WO2020004959A1 - 효소 기반 용존 일산화탄소 센서 - Google Patents

효소 기반 용존 일산화탄소 센서 Download PDF

Info

Publication number
WO2020004959A1
WO2020004959A1 PCT/KR2019/007767 KR2019007767W WO2020004959A1 WO 2020004959 A1 WO2020004959 A1 WO 2020004959A1 KR 2019007767 W KR2019007767 W KR 2019007767W WO 2020004959 A1 WO2020004959 A1 WO 2020004959A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon monoxide
dissolved carbon
monoxide sensor
electrode
dissolved
Prior art date
Application number
PCT/KR2019/007767
Other languages
English (en)
French (fr)
Inventor
이유석
아이 레지널드 이깐 스테이시심
장누리
이혜령
장인섭
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to US17/256,193 priority Critical patent/US20210262966A1/en
Publication of WO2020004959A1 publication Critical patent/WO2020004959A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/182Specific anions in water

Definitions

  • the present invention relates to a carbon monoxide sensor, and more particularly to an enzyme-based carbon monoxide sensor.
  • Syngas produced through the gasification of exhaust gas from thermal power plants or gasification of biomass and municipal solid wastes consists primarily of carbon monoxide (CO), hydrogen (H 2 ) and carbon dioxide (CO 2 ), which are fermented using biological catalysts It can create fuel and added value.
  • CO carbon monoxide
  • H 2 hydrogen
  • CO 2 carbon dioxide
  • microorganisms specifically designed for the production of high value added chemicals such as syngas organic acids and alcohols makes them more attractive and consequently has higher product selectivity.
  • the conversion of gaseous carbon into fuels and chemicals can reduce the environmental impact of waste disposal.
  • One of the main obstacles to the commercialization of syngas fermentation is the restriction of gas-liquid mass transfer due to the low concentration of dissolved gases in the microbial culture fermentation broth, especially the low solubility of CO.
  • the activity of the microorganisms in the reactor varies with the concentration of dissolved gas. Therefore, the actual dissolved CO concentration is important information for understanding, predicting and optimizing substrate consumption rate, product productivity for bioreactor operation.
  • the technical problem to be achieved by the present invention is to provide a sensor capable of real-time detection of dissolved carbon monoxide in a liquid.
  • an embodiment of the present invention provides a dissolved carbon monoxide sensor.
  • the dissolved carbon monoxide sensor may include a carbon monoxide dehydrogenase fixed on the nano pattern electrode and the nano pattern electrode.
  • the dissolved carbon monoxide sensor is characterized in that directly detect the dissolved carbon monoxide concentration in the solution through the enzyme reaction of the carbon monoxide dehydrogenase.
  • the carbon monoxide dehydrogenase is characterized in that directly transfer the electrons generated through the enzyme reaction to the electrode.
  • the electrode may include Pt, Cu, Zn, Fe, Ni, Co, Mn, Au, Ag, carbon fiber, carbon nanotubes, graphene or graphite.
  • the nanopattern electrode is characterized in that it has a sub-wavelength nanostructure using its own mask dry etching technology.
  • the nano-pattern electrode is characterized in that it has a pyramidal pattern.
  • the height of the pyramidal pattern is characterized in that 10nm to 200nm.
  • the interval of the pyramidal pattern is characterized in that 10nm to 200nm.
  • the carbon monoxide dehydrogenase may include an L unit in which an active site is located, an M unit connected to the L unit, and an S unit connected to the M unit.
  • the carbon monoxide dehydrogenase is fixed to the nanopattern electrode by a metal immobilized peptide expressed in the L unit, the M unit or the S unit.
  • the carbon monoxide dehydrogenase is characterized in that the immobilized on the electrode by printing, dipping or deposition method.
  • the dissolved carbon monoxide sensor is characterized in that the reaction of the following formula (1) occurs by the enzyme reaction.
  • another embodiment of the present invention provides a dissolved carbon monoxide detection method.
  • the dissolved carbon monoxide detection method comprises the steps of electrically connecting the dissolved carbon monoxide sensor according to an embodiment of the present invention to the current value detector, immersing the dissolved carbon monoxide sensor connected to the detector in the liquid to be analyzed, immersed in the liquid
  • the method may include applying a voltage to the dissolved carbon monoxide sensor and detecting a current change generated by an enzymatic reaction of the dissolved carbon monoxide sensor.
  • the dissolved carbon monoxide detection method is characterized by detecting the dissolved carbon monoxide in the liquid to be analyzed in real time.
  • the dissolved carbon monoxide detection method is characterized in that the reaction of the following formula (1) occurs by the enzyme reaction.
