WO2020004984A1 - Pd-l1 mutant having improved binding affinity for pd-1 - Google Patents

Pd-l1 mutant having improved binding affinity for pd-1 Download PDF

Info

Publication number
WO2020004984A1
WO2020004984A1 PCT/KR2019/007829 KR2019007829W WO2020004984A1 WO 2020004984 A1 WO2020004984 A1 WO 2020004984A1 KR 2019007829 W KR2019007829 W KR 2019007829W WO 2020004984 A1 WO2020004984 A1 WO 2020004984A1
Authority
WO
WIPO (PCT)
Prior art keywords
variant
amino acid
seq
wild
type
Prior art date
Application number
PCT/KR2019/007829
Other languages
French (fr)
Korean (ko)
Inventor
정상택
하지연
Original Assignee
국민대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국민대학교 산학협력단 filed Critical 국민대학교 산학협력단
Priority to US17/255,629 priority Critical patent/US20210324038A1/en
Priority to CN201980056951.1A priority patent/CN113195525A/en
Priority claimed from KR1020190076918A external-priority patent/KR102216576B1/en
Publication of WO2020004984A1 publication Critical patent/WO2020004984A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants

Definitions

  • the present invention relates to a PD-L1 variant and a method for preparing the same, wherein PD-1 binding ability is increased to effectively inhibit binding between wild-type PD-L1 and PD-1.
  • Drugs for the treatment of cancer are largely divided into low-molecular weight drugs and high-molecular weight drugs, and due to their specificity, high-molecular weight drugs have specific attention as low-molecular weight drugs.
  • PD-1 and PD-L1 are expressed not only in cancer cells but also in human immune cells, antibody drugs can kill normal immune cells and cause autoimmune diseases.
  • TILs tumor-infiltrating lymphocytes
  • PD-L1 variants were screened through screening.
  • PD-L1 has few mutations because of the relatively low binding force and the introduction of many mutations. As a result, it is necessary to find a variant that binds to PD-1 with high binding force.
  • the present inventors made an effort to discover PD-L1 variants that can effectively inhibit the binding between wild-type PD-L1 and PD-1 due to their high binding capacity with PD-1, and at the same time minimize the possibility of immunogenicity. .
  • the present invention was completed.
  • Another object of the present invention to provide a nucleic acid molecule encoding the PD-L1 variant.
  • Still another object of the present invention is to provide a vector containing the nucleic acid molecule.
  • Another object of the present invention to provide a host cell comprising the vector.
  • Still another object of the present invention is to provide a composition comprising the variant, nucleic acid molecule or vector.
  • Another object of the present invention to provide a method for producing the variant.
  • Another object of the present invention is to provide a method for screening the variants.
  • the present invention provides a PD-L1 variant with an increased PD-1 binding force.
  • the present inventors made an effort to discover PD-L1 variants that can effectively inhibit the binding between wild-type PD-L1 and PD-1 due to their high binding capacity with PD-1, and at the same time minimize the possibility of immunogenicity. .
  • PD-L1 variant or “Programmed death-ligand 1 variant” includes variants in which one or two or more amino acids are substituted, deleted or added to the amino acid sequence of wild type PD-L1. Means variant.
  • the PD-L1 variant of the present invention includes a variant in which some amino acids in the amino acid sequence of the wild-type PD-L1 of SEQ ID NO: 123 are substituted, deleted or added.
  • the PD-L1 variant of the present invention preferably has at least 50% homology, more preferably at least 60% homology, even more preferably at least 70% phase with the amino acid sequence of wild type PD-L1 of SEQ ID NO: 123 Homology, even more preferably at least 80% homology, most preferably at least 90% homology.
  • the PD-L1 variant of the present invention comprises a part of the amino acid sequence of the wild type PD-L1, the 169th amino acid sequence of the wild type PD-L1 of SEQ ID NO: 123 Amino acid substituted with E169D.
  • the PD-L1 variant of the present invention is 41, 73, 117, 124, 130, 139, 195 of the amino acid sequence of the wild type PD-L1 of SEQ ID NO: 123 And one or more amino acids selected from the group consisting of the 1 st, 198 th, 201 th, 213 th and 218 th amino acids are substituted with a sequence different from that of the wild type amino acid.
  • the 195th amino acid sequence of the wild-type PD-L1 of SEQ ID NO: 123 is R195K, R195A, R195I, R195T, R195V, R195F, R195L, R195R Or substituted with R195M.
  • the PD-L1 variant of the present invention comprises the substitution of P198S, P198T or P198H with the 198th amino acid sequence of the wild type PD-L1 of SEQ ID NO: 123.
  • the 41st amino acid is M41V
  • the 117th amino acid is N117S
  • the 124th amino acid is L124S of the amino acid sequence of wild type PD-L1 of SEQ ID NO: 123.
  • 195th amino acid is substituted with R195A.
  • the PD-L1 variant of the present invention comprises that the 195th amino acid of the amino acid sequence of wild-type PD-L1 of SEQ ID NO: 123 is substituted with R195K.
  • the PD-L1 variant of the present invention comprises that the 73rd amino acid of the amino acid sequence of wild-type PD-L1 of SEQ ID NO: 123 is replaced with Q73R, and the 195th amino acid is replaced with R195I .
  • the PD-L1 variant of the present invention comprises the substitution of 130 amino acids to T130A and 195 amino acids to R195I of the amino acid sequence of wild type PD-L1 of SEQ ID NO: 123 .
  • the PD-L1 variant of the present invention comprises the substitution of 117th amino acid with N117S and 198th amino acid with P198H of the amino acid sequence of the wild-type PD-L1 of SEQ ID NO: 123 .
  • the PD-L1 variant of the present invention comprises that the 195th amino acid of the amino acid sequence of wild-type PD-L1 of SEQ ID NO: 123 is substituted with R195I, and the 213th amino acid is substituted with L213P .
  • the PD-L1 variant of the present invention has a 139th amino acid as A139S, 198th amino acid as P198T, and 201th amino acid in the amino acid sequence of wild type PD-L1 of SEQ ID NO: 123 It includes one substituted with N201S.
  • the PD-L1 variant of the present invention comprises the substitution of N218D amino acid 218 of the amino acid sequence of wild-type PD-L1 of SEQ ID NO: 123.
  • the PD-L1 variant of the present invention is SEQ ID NO: 90, SEQ ID NO: 94, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 100, SEQ ID NO: And SEQ ID NO: 102, SEQ ID NO: 103, SEQ ID NO: 104, SEQ ID NO: 107, SEQ ID NO: 108 to SEQ ID NO: 122.
  • the present invention provides a nucleic acid molecule encoding the PD-L1 variant, a vector comprising the same or a host cell comprising the vector.
  • Nucleic acid molecules of the invention can be isolated or recombinant and include single and double stranded DNA and RNA as well as corresponding complementarity sequences.
  • An “isolated nucleic acid” is a nucleic acid isolated from a naturally occurring source, which is separated from the surrounding genetic sequence present in the genome of the individual from which the nucleic acid is isolated.
  • nucleic acids such as PCR products, cDNA molecules, or oligonucleotides synthesized enzymatically or chemically from a template
  • the nucleic acid resulting from this procedure can be understood as an isolated nucleic acid molecule.
  • Isolated nucleic acid molecules refer to nucleic acid molecules in the form of separate fragments or as components of larger nucleic acid constructs.
  • Nucleic acids are “operably linked” when placed in a functional relationship with other nucleic acid sequences.
  • the DNA of a presequence or secretion leader is operably linked to the DNA of a polypeptide when expressed as a preprotein, which is the form before the polypeptide is secreted, and the promoter or enhancer is a polypeptide sequence. Operably linked to a coding sequence when affecting the transcription of the ribosome binding site, or when the ribosome binding site is arranged to facilitate translation.
  • operably linked means that the DNA sequences to be linked are located contiguously, and in the case of a secretory leader, they are present in the same reading frame adjacently. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction enzyme sites. If such sites do not exist, the synthetic oligonucleotide adapters or linkers are used in accordance with conventional methods.
  • vector refers to a carrier capable of inserting a nucleic acid sequence for introduction into a cell capable of replicating the nucleic acid sequence.
  • Nucleic acid sequences can be exogenous or heterologous.
  • Vectors include, but are not limited to, plasmids, cosmids and viruses (eg bacteriophages).
  • plasmids include, but are not limited to, plasmids, cosmids and viruses (eg bacteriophages).
  • viruses eg bacteriophages.
  • One skilled in the art can construct vectors by standard recombinant techniques (Maniatis, et al., Molecular Cloning , A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY, 1988; and Ausubel et al., In: Current Protocols in Molecular Biology , John, Wiley & Sons, Inc, NY, 1994, etc.).
  • expression vector refers to a vector comprising a nucleic acid sequence encoding at least a portion of a gene product to be transcribed. In some cases, RNA molecules are then translated into proteins, polypeptides, or peptides. Expression vectors can include various regulatory sequences. In addition to regulatory sequences that regulate transcription and translation, vectors and expression vectors can also include nucleic acid sequences that provide additional functionality.
  • the term “host cell” refers to any transgenic organism that includes eukaryotes and prokaryotes and is capable of replicating the vector or expressing a gene encoded by the vector.
  • the host cell may be transfected or transformed by the vector, which means a process in which exogenous nucleic acid molecules are delivered or introduced into the host cell.
  • the host cell of the present invention is a bacterial cell, more preferably a Gram negative bacterial cell.
  • the cells are suitable for the practice of the present invention in that they have a periplasmic region between the inner membrane and the outer membrane.
  • Examples of preferred host cells of the present invention include E. coli , Pseudomonas aeruginosa , Vibrio cholera , Salmonella typhimurium , Shigella flexneri , Haemophilus influenza , Bordotella pertussi , Erwinia amylovora , Rhizobium sp. And the like, but are not limited thereto.
  • aglycosylated proteins are capable of mass production in bacteria and have excellent speed and cost.
  • the present invention provides a wild type PD-L1 (Programmed death-ligand 1) and PD-1 (Programmed cell) comprising the PD-L1 variant, nucleic acid molecule or vector as an active ingredient death protein-1) liver binding inhibitor.
  • PD-L1 Programmed death-ligand 1
  • PD-1 Programmed cell
  • the present invention provides a composition comprising the PD-L1 variant, nucleic acid molecule or vector as an active ingredient.
  • the composition is preferably a pharmaceutical composition, more preferably a pharmaceutical composition for preventing or treating cancer diseases or infectious diseases.
  • the present invention provides a wild type PD-L1 (Programmed death-ligand 1) comprising administering a pharmaceutically effective amount of the PD-L1 variant, nucleic acid molecule or vector to a subject.
  • PD-1 Programmed cell death protein-1
  • the present invention provides a method for increasing an immune response comprising administering to the subject a pharmaceutically effective amount of the PD-L1 variant, nucleic acid molecule or vector.
  • the present invention provides a method for treating a cancer disease or infectious disease, comprising administering a pharmaceutically effective amount of the PD-L1 variant, nucleic acid molecule or vector to a subject.
  • the pharmaceutical composition of the present invention comprises (a) the PD-L1 variant, nucleic acid molecule or vector; And (b) a pharmaceutically acceptable carrier.
  • the type of cancer to be prevented or treated by the present invention is not limited, leukemias and acute lymphocytic leukemia, acute nonlymphocytic leukemias, chronic lymphocytic leukemia, chronic lymphocytic leukemia Lymphomas, brain tumors, neuroblastoma, such as myelogenous leukemia, Hodgkin's Disease, non-Hodgkin's lymphomas, and multiple myeloma Childhood solid tumors such as retinoblastoma, Wilms Tumor, bone tumors and soft-tissue sarcomas, lung cancer, breast cancer cancer, prostate cancer, urinary cancers, uterine cancers, oral cancers, pancreatic cancer, melanoma and other skin cance rs, stomach cancer, ovarian cancer, brain tumors, liver cancer, laryngeal cancer, thyroid cancer, esophageal cancer and testicular cancer It may be administered to treat a number of cancers, including common solid tumors of adults
  • the type of infectious disease to be prevented or treated by the present invention is not limited, and includes a viral infection, an influenza infection, a bacterial infection and a fungal infection.
  • Pharmaceutically acceptable carriers included in the pharmaceutical compositions of the present invention are those commonly used in the preparation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, Calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like It doesn't happen.
  • the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like.
  • a lubricant e.g., talc, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, a kaolin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mann
  • composition of the present invention may be administered orally or parenterally to a subject, preferably parenteral administration, for example, by intravenous infusion, topical infusion and intraperitoneal infusion.
  • the term “subject” or “subject” refers to an object to prevent or treat the disease through inhibition of binding between the PD-1 and PD-L1, and preferably includes humans and animals.
  • the term “pharmaceutically effective amount” means an amount of an active ingredient or pharmaceutical composition that induces a biological or medical response in a tissue system, animal or human, as contemplated by a researcher, veterinarian, doctor or other clinician. Amounts that induce alleviation of the symptoms of the disease or disorder in question. It will be apparent to those skilled in the art that the effective amount and administration frequency for the active ingredient of the present invention will vary depending on the desired effect.
  • Suitable dosages of the pharmaceutical compositions of the invention vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, condition of food, time of administration, route of administration, rate of excretion and response to reaction, Usually a skilled practitioner can easily determine and prescribe a dosage effective for the desired treatment or prophylaxis.
  • the daily dose of the pharmaceutical composition of the present invention is 0.0001-100 mg / kg.
  • compositions of the present invention may be prepared in unit dosage form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. Or may be prepared by incorporation into a multi-dose container.
  • the formulation may be in the form of a solution, suspension or emulsion in an oil or an aqueous medium, or may be in the form of extracts, powders, granules, tablets or capsules, and may further include a dispersant or stabilizer.
  • the pharmaceutical composition of the present invention may be used alone as a therapy, but may also be used in conjunction with other conventional biological, chemo, or radiation therapies, and such combination therapy may be used to treat cancer or infectious disease more effectively.
  • Chemotherapeutic agents that can be used with the composition when the present invention is used for the prevention and treatment of cancer are cisplatin, carboplatin, procarbazine, mechlorethamine, Cyclophosphamide, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosourea, diactinomycin, daunorucin Daunorubicin, doxorubicin, bleomycin, plecomycin, mitomycin, etoposide, tamoxifen, tamoxifen, taxol, transflavol Transplatinum, 5-fluorouracil, vincristin, vinblastin, methotrexate, and the like.
  • Radiation therapy that can be used with the composition of the present
  • the present invention provides a method for preparing a PD-L1 variant, comprising the following steps:
  • the invention provides a method of screening for PD-L1 variants comprising the following steps:
  • the screening methods of the present invention can use fluorescence labeled cell separation (FACS) screening, or other automated flow cytometry techniques.
  • FACS fluorescence labeled cell separation
  • Instruments for performing flow cytometry are known to those skilled in the art. Examples of such devices are FACSAria, FACS Star Plus, FACScan and FACSort devices (Becton Dickinson, Foster City, CA), Epics C (Coulter Epics Division, Hialeah, FL), MOFLO (Cytomation, Colorado Springs, Colo.), MOFLO- XDP (Beckman Coulter, Indianapolis, IN).
  • Flow cytometry techniques generally include the separation of cells or other particles in a liquid sample.
  • a flow cytometer typically the purpose of a flow cytometer is to analyze the separated particles for their one or more properties (eg the presence of labeled ligands or other molecules). Particles are passed one by one by the sensor and are classified based on size, refraction, light scattering, opacity, roughness, shape, fluorescence, and the like.
  • the present invention provides PD-L1 variants with increased PD-1 binding capacity.
  • the present invention also provides a method for producing and screening the PD-L1 variant.
  • the PD-L1 variant of the present invention significantly improves the binding ability with PD-1 by replacing some amino acid sequences of wild-type PD-L1 with other amino acid sequences, thereby generating immunogenicity through the implementation of minimization of mutation sites. The likelihood can be greatly reduced.
  • Figure 6 shows the result of the binding force analysis of the PD-L1 variants obtained with PD-1.
  • Figure 7 shows the results of the binding force analysis of PD-1 of PD-L1 variants obtained through major position mutations.
  • Example 1 Cloning to Display Human PD-L1 in Bacterial Cell Intima (Wild Type PD-L1)
  • human PD-L1 extracellular region portion (SEQ ID NO: 123) was cloned for PD-L1 engineering using bacterial displays.
  • human PD-L1 gene cDNA was purchased from Sino Biotech (Catalog number: HG10084-M), and then the DNA of amino acid sequence F19-R238, which is a PD-L1 extracellular region, was prepared by primer (JY # 1, JY # 2). The gene was amplified by PCR with Vent Polymerase (New England Biolab).
  • the ligated plasmid was transformed into Jude1 ((F-mcrA ⁇ (mrr-hsdRMS-mcrBC) ⁇ 80lacZ ⁇ M15 ⁇ lacX74 recA1 endA1 araD139 ⁇ (ara, leu) 7697 galU galK ⁇ -rpsL nupG) Escherichia coli and analyzed by individual colonies). The sequence was confirmed.
  • Each sample was incubated for 16 hours at 37 ° C., 250 rpm in 4 ml of TB 2% glucose medium containing 40 ⁇ g / ml of chloramphenicol, and then the cultured cells were 7 mL of TB containing 40 ⁇ g / ml of chloramphenicol.
  • Resuspension was performed by adding 1 ml of 10 mM Tris-HCl (pH 8.0) to each e-tube from which the cells were recovered, and the remaining medium was removed by repeating the cell collection again by centrifugation (14,000 rpm, 1 min). . After washing, the cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution, and rotated at 37 ° C. for 30 minutes to remove the extracellular membrane. The cells were collected again by centrifugation (14,000 rpm, 1 min), and then the supernatant was removed.
  • STE 0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)
  • 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8] was added to resuspension and centrifuged (14,000 rpm, 1 min) to remove the supernatant, followed by 1 mL of Solution A and 50 mg / ml lysozyme. 1 ml of a solution containing 20 ⁇ l of solution was resuspensioned and rotated at 37 ° C. for 15 minutes to remove the peptidoglycan layer.
  • PD-1 was cloned in order to use it as a fluorescent probe when screening PD-L1 with strong binding force to PD-1.
  • dimer was induced by expressing GST in C-terminal part of PD-1 for more efficient screening using avidity effect through PD-1 dimerization.
  • a linker consisting of Gly and Ser between PD-1 and GST for fluidity of each protein.
  • GST was also amplified by PCR with Vent Polymerase using primers (CKJ # 3, CKJ # 4).
  • the PD-1 and GST DNAs amplified in this way were subjected to assembly PCR using a vent polymerase to generate PD-1-GST-His tags, followed by restriction enzymes Bss HII and Xba I (New England Biolab). Ligation was performed with pMAZ, an enzyme-treated animal cell expression vector. The ligated plasmid was transformed into Jude1 Escherichia coli and confirmed the sequence through individual colony analysis.
  • the completed dimeric PD-1 expression vector was transfected into animal cells (HEK293F) and incubated for 6 days. Cell culture was centrifuged at 6,000 xg for 15 minutes, then the supernatant was taken and filtered through a 0.22 ⁇ m filter. The filtered solution was mixed with 1 mL of Ni-NTA resin (Qiagen) and bound at 4 ° C. for 16 hours. The combined solution was poured into a column, washed with 10 CV (column volume) of PBS solution containing 10 mM imidazole (SIGMA), and washed once more with 10 CV of 20 mM imidazole containing PBS solution.
  • the purified PD-1 dimer was fluorescently labeled using Alexa-488 labeling kit. As a result of analyzing the activity of the fluorescently labeled dimeric PD-1 by ELISA, it was confirmed that it has excellent binding capacity with PD-L1 (Fig. 2).
  • E. coli cell anchoring motifs were determined, and NlpA system (pMopac12-NlpA-PDL1_WT-FLAG) anchoring the N-terminal of protein and geneIII system (pAK200-PelB-PDL1_WT) anchoring the C-terminal part -gene III) will be compared. Since pMopac12-NlpA-PDL1_WT-FLAG plasmid has already been secured, only pAK200-PelB-PDL1_WT-gene III was further cloned.
  • DNAs of the amino acid sequences F19-R238, which are part of the extracellular region of PD-L1 were amplified by PCR with Vent Polymerase using primers (JY # 3, JY # 2). Processing the amplified gene into the restriction enzyme Sfi I and then, the process proceeds to the process with Sfi I pAK200-PelB-geneIII vector and the ligation was complete the pAK200-PelB-PDL1_WT-geneIII plasmid. This is to secrete the protein into the E. coli periplasmic region through a signal peptide called PelB, and then to anchor the C-terminal of PD-L1 by the gene III protein immobilized on the cell membrane. The ligated plasmid was transformed into Jude1 Escherichia coli and confirmed the sequence through individual colony analysis.
  • Example 6 Selection of display method and probe concentration by verifying the binding force between PD-L1 expressed in E. coli and PD-1-GST probe using flow cytometry
  • the completed pMopac12-NlpA-PDL1-FLAG and pAK200-PelB-PDL1-geneIII plasmids were transformed into Jude1 cells, respectively.
  • Each sample was incubated for 16 hours at 37 ° C., 250 rpm in 4 ml of TB 2% glucose medium containing 40 ⁇ g / ml chloramphenicol, and then the cultured cells were stored in 7 mL TB containing 40 ⁇ g / ml chloramphenicol.
  • the cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution and rotated at 37 ° C. for 30 minutes to remove the extracellular membrane. The cells were collected again by centrifugation (14,000 rpm, 1 min), and then the supernatant was removed. 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8] was added to resuspension and centrifuged (14,000 rpm, 1 min) to remove supernatant, followed by 1 ml of Solution A and 50 mg / ml lysozyme solution.
  • STE 0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)
  • Example 7 Fabrication of large PD-L1 error prone library for using ultrafast screening technique
  • PD-1 and enables the random mutations into every part of PDL1 based on pAK200-PelB-PDL1-geneIII to search at a high speed for PDL1 variant with a high affinity containing Sfi I site on both Primers (JY # 4, JY # 5) were designed.
  • DNA was amplified using the designed primer, Taq Polymerase (TAKARA), dNTPs (Invitrogen), MgCl 2 , MnCl 2 (SIGMA) using Error Prone PCR. Processing the amplified gene into the restriction enzyme Sfi I and then, the process proceeds to the process with Sfi I pAK200-PelB-geneIII vector and ligation was Jude1 transformation in E. coli.
  • TAKARA Taq Polymerase
  • dNTPs Invitrogen
  • MgCl 2 MnCl 2
  • SIGMA Error Prone PCR
  • Example 8 PD-L1 variant screening using flow cytometer
  • 1 ml of the initial library was inoculated into 25 ml of TB 2% glucose medium to which 40 ⁇ g / ml of chloramphenicol was added, and then incubated at 37 ° C. at 250 rpm for 4 hours.
  • E. coli cultured in 100 ml of TB medium containing 40 ⁇ g / ml chloramphenicol was inoculated at a ratio of 1: 100.
  • OD 600 0.5 at 37 ° C. and 250 rpm
  • the mixture was cooled at 25 ° C. and 250 rpm for 15 minutes, followed by induction for 25 ° C., 250 rpm, and 5 hours by adding 1 mM IPTG.
  • the cells were recovered in the e-tube by centrifugation (14,000 rpm, 1 min) by OD 600 normalization. Resuspension was performed by adding 1 ml of 10 mM Tris-HCl (pH 8.0) to each e-tube from which the cells were collected, and the remaining medium was removed by repeating the cell collection through centrifugation (14,000 rpm, 1 minute) twice. . The washed cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution and rotated at 37 ° C. for 30 minutes to remove the extracellular membrane.
  • STE 0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)
  • the cells were collected again by centrifugation (14,000 rpm, 1 min), and then the supernatant was removed.
  • 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8] was added to the solution and centrifuged (14,000 rpm, 1 min) to remove the supernatant, followed by 1 ml of Solution A and 50 mg / ml lysozyme.
  • 1 ml of a solution containing 20 ⁇ l of solution was added and resuspensioned to rotate at 37 ° C. for 15 minutes to remove the peptidoglycan layer.
  • coli were able to be obtained by amplifying a gene by PCR using a primer (JY # 5, JY # 6) again, and then processed by a restriction enzyme, Sfi I, treated with Sfi I pAK200-PelB-geneIII Ligation with the vector was transformed into Jude1 Escherichia coli. Spread it on a plate and incubated for 16 hours at 37 °C to recover all E. coli using TB 2% glucose medium and stored at -80 °C. The screening process as described above was carried out a total of six times while reducing the concentration of the probe.
  • Example 9 Escherichia coli culture for confirming enrichment of PD-L1 variants with increased binding force with PD-1
  • wild-type PD-L1 a control group
  • wild-type PD-L1 was incubated for 16 hours at 37 ° C. and 250 rpm in 4 ml of TB 2% glucose medium containing 40 ⁇ g / ml of chloramphenicol, and the cultured cells contained 40 ⁇ g / ml of chloramphenicol.
  • Resuspension was performed by adding 1 ml of 10 mM Tris-HCl (pH 8.0) to each e-tube from which the cells were recovered, and the remaining medium was removed by repeating the cell collection through centrifugation (14,000 rpm, 1 minute) twice. .
  • the washed cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution and rotated at 37 ° C. for 30 minutes to remove the extracellular membrane.
  • the cells were collected again by centrifugation (14,000 rpm, 1 minute), and then the supernatant was removed.
  • Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8], resuspension, remove the supernatant by centrifugation (14,000 rpm, 1 min), and 1 ml of Solution A with 50 mg / ml lysozyme. 1 ml of a solution containing 20 ⁇ l of solution was resuspensioned and rotated at 37 ° C. for 15 minutes to remove the peptidoglycan layer.
  • PD-L1_L3B3 variants were used as primers (JY # 7, JY # 8, JY # 9, JY # 10, JY # 11, JY # 12, JY # 13, JY # 14, JY # 15, JY # 16, JY # 17, JY # 18, JY # 19, JY # 20) the after processing that have been created through the assembly PCR using 14 was amplified gene with restriction enzyme Sfi I, treated with Sfi I pAK200-PelB Ligation with -geneIII vector was performed to complete the pAK200-PelB-PDL1_L3B3-geneIII plasmid. The ligated plasmid was transformed into Jude1 Escherichia coli and confirmed the sequence through individual colony analysis.
  • Example 12 Obtaining PD-L1 Variants with Increased Adhesion with PD-1 by Flow Cytometry Analysis
  • the cells were recollected by centrifugation (14,000 rpm, 1 min), and then the supernatant was removed.
  • Add 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8], resuspension, remove the supernatant by centrifugation (14,000 rpm, 1 min), and 1 ml of Solution A and 50 mg / ml 1 ml of a solution of 20 ⁇ l of lysozyme solution was added, resuspensioned, and rotated at 37 ° C. for 15 minutes to remove the peptidoglycan layer.
  • the process proceeds to the process with Sfi I pAK200-PelB-geneIII vector and the ligation was complete the pAK200-PelB-PDL1_L3B3-geneIII plasmid.
  • the ligated plasmid was transformed into Jude1 Escherichia coli and confirmed the sequence through individual colony analysis.
  • the washed cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution and rotated at 37 ° C. for 30 minutes to remove the extracellular membrane. The cells were collected again by centrifugation (14,000 rpm, 1 min), and then the supernatant was removed.
  • STE 0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)
  • Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8], resuspension, remove the supernatant by centrifugation (14,000 rpm, 1 min), and then remove 1 ml of Solution A with 50 mg / 1 ml of the solution containing 20 ⁇ l of the ml lysozyme solution was resuspensioned and rotated at 37 ° C. for 15 minutes to remove the peptidoglycan layer.
  • Fluorescence signal values were indirectly analyzed for binding of the variants to PD-1 (FIG. 7). Through this, the variants with amplification of fluorescence signal values more than four-fold amplification were identified. Among them, the affinity of DAS, DTS, DTT, DLT and DMS increased five times or more (FIG. 8).

