WO2020006870A1 - 一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法 - Google Patents

一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法 Download PDF

Info

Publication number
WO2020006870A1
WO2020006870A1 PCT/CN2018/105708 CN2018105708W WO2020006870A1 WO 2020006870 A1 WO2020006870 A1 WO 2020006870A1 CN 2018105708 W CN2018105708 W CN 2018105708W WO 2020006870 A1 WO2020006870 A1 WO 2020006870A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
gas drainage
wedge
hole
air leakage
Prior art date
Application number
PCT/CN2018/105708
Other languages
English (en)
French (fr)
Inventor
刘洪永
郝从猛
程远平
张开仲
王振洋
赵忻
郝志远
张锐
Original Assignee
中国矿业大学
徐州中矿煤矿瓦斯治理工程研究有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学, 徐州中矿煤矿瓦斯治理工程研究有限责任公司 filed Critical 中国矿业大学
Publication of WO2020006870A1 publication Critical patent/WO2020006870A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/18Drilling by liquid or gas jets, with or without entrained pellets

Definitions

  • the invention relates to a sealing method for gas drainage drilling, in particular to a gas drainage drilling and sealing method for constructing an anti-seepage barrier by a slot-backfilling method, which is suitable for pre-extraction and extraction of coal seams and adjacent layers. Sealing of pressure-drilling gas drainage boreholes during mining, especially suitable for downhole drilling.
  • Coal seam gas as an associated resource of coal, is an efficient and clean energy source. Its calorific value is 35.9 MJ / m 3 , which is equivalent to 1.2 kg of standard coal.
  • gas disasters are also one of the main factors that plague coal mine safety production. China is a large coal-producing country and also the country with the most severe coal-gas disasters. High gas mines account for 50% to 70%. And with the increase of the mining depth, the gas content and gas pressure of coal reservoirs continue to increase, and the danger of dynamic disasters such as gas outburst also increases. Practice has proved that the most fundamental measure for coal mine gas management is to reduce the gas content through coal seam gas drainage, thereby eliminating the danger of gas disasters. Therefore, extracting and using coal seam gas is an important measure with triple benefits of "safety, energy saving, and environmental protection.”
  • China has a large gas drainage volume, but its utilization and utilization rate are very low. Especially in the field of underground gas drainage, most of the coal mine drainage gas is discharged to the atmosphere, causing serious waste of resources. At the same time, emissions of gas are generated. The greenhouse effect caused by a large amount of carbon dioxide causes serious pollution to the atmospheric environment.
  • the root cause of the lower utilization rate of the extracted gas in coal mines is the lower concentration of the extracted gas, which is discharged into the atmosphere because it is difficult to use or has poor economic efficiency. Therefore, improving the quality of gas drainage is the key to solving the low utilization rate.
  • the research shows that the low gas drainage concentration in the well is mainly due to the poor sealing quality of the borehole and a large amount of air seepage into the borehole.
  • downhole drilling and through drilling are mainly used for gas drainage.
  • more than 80% of the downhole gas drainage concentration in China will decay to 6% -20% in a short time, and the average drainage rate of coal seam gas is less than 23%. This is because with the extension of the gas drainage time, the total amount of gas flowing out of the borehole surrounding rock per unit time decreases and the air leakage increases, which comprehensively shows the phenomenon that the gas drainage concentration decays rapidly with time.
  • the present invention provides a gas drainage drilling hole sealing method for constructing an anti-seepage barrier by a slot-backfill method, which can effectively seal the air leakage area around the hole and block the air leakage, which can maximize the improvement Drainage gas concentration and coal seam gas drainage rate.
  • the technical solution adopted by the present invention to solve its technical problem is to draw a wedge-shaped disc-shaped space in the strong air leakage area of the coal body around the borehole at a distance of 6 to 8 m from the drilling hole, and in the wedge-shaped disc-shaped space
  • a hole-sealing capsule is set in the front and back holes of each hole, and the hole-sealing capsule and the hole-sealing section are injected with sealing material and the wedge-shaped disc-shaped space is backfilled to form an anti-seepage barrier that blocks the air leakage channel to complete the hole sealing.
  • a slotting and backfilling method of the present invention is used to construct a gas drainage drilling hole sealing method for an anti-seepage barrier.
  • a block air leakage is formed in the strong air leakage area of the coal body around the borehole.
  • the anti-seepage barrier of the channel can effectively block the air leakage channel around the borehole, thereby ensuring that the quality of gas drainage is always maintained at a high level.