  • the pH of the liquid to be analyzed is characterized in that 6.5 to 7.5.
  • a dissolved carbon monoxide sensor having a wide range of measurable concentrations through a decrease in resistance due to substrate transfer restriction.
  • an accurate dissolved carbon monoxide sensor can be provided.
  • FIG. 1 is a view showing a dissolved carbon monoxide sensor according to an embodiment of the present invention.
  • FIG. 2 is a view showing a dissolved carbon monoxide sensor according to an embodiment of the present invention.
  • FIG 3 is a view showing a dissolved carbon monoxide sensor according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram showing the manufacturing process of the nano-pattern electrode of the sub-wavelength nanostructure using the self-mask dry etching technology.
  • FIG. 5 is a cyclic voltammogram of a dissolved carbon monoxide sensor according to an embodiment of the present invention.
  • FIG. 6 is a scan rate-current graph of a dissolved carbon monoxide sensor according to an embodiment of the present invention.
  • FIG. 7 is a cyclic voltage current graph and a scan speed-current graph of a carbon monoxide sensor according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a dissolved carbon monoxide detection method according to another embodiment of the present invention.
  • 9 is an enzyme loading amount-current graph detected according to the dissolved carbon monoxide detection method according to another embodiment of the present invention.
  • FIG. 10 is a graph showing partial carbon monoxide partial pressure-current detected according to a method for detecting dissolved carbon monoxide according to another embodiment of the present invention.
  • FIG. 11 is a graph of dissolved carbon monoxide concentration-current detected according to a method for detecting dissolved carbon monoxide according to another embodiment of the present invention.
  • FIG. 1 is a view showing a dissolved carbon monoxide sensor according to an embodiment of the present invention.
  • the dissolved carbon monoxide sensor may include a nano pattern electrode 100 and a carbon monoxide dehydrogenase 200 fixed on the nano pattern electrode 100.
  • the dissolved carbon monoxide sensor is characterized in that directly detect the dissolved carbon monoxide concentration in the solution through the enzymatic reaction of the carbon monoxide dehydrogenase (200).
  • the carbon monoxide dehydrogenase 200 is characterized in that directly transfer the electrons generated through the enzyme reaction to the electrode.
  • the electrode 100 may include Pt, Cu, Zn, Fe, Ni, Co, Mn, Au, Ag, carbon fiber, carbon nanotubes, graphene or graphite.
  • the nanopattern electrode is characterized in that it has a sub-wavelength nanostructure using its own mask dry etching technology.
  • the sub-wavelength nanostructure refers to the structure of the wavelength form in which the main wave and the auxiliary wave is present.
  • the nano-pattern electrode is characterized in that it has a pyramidal pattern.
  • the nanopattern electrode has a sub-wavelength nanostructure using a self-masked dry etching technique having a pyramidal pattern, so that carbon dioxide dehydrogenase is evenly deposited between the patterns to prevent aggregation of enzymes and improve substrate transferability. You can.
  • the height and spacing of the nanopattern is preferably similar to the carbon dioxide dehydrogenase. If the height and spacing of the nanopattern is similar to the carbon dioxide dehydrogenase, the carbon dioxide dehydrogenase may be evenly applied between the nanopatterns, thereby inducing smooth substrate transfer.
  • the height of the pyramidal pattern is characterized in that 10nm to 200nm.
  • the carbon dioxide dehydrogenase may not be evenly applied on the nanopattern electrode and aggregation may occur.
  • the carbon dioxide dehydrogenase may not be evenly applied on the nanopattern electrode and agglomeration may occur.
  • the interval of the pyramidal pattern is characterized in that 10nm to 200nm.
  • the carbon dioxide dehydrogenase may not be evenly applied on the nanopattern electrode and aggregation may occur.
  • the carbon dioxide dehydrogenase may not be evenly applied on the nanopattern electrode and agglomeration may occur.
  • the pyramidal pattern may help to apply the carbon dioxide dehydrogenase evenly.
  • the diameter of the enzyme is 50nm to 200nm, in order for the carbon dioxide dehydrogenase to be evenly applied to the pyramidal pattern, the height and spacing of the pyramidal pattern are preferably similar to the size of the enzyme. If the height and spacing of the pattern is similar to the size of the enzyme, it is possible for the enzyme to settle between the patterns so that the enzyme is evenly applied on the pattern electrode. Therefore, when the height or spacing of the pattern is too small or larger than the size range of the enzyme, it is difficult for the enzymes to settle between the patterns, and the enzymes may aggregate together.
  • FIG. 2 is a view showing a dissolved carbon monoxide sensor according to an embodiment of the present invention.