Abstract

The present invention relates to a PD-L1 mutant having improved binding affinity for PD-1. Also, the present invention relates to a method for preparing the PD-L1 mutant and a method for screening the PD-L1 mutant. The PD-L1 mutant of the present invention is made to greatly improve in binding affinity for PD-1 through the optimization achieved by substituting a part of the amino acid sequence of wild-type PD-L1 with a different amino acid sequence and to largely decrease in the plausibility of immunogenicity generation through the minimization of mutation positions.

Description

PD-1과 결합력이 증가된 PD-L1 변이체PD-L1 variant with increased binding force with PD-1
본 발명은 PD-1 결합력이 증대되어, 야생형 PD-L1 및 PD-1 간 결합을 효과적으로 억제하는 PD-L1 변이체 및 이의 제조방법에 관한 것이다.The present invention relates to a PD-L1 variant and a method for preparing the same, wherein PD-1 binding ability is increased to effectively inhibit binding between wild-type PD-L1 and PD-1.
암 치료를 위한 의약품은 크게 저분자 의약품과 고분자 의약품으로 나뉘며 특이성이 없어 부작용이 상대적으로 큰 저분자 의약품에 비해 특이성이 있는 고분자 의약품이 치료제로서 각광을 받고 있다.Drugs for the treatment of cancer are largely divided into low-molecular weight drugs and high-molecular weight drugs, and due to their specificity, high-molecular weight drugs have specific attention as low-molecular weight drugs.
최근 암을 치료하기 위한 방법으로써 면역관문 억제 단백질 중 특히 PD-1/PD-L1 결합의 차단이 암치료에 큰 효과가 있으며, 다른 면역관문 억제 단백질에 비해 부작용이 적다는 결과가 학계에 보고되었다(J. Naidoo et al. (2015) Annals of Oncology, Lucia Gelao et al. (2014) Toxins, Gorge K. Philips et al (2015) International Immunology).Recently, blockade of PD-1 / PD-L1 binding among the immune gate inhibitory proteins has been shown to be effective in the treatment of cancer, and the side effects of other immune gate inhibitory proteins have been reported in the academic community. (J. Naidoo et al. (2015) Annals of Oncology, Lucia Gelao et al. (2014) Toxins , Gorge K. Philips et al (2015) International Immunology ).
Bristol-Myers Squibb 등의 거대 제약기업이 PD-1/PD-L1 면역관문 억제를 통한 치료용 의약품 개발을 위해 노력하고 있으며, YERVOY(ipilimumab), OPDIVO(nivolumab) 같은 항암 목적의 의약품들이 항체 포맷을 이용하여 개발 중이다.Large pharmaceutical companies such as Bristol-Myers Squibb are working to develop therapeutic drugs by suppressing the PD-1 / PD-L1 immune barrier, and anti-cancer drugs such as YERVOY (ipilimumab) and OPDIVO (nivolumab) have been using antibody formats. Under development.
암세포 뿐만 아니라 사람의 면역 세포에도 PD-1 과 PD-L1이 발현되기 때문에 항체 의약품들은 정상적인 면역세포까지 사멸시켜 자가면역 질환을 일으킬 수 있다.Because PD-1 and PD-L1 are expressed not only in cancer cells but also in human immune cells, antibody drugs can kill normal immune cells and cause autoimmune diseases.
또한, 종양과 PD-1/PD-L1 결합 중인 TILs(Tumor-infiltrating lymphocytes)의 결합을 제거하기 위해서는 세포 침투력이 뛰어난 치료제가 필요하나 항체는 150 kDa의 매우 큰 거대 분자 단백질로써 침투하기에 불리한 점이 존재한다.In addition, to remove the binding of tumor-infiltrating lymphocytes (TILs) that bind to tumors and PD-1 / PD-L1, a therapeutic agent with excellent cell penetration is required, but the antibody is disadvantageous to penetrate into a very large molecular protein of 150 kDa. exist.
또한, 기존의 선행 연구에서 screening을 통해 PD-L1 변이체를 발굴 했지만, 이는 비교적 결합력이 낮을 뿐 아니라 많은 mutation이 도입되었기 때문에 치료용 의약품으로써의 면역원성이 존재할 수 있기 때문에 적은 돌연변이를 갖는 PD-L1으로써 PD-1에 높은 결합력으로 결합하는 변이체의 발굴이 필요하다. In addition, in the previous studies, PD-L1 variants were screened through screening. However, PD-L1 has few mutations because of the relatively low binding force and the introduction of many mutations. As a result, it is necessary to find a variant that binds to PD-1 with high binding force.
상기한 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The matters described as the background art are only for the purpose of improving the understanding of the background of the present invention and should not be taken as acknowledging that they correspond to the related art already known to those skilled in the art.
본 발명자들은 PD-1과의 결합력이 높아 야생형 PD-L1 및 PD-1 간 결합을 효과적으로 억제할 수 있으면서, 동시에 면역원성 발생의 가능성을 최소화할 수 있는 PD-L1 변이체를 발굴하고자 예의 노력을 하였다. 그 결과, 야생형 PD-L1의 일부 아미노산 서열을 다른 아미노산 서열로 치환하여 최적화함으로써 PD-1과의 결합력이 크게 향상되고, 돌연변이 위치의 최소화의 구현을 통해 면역원성 발생 가능성을 감소시킬 수 있음을 확인하여 본 발명을 완성하였다.The present inventors made an effort to discover PD-L1 variants that can effectively inhibit the binding between wild-type PD-L1 and PD-1 due to their high binding capacity with PD-1, and at the same time minimize the possibility of immunogenicity. . As a result, it was confirmed that by replacing some amino acid sequences of wild-type PD-L1 with other amino acid sequences and optimizing them, binding ability with PD-1 can be greatly improved, and the possibility of immunogenicity can be reduced by minimizing mutation sites. The present invention was completed.
따라서, 본 발명의 목적은 PD-1 결합력이 증대된 PD-L1 변이체를 제공하는데 있다.Accordingly, it is an object of the present invention to provide a PD-L1 variant with increased PD-1 binding force.
본 발명의 다른 목적은 상기 PD-L1 변이체를 코딩하는 핵산분자를 제공하는데 있다.Another object of the present invention to provide a nucleic acid molecule encoding the PD-L1 variant.
본 발명의 또 다른 목적은 상기 핵산분자를 포함하는 벡터를 제공하는데 있다.Still another object of the present invention is to provide a vector containing the nucleic acid molecule.
본 발명의 또 다른 목적은 상기 벡터를 포함하는 숙주세포를 제공하는데 있다.Another object of the present invention to provide a host cell comprising the vector.
본 발명의 또 다른 목적은 상기 변이체, 핵산분자 또는 벡터를 포함하는 조성물을 제공하는데 있다.Still another object of the present invention is to provide a composition comprising the variant, nucleic acid molecule or vector.
본 발명의 또 다른 목적은 상기 변이체의 제조방법을 제공하는데 있다.Another object of the present invention to provide a method for producing the variant.
본 발명의 또 다른 목적은 상기 변이체의 스크리닝 방법을 제공하는데 있다.Another object of the present invention is to provide a method for screening the variants.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
본 발명의 일 양태에 따르면, 본 발명은 PD-1 결합력이 증대된 PD-L1 변이체를 제공한다.According to one aspect of the present invention, the present invention provides a PD-L1 variant with an increased PD-1 binding force.
본 발명자들은 PD-1과의 결합력이 높아 야생형 PD-L1 및 PD-1 간 결합을 효과적으로 억제할 수 있으면서, 동시에 면역원성 발생의 가능성을 최소화할 수 있는 PD-L1 변이체를 발굴하고자 예의 노력을 하였다. 그 결과, 야생형 PD-L1의 일부 아미노산 서열을 다른 아미노산 서열로 치환하여 최적화함으로써 PD-1과의 결합력이 크게 향상되고, 돌연변이 위치의 최소화의 구현을 통해 면역원성 발생 가능성을 감소시킬 수 있음을 확인하였다.The present inventors made an effort to discover PD-L1 variants that can effectively inhibit the binding between wild-type PD-L1 and PD-1 due to their high binding capacity with PD-1, and at the same time minimize the possibility of immunogenicity. . As a result, it was confirmed that by replacing some amino acid sequences of wild-type PD-L1 with other amino acid sequences and optimizing them, binding ability with PD-1 can be greatly improved, and the possibility of immunogenicity can be reduced by minimizing mutation sites. It was.
본 명세서에서 용어 “PD-L1 변이체” 또는 “Programmed death-ligand 1 변이체”는 야생형(wild type) PD-L1의 아미노산 서열에서 1 또는 2 이상의 아미노산이 치환, 결실 또는 부가된 형태의 변이를 포함하는 변이체를 의미한다.As used herein, the term “PD-L1 variant” or “Programmed death-ligand 1 variant” includes variants in which one or two or more amino acids are substituted, deleted or added to the amino acid sequence of wild type PD-L1. Means variant.
본 발명의 바람직한 구현예에 따르면, 본 발명의 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 일부 아미노산이 치환, 결실 또는 부가된 형태의 변이체를 포함한다.According to a preferred embodiment of the present invention, the PD-L1 variant of the present invention includes a variant in which some amino acids in the amino acid sequence of the wild-type PD-L1 of SEQ ID NO: 123 are substituted, deleted or added.
본 발명의 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열과 바람직하게는 50% 이상의 상동성, 보다 바람직하게는 60% 이상의 상동성, 보다 더 바람직하게는 70% 이상의 상동성, 보다 더욱 더 바람직하게는 80% 이상의 상동성, 가장 바람직하게는 90% 이상의 상동성을 갖는다.The PD-L1 variant of the present invention preferably has at least 50% homology, more preferably at least 60% homology, even more preferably at least 70% phase with the amino acid sequence of wild type PD-L1 of SEQ ID NO: 123 Homology, even more preferably at least 80% homology, most preferably at least 90% homology.
본 발명의 바람직한 구현예에 따르면, 본 발명의 PD-L1 변이체는 야생형(Wild type) PD-L1의 아미노산 서열의 일부를 포함하며, 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 169번째 아미노산이 E169D로 치환된 것을 포함한다.According to a preferred embodiment of the present invention, the PD-L1 variant of the present invention comprises a part of the amino acid sequence of the wild type PD-L1, the 169th amino acid sequence of the wild type PD-L1 of SEQ ID NO: 123 Amino acid substituted with E169D.
본 발명의 바람직한 구현예에 따르면, 본 발명의 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 41번째, 73번째, 117번째, 124번째, 130번째, 139번째, 195번째, 198번째, 201번째, 213번째 및 218번째 아미노산으로 구성된 군으로부터 선택되는 1 이상의 아미노산이 야생형의 아미노산과 다른 서열로 치환된 것을 추가적으로 포함한다.According to a preferred embodiment of the present invention, the PD-L1 variant of the present invention is 41, 73, 117, 124, 130, 139, 195 of the amino acid sequence of the wild type PD-L1 of SEQ ID NO: 123 And one or more amino acids selected from the group consisting of the 1 st, 198 th, 201 th, 213 th and 218 th amino acids are substituted with a sequence different from that of the wild type amino acid.
본 발명의 바람직한 구현예에 따르면, 본 발명의 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 195번째 아미노산이 R195K, R195A, R195I, R195T, R195V, R195F, R195L, R195R 또는 R195M로 치환된 것을 포함한다.According to a preferred embodiment of the present invention, in the PD-L1 variant of the present invention, the 195th amino acid sequence of the wild-type PD-L1 of SEQ ID NO: 123 is R195K, R195A, R195I, R195T, R195V, R195F, R195L, R195R Or substituted with R195M.
본 발명의 바람직한 구현예에 따르면, 본 발명의 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 198번째 아미노산이 P198S, P198T 또는 P198H로 치환된 것을 포함한다.According to a preferred embodiment of the present invention, the PD-L1 variant of the present invention comprises the substitution of P198S, P198T or P198H with the 198th amino acid sequence of the wild type PD-L1 of SEQ ID NO: 123.
본 발명의 바람직한 구현예에 따르면, 본 발명의 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 41번째 아미노산이 M41V로, 117번째 아미노산이 N117S로, 124번째 아미노산이 L124S로, 그리고 195번째 아미노산이 R195A로 치환된 것을 포함한다.According to a preferred embodiment of the present invention, in the PD-L1 variant of the present invention, the 41st amino acid is M41V, the 117th amino acid is N117S, and the 124th amino acid is L124S of the amino acid sequence of wild type PD-L1 of SEQ ID NO: 123. And 195th amino acid is substituted with R195A.
본 발명의 바람직한 구현예에 따르면, 본 발명의 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 195번째 아미노산이 R195K로 치환된 것을 포함한다.According to a preferred embodiment of the present invention, the PD-L1 variant of the present invention comprises that the 195th amino acid of the amino acid sequence of wild-type PD-L1 of SEQ ID NO: 123 is substituted with R195K.
본 발명의 바람직한 구현예에 따르면, 본 발명의 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 73번째 아미노산이 Q73R로, 그리고 195번째 아미노산이 R195I로 치환된 것을 포함한다.According to a preferred embodiment of the present invention, the PD-L1 variant of the present invention comprises that the 73rd amino acid of the amino acid sequence of wild-type PD-L1 of SEQ ID NO: 123 is replaced with Q73R, and the 195th amino acid is replaced with R195I .
본 발명의 바람직한 구현예에 따르면, 본 발명의 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 130번째 아미노산이 T130A로, 그리고 195번째 아미노산이 R195I로 치환된 것을 포함한다.According to a preferred embodiment of the present invention, the PD-L1 variant of the present invention comprises the substitution of 130 amino acids to T130A and 195 amino acids to R195I of the amino acid sequence of wild type PD-L1 of SEQ ID NO: 123 .
본 발명의 바람직한 구현예에 따르면, 본 발명의 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 117번째 아미노산이 N117S로, 그리고 198번째 아미노산이 P198H로 치환된 것을 포함한다.According to a preferred embodiment of the present invention, the PD-L1 variant of the present invention comprises the substitution of 117th amino acid with N117S and 198th amino acid with P198H of the amino acid sequence of the wild-type PD-L1 of SEQ ID NO: 123 .
본 발명의 바람직한 구현예에 따르면, 본 발명의 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 195번째 아미노산이 R195I로, 그리고 213번째 아미노산이 L213P로 치환된 것을 포함한다.According to a preferred embodiment of the present invention, the PD-L1 variant of the present invention comprises that the 195th amino acid of the amino acid sequence of wild-type PD-L1 of SEQ ID NO: 123 is substituted with R195I, and the 213th amino acid is substituted with L213P .
본 발명의 바람직한 구현예에 따르면, 본 발명의 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 139번째 아미노산이 A139S로, 198번째 아미노산이 P198T로, 그리고 201번째 아미노산이 N201S로 치환된 것을 포함한다.According to a preferred embodiment of the present invention, the PD-L1 variant of the present invention has a 139th amino acid as A139S, 198th amino acid as P198T, and 201th amino acid in the amino acid sequence of wild type PD-L1 of SEQ ID NO: 123 It includes one substituted with N201S.
본 발명의 바람직한 구현예에 따르면, 본 발명의 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 218번째 아미노산이 N218D로 치환된 것을 포함한다.According to a preferred embodiment of the present invention, the PD-L1 variant of the present invention comprises the substitution of N218D amino acid 218 of the amino acid sequence of wild-type PD-L1 of SEQ ID NO: 123.
본 발명의 바람직한 구현예에 따르면, 본 발명의 PD-L1 변이체는 서열목록 제90서열, 서열목록 제94서열, 서열목록 제95서열, 서열목록 제97서열, 서열목록 제100서열, 서열목록 제102서열, 서열목록 제103서열, 서열목록 제104서열, 서열목록 제107서열, 서열목록 제108서열 내지 서열목록 제122서열로 이루어진 군으로부터 선택되는 서열을 포함한다.According to a preferred embodiment of the present invention, the PD-L1 variant of the present invention is SEQ ID NO: 90, SEQ ID NO: 94, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 100, SEQ ID NO: And SEQ ID NO: 102, SEQ ID NO: 103, SEQ ID NO: 104, SEQ ID NO: 107, SEQ ID NO: 108 to SEQ ID NO: 122.
본 발명의 다른 양태에 따르면, 본 발명은 상기 PD-L1 변이체를 코딩하는 핵산분자, 이를 포함하는 벡터 또는 상기 벡터를 포함하는 숙주세포를 제공한다.According to another aspect of the present invention, the present invention provides a nucleic acid molecule encoding the PD-L1 variant, a vector comprising the same or a host cell comprising the vector.
본 발명의 핵산분자는 단리된 것이거나 재조합된 것일 수 있으며, 단일쇄 및 이중쇄 형태의 DNA 및 RNA뿐만 아니라 대응하는 상보성 서열이 포함된다. “단리된 핵산”은 천연 생성 원천에서 단리된 핵산의 경우, 핵산이 단리된 개체의 게놈에 존재하는 주변 유전 서열로부터 분리된 핵산이다. 주형으로부터 효소적으로 또는 화학적으로 합성된 핵산, 예컨대 PCR 산물, cDNA 분자, 또는 올리고뉴클레오타이드의 경우, 이러한 절차로부터 생성된 핵산이 단리된 핵산분자로 이해될 수 있다. 단리된 핵산분자는 별도 단편의 형태 또는 더 큰 핵산 구축물의 성분으로서의 핵산 분자를 나타낸다. 핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 “작동가능하게 연결”된다. 예를 들면, 전서열 또는 분비 리더(leader)의 DNA는 폴리펩타이드가 분비되기 전의 형태인 전단백질(preprotein)로서 발현되는 경우 폴리펩타이드의 DNA에 작동가능하게 연결되고, 프로모터 또는 인핸서는 폴리펩타이드 서열의 전사에 영향을 주는 경우 코딩 서열에 작동가능하게 연결되며, 또는 리보솜 결합 부위는 번역을 촉진하도록 배치될 때 코딩 서열에 작동가능하게 연결된다. 일반적으로 “작동가능하게 연결된”은 연결될 DNA 서열들이 인접하여 위치함을 의미하며, 분비 리더의 경우 인접하여 동일한 리딩 프레임 내에 존재하는 것을 의미한다. 그러나 인핸서는 인접하여 위치할 필요는 없다. 연결은 편리한 제한 효소 부위에서 라이게이션에 의해 달성된다. 이러한 부위가 존재하지 않는 경우, 합성 올리고뉴클레오타이드 어댑터 또는 링커를 통상적인 방법에 따라 사용한다. Nucleic acid molecules of the invention can be isolated or recombinant and include single and double stranded DNA and RNA as well as corresponding complementarity sequences. An “isolated nucleic acid” is a nucleic acid isolated from a naturally occurring source, which is separated from the surrounding genetic sequence present in the genome of the individual from which the nucleic acid is isolated. In the case of nucleic acids, such as PCR products, cDNA molecules, or oligonucleotides synthesized enzymatically or chemically from a template, the nucleic acid resulting from this procedure can be understood as an isolated nucleic acid molecule. Isolated nucleic acid molecules refer to nucleic acid molecules in the form of separate fragments or as components of larger nucleic acid constructs. Nucleic acids are “operably linked” when placed in a functional relationship with other nucleic acid sequences. For example, the DNA of a presequence or secretion leader is operably linked to the DNA of a polypeptide when expressed as a preprotein, which is the form before the polypeptide is secreted, and the promoter or enhancer is a polypeptide sequence. Operably linked to a coding sequence when affecting the transcription of the ribosome binding site, or when the ribosome binding site is arranged to facilitate translation. In general, “operably linked” means that the DNA sequences to be linked are located contiguously, and in the case of a secretory leader, they are present in the same reading frame adjacently. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction enzyme sites. If such sites do not exist, the synthetic oligonucleotide adapters or linkers are used in accordance with conventional methods.
