WO2019151771A1 - Pd-1 variant having improved binding to pd-l1 - Google Patents

Pd-1 variant having improved binding to pd-l1 Download PDF

Info

Publication number
WO2019151771A1
WO2019151771A1 PCT/KR2019/001290 KR2019001290W WO2019151771A1 WO 2019151771 A1 WO2019151771 A1 WO 2019151771A1 KR 2019001290 W KR2019001290 W KR 2019001290W WO 2019151771 A1 WO2019151771 A1 WO 2019151771A1
Authority
WO
WIPO (PCT)
Prior art keywords
variant
amino acid
wild type
seq
sequence
Prior art date
Application number
PCT/KR2019/001290
Other languages
French (fr)
Korean (ko)
Inventor
정상택
천광진
하지연
Original Assignee
주식회사 뉴라클제네틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190011181A external-priority patent/KR102171766B1/en
Application filed by 주식회사 뉴라클제네틱스 filed Critical 주식회사 뉴라클제네틱스
Priority to JP2020563883A priority Critical patent/JP7033811B2/en
Priority to US16/966,656 priority patent/US20230002472A1/en
Priority to CA3090317A priority patent/CA3090317A1/en
Priority to AU2019216086A priority patent/AU2019216086C1/en
Priority to CN201980019251.5A priority patent/CN112105636A/en
Priority to EP19748331.6A priority patent/EP3747897A4/en
Publication of WO2019151771A1 publication Critical patent/WO2019151771A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA

Definitions

  • the present invention relates to a PD-1 variant and a method for preparing the same, wherein the PD-L1 binding ability is increased to effectively inhibit the binding between wild-type PD-1 and PD-L1.
  • Drugs for the treatment of cancer are largely divided into low-molecular weight drugs and high-molecular weight drugs, and due to their specificity, high-molecular weight drugs have specific attention as low-molecular weight drugs.
  • TILs tumor-infiltrating lymphocytes
  • PD-1 which is smaller in size than PD-L1
  • conventional PD-1 engineering proceeded with screening through yeast display and the heterogenity of glycan and There is a possibility of immunogenicity due to many mutagenesis.
  • the drug product of the glycosylated form is easy to mass-produce inexpensively even in bacteria, there is no problem of glycation heterogenity according to cell line, culture process and purification process has a great advantage in biopharmaceutical manufacturing.
  • the present inventors made an effort to discover PD-1 variants that can effectively inhibit the binding between wild-type PD-1 and PD-L1 due to the high binding ability with PD-L1 and at the same time minimize the possibility of immunogenicity. .
  • binding to and optimizing some amino acid sequences of wild type PD-1 with other amino acid sequences binding to PD-L1 is greatly improved, and immunogenicity is generated through minimization of mutation sites and / or implementation of aglycosylated PD-1.
  • the present invention has been completed by confirming that the possibility can be reduced.
  • Another object of the present invention is to provide a nucleic acid molecule encoding the PD-1 variant.
  • Still another object of the present invention is to provide a vector containing the nucleic acid molecule.
  • Another object of the present invention to provide a host cell comprising the vector.
  • Still another object of the present invention is to provide a method for preparing the PD-1 variant.
  • Still another object of the present invention is to provide an inhibitor for binding between wild type PD-1 and PD-L1 comprising the PD-1 variant, nucleic acid molecule or vector as an active ingredient.
  • Still another object of the present invention is to provide a method for inhibiting binding between wild type PD-1 and PD-L1, comprising administering an effective amount of the PD-1 variant, nucleic acid molecule or vector to a subject.
  • Still another object of the present invention is to provide a method of treating cancer disease or infectious disease, comprising administering a therapeutically effective amount of the PD-1 variant, nucleic acid molecule or vector to a subject.
  • Another object of the present invention to provide a method for screening the PD-1 variant.
  • the present invention provides a PD-1 variant having an increased PD-L1 binding force.
  • the present inventors made an effort to discover PD-1 variants that can effectively inhibit the binding between wild-type PD-1 and PD-L1 due to the high binding ability with PD-L1 and at the same time minimize the possibility of immunogenicity. .
  • binding to and optimizing some amino acid sequences of wild type PD-1 with other amino acid sequences binding to PD-L1 is greatly improved, and immunogenicity is generated through minimization of mutation sites and / or implementation of aglycosylated PD-1. It was confirmed that the possibility could be reduced.
  • PD-1 variant or “Programmed cell death protein-1 variant” includes variants in which one or more amino acids are substituted, deleted or added to the amino acid sequence of wild type PD-1. Means a variant.
  • the amino acid sequence of the wild type PD-1 comprises the amino acid sequence of SEQ ID NO: 61 sequence.
  • the PD-1 (Programmed cell death protein-1) variant having increased PD-L1 binding capacity is part of the amino acid sequence of the wild type PD-1.
  • the 69th amino acid of the amino acid sequence of wild type PD-1 of SEQ ID NO: 61 is replaced with a sequence different from that of the wild type amino acid.
  • the 69th amino acid is substituted with C69S, C69T, C69Y, C69G or C69A.
  • the PD-1 variant further comprises that the 36th amino acid of the amino acid sequence of wild type PD-1 of SEQ ID NO: 61 is substituted with S36P.
  • the PD-1 variant further comprises that the 114th amino acid of the amino acid sequence of wild type PD-1 of SEQ ID NO: 61 is substituted with L114P.
  • the PD-1 variant is the 12th, 34th, 92th, 107th, 131th, 132th and 142th amino acids of the amino acid sequence of the wild type PD-1 of SEQ ID NO: 61 It further comprises that one or more amino acids selected from the group consisting of is substituted with a sequence different from the amino acid of the wild type.
  • said PD-1 variant comprises at least one amino acid substitution selected from the group consisting of T12S, N34T, N92K or N92S, K107N, H131R, P132L and F142L.
  • the PD-1 variant further comprises that the thirteenth amino acid of the amino acid sequence of wild type PD-1 of SEQ ID NO: 61 is substituted with F13I or F13L, 46th amino acid is replaced by M46I .
  • the PD-1 variant is 1, 17, 36, 50, 79, 100, 114, And at least one amino acid selected from the group consisting of the 127th and 139th amino acids is substituted with a sequence different from that of the wild type amino acid.
  • said PD-1 variant comprises at least one amino acid substitution selected from the group consisting of N1S, L17M, S36P, N50S, G79R, G100V, L114P, V127A and A139L.
  • the PD-1 variant further comprises that the 25th amino acid of the amino acid sequence of wild type PD-1 of SEQ ID NO: 61 is replaced with N25D, 92 amino acid is replaced with N92S or N92K .
  • the PD-1 variant further comprises that the 13th amino acid of the amino acid sequence of wild type PD-1 of SEQ ID NO: 61 is substituted with F13I or F13L.
  • the PD-1 variant is selected from the group consisting of the 9th, 88th, 101th, 125th and 137th amino acids of the amino acid sequence of the wild type PD-1 of SEQ ID NO: 61 It further includes that at least one amino acid is substituted with a sequence different from that of the wild type amino acid.
  • said PD-1 variant comprises at least one amino acid substitution selected from the group consisting of N9D, R88K, A101V, A125S and R137K.
  • the PD-1 variant is an aglycosylated PD-1 variant.
  • aglycosylated proteins are capable of mass production in bacteria and have excellent speed and cost.
  • the invention provides a nucleic acid molecule encoding the PD-1 variant, a vector comprising the same or a host cell comprising the vector.
  • the host cell is a bacterial cell.
  • Nucleic acid molecules of the invention can be isolated or recombinant and include single and double stranded DNA and RNA as well as corresponding complementarity sequences.
  • An "isolated nucleic acid” is a nucleic acid isolated from a naturally occurring source, from a surrounding genetic sequence present in the genome of the individual from which the nucleic acid is isolated. In the case of nucleic acids, such as PCR products, cDNA molecules, or oligonucleotides synthesized enzymatically or chemically from a template, the nucleic acid resulting from this procedure can be understood as an isolated nucleic acid molecule.
  • Isolated nucleic acid molecules refer to nucleic acid molecules in the form of separate fragments or as components of larger nucleic acid constructs.
  • Nucleic acids are “operably linked” when placed in a functional relationship with other nucleic acid sequences.
  • the DNA of a presequence or secretion leader is operably linked to the DNA of a polypeptide when expressed as a preprotein, which is the form before the polypeptide is secreted, and the promoter or enhancer is a polypeptide sequence.
  • Operably linked to a coding sequence when affecting the transcription of the ribosome binding site, or when the ribosome binding site is arranged to facilitate translation.
  • "operably linked” means that the DNA sequences to be linked are located contiguously, and in the case of a secretory leader, they are present within adjacent identical reading frames. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction enzyme sites. If such sites do not exist, the synthetic oligonucleotide adapters or linkers are used in accordance with conventional methods.
  • vector refers to a carrier capable of inserting a nucleic acid sequence for introduction into a cell capable of replicating the nucleic acid sequence.
  • Nucleic acid sequences can be exogenous or heterologous.
  • Vectors include, but are not limited to, plasmids, cosmids and viruses (eg bacteriophages).
  • plasmids include, but are not limited to, plasmids, cosmids and viruses (eg bacteriophages).
  • viruses eg bacteriophages.
  • One skilled in the art can construct vectors by standard recombinant techniques (Maniatis, et al., Molecular Cloning , A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY, 1988; and Ausubel et al., In: Current Protocols in Molecular Biology , John, Wiley & Sons, Inc, NY, 1994, etc.).
  • expression vector refers to a vector comprising a nucleic acid sequence encoding at least a portion of the gene product being transcribed. In some cases, RNA molecules are then translated into proteins, polypeptides, or peptides. Expression vectors can include various regulatory sequences. In addition to regulatory sequences that regulate transcription and translation, vectors and expression vectors can also include nucleic acid sequences that provide additional functionality.
  • the term "host cell” refers to any transgenic organism that includes eukaryotes and prokaryotes and is capable of replicating the vector or expressing a gene encoded by the vector.
  • the host cell may be transfected or transformed by the vector, which means a process in which exogenous nucleic acid molecules are delivered or introduced into the host cell.
  • the host cell of the present invention is a bacterial cell, more preferably a Gram negative bacterial cell.
  • the cells are suitable for the practice of the present invention in that they have a periplasmic region between the inner membrane and the outer membrane.
  • Examples of preferred host cells of the present invention include E. coli , Pseudomonas aeruginosa , Vibrio cholera , Salmonella typhimurium , Shigella flexneri , Haemophilus influenza , Bordotella pertussi , Erwinia amylovora , Rhizobium sp. And the like, but are not limited thereto.
  • the present invention provides a wild type PD-1 (Programmed cell death protein-1) and PD-L1 (Programmed) comprising the PD-1 variant, nucleic acid molecule or vector as an active ingredient.
  • death-ligand 1 provides liver binding inhibitors.
  • the present invention provides a composition comprising the PD-1 variant, nucleic acid molecule or vector as an active ingredient.
  • the composition is preferably a pharmaceutical composition, more preferably a pharmaceutical composition for preventing or treating cancer diseases or infectious diseases.
  • the present invention provides a wild type Programmed cell death protein-1 (PD-1) and PD comprising administering an effective amount of the PD-1 variant, nucleic acid molecule or vector to a subject.
  • PD-1 Programmed cell death protein-1
  • -L1 Providemed death-ligand 1
  • the present invention provides a method for increasing an immune response comprising administering an effective amount of the PD-1 variant, nucleic acid molecule or vector to a subject.
  • the present invention provides a method for treating cancer disease or infectious disease, comprising administering a therapeutically effective amount of the PD-1 variant, nucleic acid molecule or vector to a subject.
  • the pharmaceutical composition of the present invention comprises (a) the PD-1 variant, nucleic acid molecule or vector; And (b) a pharmaceutically acceptable carrier.
  • the type of cancer to be prevented or treated by the present invention is not limited, leukemias and acute lymphocytic leukemia, acute nonlymphocytic leukemias, chronic lymphocytic leukemia, chronic lymphocytic leukemia Lymphomas, brain tumors, neuroblastoma, such as myelogenous leukemia, Hodgkin's Disease, non-Hodgkin's lymphomas, and multiple myeloma Childhood solid tumors such as retinoblastoma, Wilms Tumor, bone tumors and soft-tissue sarcomas, lung cancer, breast cancer cancer, prostate cancer, urinary cancers, uterine cancers, oral cancers, pancreatic cancer, melanoma and other skin cance rs, stomach cancer, ovarian cancer, brain tumors, liver cancer, laryngeal cancer, thyroid cancer, esophageal cancer and testicular cancer It may be administered to treat a number of cancers, including common solid tumors of adults
  • the type of infectious disease to be prevented or treated by the present invention is not limited, and includes a viral infection, an influenza infection, a bacterial infection and a fungal infection.
  • Pharmaceutically acceptable carriers included in the pharmaceutical compositions of the present invention are those commonly used in the preparation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, Calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like It doesn't happen.
  • the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like.
  • a lubricant e.g., talc, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, a kaolin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mann
  • composition of the present invention may be administered orally or parenterally to a subject, preferably parenteral administration, for example, by intravenous infusion, topical infusion and intraperitoneal infusion.
  • the term “subject” or “subject” refers to an object to prevent or treat the disease through inhibition of binding between the PD-1 and PD-L1, and preferably includes humans and animals.
  • Suitable dosages of the pharmaceutical compositions of the invention vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, condition of food, time of administration, route of administration, rate of excretion and response to reaction, Usually a skilled practitioner can easily determine and prescribe a dosage effective for the desired treatment or prophylaxis.
  • the daily dose of the pharmaceutical composition of the present invention is 0.0001-100 mg / kg.
  • compositions of the present invention may be prepared in unit dosage form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. Or may be prepared by incorporation into a multi-dose container.
  • the formulation may be in the form of a solution, suspension or emulsion in an oil or an aqueous medium, or may be in the form of extracts, powders, granules, tablets or capsules, and may further include a dispersant or stabilizer.
  • the pharmaceutical composition of the present invention may be used alone as a therapy, but may also be used in conjunction with other conventional biological, chemo, or radiation therapies, and such combination therapy may be used to treat cancer or infectious disease more effectively.
  • Chemotherapeutic agents that can be used with the composition when the present invention is used for the prevention and treatment of cancer are cisplatin, carboplatin, procarbazine, mechlorethamine, Cyclophosphamide, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosourea, diactinomycin, daunorucin Daunorubicin, doxorubicin, bleomycin, plecomycin, mitomycin, etoposide, tamoxifen, taxol, transflavol Transplatinum, 5-fluorouracil, vincristin, vinblastin, methotrexate, and the like.
  • Radiation therapy that can be used with the composition of the present invention is X-ray
  • the present invention provides a method for preparing a PD-1 variant, comprising the following steps:
  • the invention provides a method for screening PD-1 variants comprising the following steps:
  • PD-1 variants that inhibit binding between wild type Programmed cell death protein-1 (PD-1) and Programmed death-ligand 1 (PD-L1) in the library.
  • the screening methods of the present invention can use fluorescence labeled cell separation (FACS) screening, or other automated flow cytometry techniques.
  • FACS fluorescence labeled cell separation
  • Instruments for performing flow cytometry are known to those skilled in the art. Examples of such devices are FACSAria, FACS Star Plus, FACScan and FACSort devices (Becton Dickinson, Foster City, CA), Epics C (Coulter Epics Division, Hialeah, FL), MOFLO (Cytomation, Colorado Springs, Colo.), MOFLO- XDP (Beckman Coulter, Indianapolis, IN).
  • Flow cytometry techniques generally include the separation of cells or other particles in a liquid sample.
  • a flow cytometer typically the purpose of a flow cytometer is to analyze the separated particles for their one or more properties (eg the presence of labeled ligands or other molecules). Particles are passed one by one by the sensor and are classified based on size, refraction, light scattering, opacity, roughness, shape, fluorescence, and the like.
  • the present invention provides PD-1 variants with increased PD-L1 binding capacity.
  • the present invention also provides a method for producing and screening the PD-1 variant.
  • PD-1 variant of the present invention effectively inhibits the binding between wild-type PD-1 and PD-L1, significantly higher permeability and cancer killing effect of immune cells or therapeutic effect of infectious diseases as compared to conventional immune barrier inhibitors It can be expected and at the same time minimize the possibility of immunogenicity. In addition, it is possible to facilitate the development of biopharmaceuticals by implementing aglycosylation.
  • FIG. 1 shows SDS-PAGE images of wild type PD-1 and four sugar chain variants PD-1 produced and purified in animal cells.
  • Figure 2 shows the results of avidity verification of wild type PD-1 and four variant PD-1 to PD-L1.
  • Figure 4 shows the results of expression analysis of aglycosylated PD-1 in E. coli using Anti-FLAG-FITC.
  • Figure 6 shows the DNA sequencing data of the initial library produced.
  • Figure 7 shows the library enrichment test results by flow cytometry.
  • Figure 11 shows the results of protein expression analysis using anti-FLAG-FITC of E. coli cells displaying aglycosylated PD-1 variants.
  • FIG. 13 shows DNA sequencing data of a secondary library prepared using CKJ 41T as a template.
  • FIG. 15 shows the results of PD-L1 avidity analysis of Escherichia coli cells displaying aglycosylated PD-1 variants discovered through secondary screening.
  • Figure 16 shows the results of comparing PD-L1 avidity of the PD-1 variant and the common sequence variant.
  • Figure 18 shows the results of affinity verification of wild type PD-1 and HAC-V, two PD-1 variants to PD-L1.
  • the amplified genome was processed using BssH II and Xba I enzymes and ligated to pMaz vector, which is an animal cell expression vector treated with the same enzyme.
  • the ligated plasmid was Jude1 ((F-mcrA ⁇ (mrr-hsdRMS-mcrBC) 80lacZ ⁇ M15 ⁇ lacX74 recA1 endA1 araD139 ⁇ (ara, leu) 7697 galU galK ⁇ -rpsL nupG) were transformed into E. coli and the sequence was confirmed by individual colony analysis.
  • primers (CKJ # 3, CKJ # 4, CKJ # 5, CKJ # 6, CKJ # 7,) were used for site-directed mutagenesis using QuikChange PCR.
  • the genome was amplified using the designed primer and Pfu turbo polymerase (Agilent). The sequence was confirmed by transforming the amplified gene into Jude1.
  • PD-1 wild type PD-1
  • PD-1 glycosylation variants expression vector pMaz-N25A PD-1-His tag, pMaz-N34A PD-1-His tag, pMaz -N50A PD-1-His tag, pMaz-N92A PD-1-His tag
  • HEK293F animal cells
  • the filtered supernatant was induced to bind to 1 ml of Ni-NTA resin (Qiagen) at 4 ° C. for 16 hours.
  • the combined resin was washed with PBS solution containing 10 CV (column volume) of 10 mM imidazole (Sigma) and then washed once more with PBS solution containing 10 CV of 20 mM imidazole. Finally, the eluate was recovered with PBS solution containing 250 mM imidazole (FIG. 1).
  • PBS solution containing 10 CV (column volume) of 10 mM imidazole (Sigma) washed once more with PBS solution containing 10 CV of 20 mM imidazole.
  • the eluate was recovered with PBS solution containing 250 mM imidazole (FIG. 1).
  • the PD-L1 binding capacity of wild type PD-1 and four glycosylated PD-1 variants were verified by ELISA.
  • Each protein was diluted in 0.05M Na 2 CO 3, pH9.6 (Junsei) in a high binding 96 well plate (Costar), and bound for 16 hours at 4 ° C. at a concentration of 200 ng / well.
  • 5% skim milk containing PBST (0.5% Tween-20 containing PBS) solution was added to w / v 5% and each 96 well plate was blocked at room temperature for 1 hour.
  • PD-L1 tetramer was diluted in PBS solution and bound to each 96 well plate for 1 hour at room temperature.
  • anti-streptavidin-HRP (Genetex) was diluted in PBS at a ratio of 1: 2,000 and bound to each 96 well plate for 1 hour at room temperature. The solution was discarded and washed four times with 200 ⁇ l of PBST 0.5% solution, followed by reaction with 50 ⁇ l TMB (Thermo Scientific). After 20 minutes, the reaction was terminated with 4 NH 2 SO 4 (FIG. 2). As a result of reaction, N92A mutant showed no significant difference with wild type PD-1, but the other three glycosylation variants showed a very large difference in binding ability. Glycosylation of N25, N34, and N50 significantly affected the binding capacity with PD-L1. Appeared to cause.
  • Sequence Listing primer Sequence (5 ' ⁇ 3') Sequence Listing First Sequence CKJ # 1 GCGGAATTCG GCGCGC ACTCCGAATTAGACTCCCCAGACAGGCCC SEQ ID NO 2 CKJ # 2 GAATTCCGC TCTAGA TTATCAATGATGATGGTGGTGATGTTGGAACTGGCCGGCTGG Sequence Listing Third Sequence CKJ # 3 CGTGGTGACCGAAGGGGACGCCGCCACCTTCACCTGCAGCT SEQ ID NO: 4 Sequence CKJ # 4 AGCTGCAGGTGAAGGTGGCGGCGTCCCCTTCGGTCACCACG SEQ ID NO: 5 Sequence CKJ # 5 ACCTTCACCTGCAGCTTCTCCGCCACATCGGAGAGCTTCGTGCTAAAC SEQ ID NO: 6 Sequence CKJ # 6 GTTTAGCACGAAGCTCTCCGATGTGGCGGAGAAGCTGCAGGTGAAGGT SEQ ID NO: 7 Sequence CKJ # 7 GTACCGCATGAGCCCCAGCGCCCAGACGGACAAG
  • GS linker was inserted between streptavidin and PD-L1 to secure fluidity of each protein.
  • Streptavidin was amplified using primers (HW # 3, HW # 4) and Vent polymerase (New England Biolab), followed by assembly PCR using PD-L1 genome and Vent polymerase.
  • the generated gene was subjected to restriction enzyme treatment using Bss HII and Xba I (New England Biolab). Restriction-treated PD-L1-streptavidin-His tag gene was ligated to the same restriction enzyme-treated pMaz vector.
  • the ligated plasmid was transformed into Jude1 Escherichia coli, and a single clone was obtained to confirm that the PD-L1-streptavidin-His tag was successfully inserted into the pMaz vector by sequencing.
  • the transmeric PD-L1 expression vector was transfected into animal cells (HEK293F), and after 6 days of incubation, the cell culture was centrifuged at 6,000 rpm for 20 minutes, and the supernatant was collected and filtered through a 0.22 ⁇ m filter. The filtered supernatant was induced to bind 1 ml of Ni-NTA resin (Qiagen) for 16 hours at 4 °C. The bound resin is washed with PBS solution containing 10 CV of 10 mM imidazole (Sigma) of resin and then washed once more with 10 CV of 20 mM imidazole containing PBS solution. Finally, the eluate was recovered with PBS solution containing 250 mM imidazole.
  • the purified PD-L1 tetramer was fluorescently labeled using Alexa-488 labeling kit. Fluorescently labeled tetrameric PD-L1 showed excellent PD-1 binding as a result of ELISA analysis (FIG. 3).
  • Example 4 Cloning to Display Human PD-1 in Bacterial Cell Intima (Wild Type PD-1, HAC-V PD-1)
  • PD-1 primer to display an outer film portion of the amino acid sequence of PD-1 with the (JY # 1, JY # 2 ) -
  • Sfi I restriction enzyme treatment Sfi I-treated DNA was ligated to Sfi I treated pMopac12-NlpA-FLAG vector, like in order to use the signal peptide is a signal peptide NlpA immobilizing cells in the lining under the secretion of proteins into the E. coli periplasmic region pMopac12-NlpA-WTPD- 1-FLAG vector was prepared.
  • HAC-V variant for use as a control was conducted through a gene synthesis, as in order to use the NlpA signal peptides ligated in-pMopac12 NlpA-FLAG vector treated Sfi I pMopac12-NlpA-HAC- V PD-1- FLAG plasmids were prepared. Subsequently, a single clone was obtained by transforming E. coli Jude1 and sequencing confirmed that wild type PD-1 and HAC-V PD-1 were successfully inserted into the pMopac-12 vector.
  • Example 5 Expression of PD-1 and PD-1 variants (wild type PD-1, HAC-V PD-1) in E. coli and binding to PD-L1 using flow cytometry
  • Plasmids prepared by cloning were transformed into Jude1 cells, respectively. Prepared samples were incubated at 37 ° C. and 250 rpm for 16 hours in TB medium containing 2% glucose and 40 ⁇ g / ml chloramphenicol, respectively. The cultured cells were inoculated at a ratio of 1:50 in 6 ml of TB medium containing 40 ⁇ g / ml of chloramphenicol.
  • the plate was rotated at room temperature and labeled with a fluorescent probe on the spheroplast. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. Discard the supernatant and wash the centrifuged Escherichia coli once with 1 ml of PBS and centrifuge again for 13 minutes at 13,500 rpm. Centrifuged E. coli was resuspensioned with 1 ml of PBS and analyzed using Guava (Merck Millipore) equipment. As a result, it was confirmed that aglycosylated PD-1 was well expressed in Escherichia coli (FIG. 4), but no binding ability with PD-L1 was observed, and aglycosylated HAC-V PD-1 had weak PD-L1 binding ability. (FIG. 5).
  • the amplified genome is treated Sfi I enzyme comprising similarly inserted pMopac12-NlpA-FLAG vector, which is the Sfi I enzyme treatment was then ligated to the transformation, Jude1 cells.
  • Transformed E. coli was spread on a square plate and incubated at 37 ° C. for 16 hours to recover E. coli with TB containing 2% glucose to secure an initial library (FIG. 6).
  • Example 7 PD-1 variant screening using flow cytometer
  • the prepared library was inoculated into a 250 mL flask, incubated for 4 hours at 37 ° C and 250 rpm, and containing 40 ⁇ g / ml of chloramphenicol.
  • E. coli cultured in 100 ml of TB medium was inoculated in a 1: 100 ratio.
  • OD 600 0.5
  • 1 mM IPTG was added to overexpress the protein at 25 ° C, 250 rpm and 5 hours, and then centrifuged at 14,000 rpm for 1 minute.
  • the cells were recovered. In order to remove the residual medium, the cells placed in the e-tube were resuspensioned with 1 ml of 10 mM Tris-HCl (pH 8.0) and centrifuged for 1 minute at 13,500 RPM. The cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution to remove the extracellular membrane by rotation at 37 ° C. for 30 minutes. E. coli was collected by centrifugation at 13,500 rpm for 1 minute, and then the supernatant was removed.
  • STE 0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)
  • Centrifuged Escherichia coli was resuspensioned with 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8] and then centrifuged at 13,500 rpm for 1 minute.
  • 1 ml of Solution A and 20 ⁇ l of 50 mg / ml lysozyme solution were added to the solution, followed by resuspension of the centrifuged Escherichia coli, followed by rotation at 37 ° C. for 15 minutes to remove the peptidoglycan layer.
  • E. coli having high binding strength to PD-L1 was recovered using S3 sorter (Bio-Rad).
  • the recovered E. coli were obtained by PCR amplification using primers (JY # 1, JY # 2), and the genomes were sfi I-restricted and ligated to the restriction-treated pMopac12-NlpA-FLAG vector.
  • E. coli was spread on a square plate, incubated at 37 ° C for 16 hours, recovered, and stored in a deep freezer. The above screening procedure was repeated five more times.
  • Example 8 Increased PD-L1 Affinity Escherichia coli Culture for Confirmation of Enrichment of PD-1 Variants
  • Example 9 Enrichment of PD-L1 Affinity Increased PD-1 Variants Using Flow Cytometry
  • the cells placed in the e-tube were resuspensioned with 1 ml of 10 mM Tris-HCl (pH 8.0) and washed twice by centrifugation at 13,500 rpm for 1 minute.
  • the cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution to remove the extracellular membrane by rotation at 37 ° C. for 30 minutes.
  • E. coli was collected by centrifugation at 13,500 rpm for 1 minute, and then the supernatant was removed.
  • Centrifuged Escherichia coli was resuspensioned through 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8], and then centrifuged at 13,500 rpm for 1 minute. 1 ml of solution A and 20 ⁇ l of 50 mg / ml lysozyme solution were added to the solution, followed by resuspension of centrifuged Escherichia coli, followed by rotation at 37 ° C. for 15 minutes to remove the peptidoglycan layer.
  • Solution A 0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8
  • 1 ml of solution A and 20 ⁇ l of 50 mg / ml lysozyme solution were added to the solution, followed by resuspension of centrifuged Escherichia coli, followed by rotation at 37 ° C. for 15 minutes to remove the peptidogly
  • Example 10 Obtaining PD-1 Variants with Enhanced PD-L1 Adhesion through Flow Cytometry Analysis
  • the last round single colonies were inoculated in TB medium containing 2% glucose and 40 ⁇ g / ml chloramphenicol and incubated at 37 ° C. and 250 rpm for 16 hours.
  • the cells placed in the e-tube were resuspended with 1 ml of 10 mM Tris-HCl (pH 8.0) and centrifuged for 1 minute at 13,500 rpm.
  • the cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution to remove the extracellular membrane by rotation at 37 ° C. for 30 minutes.
  • E. coli was collected by centrifugation at 13,500 rpm for 1 minute, and then the supernatant was removed.
  • Centrifuged Escherichia coli was resuspensioned with 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8], and then centrifuged at 13,500 rpm for 1 minute.
  • 1 ml of solution A and 20 ⁇ l of 50 mg / ml lysozyme solution were added to the solution, followed by resuspension of centrifuged Escherichia coli, followed by rotation at 37 ° C. for 15 minutes to remove the peptidoglycan layer.
  • S.6.8.3 and S.5.1T variants for use as additional controls were cloned via Primer assembly PCR.
  • Primer (S.6.8.3: JY # 5,6,7,8,9,10,11,12 / S.5.1T: JY # 13,14,15,16,17,18,19,20 ), Primer assembly PCR using Vent Polymerase, and then amplified properly amplified gene through Amplify PCR.
  • Sequence Listing primer Sequence (5 ' ⁇ 3') SEQ ID NO: 62 Sequence JY # 5 TTAGACTCCCCAGACAGGCCCTGGAACCCCCCCACCTTCTCCCCAGCCCTGCTCGTGGTGA SEQ ID NO: 63 Sequence JY # 6 ACGAAGCTCTCCGATGTGTTGGAGAAGCTGCAGGTGAAGGTGGCGTTGTCCCCTTCGGTCACCACGAGCAGGGCT SEQ ID NO: 64 Sequence JY # 7 AACACATCGGAGAGCTTCGTGCTAAACTGGTACCGCATGAGCCCCAGCAACCAGACGGACAAGCTGGCCGCCTTC SEQ ID NO: 65 Sequence JY # 8 TGGGCAGTTGTGTGACACGGAAGCGGCTGGCCTGGCCCAGCTGGCCGCGCGGTCCTCGGGGAAGGCGGCCAGCTTGT SEQ ID NO: 66 Sequence JY # 9 CGTGTCACACAACTGCCCAACGGGCGTGACTTCCACATGAGCGTGGTCAGGGCCCGGCAGCGACAGCGGCACC
  • wild type PD-1 and control groups PD-1 HAC-V, S.6.8.3, S.5.1T and CKJ 49 and A total of six CKJ 50 strains were inoculated into TB medium containing 2% glucose and 40 ⁇ g / ml chloramphenicol, and then incubated at 37 ° C and 250 rpm for 16 hours.
  • the cultured cells were inoculated by diluting 1: 100 in 6 ml of TB medium containing 40 ⁇ g / ml of chloramphenicol.
  • coli was collected after resuspension with PBS to confirm the expression level, 700 ⁇ l of PBS and 1 ⁇ l of anti -FLAG-FITC was put together and rotated at room temperature to label the fluorescent probe on the spheroplast. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute.
  • the C69S of CKJ 41 was selected from several amino acids (C, T, Y, A, G). Substituted.
  • the genome was amplified by Quikchange PCR using primers designed for this purpose and Pfu turbo polymerase (Agilent). The sequence was confirmed by transforming the amplified gene into Jude1.
  • CKJ 41 and the control HAC-V variant, CKJ 41C, CKJ 41T, CKJ 41Y, CKJ 41A, and CKJ 41G, which changed the 69th amino acid of CKJ 41, were added to TB medium containing 2% glucose and 40 ⁇ g / ml chloramphenicol, respectively. After inoculation, the cells were incubated at 37 ° C. and 250 rpm for 16 hours. The cultured cells were inoculated by diluting 1: 100 in 6 ml of TB medium containing 40 ⁇ g / ml of chloramphenicol.
  • the amplified genome is Sfi I Enzyme Treated Like Sfi I Enzyme-treated pMopac12-NlpA-FLAG vector was inserted into the ligation and transformed into Jude1 cells. Transformed E. coli was spread on a square plate and incubated at 37 ° C. for 16 hours to recover E. coli with TB containing 2% glucose to secure an initial library (FIG. 13).
  • the prepared library was inoculated into a 250 mL flask, incubated for 4 hours at 37 ° C and 250 rpm, and containing 40 ⁇ g / ml of chloramphenicol.
  • E. coli cultured in 100 ml of TB medium was inoculated in a 1: 100 ratio.
  • OD 600 0.5
  • 1 mM IPTG was added to overexpress the protein at 25 ° C, 250 rpm and 5 hours, and then centrifuged at 14000 rpm for 1 minute.
  • the cells were recovered. Experiments were carried out in the same manner as in the spheroplasting method described in Example 5, 12.5 nM tetrameric PD-L1-Alexa488 probe was put together in the spheroplast produced by this to rotate at room temperature to label the fluorescent probe. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute. After resuspension of the centrifuged Escherichia coli with 1 ml PBS, E.
  • E. coli having a higher binding force to PD-L1 was recovered using S3 sorter (Bio-Rad).
  • the recovered Escherichia coli were obtained by PCR amplification using primers (JY # 3, JY # 4), and the genomes were sfi I restriction enzyme-treated and ligated to restriction enzyme-treated pMopac12-NlpA-FLAG vector.
  • E. coli was spread on a square plate, incubated at 37 ° C for 16 hours, recovered, and stored in a deep freezer. The screening process was repeated three additional times, gradually decreasing the concentration of the probe.
  • the experiment was performed in the same manner as in the spheroplasting method described in Example 5, and 4 nM tetrameric PD-L1-Alexa488 probe was put together in the spheroplast thus formed, and the fluorescent probe was labeled by rotating at room temperature. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute.
  • Last round single colonies (APD1-CKJ 41T: aglycosylated form of CKJ 41T, APD1-JY 101: aglycosylated form of JY 101) and wild type PD-1 and HAC-V, respectively, 2% glucose and 40 ⁇ g / ml
  • the cultured cells were inoculated by diluting 1: 100 in 6 ml of TB medium containing 40 ⁇ g / ml of chloramphenicol.
  • the mutant PD-1_LDSS with overlapping mutations of CKJ 49 and CKJ 50 was cloned to determine if binding activity was affected when new CKJ 49 and 50 mutant amino acids were introduced into LDSS.
  • the CKJ 49 vector was used as a template and the Quikchange PCR technique was used. Genomes were amplified using designed primers (JY # 21, JY # 22) and Pfu turbo polymerase (Agilent). The sequence was confirmed by transforming the amplified gene into Jude1.
  • Example 21 Comparison of PD-L1 Avidity of PD-1 Variants and Common Sequence Variants by Flow Cytometry Analysis
  • Wild type PD-1, the control HAC-V variant, CKJ 49, CKJ 50, and LDSS were inoculated in TB medium containing 2% glucose and 40 ⁇ g / ml of chloramphenicol, and then incubated at 37 ° C. and 250 rpm for 16 hours. .
  • Escherichia coli were recovered by centrifugation at 14,000 rpm for 1 minute in an equal amount of e-tubes through OD 600 normalize. Experiments were carried out in the same manner as in the spheroplasting method described in Example 5, 12.5 nM tetrameric PD-L1-Alexa488 probe was put together in the spheroplast produced by this to rotate at room temperature to label the fluorescent probe. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute.
  • PD-1 variants were expressed and purified into animal cells and cloned first to verify binding.
  • the control group HAC-V, the discovered variants CKJ 49 and CKJ50 genes were amplified by PCR using primers (CKJ # 1, CKJ # 2) and Vent polymerase.
  • the amplified genome was processed using BssH II and Xba I enzymes and ligated to pMaz vector, which is an animal cell expression vector treated with the same enzyme.
  • the ligated plasmid was transformed into Jude1 Escherichia coli and confirmed the sequence through individual colony analysis.
  • PD-1 glycation variant expression vector (pMaz-PD1 HAC-V-His tag, pMaz-PD1 CKJ 49-His tag, pMaz-PD1 CKJ 50-His tag) was transfected into animal cells (HEK293F) for 6 days After the cell culture was centrifuged for 20 minutes at 6,000 rpm, the supernatant was taken and filtered through a 0.22 ⁇ m filter. The filtered supernatant was induced to bind to 1 ml of Ni-NTA resin (Qiagen) for 16 hours at 4 ° C.
  • Ni-NTA resin Qiagen
  • Each protein was diluted in 0.05M Na 2 CO 3, pH9.6 (Junsei) in a high binding 96 well plate (Costar), and bound for 16 hours at 4 ° C. at a concentration of 200 ng / well. After protein removal, the solution was placed in a 5% skim milk-containing PBST solution (PBS containing 0.5% Tween-20) at 5% w / v and each 96 well plate was blocked at room temperature for 1 hour. After discarding the above solution and washed 4 times with 200 ⁇ l of tween20 0.5% containing PBS solution, PD-L1 tetramer was diluted in PBS solution and bound to each 96 well plate for 1 hour at room temperature.
  • anti-streptavidin-HRP (Genetex) was diluted in PBS at a ratio of 1: 2,000, and bound to each 96 well plate for 1 hour at room temperature. The solution was discarded and washed four times with 200 ⁇ l of PBST 0.5% solution, followed by reaction with 50 ⁇ l TMB (Thermo Scientific). After 20 minutes, the reaction was terminated with 4 NH 2 SO 4 . As a result of the reaction, the glycosylation resulted in a change in binding force to PD-L1, but it was confirmed that CKJ 49 had the most excellent binding force (FIG. 18).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a PD-1 variant having improved binding to PD-L1. In addition, the present invention relates to a method for producing and a method for screening for the PD-1 variant. A PD-1 variant of the present invention effectively inhibits binding between wild-type PD-1 and PD-L1, and thus can be expected to have penetration power and an effect of cancer death by immunocytes or a treatment effect on infectious diseases, which are far greater than those of conventional therapeutic agents for immune checkpoint inhibition and, simultaneously, can minimize the possibility of immunogenicity occurrence and, further, can promote the convenience of developing biological pharmaceutical drugs through the implementation of aglycosylation.