  • the present invention changes the anti-seepage idea of extending the length of the sealing section and increasing the grouting pressure in the prior art, and changes the passive sealing to actively cut off the air leakage channel. A shorter sealing length can achieve a good sealing effect. , Save grouting materials, greatly reduce the amount of sealing works.
  • the invention has the characteristics of simple method, energy saving, environmental protection and high efficiency, and has wide practicability in the technical field.
  • FIG. 1 is a schematic structural diagram of an embodiment of the present invention.
  • FIG. 2 is a sectional view of FIG. 1.
  • FIG. 1 and FIG. 2 show a schematic structural diagram of a preferred embodiment of the present invention (arrows in the figure indicate air leakage).
  • step (c) Send the installed gas extraction pipe 3 with two plugged capsules into the borehole 2, the distance between the two plugged capsules is 5m, and make the wedge-shaped circle cut out in step (b)
  • the disc-shaped space 8 is between two sealed capsules;
  • the plugging grouting pipe 4 is connected to a grouting pump, and the expanded cement slurry is injected between the plugging capsule 6 and the two capsules until the slurry pressure in the plugging section reaches 3 MPa, and the slurry pressure in the slurry pressure pipe 5 is maintained for 11 minutes. And ensure that the wedge-shaped disc-shaped space 8 is completely backfilled, and the valve of the grouting pipe is closed to complete the grouting and sealing;
  • Example 1 After inspection, the concentration of drainage gas in Example 1 was maintained above 80%, and the drainage efficiency was 60%.
  • a method for gas drainage drilling and sealing of a gas-cutting barrier in Embodiment 2 to construct an anti-seepage barrier the specific steps are as follows (the coal quality is softer):
  • step (c) Send the installed gas extraction pipe 3 with two plugged capsules into the borehole 2, the distance between the two plugged capsules is 6m, and make the wedge-shaped circle cut out in step (b)
  • the disc-shaped space 8 is between two sealed capsules;
  • the plugging grouting pipe 4 is connected to a grouting pump, and the polyurethane slurry is injected between the plugging capsule 6 and the two capsules until the slurry pressure in the plugging section reaches 3 MPa.
  • the slurry pressure in the slurry pressure pipe 5 is maintained for 14 minutes and remains unchanged. Ensure that the wedge-shaped disc-shaped space 8 is completely backfilled, close the grouting pipe valve, and complete the grouting and sealing;
  • Example 2 After testing, the gas extraction concentration in Example 2 was not less than 60%, and the extraction efficiency was 45%.
  • the principle of the present invention is based on the objective fact that it is difficult for the sealing material to reach the edge of the coal body strong air leakage area 1 around the borehole 2.
  • the appropriate position is selected in the coal body.
  • a disk-shaped space is drawn out in the strong air leakage area 1.
  • This space is wedge-shaped, and then this space is filled with a highly-expansible sealing material with very low permeability to form a closed wall to prevent air leakage.
  • This method is applicable.
  • the location of the barrier construction is selected according to the hardness of the coal rock. Therefore, any drilling and plugging method applying this principle should belong to the protection scope of the present invention.
  • the invention aims at the current situation of crack development around gas drainage boreholes, existing sealing methods and technologies, and new materials that are difficult to penetrate into the coal body for effective plugging, and proposes a certain range of coal rocks in the strong air leakage area where cracks develop.
  • the technology of drawing out the body and backfilling with sealing material with poor air permeability to construct the anti-seepage barrier 7 is used to cut off the leakage channel, making it difficult for the leakage of the wall of the roadway to enter the borehole 2, thereby improving the quality of the extracted gas and making up for the current
  • the invention changes the anti-seepage idea of extending the length of the sealing section and increasing the grouting pressure in the prior art, and changes the passive sealing to actively cut off the air leakage channel. A shorter sealing length can achieve a good sealing effect and save Grouting material greatly reduces the amount of sealing work.
  • the invention has the characteristics of simple method, energy saving, environmental protection and high efficiency, and has wide practicability in the technical field.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sealing Material Composition (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法,是在距离钻孔(2)孔口6~8m处的钻孔(2)周围的煤体强漏风区域(1)内掏出一个楔型圆盘状空间(8),在楔型圆盘状空间(8)的前后两侧钻孔(2)内分别设置一个封孔胶囊(6),向封孔胶囊(6)及封孔段内注入封孔材料并将楔型圆盘状空间(8)回填密实,形成隔断漏风通道的防渗屏障(7),完成封孔。该方法能够有效密封钻孔周围漏风区域并隔断漏风,可以最大限度地提高抽采瓦斯浓度和煤层瓦斯抽采率,封孔长度较短,封孔效果良好,节约注浆材料,大幅降低封孔工程量。