본 명세서에서 용어 “벡터”는 핵산 서열을 복제할 수 있는 세포로의 도입을 위해서 핵산 서열을 삽입할 수 있는 전달체를 의미한다. 핵산 서열은 외생(exogenous) 또는 이종(heterologous)일 수 있다. 벡터로서는 플라스미드, 코스미드 및 바이러스(예를 들면 박테리오파지)를 들 수 있으나, 이에 제한되지 않는다. 당업자는 표준적인 재조합 기술에 의해 벡터를 구축할 수 있다(Maniatis, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1988; 및 Ausubel et al., In: Current Protocols in Molecular Biology, John, Wiley & Sons, Inc, NY, 1994 등).As used herein, the term "vector" refers to a carrier capable of inserting a nucleic acid sequence for introduction into a cell capable of replicating the nucleic acid sequence. Nucleic acid sequences can be exogenous or heterologous. Vectors include, but are not limited to, plasmids, cosmids and viruses (eg bacteriophages). One skilled in the art can construct vectors by standard recombinant techniques (Maniatis, et al., Molecular Cloning , A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY, 1988; and Ausubel et al., In: Current Protocols in Molecular Biology , John, Wiley & Sons, Inc, NY, 1994, etc.).
본 명세서에서 용어 “발현 벡터”는 전사되는 유전자 산물 중 적어도 일부분을 코딩하는 핵산 서열을 포함한 벡터를 의미한다. 일부의 경우에는 그 후 RNA 분자가 단백질, 폴리펩타이드, 또는 펩타이드로 번역된다. 발현 벡터에는 다양한 조절서열을 포함할 수 있다. 전사 및 번역을 조절하는 조절서열과 함께 벡터 및 발현 벡터에는 또 다른 기능도 제공하는 핵산 서열도 포함될 수 있다.As used herein, the term “expression vector” refers to a vector comprising a nucleic acid sequence encoding at least a portion of a gene product to be transcribed. In some cases, RNA molecules are then translated into proteins, polypeptides, or peptides. Expression vectors can include various regulatory sequences. In addition to regulatory sequences that regulate transcription and translation, vectors and expression vectors can also include nucleic acid sequences that provide additional functionality.
본 명세서에서 용어 “숙주세포”는 진핵생물 및 원핵생물을 포함하며, 상기 벡터를 복제할 수 있거나 벡터에 의해 코딩되는 유전자를 발현할 수 있는 임의의 형질 전환 가능한 생물을 의미한다. 숙주세포는 상기 벡터에 의해 형질감염(transfected) 또는 형질전환(transformed) 될 수 있으며, 이는 외생의 핵산분자가 숙주세포 내에 전달되거나 도입되는 과정을 의미한다. As used herein, the term “host cell” refers to any transgenic organism that includes eukaryotes and prokaryotes and is capable of replicating the vector or expressing a gene encoded by the vector. The host cell may be transfected or transformed by the vector, which means a process in which exogenous nucleic acid molecules are delivered or introduced into the host cell.
본 발명의 바람직한 구현예에 따르면, 본 발명의 숙주세포는 세균(bacteria)세포, 보다 바람직하게는 그람 음성 세균세포이다. 상기 세포는 내막과 외막 사이에 원형질막 주위 공간 영역(periplasmic region)을 가지는 점에서 본 발명의 실시에 적합하다. 본 발명의 바람직한 숙주세포의 예로는 E. coli, Pseudomonas aeruginosa, Vibrio cholera, Salmonella typhimurium, Shigella flexneri, Haemophilus influenza, Bordotella pertussi, Erwinia amylovora, Rhizobium sp.등이 포함되나, 이에 제한되는 것은 아니다.According to a preferred embodiment of the present invention, the host cell of the present invention is a bacterial cell, more preferably a Gram negative bacterial cell. The cells are suitable for the practice of the present invention in that they have a periplasmic region between the inner membrane and the outer membrane. Examples of preferred host cells of the present invention include E. coli , Pseudomonas aeruginosa , Vibrio cholera , Salmonella typhimurium , Shigella flexneri , Haemophilus influenza , Bordotella pertussi , Erwinia amylovora , Rhizobium sp. And the like, but are not limited thereto.
현재 상용화된 대부분의 치료용 단백질들은 동물세포 배양을 통해 제조되고 있는데, 단백질을 생산할 때 다양한 당(carbohydrate) 변이체들이 단백질에 수식되게 되고, 이로 인한 당화 비균질성(glycan heterogeniety)은 치료용 단백질의 효능과 안정성에 변이를 유발하며, 항체 제조 공정 중 정제, 분석, QC(Quality Control)에 많은 비용을 요구하게 된다.Most of the commercially available therapeutic proteins are produced through animal cell culture. When the protein is produced, various carbohydrate variants are modified by the protein, resulting in glycogenous heterogeniety. It causes variations in stability and requires a high cost for purification, analysis, and quality control (QC) during the antibody manufacturing process.
고가의 동물세포 배양 시스템이 요구되는 상기 당화 단백질에 비해 무당화(aglycosylated) 단백질은 박테리아에서 대량 생산이 가능하고 속도와 비용 면에서 탁월한 우수성을 지닌다.Compared to the glycated proteins, which require expensive animal cell culture systems, aglycosylated proteins are capable of mass production in bacteria and have excellent speed and cost.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 PD-L1 변이체, 핵산분자 또는 벡터를 유효성분으로 포함하는 야생형(wild type) PD-L1(Programmed death-ligand 1) 및 PD-1(Programmed cell death protein-1) 간 결합 억제제를 제공한다.According to another aspect of the present invention, the present invention provides a wild type PD-L1 (Programmed death-ligand 1) and PD-1 (Programmed cell) comprising the PD-L1 variant, nucleic acid molecule or vector as an active ingredient death protein-1) liver binding inhibitor.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 PD-L1 변이체, 핵산분자 또는 벡터를 유효성분으로 포함하는 조성물을 제공한다.According to another aspect of the present invention, the present invention provides a composition comprising the PD-L1 variant, nucleic acid molecule or vector as an active ingredient.
상기 조성물은 바람직하게는 약제학적 조성물, 보다 바람직하게는 암질환 또는 감염성질환의 예방 또는 치료용 약제학적 조성물이다.The composition is preferably a pharmaceutical composition, more preferably a pharmaceutical composition for preventing or treating cancer diseases or infectious diseases.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 PD-L1 변이체, 핵산분자 또는 벡터를 대상체에게 약제학적 유효량을 투여하는 단계를 포함하는 야생형(wild type) PD-L1(Programmed death-ligand 1) 및 PD-1(Programmed cell death protein-1) 간 결합 억제방법을 제공한다.According to another embodiment of the present invention, the present invention provides a wild type PD-L1 (Programmed death-ligand 1) comprising administering a pharmaceutically effective amount of the PD-L1 variant, nucleic acid molecule or vector to a subject. And PD-1 (Programmed cell death protein-1).
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 PD-L1 변이체, 핵산분자 또는 벡터를 대상체에게 약제학적 유효량 투여하는 단계를 포함하는 면역반응 증가방법을 제공한다.According to another aspect of the present invention, the present invention provides a method for increasing an immune response comprising administering to the subject a pharmaceutically effective amount of the PD-L1 variant, nucleic acid molecule or vector.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 PD-L1 변이체, 핵산분자 또는 벡터를 대상체에게 약제학적 유효량을 투여하는 단계를 포함하는 암질환 또는 감염성질환의 치료방법을 제공한다.According to another aspect of the present invention, the present invention provides a method for treating a cancer disease or infectious disease, comprising administering a pharmaceutically effective amount of the PD-L1 variant, nucleic acid molecule or vector to a subject.
본 발명의 약제학적 조성물은 (a) 상기 PD-L1 변이체, 핵산분자 또는 벡터; 및 (b) 약제학적으로 허용되는 담체를 포함할 수 있다.The pharmaceutical composition of the present invention comprises (a) the PD-L1 variant, nucleic acid molecule or vector; And (b) a pharmaceutically acceptable carrier.
본 발명이 예방 또는 치료하고자 하는 암의 종류는 제한되지 않으며, 백혈병(leukemias) 및 급성 림프구 백혈병(acute lymphocytic leukemia), 급성 비림프구 백혈병(acute nonlymphocytic leukemias), 만성 림프구 백혈병(chronic lymphocytic leukemia), 만성 골수 백혈병(chronic myelogenous leukemia), 호지킨 병(Hodgkin's Disease), 비호지킨 림프종(non-Hodgkin's lymphomas) 및 다발 골수종(multiple myeloma) 등과 같은 림프종(lymphomas), 뇌종양(brain tumors), 신경모세포종(neuroblastoma), 망막모세포종(retinoblastoma), 윌름즈종양(Wilms Tumor), 골종양(bone tumors) 및 연부조직육종(soft-tissue sarcomas) 등과 같은 소아 고형 종양(childhood solid tumors), 폐암(lung cancer), 유방암(breast cancer), 전립선암(prostate cancer), 요로암(urinary cancers), 자궁암(uterine cancers), 구강암(oral cancers), 췌장암(pancreatic cancer), 흑색종(melanoma) 및 기타 피부암(skin cancers), 위암(stomach cancer), 난소암(ovarian cancer), 뇌종양(brain tumors), 간암(liver cancer), 후두암(laryngeal cancer), 갑상선암(thyroid cancer), 식도암(esophageal cancer) 및 고환암(testicular cancer) 등과 같은 성인들의 통상의 고형 종양(common solid tumors)들을 포함하여 다수의 암들을 치료하도록 투여될 수 있다.The type of cancer to be prevented or treated by the present invention is not limited, leukemias and acute lymphocytic leukemia, acute nonlymphocytic leukemias, chronic lymphocytic leukemia, chronic lymphocytic leukemia Lymphomas, brain tumors, neuroblastoma, such as myelogenous leukemia, Hodgkin's Disease, non-Hodgkin's lymphomas, and multiple myeloma Childhood solid tumors such as retinoblastoma, Wilms Tumor, bone tumors and soft-tissue sarcomas, lung cancer, breast cancer cancer, prostate cancer, urinary cancers, uterine cancers, oral cancers, pancreatic cancer, melanoma and other skin cance rs, stomach cancer, ovarian cancer, brain tumors, liver cancer, laryngeal cancer, thyroid cancer, esophageal cancer and testicular cancer It may be administered to treat a number of cancers, including common solid tumors of adults such as).
본 발명이 예방 또는 치료하고자 하는 감염성질환의 종류는 제한되지 않으며, 바이러스에 의한 감염, 인플루엔자에 의한 감염, 세균에 의한 감염 및 진균에 의한 감염을 포함한다.The type of infectious disease to be prevented or treated by the present invention is not limited, and includes a viral infection, an influenza infection, a bacterial infection and a fungal infection.
본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다. Pharmaceutically acceptable carriers included in the pharmaceutical compositions of the present invention are those commonly used in the preparation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, Calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like It doesn't happen. In addition to the above components, the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
본 발명의 약제학적 조성물은 대상체에 경구 또는 비경구로 투여할 수 있고, 바람직하게는 비경구 투여이며, 예컨대, 정맥 내 주입, 국소 주입 및 복강 주입 등으로 투여할 수 있다.The pharmaceutical composition of the present invention may be administered orally or parenterally to a subject, preferably parenteral administration, for example, by intravenous infusion, topical infusion and intraperitoneal infusion.
본 명세서에서 용어 “대상체” 또는 “subject”는 상기 PD-1 및 PD-L1간의 결합 억제를 통해 상기 질환을 예방 또는 치료하고자 하는 객체를 의미하며, 바람직하게는 인간 및 동물을 포함한다.As used herein, the term “subject” or “subject” refers to an object to prevent or treat the disease through inhibition of binding between the PD-1 and PD-L1, and preferably includes humans and animals.
본 명세서에서 용어 “약제학적 유효량”이란 연구자, 수의사, 의사 또는 기타 임상의에 의해 생각되는 조직계, 동물 또는 인간에서 생물학적 또는 의학적 반응을 유도하는 유효성분 또는 약제학적 조성물의 양을 의미하는 것으로, 이는 해당 질환 또는 장애의 증상의 완화를 유도하는 양을 포함한다. 본 발명의 유효성분에 대한 유효량 및 투여횟수는 원하는 효과에 따라 변화될 것임은 당업자에게 자명하다.As used herein, the term “pharmaceutically effective amount” means an amount of an active ingredient or pharmaceutical composition that induces a biological or medical response in a tissue system, animal or human, as contemplated by a researcher, veterinarian, doctor or other clinician. Amounts that induce alleviation of the symptoms of the disease or disorder in question. It will be apparent to those skilled in the art that the effective amount and administration frequency for the active ingredient of the present invention will vary depending on the desired effect.
본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련된 의사는 소망하는 치료 또는 예방에 효과적인 투여량을 용이하게 결정 및 처방할 수 있다. 본 발명의 바람직한 구현예에 따르면, 본 발명의 약제학적 조성물의 1일 투여량은 0.0001-100 ㎎/㎏이다.Suitable dosages of the pharmaceutical compositions of the invention vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, condition of food, time of administration, route of administration, rate of excretion and response to reaction, Usually a skilled practitioner can easily determine and prescribe a dosage effective for the desired treatment or prophylaxis. According to a preferred embodiment of the present invention, the daily dose of the pharmaceutical composition of the present invention is 0.0001-100 mg / kg.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.The pharmaceutical compositions of the present invention may be prepared in unit dosage form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. Or may be prepared by incorporation into a multi-dose container. In this case, the formulation may be in the form of a solution, suspension or emulsion in an oil or an aqueous medium, or may be in the form of extracts, powders, granules, tablets or capsules, and may further include a dispersant or stabilizer.
본 발명의 약제학적 조성물은 단독의 요법으로 이용될 수 있으나, 다른 통상적인 생물학적 요법, 화학 요법 또는 방사 요법과 함께 이용될 수도 있으며, 이러한 병행 요법을 실시하는 경우에는 보다 효과적으로 암 또는 감염성 질환을 치료할 수 있다. 본 발명을 암의 예방 및 치료에 이용하는 경우 상기 조성물과 함께 이용될 수 있는 화학 요법제는 시스플라틴(cisplatin), 카르보플라틴(carboplatin), 프로카르바진(procarbazine), 메클로레타민(mechlorethamine), 시클로포스파미드(cyclophosphamide), 이포스파미드(ifosfamide), 멜팔란(melphalan), 클로라부실(chlorambucil), 비술판(bisulfan), 니트로소우레아(nitrosourea), 디악티노마이신(dactinomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 블레오마이신(bleomycin), 플리코마이신(plicomycin), 미토마이신(mitomycin), 에토포시드(etoposide), 탁목시펜(tamoxifen), 택솔(taxol), 트랜스플라티눔(transplatinum), 5-플루오로우라실(5-fluorouracil), 빈크리스틴(vincristin), 빈블라스틴(vinblastin) 및 메토트렉세이트(methotrexate) 등을 포함한다. 본 발명의 조성물과 함께 이용될 수 있는 방사 요법은 X-선 조사 및 γ-선 조사 등이다.The pharmaceutical composition of the present invention may be used alone as a therapy, but may also be used in conjunction with other conventional biological, chemo, or radiation therapies, and such combination therapy may be used to treat cancer or infectious disease more effectively. Can be. Chemotherapeutic agents that can be used with the composition when the present invention is used for the prevention and treatment of cancer are cisplatin, carboplatin, procarbazine, mechlorethamine, Cyclophosphamide, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosourea, diactinomycin, daunorucin Daunorubicin, doxorubicin, bleomycin, plecomycin, mitomycin, etoposide, tamoxifen, tamoxifen, taxol, transflavol Transplatinum, 5-fluorouracil, vincristin, vinblastin, methotrexate, and the like. Radiation therapy that can be used with the composition of the present invention is X-ray irradiation, γ-ray irradiation, and the like.
본 발명의 또 다른 양태에 따르면, 본 발명은 하기의 단계를 포함하는 PD-L1 변이체의 제조방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for preparing a PD-L1 variant, comprising the following steps:
a) 상기 PD-L1 변이체를 코딩하는 핵산분자를 포함하는 벡터를 포함하는 숙주세포를 배양하는 단계; 및a) culturing a host cell comprising a vector comprising a nucleic acid molecule encoding the PD-L1 variant; And
b) 상기 숙주세포에 의해 발현된 PD-L1 변이체를 회수하는 단계. b) recovering the PD-L1 variant expressed by the host cell.
본 발명의 또 다른 양태에 따르면, 본 발명은 하기의 단계를 포함하는 PD-L1 변이체의 스크리닝 방법을 제공한다:According to another aspect of the invention, the invention provides a method of screening for PD-L1 variants comprising the following steps:
a) 상기 PD-L1 변이체 또는 이를 코딩하는 핵산분자에 추가적으로 무작위적인 점 돌연변이를 가한 PD-L1 변이체 또는 이를 코딩하는 핵산분자의 라이브러리를 구축하는 단계; 및a) constructing a library of PD-L1 variants or nucleic acid molecules encoding the PD-L1 variants or randomly added point mutations to the PD-L1 variants or nucleic acid molecules encoding the same; And
b) 상기 라이브러리에서 야생형(wild type) PD-L1(Programmed death-ligand 1) 및 PD-1(Programmed cell death protein-1) 간 결합을 억제하는 PD-L1 변이체를 선별하는 단계.b) selecting PD-L1 variants that inhibit binding between wild type Programmed death-ligand 1 and PD-1 Programmed cell death protein-1 in the library.
본 발명의 스크리닝 방법은 형광표지세포분리(FACS) 스크리닝, 또는 다른 자동화된 유세포 분석 기술을 사용할 수 있다. 유세포 분석기를 실시하기 위한 기기는 당업자에게 공지이다. 그러한 기기의 예로는 FACSAria, FACS Star Plus, FACScan 및 FACSort 기기(Becton Dickinson, Foster City, CA), Epics C(Coulter Epics Division, Hialeah, FL), MOFLO(Cytomation, Colorado Springs, Colo.), MOFLO-XDP (Beckman Coulter, Indianapolis, IN)를 들 수 있다. 일반적으로 유세포 분석기 기술에는 액체 시료 중의 세포 또는 다른 입자의 분리가 포함된다. 전형적으로는 유세포 분석기의 목적은 분리된 입자를 이들의 하나 이상의 특성(예를 들면 표지된 리간드 또는 다른 분자의 존재)에 대해서 분석하는 것이다. 입자는 센서에 의해 하나씩 통과되며, 크기, 굴절, 광산란, 불투명도, 조도, 형상, 형광 등에 기초하여 분류된다.The screening methods of the present invention can use fluorescence labeled cell separation (FACS) screening, or other automated flow cytometry techniques. Instruments for performing flow cytometry are known to those skilled in the art. Examples of such devices are FACSAria, FACS Star Plus, FACScan and FACSort devices (Becton Dickinson, Foster City, CA), Epics C (Coulter Epics Division, Hialeah, FL), MOFLO (Cytomation, Colorado Springs, Colo.), MOFLO- XDP (Beckman Coulter, Indianapolis, IN). Flow cytometry techniques generally include the separation of cells or other particles in a liquid sample. Typically the purpose of a flow cytometer is to analyze the separated particles for their one or more properties (eg the presence of labeled ligands or other molecules). Particles are passed one by one by the sensor and are classified based on size, refraction, light scattering, opacity, roughness, shape, fluorescence, and the like.
본 발명의 특징 및 이점을 요약하면 다음과 같다: The features and advantages of the present invention are summarized as follows:
(i) 본 발명은 PD-1 결합력이 증대된 PD-L1 변이체를 제공한다.(i) The present invention provides PD-L1 variants with increased PD-1 binding capacity.
(ii) 또한, 본 발명은 상기 PD-L1 변이체의 제조방법 및 스크리닝 방법을 제공한다.(ii) The present invention also provides a method for producing and screening the PD-L1 variant.