Description

PD-L1 결합력이 증대된 PD-1 변이체PD-1 variant with increased PD-L1 binding capacity
본 발명은 PD-L1 결합력이 증대되어, 야생형 PD-1 및 PD-L1 간 결합을 효과적으로 억제하는 PD-1 변이체 및 이의 제조방법에 관한 것이다.The present invention relates to a PD-1 variant and a method for preparing the same, wherein the PD-L1 binding ability is increased to effectively inhibit the binding between wild-type PD-1 and PD-L1.
암 치료를 위한 의약품은 크게 저분자 의약품과 고분자 의약품으로 나뉘며 특이성이 없어 부작용이 상대적으로 큰 저분자 의약품에 비해 특이성이 있는 고분자 의약품이 치료제로서 각광을 받고 있다.Drugs for the treatment of cancer are largely divided into low-molecular weight drugs and high-molecular weight drugs, and due to their specificity, high-molecular weight drugs have specific attention as low-molecular weight drugs.
최근 암을 치료하기 위한 방법으로써 면역관문 억제 단백질 중 특히 PD-1/PD-L1 결합의 차단이 암치료에 큰 효과가 있으며, 다른 면역관문 억제 단백질에 비해 부작용이 적다는 결과가 학계에 보고되었다(J. Naidoo et al. (2015) Annals of Oncology, Lucia Gelao et al. (2014) Toxins, Gorge K. Philips et al (2015) International Immunology).Recently, blockade of PD-1 / PD-L1 binding among the immune gate inhibitory proteins has been shown to be effective in the treatment of cancer, and the side effects of other immune gate inhibitory proteins have been reported in the academic community. (J. Naidoo et al. (2015) Annals of Oncology, Lucia Gelao et al. (2014) Toxins , Gorge K. Philips et al (2015) International Immunology ).
Bristol-Myers Squibb 등의 거대 제약기업이 PD-1/PD-L1 면역관문 억제를 통한 치료용 의약품 개발을 위해 노력하고 있으며, YERVOY(ipilimumab), OPDIVO(nivolumab) 같은 항암 목적의 의약품들이 항체 포맷을 이용하여 개발 중이다.Large pharmaceutical companies such as Bristol-Myers Squibb are working to develop therapeutic drugs by suppressing the PD-1 / PD-L1 immune barrier, and anti-cancer drugs such as YERVOY (ipilimumab) and OPDIVO (nivolumab) have been using antibody formats Under development.
또한, 종양과 PD-1/PD-L1 결합 중인 TILs(Tumor-infiltrating lymphocytes)의 결합을 제거하기 위해서는 세포 침투력이 뛰어난 치료제가 필요하나 항체는 150 kDa의 매우 큰 거대 분자 단백질로써 침투하기에 불리한 점이 존재한다.In addition, to remove the binding of tumor-infiltrating lymphocytes (TILs) that bind to tumors and PD-1 / PD-L1, a therapeutic agent with excellent cell penetration is required, but the antibody is disadvantageous to penetrate into a very large molecular protein of 150 kDa exist.
효과적인 면역관문 억제를 통한 암치료를 위해서는 크기가 PD-L1 에 비해 작아서 세포 침투력이 우수한 PD-1이 보다 적합하다고 보이나, 기존의 PD-1 엔지니어링은 yeast display를 통한 screening을 진행하였고 glycan의 heterogenity와 많은 돌연변이 유발로 인한 면역원성 존재 가능성이 있다.Although PD-1, which is smaller in size than PD-L1, seems to be more suitable for cancer treatment through effective immune gate suppression, conventional PD-1 engineering proceeded with screening through yeast display and the heterogenity of glycan and There is a possibility of immunogenicity due to many mutagenesis.
한편, 무당화 형태의 단백질 의약품은 박테리아에서도 저렴하게 대량 생산이 용이하고, 세포주, 배양공정 및 정제공정에 따른 당화 비균질성(glycan heterogenity)의 문제가 전혀 없어 생물의약품 제조에 큰 장점을 갖는다.On the other hand, the drug product of the glycosylated form is easy to mass-produce inexpensively even in bacteria, there is no problem of glycation heterogenity according to cell line, culture process and purification process has a great advantage in biopharmaceutical manufacturing.
따라서, 적은 돌연변이를 갖는 무당화 형태의 PD-1으로써 PD-L1에 높은 변이체의 발굴이 필요하다. Therefore, the discovery of high variants in PD-L1 as a glycosylated form of PD-1 with few mutations is necessary.
상기한 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The matters described as the background art are only for the purpose of improving the understanding of the background of the present invention and should not be taken as acknowledging that they correspond to the related art already known to those skilled in the art.
본 발명자들은 PD-L1과의 결합력이 높아 야생형 PD-1 및 PD-L1 간 결합을 효과적으로 억제할 수 있으면서, 동시에 면역원성 발생의 가능성을 최소화할 수 있는 PD-1 변이체를 발굴하고자 예의 노력을 하였다. 그 결과, 야생형 PD-1의 일부 아미노산 서열을 다른 아미노산 서열로 치환하여 최적화함으로써 PD-L1과의 결합력이 크게 향상되고, 돌연변이 위치의 최소화 및/또는 무당화 PD-1의 구현을 통해 면역원성 발생 가능성을 감소시킬 수 있음을 확인하여 본 발명을 완성하였다.The present inventors made an effort to discover PD-1 variants that can effectively inhibit the binding between wild-type PD-1 and PD-L1 due to the high binding ability with PD-L1 and at the same time minimize the possibility of immunogenicity. . As a result, by binding to and optimizing some amino acid sequences of wild type PD-1 with other amino acid sequences, binding to PD-L1 is greatly improved, and immunogenicity is generated through minimization of mutation sites and / or implementation of aglycosylated PD-1. The present invention has been completed by confirming that the possibility can be reduced.
따라서, 본 발명의 목적은 PD-L1 결합력이 증대된 PD-1 변이체를 제공하는데 있다.Accordingly, it is an object of the present invention to provide a PD-1 variant with increased PD-L1 binding capacity.
본 발명의 다른 목적은 상기 PD-1 변이체를 코딩하는 핵산분자를 제공하는데 있다.Another object of the present invention is to provide a nucleic acid molecule encoding the PD-1 variant.
본 발명의 또 다른 목적은 상기 핵산분자를 포함하는 벡터를 제공하는데 있다.Still another object of the present invention is to provide a vector containing the nucleic acid molecule.
본 발명의 또 다른 목적은 상기 벡터를 포함하는 숙주세포를 제공하는데 있다.Another object of the present invention to provide a host cell comprising the vector.
본 발명의 또 다른 목적은 상기 PD-1 변이체, 핵산분자 또는 벡터를 포함하는 조성물을 제공하는데 있다.It is another object of the present invention to provide a composition comprising the PD-1 variant, nucleic acid molecule or vector.
본 발명의 또 다른 목적은 상기 PD-1 변이체의 제조방법을 제공하는데 있다.Still another object of the present invention is to provide a method for preparing the PD-1 variant.
본 발명의 또 다른 목적은 상기 PD-1 변이체, 핵산분자 또는 벡터를 유효성분으로 포함하는 야생형 PD-1 및 PD-L1 간 결합 억제제를 제공하는데 있다.Still another object of the present invention is to provide an inhibitor for binding between wild type PD-1 and PD-L1 comprising the PD-1 variant, nucleic acid molecule or vector as an active ingredient.
본 발명의 또 다른 목적은 상기 PD-1 변이체, 핵산분자 또는 벡터를 대상체에게 유효량 투여하는 단계를 포함하는 야생형 PD-1 및 PD-L1 간 결합 억제방법을 제공하는데 있다.Still another object of the present invention is to provide a method for inhibiting binding between wild type PD-1 and PD-L1, comprising administering an effective amount of the PD-1 variant, nucleic acid molecule or vector to a subject.
본 발명의 또 다른 목적은 상기 PD-1 변이체, 핵산분자 또는 벡터를 대상체에게 치료학적 유효량 투여하는 단계를 포함하는 암질환 또는 감염성질환의 치료방법을 제공하는데 있다.Still another object of the present invention is to provide a method of treating cancer disease or infectious disease, comprising administering a therapeutically effective amount of the PD-1 variant, nucleic acid molecule or vector to a subject.
본 발명의 또 다른 목적은 상기 PD-1 변이체의 스크리닝 방법을 제공하는데 있다.Another object of the present invention to provide a method for screening the PD-1 variant.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
본 발명의 일 양태에 따르면, 본 발명은 PD-L1 결합력이 증대된 PD-1 변이체를 제공한다.According to one aspect of the present invention, the present invention provides a PD-1 variant having an increased PD-L1 binding force.
본 발명자들은 PD-L1과의 결합력이 높아 야생형 PD-1 및 PD-L1 간 결합을 효과적으로 억제할 수 있으면서, 동시에 면역원성 발생의 가능성을 최소화할 수 있는 PD-1 변이체를 발굴하고자 예의 노력을 하였다. 그 결과, 야생형 PD-1의 일부 아미노산 서열을 다른 아미노산 서열로 치환하여 최적화함으로써 PD-L1과의 결합력이 크게 향상되고, 돌연변이 위치의 최소화 및/또는 무당화 PD-1의 구현을 통해 면역원성 발생 가능성을 감소시킬 수 있음을 확인하였다.The present inventors made an effort to discover PD-1 variants that can effectively inhibit the binding between wild-type PD-1 and PD-L1 due to the high binding ability with PD-L1 and at the same time minimize the possibility of immunogenicity. . As a result, by binding to and optimizing some amino acid sequences of wild type PD-1 with other amino acid sequences, binding to PD-L1 is greatly improved, and immunogenicity is generated through minimization of mutation sites and / or implementation of aglycosylated PD-1. It was confirmed that the possibility could be reduced.
본 명세서에서 용어 "PD-1 변이체" 또는 "Programmed cell death protein-1 변이체"는 야생형(wild type) PD-1의 아미노산 서열에서 1 또는 2 이상의 아미노산이 치환, 결실 또는 부가된 형태의 변이를 포함하는 변이체를 의미한다.As used herein, the term “PD-1 variant” or “Programmed cell death protein-1 variant” includes variants in which one or more amino acids are substituted, deleted or added to the amino acid sequence of wild type PD-1. Means a variant.
본 발명의 바람직한 구현예에 따르면, 상기 야생형 PD-1의 아미노산 서열은 서열목록 제61서열의 아미노산 서열을 포함한다.According to a preferred embodiment of the present invention, the amino acid sequence of the wild type PD-1 comprises the amino acid sequence of SEQ ID NO: 61 sequence.
본 발명의 바람직한 구현예에 따르면, 상기 PD-L1(Programmed death-ligand 1) 결합력이 증대된 PD-1(Programmed cell death protein-1) 변이체는 야생형(Wild type) PD-1의 아미노산 서열의 일부를 포함하며, 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 69번째 아미노산이 야생형의 아미노산과 다른 서열로 치환된 것을 포함한다. According to a preferred embodiment of the present invention, the PD-1 (Programmed cell death protein-1) variant having increased PD-L1 binding capacity is part of the amino acid sequence of the wild type PD-1. And the 69th amino acid of the amino acid sequence of wild type PD-1 of SEQ ID NO: 61 is replaced with a sequence different from that of the wild type amino acid.
본 발명의 바람직한 구현예에 따르면, 상기 69번째 아미노산이 C69S, C69T, C69Y, C69G 또는 C69A로 치환된 것이다.According to a preferred embodiment of the present invention, the 69th amino acid is substituted with C69S, C69T, C69Y, C69G or C69A.
본 발명의 바람직한 구현예에 따르면, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 36번째 아미노산이 S36P로 치환된 것을 추가적으로 포함한다.According to a preferred embodiment of the present invention, the PD-1 variant further comprises that the 36th amino acid of the amino acid sequence of wild type PD-1 of SEQ ID NO: 61 is substituted with S36P.
본 발명의 바람직한 구현예에 따르면, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 114번째 아미노산이 L114P로 치환된 것을 추가적으로 포함한다.According to a preferred embodiment of the present invention, the PD-1 variant further comprises that the 114th amino acid of the amino acid sequence of wild type PD-1 of SEQ ID NO: 61 is substituted with L114P.
본 발명의 바람직한 구현예에 따르면, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 12번째, 34번째, 92번째, 107번째, 131번째, 132번째 및 142번째 아미노산으로 구성된 군으로부터 선택되는 1 이상의 아미노산이 야생형의 아미노산과 다른 서열로 치환된 것을 추가적으로 포함한다.According to a preferred embodiment of the present invention, the PD-1 variant is the 12th, 34th, 92th, 107th, 131th, 132th and 142th amino acids of the amino acid sequence of the wild type PD-1 of SEQ ID NO: 61 It further comprises that one or more amino acids selected from the group consisting of is substituted with a sequence different from the amino acid of the wild type.
본 발명의 바람직한 구현예에 따르면, 상기 PD-1 변이체는 T12S, N34T, N92K 또는 N92S, K107N, H131R, P132L 및 F142L로 구성된 군으로부터 선택되는 1 이상의 아미노산 치환을 포함한다.According to a preferred embodiment of the invention, said PD-1 variant comprises at least one amino acid substitution selected from the group consisting of T12S, N34T, N92K or N92S, K107N, H131R, P132L and F142L.
본 발명의 바람직한 구현예에 따르면, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 13번째 아미노산이 F13I 또는 F13L로, 46번째 아미노산이 M46I로 치환된 것을 추가적으로 포함한다.According to a preferred embodiment of the present invention, the PD-1 variant further comprises that the thirteenth amino acid of the amino acid sequence of wild type PD-1 of SEQ ID NO: 61 is substituted with F13I or F13L, 46th amino acid is replaced by M46I .
본 발명의 바람직한 구현예에 따르면, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 1번째, 17번째, 36번째, 50번째, 79번째, 100번째, 114번째, 127번째 및 139번째 아미노산으로 구성된 군으로부터 선택되는 1 이상의 아미노산이 야생형의 아미노산과 다른 서열로 치환된 것을 추가적으로 포함한다.According to a preferred embodiment of the present invention, the PD-1 variant is 1, 17, 36, 50, 79, 100, 114, And at least one amino acid selected from the group consisting of the 127th and 139th amino acids is substituted with a sequence different from that of the wild type amino acid.
본 발명의 바람직한 구현예에 따르면, 상기 PD-1 변이체는 N1S, L17M, S36P, N50S, G79R, G100V, L114P, V127A 및 A139L로 구성된 군으로부터 선택되는 1 이상의 아미노산 치환을 포함한다.According to a preferred embodiment of the invention, said PD-1 variant comprises at least one amino acid substitution selected from the group consisting of N1S, L17M, S36P, N50S, G79R, G100V, L114P, V127A and A139L.
본 발명의 바람직한 구현예에 따르면, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 25번째 아미노산이 N25D로, 92번째 아미노산이 N92S 또는 N92K로 치환된 것을 추가적으로 포함한다.According to a preferred embodiment of the present invention, the PD-1 variant further comprises that the 25th amino acid of the amino acid sequence of wild type PD-1 of SEQ ID NO: 61 is replaced with N25D, 92 amino acid is replaced with N92S or N92K .
본 발명의 바람직한 구현예에 따르면, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 13번째 아미노산이 F13I 또는 F13L로 치환된 것을 추가적으로 포함한다.According to a preferred embodiment of the present invention, the PD-1 variant further comprises that the 13th amino acid of the amino acid sequence of wild type PD-1 of SEQ ID NO: 61 is substituted with F13I or F13L.
본 발명의 바람직한 구현예에 따르면, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 9번째, 88번째, 101번째, 125번째 및 137번째 아미노산으로 구성된 군으로부터 선택되는 1 이상의 아미노산이 야생형의 아미노산과 다른 서열로 치환된 것을 추가적으로 포함한다.According to a preferred embodiment of the present invention, the PD-1 variant is selected from the group consisting of the 9th, 88th, 101th, 125th and 137th amino acids of the amino acid sequence of the wild type PD-1 of SEQ ID NO: 61 It further includes that at least one amino acid is substituted with a sequence different from that of the wild type amino acid.
본 발명의 바람직한 구현예에 따르면, 상기 PD-1 변이체는 N9D, R88K, A101V, A125S 및 R137K로 구성된 군으로부터 선택되는 1 이상의 아미노산 치환을 포함한다.According to a preferred embodiment of the invention, said PD-1 variant comprises at least one amino acid substitution selected from the group consisting of N9D, R88K, A101V, A125S and R137K.
본 발명의 바람직한 구현예에 따르면, 상기 PD-1 변이체는 무당화 PD-1 변이체인 것이다.According to a preferred embodiment of the present invention, the PD-1 variant is an aglycosylated PD-1 variant.
현재 상용화된 대부분의 치료용 단백질들은 동물세포 배양을 통해 제조되고 있는데, 단백질을 생산할 때 다양한 당(carbohydrate) 변이체들이 단백질에 수식되게 되고, 이로 인한 당화 비균질성(glycan heterogeniety)은 치료용 단백질의 효능과 안정성에 변이를 유발하며, 항체 제조 공정 중 정제, 분석, QC(Quality Control)에 많은 비용을 요구하게 된다.Most of the commercially available therapeutic proteins are produced through animal cell culture. When the protein is produced, various carbohydrate variants are modified by the protein, resulting in glycogenous heterogeniety. It causes variations in stability and requires a high cost for purification, analysis, and quality control (QC) during the antibody manufacturing process.
고가의 동물세포 배양 시스템이 요구되는 상기 당화 단백질에 비해 무당화(aglycosylated) 단백질은 박테리아에서 대량 생산이 가능하고 속도와 비용 면에서 탁월한 우수성을 지닌다.Compared to the glycated proteins, which require expensive animal cell culture systems, aglycosylated proteins are capable of mass production in bacteria and have excellent speed and cost.
본 발명의 다른 양태에 따르면, 본 발명은 상기 PD-1 변이체를 코딩하는 핵산분자, 이를 포함하는 벡터 또는 상기 벡터를 포함하는 숙주세포를 제공한다.According to another aspect of the invention, the invention provides a nucleic acid molecule encoding the PD-1 variant, a vector comprising the same or a host cell comprising the vector.
본 발명의 바람직한 구현예에 따르면, 상기 숙주세포는 세균세포인 것이다.According to a preferred embodiment of the present invention, the host cell is a bacterial cell.
본 발명의 핵산분자는 단리된 것이거나 재조합된 것일 수 있으며, 단일쇄 및 이중쇄 형태의 DNA 및 RNA뿐만 아니라 대응하는 상보성 서열이 포함된다. "단리된 핵산"은 천연 생성 원천에서 단리된 핵산의 경우, 핵산이 단리된 개체의 게놈에 존재하는 주변 유전 서열로부터 분리된 핵산이다. 주형으로부터 효소적으로 또는 화학적으로 합성된 핵산, 예컨대 PCR 산물, cDNA 분자, 또는 올리고뉴클레오타이드의 경우, 이러한 절차로부터 생성된 핵산이 단리된 핵산분자로 이해될 수 있다. 단리된 핵산분자는 별도 단편의 형태 또는 더 큰 핵산 구축물의 성분으로서의 핵산 분자를 나타낸다. 핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결"된다. 예를 들면, 전서열 또는 분비 리더(leader)의 DNA는 폴리펩타이드가 분비되기 전의 형태인 전단백질(preprotein)로서 발현되는 경우 폴리펩타이드의 DNA에 작동가능하게 연결되고, 프로모터 또는 인핸서는 폴리펩타이드 서열의 전사에 영향을 주는 경우 코딩 서열에 작동가능하게 연결되며, 또는 리보솜 결합 부위는 번역을 촉진하도록 배치될 때 코딩 서열에 작동가능하게 연결된다. 일반적으로 "작동가능하게 연결된"은 연결될 DNA 서열들이 인접하여 위치함을 의미하며, 분비 리더의 경우 인접하여 동일한 리딩 프레임 내에 존재하는 것을 의미한다. 그러나 인핸서는 인접하여 위치할 필요는 없다. 연결은 편리한 제한 효소 부위에서 라이게이션에 의해 달성된다. 이러한 부위가 존재하지 않는 경우, 합성 올리고뉴클레오타이드 어댑터 또는 링커를 통상적인 방법에 따라 사용한다. Nucleic acid molecules of the invention can be isolated or recombinant and include single and double stranded DNA and RNA as well as corresponding complementarity sequences. An "isolated nucleic acid" is a nucleic acid isolated from a naturally occurring source, from a surrounding genetic sequence present in the genome of the individual from which the nucleic acid is isolated. In the case of nucleic acids, such as PCR products, cDNA molecules, or oligonucleotides synthesized enzymatically or chemically from a template, the nucleic acid resulting from this procedure can be understood as an isolated nucleic acid molecule. Isolated nucleic acid molecules refer to nucleic acid molecules in the form of separate fragments or as components of larger nucleic acid constructs. Nucleic acids are “operably linked” when placed in a functional relationship with other nucleic acid sequences. For example, the DNA of a presequence or secretion leader is operably linked to the DNA of a polypeptide when expressed as a preprotein, which is the form before the polypeptide is secreted, and the promoter or enhancer is a polypeptide sequence. Operably linked to a coding sequence when affecting the transcription of the ribosome binding site, or when the ribosome binding site is arranged to facilitate translation. In general, "operably linked" means that the DNA sequences to be linked are located contiguously, and in the case of a secretory leader, they are present within adjacent identical reading frames. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction enzyme sites. If such sites do not exist, the synthetic oligonucleotide adapters or linkers are used in accordance with conventional methods.
본 명세서에서 용어 "벡터"는 핵산 서열을 복제할 수 있는 세포로의 도입을 위해서 핵산 서열을 삽입할 수 있는 전달체를 의미한다. 핵산 서열은 외생(exogenous) 또는 이종(heterologous)일 수 있다. 벡터로서는 플라스미드, 코스미드 및 바이러스(예를 들면 박테리오파지)를 들 수 있으나, 이에 제한되지 않는다. 당업자는 표준적인 재조합 기술에 의해 벡터를 구축할 수 있다(Maniatis, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1988; 및 Ausubel et al., In: Current Protocols in Molecular Biology, John, Wiley & Sons, Inc, NY, 1994 등).As used herein, the term "vector" refers to a carrier capable of inserting a nucleic acid sequence for introduction into a cell capable of replicating the nucleic acid sequence. Nucleic acid sequences can be exogenous or heterologous. Vectors include, but are not limited to, plasmids, cosmids and viruses (eg bacteriophages). One skilled in the art can construct vectors by standard recombinant techniques (Maniatis, et al., Molecular Cloning , A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY, 1988; and Ausubel et al., In: Current Protocols in Molecular Biology , John, Wiley & Sons, Inc, NY, 1994, etc.).
본 명세서에서 용어 "발현 벡터"는 전사되는 유전자 산물 중 적어도 일부분을 코딩하는 핵산 서열을 포함한 벡터를 의미한다. 일부의 경우에는 그 후 RNA 분자가 단백질, 폴리펩타이드, 또는 펩타이드로 번역된다. 발현 벡터에는 다양한 조절서열을 포함할 수 있다. 전사 및 번역을 조절하는 조절서열과 함께 벡터 및 발현 벡터에는 또 다른 기능도 제공하는 핵산 서열도 포함될 수 있다.The term "expression vector" as used herein refers to a vector comprising a nucleic acid sequence encoding at least a portion of the gene product being transcribed. In some cases, RNA molecules are then translated into proteins, polypeptides, or peptides. Expression vectors can include various regulatory sequences. In addition to regulatory sequences that regulate transcription and translation, vectors and expression vectors can also include nucleic acid sequences that provide additional functionality.
본 명세서에서 용어 "숙주세포"는 진핵생물 및 원핵생물을 포함하며, 상기 벡터를 복제할 수 있거나 벡터에 의해 코딩되는 유전자를 발현할 수 있는 임의의 형질 전환 가능한 생물을 의미한다. 숙주세포는 상기 벡터에 의해 형질감염(transfected) 또는 형질전환(transformed) 될 수 있으며, 이는 외생의 핵산분자가 숙주세포 내에 전달되거나 도입되는 과정을 의미한다. As used herein, the term "host cell" refers to any transgenic organism that includes eukaryotes and prokaryotes and is capable of replicating the vector or expressing a gene encoded by the vector. The host cell may be transfected or transformed by the vector, which means a process in which exogenous nucleic acid molecules are delivered or introduced into the host cell.