Description

一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法 技术领域
本发明涉及一种瓦斯抽采钻孔的封孔方法,尤其是一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法,适用于本煤层、邻近层采前预抽和采中泄压瓦斯抽采钻孔的密封,尤其适用于顺层钻孔。
背景技术
煤层瓦斯作为煤的伴生资源,是一种高效清洁的能源,其热值为35.9MJ/m 3,相当于1.2kg的标准煤。同时,瓦斯灾害也是困扰煤矿安全生产的主要因素之一。中国是产煤大国,也是煤矿瓦斯灾害最严的国家。高瓦斯矿井占到50%~70%。并且随着开采深度的增加,煤储层瓦斯含量和瓦斯压力也不断增大,瓦斯突出等动力灾害危险性也随之增加。实践证明,煤矿瓦斯治理的最根本措施是通过煤层瓦斯抽采降低瓦斯含量,从而消除瓦斯灾害危险。因此,将煤层瓦斯抽采出来加以利用,是一种具有“安全、节能、环保”三重效益的重要举措。
中国瓦斯抽采量具大,利用量和利用率却很低,特别是在煤矿井下瓦斯抽采方面,绝大多数的煤矿抽采瓦斯被排放到大气,造成严重的资源浪费;同时,排放瓦斯产生的大量二氧化碳导致的温室效应,对大气环境产生严重污染。
煤矿井下所抽采瓦斯利用率较低的根本原因是抽采的瓦斯浓度较低,因难以利用或利用经济性较差而被排入大气中。因此,提高瓦斯抽采的质量是解决利用率低的关键。
研究表明,井下瓦斯抽采浓度低主要是因钻孔密封质量较差,大量空气 渗入钻孔所致。在中国煤矿主要采用井下顺层钻孔和穿层钻孔进行瓦斯抽采。据不完全统计,在中国有80%以上的井下顺层钻孔瓦斯抽采浓度会在短时间内衰减到6%-20%,煤层瓦斯的平均抽采率不足23%。这是由于随着瓦斯抽采时间的延长,钻孔围岩单位时间内流出的瓦斯总量减少,漏风量增大,综合表现出瓦斯抽采浓度随时间快速衰减的现象。
根据对钻孔周围漏风区域的研究表明,由于巷道周围的松动圈耦合钻孔周围扰动会形成一个类似漏斗状的强漏风区域,靠近巷道的区域漏风面积很大,越靠近钻孔深部漏风趋于越小。一般来说延长封孔距离和增加封孔注浆压力都是在缩小密封材料扩散的边界与漏斗状的强渗流边界的距离。由于材料本身的粘度、粒径的限制使得注浆压力在煤体裂隙中的渗透距离有限。另外,理论上讲在漏斗状强漏风区域内封孔段距离越大越接近强渗流边界,但在实际操作中封孔管一般最多下15m左右,长距离封孔难度较大,大幅度提高工程难度和施工量的同时并没有很好地解决抽采钻孔的漏风问题。
根据对钻孔周围漏风区域的研究表明,由于巷道周围的松动圈耦合钻孔周围扰动会形成一个类似漏斗状的强漏风区域,靠近巷道的区域漏风面积很大,越靠近钻孔深部漏风趋于越小。一般来说延长封孔距离和增加封孔注浆压力都是在缩小密封材料扩散的边界与漏斗状的强渗流边界的距离。由于材料本身的粘度、粒径的限制使得注浆压力在煤体裂隙中的渗透距离有限。另外,理论上讲在漏斗状强漏风区域内封孔段距离越大越接近强渗流边界,但在实际操作中封孔管一般最多下15m左右,长距离封孔难度较大,大幅度提高工程难度和施工量的同时并没有很好地解决抽采钻孔的漏风问题。
发明内容
为了克服现有技术的上述不足,本发明提供一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法,能够有效密封钻孔周围漏风区域并隔断漏风,可以最大限度地提高抽采瓦斯浓度和煤层瓦斯抽采率。
本发明解决其技术问题采用的技术方案是:在距离钻孔孔口6~8m处的钻孔周围的煤体强漏风区域内掏出一个楔型圆盘状空间,在楔型圆盘状空间的前后两侧钻孔内分别设置一个封孔胶囊,向封孔胶囊及封孔段内注入封孔材料并将楔型圆盘状空间回填密实,形成隔断漏风通道的防渗屏障,完成封孔。
相比现有技术,本发明的一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法,在瓦斯抽采过程前通过在钻孔周围的煤体强漏风区域形成隔断漏风通道的防渗屏障,可有效封堵钻孔周围的漏风通道,从而保障了瓦斯抽采质量始终保持在较高水平。另外,本发明改变了现有技术延长封孔段长度、增大注浆压力的防渗思路,将被动的密封转为主动切断漏风通道,较短的封孔长度即可实现良好的封孔效果,节约注浆材料,大幅降低封孔工程量。本发明具有方法简便、节能、环保、高效的特点,在本技术领域内具有广泛的实用性。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明实施例的结构示意图。