  • the dissolved carbon monoxide sensor according to the embodiment of the present invention includes a substrate 10, an electrode 100 positioned on the substrate 10, and a carbon monoxide dehydrogenase 200 fixed on the electrode 100. ) May be included.
  • the carbon monoxide dehydrogenase 200 is characterized in that it is fixed on the electrode 100 by the metal immobilized peptide 210 expressed in the carbon monoxide dehydrogenase 200.
  • the electrode 100 may be an electrode on which a pattern is formed.
  • FIG 3 is a view showing a dissolved carbon monoxide sensor according to an embodiment of the present invention.
  • a dissolved carbon monoxide sensor according to an embodiment of the present invention includes a substrate 10, an electrode 100 positioned on the substrate 10, and a carbon monoxide dehydrogenase 200 fixed on the electrode 100. ) May be included.
  • the carbon monoxide dehydrogenase 200 is characterized in that it is fixed on the electrode 100 by the metal immobilized peptide 210 expressed in the carbon monoxide dehydrogenase 200.
  • the carbon monoxide dehydrogenase 200 may include an L unit 220 where an active site is located and an M unit 230 connected to the L unit 220.
  • the metal immobilized peptide 210 is characterized in that it is expressed in any one of the L unit 220 or M unit 230.
  • the carbon monoxide dehydrogenase 200 may further include a cofactor 240 in the L unit 220 where the active site is located.
  • the cofactor 240 may be added to promote the enzymatic reaction of the carbon monoxide dehydrogenase 200.
  • the dissolved carbon monoxide sensor according to the embodiment of the present invention detects the dissolved carbon monoxide through a current change by electrons generated by a chemical reaction occurring at the active site of the enzyme. At this time, in order to improve the performance of the dissolved carbon monoxide sensor, it is important to effectively transfer the electrons generated at the active site of the enzyme to the electrode. At this time, it is important to shorten the distance between the active site and the electrode of the enzyme in order to effectively transfer the electrons generated at the active site of the enzyme to the electrode.
  • Dissolved carbon monoxide sensor by expressing the metal immobilized peptide on the L subunit or M subunit or S subunit in which the active site of the enzyme is located and fixed directly to the electrode, The distance was fixed close.
  • Enzymes transfer electrons to electrodes can be divided into MET (Mediated electron transfer) and DET (Direct electron transfer), the problem of lowering the electron potential due to the intermediate mediators in MET.
  • the electron transfer distance is very important for efficient electron transfer, which is a problem caused by the distance between electron transfers due to the intermediate mediator.
  • the metal immobilized peptide expressed in the carbon monoxide dehydrogenase is directly fixed to the metal electrode pattern, the carbon monoxide dehydrogenase can be immobilized very close to the metal electrode pattern, thus enabling DET and maintaining high electron potential.
  • the electron transfer efficiency according to the electron transfer distance can be determined by the following equation (1).
  • the dissolved carbon monoxide sensor according to the embodiment of the present invention is directly fixed to the electrode using a metal immobilized peptide expressed in the carbon monoxide dehydrogenase, the carbon monoxide dehydrogenase by shortening the distance between the active site and the electrode of the enzyme Improve the performance of the carbon monoxide sensor.
  • the dissolved carbon monoxide sensor according to the embodiment of the present invention can improve the electron transfer efficiency by closely fixing the active site and the electrode of the enzyme through the metal immobilized peptide.
  • the carbon monoxide dehydrogenase 200 is characterized in that it is fixed on the electrode by printing, dipping or deposition method.
  • the dissolved carbon monoxide sensor is characterized in that the reaction of the following formula (1) occurs by the enzyme reaction.
  • Figure 4 is a schematic diagram showing the manufacturing process of the nano-pattern electrode of the sub-wavelength nanostructure using the self-mask dry etching technology.
  • a pattern of silver nanoparticles was formed on a silicon substrate (S100).
  • the silicon substrate is etched through dry etching to form a silicon substrate on which a sub-wavelength nanostructure pattern is formed (S200).
  • gold (Au) was deposited on the silicon substrate on which the subwavelength nanostructure pattern was formed to form a nanopattern electrode having a subwavelength nanostructure (S300).
  • a dissolved carbon monoxide sensor according to an embodiment of the present invention was prepared by immersing 1 cm 2 gold pattern electrode in 3 ml of 50 mM PB buffer containing 200 ⁇ l of CODH enzyme for 1 hour while stirring.
  • CO saturated standard solution was prepared by bubbling deionized water with CO at room temperature for 30 minutes, and the CO content was 0.95 mM calculated from the saturated solubility.
  • the circulating voltage-current was measured through a potentiometer using a three-electrode system composed of a dissolved carbon monoxide sensor, platinum (Pt) wire, and Ag / AgCl prepared in Example 1.