본 발명의 바람직한 구현예에 따르면, 본 발명의 숙주세포는 세균(bacteria)세포, 보다 바람직하게는 그람 음성 세균세포이다. 상기 세포는 내막과 외막 사이에 원형질막 주위 공간 영역(periplasmic region)을 가지는 점에서 본 발명의 실시에 적합하다. 본 발명의 바람직한 숙주세포의 예로는 E. coli, Pseudomonas aeruginosa, Vibrio cholera, Salmonella typhimurium, Shigella flexneri, Haemophilus influenza, Bordotella pertussi, Erwinia amylovora, Rhizobium sp.등이 포함되나, 이에 제한되는 것은 아니다.According to a preferred embodiment of the present invention, the host cell of the present invention is a bacterial cell, more preferably a Gram negative bacterial cell. The cells are suitable for the practice of the present invention in that they have a periplasmic region between the inner membrane and the outer membrane. Examples of preferred host cells of the present invention include E. coli , Pseudomonas aeruginosa , Vibrio cholera , Salmonella typhimurium , Shigella flexneri , Haemophilus influenza , Bordotella pertussi , Erwinia amylovora , Rhizobium sp. And the like, but are not limited thereto.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 PD-1 변이체, 핵산분자 또는 벡터를 유효성분으로 포함하는 야생형(wild type) PD-1(Programmed cell death protein-1) 및 PD-L1(Programmed death-ligand 1) 간 결합 억제제를 제공한다.According to another aspect of the present invention, the present invention provides a wild type PD-1 (Programmed cell death protein-1) and PD-L1 (Programmed) comprising the PD-1 variant, nucleic acid molecule or vector as an active ingredient. death-ligand 1) provides liver binding inhibitors.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 PD-1 변이체, 핵산분자 또는 벡터를 유효성분으로 포함하는 조성물을 제공한다.According to another aspect of the present invention, the present invention provides a composition comprising the PD-1 variant, nucleic acid molecule or vector as an active ingredient.
상기 조성물은 바람직하게는 약제학적 조성물, 보다 바람직하게는 암질환 또는 감염성질환의 예방 또는 치료용 약제학적 조성물이다.The composition is preferably a pharmaceutical composition, more preferably a pharmaceutical composition for preventing or treating cancer diseases or infectious diseases.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 PD-1 변이체, 핵산분자 또는 벡터를 대상체에게 유효량 투여하는 단계를 포함하는 야생형(wild type) PD-1(Programmed cell death protein-1) 및 PD-L1(Programmed death-ligand 1) 간 결합 억제방법을 제공한다.According to another aspect of the present invention, the present invention provides a wild type Programmed cell death protein-1 (PD-1) and PD comprising administering an effective amount of the PD-1 variant, nucleic acid molecule or vector to a subject. -L1 (Programmed death-ligand 1) provides a method of inhibiting binding.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 PD-1 변이체, 핵산분자 또는 벡터를 대상체에게 유효량 투여하는 단계를 포함하는 면역반응 증가방법을 제공한다.According to another aspect of the present invention, the present invention provides a method for increasing an immune response comprising administering an effective amount of the PD-1 variant, nucleic acid molecule or vector to a subject.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 PD-1 변이체, 핵산분자 또는 벡터를 대상체에게 치료학적 유효량 투여하는 단계를 포함하는 암질환 또는 감염성질환의 치료방법을 제공한다.According to another aspect of the present invention, the present invention provides a method for treating cancer disease or infectious disease, comprising administering a therapeutically effective amount of the PD-1 variant, nucleic acid molecule or vector to a subject.
본 발명의 약제학적 조성물은 (a) 상기 PD-1 변이체, 핵산분자 또는 벡터; 및 (b) 약제학적으로 허용되는 담체를 포함할 수 있다.The pharmaceutical composition of the present invention comprises (a) the PD-1 variant, nucleic acid molecule or vector; And (b) a pharmaceutically acceptable carrier.
본 발명이 예방 또는 치료하고자 하는 암의 종류는 제한되지 않으며, 백혈병(leukemias) 및 급성 림프구 백혈병(acute lymphocytic leukemia), 급성 비림프구 백혈병(acute nonlymphocytic leukemias), 만성 림프구 백혈병(chronic lymphocytic leukemia), 만성 골수 백혈병(chronic myelogenous leukemia), 호지킨 병(Hodgkin's Disease), 비호지킨 림프종(non-Hodgkin's lymphomas) 및 다발 골수종(multiple myeloma) 등과 같은 림프종(lymphomas), 뇌종양(brain tumors), 신경모세포종(neuroblastoma), 망막모세포종(retinoblastoma), 윌름즈종양(Wilms Tumor), 골종양(bone tumors) 및 연부조직육종(soft-tissue sarcomas) 등과 같은 소아 고형 종양(childhood solid tumors), 폐암(lung cancer), 유방암(breast cancer), 전립선암(prostate cancer), 요로암(urinary cancers), 자궁암(uterine cancers), 구강암(oral cancers), 췌장암(pancreatic cancer), 흑색종(melanoma) 및 기타 피부암(skin cancers), 위암(stomach cancer), 난소암(ovarian cancer), 뇌종양(brain tumors), 간암(liver cancer), 후두암(laryngeal cancer), 갑상선암(thyroid cancer), 식도암(esophageal cancer) 및 고환암(testicular cancer) 등과 같은 성인들의 통상의 고형 종양(common solid tumors)들을 포함하여 다수의 암들을 치료하도록 투여될 수 있다.The type of cancer to be prevented or treated by the present invention is not limited, leukemias and acute lymphocytic leukemia, acute nonlymphocytic leukemias, chronic lymphocytic leukemia, chronic lymphocytic leukemia Lymphomas, brain tumors, neuroblastoma, such as myelogenous leukemia, Hodgkin's Disease, non-Hodgkin's lymphomas, and multiple myeloma Childhood solid tumors such as retinoblastoma, Wilms Tumor, bone tumors and soft-tissue sarcomas, lung cancer, breast cancer cancer, prostate cancer, urinary cancers, uterine cancers, oral cancers, pancreatic cancer, melanoma and other skin cance rs, stomach cancer, ovarian cancer, brain tumors, liver cancer, laryngeal cancer, thyroid cancer, esophageal cancer and testicular cancer It may be administered to treat a number of cancers, including common solid tumors of adults such as).
본 발명이 예방 또는 치료하고자 하는 감염성질환의 종류는 제한되지 않으며, 바이러스에 의한 감염, 인플루엔자에 의한 감염, 세균에 의한 감염 및 진균에 의한 감염을 포함한다.The type of infectious disease to be prevented or treated by the present invention is not limited, and includes a viral infection, an influenza infection, a bacterial infection and a fungal infection.
본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다. Pharmaceutically acceptable carriers included in the pharmaceutical compositions of the present invention are those commonly used in the preparation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, Calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like It doesn't happen. In addition to the above components, the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
본 발명의 약제학적 조성물은 대상체에 경구 또는 비경구로 투여할 수 있고, 바람직하게는 비경구 투여이며, 예컨대, 정맥 내 주입, 국소 주입 및 복강 주입 등으로 투여할 수 있다.The pharmaceutical composition of the present invention may be administered orally or parenterally to a subject, preferably parenteral administration, for example, by intravenous infusion, topical infusion and intraperitoneal infusion.
본 명세서에서 용어 “대상체” 또는 “subject”는 상기 PD-1 및 PD-L1간의 결합 억제를 통해 상기 질환을 예방 또는 치료하고자 하는 객체를 의미하며, 바람직하게는 인간 및 동물을 포함한다.As used herein, the term “subject” or “subject” refers to an object to prevent or treat the disease through inhibition of binding between the PD-1 and PD-L1, and preferably includes humans and animals.
본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련된 의사는 소망하는 치료 또는 예방에 효과적인 투여량을 용이하게 결정 및 처방할 수 있다. 본 발명의 바람직한 구현예에 따르면, 본 발명의 약제학적 조성물의 1일 투여량은 0.0001-100 ㎎/㎏이다.Suitable dosages of the pharmaceutical compositions of the invention vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, condition of food, time of administration, route of administration, rate of excretion and response to reaction, Usually a skilled practitioner can easily determine and prescribe a dosage effective for the desired treatment or prophylaxis. According to a preferred embodiment of the present invention, the daily dose of the pharmaceutical composition of the present invention is 0.0001-100 mg / kg.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.The pharmaceutical compositions of the present invention may be prepared in unit dosage form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. Or may be prepared by incorporation into a multi-dose container. In this case, the formulation may be in the form of a solution, suspension or emulsion in an oil or an aqueous medium, or may be in the form of extracts, powders, granules, tablets or capsules, and may further include a dispersant or stabilizer.
본 발명의 약제학적 조성물은 단독의 요법으로 이용될 수 있으나, 다른 통상적인 생물학적 요법, 화학 요법 또는 방사 요법과 함께 이용될 수도 있으며, 이러한 병행 요법을 실시하는 경우에는 보다 효과적으로 암 또는 감염성 질환을 치료할 수 있다. 본 발명을 암의 예방 및 치료에 이용하는 경우 상기 조성물과 함께 이용될 수 있는 화학 요법제는 시스플라틴(cisplatin), 카르보플라틴(carboplatin), 프로카르바진(procarbazine), 메클로레타민(mechlorethamine), 시클로포스파미드(cyclophosphamide), 이포스파미드(ifosfamide), 멜팔란(melphalan), 클로라부실(chlorambucil), 비술판(bisulfan), 니트로소우레아(nitrosourea), 디악티노마이신(dactinomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 블레오마이신(bleomycin), 플리코마이신(plicomycin), 미토마이신(mitomycin), 에토포시드(etoposide), 탁목시펜(tamoxifen), 택솔(taxol), 트랜스플라티눔(transplatinum), 5-플루오로우라실(5-fluorouracil), 빈크리스틴(vincristin), 빈블라스틴(vinblastin) 및 메토트렉세이트(methotrexate) 등을 포함한다. 본 발명의 조성물과 함께 이용될 수 있는 방사 요법은 X-선 조사 및 γ-선 조사 등이다.The pharmaceutical composition of the present invention may be used alone as a therapy, but may also be used in conjunction with other conventional biological, chemo, or radiation therapies, and such combination therapy may be used to treat cancer or infectious disease more effectively. Can be. Chemotherapeutic agents that can be used with the composition when the present invention is used for the prevention and treatment of cancer are cisplatin, carboplatin, procarbazine, mechlorethamine, Cyclophosphamide, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosourea, diactinomycin, daunorucin Daunorubicin, doxorubicin, bleomycin, plecomycin, mitomycin, etoposide, tamoxifen, taxol, transflavol Transplatinum, 5-fluorouracil, vincristin, vinblastin, methotrexate, and the like. Radiation therapy that can be used with the composition of the present invention is X-ray irradiation, γ-ray irradiation, and the like.
본 발명의 또 다른 양태에 따르면, 본 발명은 하기의 단계를 포함하는 PD-1 변이체의 제조방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for preparing a PD-1 variant, comprising the following steps:
a) 상기 PD-1 변이체를 코딩하는 핵산분자를 포함하는 벡터를 포함하는 숙주세포를 배양하는 단계; 및a) culturing a host cell comprising a vector comprising a nucleic acid molecule encoding the PD-1 variant; And
b) 상기 숙주세포에 의해 발현된 PD-1 변이체를 회수하는 단계. b) recovering the PD-1 variant expressed by the host cell.
본 발명의 또 다른 양태에 따르면, 본 발명은 하기의 단계를 포함하는 PD-1 변이체의 스크리닝 방법을 제공한다:According to another aspect of the invention, the invention provides a method for screening PD-1 variants comprising the following steps:
a) 상기 PD-1 변이체 또는 이를 코딩하는 핵산분자에 추가적으로 무작위적인 점 돌연변이를 가한 PD-1 변이체 또는 이를 코딩하는 핵산분자의 라이브러리를 구축하는 단계; 및a) constructing a library of the PD-1 variant or a nucleic acid molecule encoding the PD-1 variant or a random point mutation added to the PD-1 variant or the nucleic acid molecule encoding the same; And
b) 상기 라이브러리에서 야생형(wild type) PD-1(Programmed cell death protein-1) 및 PD-L1(Programmed death-ligand 1) 간 결합을 억제하는 PD-1 변이체를 선별하는 단계.b) selecting PD-1 variants that inhibit binding between wild type Programmed cell death protein-1 (PD-1) and Programmed death-ligand 1 (PD-L1) in the library.
본 발명의 스크리닝 방법은 형광표지세포분리(FACS) 스크리닝, 또는 다른 자동화된 유세포 분석 기술을 사용할 수 있다. 유세포 분석기를 실시하기 위한 기기는 당업자에게 공지이다. 그러한 기기의 예로는 FACSAria, FACS Star Plus, FACScan 및 FACSort 기기(Becton Dickinson, Foster City, CA), Epics C(Coulter Epics Division, Hialeah, FL), MOFLO(Cytomation, Colorado Springs, Colo.), MOFLO-XDP (Beckman Coulter, Indianapolis, IN)를 들 수 있다. 일반적으로 유세포 분석기 기술에는 액체 시료 중의 세포 또는 다른 입자의 분리가 포함된다. 전형적으로는 유세포 분석기의 목적은 분리된 입자를 이들의 하나 이상의 특성(예를 들면 표지된 리간드 또는 다른 분자의 존재)에 대해서 분석하는 것이다. 입자는 센서에 의해 하나씩 통과되며, 크기, 굴절, 광산란, 불투명도, 조도, 형상, 형광 등에 기초하여 분류된다.The screening methods of the present invention can use fluorescence labeled cell separation (FACS) screening, or other automated flow cytometry techniques. Instruments for performing flow cytometry are known to those skilled in the art. Examples of such devices are FACSAria, FACS Star Plus, FACScan and FACSort devices (Becton Dickinson, Foster City, CA), Epics C (Coulter Epics Division, Hialeah, FL), MOFLO (Cytomation, Colorado Springs, Colo.), MOFLO- XDP (Beckman Coulter, Indianapolis, IN). Flow cytometry techniques generally include the separation of cells or other particles in a liquid sample. Typically the purpose of a flow cytometer is to analyze the separated particles for their one or more properties (eg the presence of labeled ligands or other molecules). Particles are passed one by one by the sensor and are classified based on size, refraction, light scattering, opacity, roughness, shape, fluorescence, and the like.
본 발명의 특징 및 이점을 요약하면 다음과 같다: The features and advantages of the present invention are summarized as follows:
(i) 본 발명은 PD-L1 결합력이 증대된 PD-1 변이체를 제공한다.(i) The present invention provides PD-1 variants with increased PD-L1 binding capacity.
(ii) 또한, 본 발명은 상기 PD-1 변이체의 제조방법 및 스크리닝 방법을 제공한다.(ii) The present invention also provides a method for producing and screening the PD-1 variant.
(iii) 본 발명의 PD-1 변이체는 야생형 PD-1 및 PD-L1 간 결합을 효과적으로 억제하여 기존의 면역 관문 억제 치료제와 비교하여 월등히 높은 투과력 및 면역세포의 암사멸 효과 또는 감염성 질환의 치료효과를 기대할 수 있으며, 동시에 면역원성 발생의 가능성을 최소화할 수 있다. 더불어, 무당화 구현을 통한 생물의약품 개발 편의성을 도모할 수 있다.(iii) PD-1 variant of the present invention effectively inhibits the binding between wild-type PD-1 and PD-L1, significantly higher permeability and cancer killing effect of immune cells or therapeutic effect of infectious diseases as compared to conventional immune barrier inhibitors It can be expected and at the same time minimize the possibility of immunogenicity. In addition, it is possible to facilitate the development of biopharmaceuticals by implementing aglycosylation.
도 1은 동물세포에서 생산되어 정제된 야생형 PD-1과 4가지의 당쇄 변이체 PD-1의 SDS-PAGE 사진을 나타낸다.1 shows SDS-PAGE images of wild type PD-1 and four sugar chain variants PD-1 produced and purified in animal cells.
도 2는 야생형 PD-1과 4가지 변이체 PD-1의 PD-L1에 대한 결합력 검증 결과를 나타낸다.Figure 2 shows the results of avidity verification of wild type PD-1 and four variant PD-1 to PD-L1.
도 3은 Tetrameric PD-L1 제조, 형광 표지화 및 활성 검증 결과를 나타낸다.3 shows Tetrameric PD-L1 preparation, fluorescence labeling and activity validation results.
도 4는 Anti-FLAG-FITC를 사용한 대장균에서 무당화 PD-1의 발현 분석 결과를 나타낸다.Figure 4 shows the results of expression analysis of aglycosylated PD-1 in E. coli using Anti-FLAG-FITC.
도 5는 무당화 PD-1의 활성화 검증 결과를 나타낸다.5 shows the results of verifying activation of aglycosylated PD-1.
도 6은 만들어진 초기 라이브러리의 DNA 염기서열 분석 데이터를 나타낸다.Figure 6 shows the DNA sequencing data of the initial library produced.
도 7은 유세포 분석기를 통한 라이브러리 enrichment 테스트 결과를 나타낸다.Figure 7 shows the library enrichment test results by flow cytometry.
도 8은 무당화 PD-1 변이체들을 디스플레이하고 있는 대장균 세포들의 PD-L1 결합력 분석 결과를 나타낸다.8 shows the results of PD-L1 avidity analysis of E. coli cells displaying aglycosylated PD-1 variants.
도 9는 무당화 PD-1 변이체들을 디스플레이하고 있는 대장균 세포들의 anti-FLAG-FITC를 사용한 단백질 발현량 분석 결과를 나타낸다.9 shows the results of protein expression analysis using anti-FLAG-FITC of E. coli cells displaying aglycosylated PD-1 variants.
도 10은 무당화 PD-1 변이체들을 디스플레이하고 있는 대장균 세포들의 PD-L1 결합력 분석 결과를 나타낸다.10 shows the results of PD-L1 avidity analysis of E. coli cells displaying aglycosylated PD-1 variants.
도 11은 무당화 PD-1 변이체들을 디스플레이하고 있는 대장균 세포들의 anti-FLAG-FITC를 사용한 단백질 발현량 분석 결과를 나타낸다.Figure 11 shows the results of protein expression analysis using anti-FLAG-FITC of E. coli cells displaying aglycosylated PD-1 variants.
도 12는 CKJ 41을 기반으로 한 신규한 돌연변이를 가진 변이체 탐색 결과를 나타낸다.12 shows variant search results with novel mutations based on CKJ 41.
도 13은 CKJ 41T를 template로 하여 만들어진 2차 라이브러리의 DNA 염기서열 분석 데이터를 나타낸다.FIG. 13 shows DNA sequencing data of a secondary library prepared using CKJ 41T as a template. FIG.
도 14는 유세포 분석기를 통한 라이브러리 enrichment 테스트 결과를 나타낸다.14 shows the library enrichment test results through flow cytometry.
도 15는 2차 스크리닝을 통해 발굴한 무당화 PD-1 변이체들을 디스플레이하고 있는 대장균 세포들의 PD-L1 결합력 분석 결과를 나타낸다.FIG. 15 shows the results of PD-L1 avidity analysis of Escherichia coli cells displaying aglycosylated PD-1 variants discovered through secondary screening.
도 16은 PD-1 변이체와 공통 염기서열 변이체의 PD-L1 결합력 비교 검증 결과를 나타낸다.Figure 16 shows the results of comparing PD-L1 avidity of the PD-1 variant and the common sequence variant.
도 17은 정제된 대조군 HAC-V와 2가지 PD-1변이체 단백질의 SDS-PAGE 사진을 나타낸다.17 shows SDS-PAGE images of purified control HAC-V and two PD-1 variant proteins.
도 18은 야생형 PD-1과 HAC-V, 2가지 PD-1 변이체의 PD-L1에 대한 결합력 검증 결과를 나타낸다.Figure 18 shows the results of affinity verification of wild type PD-1 and HAC-V, two PD-1 variants to PD-L1.
이하, 실시 예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시 예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to the following examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
실시예Example
실시예 1: 인간 PD-L1 결합에 영향을 주는 Example 1 Influences Human PD-L1 Binding N-N- linked glycosylation site 검증Linked glycosylation site verification
인간 PD-1의 당화의 존재가 실제로 PD-L1과의 결합력에 중요한 역할을 한다는 것을 검증하기 위해 PD-1에 존재하는 4개의 당화를 무당화하여 각각의 당화가 결합력에 끼치는 영향을 테스트하였다. PD-1에는 4곳의 N-glycosylation 장소가 존재하기 때문에 4곳에 있는 아스파라진을 각각 알라닌으로 치환한 4가지의 유전체(N25A, N34A, N50A, N92A)를 만들기로 결정하였다. PD-1(Catalog number: HG10377-M)의 유전자와 프라이머(CKJ#1, CKJ#2)를 사용해 PD-1의 외막 부위(아미노산 서열 L25 - Q167)의 유전체를 Vent polymerase를 사용하여 PCR기법으로 증폭하였다. 증폭된 유전체는 BssHII와 XbaI 효소를 사용하여 처리하였으며 마찬가지로 똑같은 효소로 처리된 동물세포 발현용 벡터인 pMaz 벡터에 라이게이션 하였다. 라이게이션된 플라스미드는 Jude1((F- mcrA △(mrr-hsdRMS-mcrBC)
Figure PCTKR2019001290-appb-I000001
80lacZ△M15 △lacX74 recA1 endA1 araD139 △(ara, leu)7697 galU galK λ- rpsL nupG) 대장균에 transformation하여 개별 콜로니 분석을 통해 sequence를 확인하였다. 제조된 플라스미드를 바탕으로 QuikChange PCR을 이용한 site-directed mutagenesis으로 손쉽게 아스파라진이 알라닌으로 치환된 변이체를 얻기 위해 프라이머들(CKJ#3, CKJ#4, CKJ#5, CKJ#6, CKJ#7, CKJ#8, CKJ#9, CKJ#10)을 디자인하였다. 디자인된 프라이머와 Pfu turbo polymerase(Agilent)를 사용하여 유전체를 증폭하였다. 증폭된 유전자를 Jude1에 transformation하여 시퀀스를 확인하였다. 만들어진 5가지의 야생형 PD-1(pMaz-야생형PD-1-His tag)과 PD-1 당화 변이체 발현용 벡터(pMaz-N25A PD-1-His tag, pMaz-N34A PD-1-His tag, pMaz-N50A PD-1-His tag, pMaz-N92A PD-1-His tag)를 동물세포(HEK293F)에 transfection하여 6일간 배양 후 세포 배양액을 6,000 rpm, 20분간 원심분리한 후, 상등액을 취해 0.22 μm filter를 통해 필터하였다. 걸러진 상등액은 4℃에서 16시간 동안 Ni-NTA resin (Qiagen) 1 ml에 결합 유도하였다. 결합된 resin은 resin의 10 CV (column volume)의 10 mM imidazole(Sigma)이 포함된 PBS 용액으로 세척 후 10 CV의 20 mM imidazole 포함 PBS 용액으로 한번 더 세척하였다. 마지막으로 250 mM imidazole 포함 PBS 용액으로 용출액을 회수하였다(도 1). ELISA를 통해 야생형 PD-1과 4가지의 당화가 변이된 PD-1 변이체들의 PD-L1 결합력 변화를 ELISA를 통해 검증하였다. High binding 96 well plate(Costar)에 각각의 단백질을 0.05M Na2CO3, pH9.6(Junsei)로 희석하여 200 ng/well 의 농도로 4℃에서 16시간 결합하였다. 단백질 제거 후 5% skim milk가 포함된 PBST(0.5% Tween-20가 포함된 PBS) 용액에 w/v 5%가 되게 넣은 후 각각의 96 well plate을 1시간동안 상온에서 blocking 하였다. 위의 용액을 버린 후 200 μl의 tween20 0.5% 포함된 PBS 용액으로 4번 세척한 후 PD-L1 tetramer를 PBS용액에 희석하여 각각의 96 well plate에 1시간동안 상온에서 결합시켰다. 그 후 200 μl의 PBST 0.5% 용액으로 4번 세척한 후 anti-streptavidin-HRP(Genetex)를 PBS에 1:2,000의 비율로 희석하여 각각의 96 well plate에 1시간동안 상온에서 결합하였다. 위의 용액을 버린 후 200 μl의 PBST 0.5% 용액으로 4번 씻어준 후 50 μl TMB(Thermo Scientific)로 반응을 진행하였으며 20분 뒤 4 N H2SO4로 반응을 종결시켰다(도 2). 반응 결과 N92A 변이체의 경우 야생형 PD-1과의 결합력과 큰 차이가 없었으나 나머지 3개의 당화 변이체는 매우 큰 결합력의 차이를 보여 N25, N34, N50의 당화는 PD-L1과의 결합력에 매우 큰 영향을 끼치는 것으로 나타났다.
To verify that the presence of glycosylation of human PD-1 actually plays an important role in binding to PD-L1, the effect of each glycosylation on binding was tested by deglycosylating four glycosylations present in PD-1. Since there are four N-glycosylation sites in PD-1, it was decided to create four genomes (N25A, N34A, N50A, N92A), each of which replaced the asparagine at four sites with alanine. Using the gene of PD-1 (Catalog number: HG10377-M) and primers (CKJ # 1, CKJ # 2), the genome of PD-1 outer membrane region (amino acid sequence L25-Q167) was determined by PCR using Vent polymerase. Amplified. The amplified genome was processed using BssH II and Xba I enzymes and ligated to pMaz vector, which is an animal cell expression vector treated with the same enzyme. The ligated plasmid was Jude1 ((F-mcrA Δ (mrr-hsdRMS-mcrBC)
Figure PCTKR2019001290-appb-I000001
80lacZΔM15 ΔlacX74 recA1 endA1 araD139 Δ (ara, leu) 7697 galU galK λ-rpsL nupG) were transformed into E. coli and the sequence was confirmed by individual colony analysis. Based on the prepared plasmid, primers (CKJ # 3, CKJ # 4, CKJ # 5, CKJ # 6, CKJ # 7,) were used for site-directed mutagenesis using QuikChange PCR. CKJ # 8, CKJ # 9, CKJ # 10) were designed. The genome was amplified using the designed primer and Pfu turbo polymerase (Agilent). The sequence was confirmed by transforming the amplified gene into Jude1. Five wild type PD-1 (pMaz-wild type PD-1-His tag) and PD-1 glycosylation variants expression vector (pMaz-N25A PD-1-His tag, pMaz-N34A PD-1-His tag, pMaz -N50A PD-1-His tag, pMaz-N92A PD-1-His tag) were transfected into animal cells (HEK293F), and cultured for 6 days, the cell culture was centrifuged at 6,000 rpm for 20 minutes, and then the supernatant was removed and 0.22 μm. Filter through filter. The filtered supernatant was induced to bind to 1 ml of Ni-NTA resin (Qiagen) at 4 ° C. for 16 hours. The combined resin was washed with PBS solution containing 10 CV (column volume) of 10 mM imidazole (Sigma) and then washed once more with PBS solution containing 10 CV of 20 mM imidazole. Finally, the eluate was recovered with PBS solution containing 250 mM imidazole (FIG. 1). Through ELISA, the PD-L1 binding capacity of wild type PD-1 and four glycosylated PD-1 variants were verified by ELISA. Each protein was diluted in 0.05M Na 2 CO 3, pH9.6 (Junsei) in a high binding 96 well plate (Costar), and bound for 16 hours at 4 ° C. at a concentration of 200 ng / well. After protein removal, 5% skim milk containing PBST (0.5% Tween-20 containing PBS) solution was added to w / v 5% and each 96 well plate was blocked at room temperature for 1 hour. After discarding the above solution and washed 4 times with 200 μl of tween20 0.5% containing PBS solution, PD-L1 tetramer was diluted in PBS solution and bound to each 96 well plate for 1 hour at room temperature. After washing four times with 200 μl of PBST 0.5% solution, anti-streptavidin-HRP (Genetex) was diluted in PBS at a ratio of 1: 2,000 and bound to each 96 well plate for 1 hour at room temperature. The solution was discarded and washed four times with 200 μl of PBST 0.5% solution, followed by reaction with 50 μl TMB (Thermo Scientific). After 20 minutes, the reaction was terminated with 4 NH 2 SO 4 (FIG. 2). As a result of reaction, N92A mutant showed no significant difference with wild type PD-1, but the other three glycosylation variants showed a very large difference in binding ability. Glycosylation of N25, N34, and N50 significantly affected the binding capacity with PD-L1. Appeared to cause.