图2是图1的剖视图。
图中,1、煤体强漏风区域,2、钻孔,3、瓦斯抽采管,4、封孔注浆管,5、浆液压力管,6、封孔胶囊,7、防渗屏障,8、楔型圆盘状空间。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
图1和图2示出了本发明较佳的实施例的结构示意图(图中箭头表示漏风)。
实施例1的一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法,具体步骤如下(煤质较硬):
(a)首先将瓦斯抽采的钻孔2钻进到设计的终孔位置;
(b)换用水力割缝钻头,在距离孔口深6m处进行水力切槽,将钻孔2周围由于巷道应力导致的煤体强漏风区域1的煤体冲出,形成楔型圆盘状空间8,圆盘半径为0.5m;
(c)将安装好的带有两个封堵胶囊的瓦斯抽采管3送入钻孔2中,两个封堵胶囊之间的间距5m,并使(b)步骤切出的楔型圆盘状空间8处于两个密封胶囊之间;
(d)封孔注浆管4连接注浆泵,将膨胀水泥浆液注入封孔胶囊6和两个胶囊之间直至封孔段的浆液压力达到3MPa,维持浆液压力管5内浆液压力11min不变并确保楔型圆盘状空间8全部回填,关闭注浆管阀门,完成注浆封孔;
(e)待所注浆液凝固,在水力切槽区域形成浆液构成的防渗屏障7时, 将瓦斯抽采管3与巷道中的瓦斯抽采管路连接,进行瓦斯抽采;
重复以上步骤将巷道中所有瓦斯抽采管3并入抽采管路中。
经检验,通过实施例1抽采瓦斯的浓度保持在80%以上,抽采效率为60%。
实施例2的一种水力切槽构建防渗屏障的瓦斯抽采钻孔封孔方法,具体步骤如下(煤质较软):
(a)首先将瓦斯抽采的钻孔2钻进到设计的终孔位置;
(b)换用水力割缝钻头,在距离孔口深8m处进行水力切槽,将钻孔2周围由于巷道应力导致的煤体强漏风区域1的煤体冲出,形成楔型圆盘状空间8,圆盘半径0.9m;
(c)将安装好的带有两个封堵胶囊的瓦斯抽采管3送入钻孔2中,两个封堵胶囊之间的间距6m,并使(b)步骤切出的楔型圆盘状空间8处于两个密封胶囊之间;
(d)封孔注浆管4连接注浆泵,将聚氨酯浆液注入封孔胶囊6和两个胶囊之间直至封孔段的浆液压力达到3MPa,维持浆液压力管5内浆液压力14min不变并确保楔型圆盘状空间8全部回填,关闭注浆管阀门,完成注浆封孔;
(e)待所注浆液凝固,在水力切槽区域形成浆液构成的防渗屏障7时,将瓦斯抽采管3与巷道中瓦斯抽采管路连接,进行瓦斯抽采;
重复以上步骤将所有瓦斯抽采管3并入瓦斯抽采管路。
经检测,通过实施例2抽采瓦斯的浓度不低于60%,抽采效率为45%。
本发明的原理是根据封孔材料难以深入到钻孔2周围的煤体强漏风区域1的边缘这一客观事实,根据煤体强漏风区域1呈漏斗状的特点,选择合适 的位置在煤体强漏风区域1内掏出一个圆盘状空间,这个空间呈楔型状,然后在这一空间填充透气性极低的高膨胀性封孔材料,形成一道隔断漏风的封闭墙,这一方法适用于不同形式的钻孔封堵,根据煤岩硬度选择屏障构建的位置,因此凡应用这一原理的钻孔封孔方法都应属于本发明保护范围。
本发明针对瓦斯抽采钻孔周围裂隙发育、现有封孔方法和技术及新材料均难以深入煤体内部进行有效封堵的现状,提出了将裂隙发育的强漏风区域内一定范围的煤岩体掏出并以透气性较差的封孔材料回填从而构建防渗屏障7的技术来隔断漏风通道,使巷道壁的漏风难以进入钻孔2内部,进而提高抽采的瓦斯质量,弥补了现有技术的不足。本发明改变了现有技术延长封孔段长度、增大注浆压力的防渗思路,将被动的密封转为主动切断漏风通道,较短的封孔长度即可实现良好的封孔效果,节约注浆材料,大幅降低封孔工程量。本发明具有方法简便、节能、环保、高效的特点,在本技术领域内具有广泛的实用性。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质,对以上实施例所做出任何简单修改和同等变化,均落入本发明的保护范围之内。