(iii) 본 발명의 PD-L1 변이체는 야생형 PD-L1의 일부 아미노산 서열을 다른 아미노산 서열로 치환하여 최적화함으로써 PD-1과의 결합력이 크게 향상되고, 돌연변이 위치의 최소화의 구현을 통해 면역원성 발생 가능성을 크게 감소시킬 수 있다.(iii) The PD-L1 variant of the present invention significantly improves the binding ability with PD-1 by replacing some amino acid sequences of wild-type PD-L1 with other amino acid sequences, thereby generating immunogenicity through the implementation of minimization of mutation sites. The likelihood can be greatly reduced.
도 1은 Anti-FLAG-FITC를 사용한 대장균에서의 PD-L1의 발현 분석 결과를 나타낸다.1 shows the results of expression analysis of PD-L1 in E. coli using Anti-FLAG-FITC.
도 2는 Dimeric PD-1 제조, 형광 표지화 및 활성 검증 결과를 나타낸다.2 shows Dimeric PD-1 preparation, fluorescence labeling and activity validation results.
도 3은 대장균 내막 디스플레이 방법 및probe 농도 선택 결과를 나타낸다.3 shows E. coli endothelium display method and probe concentration selection results.
도 4는 이니셜 라이브러리 DNA 시퀀스 분석 결과를 나타낸다.4 shows the results of the initial library DNA sequence analysis.
도 5는 스크리닝 진행 과정에 따른 라이브러리 enrichment 검증 결과를 나타낸다.5 shows library enrichment verification results according to the screening process.
도 6은 확보한 PD-L1 변이체들의 PD-1과의 결합력 분석 결과를 나타낸다.Figure 6 shows the result of the binding force analysis of the PD-L1 variants obtained with PD-1.
도 7은 주요 위치 돌연변이를 통해 확보한 PD-L1 변이체들의 PD-1 과의 결합력 분석 결과를 나타낸다.Figure 7 shows the results of the binding force analysis of PD-1 of PD-L1 variants obtained through major position mutations.
도 8은 추가적인 3중 돌연변이(169, 195 및 198 위치)를 포함하는 PD-L1 변이체들의 PD-1 과의 결합력 분석 결과를 나타낸다.8 shows the results of avidity analysis of PD-L1 variants with PD-1 comprising additional triple mutations (positions 169, 195 and 198).
이하, 실시 예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시 예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to the following examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
실시예Example
실시예 1: 박테리아 세포 내막에서 인간PD-L1을 디스플레이하기 위한 클로닝(야생형 PD-L1)Example 1: Cloning to Display Human PD-L1 in Bacterial Cell Intima (Wild Type PD-L1)
박테리아 디스플레이를 이용해 PD-L1 엔지니어링을 하기 위해서 인간 PD-L1 세포 외 영역 부분(서열목록 제123서열)을 클로닝하였다. 먼저 인간 PD-L1 gene cDNA를 Sino Biotech (Catalog number: HG10084-M)사에서 구입 후, PD-L1 세포외 영역 부분인 아미노산 서열 F19 - R238의 DNA를 primer (JY#1, JY#2)를 사용해 Vent Polymerase (New England Biolab)로 PCR하여 유전자를 증폭하였다. 증폭된 유전자를 제한효소인 SfiI 으로 처리한 후, SfiI 으로 처리된 pMopac12-NlpA-FLAG 벡터와 라이게이션을 진행하여 pMopac12-NlpA-PDL1_WT-FLAG 플라스미드를 완성시켰다. 이는 세포 내막에 고정화 되는NlpA 라는 시그널 펩타이드를 이용하여 PD-L1 단백질을 대장균 periplasmic region으로 분비하기 위함이다. 라이게이션된 플라스미드는 Jude1 ((F- mcrA △(mrr-hsdRMS-mcrBC) Φ80lacZ△M15 △lacX74 recA1 endA1 araD139 △(ara, leu)7697 galU galK λ- rpsL nupG) 대장균에 transformation하여 개별 콜로니 분석을 통해 sequence를 확인하였다.The human PD-L1 extracellular region portion (SEQ ID NO: 123) was cloned for PD-L1 engineering using bacterial displays. First, human PD-L1 gene cDNA was purchased from Sino Biotech (Catalog number: HG10084-M), and then the DNA of amino acid sequence F19-R238, which is a PD-L1 extracellular region, was prepared by primer (JY # 1, JY # 2). The gene was amplified by PCR with Vent Polymerase (New England Biolab). Processing the amplified gene into the restriction enzyme Sfi I and then, the process proceeds to the process with Sfi I-pMopac12 NlpA-FLAG vector and the ligation was complete pMopac12-NlpA-PDL1_WT-FLAG plasmids. This is to secrete PD-L1 protein into E. coli periplasmic region by using a signal peptide called NlpA immobilized on the cell membrane. The ligated plasmid was transformed into Jude1 ((F-mcrA Δ (mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 endA1 araD139 △ (ara, leu) 7697 galU galK λ-rpsL nupG) Escherichia coli and analyzed by individual colonies). The sequence was confirmed.
실시예 2: 무당화 PD-1 엔지니어링을 위한 tetrameric 인간 PD-L1 (PD-L1-Streptavidin) 클로닝 Example 2: Cloning of tetrameric Human PD-L1 (PD-L1-Streptavidin) for Engineering Glycosylated PD-1
클로닝한 pMopac12-NlpA-PDL1-FLAG 플라스미드와 대장균에서 발현이 잘 되는 positive control인 pMopac12-NlpA-Fc-FLAG과 FLAG tag이 없는 negative control인 pMopac12-NlpA-PDL1을 각각 Jude1 세포에 transformation하였다. 각 샘플을 40 μg/ml의 chloramphenicol이 포함된 4 ml의 TB 2% glucose 배지에서 37℃, 250 rpm으로 16시간 배양 한 후, 배양된 세포를 40 μg/ml의 chloramphenicol이 포함된 7 mL의 TB 배지에 1:100 비율로 접종하였다. 37℃, 250 rpm 으로 OD600=0.5까지 배양한 후 15분간 25℃, 250 rpm에서 cooling 시킨 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 induction하였다. Induction이 끝난 후, OD600 normalize를 통해 동일한 양의 세포를 원심분리(14,000 rpm, 1 분)를 하여e-tube에 회수하였다. 세포를 회수한 각 e-tube에 10 mM Tris-HCl(pH 8.0) 1 ml을 넣어 resuspension하고 원심분리(14,000 rpm, 1 분)를 통해 세포를 다시 모으는 과정을 2회 반복하여 잔여 배지를 제거하였다. 세척이 끝난 세포에 1 ml의 STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] 용액으로 resuspension하고 37℃에서 30분간 rotation을 하여 세포 외막을 제거하였다. 원심분리(14,000 rpm, 1 분)를 통해 세포를 다시 모은 후, 상등액을 제거하였다. Solution A [0.5 M sucrose, 20 mM MgCl2, 10mM MOPS pH 6.8] 1ml을 넣어 resuspension 후 원심분리(14,000 rpm, 1 분)를 하여 상등액을 제거 한 후, 1 mL의 Solution A와 50 mg/ml lysozyme solution 20 μl를 혼합한 용액을 1 ml을 넣어 resuspension하여 37℃에서15 분간 rotation하여 펩티도글리칸 층을 제거하였다. 원심분리(14,000 rpm, 1 분) 후 상등액을 제거하고 1 ml의 PBS로 resuspension하여 300 μL를 새로운 e-tube에 옮긴 후, 700 μl의 PBS와 33 nM의 anti-FLAG-FTIC (SIGMA)를 각각 넣고 상온에서 1시간동안 rotation하여 spheroplast에 형광 probe로 labeling하였다. 그 후, 원심분리(14,000 rpm, 1 분)를 하여 상등액을 버리고 1 ml의 PBS로 resuspension하여 세척하는 과정을 2회 반복한다. 이 과정을 모두 끝낸 세가지 샘플을 Guava (Merck Millipore) 장비를 이용해 분석하였다. 그 결과, PD-L1이 대장균에서 성공적으로 발현되는 것을 확인하였고(도 1), 이를 통해 박테리아 디스플레이를 이용한 스크리닝 가능성을 검증하였다.The cloned pMopac12-NlpA-PDL1-FLAG plasmid and pMopac12-NlpA-Fc-FLAG, a positive control well expressed in Escherichia coli, and pMopac12-NlpA-PDL1, a negative control without FLAG tag, were transformed into Jude1 cells, respectively. Each sample was incubated for 16 hours at 37 ° C., 250 rpm in 4 ml of TB 2% glucose medium containing 40 μg / ml of chloramphenicol, and then the cultured cells were 7 mL of TB containing 40 μg / ml of chloramphenicol. The medium was inoculated at a 1: 100 ratio. After incubating at OD 600 = 0.5 at 37 ° C. and 250 rpm, the mixture was cooled at 25 ° C. and 250 rpm for 15 minutes, followed by induction for 25 ° C., 250 rpm, and 5 hours by adding 1 mM IPTG. After the induction, the same amount of cells were centrifuged (14,000 rpm, 1 min) through OD 600 normalize and recovered in the e-tube. Resuspension was performed by adding 1 ml of 10 mM Tris-HCl (pH 8.0) to each e-tube from which the cells were recovered, and the remaining medium was removed by repeating the cell collection again by centrifugation (14,000 rpm, 1 min). . After washing, the cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution, and rotated at 37 ° C. for 30 minutes to remove the extracellular membrane. The cells were collected again by centrifugation (14,000 rpm, 1 min), and then the supernatant was removed. 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8] was added to resuspension and centrifuged (14,000 rpm, 1 min) to remove the supernatant, followed by 1 mL of Solution A and 50 mg / ml lysozyme. 1 ml of a solution containing 20 μl of solution was resuspensioned and rotated at 37 ° C. for 15 minutes to remove the peptidoglycan layer. After centrifugation (14,000 rpm, 1 min), the supernatant was removed and resuspensioned with 1 ml PBS to transfer 300 μL to a new e-tube, followed by 700 μl PBS and 33 nM anti-FLAG-FTIC (SIGMA), respectively. After rotation for 1 hour at room temperature, the spheroplast was labeled with a fluorescent probe. Thereafter, the supernatant is discarded by centrifugation (14,000 rpm, 1 minute) and resuspensioned with 1 ml of PBS and washed twice. Three samples were completed using the Guava (Merck Millipore) instrument. As a result, it was confirmed that PD-L1 was successfully expressed in Escherichia coli (FIG. 1), through which screening potential using bacterial display was verified.
실시예 3: 엔지니어링된 PD-L1 스크리닝을 위한 dimeric 인간 PD-1 (PD-1-GST) 클로닝Example 3: Cloning of dimeric Human PD-1 (PD-1-GST) for Engineered PD-L1 Screening
PD-1과 결합력이 강한 PD-L1을 스크리닝 할 때 형광 probe로 사용하기 위해서, PD-1을 클로닝하였다. 이 때, PD-1 dimerization을 통한 avidity effect를 이용해 좀 더 효율적인 스크리닝을 진행하기 위해서 PD-1의 C-terminal 부분에 GST를 발현시켜 dimer를 유도하였다. 또한 각각의 단백질의 유동성을 위해 PD-1과 GST 사이에 Gly과 Ser으로 구성된 링커를 포함하였다. 먼저, Sino Biotech. 사에서 PD-1 gene cDNA (Catalog number: HG10377-M)를 구입 후, PD-1 세포외 영역 부분인 아미노산 서열 L25 - Q167의 DNA를 primer (CKJ#1, CKJ#2)를 사용해 Vent Polymerase로 PCR하여 유전자를 증폭하였다. GST 또한 primer (CKJ#3, CKJ#4)를 사용해 Vent Polymerase로 PCR하여 유전자를 증폭하였다. 이렇게 증폭된 각각의 PD-1과 GST DNA를 Vent Polymerase로 assembly PCR를 진행하여 PD-1-GST-His tag을 만든 후, 제한효소인 BssHII와 XbaI(New England Biolab) 처리를 하여 동일한 제한효소 처리된 동물세포 발현용 벡터인 pMAZ와 라이게이션을 진행하였다. 라이게이션된 플라스미드는 Jude1 대장균에 transformation하여 개별 콜로니 분석을 통해 sequence를 확인하였다.PD-1 was cloned in order to use it as a fluorescent probe when screening PD-L1 with strong binding force to PD-1. At this time, dimer was induced by expressing GST in C-terminal part of PD-1 for more efficient screening using avidity effect through PD-1 dimerization. Also included is a linker consisting of Gly and Ser between PD-1 and GST for fluidity of each protein. First, Sino Biotech. After purchasing PD-1 gene cDNA (Catalog number: HG10377-M), the DNA of amino acid sequence L25-Q167, which is a part of PD-1 extracellular domain, was converted to Vent Polymerase using primers (CKJ # 1, CKJ # 2). PCR amplified the genes. GST was also amplified by PCR with Vent Polymerase using primers (CKJ # 3, CKJ # 4). The PD-1 and GST DNAs amplified in this way were subjected to assembly PCR using a vent polymerase to generate PD-1-GST-His tags, followed by restriction enzymes Bss HII and Xba I (New England Biolab). Ligation was performed with pMAZ, an enzyme-treated animal cell expression vector. The ligated plasmid was transformed into Jude1 Escherichia coli and confirmed the sequence through individual colony analysis.
실시예 4: Dimeric PD-1-GST의 동물세포 발현, 정제 및 형광 물질 레이블링Example 4: Animal Cell Expression, Purification and Fluorescent Labeling of Dimeric PD-1-GST
완성된 dimeric PD-1 발현용 벡터를 동물세포(HEK293F)에 transfection 하여 6일간 배양 하였다. 세포 배양액을 6,000 ×g에서 15분간 원심분리 후, 상등액을 취해 0.22 μm filter를 통해 필터하였다. 필터된 용액을 Ni-NTA resin(Qiagen) 1 mL과 섞어 4°C에서 16시간동안 결합시켰다. 결합시킨 용액을 컬럼에 흘려주고 resin의 10 CV(column volume)의 10 mM imidazole(SIGMA)이 포함된 PBS 용액으로 세척 후 10 CV의 20 mM imidazole 포함 PBS 용액으로 한번 더 세척하였다. 마지막으로 250 mM imidazole이 포함된 PBS 용액으로 용출액을 회수하였다. 정제된 PD-1 dimer는 Alexa-488 labeling kit를 사용해 형광표지화 하였다. ELISA로 형광표지된 dimeric PD-1 의 활성을 분석한 결과, PD-L1과의 우수한 결합력을 가지는 것을 확인하였다(도 2).The completed dimeric PD-1 expression vector was transfected into animal cells (HEK293F) and incubated for 6 days. Cell culture was centrifuged at 6,000 xg for 15 minutes, then the supernatant was taken and filtered through a 0.22 μm filter. The filtered solution was mixed with 1 mL of Ni-NTA resin (Qiagen) and bound at 4 ° C. for 16 hours. The combined solution was poured into a column, washed with 10 CV (column volume) of PBS solution containing 10 mM imidazole (SIGMA), and washed once more with 10 CV of 20 mM imidazole containing PBS solution. Finally, the eluate was recovered with a PBS solution containing 250 mM imidazole. The purified PD-1 dimer was fluorescently labeled using Alexa-488 labeling kit. As a result of analyzing the activity of the fluorescently labeled dimeric PD-1 by ELISA, it was confirmed that it has excellent binding capacity with PD-L1 (Fig. 2).
실시예 5: 대장균 내막 디스플레이 방법 선택을 위한 PD-L1 클로닝 Example 5: PD-L1 Cloning for E. coli Endometrial Display Method Selection
효율적인 스크리닝을 위해 대장균 세포 내막 anchoring motif를 결정하기로 하였고, 단백질의 N-terminal을 anchoring 시키는 NlpA 시스템 (pMopac12-NlpA-PDL1_WT-FLAG)과 C-terminal 부분을 anchoring 시키는 geneⅢ 시스템(pAK200-PelB-PDL1_WT-geneⅢ)을 비교하기로 하였다. pMopac12-NlpA-PDL1_WT-FLAG 플라스미드는 이미 확보되어 있기 때문에pAK200-PelB-PDL1_WT-geneⅢ 만 추가로 클로닝을 진행하였다. 먼저, PD-L1 세포외 영역 부분인 아미노산 서열 F19 - R238의 DNA를 primer(JY#3, JY#2)를 사용해 Vent Polymerase로 PCR하여 유전자를 증폭하였다. 증폭된 유전자를 제한효소인 SfiI 으로 처리한 후, SfiI 으로 처리된 pAK200-PelB-geneⅢ 벡터와 라이게이션을 진행하여 pAK200-PelB-PDL1_WT-geneⅢ 플라스미드를 완성시켰다. 이는 PelB라는 시그널 펩타이드를 통해 단백질을 대장균 periplasmic region으로 분비한 후, 세포 내막에 고정화되는 geneⅢ 단백질에 의해 PD-L1의 C-terminal이 anchoring되게 하기 위함이다. 라이게이션된 플라스미드는 Jude1 대장균에 transformation하여 개별 콜로니 분석을 통해 sequence를 확인하였다.For efficient screening, E. coli cell anchoring motifs were determined, and NlpA system (pMopac12-NlpA-PDL1_WT-FLAG) anchoring the N-terminal of protein and geneIII system (pAK200-PelB-PDL1_WT) anchoring the C-terminal part -gene III) will be compared. Since pMopac12-NlpA-PDL1_WT-FLAG plasmid has already been secured, only pAK200-PelB-PDL1_WT-gene III was further cloned. First, DNAs of the amino acid sequences F19-R238, which are part of the extracellular region of PD-L1, were amplified by PCR with Vent Polymerase using primers (JY # 3, JY # 2). Processing the amplified gene into the restriction enzyme Sfi I and then, the process proceeds to the process with Sfi I pAK200-PelB-geneⅢ vector and the ligation was complete the pAK200-PelB-PDL1_WT-geneⅢ plasmid. This is to secrete the protein into the E. coli periplasmic region through a signal peptide called PelB, and then to anchor the C-terminal of PD-L1 by the gene III protein immobilized on the cell membrane. The ligated plasmid was transformed into Jude1 Escherichia coli and confirmed the sequence through individual colony analysis.
실시예 6: 유세포 분석기를 이용한 대장균 내막에 발현된 PD-L1 과 probe인 PD-1-GST과의 결합력 검증을 통한 디스플레이 방법 및 probe 농도 선택Example 6: Selection of display method and probe concentration by verifying the binding force between PD-L1 expressed in E. coli and PD-1-GST probe using flow cytometry
완성된 pMopac12-NlpA-PDL1-FLAG와 pAK200-PelB-PDL1-geneⅢ 플라스미드를 각각 Jude1 세포에 transformation하였다. 각 샘플을 40 μg/ml의 chloramphenicol이 포함된 4 ml의 TB 2% glucose배지에서 37℃, 250 rpm으로 16시간 배양한 후, 배양된 세포를 40 μg/ml의 chloramphenicol이 포함된 7 mL의 TB 배지에 1:100 비율로 접종하였다. 37℃, 250 rpm으로 OD600=0.5까지 배양한 후 15분간 25℃, 250 rpm에서 cooling시킨 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 induction하였다. Induction이 끝난 후, OD600 normalize를 통해 동일한 양의 세포를 원심분리(14,000 rpm, 1 분)를 하여 e-tube에 회수하였다. 세포를 회수한 각 e-tube에 10 mM Tris-HCl(pH 8.0) 1 ml을 넣어 resuspension하고 원심분리(14,000 rpm, 1 분)를 통해 세포를 다시 모으는 과정을 2회 반복하여 잔여 배지를 제거하였다. 세척이 끝난 세포에 1 ml의 STE[0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] 용액으로 resuspension하고 37℃에서 30분간 rotation을 하여 세포 외막을 제거하였다. 원심분리(14,000 rpm, 1 분)를 통해 세포를 다시 모은 후, 상등액을 제거하였다. Solution A[0.5 M sucrose, 20 mM MgCl2, 10mM MOPS pH 6.8] 1ml을 넣어 resuspension후 원심분리(14,000 rpm, 1 분)를 하여 상등액을 제거한 후, 1 ml의 Solution A와 50 mg/ml lysozyme solution 20 μl를 혼합한 용액을 1 ml 을 넣어 resuspension하여 37℃에서 15 분간 rotation하여 펩티도글리칸 층을 제거하였다. 원심분리(14,000 rpm, 1 분) 후 상등액을 제거하고 1 ml의PBS로 resuspension하여 300 μl를 새로운 e-tube에 옮긴 후, 700 μl의 PBS와 100 nM, 200 nM의 dimeric PD1-Alexa488 probe를 각각 넣고 상온에서 1시간동안 rotation하여 spheroplast에 형광 probe로 labeling하였다. 그 후, 원심분리(14,000 rpm, 1 분)를 하여 상등액을 버리고 1 ml의 PBS로 resuspension하여 세척하는 과정을 2회 반복한다. 이 과정을 모두 끝낸 샘플들을 Guava (Merck Millipore) 장비를 이용해 분석하였다. N-terminal 부분이 세포 내막에 anchoring된 NlpA 시스템은 PD-1과 결합을 거의 하지 않는 것에 비해 C-terminal을 anchoring시킨 geneⅢ 시스템은 결합을 하는 것을 확인 할 수 있었고, 200nM 보다는 100nM에서의 형광 피크가 분리가 잘 되는 것으로 판단해 첫 스크리닝 프로브 농도를 100 nM로 결정하였다(도 3)The completed pMopac12-NlpA-PDL1-FLAG and pAK200-PelB-PDL1-geneIII plasmids were transformed into Jude1 cells, respectively. Each sample was incubated for 16 hours at 37 ° C., 250 rpm in 4 ml of TB 2% glucose medium containing 40 μg / ml chloramphenicol, and then the cultured cells were stored in 7 mL TB containing 40 μg / ml chloramphenicol. The medium was inoculated at a 1: 100 ratio. After culturing to OD 600 = 0.5 at 37 ° C. and 250 rpm, the mixture was cooled at 25 ° C. and 250 rpm for 15 minutes, followed by induction for 25 ° C., 250 rpm, and 5 hours by adding 1 mM IPTG. After the induction, the same amount of cells were centrifuged (14,000 rpm, 1 minute) through OD 600 normalize and recovered in the e-tube. Resuspension was performed by adding 1 ml of 10 mM Tris-HCl (pH 8.0) to each e-tube from which the cells were recovered, and the remaining medium was removed by repeating the cell collection again by centrifugation (14,000 rpm, 1 min). . After washing, the cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution and rotated at 37 ° C. for 30 minutes to remove the extracellular membrane. The cells were collected again by centrifugation (14,000 rpm, 1 min), and then the supernatant was removed. 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8] was added to resuspension and centrifuged (14,000 rpm, 1 min) to remove supernatant, followed by 1 ml of Solution A and 50 mg / ml lysozyme solution. 1 ml of 20 μl mixed solution was added and resuspensioned and rotated at 37 ° C. for 15 minutes to remove the peptidoglycan layer. After centrifugation (14,000 rpm, 1 min), the supernatant was removed and resuspensioned with 1 ml PBS to transfer 300 μl to a new e-tube, followed by 700 μl PBS and 100 nM, 200 nM dimeric PD1-Alexa488 probe, respectively. After rotation for 1 hour at room temperature, the spheroplast was labeled with a fluorescent probe. Thereafter, the supernatant is discarded by centrifugation (14,000 rpm, 1 minute) and resuspensioned with 1 ml of PBS and washed twice. Samples that completed this process were analyzed using Guava (Merck Millipore) instrument. The NlpA system anchored to the inner membrane of the N-terminal part showed almost no binding to the gene III system anchored to the C-terminal, whereas the fluorescence peak at 100 nM rather than 200 nM was observed. Judging from the good separation, the first screening probe concentration was determined to be 100 nM (FIG. 3).