서열목록Sequence Listing 프라이머primer 서열(5’→3’)Sequence (5 '→ 3')
서열목록 제1서열Sequence Listing First Sequence CKJ#1CKJ # 1 GCGGAATTCGGCGCGCACTCCGAATTAGACTCCCCAGACAGGCCCGCGGAATTCG GCGCGC ACTCCGAATTAGACTCCCCAGACAGGCCC
서열목록 제2서열 SEQ ID NO 2 CKJ#2 CKJ # 2 GAATTCCGCTCTAGATTATCAATGATGATGGTGGTGATGTTGGAACTGGCCGGCTGGGAATTCCGC TCTAGA TTATCAATGATGATGGTGGTGATGTTGGAACTGGCCGGCTGG
서열목록 제3서열Sequence Listing Third Sequence CKJ#3CKJ # 3 CGTGGTGACCGAAGGGGACGCCGCCACCTTCACCTGCAGCTCGTGGTGACCGAAGGGGACGCCGCCACCTTCACCTGCAGCT
서열목록 제4서열SEQ ID NO: 4 Sequence CKJ#4CKJ # 4 AGCTGCAGGTGAAGGTGGCGGCGTCCCCTTCGGTCACCACGAGCTGCAGGTGAAGGTGGCGGCGTCCCCTTCGGTCACCACG
서열목록 제5서열SEQ ID NO: 5 Sequence CKJ#5CKJ # 5 ACCTTCACCTGCAGCTTCTCCGCCACATCGGAGAGCTTCGTGCTAAACACCTTCACCTGCAGCTTCTCCGCCACATCGGAGAGCTTCGTGCTAAAC
서열목록 제6서열SEQ ID NO: 6 Sequence CKJ#6CKJ # 6 GTTTAGCACGAAGCTCTCCGATGTGGCGGAGAAGCTGCAGGTGAAGGTGTTTAGCACGAAGCTCTCCGATGTGGCGGAGAAGCTGCAGGTGAAGGT
서열목록 제7서열SEQ ID NO: 7 Sequence CKJ#7CKJ # 7 GTACCGCATGAGCCCCAGCGCCCAGACGGACAAGCTGGCCGGTACCGCATGAGCCCCAGCGCCCAGACGGACAAGCTGGCCG
서열목록 제8서열SEQ ID NO: 8 Sequence CKJ#8CKJ # 8 CGGCCAGCTTGTCCGTCTGGGCGCTGGGGCTCATGCGGTACCGGCCAGCTTGTCCGTCTGGGCGCTGGGGCTCATGCGGTAC
서열목록 제9서열SEQ ID NO: 9 Sequence CKJ#9CKJ # 9 GTCAGGGCCCGGCGCGCCGACAGCGGCACCTACCTCTGGTCAGGGCCCGGCGCGCCGACAGCGGCACCTACCTCTG
서열목록 제10서열SEQ ID NO: 10 CKJ#10 CKJ # 10 CAGAGGTAGGTGCCGCTGTCGGCGCGCCGGGCCCTGACCAGAGGTAGGTGCCGCTGTCGGCGCGCCGGGCCCTGAC
서열목록 제11서열SEQ ID NO: Eleventh Sequence Hw#1Hw # 1 GCGGAATTCGGCGCGCACTCCGAATTTACTGTCACGGTTCCCAAGGACCGCGGAATTCG GCGCGC ACTCCGAATTTACTGTCACGGTTCCCAAGGACC
서열목록 제12서열SEQ ID NO 12 Hw#2 Hw # 2 CTTGTGCCTTGCTATCTTTAGACGGGTCAGAGCCACCGCCACCCCTTTCATTTGGAGGATGTGCCAGAGCTTGTGCCTTGCTATCTTTAGACGGGTCAGAGCCACCGCCACCCCTTTCATTTGGAGGATGTGCCAGAG
서열목록 제13서열SEQ ID NO: Thirteenth Sequence HW#3HW # 3 GACCCGTCTAAAGATAGCAAGGCACAAGGACCCGTCTAAAGATAGCAAGGCACAAG
서열목록 제14서열SEQ ID NO: 14 Sequence HW#4HW # 4 GAATTCCGCTCTAGATCATTAGTGGTGATGATGGTGGTGAGGAATTCCGC TCTAGA TCATTAGTGGTGATGATGGTGGTGAG
서열목록 제15서열SEQ ID NO: 15 Sequence JY#1JY # 1 CGCAGCGAGGCCCAGCCGGCCTTAGACTCCCCAGACAGGCCCCGCAGCGA GGCCCAGCCGGCC TTAGACTCCCCAGACAGGCCC
서열목록 제16서열SEQ ID NO: 16 JY#2 JY # 2 CGCAGCGAGGCCCCCGAGGCCCCTTGGAACTGGCCGGCTGGCGCAGCGA GGCCCCCGAGGCC CCTTGGAACTGGCCGGCTGG
서열목록 제17서열SEQ ID NO: 17 Sequence JY#3JY # 3 CGCAGCGAGGCCCAGCCGGCC CGCAGCGA GGCCCAGCCGGCC
서열목록 제18서열SEQ ID NO: 18 Sequence JY#4JY # 4 CGCAGCGAGGCCCCCGAGGCCCCCGCAGCGA GGCCCCCGAGGCC CC
실험에 사용한 프라이머들Primers used in the experiment
실시예 2: PD-1 엔지니어링을 위한 tetrameric 인간 PD-L1 (PD-L1-Streptavidin) 클로닝 Example 2: Cloning of tetrameric Human PD-L1 (PD-L1-Streptavidin) for PD-1 Engineering
인간 PD-L1 gene cDNA를 Sino Biotech(Catalog number: HG10084-M)사에서 구입 후, PD-L1 세포 외막 부분(아미노산 서열 F19 - R238)의 유전자를 primer (HW#1, HW#2)와 Vent polymerase를 사용하여 PCR로 증폭하였다. 야생형 PD-1과 야생형 PD-L1의 결합해리 상수가 낮기 때문에(평형해리상수 KD=약8.7 μM) 효율적인 무당화 PD-1 변이체 스크리닝 진행을 위해 tetramerization을 통한 avidity effect를 유도하기로 하였다. Tetramerization을 유도하기 위해 PD-L1의 C terminal 부분에 streptavidin을 발현시켜 tetramer를 유도하기로 하였으며, streptavidin와 PD-L1 사이에는 GS링커를 넣어 각각의 단백질의 유동성을 확보하였다. Streptavidin을 primer(HW#3, HW#4)와 Vent polymerase(New England Biolab)를 사용해 유전자를 증폭 후, 앞에 증폭된 PD-L1 유전체와 Vent polymerase를 사용하여 assembly PCR을 진행하였다. 만들어진 유전자는 BssHII와 XbaI(New England Biolab)을 사용해 제한효소 처리하였다. 제한효소 처리된 PD-L1-streptavidin-His tag 유전자는 동일한 제한효소 처리된 동물세포용 벡터인 pMaz벡터에 라이게이션 하였다. 라이게이션 된 플라스미드는 Jude1 대장균에 transformation 시킨 후, single clone을 확보하여 염기서열 분석을 통해 PD-L1-streptavidin-His tag이 pMaz벡터에 성공적으로 삽입된 것을 확인하였다.After purchasing human PD-L1 gene cDNA from Sino Biotech (Catalog number: HG10084-M), the gene of PD-L1 outer membrane portion (amino acid sequence F19-R238) was transferred to primer (HW # 1, HW # 2) and Vent. Amplification by PCR using polymerase. Because of the low dissociation constants of wild type PD-1 and wild type PD-L1 (equilibrium dissociation constant K D = 8.7 μM), we decided to induce the avidity effect through tetramerization for efficient screening of aglycosylated PD-1 variants. In order to induce tetramerization, streptavidin was expressed in C-terminal part of PD-L1 to induce tetramer. GS linker was inserted between streptavidin and PD-L1 to secure fluidity of each protein. Streptavidin was amplified using primers (HW # 3, HW # 4) and Vent polymerase (New England Biolab), followed by assembly PCR using PD-L1 genome and Vent polymerase. The generated gene was subjected to restriction enzyme treatment using Bss HII and Xba I (New England Biolab). Restriction-treated PD-L1-streptavidin-His tag gene was ligated to the same restriction enzyme-treated pMaz vector. The ligated plasmid was transformed into Jude1 Escherichia coli, and a single clone was obtained to confirm that the PD-L1-streptavidin-His tag was successfully inserted into the pMaz vector by sequencing.
실시예 3: Tetrameric PD-L1-streptavidin의 동물세포 발현, 정제 및 형광 물질 레이블링Example 3: Animal Cell Expression, Purification and Fluorescent Labeling of Tetrameric PD-L1-streptavidin
만들어진 tetrameric PD-L1 발현용 벡터를 동물세포(HEK293F)에 transfection한 후, 6일간 배양 후 세포 배양액을 6,000 rpm, 20분간 원심분리 후, 상등액을 취해 0.22 μm filter를 통해 필터하였다. 걸러진 상등액은 4℃에서 16시간동안 Ni-NTA resin(Qiagen) 1 ml에 결합 유도하였다. Binding된 resin은 resin의 10 CV의 10 mM imidazole(Sigma)이 포함된 PBS 용액으로 세척 후 10 CV의 20 mM imidazole 포함 PBS 용액으로 한번 더 세척한다. 마지막으로 250 mM imidazole 포함 PBS 용액으로 용출액을 회수하였다. 정제된 PD-L1 tetramer는 Alexa-488 labeling kit를 사용해 형광표지화 하였다. 형광표지된 tetrameric PD-L1은 ELISA 분석 결과 우수한 PD-1 결합력을 보이는 것을 확인하였다 (도 3).The transmeric PD-L1 expression vector was transfected into animal cells (HEK293F), and after 6 days of incubation, the cell culture was centrifuged at 6,000 rpm for 20 minutes, and the supernatant was collected and filtered through a 0.22 μm filter. The filtered supernatant was induced to bind 1 ml of Ni-NTA resin (Qiagen) for 16 hours at 4 ℃. The bound resin is washed with PBS solution containing 10 CV of 10 mM imidazole (Sigma) of resin and then washed once more with 10 CV of 20 mM imidazole containing PBS solution. Finally, the eluate was recovered with PBS solution containing 250 mM imidazole. The purified PD-L1 tetramer was fluorescently labeled using Alexa-488 labeling kit. Fluorescently labeled tetrameric PD-L1 showed excellent PD-1 binding as a result of ELISA analysis (FIG. 3).
실시예 4: 박테리아 세포 내막에서 인간 PD-1을 디스플레이하기 위한 클로닝 (야생형 PD-1, HAC-V PD-1)Example 4: Cloning to Display Human PD-1 in Bacterial Cell Intima (Wild Type PD-1, HAC-V PD-1)
PD-1의 외막 부위를 디스플레이 하기 위해 primer(JY#1, JY#2)를 사용해 PD-1의 아미노산(아미노산 서열 L25 - Q167)의 DNA를 Vent Polymerase를 통해 PCR로 유전자를 증폭시킨 후, SfiI 제한효소 처리하였다. SfiI 처리된 DNA는 단백질을 대장균 periplasmic region쪽으로 분비 하에 세포내막에 고정화 시키는 시그널 펩타이드인 NlpA 시그널 펩타이드를 사용하기 위해 마찬가지로 SfiI 처리된 pMopac12-NlpA-FLAG벡터에 라이게이션 하여 pMopac12-NlpA-WTPD-1-FLAG벡터를 제조하였다. 대조군으로 사용하기 위한 HAC-V 변이체는 유전자 합성을 통해 진행하였으며, 마찬가지로 NlpA 시그널 펩타이드를 사용하기 위해 SfiI 처리된 pMopac12-NlpA-FLAG벡터에 라이게이션 하여 pMopac12-NlpA-HAC-V PD-1-FLAG 플라스미드를 준비하였다. 그 후 대장균 Jude1에 transformation 하여 single clone을 확보한 후 염기서열 분석을 통해 야생형 PD-1와 HAC-V PD-1이 pMopac-12 벡터에 성공적으로 삽입된 것을 확인하였다.PD-1 primer to display an outer film portion of the amino acid sequence of PD-1 with the (JY # 1, JY # 2 ) - After the DNA of (amino acid sequence L25 Q167) amplifying the gene by PCR with Vent Polymerase, Sfi I restriction enzyme treatment. Sfi I-treated DNA was ligated to Sfi I treated pMopac12-NlpA-FLAG vector, like in order to use the signal peptide is a signal peptide NlpA immobilizing cells in the lining under the secretion of proteins into the E. coli periplasmic region pMopac12-NlpA-WTPD- 1-FLAG vector was prepared. HAC-V variant for use as a control was conducted through a gene synthesis, as in order to use the NlpA signal peptides ligated in-pMopac12 NlpA-FLAG vector treated Sfi I pMopac12-NlpA-HAC- V PD-1- FLAG plasmids were prepared. Subsequently, a single clone was obtained by transforming E. coli Jude1 and sequencing confirmed that wild type PD-1 and HAC-V PD-1 were successfully inserted into the pMopac-12 vector.
실시예 5: 유세포 분석기를 이용한 PD-1 및 PD-1 변이체 (야생형 PD-1, HAC-V PD-1)의 대장균에서의 발현 유무 및 PD-L1과의 결합력 검증 Example 5: Expression of PD-1 and PD-1 variants (wild type PD-1, HAC-V PD-1) in E. coli and binding to PD-L1 using flow cytometry
클로닝으로 준비된 플라스미드(pMopac12-NlpA-PD-1-FLAG, pMopac12-NlpA-HAC-V PD-1-FLAG, pMopac12-NlpA-Fc-FLAG)를 각각 Jude1 세포에 transformation하였다. 준비된 샘플들을 각각 2% glucose와 40 μg/ml의 chloramphenicol이 포함된 TB 배지에서 37℃, 250 rpm으로 16시간 배양하였다. 배양된 세포를 40 μg/ml의 chloramphenicol이 포함된 6 ml의 TB 배지에 1:50 비율로 접종하였다. OD600=0.5까지 배양한 후 20분간 25℃, 250 rpm에서 cooling 과정을 거친 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 단백질을 과발현하였다. 단백질이 과발현된 대장균을 OD600 normalize를 통해 동일한 양 만큼씩 e-tube에 넣어 14,000 rpm, 1분간 원심분리를 통해 세포를 회수하였다. 잔여 배지를 제거하기 위해 e-tube에 넣어진 세포를 1 ml의 10 mM Tris-HCl(pH 8.0)을 사용하여 resuspension하고 13,500 rpm으로 1분간 원심분리를 통해 진행하는 세척과정을 2회 반복하였다. 세포를 1 ml의 STE[0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA(pH 8.0)]용액을 사용하여 resuspension하여 37℃, 30 분간 rotation을 통해 세포 외막을 제거하였다. 13,500 rpm으로 1분간 원심분리를 통해 대장균을 모은 후, 상등액을 제거하였다. 원심분리된 대장균은 1 ml의 Solution A[0.5 M sucrose, 20 mM MgCl2, 10mM MOPS pH 6.8]을 통해 resuspension후 13,500 rpm으로 1 분간 원심분리를 하였다. 1 ml의 Solution A와 50 mg/ml lysozyme solution 20 μl를 혼합한 용액을 1 ml 첨가해 원심 분리된 대장균을 resuspension한 뒤 37℃, 15분간 rotation하여 펩티도글리칸 층을 제거하였다. 원심분리 후 상등액을 제거하고 1 ml의 PBS로 resuspension한 뒤 300 μl를 취해 700 μl의 PBS와 12. 5 nM의 tetrameric PD-L1-Alexa488 probe와 33 nM의 anti-FLAG-FTIC(SIGMA)를 각각 넣고 상온에서 rotation하여 spheroplast에 형광 probe로 labeling하였다. Labeling 과정을 1시간 거친 후 13,500 rpm으로 1분간 원심분리를 하였다. 상등액을 버리고 원심분리된 대장균을 1 ml의 PBS로 1회 세척한 후 다시 13,500 rpm으로 1분간 원심분리를 한다. 원심분리된 대장균을 1 ml의 PBS로 resuspension 후, Guava(Merck Millipore) 장비를 이용해 분석하였다. 분석결과 무당화 PD-1은 대장균에서 발현은 잘 되지만(도 4) PD-L1과의 결합력은 보이지 못함을 확인할 수 있었으며 무당화 HAC-V PD-1은 약한 PD-L1 결합력이 있음을 확인할 수 있었다(도 5).Plasmids prepared by cloning (pMopac12-NlpA-PD-1-FLAG, pMopac12-NlpA-HAC-V PD-1-FLAG, pMopac12-NlpA-Fc-FLAG) were transformed into Jude1 cells, respectively. Prepared samples were incubated at 37 ° C. and 250 rpm for 16 hours in TB medium containing 2% glucose and 40 μg / ml chloramphenicol, respectively. The cultured cells were inoculated at a ratio of 1:50 in 6 ml of TB medium containing 40 μg / ml of chloramphenicol. After incubation to OD 600 = 0.5, after cooling for 20 minutes at 25 ° C and 250 rpm, 1 mM IPTG was added to overexpress the protein at 25 ° C, 250 rpm and 5 hours. E. coli overexpressed the protein was added to the e-tube by the same amount through OD 600 normalize and cells were recovered by centrifugation at 14,000 rpm for 1 minute. In order to remove the residual medium, the cells placed in the e-tube were resuspensioned with 1 ml of 10 mM Tris-HCl (pH 8.0) and washed twice by centrifugation at 13,500 rpm for 1 minute. Cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution to remove the extracellular membrane by rotation at 37 ° C. for 30 minutes. E. coli was collected by centrifugation at 13,500 rpm for 1 minute, and then the supernatant was removed. Centrifuged Escherichia coli was resuspensioned with 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8] and then centrifuged at 13,500 rpm for 1 minute. 1 ml of Solution A and 20 ml of 50 mg / ml lysozyme solution were added, and 1 ml of the solution was added to resuspension of the centrifuged Escherichia coli, followed by rotation at 37 ° C. for 15 minutes to remove the peptidoglycan layer. After centrifugation, the supernatant was removed, resuspensioned with 1 ml of PBS, 300 μl was taken, and 700 μl of PBS, 12.5 nM tetrameric PD-L1-Alexa488 probe and 33 nM anti-FLAG-FTIC (SIGMA), respectively. The plate was rotated at room temperature and labeled with a fluorescent probe on the spheroplast. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. Discard the supernatant and wash the centrifuged Escherichia coli once with 1 ml of PBS and centrifuge again for 13 minutes at 13,500 rpm. Centrifuged E. coli was resuspensioned with 1 ml of PBS and analyzed using Guava (Merck Millipore) equipment. As a result, it was confirmed that aglycosylated PD-1 was well expressed in Escherichia coli (FIG. 4), but no binding ability with PD-L1 was observed, and aglycosylated HAC-V PD-1 had weak PD-L1 binding ability. (FIG. 5).
실시예 6: 초고속 스크리닝 기법 사용하기 위한 거대 PD-1 error prone library 제작Example 6 Fabrication of a Large PD-1 Error Prone Library for Ultrafast Screening Techniques
PD-L1과의 높은 결합력을 보이는 무당화 PD-1을 고속으로 탐색하기 위해 pMopac12-NlpA-PD-1-FLAG를 기반으로 사용해 PD-1의 모든 부위에 에러가 들어갈 수 있게 양쪽의 SfiI site를 포함하는 primer(JY#3, JY#4)를 디자인 하였다. 디자인한 primer와 TaqPolymerase(TAKARA)와 dNTPs(Invitrogen), MgCl2, MnCl2 (SIGMA)를 사용하여 라이브러리를 제작하기 위해 insert를 Error Prone PCR기법을 사용해 유전체를 증폭시켰다. 증폭된 유전체는 포함하는 SfiI효소 처리되어 마찬가지로 SfiI효소 처리가 되어 있는 pMopac12-NlpA-FLAG 벡터에 삽입하여 라이게이션 후, Jude1 세포에 transformation하였다. Transformation된 대장균들은 square plate에 스프레딩 하여 37℃에 16시간 배양한 후 glucose가 2% 함유된 TB로 대장균들을 회수 하여 초기 라이브러리를 확보하였다(도 6).To search for ladybird screen PD-1 with a high bonding strength between the PD-L1 at a high speed pMopac12-NlpA-PD-1-FLAG used based on both able to get an error for all parts of the PD-1 Sfi I site Designed primers (JY # 3, JY # 4) containing. To prepare a library using the designed primer, Taq Polymerase (TAKARA), dNTPs (Invitrogen), MgCl 2 , and MnCl 2 (SIGMA), the genome was amplified using the Error Prone PCR technique. The amplified genome is treated Sfi I enzyme comprising similarly inserted pMopac12-NlpA-FLAG vector, which is the Sfi I enzyme treatment was then ligated to the transformation, Jude1 cells. Transformed E. coli was spread on a square plate and incubated at 37 ° C. for 16 hours to recover E. coli with TB containing 2% glucose to secure an initial library (FIG. 6).
실시예 7: 유세포 분리기를 사용한 PD-1 변이체 스크리닝Example 7: PD-1 variant screening using flow cytometer
Glucose 가 2% 함유된 TB 배지 25 ml에 40 μg/ml의 chloramphenicol을 첨가한 후 제작된 라이브러리를 250 mL flask에 접종하고 37℃, 250 rpm으로 4시간 배양 하고 40 μg/ml의 chloramphenicol이 포함된 TB 배지 100 ml에 배양된 대장균을 1:100 비율로 접종하였다. OD600=0.5까지 배양한 후 20분간 25℃, 250 rpm에서 cooling 과정을 거친 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 단백질을 과발현하고, 14,000 rpm, 1분간 원심분리를 통해 세포를 회수하였다. 잔여 배지를 제거하기 위해 e-tube에 넣어진 세포를 1 ml의 10 mM Tris-HCl(pH 8.0)을 사용하여 resuspension하고 13,500 RPM으로 1분간 원심분리를 통해 진행하는 세척 과정을 2회 반복하였다. 세포를 1 ml의 STE[0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)]용액을 사용하여 resuspension하여 37℃, 30분간 rotation을 통해 세포 외막을 제거하였다. 13,500 rpm으로 1분간 원심분리를 통해 대장균을 모은 후, 상등액을 제거하였다. 원심분리된 대장균은 1 ml의 Solution A[0.5 M sucrose, 20 mM MgCl2, 10mM MOPS pH 6.8]을 통해 resuspension후 13,500 rpm으로 1분간 원심분리를 하였다. 1 ml의 Solution A와 50 mg/ml lysozyme solution 20 μl를 혼합한 용액을 1 ml 첨가해 원심 분리된 대장균을 resuspension한 뒤 37℃, 15 분간 rotation하여 펩티도글리칸 층을 제거하였다. 원심분리 후 상등액을 제거하고 1 ml의 PBS로 resuspension한 뒤 300 μl를 취해 700 μl의 PBS와 12.5 nM의 tetrameric PD-L1-Alexa488 probe를 함께 넣고 상온에서 rotation하여spheroplast에 형광probe를 labeling하였다. Labeling의 과정을 1시간 거친 후 13,500 rpm으로 1분간 원심분리를 하였다. 상등액을 버리고 원심분리된 대장균을 1 ml의 PBS로 1회 세척한 후 다시 13,500 rpm으로 1분간 원심분리를 하였다. 원심분리된 대장균을 1 ml PBS로 resuspension 후, S3 sorter(Bio-Rad) 장비를 이용해 PD-L1에 높은 결합력이 가진 대장균들을 회수하였다. 회수된 대장균들은 primer들(JY#1, JY#2)을 사용한 PCR 증폭으로 유전자를 확보하였고, 유전체들은 sfiI 제한효소 처리되어 마찬가지로 제한효소 처리된 pMopac12-NlpA-FLAG 벡터에 라이게이션 하였다. 플라스미드를 Jude1에 transformation한 후 대장균들은 square plate에 스프레딩 하여 37℃에 16시간 incubation한 후 회수하여 deep freezer에 냉동보관 하였다. 위와 같은 스크리닝 과정을 5회 추가 반복하였다.After adding 40 μg / ml of chloramphenicol to 25 ml of Glucose-containing 2% TB medium, the prepared library was inoculated into a 250 mL flask, incubated for 4 hours at 37 ° C and 250 rpm, and containing 40 μg / ml of chloramphenicol. E. coli cultured in 100 ml of TB medium was inoculated in a 1: 100 ratio. After incubation to OD 600 = 0.5, after 20 minutes of cooling at 25 ° C and 250 rpm, 1 mM IPTG was added to overexpress the protein at 25 ° C, 250 rpm and 5 hours, and then centrifuged at 14,000 rpm for 1 minute. The cells were recovered. In order to remove the residual medium, the cells placed in the e-tube were resuspensioned with 1 ml of 10 mM Tris-HCl (pH 8.0) and centrifuged for 1 minute at 13,500 RPM. The cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution to remove the extracellular membrane by rotation at 37 ° C. for 30 minutes. E. coli was collected by centrifugation at 13,500 rpm for 1 minute, and then the supernatant was removed. Centrifuged Escherichia coli was resuspensioned with 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8] and then centrifuged at 13,500 rpm for 1 minute. 1 ml of Solution A and 20 μl of 50 mg / ml lysozyme solution were added to the solution, followed by resuspension of the centrifuged Escherichia coli, followed by rotation at 37 ° C. for 15 minutes to remove the peptidoglycan layer. After centrifugation, the supernatant was removed, resuspensioned with 1 ml of PBS, 300 μl was taken, and 700 μl of PBS and 12.5 nM tetrameric PD-L1-Alexa488 probe were added together and rotated at room temperature to label fluorescent probes on spheroplasts. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute. After resuspension of the centrifuged Escherichia coli with 1 ml PBS, E. coli having high binding strength to PD-L1 was recovered using S3 sorter (Bio-Rad). The recovered E. coli were obtained by PCR amplification using primers (JY # 1, JY # 2), and the genomes were sfi I-restricted and ligated to the restriction-treated pMopac12-NlpA-FLAG vector. After transforming the plasmid to Jude1, E. coli was spread on a square plate, incubated at 37 ° C for 16 hours, recovered, and stored in a deep freezer. The above screening procedure was repeated five more times.
실시예 8: PD-L1 친화도 증가 PD-1 변이체들의 enrichment 확인을 위한 대장균 배양Example 8: Increased PD-L1 Affinity Escherichia coli Culture for Confirmation of Enrichment of PD-1 Variants
Glucose가 2% 함유된 TB 25 ml에 40 μg/ml의 chloramphenicol을 첨가한 후 Initial library, 1 round library, 2 round library, 3 round library, 4 round library, 5 round library, 6 round library를 250 mL flask에 넣었다. 37℃, 250 rpm으로 4시간 배양 후, 40 μg/ml의 chloramphenicol이 포함된 TB 100 ml에 배양된 대장균을 1:100 접종하였다. OD600=0.5까지 배양한 후 20분간 25℃, 250 rpm에서 cooling 과정을 거친 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 단백질을 과발현하였다. 또한 대조군으로 사용하기 위해 glucose가 2% 함유된 TB배지 4 ml에 40 μg/ml의 chloramphenicol을 첨가하고 야생형 PD-1과 HAC-V-PD-1 cell들을 각각 접종하고 37℃, 250 rpm으로 16시간 배양하였다. 배양된 세포를 40 μg/ml의 chloramphenicol이 포함된 TB 배지 6 ml에 1:50 접종하였다. OD600=0.5까지 배양한 후 20분간 25℃, 250 rpm에서 cooling 과정을 거친 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 단백질을 과발현하였다. 대장균들은 OD600 normalize를 통해 동일한 양 만큼씩 e-tube에 넣어 14,000 rpm, 1분간 원심분리를 통해 세포를 회수하였다.Add 40 μg / ml of chloramphenicol to 25 ml of TB containing 2% glucose, and then add 250 mL flask of Initial library, 1 round library, 2 round library, 3 round library, 4 round library, 5 round library, 6 round library. Put in. After 4 hours of incubation at 250 ° C. at 37 ° C., E. coli was inoculated 1: 100 in 100 ml of TB containing 40 μg / ml chloramphenicol. After incubation to OD 600 = 0.5, after cooling for 20 minutes at 25 ° C and 250 rpm, 1 mM IPTG was added to overexpress the protein at 25 ° C, 250 rpm and 5 hours. In addition, 40 μg / ml of chloramphenicol was added to 4 ml of TB medium containing 2% glucose and inoculated with wild type PD-1 and HAC-V-PD-1 cells, respectively, and used at 37 ° C. and 250 rpm. Time incubation. The cultured cells were inoculated 1:50 in 6 ml of TB medium containing 40 μg / ml of chloramphenicol. After incubation to OD 600 = 0.5, after cooling for 20 minutes at 25 ° C and 250 rpm, 1 mM IPTG was added to overexpress the protein at 25 ° C, 250 rpm and 5 hours. Escherichia coli were recovered by centrifugation at 14,000 rpm for 1 minute in an equal amount of e-tubes through OD 600 normalize.