Claims (8)

  1. 一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法,其特征是:在距离钻孔(2)孔口6~8m处的钻孔(2)周围的煤体强漏风区域(1)内掏出一个楔型圆盘状空间(8),在楔型圆盘状空间(8)的前后两侧钻孔(2)内分别设置一个封孔胶囊(6),向封孔胶囊(6)及封孔段内注入封孔材料并将楔型圆盘状空间(8)回填密实,形成隔断漏风通道的防渗屏障(7),完成封孔。
  2. 根据权利要求1所述的一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法,其特征是:采用水力割缝钻头进行水力切槽,将煤体强漏风区域(1)的煤体冲出,形成所述的楔型圆盘状空间(8)。
  3. 根据权利要求2所述的一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法,其特征是:所述楔型圆盘状空间(8)的圆盘半径不小于0.5m。
  4. 根据权利要求3所述的一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法,其特征是:将安装好的带有两个封堵胶囊的瓦斯抽采管(3)送入钻孔(2)中,两个封堵胶囊之间的间距5~6m,楔型圆盘状空间(8)处于两个密封胶囊之间。
  5. 根据权利要求4所述的一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法,其特征是:采用封孔注浆管(4)连接注浆泵,将所述封孔材料注入封孔胶囊(6)和两个胶囊之间直至封孔段的浆液压力达到3MPa,维持浆液压力10~15min不变并确保楔型圆盘状空间(8)全部回填,关闭注浆管阀门,完成注浆封孔。
  6. 根据权利要求5所述的一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法,其特征是:待所注浆液凝固,在水力切槽区域形成浆液构成的 防渗屏障(7)时,将瓦斯抽采管(3)与巷道中的瓦斯抽采管路连接,进行瓦斯抽采。
  7. 根据权利要求1至6任一项所述的一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法,其特征是:所述的封孔材料选用高膨胀性封孔材料。
  8. 根据权利要求7任一项所述的一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法,其特征是:所述的高膨胀性封孔材料为膨胀水泥浆液或者聚氨酯。
PCT/CN2018/105708 2018-07-06 2018-09-14 一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法 WO2020006870A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810735272.4A CN109236226A (zh) 2018-07-06 2018-07-06 一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法
CN201810735272.4 2018-07-06

Publications (1)

Publication Number Publication Date
WO2020006870A1 true WO2020006870A1 (zh) 2020-01-09

Family

ID=65071886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105708 WO2020006870A1 (zh) 2018-07-06 2018-09-14 一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法

Country Status (2)

