化处理后有利于提高工件硬度。
实施例2较对照组5所得的G-M型低温制冷机旋转阀体的表面显微硬度平均值高出7.5倍左右,说明于旋转阀体镀上氧化铝陶瓷膜能够显著提高工件硬度。
综上所述,本申请实施例提供的G-M型低温制冷机旋转阀体G-M型低温制冷机旋转阀体具有启动扭矩小,工作面硬度高、耐磨性好,密封性能好及使用寿命长等优点。其制备方法简单,易操作,能有效避免气体中的夹杂物颗粒对阀体表面造成损伤,具有较佳的密封效果。
以上所描述的实施例是本申请一部分实施例,而不是全部的实施例。本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
工业实用性
本申请实施例提供的一种G-M型低温制冷机旋转阀体,启动扭矩小,工作面硬度高、耐磨性高,密封性能高,并且使用寿命长。

Claims (17)

  1. 一种G-M型低温制冷机旋转阀体,其特征在于,其包括铝合金旋转阀体和氧化铝陶瓷膜;
    所述铝合金旋转阀体包括阀体本体、高压开孔、工作凸台、低压槽、通气孔和气室;
    所述阀体本体具有用于设置所述工作凸台的第一表面以及与所述第一表面相对的第二表面,所述高压开孔和所述低压槽均设置于所述工作凸台,所述高压开孔沿所述第一表面到所述第二表面的方向贯穿所述阀体本体;所述通气孔设置于所述第一表面并沿所述第一表面到所述第二表面的方向贯穿所述阀体本体;所述气室开设于所述第二表面;
    所述氧化铝陶瓷膜镀于所述铝合金旋转阀体的表面。
  2. 根据权利要求1所述的G-M型低温制冷机旋转阀体,其特征在于,所述工作凸台凸出所述第一表面的高度为0.4-0.6mm。
  3. 根据权利要求1或2所述的G-M型低温制冷机旋转阀体,其特征在于,所述氧化铝陶瓷膜的厚度为60-80μm;
    优选地,所述氧化铝陶瓷膜中致密层厚度大于等于50μm。
  4. 根据权利要求1-3中任一项所述的G-M型低温制冷机旋转阀体,其特征在于,所述G-M型低温制冷机旋转阀体中所述工作凸台的表面粗糙度Ra≤0.1μm,其余表面的粗糙度Ra≤3μm。
  5. 根据权利要求1-4中任一项所述的G-M型低温制冷机旋转阀体,其特征在于,所述高压开孔的截面形状为呈半月型。
  6. 根据权利要求1-5中任一项所述的G-M型低温制冷机旋转阀体,其特征在于,所述阀体本体包括第一圆柱结构和第二圆柱结构,所述第一圆柱结构与所述第二圆柱结构同轴设置且相互连接,所述第一圆柱结构的直径大于所述第二圆柱结构的直径,所述第一圆柱结构远离所述第二圆柱结构的端面形成第一表面,所述第二圆柱结构远离所述第一圆柱结构的端面形成第二表面。
  7. 根据权利要求6所述的G-M型低温制冷机旋转阀体,其特征在于,所述工作凸台的外轮廓为圆柱状,所述工作凸台的直径小于第一圆柱结构和第二圆柱结构的直径。
  8. 根据权利要求1-7中任一项所述的G-M型低温制冷机旋转阀体,其特征在于,所述低压槽的截面形状为长条型,且所述低压槽的两端为圆弧状。
  9. 根据权利要求1-8中任一项所述的G-M型低温制冷机旋转阀体,其特征在于,所述低压槽设置在所述工作凸台的中部,所述高压开孔设置在所述工作凸台的边缘处。
  10. 根据权利要求1-9中任一项所述的G-M型低温制冷机旋转阀体,其特征在于,所述通气孔为圆形孔,并且所述通气孔与所述高压开孔间隔设置。
  11. 根据权利要求1-10中任一项所述的G-M型低温制冷机旋转阀体,其特征在于,所述气室为圆形槽,所述气室的开口处设有向外倾斜的扩口结构。
  12. 一种如权利要求1-11任一项所述的G-M型低温制冷机旋转阀体的制备方法,其特征在于,包括以下步骤:采用微弧氧化工艺将所述氧化铝陶瓷膜镀于所述铝合金旋转阀体的表面,微弧氧化工艺包括:以置于电解液中的所述铝合金旋转阀体作为处理阳极,施加占空比为20-50%的400-550V正向电压以及占空比为30-80%的50-200V的负向电压,于频率为100-1000Hz以及电解液温度为25-60℃的条件下处理60-90min。
  13. 根据权利要求12所述的制备方法,其特征在于,所述电解液中含有10-40g/L的硅酸钠、5-15g/L的四硼酸钠以及2-10g/L氢氧化钠。
  14. 根据权利要求13所述的制备方法,其特征在于,所述电解液中还含有2-10g/L的钨酸钠和15-30g/L的偏铝酸钠。
  15. 根据权利要求14所述的制备方法,其特征在于,所述电解液中还含有5-30g/L的乙二胺四乙酸二钠和5-30g/L的柠檬酸钠。
  16. 根据权利要求12-15中任一项所述的制备方法,其特征在于,在氧化铝陶瓷膜镀于所述铝合金旋转阀体的表面之后还包括第一次抛光处理,第一次抛光处理是于抛光转速为1500-2000转/分钟的条件下抛光1-2h以去除工件表面的氧化膜疏松层。
  17. 根据权利要求16所述的制备方法,其特征在于,第一次抛光处理后还包括第二次抛光处理,第二次抛光处理是于1500-2000转/分钟的条件下抛光0.5-1h并使所述工作凸台的粗糙度Ra≤0.05μm。
PCT/CN2018/119584 2018-07-02 2018-12-06 一种g-m型低温制冷机旋转阀体及其制备方法 WO2020006981A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/253,112 US12000497B2 (en) 2018-07-02 2018-12-06 Gm type cryogenic refrigerator rotary valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810712877.1A CN108825841B (zh) 2018-07-02 2018-07-02 一种g-m型低温制冷机旋转阀体及其制备方法
CN201810712877.1 2018-07-02