실시예 9: 유세포 분석기를 사용한 PD-L1 친화도 증가 PD-1 변이체들의 enrichment 확인 Example 9: Enrichment of PD-L1 Affinity Increased PD-1 Variants Using Flow Cytometry
잔여 배지를 제거하기 위해 e-tube에 넣어진 세포를 1 ml의 10 mM Tris-HCl(pH 8.0)을 사용하여 resuspension하고 13,500 rpm으로 1분간 원심분리를 통해 진행하는 세척과정을 2회 반복하였다. 세포를 1 ml의 STE[0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)]용액을 사용하여 resuspension하여 37℃, 30 분간 rotation을 통해 세포 외막을 제거하였다. 13,500 rpm으로 1분간 원심분리를 통해 대장균을 모은 후, 상등액을 제거하였다. 원심분리된 대장균은 1 ml의Solution A[0.5 M sucrose, 20 mM MgCl2,10mM MOPS pH 6.8]을 통해 resuspension 후 13,500 rpm으로 1분간 원심분리를 하였다. 1 ml의 Solution A와 50 mg/ml lysozyme solution 20 μl를 혼합한 용액을 1 ml 첨가해 원심 분리된 대장균을 resuspension한 뒤 37℃, 15분 간 rotation하여 peptidoglycan layer를 제거하였다. 원심분리 후 상등액을 제거하고 1 ml의 PBS로 resuspension한 뒤 300 μl를 취해 700 μl의 PBS와 12.5 nM의 tetrameric PD-L1-Alexa488 probe를 함께 넣고 상온에서 rotation하여 spheroplast에 형광 probe를 labeling하였다. Labeling의 과정을 1시간 거친 후 13,500 rpm으로 1분간 원심분리를 하였다. 상등액을 버리고 원심분리된 대장균을 1 ml의 PBS로 1회 세척한 후 다시 13,500 rpm으로 1분간 원심분리를 하였다. 원심분리된 대장균을 1 ml의 PBS로 resuspension 후, 유세포 분석기(Guava, Millipore)장비를 이용해 PD-L1과의 결합력을 형광 신호 값(Mean fluorescence intensity, MFI) 측정을 통해 분석하였다. 스크리닝이 진행될수록 PD-L1에 결합력이 높은 변이체들이 라이브러리에서 증폭되는 것을 분석할 수 있었다(도 7). In order to remove the residual medium, the cells placed in the e-tube were resuspensioned with 1 ml of 10 mM Tris-HCl (pH 8.0) and washed twice by centrifugation at 13,500 rpm for 1 minute. The cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution to remove the extracellular membrane by rotation at 37 ° C. for 30 minutes. E. coli was collected by centrifugation at 13,500 rpm for 1 minute, and then the supernatant was removed. Centrifuged Escherichia coli was resuspensioned through 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8], and then centrifuged at 13,500 rpm for 1 minute. 1 ml of solution A and 20 μl of 50 mg / ml lysozyme solution were added to the solution, followed by resuspension of centrifuged Escherichia coli, followed by rotation at 37 ° C. for 15 minutes to remove the peptidoglycan layer. After centrifugation, the supernatant was removed, resuspensioned with 1 ml of PBS, 300 μl was taken, 700 μl of PBS and 12.5 nM tetrameric PD-L1-Alexa488 probe were added together, and rotated at room temperature to label the fluorescent probe on the spheroplast. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute. After centrifuged Escherichia coli was resuspensioned with 1 ml of PBS, binding ability with PD-L1 was analyzed by measuring flow rate (Mean fluorescence intensity, MFI) using a flow cytometer (Guava, Millipore). As the screening progressed, it was possible to analyze the amplification in the library of variants having high binding capacity to PD-L1 (FIG. 7).
실시예 10: 유세포 분석기 분석을 통한 PD-L1 결합력이 향상된 PD-1 변이체들 확보Example 10: Obtaining PD-1 Variants with Enhanced PD-L1 Adhesion through Flow Cytometry Analysis
마지막 라운드의 단일 콜로니들을 2% glucose와 40 μg/ml의 chloramphenicol이 포함된 TB 배지에 접종한 후 37℃, 250 rpm으로 16시간 배양하였다. 배양된 세포들을 40 μg/ml의 chloramphenicol이 포함된 6 ml의 TB 배지에 1:50 희석하여 접종하였다. OD600=0.5까지 배양한 후 20분간 25℃, 250 rpm에서cooling 과정을 거친 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 단백질을 과발현하였다. 대장균들은 OD600 normalize를 통해 동일한 양 만큼씩 e-tube에 넣어 14,000 rpm, 1분간 원심분리를 통해 세포를 회수하였다. 잔여 배지를 제거하기 위해 e-tube에 넣어진 세포를 1 ml의 10 mM Tris-HCl(pH 8.0)을 사용하여resuspension하고 13,500 rpm으로 1분간 원심분리를 통해 진행하는 세척과정을 2회 반복하였다. 세포를 1 ml의 STE[0.5 M sucrose, 10 mM Tris-HCl, 10mM EDTA (pH 8.0)]용액을 사용하여 resuspension하여 37℃, 30분간 rotation을 통해 세포 외막을 제거하였다. 13,500 rpm으로 1분간 원심분리를 통해 대장균을 모은 후, 상등액을 제거하였다. 원심분리된 대장균은 1 ml의 Solution A[0.5 M sucrose, 20 mM MgCl2,10mM MOPS pH 6.8]을 통해 resuspension후 13,500 rpm으로 1분간 원심분리를 하였다. 1 ml의 Solution A와 50 mg/ml lysozyme solution 20 μl를 혼합한 용액을 1 ml 첨가해 원심 분리된 대장균을 resuspension한 뒤 37℃, 15분 간 rotation하여 peptidoglycan layer를 제거하였다. 원심분리 후 상등액을 제거하고 1 ml의 PBS로 resuspension한 뒤 300 μl를 취해 700 μl의 PBS와 12.5 nM의 tetrameric PD-L1-Alexa488 probe를 함께 넣고 상온에서 rotation하여 spheroplast에 형광 probe를 labeling하였다. Labeling의 과정을 1시간 거친 후 13,500 rpm으로 1분간 원심분리를 하였다. 상등액을 버리고 원심분리된 대장균을 1 ml의 PBS로 1회 세척한 후 다시 13,500 rpm으로 1분간 원심분리를 하였다. 원심분리된 대장균을 1ml의 PBS로 resuspension 후, GUAVA장비를 이용해 PD-L1과의 결합력을 형광 신호 값 측정을 통해 분석하였다(도 8). 또한 대장균이 디스플레이 하고 있는 PD-1 단백질의 발현량이 형광 세기에 영향을 끼칠 수 있기 때문에 발현량을 확인 하기 위해 PBS로 resuspension한 뒤 남은 나머지 대장균에서 300 μl를 취해 700 μl의 PBS와 1 μl의 anti-FLAG-FITC를 함께 넣고 상온에서 rotation하여 spheroplast에 형광 probe를 labeling하였다. Labeling의 과정을 1시간 거친 후 13,500 rpm으로 1분간 원심분리를 하였다. 상등액을 버리고 원심분리된 대장균을 1 ml의 PBS로 1회 세척한 후 다시 13,500 rpm으로 1분간 원심분리를 하였다. 원심분리된 대장균을 1 ml의 PBS로 resuspension 후, 유세포 분석기를 이용해 anti-FLAG-FITC과의 결합력을 통한 단백질의 발현량을 형광 신호 값 측정을 통해 간접적으로 분석하였다(도 9).The last round single colonies were inoculated in TB medium containing 2% glucose and 40 μg / ml chloramphenicol and incubated at 37 ° C. and 250 rpm for 16 hours. The cultured cells were inoculated by diluting 1:50 in 6 ml of TB medium containing 40 μg / ml of chloramphenicol. After incubation to OD 600 = 0.5, after 20 minutes of cooling at 25 ° C and 250 rpm, 1 mM IPTG was added to overexpress the protein at 25 ° C, 250 rpm and 5 hours. Escherichia coli were recovered by centrifugation at 14,000 rpm for 1 minute in an equal amount of e-tubes through OD 600 normalize. In order to remove the residual medium, the cells placed in the e-tube were resuspended with 1 ml of 10 mM Tris-HCl (pH 8.0) and centrifuged for 1 minute at 13,500 rpm. The cells were resuspensioned with 1 ml of STE [0.5 M sucrose, 10 mM Tris-HCl, 10 mM EDTA (pH 8.0)] solution to remove the extracellular membrane by rotation at 37 ° C. for 30 minutes. E. coli was collected by centrifugation at 13,500 rpm for 1 minute, and then the supernatant was removed. Centrifuged Escherichia coli was resuspensioned with 1 ml of Solution A [0.5 M sucrose, 20 mM MgCl 2 , 10 mM MOPS pH 6.8], and then centrifuged at 13,500 rpm for 1 minute. 1 ml of solution A and 20 μl of 50 mg / ml lysozyme solution were added to the solution, followed by resuspension of centrifuged Escherichia coli, followed by rotation at 37 ° C. for 15 minutes to remove the peptidoglycan layer. After centrifugation, the supernatant was removed, resuspensioned with 1 ml of PBS, 300 μl was taken, 700 μl of PBS and 12.5 nM tetrameric PD-L1-Alexa488 probe were added together, and rotated at room temperature to label the fluorescent probe on the spheroplast. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute. After centrifuged Escherichia coli was resuspensioned with 1 ml of PBS, the binding force with PD-L1 was analyzed by measuring the fluorescence signal using GUAVA equipment (FIG. 8). In addition, since the expression level of PD-1 protein displayed by E. coli may affect the fluorescence intensity, 300 μl of the remaining E. coli was collected after resuspension with PBS to confirm the expression level, and 700 μl of PBS and 1 μl of anti -FLAG-FITC was put together and rotated at room temperature to label the fluorescent probe on the spheroplast. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute. After resuspension of the centrifuged Escherichia coli with 1 ml of PBS, the expression level of the protein through binding to anti-FLAG-FITC was indirectly analyzed by measuring a fluorescence signal using a flow cytometer (FIG. 9).
서열목록Sequence Listing PD-1 변이체PD-1 variant PD-1 변이체 위치 및 치환된 아미노산PD-1 variant position and substituted amino acid
서열목록 제48서열 SEQ ID NO: 48 Sequence No.41 (CKJ 41)No.41 (CKJ 41) S36P / C69S / L114P S36P / C69S / L114P
서열목록 제50서열SEQ ID NO: 50 Sequence No.45 (CKJ 45)No.45 (CKJ 45) S36P / C69S / K107N / L114P / F142L S36P / C69S / K107N / L114P / F142L
서열목록 제51서열SEQ ID NO: 51 Sequence No.46 (CKJ 46)No.46 (CKJ 46) S36P / C69S / L114P / P132L S36P / C69S / L114P / P132L
서열목록 제56서열SEQ ID NO: 56 Sequence No.56 (CKJ 56)No.56 (CKJ 56) S36P / C69S / N92K / L114P / H131R S36P / C69S / N92K / L114P / H131R
서열목록 제58서열SEQ ID NO: 58 Sequence No.67 (CKJ 67)No.67 (CKJ 67) N34T / S36P / C69S / L114PN34T / S36P / C69S / L114P
서열목록 제59서열SEQ ID NO: 59 Sequence No.70 (CKJ 70)No.70 (CKJ 70) S36P / C69S S36P / C69S
서열목록 제60서열SEQ ID NO: 60 Sequence No.78 (CKJ 78)No.78 (CKJ 78) T12S / S36P / C69S / L114PT12S / S36P / C69S / L114P
서열목록 제49서열SEQ ID NO: 49 Sequence No.44 (CKJ 44)No.44 (CKJ 44) F13I / M46I / N50S / C69Y / V127A F13I / M46I / N50S / C69Y / V127A
서열목록 제54서열 SEQ ID NO: 54 Sequence No.52 (CKJ 52)No.52 (CKJ 52) F13I / M46I / C69Y F13I / M46I / C69Y
서열목록 제52서열SEQ ID NO: 52 Sequence No.49 (CKJ 49)No.49 (CKJ 49) F13L / N25D / C69S / N92S/ R137KF13L / N25D / C69S / N92S / R137K
서열목록 제53서열SEQ ID NO: 53 Sequence No.50 (CKJ 50)No.50 (CKJ 50) F13L / N25D / C69S / R88K / N92S/ A125SF13L / N25D / C69S / R88K / N92S / A125S
서열목록 제55서열SEQ ID NO: 55 Sequence No.55 (CKJ 55)No.55 (CKJ 55) N25D / C69S / N92S / A101V N25D / C69S / N92S / A101V
서열목록 제57서열SEQ ID NO: 57 Sequence No.66 (CKJ 66)No.66 (CKJ 66) N9D / N25D / C69S / N92S / A101VN9D / N25D / C69S / N92S / A101V
PD-L1 결합력이 향상된 PD-1 변이체들PD-1 variants with enhanced PD-L1 binding
실시예 11. 추가적인 대조군인 PD-1 변이체와의 비교를 위한 클로닝 (PD-1 S.6.8.3, S.5.1T)Example 11. Cloning for Comparison with Additional Controls of PD-1 Variants (PD-1 S.6.8.3, S.5.1T)
추가적인 대조군으로 사용하기 위한 S.6.8.3와 S.5.1T 변이체는 Primer assembly PCR을 통해 클로닝하였다. 먼저, Primer (S.6.8.3 : JY#5,6,7,8,9,10,11,12 / S.5.1T : JY#13,14,15,16,17,18,19,20)를 이용하여 Vent Polymerase로 primer assembly PCR을 한 후, Amplify PCR을 통해 제대로 Assembly된 유전자를 증폭시켰다. 증폭시킨 유전자를 SfiI 처리 한 후 마찬가지로 SfiI 처리된 pMopac12-NlpA-FLAG벡터에 라이게이션 하여 pMopac12-NlpA-PD-1 S.6.8.3-FLAG와 pMopac12-NlpA-PD-1 S.5.1T-FLAG벡터를 제조하였다. 그 후 대장균 Jude1에 transformation하여 single clone을 확보한 후 염기서열 분석을 통해 성공적으로 삽입된 것을 확인하였다.S.6.8.3 and S.5.1T variants for use as additional controls were cloned via Primer assembly PCR. First, Primer (S.6.8.3: JY # 5,6,7,8,9,10,11,12 / S.5.1T: JY # 13,14,15,16,17,18,19,20 ), Primer assembly PCR using Vent Polymerase, and then amplified properly amplified gene through Amplify PCR. After the gene was amplified similarly treated Sfi I Sfi I-treated ligated to pMopac12-NlpA-FLAG vector pMopac12-NlpA-PD-1 S.6.8.3 -FLAG and pMopac12-NlpA-PD-1 S.5.1T -FLAG vector was prepared. Subsequently, the strain was transformed into E. coli Jude1 to obtain a single clone, and confirmed by successful sequencing.
서열목록Sequence Listing 프라이머primer 서열(5’→3’)Sequence (5 '→ 3')
서열목록 제62서열SEQ ID NO: 62 Sequence JY#5JY # 5 TTAGACTCCCCAGACAGGCCCTGGAACCCCCCCACCTTCTCCCCAGCCCTGCTCGTGGTGATTAGACTCCCCAGACAGGCCCTGGAACCCCCCCACCTTCTCCCCAGCCCTGCTCGTGGTGA
서열목록 제63서열SEQ ID NO: 63 Sequence JY#6JY # 6 ACGAAGCTCTCCGATGTGTTGGAGAAGCTGCAGGTGAAGGTGGCGTTGTCCCCTTCGGTCACCACGAGCAGGGCTACGAAGCTCTCCGATGTGTTGGAGAAGCTGCAGGTGAAGGTGGCGTTGTCCCCTTCGGTCACCACGAGCAGGGCT
서열목록 제64서열SEQ ID NO: 64 Sequence JY#7JY # 7 AACACATCGGAGAGCTTCGTGCTAAACTGGTACCGCATGAGCCCCAGCAACCAGACGGACAAGCTGGCCGCCTTCAACACATCGGAGAGCTTCGTGCTAAACTGGTACCGCATGAGCCCCAGCAACCAGACGGACAAGCTGGCCGCCTTC
서열목록 제65서열SEQ ID NO: 65 Sequence JY#8JY # 8 TGGGCAGTTGTGTGACACGGAAGCGGCTGGCCTGGCCCAGCTGGCCGCGGTCCTCGGGGAAGGCGGCCAGCTTGTTGGGCAGTTGTGTGACACGGAAGCGGCTGGCCTGGCCCAGCTGGCCGCGGTCCTCGGGGAAGGCGGCCAGCTTGT
서열목록 제66서열SEQ ID NO: 66 Sequence JY#9JY # 9 CGTGTCACACAACTGCCCAACGGGCGTGACTTCCACATGAGCGTGGTCAGGGCCCGGCGCAGCGACAGCGGCACCCGTGTCACACAACTGCCCAACGGGCGTGACTTCCACATGAGCGTGGTCAGGGCCCGGCGCAGCGACAGCGGCACC
서열목록 제67서열SEQ ID NO: 67 Sequence JY#10JY # 10 ACCCGCAGGCTCTCCCGGATCTGGATCCGGGGGGCCAGCAGGATGGCGCTACAGAGGTAGGTGCCGCTGTCGCTGACCCGCAGGCTCTCCCGGATCTGGATCCGGGGGGCCAGCAGGATGGCGCTACAGAGGTAGGTGCCGCTGTCGCTG
서열목록 제68서열SEQ ID NO: 68 Sequence JY#11JY # 11 GGGAGAGCCTGCGGGTGGAGCTCAGGGTGACAGAGAGAAGGGCAGAAGTGCCCACAGCCCACCCCAGCCCCTCACGGGAGAGCCTGCGGGTGGAGCTCAGGGTGACAGAGAGAAGGGCAGAAGTGCCCACAGCCCACCCCAGCCCCTCAC
서열목록 제69서열SEQ ID NO: 69 Sequence JY#12JY # 12 TTGGAACTGGCCGGCTGGCCTGGGTGAGGGGCTGGGGTGTTGGAACTGGCCGGCTGGCCTGGGTGAGGGGCTGGGGTG
서열목록 제70서열SEQ ID NO: 70 Sequence JY#13JY # 13 TTAGACTCCCCAGACAGGCCCTGGAACCCCCCCACCTTCTCCCCAGCCCTGCTCGTGGTGACCGAAGGGGTTAGACTCCCCAGACAGGCCCTGGAACCCCCCCACCTTCTCCCCAGCCCTGCTCGTGGTGACCGAAGGGG
서열목록 제71서열SEQ ID NO: 71 Sequence JY#14JY # 14 CAGTTTAGCACGAAGCTCTCCGATGTGTTGGAGAAGCTGCAGGTGAAGGTGGCGCTGTCCCCTTCGGTCACCACGCAGTTTAGCACGAAGCTCTCCGATGTGTTGGAGAAGCTGCAGGTGAAGGTGGCGCTGTCCCCTTCGGTCACCACG
서열목록 제72서열SEQ ID NO: 72 Sequence JY#15JY # 15 GGAGAGCTTCGTGCTAAACTGGTACCGCATGAGCCCCAGCAACCAGGCCGACAAGCTGGCCGCCTTCCCCGAGGAGGAGAGCTTCGTGCTAAACTGGTACCGCATGAGCCCCAGCAACCAGGCCGACAAGCTGGCCGCCTTCCCCGAGGA
서열목록 제73서열SEQ ID NO: 73 Sequence JY#16JY # 16 CACGCCCGTTGGGCAGTTGTGTGACACGGAAGCGGGAGTCCTGGCCGGGCTGGCTGCGGTCCTCGGGGAAGGCGGCACGCCCGTTGGGCAGTTGTGTGACACGGAAGCGGGAGTCCTGGCCGGGCTGGCTGCGGTCCTCGGGGAAGGCGG
서열목록 제74서열SEQ ID NO: 74 Sequence JY#17JY # 17 CTGCCCAACGGGCGTGACTTCCACATGAGCGTGGTCGGGGCCCGGCGCTCCGACAGCGGCACCTACCTCTGTTCCCTGCCCAACGGGCGTGACTTCCACATGAGCGTGGTCGGGGCCCGGCGCTCCGACAGCGGCACCTACCTCTGTTCC
서열목록 제75서열SEQ ID NO: 75 Sequence JY#18JY # 18 CTGAGCTCTGCCCGCAGGCTCTCCCGGATCTGCACCTTGGGGGCCAGGGAGATGGCGGAACAGAGGTAGGTGCCGCTGAGCTCTGCCCGCAGGCTCTCCCGGATCTGCACCTTGGGGGCCAGGGAGATGGCGGAACAGAGGTAGGTGCCG
서열목록 제76서열SEQ ID NO: 76 Sequence JY#19JY # 19 CTGCGGGCAGAGCTCAGGGTGGCAGAGAGAAGGGCAGAAGTGCCCACAGCCCACCCCAGCCCCTCACCCAGGCCACTGCGGGCAGAGCTCAGGGTGGCAGAGAGAAGGGCAGAAGTGCCCACAGCCCACCCCAGCCCCTCACCCAGGCCA
서열목록 제77서열SEQ ID NO: 77 Sequence JY#20JY # 20 TTGGAACTGGCCGGCTGGCCTGGGTGAGGGGTTGGAACTGGCCGGCTGGCCTGGGTGAGGGG
서열목록 제78서열SEQ ID NO: 78 Sequence JY#21JY # 21 CCCCAGCCCCTCACCCAGGCCAGCCGGCCAGTTCCCCCCAGCCCCTCACCCAGGCCAGCCGGCCAGTTCC
서열목록 제79서열SEQ ID NO: 79 Sequence JY#22JY # 22 GGAACTGGCCGGCTGGCCTGGGTGAGGGGCTGGGGGGAACTGGCCGGCTGGCCTGGGTGAGGGGCTGGGG
추가 실험에 사용한 프라이머들Primers used for further experiments
실시예 12. 유세포 분석기 분석을 통한 발굴한 PD-1 변이체들과 대조군과의 PD-L1 결합력 비교Example 12 Comparison of PD-L1 Avidity between PD-1 Variants and Controls
결합력이 높은 PD-1 변이체들과 추가적인 대조군들과의 PD-L1 결합력을 비교하기 위해 야생형 PD-1과 대조군인 PD-1 HAC-V, S.6.8.3, S.5.1T와 CKJ 49 및 CKJ 50의 총 6가지를 각각 2% glucose 와 40 μg/ml 의 chloramphenicol이 포함된 TB 배지에 접종한 후 37℃, 250 rpm으로 16시간 배양하였다. 배양된 세포들을 40 μg/ml의 chloramphenicol이 포함된 6 ml의 TB 배지에 1:100 희석하여 접종하였다. OD600=0.5까지 배양한 후 20분간 25℃, 250 rpm에서 cooling 과정을 거친 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 단백질을 과발현하였다. 대장균들은 OD600 normalize를 통해 동일한 양 만큼씩 e-tube에 넣어 14,000 rpm, 1분간 원심분리를 통해 세포를 회수하였다. 실시예 5에서 명시된 Spheroplasting 방법과 동일하게 실험하였고, 이를 통해 만들어진 spheroplast에 12.5 nM의 tetrameric PD-L1-Alexa488 probe를 함께 넣고 상온에서 rotation하여 형광 probe를 labeling하였다. Labeling의 과정을 1시간 거친 후 13,500 rpm으로 1분간 원심분리를 하였다. 상등액을 버리고 원심분리된 대장균을 1 ml의 PBS로 1회 세척한 후 다시 13,500 rpm으로 1분간 원심분리를 하였다. 원심분리된 대장균을 1 ml의 PBS로 resuspension 후, GUAVA장비를 이용해 PD-L1과의 결합력을 형광 신호 값 측정을 통해 분석하였다(도 10). 또한 대장균이 디스플레이 하고 있는 PD-1 단백질의 발현량이 형광 세기에 영향을 끼칠 수 있기 때문에 발현량을 확인하기 위해 PBS로 resuspension한 뒤 남은 나머지 대장균에서 300 μl를 취해 700 μl의 PBS와 1 μl의 anti-FLAG-FITC를 함께 넣고 상온에서 rotation하여 spheroplast에 형광 probe를 labeling하였다. Labeling의 과정을 1시간 거친 후 13,500 rpm으로 1분간 원심분리를 하였다. 상등액을 버리고 원심분리된 대장균을 1 ml의 PBS로 1회 세척한 후 다시 13,500 rpm으로 1분간 원심분리를 하였다. 원심분리된 대장균을 1 ml의 PBS로 resuspension 후, 유세포 분석기를 이용해 anti-FLAG-FITC과의 결합력을 통한 단백질의 발현량을 형광 신호 값 측정을 통해 간접적으로 분석하였다(도 11).To compare PD-L1 avidity between PD-1 variants with high binding capacity and additional controls, wild type PD-1 and control groups PD-1 HAC-V, S.6.8.3, S.5.1T and CKJ 49 and A total of six CKJ 50 strains were inoculated into TB medium containing 2% glucose and 40 μg / ml chloramphenicol, and then incubated at 37 ° C and 250 rpm for 16 hours. The cultured cells were inoculated by diluting 1: 100 in 6 ml of TB medium containing 40 μg / ml of chloramphenicol. After incubation to OD 600 = 0.5, after cooling for 20 minutes at 25 ° C and 250 rpm, 1 mM IPTG was added to overexpress the protein at 25 ° C, 250 rpm and 5 hours. Escherichia coli were recovered by centrifugation at 14,000 rpm for 1 minute in an equal amount of e-tubes through OD 600 normalize. Experiments were carried out in the same manner as in the spheroplasting method described in Example 5, 12.5 nM tetrameric PD-L1-Alexa488 probe was put together in the spheroplast produced by this to rotate at room temperature to label the fluorescent probe. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute. After centrifuged Escherichia coli was resuspensioned with 1 ml of PBS, the binding force with PD-L1 was analyzed by measuring the fluorescence signal value using GUAVA equipment (FIG. 10). In addition, since the expression level of PD-1 protein displayed by E. coli may affect the fluorescence intensity, 300 μl of the remaining E. coli was collected after resuspension with PBS to confirm the expression level, 700 μl of PBS and 1 μl of anti -FLAG-FITC was put together and rotated at room temperature to label the fluorescent probe on the spheroplast. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute. After resuspension of the centrifuged Escherichia coli with 1 ml of PBS, the expression level of the protein through binding to anti-FLAG-FITC was indirectly analyzed by fluorescence signal value measurement using a flow cytometer (FIG. 11).
실시예 13. 신규한 돌연변이를 가진 변이체 탐색을 위한 클로닝Example 13. Cloning for Exploration of Variants with Novel Mutations
발굴한 변이체 중 가장 신규한 돌연변이를 가지면서 높은 결합력을 지니는 CKJ 41을 기준으로 좀 더 신규한 돌연변이를 가지는 변이체를 발굴하고자 CKJ 41의 C69S를 여러 아미노산 (C,T,Y,A,G) 으로 치환하였다. 이를 위해 디자인한 프라이머와 Pfu turbo polymerase (Agilent)를 사용하여 Quikchange PCR기법으로 유전체를 증폭하였다. 증폭된 유전자를 Jude1에 transformation하여 시퀀스를 확인하였다.Based on CKJ 41, which has the newest mutation and the high binding capacity, the C69S of CKJ 41 was selected from several amino acids (C, T, Y, A, G). Substituted. The genome was amplified by Quikchange PCR using primers designed for this purpose and Pfu turbo polymerase (Agilent). The sequence was confirmed by transforming the amplified gene into Jude1.
실시예 14. 유세포 분석기 분석을 통한 신규한 돌연변이를 가진 변이체 탐색Example 14 Screening for Variants with Novel Mutations by Flow Cytometry Analysis
CKJ 41과 대조군인 HAC-V변이체, CKJ 41의 69번째 아미노산이 바뀐 CKJ 41C, CKJ 41T, CKJ 41Y, CKJ 41A, CKJ 41G를 각각 2% glucose 및 40 μg/ml의 chloramphenicol이 포함된 TB 배지에 접종한 후 37℃, 250 rpm으로 16시간 배양하였다. 배양된 세포들을 40 μg/ml의 chloramphenicol이 포함된 6 ml의 TB 배지에 1:100 희석하여 접종하였다. OD600=0.5까지 배양한 후 20분간 25℃, 250 rpm에서 cooling 과정을 거친 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 단백질을 과발현하였다. 대장균들은 OD600 normalize를 통해 동일한 양 만큼씩 e-tube에 넣어 14,000 rpm, 1분간 원심분리를 통해 세포를 회수하였다. 실시예 5에서 명시된 Spheroplasting 방법과 동일하게 실험하였고, 이를 통해 만들어진 spheroplast에 12.5 nM의 tetrameric PD-L1-Alexa488 probe를 함께 넣고 상온에서 rotation하여 형광 probe를 labeling하였다. Labeling의 과정을 1시간 거친 후 13,500 rpm으로 1분간 원심분리를 하였다. 상등액을 버리고 원심분리된 대장균을 1 ml의 PBS로 1회 세척한 후 다시 13,500 rpm으로 1분간 원심분리를 하였다. 원심분리된 대장균을 1 ml의 PBS로 resuspension 후, GUAVA 장비를 이용해 PD-L1과의 결합력을 형광 신호 값 측정을 통해 분석하였다(도 12). CKJ 41 and the control HAC-V variant, CKJ 41C, CKJ 41T, CKJ 41Y, CKJ 41A, and CKJ 41G, which changed the 69th amino acid of CKJ 41, were added to TB medium containing 2% glucose and 40 μg / ml chloramphenicol, respectively. After inoculation, the cells were incubated at 37 ° C. and 250 rpm for 16 hours. The cultured cells were inoculated by diluting 1: 100 in 6 ml of TB medium containing 40 μg / ml of chloramphenicol. After incubation to OD 600 = 0.5, after cooling for 20 minutes at 25 ° C and 250 rpm, 1 mM IPTG was added to overexpress the protein at 25 ° C, 250 rpm and 5 hours. Escherichia coli were recovered by centrifugation at 14,000 rpm for 1 minute in an equal amount of e-tubes through OD 600 normalize. Experiments were carried out in the same manner as in the spheroplasting method described in Example 5, 12.5 nM tetrameric PD-L1-Alexa488 probe was put together in the spheroplast produced by this to rotate at room temperature to label the fluorescent probe. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute. After centrifuged Escherichia coli was resuspensioned with 1 ml of PBS, the binding force with PD-L1 was analyzed by measuring the fluorescence signal value using GUAVA equipment (FIG. 12).
실시예 15. 결합력이 증가된 PD-1 변이체를 확보하기 위한 2차 PD-1 error prone library 제작Example 15. Preparation of secondary PD-1 error prone library to secure PD-1 variants with increased binding force