Country Link
CN (1) CN109236226A (zh)
WO (1) WO2020006870A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113236180A (zh) * 2021-05-27 2021-08-10 杭州市勘测设计研究院有限公司 一种地质探孔封堵方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111119978B (zh) * 2019-12-04 2021-12-14 湖南科技大学 一种顺层钻孔水力割缝抽采煤层瓦斯方法
CN113503140B (zh) * 2021-07-26 2022-05-17 太原理工大学 双级囊袋带压强化封孔装置及封孔方法
CN117052344B (zh) * 2023-08-04 2024-05-31 内蒙古平庄煤业(集团)有限责任公司老公营子煤矿 近距离煤层群采空区堵漏钻探方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102900396A (zh) * 2012-11-01 2013-01-30 中国矿业大学 煤层瓦斯抽采钻孔封隔一体封孔方法
CN103590782A (zh) * 2013-11-28 2014-02-19 华北科技学院 一种瓦斯抽采钻孔气囊封堵带压注浆封孔装置与方法
US20140262269A1 (en) * 2013-03-13 2014-09-18 Superior Energy Services, L.L.C. Method to repair leaks in a cemented annulus
CN204677155U (zh) * 2015-01-13 2015-09-30 河南理工大学 一种井下煤层高强度快速钻孔封孔装置
CN106437612A (zh) * 2016-10-25 2017-02-22 中煤科工集团重庆研究院有限公司 顺层瓦斯抽采钻孔封孔方法及其封孔结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102704986A (zh) * 2012-06-26 2012-10-03 河北同成矿业科技有限公司 一种瓦斯抽采孔控压封孔的方法
CN102913184B (zh) * 2012-10-26 2015-05-27 河南理工大学 瓦斯抽采钻孔人造隔离墙二次复合高压注浆封孔工艺
CN103362542B (zh) * 2013-08-08 2016-01-20 中国矿业大学 顺层瓦斯抽采钻孔分段封孔方法
CN105422043A (zh) * 2015-12-15 2016-03-23 中国矿业大学 一种煤矿井下煤层注水和水力压裂钻孔密封的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102900396A (zh) * 2012-11-01 2013-01-30 中国矿业大学 煤层瓦斯抽采钻孔封隔一体封孔方法
US20140262269A1 (en) * 2013-03-13 2014-09-18 Superior Energy Services, L.L.C. Method to repair leaks in a cemented annulus
CN103590782A (zh) * 2013-11-28 2014-02-19 华北科技学院 一种瓦斯抽采钻孔气囊封堵带压注浆封孔装置与方法
CN204677155U (zh) * 2015-01-13 2015-09-30 河南理工大学 一种井下煤层高强度快速钻孔封孔装置
CN106437612A (zh) * 2016-10-25 2017-02-22 中煤科工集团重庆研究院有限公司 顺层瓦斯抽采钻孔封孔方法及其封孔结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113236180A (zh) * 2021-05-27 2021-08-10 杭州市勘测设计研究院有限公司 一种地质探孔封堵方法

Also Published As

Publication number Publication date
CN109236226A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
US10774591B2 (en) Drill-power-based directional hydraulic fracturing system for downhole quick slotting and method thereof
WO2020006870A1 (zh) 一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法
WO2018201706A1 (zh) 底板顺层长钻孔分段压裂高效抽放煤巷条带瓦斯及区域消突方法
CN104514577B (zh) 一种高效治理浅埋藏煤层大面积采空区遗煤自燃的方法
CN101294500B (zh) 大直径抽采钻孔高压注浆封孔方法
CN101666231B (zh) 一种盾构机进仓方法
WO2020093813A1 (zh) 一种基于含水层冻结的地下长壁工作面保水采煤方法
CN207892585U (zh) 煤矿瓦斯抽采钻孔用三堵两注封孔装置
CN105114116B (zh) 一种水热耦合压裂强化区域瓦斯抽采方法
CN105804786B (zh) 一种松软煤层底板穿层钻孔压冲增透方法
WO2019029178A1 (zh) 一种废弃煤矿地面卸压钻孔瓦斯治理新工艺
CN102678166B (zh) 单一厚煤层区域增透提高瓦斯抽采率的方法
CN107816365A (zh) 一种煤层钻爆抽注一体化防突方法
CN104895531A (zh) 单一厚煤层地面采动井抽采工艺
CN103899350A (zh) 综放工作面架载顶煤瓦斯抽采系统
CN102777185A (zh) 一种斜井井筒施工工艺
CN111022108A (zh) 一种抽采采空区瓦斯的方法
CN108316964A (zh) 一种低透气性煤层卸压瓦斯抽采方法
CN106351606B (zh) 基于钻孔围岩裂隙结构提高封孔效果的方法
CN203702071U (zh) 竖井探水注浆施工的防突水顶钻装置
CN105003294B (zh) 一种基于水热耦合压裂煤体石门揭煤方法
CN206233896U (zh) 用于瓦斯抽采的防抽气堵塞及抽采孔外封堵装置
CN109268060B (zh) 一种基于强弱强结构爆注一体化区域防突方法
CN208040348U (zh) 注浆囊袋式封孔器
CN203476278U (zh) 井下钻孔瓦斯抽采注浆式封孔及自动放水装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925710

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925710

Country of ref document: EP

Kind code of ref document: A1