  • the circulating voltage-current was performed in a gas-tight electrochemical cell at 30 ° C. and 50 mM PB (pH 7.2).
  • CO saturated standard solution was prepared by bubbling deionized water with CO at room temperature for 30 minutes, and the CO content was 0.95 mM calculated from the saturated solubility.
  • the cyclic voltage-current was measured through a potentiometer using a three-electrode system consisting of a gold electrode, platinum (Pt) wire and Ag / AgCl.
  • the circulating voltage-current was performed in a gas-tight electrochemical cell at 30 ° C. and 50 mM PB (pH 7.2).
  • FIG. 5 is a cyclic voltammogram of a dissolved carbon monoxide sensor according to an embodiment of the present invention.
  • FIG. 5 (a) is a cyclic voltage-current graph of Experimental Examples 1 to 5.
  • CO / CODH / Au is Experimental Example 1
  • CO / Au is Experimental Example 2
  • CODH / Au is Experimental Example 3
  • Bare Au represents the results of Experimental Example 4.
  • FIG. 5 (a) it can be seen that in the absence of CO or in the absence of a dissolved carbon monoxide sensor with an enzyme according to an embodiment of the present invention, the redox peak does not appear in the potential range.
  • Experiment 1 according to an embodiment of the present invention, it was confirmed that a redox peak of 100 Hz or more appeared.
  • 5B is a graph of repeatedly measuring the experiment of Experimental Example 1 for 5 cycles at a scanning speed of 50mVs ⁇ 1 .
  • Figure 4 (b) when using a sensor according to an embodiment of the present invention, even if repeated measurement shows a positive peak current having a relative standard deviation of less than 8% according to an embodiment of the present invention The stability of the dissolved carbon monoxide sensor was confirmed.
  • FIG. 6 is a scan rate-current graph of a dissolved carbon monoxide sensor according to an embodiment of the present invention.
  • 6 (a) is a cyclic voltage-current graph at various scan rates.
  • 5B is a plot graph of the anode current peak with respect to the maximum current value according to the scan speed.
  • the redox current peak, the maximum current value, and the scan speed have a linear relationship. This indicates that the enzymatic-electrode electron transfer system of the sensor according to the embodiment of the present invention is controlled by the surface control process.
  • FIG. 7 is a cyclic voltage current graph and a scan speed-current graph of a carbon monoxide sensor according to an embodiment of the present invention.
  • Dissolved carbon monoxide sensor is an enzyme-based bio-sensor, the dissolved carbon monoxide is detected by measuring the current value depending on the dissolved carbon monoxide concentration.
  • the dissolved carbon monoxide sensor according to an embodiment of the present invention can provide a sensor having high selectivity for carbon monoxide using an enzyme that generates electrons using carbon monoxide as a substrate.
  • the detection principle of enzyme biosensors is based on electron transfer (ET) between the active site of the enzyme and the electrode surface reaching its operating potential.
  • the electron transfer method of the enzyme-based sensor is largely divided into direct electron transfer (DET) and mediated electron transfer (MET).
  • DET direct electron transfer
  • MET mediated electron transfer
  • the direct electron transfer has a simpler electron transfer path and a faster response speed than the intermediate electron transfer.
  • the electron transfer efficiency between the enzyme active site and the electrode surface has a significant impact on the performance of bioelectrochemical devices, enzyme fuel cells, biosensors and photosynthesis devices. Therefore, in order to provide an enzyme-based sensor having a high electron transfer efficiency, it is preferable to use an enzyme capable of direct electron transfer.
  • the dissolved carbon monoxide sensor according to an embodiment of the present invention can provide a dissolved carbon monoxide sensor having a fast response speed by using an enzyme capable of direct electron transfer to the electrode.
  • the dissolved carbon monoxide sensor according to an embodiment of the present invention enables real-time monitoring of dissolved carbon monoxide (CO) concentration in a liquid.
  • FIG. 8 is a flowchart illustrating a dissolved carbon monoxide detection method according to another embodiment of the present invention.
  • the dissolved carbon monoxide detection method may include electrically connecting a dissolved carbon monoxide sensor to a current value detector according to an embodiment of the present invention (S100), and dissolving the dissolved carbon monoxide sensor connected to the detector in the liquid to be analyzed.
  • Immersing (S200), applying a voltage to the dissolved carbon monoxide sensor immersed in the liquid (S300) and detecting a current change generated by an enzyme reaction of the dissolved carbon monoxide sensor (S400). can do.
  • the dissolved carbon monoxide detection method is characterized by detecting the dissolved carbon monoxide in the liquid to be analyzed in real time.