PD-L1과의 더 높은 결합력을 보이는 PD-1을 고속으로 탐색하기 위해 돌연변이 수는 적으면서 높은 형광값을 갖는 pMopac12-NlpA-PD-1 CKJ 41T-FLAG를 기반으로 사용해 모든 부위에 에러가 들어갈 수 있게 insert를 준비하였다. 양쪽의 SfiI site를 포함하는 primer (JY#3, JY#4) 및 Taq Polymerase (TAKARA)와 dNTPs (Invitrogen), MgCl2, MnCl2 (SIGMA)를 사용하여 Error Prone PCR기법을 사용해 유전체를 증폭시켜 라이브러리를 제작하고자 했다. 증폭된 유전체는 SfiI 효소 처리되어 마찬가지로 SfiI 효소 처리가 되어 있는 pMopac12-NlpA-FLAG 벡터에 삽입하여 라이게이션 후, Jude1 세포에 transformation하였다. Transformation된 대장균들은 square plate에 스프레딩하여 37℃에 16시간 배양한 후 glucose가 2% 함유된 TB로 대장균들을 회수 하여 초기 라이브러리를 확보하였다(도 13).To rapidly detect PD-1, which has a higher binding capacity with PD-L1, it is based on pMopac12-NlpA-PD-1 CKJ 41T-FLAG, which has a small number of mutations and high fluorescence value, so that all sites may contain errors. We have prepared an insert so that we can Amplification of the genome using Error Prone PCR using primers (JY # 3, JY # 4) and Taq Polymerase (TAKARA) and dNTPs (Invitrogen), MgCl 2 and MnCl 2 (SIGMA) containing both SFI I sites I wanted to make a library. The amplified genome is Sfi I Enzyme Treated Like Sfi I Enzyme-treated pMopac12-NlpA-FLAG vector was inserted into the ligation and transformed into Jude1 cells. Transformed E. coli was spread on a square plate and incubated at 37 ° C. for 16 hours to recover E. coli with TB containing 2% glucose to secure an initial library (FIG. 13).
실시예 16. 유세포 분리기를 사용한 PD-1 변이체 2차 스크리닝Example 16. Secondary Screening of PD-1 Variants Using Flow Cytographers
Glucose가 2% 함유된 TB 배지 25 ml에 40 μg/ml의 chloramphenicol을 첨가한 후 제작된 라이브러리를 250 mL flask에 접종하고 37℃, 250 rpm으로 4시간 배양하고 40 μg/ml의 chloramphenicol이 포함된 TB 배지 100 ml에 배양된 대장균을1:100 비율로 접종하였다. OD600=0.5까지 배양한 후 20분간 25℃, 250 rpm에서 cooling 과정을 거친 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 단백질을 과발현하고, 14000 rpm, 1분간 원심분리를 통해 세포를 회수하였다. 실시예 5에서 명시된 Spheroplasting 방법과 동일하게 실험하였고, 이를 통해 만들어진 spheroplast에 12.5 nM의 tetrameric PD-L1-Alexa488 probe를 함께 넣고 상온에서 rotation하여 형광 probe를 labeling하였다. Labeling의 과정을 1시간 거친 후 13,500 rpm으로 1분간 원심분리를 하였다. 상등액을 버리고 원심분리된 대장균을 1 ml의 PBS로 1회 세척한 후 다시 13,500 rpm으로 1분간 원심분리를 하였다. 원심분리된 대장균을 1 ml PBS로 resuspension 후, S3 sorter(Bio-Rad) 장비를 이용해 PD-L1에 더 높은 결합력이 가진 대장균들을 회수하였다. 회수된 대장균들은 primer들 (JY#3, JY#4)을 사용한 PCR 증폭으로 유전자를 확보하였고, 유전체들은 sfiI 제한효소 처리되어 마찬가지로 제한효소 처리된 pMopac12-NlpA-FLAG 벡터에 라이게이션 하였다. 플라스미드를 Jude1에 transformation한 후 대장균들은 square plate에 스프레딩 하여 37℃에 16시간 incubation한 후 회수하여 deep freezer에 냉동보관 하였다. 위와 같은 스크리닝 과정을 probe의 농도를 점차 줄여가며 3회 추가 반복하였다.After adding 40 μg / ml of chloramphenicol to 25 ml of Glucose-containing 2% TB medium, the prepared library was inoculated into a 250 mL flask, incubated for 4 hours at 37 ° C and 250 rpm, and containing 40 μg / ml of chloramphenicol. E. coli cultured in 100 ml of TB medium was inoculated in a 1: 100 ratio. After incubation to OD 600 = 0.5, after 20 minutes of cooling at 25 ° C and 250 rpm, 1 mM IPTG was added to overexpress the protein at 25 ° C, 250 rpm and 5 hours, and then centrifuged at 14000 rpm for 1 minute. The cells were recovered. Experiments were carried out in the same manner as in the spheroplasting method described in Example 5, 12.5 nM tetrameric PD-L1-Alexa488 probe was put together in the spheroplast produced by this to rotate at room temperature to label the fluorescent probe. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute. After resuspension of the centrifuged Escherichia coli with 1 ml PBS, E. coli having a higher binding force to PD-L1 was recovered using S3 sorter (Bio-Rad). The recovered Escherichia coli were obtained by PCR amplification using primers (JY # 3, JY # 4), and the genomes were sfi I restriction enzyme-treated and ligated to restriction enzyme-treated pMopac12-NlpA-FLAG vector. After transforming the plasmid to Jude1, E. coli was spread on a square plate, incubated at 37 ° C for 16 hours, recovered, and stored in a deep freezer. The screening process was repeated three additional times, gradually decreasing the concentration of the probe.
실시예 17. PD-L1 친화도 증가 2차 PD-1 변이체들의 enrichment 확인을 위한 대장균 배양Example 17 Escherichia Coli Culture for Confirmation of Enrichment of PD-L1 Affinity Secondary PD-1 Variants
Glucose가 2% 함유된 TB 25 ml에 40 μg/ml의 chloramphenicol을 첨가한 후 Initial library, 1 round library, 2 round library, 3 round library, 4 round library를 250 mL flask에 넣었다. 37℃, 250 rpm으로 4시간 배양 후, 40 μg/ml의 chloramphenicol이 포함된 TB 100 ml에 배양된 대장균을 1:100 접종하였다. OD600=0.5까지 배양한 후 20분간 25℃, 250 rpm에서 cooling 과정을 거친 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 단백질을 과발현하였다. 또한 대조군으로 사용하기 위해 glucose가 2% 함유된 TB배지 4 ml에 40 μg/ml의 chloramphenicol을 첨가하고 야생형 PD-1과 HAC-V-PD-1 cell들을 각각 접종하고 37℃, 250 rpm으로 16시간 배양하였다. 배양된 세포를 40 μg/ml의 chloramphenicol이 포함된 TB 배지 6 ml에 1:100 접종하였다. OD600=0.5까지 배양한 후 20분간 25℃, 250 rpm에서 cooling 과정을 거친 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 단백질을 과발현하였다. 대장균들은 OD600 normalize를 통해 동일한 양 만큼씩 e-tube에 넣어 14,000 rpm, 1분간 원심분리를 통해 세포를 회수하였다. After adding 40 μg / ml of chloramphenicol to 25 ml of TB containing 2% glucose, initial library, 1 round library, 2 round library, 3 round library, and 4 round library were added to a 250 mL flask. After 4 hours of incubation at 250 ° C. at 37 ° C., E. coli was inoculated 1: 100 in 100 ml of TB containing 40 μg / ml chloramphenicol. After incubation to OD 600 = 0.5, after cooling for 20 minutes at 25 ° C and 250 rpm, 1 mM IPTG was added to overexpress the protein at 25 ° C, 250 rpm and 5 hours. In addition, 40 μg / ml of chloramphenicol was added to 4 ml of TB medium containing 2% glucose and inoculated with wild type PD-1 and HAC-V-PD-1 cells, respectively, and used at 37 ° C. and 250 rpm. Time incubation. The cultured cells were inoculated 1: 100 in 6 ml of TB medium containing 40 μg / ml chloramphenicol. After incubation to OD 600 = 0.5, after cooling for 20 minutes at 25 ° C and 250 rpm, 1 mM IPTG was added to overexpress the protein at 25 ° C, 250 rpm and 5 hours. Escherichia coli were recovered by centrifugation at 14,000 rpm for 1 minute in an equal amount of e-tubes through OD 600 normalize.
실시예 18. 유세포 분석기를 사용한 PD-L1 친화도 증가 PD-1 변이체들의 enrichment 확인Example 18. Enrichment of PD-L1 Affinity Increase PD-1 Variants Using Flow Cytometry
실시예 5에서 명시된 Spheroplasting 방법과 동일하게 실험하였고, 이를 통해 만들어진 spheroplast에 4 nM의 tetrameric PD-L1-Alexa488 probe를 함께 넣고 상온에서 rotation하여 형광 probe를 labeling하였다. Labeling의 과정을 1시간 거친 후 13,500 rpm으로 1분간 원심분리를 하였다. 상등액을 버리고 원심분리된 대장균을 1 ml의 PBS로 1회 세척한 후 다시 13,500 rpm으로 1분간 원심분리를 하였다. 원심분리된 대장균을 1 ml의 PBS로 resuspension 후, 유세포 분석기 (Guava, Millipore)장비를 이용해 PD-L1과의 결합력을 형광 신호 값 (Mean fluorescence intensity, MFI) 측정을 통해 분석하였다. 스크리닝이 진행될수록 PD-L1에 결합력이 높은 변이체들이 라이브러리에서 증폭되는 것을 분석할 수 있었다 (도 14).The experiment was performed in the same manner as in the spheroplasting method described in Example 5, and 4 nM tetrameric PD-L1-Alexa488 probe was put together in the spheroplast thus formed, and the fluorescent probe was labeled by rotating at room temperature. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute. After centrifuged Escherichia coli was resuspensioned with 1 ml of PBS, binding ability with PD-L1 was analyzed by flow cytometry (Guava, Millipore) through measurement of fluorescence signal (Mean fluorescence intensity, MFI). As screening progressed, it was possible to analyze the amplification of the variants in the library with high binding capacity to PD-L1 (Fig. 14).
실시예 19. 유세포 분석기 분석을 통한 PD-L1 결합력이 좀 더 향상된 PD-1 변이체들 추가 확보 Example 19 Additional PD-1 Variants with Better PD-L1 Adhesion Through Flow Cytometry Analysis
마지막 라운드의 단일 콜로니들(APD1-CKJ 41T: CKJ 41T의 무당화 형태, APD1-JY 101: JY 101의 무당화 형태)과 야생형 PD-1, HAC-V을 각각 2% glucose 및 40 μg/ml의 chloramphenicol이 포함된 TB 배지에 접종한 후 37℃, 250 rpm으로 16시간 배양하였다. 배양된 세포들을 40 μg/ml의 chloramphenicol이 포함된 6 ml의 TB 배지에 1:100 희석하여 접종하였다. OD600=0.5까지 배양한 후 20분간 25℃, 250 rpm에서 cooling 과정을 거친 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 단백질을 과발현하였다. 대장균들은 OD600 normalize를 통해 동일한 양 만큼씩 e-tube에 넣어 14,000 rpm, 1분간 원심분리를 통해 세포를 회수하였다. 실시예 5에서 명시된 Spheroplasting 방법과 동일하게 실험하였고, 이를 통해 만들어진 spheroplast에 4 nM의 tetrameric PD-L1-Alexa488 probe를 함께 넣고 상온에서 rotation하여 형광 probe를 labeling하였다. Labeling의 과정을 1시간 거친 후 13,500 rpm으로 1분간 원심분리를 하였다. 상등액을 버리고 원심분리된 대장균을 1 ml의 PBS로 1회 세척한 후 다시 13,500 rpm으로 1분간 원심분리를 하였다. 원심분리된 대장균을 1 ml의 PBS로 resuspension 후, GUAVA 장비를 이용해 PD-L1과의 결합력을 형광 신호 값 측정을 통해 분석하였다(도 15). Last round single colonies (APD1-CKJ 41T: aglycosylated form of CKJ 41T, APD1-JY 101: aglycosylated form of JY 101) and wild type PD-1 and HAC-V, respectively, 2% glucose and 40 μg / ml After inoculation into TB medium containing chloramphenicol was incubated for 16 hours at 37 ℃, 250 rpm. The cultured cells were inoculated by diluting 1: 100 in 6 ml of TB medium containing 40 μg / ml of chloramphenicol. After incubation to OD 600 = 0.5, after cooling for 20 minutes at 25 ° C and 250 rpm, 1 mM IPTG was added to overexpress the protein at 25 ° C, 250 rpm and 5 hours. Escherichia coli were recovered by centrifugation at 14,000 rpm for 1 minute in an equal amount of e-tubes through OD 600 normalize. The experiment was performed in the same manner as in the spheroplasting method described in Example 5, and 4 nM tetrameric PD-L1-Alexa488 probe was put together in the spheroplast thus formed, and the fluorescent probe was labeled by rotating at room temperature. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute. After centrifuged Escherichia coli was resuspensioned with 1 ml of PBS, the binding force with PD-L1 was analyzed by measuring the fluorescence signal value using GUAVA equipment (FIG. 15).
실시예 20. 발굴한 PD-1 변이체의 돌연변이 자리 비교 검증을 위한 변이체 클로닝Example 20 Variant Cloning for Comparative Verification of Mutated Sites of Proven PD-1 Variants
CKJ 49, CKJ 50의 중복되는 돌연변이를 가지는 변이체 PD-1_LDSS를 클로닝하여 LDSS에 CKJ 49, 50의 신규한 돌연변이 아미노산이 도입되었을 때 결합력에 영향을 미치는 지 확인하고자 했다. PD-1_LDSS를 만들기 위해 CKJ 49 벡터를 template로 하여 Quikchange PCR 기법을 사용하였다. 이를 위해 디자인된 프라이머 (JY#21, JY#22)와 Pfu turbo polymerase (Agilent)를 사용하여 유전체를 증폭하였다. 증폭된 유전자를 Jude1에 transformation하여 시퀀스를 확인하였다.The mutant PD-1_LDSS with overlapping mutations of CKJ 49 and CKJ 50 was cloned to determine if binding activity was affected when new CKJ 49 and 50 mutant amino acids were introduced into LDSS. To generate PD-1_LDSS, the CKJ 49 vector was used as a template and the Quikchange PCR technique was used. Genomes were amplified using designed primers (JY # 21, JY # 22) and Pfu turbo polymerase (Agilent). The sequence was confirmed by transforming the amplified gene into Jude1.
실시예 21. 유세포 분석기 분석을 통한 PD-1 변이체와 공통 염기서열 변이체의 PD-L1 결합력 비교 검증Example 21. Comparison of PD-L1 Avidity of PD-1 Variants and Common Sequence Variants by Flow Cytometry Analysis
야생형 PD-1, 대조군인 HAC-V 변이체, CKJ 49, CKJ 50, LDSS를 각각 2% glucose 및 40 μg/ml의 chloramphenicol이 포함된 TB 배지에 접종한 후 37℃, 250 rpm으로 16시간 배양하였다. 배양된 세포들을 40 μg/ml의 chloramphenicol이 포함된 6 ml의 TB 배지에 1:100 희석하여 접종하였다. OD600=0.5까지 배양한 후 20분간 25℃, 250 rpm에서 cooling 과정을 거친 후 1 mM IPTG를 첨가하여 25℃, 250 rpm, 5시간 동안 단백질을 과발현하였다. 대장균들은 OD600 normalize를 통해 동일한 양 만큼씩 e-tube에 넣어 14,000 rpm, 1분간 원심분리를 통해 세포를 회수하였다. 실시예 5에서 명시된 Spheroplasting 방법과 동일하게 실험하였고, 이를 통해 만들어진 spheroplast에 12.5 nM의 tetrameric PD-L1-Alexa488 probe를 함께 넣고 상온에서 rotation하여 형광 probe를 labeling하였다. Labeling의 과정을 1시간 거친 후 13,500 rpm으로 1분간 원심분리를 하였다. 상등액을 버리고 원심분리된 대장균을 1 ml의 PBS로 1회 세척한 후 다시 13,500 rpm으로 1분간 원심분리를 하였다. 원심분리된 대장균을 1ml의 PBS로 resuspension 후, GUAVA 장비를 이용해 PD-L1과의 결합력을 형광 신호 값 측정을 통해 분석하였다 (도 16). 또한 대장균이 디스플레이 하고 있는 PD-1 단백질의 발현량이 형광 세기에 영향을 끼칠 수 있기 때문에 발현량을 확인하기 위해 PBS로 resuspension한 뒤 남은 나머지 대장균에서 300 μl를 취해 700 μl의 PBS와 1 μl의 anti-FLAG-FITC를 함께 넣고 상온에서 rotation하여 spheroplast에 형광 probe를 labeling하였다. Labeling의 과정을 1시간 거친 후 13,500 rpm으로 1분간 원심분리를 하였다. 상등액을 버리고 원심분리된 대장균을 1 ml의 PBS로 1회 세척한 후 다시 13,500 rpm으로 1분간 원심분리를 하였다. 원심분리된 대장균을 1ml의 PBS로 resuspension 후, 유세포 분석기를 이용해 anti-FLAG-FITC과의 결합력을 통한 단백질의 발현량을 형광 신호 값 측정을 통해 간접적으로 분석하였다 (도 16).Wild type PD-1, the control HAC-V variant, CKJ 49, CKJ 50, and LDSS were inoculated in TB medium containing 2% glucose and 40 μg / ml of chloramphenicol, and then incubated at 37 ° C. and 250 rpm for 16 hours. . The cultured cells were inoculated by diluting 1: 100 in 6 ml of TB medium containing 40 μg / ml of chloramphenicol. After incubation to OD 600 = 0.5, after cooling for 20 minutes at 25 ° C and 250 rpm, 1 mM IPTG was added to overexpress the protein at 25 ° C, 250 rpm and 5 hours. Escherichia coli were recovered by centrifugation at 14,000 rpm for 1 minute in an equal amount of e-tubes through OD 600 normalize. Experiments were carried out in the same manner as in the spheroplasting method described in Example 5, 12.5 nM tetrameric PD-L1-Alexa488 probe was put together in the spheroplast produced by this to rotate at room temperature to label the fluorescent probe. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute. After centrifuged Escherichia coli was resuspensioned with 1 ml of PBS, the binding force with PD-L1 was analyzed by using a GUAVA instrument by measuring fluorescence signal values (FIG. 16). In addition, since the expression level of PD-1 protein displayed by E. coli may affect the fluorescence intensity, 300 μl of the remaining E. coli was collected after resuspension with PBS to confirm the expression level, 700 μl of PBS and 1 μl of anti -FLAG-FITC was put together and rotated at room temperature to label the fluorescent probe on the spheroplast. After 1 hour of labeling, centrifugation was performed at 13,500 rpm for 1 minute. The supernatant was discarded and centrifuged E. coli was washed once with 1 ml of PBS, followed by further centrifugation at 13,500 rpm for 1 minute. After centrifuged Escherichia coli was resuspensioned with 1 ml of PBS, the expression level of protein through binding to anti-FLAG-FITC was indirectly analyzed by fluorescence signal measurement using a flow cytometer (FIG. 16).
서열목록Sequence Listing PD-1 변이체PD-1 variant PD-1 변이체 위치 및 치환된 아미노산PD-1 variant position and substituted amino acid
서열목록 제90서열 SEQ ID NO: 90 Sequence CKJ 41TCKJ 41T S36P / C69T / L114PS36P / C69T / L114P
서열목록 제91서열SEQ ID NO: 91 Sequence CKJ 41YCKJ 41Y S36P / C69Y / L114PS36P / C69Y / L114P
서열목록 제92서열SEQ ID NO: 92 Sequence CKJ 41GCKJ 41G S36P / C69G / L114PS36P / C69G / L114P
서열목록 제93서열SEQ ID NO: 93 Sequence CKJ 41ACKJ 41A S36P / C69A / L114PS36P / C69A / L114P
서열목록 제94서열SEQ ID NO: 94 Sequence JY101JY101 N1S, F13I, L17M, S36P, M46I, C69T, G79R, G100V, L114P, A139LN1S, F13I, L17M, S36P, M46I, C69T, G79R, G100V, L114P, A139L
서열목록 제95서열SEQ ID NO: 95 Sequence LDSSLDSS F13L, N25D, C69S, N92SF13L, N25D, C69S, N92S
추가로 발굴된 PD-L1 결합력이 향상된 PD-1 변이체들Additional PD-1 Variants with Enhanced PD-L1 Adhesion
실시예 22. PD-1 변이체의 동물세포 발현, 정제 및 결합력 검증Example 22. Animal Cell Expression, Purification and Binding Verification of PD-1 Variants
PD-1 변이체를 동물세포로 발현, 정제하여 결합력을 검증하기 위해 먼저 클로닝을 진행하였다. 대조군인 HAC-V, 발굴한 변이체인 CKJ 49, CKJ50 유전자를 primer (CKJ#1, CKJ#2)와 Vent polymerase를 사용하여 PCR로 증폭하였다. 증폭된 유전체는 BssHII와 XbaI 효소를 사용하여 처리하였으며 마찬가지로 똑같은 효소로 처리된 동물세포 발현용 벡터인 pMaz 벡터에 라이게이션 하였다. 라이게이션된 플라스미드는 Jude1 대장균에 transformation하여 개별 콜로니 분석을 통해 sequence를 확인하였다. 만들어진 PD-1 당화 변이체 발현용 벡터 (pMaz-PD1 HAC-V-His tag, pMaz-PD1 CKJ 49-His tag, pMaz-PD1 CKJ 50-His tag)를 동물세포 (HEK293F)에 transfection하여 6일간 배양 후 세포 배양액을 6,000 rpm, 20분간 원심분리한 후, 상등액을 취해 0.22 μm filter를 통해 필터하였다. 걸러진 상등액은 4°C에서 16시간 동안 Ni-NTA resin (Qiagen) 1 ml에 결합 유도하였다. 결합된 resin은 resin의 10 CV (column volume)의 10 mM imidazole (Sigma)이 포함된 PBS 용액으로 세척 후 10 CV의 20 mM imidazole 포함 PBS 용액으로 한번 더 세척하였다. 마지막으로 250 mM imidazole 포함 PBS 용액으로 용출액을 회수하였다 (도 17). ELISA를 통해 야생형 PD-1과 대조군, 2가지 변이체(GPD1-CKJ 49: CKJ 49의 당화 형태, GPD1-CKJ 50: CKJ 50의 당화 형태) 사이의 PD-L1 결합력 변화를 검증하였다. High binding 96 well plate (Costar)에 각각의 단백질을 0.05M Na2CO3, pH9.6 (Junsei)로 희석하여 200 ng/well 의 농도로 4℃에서 16시간 결합하였다. 단백질 제거 후 5% skim milk가 포함된 PBST (0.5% Tween-20가 포함된 PBS) 용액에 w/v 5%가 되게 넣은 후 각각의 96 well plate을 1시간동안 상온에서 blocking 하였다. 위의 용액을 버린 후 200 μl의 tween20 0.5% 포함된 PBS 용액으로 4번 세척한 후 PD-L1 tetramer를 PBS용액에 희석하여 각각의 96 well plate에 1시간동안 상온에서 결합시켰다. 그 후 200 μl의 PBST 0.5% 용액으로 4번 세척한 후 anti-streptavidin-HRP (Genetex)를 PBS에 1:2,000의 비율로 희석하여 각각의 96 well plate에 1시간동안 상온에서 결합하였다. 위의 용액을 버린 후 200 μl의 PBST 0.5% 용액으로 4번 씻어준 후 50 μl TMB (Thermo Scientific)로 반응을 진행하였으며 20분뒤 4 N H2SO4로 반응을 종결시켰다. 반응 결과, 당화가 됨으로써 PD-L1에 대한 결합력 변화가 생겼지만, CKJ 49가 가장 뛰어난 결합력을 가지는 것으로 확인되었다(도 18).PD-1 variants were expressed and purified into animal cells and cloned first to verify binding. The control group HAC-V, the discovered variants CKJ 49 and CKJ50 genes were amplified by PCR using primers (CKJ # 1, CKJ # 2) and Vent polymerase. The amplified genome was processed using BssH II and Xba I enzymes and ligated to pMaz vector, which is an animal cell expression vector treated with the same enzyme. The ligated plasmid was transformed into Jude1 Escherichia coli and confirmed the sequence through individual colony analysis. PD-1 glycation variant expression vector (pMaz-PD1 HAC-V-His tag, pMaz-PD1 CKJ 49-His tag, pMaz-PD1 CKJ 50-His tag) was transfected into animal cells (HEK293F) for 6 days After the cell culture was centrifuged for 20 minutes at 6,000 rpm, the supernatant was taken and filtered through a 0.22 μm filter. The filtered supernatant was induced to bind to 1 ml of Ni-NTA resin (Qiagen) for 16 hours at 4 ° C. The combined resin was washed with PBS solution containing 10 CV (column volume) of 10 mM imidazole (Sigma) and then washed once more with PBS solution containing 10 CV of 20 mM imidazole. Finally, the eluate was recovered with PBS solution containing 250 mM imidazole (FIG. 17). ELISA confirmed the change in PD-L1 binding capacity between wild type PD-1 and the control group, two variants (GPD1-CKJ 49: glycosylated form of CKJ 49, GPD1-CKJ 50: glycated form of CKJ 50). Each protein was diluted in 0.05M Na 2 CO 3, pH9.6 (Junsei) in a high binding 96 well plate (Costar), and bound for 16 hours at 4 ° C. at a concentration of 200 ng / well. After protein removal, the solution was placed in a 5% skim milk-containing PBST solution (PBS containing 0.5% Tween-20) at 5% w / v and each 96 well plate was blocked at room temperature for 1 hour. After discarding the above solution and washed 4 times with 200 μl of tween20 0.5% containing PBS solution, PD-L1 tetramer was diluted in PBS solution and bound to each 96 well plate for 1 hour at room temperature. After washing four times with 200 μl PBST 0.5% solution, anti-streptavidin-HRP (Genetex) was diluted in PBS at a ratio of 1: 2,000, and bound to each 96 well plate for 1 hour at room temperature. The solution was discarded and washed four times with 200 μl of PBST 0.5% solution, followed by reaction with 50 μl TMB (Thermo Scientific). After 20 minutes, the reaction was terminated with 4 NH 2 SO 4 . As a result of the reaction, the glycosylation resulted in a change in binding force to PD-L1, but it was confirmed that CKJ 49 had the most excellent binding force (FIG. 18).
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that the specific technology is merely a preferred embodiment, and the scope of the present invention is not limited thereto. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.
[이 발명을 지원한 국가연구개발사업] [National R & D project supporting this invention]
[과제고유번호] 1711053534[Project unique number] 1711053534
[부처명] 과학기술정보통신부[Department name] Ministry of Science and ICT
[연구관리전문기관] 한국연구재단    [Research Management Specialized Institution] Korea Research Foundation
[연구사업명] 신진연구지원사업    [Name of research project] New research support project
[연구과제명] 항원결합 무당화 Fc 변이체를 이용한 단백질 치료제 및 이중항체 개발    [Project name] Development of protein therapeutic agent and dual antibody using antigen-binding aglycosylated Fc variant
[기여율] 1/2    [Contribution rate] 1/2
[주관기관] 국민대학교 산학협력단    [Host] Kookmin University Industry-Academic Cooperation Foundation
[연구기간] 2017.06.01 ~ 2018.03.31    [Research Period] 2017.06.01 ~ 2018.03.31
[이 발명을 지원한 국가연구개발사업] [National R & D project supporting this invention]
[과제고유번호] 1711058394    [Project unique number] 1711058394
[부처명] 과학기술정보통신부    [Department name] Ministry of Science and ICT
[연구관리전문기관] 한국연구재단    [Research Management Specialized Institution] Korea Research Foundation
[연구사업명] 신약개발파이프라인관리사업    [Project name] New Drug Development Pipeline Management Project
[연구과제명] 혈중 지속형 Fc 기반의 엔도테린 GPCR 표적 차세대 항암항체 발굴    [Project name] Discovery of next-generation anticancer antibody targeting endocrine GPCR based on sustained Fc in blood
[기여율] 1/2    [Contribution rate] 1/2
[주관기관] 국민대학교 산학협력단    [Host] Kookmin University Industry-Academic Cooperation Foundation
[연구기간] 2017.06.30 ~ 2018.03.29    [Research Period] 2017.06.30 ~ 2018.03.29