실시예 7: 초고속 스크리닝 기법을 사용하기 위한 거대 PD-L1 error prone library 제작Example 7: Fabrication of large PD-L1 error prone library for using ultrafast screening technique
PD-1과의 높은 결합력을 보이는 PD-L1 변이체를 고속으로 탐색하기 위해 pAK200-PelB-PDL1-geneⅢ를 기반으로 PD-L1의 모든 부위에 무작위 돌연변이가 들어갈 수 있게 양쪽의 SfiI site를 포함하는 primer (JY#4, JY#5)를 디자인 하였다. 디자인한 primer와 TaqPolymerase (TAKARA), dNTPs (Invitrogen), MgCl2, MnCl2 (SIGMA )를 사용하여 Error Prone PCR기법으로 DNA를 증폭시켰다. 증폭된 유전자를 제한효소인 SfiI으로 처리한 후, SfiI으로 처리된 pAK200-PelB-geneⅢ 벡터와 라이게이션을 진행하여 Jude1 대장균에 transformation하였다. 이를 plate에 스프레딩한 후 37℃에서 16시간 배양하여 TB 2% glucose 배지를 이용해 대장균들을 모두 회수하여 초기 라이브러리를 확보하였다. 개별 콜로니 10개의 DNA 시퀀스를 확인한 결과, PD-L1 단백질 당 아미노산 평균 3개 정도의 돌연변이가 들어간 라이브러리가 제작되었음을 알 수 있었다(도 4).PD-1 and enables the random mutations into every part of PDL1 based on pAK200-PelB-PDL1-geneⅢ to search at a high speed for PDL1 variant with a high affinity containing Sfi I site on both Primers (JY # 4, JY # 5) were designed. DNA was amplified using the designed primer, Taq Polymerase (TAKARA), dNTPs (Invitrogen), MgCl 2 , MnCl 2 (SIGMA) using Error Prone PCR. Processing the amplified gene into the restriction enzyme Sfi I and then, the process proceeds to the process with Sfi I pAK200-PelB-geneⅢ vector and ligation was Jude1 transformation in E. coli. Spread it on a plate and incubated at 37 ℃ for 16 hours to recover all the E. coli using TB 2% glucose medium to secure the initial library. As a result of confirming 10 DNA sequences of individual colonies, it was found that a library containing an average of about 3 amino acids mutations per PD-L1 protein was produced (FIG. 4).
실시예 8: 유세포 분리기를 사용한 PD-L1 변이체 스크리닝Example 8: PD-L1 variant screening using flow cytometer
40 μg/ml 의 chloramphenicol이 첨가된 TB 2% glucose 배지 25 ml에 이니셜 라이브러리를 1 ml 을 접종하고, 37℃에서 250 rpm으로 4시간 배양하였다. 40 μg/ml의 chloramphenicol이 첨가된 TB 배지 100 ml 에 배양된 대장균을 1:100 비율로 접종하였다. 37℃, 250 rpm으로 OD600=0.5까지 배양한 후 15분간 25℃, 250 rpm에서 cooling 시킨 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 induction하였다. Induction이 끝난 후, OD600 normalize를 하여 원심분리(14,000 rpm, 1분)를 통해 세포를 e-tube에 회수하였다. 세포를 회수한 각 e-tube에 10 mM Tris-HCl(pH 8.0) 1 ml을 넣어 resuspension하고 원심분리(14,000 rpm, 1분)를 통해 세포를 다시 모으는 과정을 2회 반복하여 잔여 배지를 제거하였다. 세척이 끝난 세포에 1 ml의 STE[0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] 용액으로 resuspension하고 37℃에서 30분간 rotation을 하여 세포 외막을 제거하였다. 원심분리(14,000 rpm, 1 분)를 통해 세포를 다시 모은 후, 상등액을 제거하였다. Solution A[0.5 M sucrose, 20 mM MgCl2, 10mM MOPS pH 6.8] 1ml을 넣어resuspension 후 원심분리(14,000 rpm, 1분)를 하여 상등액을 제거 한 후, 1 ml의 Solution A와 50 mg/ml lysozyme solution 20 μl를 혼합한 용액 1 ml을 넣어 resuspension하여 37℃에서 15 분간 rotation함으로써 펩티도글리칸 층을 제거하였다. 원심분리(14,000 rpm, 1 분) 후 상등액을 제거하고, 1 ml의 PBS로 resuspension하여 300 μl를 새로운 e-tube에 옮긴 후, 700 μl의 PBS와 100 nM의 dimeric PD1-Alexa488 probe를 각각 넣고 상온에서 1시간 동안 rotation하여 spheroplast에 형광 probe로 labeling하였다. 그 후, 원심분리(14,000 rpm, 1 분)를 하여 상등액을 버리고 1 ml의 PBS로 resuspension하여 세척하는 과정을 2회 반복하였고 S3 sorter(Bio-Rad) 장비를 이용해 PD-1에 높은 결합력이 가진 대장균들을 회수하였다. 회수된 대장균들은 primer (JY#5, JY#6)를 사용하여 PCR로 유전자를 증폭해 다시 확보할 수 있었고, 이를 제한효소인 SfiI 으로 처리한 후, SfiI 으로 처리된 pAK200-PelB-geneⅢ벡터와 라이게이션을 진행하여 Jude1 대장균에 transformation하였다. 이를 plate에 스프레딩한 후 37℃에서 16시간 배양하여 TB 2% glucose 배지를 이용해 대장균들을 모두 회수하여 -80℃에서 보관하였다. 위와 같은 스크리닝 과정을 probe의 농도를 줄여가며 총 6회 진행하였다.1 ml of the initial library was inoculated into 25 ml of TB 2% glucose medium to which 40 μg / ml of chloramphenicol was added, and then incubated at 37 ° C. at 250 rpm for 4 hours. E. coli cultured in 100 ml of TB medium containing 40 μg / ml chloramphenicol was inoculated at a ratio of 1: 100. After incubating at OD 600 = 0.5 at 37 ° C. and 250 rpm, the mixture was cooled at 25 ° C. and 250 rpm for 15 minutes, followed by induction for 25 ° C., 250 rpm, and 5 hours by adding 1 mM IPTG. After the induction, the cells were recovered in the e-tube by centrifugation (14,000 rpm, 1 min) by OD 600 normalization. Resuspension was performed by adding 1 ml of 10 mM Tris-HCl (pH 8.0) to each e-tube from which the cells were collected, and the remaining medium was removed by repeating the cell collection through centrifugation (14,000 rpm, 1 minute) twice. . The washed cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution and rotated at 37 ° C. for 30 minutes to remove the extracellular membrane. The cells were collected again by centrifugation (14,000 rpm, 1 min), and then the supernatant was removed. 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8] was added to the solution and centrifuged (14,000 rpm, 1 min) to remove the supernatant, followed by 1 ml of Solution A and 50 mg / ml lysozyme. 1 ml of a solution containing 20 μl of solution was added and resuspensioned to rotate at 37 ° C. for 15 minutes to remove the peptidoglycan layer. After centrifugation (14,000 rpm, 1 min), remove the supernatant, resuspension with 1 ml of PBS, transfer 300 μl to a new e-tube, add 700 μl of PBS and 100 nM dimeric PD1-Alexa488 probe, respectively. The spheroplasts were labeled with fluorescent probes by rotating for 1 h at. Subsequently, the supernatant was discarded by centrifugation (14,000 rpm, 1 minute), resuspensioned with 1 ml of PBS, and washed twice. S3 sorter (Bio-Rad) was used for high binding to PD-1. E. coli were recovered. The recovered E. coli were able to be obtained by amplifying a gene by PCR using a primer (JY # 5, JY # 6) again, and then processed by a restriction enzyme, Sfi I, treated with Sfi I pAK200-PelB-geneⅢ Ligation with the vector was transformed into Jude1 Escherichia coli. Spread it on a plate and incubated for 16 hours at 37 ℃ to recover all E. coli using TB 2% glucose medium and stored at -80 ℃. The screening process as described above was carried out a total of six times while reducing the concentration of the probe.
실시예 9: PD-1 과의 결합력이 증가된 PD-L1 변이체들의 enrichment를 확인 하기 위한 대장균 배양Example 9: Escherichia coli culture for confirming enrichment of PD-L1 variants with increased binding force with PD-1
40 μg/ml의 chloramphenicol이 첨가된 TB 2% glucose 배지 25 ml에 이니셜, 1라운드, 2라운드, 3라운드, 4라운드, 5라운드, 6라운드 라이브러리를 각 1 ml 씩 따로 접종하고, 37℃에서 250 rpm으로 4시간 배양하였다. 40 μg/ml의 chloramphenicol이 첨가된 TB 배지 100 ml 에 배양된 대장균을 1:100 비율로 접종하였다. 37℃, 250 rpm으로 OD600=0.5까지 배양한 후 15분간 25℃, 250 rpm에서 cooling 시킨 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 배양하였다. 또한, 대조군인 야생형 PD-L1을 40 μg/ml의 chloramphenicol이 포함된 4ml의 TB 2% glucose배지에서 37℃, 250 rpm으로 16시간 배양 한 후, 배양된 세포를 40 μg/ml의 chloramphenicol이 포함된 7 ml의 TB 배지에 1:100 비율로 접종하였다. 37℃, 250 rpm으로 OD600=0.5까지 배양한 후 15분간 25℃, 250 rpm에서 cooling시킨 후, 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 induction하였다. Induction이 끝난 후, 각각의 모든 세포들을 OD600 normalize를 하여 원심분리(14,000 rpm, 1 분)를 통해 e-tube에 회수하였다. 25 ml of TB 2% glucose medium supplemented with 40 μg / ml chloramphenicol was inoculated separately with 1 ml of initial, 1st, 2nd, 3rd, 4th, 5th, and 6th round libraries and 250 ° C at 37 ° C. Incubated for 4 hours at rpm. E. coli cultured in 100 ml of TB medium to which 40 μg / ml chloramphenicol was added was inoculated at a ratio of 1: 100. After culturing to OD 600 = 0.5 at 37 ° C. and 250 rpm, the mixture was cooled at 25 ° C. and 250 rpm for 15 minutes, followed by incubation for 25 hours, 250 rpm, and 5 hours by adding 1 mM IPTG. In addition, wild-type PD-L1, a control group, was incubated for 16 hours at 37 ° C. and 250 rpm in 4 ml of TB 2% glucose medium containing 40 μg / ml of chloramphenicol, and the cultured cells contained 40 μg / ml of chloramphenicol. 7 ml of TB medium was inoculated at a ratio of 1: 100. After incubating at OD 600 = 0.5 at 37 ° C. and 250 rpm, cooling was performed at 25 ° C. and 250 rpm for 15 minutes, followed by induction for 25 ° C., 250 rpm, and 5 hours by adding 1 mM IPTG. After induction, all cells were normalized to OD 600 and recovered in the e-tube by centrifugation (14,000 rpm, 1 min).
실시예 10: 유세포 분석기를 사용한 PD-1과의 결합력이 증가된 PD-L1 변이체들의 enrichment 확인Example 10 Enrichment of PD-L1 Variants with Increased Adhesion with PD-1 Using Flow Cytometry
세포를 회수한 각 e-tube에 10 mM Tris-HCl(pH 8.0) 1 ml을 넣어 resuspension하고 원심분리(14,000 rpm, 1분)를 통해 세포를 다시 모으는 과정을 2회 반복하여 잔여 배지를 제거하였다. 세척이 끝난 세포에 1 ml의 STE[0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] 용액으로 resuspension하고 37℃ 에서 30분간 rotation을 하여 세포 외막을 제거하였다. 원심분리(14,000 rpm, 1분)를 통해 세포를 다시 모은 후, 상등액을 제거하였다. Solution A[0.5 M sucrose, 20 mM MgCl2, 10mM MOPS pH 6.8] 1 ml을 넣어 resuspension후 원심분리(14,000 rpm, 1분)를 하여 상등액을 제거한 후, 1 ml의 Solution A와 50 mg/ml lysozyme solution 20 μl를 혼합한 용액을 1 ml을 넣어 resuspension하여 37℃에서15 분간 rotation하여 펩티도글리칸 층을 제거하였다. 원심분리(14,000 rpm, 1분) 후 상등액을 제거하고 1 ml의 PBS로 resuspension하여 300 μl를 새로운 e-tube에 옮긴 후, 700 μl의 PBS와 5 nM의 dimeric PD1-Alexa488 probe를 각각 넣고 상온에서 1시간동안 rotation하여 spheroplast에 형광probe로 labeling하였다. 그 후, 원심분리(14,000 rpm, 1분)를 하여 상등액을 버리고 1 ml의 PBS로 resuspension하여 세척하는 과정을 2회 반복한다. 이 과정을 모두 끝낸 샘플들을 Guava (Merck Millipore) 장비를 이용해 분석하였다. 그 결과, 스크리닝이 진행되면서 야생형 PD-L1보다 PD-1과의 결합력이 향상된 변이체들이 증폭되고 있음을 확인하였다(도 5).Resuspension was performed by adding 1 ml of 10 mM Tris-HCl (pH 8.0) to each e-tube from which the cells were recovered, and the remaining medium was removed by repeating the cell collection through centrifugation (14,000 rpm, 1 minute) twice. . The washed cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution and rotated at 37 ° C. for 30 minutes to remove the extracellular membrane. The cells were collected again by centrifugation (14,000 rpm, 1 minute), and then the supernatant was removed. Add 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8], resuspension, remove the supernatant by centrifugation (14,000 rpm, 1 min), and 1 ml of Solution A with 50 mg / ml lysozyme. 1 ml of a solution containing 20 μl of solution was resuspensioned and rotated at 37 ° C. for 15 minutes to remove the peptidoglycan layer. After centrifugation (14,000 rpm, 1 min), remove the supernatant, resuspension with 1 ml of PBS, transfer 300 μl to a new e-tube, add 700 μl of PBS and 5 nM dimeric PD1-Alexa488 probe, respectively, at room temperature. The spheroplasts were labeled with fluorescent probes after rotation for 1 hour. Thereafter, the supernatant was discarded by centrifugation (14,000 rpm, 1 minute) and resuspensioned with 1 ml of PBS and washed twice. Samples that completed this process were analyzed using Guava (Merck Millipore) instrument. As a result, as the screening progressed, it was confirmed that variants with improved binding to PD-1 were amplified than wild type PD-L1 (FIG. 5).
실시예 11: 확보한 PD-L1 변이체와의 비교를 위한 PD-L1 대조군 클로닝 (PD-L1_L3B3)Example 11: PD-L1 Control Cloning (PD-L1_L3B3) for Comparison with Secured PD-L1 Variants
대조군으로 사용하기 위해 PD-L1_L3B3 변이체를 프라이머 (JY#7, JY#8, JY#9, JY#10, JY#11, JY#12, JY#13, JY#14, JY#15, JY#16, JY#17, JY#18, JY#19, JY#20) 14개를 이용한 assembly PCR을 통해 만들었으며 증폭된 유전자를 제한효소인 SfiI으로 처리한 후, SfiI으로 처리된 pAK200-PelB-geneⅢ 벡터와 라이게이션을 진행하여 pAK200-PelB-PDL1_L3B3-geneⅢ 플라스미드를 완성시켰다. 라이게이션된 플라스미드는 Jude1 대장균에 transformation하여 개별 콜로니 분석을 통해 sequence를 확인하였다.PD-L1_L3B3 variants were used as primers (JY # 7, JY # 8, JY # 9, JY # 10, JY # 11, JY # 12, JY # 13, JY # 14, JY # 15, JY # 16, JY # 17, JY # 18, JY # 19, JY # 20) the after processing that have been created through the assembly PCR using 14 was amplified gene with restriction enzyme Sfi I, treated with Sfi I pAK200-PelB Ligation with -geneIII vector was performed to complete the pAK200-PelB-PDL1_L3B3-geneIII plasmid. The ligated plasmid was transformed into Jude1 Escherichia coli and confirmed the sequence through individual colony analysis.
실시예 12: 유세포 분석기 분석을 통한 PD-1과의 결합력이 증가된 PD-L1 변이체들 확보Example 12: Obtaining PD-L1 Variants with Increased Adhesion with PD-1 by Flow Cytometry Analysis
6라운드의 단일 콜로니들과 야생형 PDL1, 대조군 PDL1_L3B3을 각각 40 μg/ml의 chloramphenicol이 포함된 4ml의 TB 2% glucose배지에서 37℃, 250 rpm으로 16시간 배양 한 후, 배양된 세포를 40 μg/ml의 chloramphenicol이 포함된 7 ml의 TB 배지에 1:100 비율로 접종하였다. 37℃, 250 rpm으로 OD600=0.5까지 배양한 후 15분간 25℃, 250 rpm에서 cooling시킨 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 induction하였다. Induction이 끝난 후, OD600 normalize를 통해 동일한 양의 세포를 원심분리(14,000 rpm, 1분)를 하여 e-tube에 회수하였다. 세포를 회수한 각 e-tube에 10 mM Tris-HCl(pH 8.0) 1 ml을 넣어 resuspension하고 원심분리(14,000 rpm, 1 분)를 통해 세포를 다시 모으는 과정을 2회 반복하여 잔여 배지를 제거하였다. 세척이 끝난 세포에 1 ml의 STE[0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] 용액으로 resuspension하고 37℃에서 30분간 rotation을 하여 세포 외막을 제거하였다. 원심분리(14,000 rpm, 1 분)를 통해 세포를 다시 모은 후, 상등액을 제거하였다. Solution A[0.5 M sucrose, 20 mM MgCl2,10mM MOPS pH 6.8] 1 ml을 넣어 resuspension후 원심분리(14,000 rpm, 1 분)를 하여 상등액을 제거 한 후, 1 ml의 Solution A와 50 mg/ml lysozyme solution 20 μl를 혼합한 용액을 1 ml을 넣어 resuspension하여 37℃에서 15 분간 rotation하여 펩티도글리칸 층을 제거하였다. 원심분리(14,000 rpm, 1 분) 후 상등액을 제거하고 1 ml의 PBS로 resuspension하여 300 μl를 새로운 e-tube에 옮긴 후, 700 μl의 PBS와 30 nM의 dimeric PD1-Alexa488 probe를 각각 넣고 상온에서 1시간동안 rotation하여 spheroplast에 형광 probe로 labeling하였다. 그 후, 원심분리(14,000 rpm, 1분)를 하여 상등액을 버리고 1 ml의 PBS로 resuspension하여 세척하는 과정을 2회 반복한다. 이 과정을 모두 끝낸 샘플들을 Guava(Merck Millipore) 장비를 이용해 분석하였다. 이를 통해 형광 신호 값으로 약 7~8배까지 친화도가 증폭된 변이체를 확인하였다 (도 6).Six rounds of single colonies, wild-type PDL1, and control PDL1_L3B3 were incubated for 16 hours at 37 ° C and 250 rpm in 4 ml of TB 2% glucose medium containing 40 μg / ml of chloramphenicol, respectively. Inoculated in a ratio of 1: 100 in 7 ml of TB medium containing ml of chloramphenicol. After culturing to OD 600 = 0.5 at 37 ° C. and 250 rpm, the mixture was cooled at 25 ° C. and 250 rpm for 15 minutes, followed by induction for 25 ° C., 250 rpm, and 5 hours by adding 1 mM IPTG. After the induction, the same amount of cells were centrifuged (14,000 rpm, 1 minute) through OD 600 normalize and recovered in the e-tube. Resuspension was performed by adding 1 ml of 10 mM Tris-HCl (pH 8.0) to each e-tube from which the cells were recovered, and the remaining medium was removed by repeating the cell collection again by centrifugation (14,000 rpm, 1 min). . The washed cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution and rotated at 37 ° C. for 30 minutes to remove the extracellular membrane. The cells were recollected by centrifugation (14,000 rpm, 1 min), and then the supernatant was removed. Add 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8], resuspension, remove the supernatant by centrifugation (14,000 rpm, 1 min), and 1 ml of Solution A and 50 mg / ml 1 ml of a solution of 20 μl of lysozyme solution was added, resuspensioned, and rotated at 37 ° C. for 15 minutes to remove the peptidoglycan layer. After centrifugation (14,000 rpm, 1 min), the supernatant was removed and resuspensioned with 1 ml of PBS to transfer 300 μl to a new e-tube. Then, 700 μl of PBS and 30 nM dimeric PD1-Alexa488 probe were added at room temperature. After rotating for 1 hour, the spheroplast was labeled with a fluorescent probe. Thereafter, the supernatant was discarded by centrifugation (14,000 rpm, 1 minute) and resuspensioned with 1 ml of PBS and washed twice. Samples that completed this process were analyzed using Guava (Merck Millipore) instrument. This confirmed the variant amplified affinity up to about 7 ~ 8 times the fluorescence signal value (Fig. 6).
실시예 13: 시퀀싱 분석을 통한 주요 위치의 돌연변이 변이체들 클로닝 Example 13: Cloning of Mutant Variants at Key Locations via Sequencing Analysis