  • the dissolved carbon monoxide detection method is characterized in that the reaction of the following formula (1) occurs by the enzyme reaction.
  • the pH of the liquid to be analyzed is characterized in that 6.5 to 7.5.
  • dissolved carbon monoxide sensors were prepared by loading 100 ⁇ l, 200 ⁇ l, and 400 ⁇ l of CODH on the electrode surface, respectively.
  • the enzyme was fixed on the gold (Au) electrode at a concentration of 0.147mU, 0.293mU, 0.586mU, respectively.
  • 9 is an enzyme loading amount-current graph detected according to the dissolved carbon monoxide detection method according to another embodiment of the present invention.
  • Figure 9 (a) is a cyclic voltage-current graph according to each enzyme loading amount
  • Figure 9 (b) is a graph showing the maximum current value according to the amount of enzyme.
  • the redox current peak increases with the amount of enzyme. This means that the redox reaction depends on the amount of enzyme.
  • the maximum current value increased significantly as the loading amount increased from 100 ⁇ l to 200 ⁇ l, when the amount increased from 200 ⁇ l to 400 ⁇ l, the increase in the maximum current value was small. This means that enzyme loadings above 400 ⁇ l are not very significant.
  • cyclic voltage-current (CV) was measured at carbon monoxide (CO) partial pressures of 0, 5 psi, 10 psi and 15 psi, respectively.
  • FIG. 10 is a graph showing partial carbon monoxide partial pressure-current detected according to a method for detecting dissolved carbon monoxide according to another embodiment of the present invention.
  • FIG. 10 (a) is a graph showing a cyclic voltage-current at various CO partial pressures
  • FIG. 10 (b) is a graph showing a maximum current according to a CO partial pressure.
  • the CV partial pressure is different, the CV pattern is similar, but it can be seen that the peak oxidation current is linearly related to the CO partial pressure in a specific potential range. This means that the redox level of the enzyme is proportional to the concentration of dissolved carbon dioxide.
  • the current measurement was the same as the method of Experimental Example 1, using an applied voltage of -0.02V at a scan rate of 50mVs -1 .
  • FIG. 11 is a graph of dissolved carbon monoxide concentration-current detected according to a method for detecting dissolved carbon monoxide according to another embodiment of the present invention.
  • FIG. 11 (a) is a current and current response graph of a continuous dissolved carbon monoxide sensor indicating a CO saturated standard solution spike (denoted by ⁇ ), and FIG. 11 (b) is a graph showing current values according to dissolved CO concentrations. .
  • the current value and the carbon monoxide concentration are linearly proportional in the dissolved carbon monoxide concentration range of 23 ⁇ M to 190 ⁇ M.
  • the correlation coefficient was 0.937, and it was confirmed that the reliability was high, and the slope indicating the sensitivity of the sensor was 250 ⁇ AmM -1 cm -2 .
  • the reaction rate and reliability of the dissolved carbon monoxide detection method using the dissolved carbon monoxide sensor according to the embodiment of the present invention are high.
  • dissolved carbon monoxide is detected by measuring a current value depending on the dissolved carbon monoxide concentration using an enzyme-based biosensor.
  • the dissolved carbon monoxide sensor according to an embodiment of the present invention can provide a sensor having high selectivity for carbon monoxide using an enzyme that generates electrons using carbon monoxide as a substrate.
  • the detection principle of enzyme biosensors is based on electron transfer (ET) between the active site of the enzyme and the electrode surface reaching its operating potential.
  • the electron transfer method of the enzyme-based sensor is largely divided into direct electron transfer (DET) and mediated electron transfer (MET).
  • DET direct electron transfer
  • MET mediated electron transfer
  • the direct electron transfer has a simpler electron transfer path and a faster response speed than the intermediate electron transfer.
  • the electron transfer efficiency between the enzyme active site and the electrode surface has a significant impact on the performance of bioelectrochemical devices, enzyme fuel cells, biosensors and photosynthesis devices. Therefore, in order to provide an enzyme-based sensor having a high electron transfer efficiency, it is preferable to use an enzyme capable of direct electron transfer.
  • the dissolved carbon monoxide detection method according to an embodiment of the present invention can have a fast response speed by using an enzyme capable of direct electron transfer to the electrode.
  • the dissolved carbon monoxide detection method enables real-time monitoring of dissolved carbon monoxide (CO) concentration in a liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명의 일실시예는 용존 일산화탄소 센서를 제공한다. 이때, 상기 용존 일산화탄소 센서는 전극 및 상기 전극 상에 고정된 일산화탄소 탈수소효소를 포함할 수 있다. 이때, 상기 용존 일산화탄소 센서는 상기 일산화탄소 탈수소효소의 효소반응을 통해 용액 내 용존 일산화탄소 농도를 직접 검출하는 것을 특징으로 한다.