Claims (25)

  1. PD-L1(Programmed death-ligand 1) 결합력이 증대된 PD-1(Programmed cell death protein-1) 변이체로서, 상기 PD-1 변이체는 야생형(Wild type) PD-1의 아미노산 서열의 일부를 포함하며, 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 69번째 아미노산이 C69S, C69T, C69Y, C69G 또는 C69A로 치환된 것을 포함하는 PD-1 변이체. Programmed cell death protein-1 (PD-1) variant with increased PD-L1 binding capacity, wherein the PD-1 variant comprises a part of the amino acid sequence of wild type PD-1 , PD-1 variant comprising the substitution of C69S, C69T, C69Y, C69G or C69A amino acid of amino acid sequence of wild type PD-1 of SEQ ID NO: 61 sequence.
  2. 제 1 항에 있어서, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 36번째 아미노산이 S36P로 치환된 것을 추가적으로 포함하는 것을 특징으로 하는 PD-1 변이체.The PD-1 variant according to claim 1, wherein the PD-1 variant further comprises that the 36th amino acid of the amino acid sequence of wild type PD-1 of SEQ ID NO: 61 is replaced with S36P.
  3. 제 2 항에 있어서, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 114번째 아미노산이 L114P로 치환된 것을 추가적으로 포함하는 것을 특징으로 하는 PD-1 변이체.The PD-1 variant according to claim 2, wherein the PD-1 variant further comprises that the 114th amino acid in the amino acid sequence of wild type PD-1 of SEQ ID NO: 61 is substituted with L114P.
  4. 제 3 항에 있어서, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 12번째, 34번째, 92번째, 107번째, 131번째, 132번째 및 142번째 아미노산으로 구성된 군으로부터 선택되는 1 이상의 아미노산이 야생형의 아미노산과 다른 서열로 치환된 것을 추가적으로 포함하는 것을 특징으로 하는 PD-1 변이체. 4. The group of claim 3, wherein the PD-1 variant consists of the 12th, 34th, 92th, 107th, 131th, 132th, and 142th amino acids of the amino acid sequence of the wild type PD-1 of SEQ ID NO: 61. PD-1 variant, characterized in that it further comprises that at least one amino acid selected from is substituted with a sequence different from the amino acid of the wild type.
  5. 제 4 항에 있어서, 상기 PD-1 변이체는 T12S, N34T, N92K 또는 N92S, K107N, H131R, P132L 및 F142L로 구성된 군으로부터 선택되는 1 이상의 아미노산 치환을 포함하는 것을 특징으로 하는 PD-1 변이체. 5. The PD-1 variant according to claim 4, wherein said PD-1 variant comprises at least one amino acid substitution selected from the group consisting of T12S, N34T, N92K or N92S, K107N, H131R, P132L and F142L.
  6. 제 1 항에 있어서, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 13번째 아미노산이 F13I 또는 F13L로, 46번째 아미노산이 M46I로 치환된 것을 추가적으로 포함하는 것을 특징으로 하는 PD-1 변이체.According to claim 1, wherein the PD-1 variant of the amino acid sequence of the wild-type PD-1 of SEQ ID NO: 61, the 13th amino acid in the F13I or F13L, characterized in that the 46th amino acid is further replaced with M46I, characterized in that PD-1 variant.
  7. 제 6 항에 있어서, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 1번째, 17번째, 36번째, 50번째, 79번째, 100번째, 114번째, 127번째 및 139번째 아미노산으로 구성된 군으로부터 선택되는 1 이상의 아미노산이 야생형의 아미노산과 다른 서열로 치환된 것을 추가적으로 포함하는 것을 특징으로 하는 PD-1 변이체.The method of claim 6, wherein the PD-1 variant is 1, 17, 36, 50, 79, 100, 114, 127 and the amino acid sequence of the wild type PD-1 of SEQ ID NO: 61 PD-1 variant, characterized in that it further comprises that one or more amino acids selected from the group consisting of the 139th amino acid is substituted with a sequence different from the amino acid of the wild type.
  8. 제 7 항에 있어서, 상기 PD-1 변이체는 N1S, L17M, S36P, N50S, G79R, G100V, L114P, V127A 및 A139L로 구성된 군으로부터 선택되는 1 이상의 아미노산 치환을 포함하는 것을 특징으로 하는 PD-1 변이체.8. The PD-1 variant according to claim 7, wherein said PD-1 variant comprises at least one amino acid substitution selected from the group consisting of N1S, L17M, S36P, N50S, G79R, G100V, L114P, V127A and A139L. .
  9. 제 1 항에 있어서, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 25번째 아미노산이 N25D로, 92번째 아미노산이 N92S 또는 N92K로 치환된 것을 추가적으로 포함하는 것을 특징으로 하는 PD-1 변이체.According to claim 1, wherein the PD-1 variant of the amino acid sequence of the wild type PD-1 of SEQ ID NO: 61 SEQ ID NO: 25 amino acid and N92S or N92S or 92 N92K is characterized in that it further comprises a substitution PD-1 variant.
  10. 제 9 항에 있어서, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 13번째 아미노산이 F13I 또는 F13L로 치환된 것을 추가적으로 포함하는 것을 특징으로 하는 PD-1 변이체.The PD-1 variant according to claim 9, wherein the PD-1 variant further comprises that the 13th amino acid of the amino acid sequence of wild type PD-1 of SEQ ID NO: 61 is substituted with F13I or F13L.
  11. 제 9 항 또는 제 10 항에 있어서, 상기 PD-1 변이체는 서열목록 제61서열의 야생형 PD-1의 아미노산 서열 중 9번째, 88번째, 101번째, 125번째 및 137번째 아미노산으로 구성된 군으로부터 선택되는 1 이상의 아미노산이 야생형의 아미노산과 다른 서열로 치환된 것을 추가적으로 포함하는 것을 특징으로 하는 PD-1 변이체.The amino acid sequence of claim 9 or 10, wherein the PD-1 variant is selected from the group consisting of the 9th, 88th, 101th, 125th, and 137th amino acids of the amino acid sequence of the wild type PD-1 of SEQ ID NO: 61. PD-1 variant, characterized in that it further comprises that one or more amino acids are substituted with a sequence different from the amino acid of the wild type.
  12. 제 11 항에 있어서, 상기 PD-1 변이체는 N9D, R88K, A101V, A125S 및 R137K로 구성된 군으로부터 선택되는 1 이상의 아미노산 치환을 포함하는 것을 특징으로 하는 PD-1 변이체.12. The PD-1 variant according to claim 11, wherein said PD-1 variant comprises at least one amino acid substitution selected from the group consisting of N9D, R88K, A101V, A125S and R137K.
  13. 제 1 항에 있어서, 상기 PD-1 변이체는 무당화 PD-1 변이체인 것을 특징으로 하는 PD-1 변이체.The PD-1 variant according to claim 1, wherein the PD-1 variant is an aglycosylated PD-1 variant.
  14. 제 1 항의 PD-1 변이체를 코딩하는 핵산분자.A nucleic acid molecule encoding the PD-1 variant of claim 1.
  15. 제 14 항의 핵산분자를 포함하는 벡터.A vector comprising the nucleic acid molecule of claim 14.
  16. 제 15 항의 벡터를 포함하는 숙주세포.A host cell comprising the vector of claim 15.
  17. 제 16 항에 있어서, 상기 숙주세포는 세균세포인 것을 특징으로 하는 숙주세포.The host cell of claim 16, wherein the host cell is a bacterial cell.
  18. 제 1 항의 PD-1 변이체, 제 14 항의 핵산분자 또는 제 15 항의 벡터를 유효성분으로 포함하는 야생형(wild type) PD-1(Programmed cell death protein-1) 및 PD-L1(Programmed death-ligand 1) 간 결합 억제제.15. A wild type PD-1 (Programmed cell death protein-1) and a PD-L1 (Programmed death-ligand 1) comprising the PD-1 variant of claim 1, the nucleic acid molecule of claim 14 or the vector of claim 15 as an active ingredient. ) Liver binding inhibitors.
  19. 제 1 항의 PD-1 변이체, 제 14 항의 핵산분자 또는 제 15 항의 벡터를 유효성분으로 포함하는 조성물.A composition comprising the PD-1 variant of claim 1, the nucleic acid molecule of claim 14, or the vector of claim 15 as an active ingredient.
  20. 제 19 항에 있어서, 상기 조성물은 암질환 또는 감염성질환의 예방 또는 치료용 약제학적 조성물인 것을 특징으로 하는 조성물.20. The composition according to claim 19, wherein the composition is a pharmaceutical composition for preventing or treating cancer diseases or infectious diseases.
  21. 제 1 항의 PD-1 변이체, 제 14 항의 핵산분자 또는 제 15 항의 벡터를 대상체에게 유효량 투여하는 단계를 포함하는 야생형(wild type) PD-1(Programmed cell death protein-1) 및 PD-L1(Programmed death-ligand 1) 간 결합 억제방법.15. Programmed cell death protein-1 (PD-1) and PD-L1 (Programmed), comprising administering an effective amount of the PD-1 variant of claim 1, the nucleic acid molecule of claim 14, or the vector of claim 15 to a subject death-ligand 1) Method of inhibiting liver binding.
  22. 제 1 항의 PD-1 변이체, 제 14 항의 핵산분자 또는 제 15 항의 벡터를 대상체에게 유효량 투여하는 단계를 포함하는 면역반응 증가방법.A method of increasing an immune response comprising administering to a subject an effective amount of a PD-1 variant of claim 1, a nucleic acid molecule of claim 14, or a vector of claim 15.
  23. 제 1 항의 PD-1 변이체, 제 14 항의 핵산분자 또는 제 15 항의 벡터를 대상체에게 치료학적 유효량 투여하는 단계를 포함하는 암질환 또는 감염성질환의 치료방법.A method of treating cancer or infectious disease, comprising administering to a subject a therapeutically effective amount of the PD-1 variant of claim 1, the nucleic acid molecule of claim 14, or the vector of claim 15.
  24. 하기의 단계를 포함하는 PD-1 변이체의 제조방법:Method for producing a PD-1 variant comprising the following steps:
    a) 제 1 항의 PD-1 변이체를 코딩하는 핵산분자를 포함하는 벡터를 포함하는 숙주세포를 배양하는 단계; 및a) culturing a host cell comprising a vector comprising a nucleic acid molecule encoding the PD-1 variant of claim 1; And
    b) 상기 숙주세포에 의해 발현된 PD-1 변이체를 회수하는 단계. b) recovering the PD-1 variant expressed by the host cell.
  25. 하기의 단계를 포함하는 PD-1 변이체의 스크리닝 방법:Screening method of PD-1 variant comprising the following steps:
    a) 제 1 항의 PD-1 변이체 또는 이를 코딩하는 핵산분자에 추가적으로 무작위적인 점 돌연변이를 가한 PD-1 변이체 또는 이를 코딩하는 핵산분자의 라이브러리를 구축하는 단계; 및a) constructing a library of PD-1 variants or nucleic acid molecules encoding the PD-1 variant of claim 1, wherein the random addition point mutation is added to the PD-1 variant or the nucleic acid molecule encoding the same; And
    b) 상기 라이브러리에서 야생형(wild type) PD-1(Programmed cell death protein-1) 및 PD-L1(Programmed death-ligand 1) 간 결합을 억제하는 PD-1 변이체를 선별하는 단계.b) selecting PD-1 variants that inhibit binding between wild type Programmed cell death protein-1 (PD-1) and Programmed death-ligand 1 (PD-L1) in the library.
PCT/KR2019/001290 2018-02-02 2019-01-30 Pd-1 variant having improved binding to pd-l1 WO2019151771A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020563883A JP7033811B2 (en) 2018-02-02 2019-01-30 PD-1 mutant with increased PD-L1 binding force
US16/966,656 US20230002472A1 (en) 2018-02-02 2019-01-30 Pd-1 variant having improved binding ability to pd-l1
CA3090317A CA3090317A1 (en) 2018-02-02 2019-01-30 Pd-1 variant having improved binding affinity to pd-l1
AU2019216086A AU2019216086C1 (en) 2018-02-02 2019-01-30 PD-1 variant having improved binding to PD-L1
CN201980019251.5A CN112105636A (en) 2018-02-02 2019-01-30 PD-1 variants with improved binding affinity for PD-L1
EP19748331.6A EP3747897A4 (en) 2018-02-02 2019-01-30 Pd-1 variant having improved binding to pd-l1