Publications (1)

Publication Number Publication Date
WO2020006981A1 true WO2020006981A1 (zh) 2020-01-09

Family

ID=64135015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119584 WO2020006981A1 (zh) 2018-07-02 2018-12-06 一种g-m型低温制冷机旋转阀体及其制备方法

Country Status (2)

Country Link
CN (1) CN108825841B (zh)
WO (1) WO2020006981A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112325517A (zh) * 2020-11-09 2021-02-05 深圳供电局有限公司 一种阀门机构及低温制冷机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108825841B (zh) * 2018-07-02 2019-08-30 广东省新材料研究所 一种g-m型低温制冷机旋转阀体及其制备方法
CN109578661B (zh) * 2018-12-11 2024-05-28 佛山市雅科奇电子电器有限公司 一种机械阀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101608695A (zh) * 2009-07-17 2009-12-23 深圳市中科力函热声技术工程研究中心有限公司 旋转阀
CN201687954U (zh) * 2010-05-26 2010-12-29 深圳中南光电技术装备有限公司 镀膜真空室的转板阀结构
CN201705998U (zh) * 2010-06-01 2011-01-12 刘敏 双罐离子交换器工艺过程控制阀
CN104165474A (zh) * 2013-05-16 2014-11-26 住友重机械工业株式会社 超低温制冷机
JP2017025957A (ja) * 2015-07-17 2017-02-02 株式会社キッツ 回転弁とこれを用いた鉄道車両用急速排気弁
CN108825841A (zh) * 2018-07-02 2018-11-16 广东省新材料研究所 一种g-m型低温制冷机旋转阀体及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4318406A1 (de) * 1993-06-03 1994-12-08 Leybold Ag Verfahren zum Betrieb eines Refrigerators und für die Durchführung dieses Verfahrens geeigneter Refrigerator
JP2002228289A (ja) * 2000-11-30 2002-08-14 Aisin Seiki Co Ltd ロータリ弁ユニット及びパルス管冷凍機
JP4197341B2 (ja) * 2006-01-30 2008-12-17 住友重機械工業株式会社 蓄冷器式冷凍機
CN201359106Y (zh) * 2009-02-24 2009-12-09 上海大学 表面陶瓷化铝合金球阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101608695A (zh) * 2009-07-17 2009-12-23 深圳市中科力函热声技术工程研究中心有限公司 旋转阀
CN201687954U (zh) * 2010-05-26 2010-12-29 深圳中南光电技术装备有限公司 镀膜真空室的转板阀结构
CN201705998U (zh) * 2010-06-01 2011-01-12 刘敏 双罐离子交换器工艺过程控制阀
CN104165474A (zh) * 2013-05-16 2014-11-26 住友重机械工业株式会社 超低温制冷机
JP2017025957A (ja) * 2015-07-17 2017-02-02 株式会社キッツ 回転弁とこれを用いた鉄道車両用急速排気弁
CN108825841A (zh) * 2018-07-02 2018-11-16 广东省新材料研究所 一种g-m型低温制冷机旋转阀体及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112325517A (zh) * 2020-11-09 2021-02-05 深圳供电局有限公司 一种阀门机构及低温制冷机