확보한 변이체들의 시퀀스를 분석한 결과, 결합력 증가에 주된 영향을 줬을 것이라 생각되는 아미노산 위치와 그 위치에 대한 공통된 아미노산 특성을 찾을 수 있었다. 이를 통해 해당 위치에 중요할 것이라 생각되는 아미노산으로 바꿔 총 16개의 변이체를 클로닝 하였다. 이는 degenerate codon 프라이머 (JY#21, JY#22, JY#23, JY#24, JY#25, JY#26, JY#27, JY#28, JY#29, JY#30) 를 이용해 assembly PCR을 진행하였고 증폭된 유전자를 제한효소인 SfiI 으로 처리한 후, SfiI 으로 처리된 pAK200-PelB-geneⅢ 벡터와 라이게이션을 진행하여 pAK200-PelB-PDL1_L3B3-geneⅢ 플라스미드를 완성시켰다. 라이게이션된 플라스미드는 Jude1 대장균에 transformation하여 개별 콜로니 분석을 통해 sequence를 확인하였다. 확인되지 않은 변이체의 경우, 추가적으로 프라이머 (JY#31, JY#32, JY#33, JY#34, JY#35, JY#36, JY#37, JY#38, JY#39, JY#40, JY#41, JY#42)를 제작해 Quikchange PCR 기법을 이용하여 모두 확보할 수 있었다.As a result of analyzing the sequence of the obtained variants, it was found that the amino acid position that was likely to have a major influence on the binding force and the common amino acid characteristic of the position. This cloned a total of 16 variants into amino acids that might be important for the site. This is done by assembly PCR using degenerate codon primers (JY # 21, JY # 22, JY # 23, JY # 24, JY # 25, JY # 26, JY # 27, JY # 28, JY # 29, JY # 30). after treatment the progress gene were amplified with the restriction enzymes Sfi I, the process proceeds to the process with Sfi I pAK200-PelB-geneⅢ vector and the ligation was complete the pAK200-PelB-PDL1_L3B3-geneⅢ plasmid. The ligated plasmid was transformed into Jude1 Escherichia coli and confirmed the sequence through individual colony analysis. For unidentified variants, additional primers (JY # 31, JY # 32, JY # 33, JY # 34, JY # 35, JY # 36, JY # 37, JY # 38, JY # 39, JY # 40, JY # 41, JY # 42) were fabricated and secured using the Quikchange PCR technique.
실시예 13: 시퀀싱 분석을 통한 주요 위치의 돌연변이 변이체들 클로닝 Example 13: Cloning of Mutant Variants at Key Locations via Sequencing Analysis
야생형 PD-L1과 No.73, 74 변이체(JY-73 및 JY-74)와 추가로 만들어낸 16개의 변이체를 각각 40 μg/ml의 chloramphenicol이 포함된 4 ml의 TB 2% glucose 배지에서 37℃, 250 rpm으로 16시간 배양 한 후, 배양된 세포를 40 μg/ml의 chloramphenicol이 포함된 7 ml의 TB 배지에 1:100 비율로 접종하였다. 37℃, 250 rpm으로 OD600=0.5까지 배양한 후 15분간 25℃, 250 rpm에서 cooling 시킨 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 induction하였다. Induction이 끝난 후, OD600 normalize를 통해 동일한 양의 세포를 원심분리(14,000 rpm, 1분)를 하여 e-tube에 회수하였다. 세포를 회수한 각 e-tube에 10 mM Tris-HCl(pH 8.0) 1 ml을 넣어resuspension하고 원심분리(14,000 rpm, 1 분)를 통해 세포를 다시 모으는 과정을 2회 반복하여 잔여 배지를 제거하였다. 세척이 끝난 세포에 1 ml의 STE[0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] 용액으로 resuspension하고 37℃ 에서 30분간 rotation을 하여 세포 외막을 제거하였다. 원심분리(14,000 rpm, 1 분)를 통해 세포를 다시 모은 후, 상등액을 제거하였다. Solution A[0.5 M sucrose, 20 mM MgCl2, 10 mM MOPS pH 6.8] 1 ml을 넣어 resuspension후 원심분리(14,000 rpm, 1 분)를 하여 상등액을 제거 한 후, 1 ml의 Solution A와 50 mg/ml lysozyme solution 20 μl를 혼합한 용액을 1 ml을 넣어 resuspension하여 37℃에서 15 분간 rotation하여 펩티도글리칸 층을 제거하였다. 원심분리(14,000 rpm, 1분) 후 상등액을 제거하고 1 ml의 PBS로 resuspension하여 300 μl를 새로운 e-tube에 옮긴 후, 700 μl의 PBS와 30 nM의 dimeric PD1-Alexa488 probe를 각각 넣고 상온에서 1시간동안 rotation하여 spheroplast에 형광 probe로 labeling하였다. 그 후, 원심분리(14,000 rpm, 1 분)를 하여 상등액을 버리고 1 ml의 PBS로 resuspension하여 세척하는 과정을 2회 반복한다. 이 과정을 모두 끝낸 샘플들을 Guava (Merck Millipore) 장비를 이용해 분석하였다. 형광 신호 값 측정을 통해 변이체들의 PD-1과의 결합력을 간접적으로 분석하였다(도 7). 이를 통해 야생형보다 형광 신호 값이 4배 이상 친화도가 증폭된 변이체들을 확인하였으며, 이 중 DAS, DTS, DTT, DLT 및 DMS 변이체의 경우 5배 이상 친화도가 증가하였다(도 8).Wild-type PD-L1, No.73 and 74 variants (JY-73 and JY-74) and 16 additional variants were prepared at 37 ° C in 4 ml of TB 2% glucose medium containing 40 μg / ml of chloramphenicol, respectively. After 16 hours of incubation at 250 rpm, the cultured cells were inoculated at a ratio of 1: 100 in 7 ml of TB medium containing 40 μg / ml of chloramphenicol. After incubating at OD 600 = 0.5 at 37 ° C. and 250 rpm, the mixture was cooled at 25 ° C. and 250 rpm for 15 minutes, followed by induction for 25 ° C., 250 rpm, and 5 hours by adding 1 mM IPTG. After the induction, the same amount of cells were centrifuged (14,000 rpm, 1 minute) through OD 600 normalize and recovered in the e-tube. 1 ml of 10 mM Tris-HCl (pH 8.0) was added to each e-tube from which the cells were recovered, and the remaining medium was removed by repeating the cells again by centrifugation (14,000 rpm, 1 min). . The washed cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution and rotated at 37 ° C. for 30 minutes to remove the extracellular membrane. The cells were collected again by centrifugation (14,000 rpm, 1 min), and then the supernatant was removed. Add 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8], resuspension, remove the supernatant by centrifugation (14,000 rpm, 1 min), and then remove 1 ml of Solution A with 50 mg / 1 ml of the solution containing 20 μl of the ml lysozyme solution was resuspensioned and rotated at 37 ° C. for 15 minutes to remove the peptidoglycan layer. After centrifugation (14,000 rpm, 1 min), remove the supernatant, resuspension with 1 ml of PBS, transfer 300 μl to a new e-tube, add 700 μl of PBS and 30 nM dimeric PD1-Alexa488 probe, respectively, at room temperature. After rotating for 1 hour, the spheroplast was labeled with a fluorescent probe. Thereafter, the supernatant is discarded by centrifugation (14,000 rpm, 1 minute) and resuspensioned with 1 ml of PBS and washed twice. Samples that completed this process were analyzed using Guava (Merck Millipore) instrument. Fluorescence signal values were indirectly analyzed for binding of the variants to PD-1 (FIG. 7). Through this, the variants with amplification of fluorescence signal values more than four-fold amplification were identified. Among them, the affinity of DAS, DTS, DTT, DLT and DMS increased five times or more (FIG. 8).
primer#primer # sequence(5’→3’)sequence (5 ’→ 3’)
CKJ#1 (서열목록 제1서열)CKJ # 1 (SEQ ID NO: 1) GCGGAATTCGGCGCGCACTCCGAATTAGACTCCCCAGACAGGCCCGCGGAATTCGGCGCGCACTCCGAATTAGACTCCCCAGACAGGCCC
CKJ#2 (서열목록 제2서열)CKJ # 2 (SEQ ID NO: 2) GCCCTTAATTTTCCAATAACCTAGTATAGGGGACATAGAGCCACCGCCACCTTGGAACTGGCCGGCTGGGCCCTTAATTTTCCAATAACCTAGTATAGGGGACATAGAGCCACCGCCACCTTGGAACTGGCCGGCTGG
CKJ#3 (서열목록 제3서열)CKJ # 3 (SEQ ID NO: 3) ATGTCCCCTATACTAGGTTATTGGAAAATTAAGGGCATGTCCCCTATACTAGGTTATTGGAAAATTAAGGGC
CKJ#4 (서열목록 제4서열)CKJ # 4 (SEQ ID NO: 4) GAATTCCGCTCTAGATTATCAATGATGATGGTGGTGATGGGATTTTGGAGGATGGTCGCCACCGAATTCCGCTCTAGATTATCAATGATGATGGTGGTGATGGGATTTTGGAGGATGGTCGCCACC
JY#1 (서열목록 제5서열)JY # 1 (SEQ ID NO: 5) CGCAGCGAGGCCCAGCCGGCCTTTACTGTCACGGTTCCCAAGGACCCGCAGCGAGGCCCAGCCGGCCTTTACTGTCACGGTTCCCAAGGACC
JY#2 (서열목록 제6서열)JY # 2 (SEQ ID NO: 6) CGCAGCGAGGCCCCCGAGGCCCCCCTTTCATTTGGAGGATGTGCCAGAGCGCAGCGAGGCCCCCGAGGCCCCCCTTTCATTTGGAGGATGTGCCAGAG
JY#3 (서열목록 제7서열)JY # 3 (SEQ ID NO: 7) CGCAGCGAGGCCCAGCCGGCCATGGCGTTTACTGTCACGGTTCCCAAGGACCCGCAGCGAGGCCCAGCCGGCCATGGCGTTTACTGTCACGGTTCCCAAGGACC
JY#4 (서열목록 제8서열)JY # 4 (SEQ ID NO: 8) CGCAGCGAGGCCCAGCCGGCCCGCAGCGAGGCCCAGCCGGCC
JY#5 (서열목록 제9서열)JY # 5 (SEQ ID NO: 9) CGCAGCGAGGCCCCCGAGGCCCCCGCAGCGAGGCCCCCGAGGCCCC
JY#6 (서열목록 제10서열)JY # 6 (SEQ ID NO: 10) TTGTGAGCGGATAACAATTTCTTGTGAGCGGATAACAATTTC
JY#7 (서열목록 제11서열)JY # 7 (SEQ ID NO: 11) TTTACTGTCACGGTTCCCAAGGACCTATATGTTTACTGTCACGGTTCCCAAGGACCTATATG
JY#8 (서열목록 제12서열)JY # 8 (SEQ ID NO: 12) TTTTTCTACTGGGAATTTGCATTCAATTGTCATATTGCTACCATACTCTACCACATATAGGTCCTTGGGAACCGTTTTTTCTACTGGGAATTTGCATTCAATTGTCATATTGCTACCATACTCTACCACATATAGGTCCTTGGGAACCGT
JY#9 (서열목록 제13서열)JY # 9 (SEQ ID NO: 13) TGAATGCAAATTCCCAGTAGAAAAACAATTAGACCTGGCTGCACTACAAGTCTTCTGGATGATGGAGGATAAGAATGAATGCAAATTCCCAGTAGAAAAACAATTAGACCTGGCTGCACTACAAGTCTTCTGGATGATGGAGGATAAGAA
JY#10 (서열목록 제14서열)JY # 10 (SEQ ID NO: 14) TACTATGCTGAACCTTCAGGTCTTCCTCTCCATGCACAAATTGAATAATGTTCTTATCCTCCATCATCCAGAAGATACTATGCTGAACCTTCAGGTCTTCCTCTCCATGCACAAATTGAATAATGTTCTTATCCTCCATCATCCAGAAGA
JY#11 (서열목록 제15서열)JY # 11 (SEQ ID NO: 15) AGACCTGAAGGTTCAGCATAGTAGCTACAGACAGAGGGCCCGGCTGTTGAAGGACCAGCTCTCCCTGGGAAATGCAGACCTGAAGGTTCAGCATAGTAGCTACAGACAGAGGGCCCGGCTGTTGAAGGACCAGCTCTCCCTGGGAAATGC
JY#12 (서열목록 제16서열)JY # 12 (SEQ ID NO: 16) TCAAGCACGTGTACACCCCTGCATCCTGCAATTTCACATCTGTGATCTGAAGTGCAGCATTTCCCAGGGAGAGCTTCAAGCACGTGTACACCCCTGCATCCTGCAATTTCACATCTGTGATCTGAAGTGCAGCATTTCCCAGGGAGAGCT
JY#13 (서열목록 제17서열)JY # 13 (SEQ ID NO: 17) GGGGTGTACACGTGCTTGATCGCATATAAAGGTGCCGACTACAAGCGAATTACTGTGAAAGTCAATGCCCCATACGGGGTGTACACGTGCTTGATCGCATATAAAGGTGCCGACTACAAGCGAATTACTGTGAAAGTCAATGCCCCATAC
JY#14 (서열목록 제18서열)JY # 14 (SEQ ID NO: 18) TCATGTTCAGAGGTGACTGGATCCACAACCAAAATTCTTTGGTTGATTTTGTTGTATGGGGCATTGACTTTCACATCATGTTCAGAGGTGACTGGATCCACAACCAAAATTCTTTGGTTGATTTTGTTGTATGGGGCATTGACTTTCACA
JY#15 (서열목록 제19서열)JY # 15 (SEQ ID NO: 19) ATCCAGTCACCTCTGAACATGAACTGACATGTCAGGCTGAGGGCTACCCCAAGGCCGAAGTCATCTGGACAAGCAATCCAGTCACCTCTGAACATGAACTGACATGTCAGGCTGAGGGCTACCCCAAGGCCGAAGTCATCTGGACAAGCA
JY#16 (서열목록 제20서열)JY # 16 (SEQ ID NO: 20) CCTCTCTCTTGGAATTGGTGGTGGTGGTCTTACCACTCAGGACTTGATGGTCACTGCTTGTCCAGATGACTTCGGCCTCTCTCTTGGAATTGGTGGTGGTGGTCTTACCACTCAGGACTTGATGGTCACTGCTTGTCCAGATGACTTCGG
JY#17 (서열목록 제21서열)JY # 17 (SEQ ID NO: 21) ACCACCAATTCCAAGAGAGAGGAGAAGCTTTTCAATGTGACCAGCACACTGAGAATCAACACAACAACTAATGAGACCACCAATTCCAAGAGAGAGGAGAAGCTTTTCAATGTGACCAGCACACTGAGAATCAACACAACAACTAATGAG
JY#18 (서열목록 제22서열)JY # 18 (SEQ ID NO: 22) TGTATGGTTTTCCTCAGGATCTAATCTCCTAAAAGTGCAGTAGAAAATCTCATTAGTTGTTGTGTTGATTCTCAGTGTATGGTTTTCCTCAGGATCTAATCTCCTAAAAGTGCAGTAGAAAATCTCATTAGTTGTTGTGTTGATTCTCAG
JY#19 (서열목록 제23서열)JY # 19 (SEQ ID NO: 23) GATTAGATCCTGAGGAAAACCATACAGCTGAATTGGTCATCCCAGAACTACCTCTGGCACATCCTCCAAATGAAAGATTAGATCCTGAGGAAAACCATACAGCTGAATTGGTCATCCCAGAACTACCTCTGGCACATCCTCCAAATGAAA
JY#20 (서열목록 제24서열)JY # 20 (SEQ ID NO: 24) CCTTTCATTTGGAGGATGTGCCAGCCTTTCATTTGGAGGATGTGCCAG
JY#21 (서열목록 제25서열)JY # 21 (SEQ ID NO: 25) TTTACTGTCACGGTTCCCAAGGACCTTTACTGTCACGGTTCCCAAGGACC
JY#22 (서열목록 제26서열)JY # 22 (SEQ ID NO: 26) TCTCTCTTGGAATTGGTGGTGGTGGTCTCTCTTGGAATTGGTGGTGGTGG
JY#23 (서열목록 제27서열)JY # 23 (SEQ ID NO: 27) CCACCACCACCAATTCCAAGAGAGATGAGAAGCTTTTCAATGTGACCAGCACACTGAGAATCCCACCACCACCAATTCCAAGAGAGATGAGAAGCTTTTCAATGTGACCAGCACACTGAGAATC
JY#24 (서열목록 제28서열)JY # 24 (SEQ ID NO: 28) CCTAAAAGTGCAGTAGAAAATCTCATTAGTTGTTGTGTTGATTCTCAGTGTGCTGGTCACATTGAAAAGCCTAAAAGTGCAGTAGAAAATCTCATTAGTTGTTGTGTTGATTCTCAGTGTGCTGGTCACATTGAAAAG
JY#25 (서열목록 제29서열)JY # 25 (SEQ ID NO: 29) CACAACAACTAATGAGATTTTCTACTGCACTTTTAGGRYYTTAGATWCYGAGGAAAACCATACAGCTGAATTGGTCATCCACAACAACTAATGAGATTTTCTACTGCACTTTTAGGRYYTTAGATWCYGAGGAAAACCATACAGCTGAATTGGTCATC
JY#26 (서열목록 제30서열)JY # 26 (SEQ ID NO: 30) CACAACAACTAATGAGATTTTCTACTGCACTTTTAGGAKGTTAGATWCYGAGGAAAACCATACAGCTGAATTGGTCATCCACAACAACTAATGAGATTTTCTACTGCACTTTTAGGAKGTTAGATWCYGAGGAAAACCATACAGCTGAATTGGTCATC
JY#27 (서열목록 제31서열)JY # 27 (SEQ ID NO: 31) CACAACAACTAATGAGATTTTCTACTGCACTTTTAGGYTYTTAGATWCYGAGGAAAACCATACAGCTGAATTGGTCATCCACAACAACTAATGAGATTTTCTACTGCACTTTTAGGYTYTTAGATWCYGAGGAAAACCATACAGCTGAATTGGTCATC
JY#28 (서열목록 제32서열)JY # 28 (SEQ ID NO: 32) CCTTTCATTTGGAGGATGTGCCAGAGGTAGTTCTGGGATGACCAATTCAGCTGTATGGTTTTCCTCCCTTTCATTTGGAGGATGTGCCAGAGGTAGTTCTGGGATGACCAATTCAGCTGTATGGTTTTCCTC
JY#29 (서열목록 제33서열)JY # 29 (SEQ ID NO: 33) CCACCACCACCAATTCCAAGAGAGACCACCACCACCAATTCCAAGAGAGA
JY#30 (서열목록 제34서열)JY # 30 (SEQ ID NO: 34) CCTTTCATTTGGAGGATGTGCCAGAGCCTTTCATTTGGAGGATGTGCCAGAG
JY#31 (서열목록 제35서열)JY # 31 (SEQ ID NO: 35) CAACTAATGAGATTTTCTACTGCACTTTTAGGACTTTAGATACTGAGGAAAACCATACAGCTGAATTGGTCCAACTAATGAGATTTTCTACTGCACTTTTAGGACTTTAGATACTGAGGAAAACCATACAGCTGAATTGGTC
JY#32 (서열목록 제36서열)JY # 32 (SEQ ID NO: 36) GACCAATTCAGCTGTATGGTTTTCCTCAGTATCTAAAGTCCTAAAAGTGCAGTAGAAAATCTCATTAGTTGGACCAATTCAGCTGTATGGTTTTCCTCAGTATCTAAAGTCCTAAAAGTGCAGTAGAAAATCTCATTAGTTG
JY#33 (서열목록 제37서열)JY # 33 (SEQ ID NO: 37) CAACAACTAATGAGATTTTCTACTGCACTTTTAGGGCTTTAGATTCTGAGGAAAACCATACAGCTGAATTGGCAACAACTAATGAGATTTTCTACTGCACTTTTAGGGCTTTAGATTCTGAGGAAAACCATACAGCTGAATTGG
JY#34 (서열목록 제38서열)JY # 34 (SEQ ID NO: 38) CCAATTCAGCTGTATGGTTTTCCTCAGAATCTAAAGCCCTAAAAGTGCAGTAGAAAATCTCATTAGTTGTTGCCAATTCAGCTGTATGGTTTTCCTCAGAATCTAAAGCCCTAAAAGTGCAGTAGAAAATCTCATTAGTTGTTG
JY#35 (서열목록 제39서열)JY # 35 (SEQ ID NO: 39) CAACAACTAATGAGATTTTCTACTGCACTTTTAGGGCTTTAGATACCGAGGAAAACCATACAGCTGAATTGCAACAACTAATGAGATTTTCTACTGCACTTTTAGGGCTTTAGATACCGAGGAAAACCATACAGCTGAATTG
JY#36 (서열목록 제40서열)JY # 36 (SEQ ID NO: 40) CAATTCAGCTGTATGGTTTTCCTCGGTATCTAAAGCCCTAAAAGTGCAGTAGAAAATCTCATTAGTTGTTGCAATTCAGCTGTATGGTTTTCCTCGGTATCTAAAGCCCTAAAAGTGCAGTAGAAAATCTCATTAGTTGTTG
JY#37 (서열목록 제41서열)JY # 37 (SEQ ID NO: 41) CTAATGAGATTTTCTACTGCACTTTTAGGAGGTTAGATTCTGAGGAAAACCATACAGCTGAATTGGTCCTAATGAGATTTTCTACTGCACTTTTAGGAGGTTAGATTCTGAGGAAAACCATACAGCTGAATTGGTC
JY#38 (서열목록 제42서열)JY # 38 (SEQ ID NO: 42) GACCAATTCAGCTGTATGGTTTTCCTCAGAATCTAACCTCCTAAAAGTGCAGTAGAAAATCTCATTAGGACCAATTCAGCTGTATGGTTTTCCTCAGAATCTAACCTCCTAAAAGTGCAGTAGAAAATCTCATTAG
JY#39 (서열목록 제43서열)JY # 39 (SEQ ID NO: 43) CACAACAACTAATGAGATTTTCTACTGCACTTTTAGGCTTTTAGATTCCGAGGAAAACCATACAGCTGCACAACAACTAATGAGATTTTCTACTGCACTTTTAGGCTTTTAGATTCCGAGGAAAACCATACAGCTG
JY#40 (서열목록 제44서열)JY # 40 (SEQ ID NO: 44 Sequence) CAGCTGTATGGTTTTCCTCGGAATCTAAAAGCCTAAAAGTGCAGTAGAAAATCTCATTAGTTGTTGTGCAGCTGTATGGTTTTCCTCGGAATCTAAAAGCCTAAAAGTGCAGTAGAAAATCTCATTAGTTGTTGTG
JY#41 (서열목록 제45서열)JY # 41 (SEQ ID NO: 45 Sequence) CTATTGGGAAATGGAGGATAAGAACATTATTCAATTTGTGCATGGAGAGGAAGACCTGAAGGTTCAGCTATTGGGAAATGGAGGATAAGAACATTATTCAATTTGTGCATGGAGAGGAAGACCTGAAGGTTCAG
JY#42 (서열목록 제46서열)JY # 42 (SEQ ID NO: 46) CTGAACCTTCAGGTCTTCCTCTCCATGCACAAATTGAATAATGTTCTTATCCTCCATTTCCCAATAGCTGAACCTTCAGGTCTTCCTCTCCATGCACAAATTGAATAATGTTCTTATCCTCCATTTCCCAATAG
실험에 사용한 프라이머들Primers used in the experiment
PD-L1 변이체PD-L1 variant 서열목록Sequence Listing PD-L1 변이체 위치 및 치환된 아미노산PD-L1 variant position and substituted amino acid
JY-1JY-1 서열목록 제89서열SEQ ID NO: 89 Sequence V50A, N78K, R195TV50A, N78K, R195T
JY-7JY-7 서열목록 제90서열SEQ ID NO: 90 Sequence M41V, N117S, L124S, E169D, R195AM41V, N117S, L124S, E169D, R195A
JY-11JY-11 서열목록 제91서열SEQ ID NO: 91 Sequence S151N, P217LS151N, P217L
JY-19JY-19 서열목록 제92서열SEQ ID NO: 92 Sequence K160N, I181V, P198SK160N, I181 V, P198S
JY-25JY-25 서열목록 제93서열SEQ ID NO: 93 Sequence Q155R, P198TQ155R, P198T
JY-36JY-36 서열목록 제94서열SEQ ID NO: 94 Sequence E169D, R195KE169D, R195K
JY-48JY-48 서열목록 제95서열SEQ ID NO: 95 Sequence Q73R, E169D, R195IQ73R, E169D, R195I
JY-49JY-49 서열목록 제96서열SEQ ID NO: 96 Sequence P198TP198T
JY-50JY-50 서열목록 제97서열SEQ ID NO: 97 Sequence T130A, E169D, R195IT130A, E169D, R195I
JY-53JY-53 서열목록 제98서열SEQ ID NO: 98 Sequence V58D, R195IV58D, R195I
JY-56JY-56 서열목록 제99서열SEQ ID NO: 99 Sequence V50M, R195V, E219G, R220GV50M, R195V, E219G, R220G
JY-57JY-57 서열목록 제100서열SEQ ID NO: 100 Sequence N117S, E169D, P198HN117S, E169D, P198H
JY-69JY-69 서열목록 제101서열SEQ ID NO: 101 Sequence R195IR195I
JY-71JY-71 서열목록 제102서열SEQ ID NO: 102 Sequence E169DE169D
JY-73JY-73 서열목록 제103서열SEQ ID NO: 103 Sequence E169D, R195I, L213PE169D, R195I, L213P
JY-74JY-74 서열목록 제104서열SEQ ID NO: 104 Sequence A139S, E169D, P198T, N201SA139S, E169D, P198T, N201S
JY-76JY-76 서열목록 제105서열SEQ ID NO: 105 Sequence D197G, P198S, V207ID197G, P198S, V207I
JY-78JY-78 서열목록 제106서열SEQ ID NO: 106 Sequence L124S, S158G, R195IL124S, S158G, R195I
JY-83JY-83 서열목록 제107서열SEQ ID NO: 107 E169D, N218DE169D, N218D
JY-DASJY-DAS 서열목록 제108서열SEQ ID NO: 108 Sequence E169D, R195A, P198SE169D, R195A, P198S
JY-DATJY-DAT 서열목록 제109서열SEQ ID NO: 109 E169D, R195A, P198TE169D, R195A, P198T
JY-DISJY-DIS 서열목록 제110서열SEQ ID NO: 110 Sequence E169D, R195I, P198SE169D, R195I, P198S
JY-DITJY-DIT 서열목록 제111서열SEQ ID NO: 111 Sequence E169D, R195I, P198TE169D, R195I, P198T
JY-DTSJY-DTS 서열목록 제112서열SEQ ID NO: 112 Sequence E169D, R195T, P198SE169D, R195T, P198S
JY-DTTJY-DTT 서열목록 제113서열SEQ ID NO: 113 Sequence E169D, R195T, P198TE169D, R195T, P198T
JY-DVSJY-DVS 서열목록 제114서열SEQ ID NO: 114 Sequence E169D, R195V, P198SE169D, R195V, P198S
JY-DVTJY-DVT 서열목록 제115서열SEQ ID NO: 115 Sequence E169D, R195V, P198TE169D, R195V, P198T
JY-DFSJY-DFS 서열목록 제116서열SEQ ID NO: 116 E169D, R195F, P198SE169D, R195F, P198S
JY-DFTJY-DFT 서열목록 제117서열SEQ ID NO: 117 Sequence E169D, R195F, P198TE169D, R195F, P198T
JY-DLSJY-DLS 서열목록 제118서열SEQ ID NO: 118 Sequence E169D, R195L, P198SE169D, R195L, P198S
JY-DLTJY-DLT 서열목록 제119서열SEQ ID NO: 119 E169D, R195L, P198TE169D, R195L, P198T
JY-DRSJY-DRS 서열목록 제120서열SEQ ID NO: 120 Sequence E169D, R195R, P198SE169D, R195R, P198S
JY-DMSJY-DMS 서열목록 제121서열SEQ ID NO: 121 Sequence E169D, R195M, P198SE169D, R195M, P198S
JY-DMTJY-DMT 서열목록 제122서열SEQ ID NO: 122 Sequence E169D, R195M, P198TE169D, R195M, P198T
실험에서 발굴한 PD-L1 변이체 위치 및 치환된 아미노산들PD-L1 Variant Location and Substituted Amino Acids from the Experiment
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that the specific technology is merely a preferred embodiment, and the scope of the present invention is not limited thereto. Therefore, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.
(이 발명을 지원한 국가연구개발사업)(National R & D project supporting this invention)
(과제고유번호) 1711072940(Task unique number) 1711072940
(부처명) 과학기술정보통신부(Ministry Name) Ministry of Science and Technology
(연구관리 전문기관) 한국연구재단(Research Management Specialized Institution) Korea Research Foundation
(연구사업명) 바이오.의료기술개발(R&D)(Name of research project) Biomedical Technology Development (R & D)
(연구과제명) 혈중 지속형 Fc 기반의 엔도테린 GPCR 표적 차세대 항암 항체 발굴(Project name) Discovery of next-generation anti-cancer antibody targeting endocrine GPCR based on sustained Fc in blood
(기여율) 1/1(Contribution rate) 1/1
(주관기관) 국민대학교 산학협력단(Host) Kookmin University Industry-Academic Cooperation Foundation
(연구기간) 2018.03.30 ~ 2019.01.29(Research Period) 2018.03.30 ~ 2019.01.29