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180013381 2018-02-02
KR10-2018-0013381 2018-02-02
KR10-2019-0011181 2019-01-29
KR1020190011181A KR102171766B1 (en) 2018-02-02 2019-01-29 PD-1 Variants with Enhanced PD-L1 Binding Affinity

Publications (1)

Publication Number Publication Date
WO2019151771A1 true WO2019151771A1 (en) 2019-08-08

Family

ID=67478247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001290 WO2019151771A1 (en) 2018-02-02 2019-01-30 Pd-1 variant having improved binding to pd-l1

Country Status (1)

Country Link
WO (1) WO2019151771A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4137510A4 (en) * 2020-04-16 2023-11-01 YiChen Therapeutics Limited Pd-1 mutant polypeptide, and preparation therefor and use thereof
EP4134377A4 (en) * 2020-05-06 2024-05-15 Korea University Research and Business Foundation Pd-1 variants having increased pd-l1 affinity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2638061B1 (en) * 2010-11-11 2015-04-22 The University of Hong Kong Soluble pd-1 variants, fusion constructs, and uses thereof
KR20160113113A (en) * 2013-12-12 2016-09-28 샹하이 헨그루이 파마수티컬 컴퍼니 리미티드 Pd-1 antibody, antigen-binding fragment thereof, and medical use thereof
WO2017200796A1 (en) * 2016-05-17 2017-11-23 Albert Einstein College Of Medicine, Inc. Engineered pd-1 variants

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2638061B1 (en) * 2010-11-11 2015-04-22 The University of Hong Kong Soluble pd-1 variants, fusion constructs, and uses thereof
KR20160113113A (en) * 2013-12-12 2016-09-28 샹하이 헨그루이 파마수티컬 컴퍼니 리미티드 Pd-1 antibody, antigen-binding fragment thereof, and medical use thereof
WO2017200796A1 (en) * 2016-05-17 2017-11-23 Albert Einstein College Of Medicine, Inc. Engineered pd-1 variants

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Sciences", 1995
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 1994, JOHN, WILEY & SONS, INC.
GORGE K. PHILIPS ET AL., INTERNATIONAL IMMUNOLOGY, 2015
J. NAIDOO ET AL., ANNALS OF ONCOLOGY, 2015
LIANG, Z. ET AL.: "High-affinity human PD-L1 variants attenuate the suppression of T cell activation", ONCOTARGET, vol. 8, no. 5 1, 10 October 2017 (2017-10-10), pages 88360 - 88375, XP002787425, doi:10.18632/oncotarget.21729 *
LIU, C. ET AL.: "Soluble PD-1 aggravates progression of collagen-induced arthritis through Th and Th17 pathways", ARTHRITIS RESEARCH & THERAPY, vol. 17, no. 340, 25 November 2015 (2015-11-25), pages 1 - 13, XP055628020 *
LUCIA GELAO ET AL., TOXINS, 2014
MANIATIS ET AL.: "Molecular Cloning, A Laboratory Manual", 1988, COLD SPRING HARBOR PRESS
See also references of EP3747897A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4137510A4 (en) * 2020-04-16 2023-11-01 YiChen Therapeutics Limited Pd-1 mutant polypeptide, and preparation therefor and use thereof
EP4134377A4 (en) * 2020-05-06 2024-05-15 Korea University Research and Business Foundation Pd-1 variants having increased pd-l1 affinity

Similar Documents

Publication Publication Date Title
WO2018062973A1 (en) Compositions containing protein loaded exosome and methods for preparing and delivering the same
WO2016021973A1 (en) Genome editing using campylobacter jejuni crispr/cas system-derived rgen
WO2019151771A1 (en) Pd-1 variant having improved binding to pd-l1
KR20190094105A (en) PD-1 Variants with Enhanced PD-L1 Binding Affinity
WO2020032784A1 (en) Chimeric antigen receptor binding to hla-dr, and car-t cell
WO2017023138A1 (en) Chimeric antigen receptor, and t cells in which chimeric antigen receptor is expressed
WO2012030068A2 (en) Polypeptide associated with the synthesis of 1-deoxynojirimycin, and a use therefor
WO2020130300A1 (en) Novel immunosuppressive interleukin 2
WO2021034101A1 (en) Novel interferon lambda variant and production method therefor
WO2017034244A1 (en) Peptide having effect of preventing or treating central nervous system diseases and pharmaceutical composition for preventing and treating central nervous system diseases, containing same as active ingredient
WO2023048532A1 (en) Novel reovirus-based vaccine platform and use thereof
WO2020004984A1 (en) Pd-l1 mutant having improved binding affinity for pd-1
WO2012087017A2 (en) Modified human tumor necrosis factor receptor-1 polypeptide or fragment thereof and method for preparing same
WO2022124839A1 (en) Guide rna having maintained on-target activity and reduced off-target activity and use thereof
WO2019078591A1 (en) Multimeric protein display system utilizing cell membrane fluidity
WO2020117004A1 (en) Human anti-antxr chimeric antigen receptor and use thereof
WO2017131258A1 (en) Composition for treating autoimmune diseases, containing smad protein, fusion protein comprising smad protein, vector for producing same, and preparation method therefor
WO2018182301A1 (en) Pharmaceutical composition for prevention or treatment of inflammatory respiratory disease, with fusion protein of cell permeable peptide and ctctla4 peptide contained as effective ingredient therein
WO2020139031A1 (en) Crispr-cas-based composition for gene correction
WO2020080656A1 (en) Fgf2 or api5 derived peptide and use thereof
WO2024196177A1 (en) Tumor antigen cancer vaccine platform and use thereof
WO2022220648A1 (en) Hla-dr-specific chimeric antigen receptor, and use thereof
WO2024058589A1 (en) Chimeric antigen receptor cell prepared using genetic scissor knock-in, and use thereof
WO2024205149A1 (en) Novel granzyme fusion protein and use thereof
WO2022050520A1 (en) Fusion protein comprising coronavirus-derived receptor binding domain and nucleocapsid protein, and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563883

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3090317

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019216086

Country of ref document: AU

Date of ref document: 20190130

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019748331

Country of ref document: EP

Effective date: 20200902