Description

효소 기반 용존 일산화탄소 센서
본 발명은 일산화탄소 센서에 관한 것으로, 더욱 상세하게는 효소 기반 일산화탄소 센서에 관한 것이다.
화력 발전소의 배기가스 혹은 바이오 매스 및 도시 고형 폐기물의 가스화를 통해 생성 된 합성 가스는 일차적으로 일산화탄소 (CO), 수소 (H 2) 및 이산화탄소 (CO 2) 로 구성되며 생물학적 촉매를 사용하여 발효시켜 다양한 연료와 부가가치를 창출 할 수 있다. 합성가스 유기산 및 알코올과 같은 고부가 화학 물질의 생산을 위해 특별히 설계된 미생물을 사용하기 때문에 더 매력적이며 결과적으로 높은 제품 선택성을 가질 수 있다. 또한, 가스 탄소를 연료 및 화학 물질로 전환하면 폐기물 처분의 환경문제 영향을 줄일 수 있다.
합성 가스 발효의 상업화의 주요 장애물 중 하나는 미생물 배양 발효액에서 낮은 용존 가스의 농도, 특히 CO의 낮은 용해도에 기인 한 기체 - 액체 물질 전달 제한이다. 반응기 내 미생물의 활성은 용존 가스의 농도에 따라 변화한다. 따라서 실제 용해 된 CO 농도는 생물 반응기 운전에 대한 기질 소모율, 산물 생산성 파악, 예측 및 최적화하기 위해 중요한 정보이다.
합성 가스 발효 연구에서 용존 CO 농도를 측정하는 데 사용되는 기존의 기술은 가스 크로마토 그래피를 기반으로 한다. 이는 헨리의 법칙과 헤드 스페이스의 CO 분압을 이용하여 수성 단계에서 분해 된 CO를 간접적으로 계산하는 방법으로, 실시간 용존 CO 농도 측정이 어렵다. 수성 샘플에서 CO 농도를 직접 측정하는 덜 일반적인 방법으로 미오글로빈 - 단백질 생물 분석법이 있다. 그러나 이러한 방법의 사용은 오프 라인이며, 수행하기가 어렵고 부정확하게 수행 될 경우 오류가 발생하기 때문에 제한적이다. 따라서, 실시간 용존 CO 농도 검출을 위한 기술 개발이 요구되고 있다.
또한, 합성 가스 발효 시스템 내 낮은 용존 CO농도는 효소전극으로의 기질전달 제한을 유발할 수 있다. 효소전극표면상 효소필름의 두께와 고정화된 효소의 기질에 대한 접근성은 기질전달 효율에 영향을 주는 주요 인자이므로 효소필름의 두께가 단일효소분자크기와 유사하고 고정화된 효소가 기질수용액과 쉽게 접촉될 수 있는 전극구조상 효소가 고정된 효소기반 용존일산화탄소 센서의 개발이 요구된다.
<선행기술문헌> 대한민국등록특허 제10-1772988호
본 발명이 이루고자 하는 기술적 과제는 액체 내 용존 일산화탄소 직접 검출이 가능한 센서를 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 액체 내 용존 일산화탄소의 실시간 검출이 가능한 센서를 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일실시예는 용존 일산화탄소 센서를 제공한다.
이때, 상기 용존 일산화탄소 센서는 나노패턴전극 및 상기 나노패턴전극 상에 고정된 일산화탄소 탈수소효소를 포함할 수 있다.
이때, 상기 용존 일산화탄소 센서는 상기 일산화탄소 탈수소효소의 효소반응을 통해 용액 내 용존 일산화탄소 농도를 직접 검출하는 것을 특징으로 한다.
이때, 상기 일산화탄소 탈수소효소는 상기 효소반응을 통해 생성된 전자를 상기 전극에 직접 전달하는 것을 특징으로 한다.
이때, 상기 전극은 Pt, Cu, Zn, Fe, Ni, Co, Mn, Au, Ag, 탄소섬유, 탄소나노튜브, 그래핀 또는 그라파이트를 포함할 수 있다.
이때, 상기 나노패턴전극은 자체 마스크 건식 식각 기술을 이용한 서브파장 나노구조를 가지는 것을 특징으로 한다.
이때, 상기 나노패턴전극은 피라미드 형태의 패턴을 가지는 것을 특징으로 한다.
이때, 상기 피라미드 형태의 패턴의 높이는 10nm 내지 200nm인 것을 특징으로 한다.