Claims (25)

  1. PD-1(Programmed cell death protein-1) 결합력이 증대된 PD-L1(Programmed death-ligand 1) 변이체로서, 상기 PD-L1 변이체는 야생형(Wild type) PD-L1의 아미노산 서열의 일부를 포함하며, 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 169번째 아미노산이 E169D로 치환된 것을 포함하는 PD-L1 변이체. Programmed death-ligand 1 (PD-L1) variant with increased PD-1 (Programmed cell death protein-1) binding capacity, wherein the PD-L1 variant comprises a part of the amino acid sequence of wild type PD-L1 , PD-L1 variant comprising the 169 amino acid of the amino acid sequence of wild-type PD-L1 of SEQ ID NO: 123 is substituted with E169D.
  2. 제 1 항에 있어서, 상기 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 41번째, 73번째, 117번째, 124번째, 130번째, 139번째, 195번째, 198번째, 201번째, 213번째 및 218번째 아미노산으로 구성된 군으로부터 선택되는 1 이상의 아미노산이 야생형의 아미노산과 다른 서열로 치환된 것을 추가적으로 포함하는 것을 특징으로 하는 PD-L1 변이체.According to claim 1, wherein the PD-L1 variant of the amino acid sequence of the wild-type PD-L1 of SEQ ID NO: 123, 41, 73, 117, 124, 130, 139, 195, 198, And at least one amino acid selected from the group consisting of the 201, 213, and 218th amino acids is substituted with a sequence different from that of the wild type amino acid.
  3. 제 2 항에 있어서, 상기 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 195번째 아미노산이 R195K, R195A, R195I, R195T, R195V, R195F, R195L, R195R 또는 R195M로 치환된 것을 특징으로 하는 PD-L1 변이체.The method of claim 2, wherein the PD-L1 variant of the amino acid sequence of the wild type PD-L1 of SEQ ID NO: 123 is replaced with R195K, R195A, R195I, R195T, R195V, R195F, R195L, R195R or R195M PD-L1 variant, characterized in that.
  4. 제 2 항에 있어서, 상기 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 198번째 아미노산이 P198S, P198T 또는 P198H로 치환된 것을 특징으로 하는 PD-L1 변이체.The PD-L1 variant according to claim 2, wherein the PD-L1 variant is substituted with P198S, P198T, or P198H for the 198th amino acid sequence of the wild-type PD-L1 of SEQ ID NO: 123.
  5. 제 2 항에 있어서, 상기 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 41번째 아미노산이 M41V로, 117번째 아미노산이 N117S로, 124번째 아미노산이 L124S로, 그리고 195번째 아미노산이 R195A로 치환된 것을 특징으로 하는 PD-L1 변이체.The variant of claim 2, wherein the PD-L1 variant of the amino acid sequence of the wild-type PD-L1 of SEQ ID NO: 123, 41st amino acid is M41V, 117th amino acid is N117S, 124th amino acid is L124S, and 195th PD-L1 variant, wherein the amino acid is substituted with R195A.
  6. 제 2 항에 있어서, 상기 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 195번째 아미노산이 R195K로 치환된 것을 특징으로 하는 PD-L1 변이체.The PD-L1 variant according to claim 2, wherein the PD-L1 variant is substituted with R195K in amino acid sequence 195 of the amino acid sequence of wild-type PD-L1 of SEQ ID NO: 123.
  7. 제 2 항에 있어서, 상기 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 73번째 아미노산이 Q73R로, 그리고 195번째 아미노산이 R195I로 치환된 것을 특징으로 하는 PD-L1 변이체.According to claim 2, wherein the PD-L1 variant of the amino acid sequence of the wild-type PD-L1 of SEQ ID NO: 123 of the PD-L1 variant, characterized in that the 73rd amino acid is replaced by Q73R and the 195th amino acid is R195I .
  8. 제 2 항에 있어서, 상기 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 130번째 아미노산이 T130A로, 그리고 195번째 아미노산이 R195I로 치환된 것을 특징으로 하는 PD-L1 변이체.According to claim 2, wherein the PD-L1 variant of the amino acid sequence of the wild-type PD-L1 of SEQ ID NO: 123 of the PD-L1 variant, characterized in that the 130 amino acid is replaced with T130A, and the 195 th amino acid is R195I .
  9. 제 2 항에 있어서, 상기 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 117번째 아미노산이 N117S로, 그리고 198번째 아미노산이 P198H로 치환된 것을 특징으로 하는 PD-L1 변이체.According to claim 2, wherein the PD-L1 variant of the amino acid sequence of the wild-type PD-L1 of SEQ ID NO: 123, the 117th amino acid is replaced with N117S, and the 198th amino acid PD-L1 variant, characterized in that replaced with P198H .
  10. 제 2 항에 있어서, 상기 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 195번째 아미노산이 R195I로, 그리고 213번째 아미노산이 L213P로 치환된 것을 특징으로 하는 PD-L1 변이체.According to claim 2, wherein the PD-L1 variant of the amino acid sequence of the wild-type PD-L1 of SEQ ID NO: 123, the 195 amino acid is replaced with R195I, and the 213th amino acid PD-L1 variant, characterized in that substituted with L213P .
  11. 제 2 항에 있어서, 상기 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 139번째 아미노산이 A139S로, 198번째 아미노산이 P198T로, 그리고 201번째 아미노산이 N201S로 치환된 것을 특징으로 하는 PD-L1 변이체.According to claim 2, wherein the PD-L1 variant of the amino acid sequence of the wild-type PD-L1 of SEQ ID NO: 123, 139 amino acid is replaced with A139S, 198 amino acid is replaced with P198T, 201 amino acid is replaced with N201S PD-L1 variant characterized by the above.
  12. 제 2 항에 있어서, 상기 PD-L1 변이체는 서열목록 제123서열의 야생형 PD-L1의 아미노산 서열 중 218번째 아미노산이 N218D로 치환된 것을 특징으로 하는 PD-L1 변이체.According to claim 2, wherein the PD-L1 variant PD-L1 variant, characterized in that the 218th amino acid of the amino acid sequence of the wild-type PD-L1 of SEQ ID NO: 123 is substituted with N218D.
  13. 제 1 항에 있어서, 상기 PD-L1 변이체는 서열목록 제90서열, 서열목록 제94서열, 서열목록 제95서열, 서열목록 제97서열, 서열목록 제100서열, 서열목록 제102서열, 서열목록 제103서열, 서열목록 제104서열, 서열목록 제107서열, 서열목록 제108서열 내지 서열목록 제122서열로 이루어진 군으로부터 선택되는 서열을 포함하는 것을 특징으로 하는 PD-L1 변이체.According to claim 1, wherein the PD-L1 variant is SEQ ID NO: 90, SEQ ID NO: 94, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 102 PD-L1 variant, comprising a sequence selected from the group consisting of SEQ ID NO: 103, SEQ ID NO: 104, SEQ ID NO: 107, SEQ ID NO: 108 to SEQ ID NO: 122.
  14. 제 1 항의 PD-L1 변이체를 코딩하는 핵산분자.A nucleic acid molecule encoding the PD-L1 variant of claim 1.
  15. 제 14 항의 핵산분자를 포함하는 벡터.A vector comprising the nucleic acid molecule of claim 14.
  16. 제 15 항의 벡터를 포함하는 숙주세포.A host cell comprising the vector of claim 15.
  17. 제 16 항에 있어서, 상기 숙주세포는 세균세포인 것을 특징으로 하는 숙주세포.The host cell of claim 16, wherein the host cell is a bacterial cell.
  18. 제 1 항의 PD-L1 변이체, 제 14 항의 핵산분자 또는 제 15 항의 벡터를 유효성분으로 포함하는 야생형(wild type) PD-L1(Programmed death-ligand 1) 및 PD-1(Programmed cell death protein-1) 간 결합 억제제.A wild type PD-L1 (Programmed death-ligand 1) and a PD-1 (Programmed cell death protein-1) comprising the PD-L1 variant of claim 1, the nucleic acid molecule of claim 14, or the vector of claim 15 as an active ingredient. ) Liver binding inhibitors.
  19. 제 1 항의 PD-L1 변이체, 제 14 항의 핵산분자 또는 제 15 항의 벡터를 유효성분으로 포함하는 조성물.A composition comprising a PD-L1 variant of claim 1, a nucleic acid molecule of claim 14 or a vector of claim 15 as an active ingredient.
  20. 제 19 항에 있어서, 상기 조성물은 암질환 또는 감염성질환의 예방 또는 치료용 약제학적 조성물인 것을 특징으로 하는 조성물.20. The composition according to claim 19, wherein the composition is a pharmaceutical composition for preventing or treating cancer diseases or infectious diseases.
  21. 제 1 항의 PD-L1 변이체, 제 14 항의 핵산분자 또는 제 15 항의 벡터를 대상체에게 약제학적 유효량을 투여하는 단계를 포함하는 야생형(wild type) PD-L1(Programmed death-ligand 1) 및 PD-1(Programmed cell death protein-1) 간 결합 억제방법.A wild type Programmed death-ligand (PD-L1) and PD-1 comprising administering to a subject a pharmaceutically effective amount of the PD-L1 variant of claim 1, the nucleic acid molecule of claim 14, or the vector of claim 15. Programmed cell death protein-1.
  22. 제 1 항의 PD-L1 변이체, 제 14 항의 핵산분자 또는 제 15 항의 벡터를 대상체에게 약제학적 유효량을 투여하는 단계를 포함하는 면역반응 증가방법.A method of increasing an immune response comprising administering a PD-L1 variant of claim 1, a nucleic acid molecule of claim 14, or a vector of claim 15 to a subject.
  23. 제 1 항의 PD-L1 변이체, 제 14 항의 핵산분자 또는 제 15 항의 벡터를 대상체에게 약제학적 유효량을 투여하는 단계를 포함하는 암질환 또는 감염성질환의 치료방법.A method of treating cancer or infectious disease, comprising administering a PD-L1 variant of claim 1, a nucleic acid molecule of claim 14, or a vector of claim 15 to a subject.
  24. 하기의 단계를 포함하는 PD-L1 변이체의 제조방법:Method for producing a PD-L1 variant comprising the following steps:
    a) 제 1 항의 PD-L1 변이체를 코딩하는 핵산분자를 포함하는 벡터를 포함하는 숙주세포를 배양하는 단계; 및a) culturing a host cell comprising a vector comprising a nucleic acid molecule encoding a PD-L1 variant of claim 1; And
    b) 상기 숙주세포에 의해 발현된 PD-L1 변이체를 회수하는 단계. b) recovering the PD-L1 variant expressed by the host cell.
  25. 하기의 단계를 포함하는 PD-L1 변이체의 스크리닝 방법:Screening method of PD-L1 variant comprising the following steps:
    a) 제 1 항의 PD-L1 변이체 또는 이를 코딩하는 핵산분자에 추가적으로 무작위적인 점 돌연변이를 가한 PD-L1 변이체 또는 이를 코딩하는 핵산분자의 라이브러리를 구축하는 단계; 및a) constructing a library of PD-L1 variants or nucleic acid molecules encoding the PD-L1 variant or a nucleic acid molecule encoding the randomly added point mutations of claim 1; And
    b) 상기 라이브러리에서 야생형(wild type) PD-L1(Programmed death-ligand 1) 및 PD-1(Programmed cell death protein-1) 간 결합을 억제하는 PD-1 변이체를 선별하는 단계.b) selecting PD-1 variants that inhibit binding between wild type PD-L1 (Programmed death-ligand 1) and PD-1 (Programmed cell death protein-1) in the library.
PCT/KR2019/007829 2018-06-29 2019-06-27 Pd-l1 mutant having improved binding affinity for pd-1 WO2020004984A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/255,629 US20210324038A1 (en) 2018-06-29 2019-06-27 Pd-l1 mutant having improved binding affinity for pd-1
CN201980056951.1A CN113195525A (en) 2018-06-29 2019-06-27 PD-L1 variants with improved binding affinity for PD-1