Also Published As

Publication number Publication date
US20210270380A1 (en) 2021-09-02
CN108825841B (zh) 2019-08-30
CN108825841A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2020006981A1 (zh) 一种g-m型低温制冷机旋转阀体及其制备方法
Li et al. Plasma electrolytic oxidation coatings on lightweight metals
CN106702330A (zh) 一种碳钢或不锈钢表面基于镀铝层的微弧氧化陶瓷涂层及其制备方法
Markov et al. Formation of wear-and corrosion-resistant coatings by the microarc oxidation of aluminum
JPWO2010073916A1 (ja) 金属の電解セラミックスコーティング方法、金属の電解セラミックスコーティング用電解液および金属材料
CN105780081B (zh) 制备微弧氧化陶瓷复合涂层的电解液
CN103014804A (zh) 表面具有军绿色微弧氧化陶瓷膜的铝合金及其制备方法
CN108707868B (zh) 一种真空离子镀Ag纳米复合涂层紧固件及制备方法
JP2010249008A (ja) エンジン燃焼室構造
CN106762631B (zh) 一种涡旋式压缩机组件及其制造方法、及涡旋式压缩机
CN108977865B (zh) 一种5xxx铝及铝合金表面高耐蚀单致密微弧氧化膜层的制备方法
CN109023468B (zh) 2xxx铝及铝合金表面高耐磨自润滑微弧氧化膜层的制备方法
CN103334143A (zh) 一种锆合金表面快速制备耐磨氧化锆和氧化铝混合涂层的微弧氧化方法
CN104947166A (zh) 一种基于固溶时效预处理铝合金微弧氧化工艺方法
CN203007452U (zh) 一种表面具有军绿色微弧氧化陶瓷膜的铝合金
CN101314865A (zh) 铝合金硬质润滑膜层的制备方法
CN108070817B (zh) 一种金属模具钢表面复合双重处理方法
CN112962065A (zh) 一种镍基合金表面复合结构涂层及其制备方法
CN112663001A (zh) 一种钛合金叶片防护涂层及其制备方法
US12000497B2 (en) Gm type cryogenic refrigerator rotary valve
KR100573027B1 (ko) 알루미늄 합금으로 제조된 물품의 마이크로아크 산화 공정
CN110629268A (zh) 一种用于高精密轻合金零件的表面防护工艺
CA2540340C (en) Surface modification of aluminum alloy products for micro-arc oxidation processes
CN115896713A (zh) 一种高结合力耐高温耐磨防腐的新型Al2O3/SiO2复合涂层及其制备方法
KR100777176B1 (ko) 마그네슘을 주성분으로 하는 금속체의 표면 처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925156

Country of ref document: EP

Kind code of ref document: A1