이때, 상기 피라미드 형태의 패턴의 간격은 10nm 내지 200nm인 것을 특징으로 한다.
이때, 상기 일산화탄소 탈수소효소는 활성자리가 위치하는L단위 및 상기 L단위와 연결된 M단위 그리고 상기 M 단위와 연결된 S단위를 포함할 수 있다.
이때, 상기 일산화탄소 탈수소효소는 상기 L단위, 상기 M단위 또는 상기 S단위에 발현된 금속 고정화 펩타이드에 의해 상기 나노패턴전극에 고정되는 것을 특징으로 한다.
이때, 상기 일산화탄소 탈수소효소는 프린팅, 침액(Dipping) 또는 침적법을 통해 상기 전극 상에 고정시키는 것을 특징으로 한다.
이때, 상기 용존 일산화탄소 센서는 상기 효소반응에 의해 하기 식(1)의 반응이 일어나는 것을 특징으로 한다.
CO + H 2O →CO 2 + 2H + + 2e - 식(1)
상기 기술적 과제를 달성하기 위하여, 본 발명의 다른 실시예는 용존 일산화탄소 검출방법을 제공한다.
이때, 상기 용존 일산화탄소 검출방법는 본 발명의 일실시예에 따른 용존 일산화탄소 센서를 전류값 검출기에 전기적으로 연결하는 단계, 상기 검출기에 연결된 상기 용존 일산화탄소 센서를 분석대상 액체 내에 침지하는 단계, 상기 액체 내에 침지된 용존 일산화탄소 센서에 전압을 인가하는 단계 및 상기 용존 일산화탄소 센서의 효소반응에 의해 발생하는 전류변화를 상기 검출기로 검출하는 단계를 포함할 수 있다.
이때, 상기 용존 일산화탄소 검출방법은 상기 분석대상 액체 내의 용존 일산화탄소를 실시간 검출하는 것을 특징으로 한다.
이때, 용존 일산화탄소 검출방법은 상기 효소반응에 의해 하기 식(1)의 반응이 일어나는 것을 특징으로 한다.
CO + H 2O →CO 2 + 2H + + 2e - 식(1)
이때, 상기 분석대상 액체의 pH는 6.5 내지 7.5인 것을 특징으로 한다.
본 발명의 실시예에 따르면, 액체 내 용존 일산화탄소 직접 검출이 가능한 센서를 제공할 수 있다.
본 발명의 실시예에 따르면, 액체 내 용존 일산화탄소의 실시간 검출이 가능한 센서를 제공할 수 있다.
본 발명의 실시예에 따르면, 기질전달 제한에 따른 저항 감소를 통해 측정가능 농도의 범위가 넓은 용존 일산화탄소 센서를 제공할 수 있다.
본 발명의 실시예에 따르면, 정확도 높은 용존 일산화탄소 센서를 제공할 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일실시예에 따른 용존 일산화탄소 센서를 나타낸 그림이다.
도 2는 본 발명의 일실시예에 따른 용존 일산화탄소 센서를 나타낸 그림이다.
도 3은 본 발명의 일실시예에 따른 용존 일산화탄소 센서를 나타낸 그림이다.
도4는 자체 마스크 건식 식각기술을 이용한 서브파장 나노구조의 나노패턴전극의 제작 과정을 도시한 모식도이다.
도 5는 본 발명의 일실시예에 따른 용존 일산화탄소 센서의 순환전압전류 그래프이다.
도 6은 본 발명의 일실시예에 따른 용존 일산화탄소 센서의 스캔속도-전류 그래프이다.
도 7은 본 발명의 실시예에 따른 일산화탄소 센서의 순환전압전류 그래프와 스캔속도-전류 그래프이다.
도 8은 본 발명의 다른 실시예에 따른 용존 일산화탄소 검출방법을 도시한 순서도이다.
도 9는 본 발명의 다른 실시예에 따른 용존 일산화탄소 검출방법에 따라 검출한 효소 로딩량-전류 그래프이다.
도 10은 본 발명의 다른 실시예에 따른 용존 일산화탄소 검출방법에 따라 검출한 일산화탄소 부분압-전류 그래프이다.
도 11은 본 발명의 다른 실시예에 따른 용존 일산화탄소 검출방법에 따라 검출한 용존 일산화탄소 농도-전류 그래프이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
본 발명의 일실시예에 따른 용존 일산화탄소 센서를 설명한다.
도 1은 본 발명의 일실시예에 따른 용존 일산화탄소 센서를 나타낸 그림이다.
도 1을 참조하면, 상기 용존 일산화탄소 센서는 나노패턴전극(100) 및 상기 나노패턴전극(100) 상에 고정된 일산화탄소 탈수소효소(200)를 포함할 수 있다.