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180075349 2018-06-29
KR10-2018-0075349 2018-06-29
KR10-2019-0076918 2019-06-27
KR1020190076918A KR102216576B1 (en) 2018-06-29 2019-06-27 PD-L1 Variants with Enhanced PD-1 Binding Affinity

Publications (1)

Publication Number Publication Date
WO2020004984A1 true WO2020004984A1 (en) 2020-01-02

Family

ID=68987405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007829 WO2020004984A1 (en) 2018-06-29 2019-06-27 Pd-l1 mutant having improved binding affinity for pd-1

Country Status (1)

Country Link
WO (1) WO2020004984A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143443A1 (en) * 2022-01-25 2023-08-03 BRL Medicine Inc. Modified cells and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045545B1 (en) * 2014-07-15 2015-06-02 Kymab Limited Precision medicine by targeting PD-L1 variants for treatment of cancer
WO2017201131A1 (en) * 2016-05-18 2017-11-23 Albert Einstein College Of Medicine, Inc. Variant pd-l1 polypeptides, t-cell modulatory multimeric polypeptides, and methods of use thereof
KR20180039182A (en) * 2016-06-13 2018-04-17 아이-맵 Anti-PD-L1 antibodies and their use
KR20180050179A (en) * 2016-11-04 2018-05-14 주식회사 제넥신 Modified pd-l1 protein and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045545B1 (en) * 2014-07-15 2015-06-02 Kymab Limited Precision medicine by targeting PD-L1 variants for treatment of cancer
WO2017201131A1 (en) * 2016-05-18 2017-11-23 Albert Einstein College Of Medicine, Inc. Variant pd-l1 polypeptides, t-cell modulatory multimeric polypeptides, and methods of use thereof
KR20180039182A (en) * 2016-06-13 2018-04-17 아이-맵 Anti-PD-L1 antibodies and their use
KR20180050179A (en) * 2016-11-04 2018-05-14 주식회사 제넥신 Modified pd-l1 protein and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANG, Z. ET AL.: "High-affinity human PD-L1 variants attenuate the suppression of T cell activation", ONCOTARGET, vol. 8, no. 51, 2017, pages 88360 - 88375, XP002787425, DOI: 10.18632/oncotarget.21729 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143443A1 (en) * 2022-01-25 2023-08-03 BRL Medicine Inc. Modified cells and uses thereof

Similar Documents

Publication Publication Date Title
Pamer et al. H-2M3 presents a Listeria monocytogenes peptide to cytotoxic T lymphocytes
KR102171766B1 (en) PD-1 Variants with Enhanced PD-L1 Binding Affinity
Boulain et al. Mutagenesis by random linker insertion into the lamB gene of Escherichia coli K12
KR101776157B1 (en) Biological materials and uses thereof
KR102132311B1 (en) Improved cell permeability (ICP) parkin recombinant proteins and uses thereof
WO2020004984A1 (en) Pd-l1 mutant having improved binding affinity for pd-1
KR102148413B1 (en) Cyaa-based chimeric proteins comprising a heterologous polypeptide and their uses in the induction of immune responses
JP2000074922A (en) Outer membrane protein f of pseudomonas aeruginosa
KR102216576B1 (en) PD-L1 Variants with Enhanced PD-1 Binding Affinity
WO2019151771A1 (en) Pd-1 variant having improved binding to pd-l1
KR20150031487A (en) Hpv/cyaa-based chimeric proteins and their uses in the induction of immune responses against hpv infection and hpv-induced disorders
US8283166B2 (en) DPH2 gene deletion mutant and uses thereof
WO2003074700A2 (en) Transposon
WO2024085480A1 (en) Cell surface large-display technology using extracellular membrane lipoprotein prsa display system
WO2021225378A1 (en) Pd-1 variants having increased pd-l1 affinity
WO1998052972A1 (en) Novel protein, its gene, reagents for inducing apoptosis, and anticancer agents
US7030222B2 (en) Human gastric cancer antigen gene and gastric cancer antigen protein
CA2052486A1 (en) Protein for inhibiting collagen-stimulated platelet aggregation
WO2022080865A9 (en) Anti-cancer recombinant protein for pet dog and anti-cancer composition for pet dog, comprising same
WO2021167418A2 (en) Novel tumor-associated antigen protein olfm4 and uses thereof
KR20240053728A (en) Surface-display overexpression technique by using lipoprotein PrsA expression system
WO2022260468A1 (en) Development of novel fgf21 variant, and production technique and use thereof
EP1210456A1 (en) Antibiotics based upon bacteriophage lysis proteins
JPS60232097A (en) Preparation of human tumor necrotic factor polypeptide
JP2000219699A (en) Polypeptide for late developmental mycobacterium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826506

Country of ref document: EP

Kind code of ref document: A1