이때, 상기 용존 일산화탄소 센서는 상기 일산화탄소 탈수소효소(200)의 효소반응을 통해 용액 내 용존 일산화탄소 농도를 직접 검출하는 것을 특징으로 한다.
이때, 상기 일산화탄소 탈수소효소(200)는 상기 효소반응을 통해 생성된 전자를 상기 전극에 직접 전달하는 것을 특징으로 한다.
이때, 상기 전극(100)은 Pt, Cu, Zn, Fe, Ni, Co, Mn, Au, Ag, 탄소섬유, 탄소나노튜브, 그래핀 또는 그라파이트를 포함할 수 있다.
이때, 상기 나노패턴전극은 자체 마스크 건식 식각 기술을 이용한 서브파장 나노구조를 가지는 것을 특징으로 한다.
이때, 상기 서브파장 나노구조는 주파동 및 보조파동이 함께 존재하는 파장 형태의 구조를 말한다.
이때, 상기 나노패턴전극은 피라미드 형태의 패턴을 가지는 것을 특징으로 한다.
이때, 상기 나노패턴전극이 피라미드 형태의 패턴을 가지는 자체 마스크 건식 식각 기술을 이용한 서브파장 나노구조를 가짐으로써, 상기 패턴 사이에 이산화탄소 탈수소효소가 고르게 안착하여 효소의 뭉침을 방지하고 기질 전달성을 향상시킬 수 있다.
이때, 상기 나노패턴의 높이 및 간격이 상기 이산화탄소 탈수소효소와 비슷한 것이 바람직하다. 상기 나노패턴의 높이 및 간격이 상기 이산화탄소 탈수소효소와 비슷한 경우, 상기 나노패턴 사이에 상기 이산화탄소 탈수소효소가 고르게 도포될 수 있으며, 이를 통해 원활한 기질전달을 유도할 수 있다.
바람직하게는, 상기 피라미드 형태의 패턴의 높이는 10nm 내지 200nm인 것을 특징으로 한다.
이때, 상기 피라미드 형태의 패턴의 높이가 10nm 미만인 경우, 상기 나노패턴전극 상에 상기 이산화탄소 탈수소효소가 고르게 도포되지 못하고 뭉침현상이 발생할 수 있다.
이때, 상기 피라미드 형태의 패턴의 높이가 200nm 초과인 경우, 상기 나노패턴전극 상에 상기 이산화탄소 탈수소효소가 고르게 도포되지 못하고 뭉침현상이 발생할 수 있다.
바람직하게는, 상기 피라미드 형태의 패턴의 간격은 10nm 내지 200nm인 것을 특징으로 한다.
이때, 상기 피라미드 형태의 패턴의 간격이 10nm 미만인 경우, 상기 나노패턴전극 상에 상기 이산화탄소 탈수소효소가 고르게 도포되지 못하고 뭉침현상이 발생할 수 있다.
이때, 상기 피라미드 형태의 패턴의 간격이 200nm 초과인 경우, 상기 나노패턴전극 상에 상기 이산화탄소 탈수소효소가 고르게 도포되지 못하고 뭉침현상이 발생할 수 있다.
본 발명의 실시예에 있어서 상기 피라미드 형태의 패턴은 상기 이산화탄소 탈수소효소가 고르게 도포되는 것을 도울 수 있다. 일반적인 효소의 직경은 50nm 내지200nm인데, 상기 피라미드 형태의 패턴에 상기 이산화탄소 탈수소효소가 고르게 도포되기 위해서는 상기 피라미드 형태의 패턴의 높이 및 간격이 효소의 크기와 유사한 것이 바람직하다. 패턴의 높이 및 간격이 효소의 크기와 유사할 경우, 패턴 사이사이에 효소가 안착되어 상기 효소가 패턴 전극 상에 고르게 도포되는 것이 가능하기 때문이다. 따라서 상기 패턴의 높이 또는 간격이 효소의 크기범위보다 지나치게 작거나 클 경우, 패턴 사이에 효소가 각각 안착하기 어렵고, 효소끼리 뭉치는 현상이 발생할 수 있다.
도 2는 본 발명의 일실시예에 따른 용존 일산화탄소 센서를 나타낸 그림이다.
도 2을 참조하면, 본 발명의 실시예에 따른 용존 일산화탄소 센서는 기재(10), 상기 기재(10) 상에 위치하는 전극(100), 상기 전극(100) 상에 고정된 일산화탄소 탈수소효소(200)를 포함할 수 있다.
이때, 상기 일산화탄소 탈수소효소(200)은 상기 일산화탄소 탈수소효소(200)에 발현된 금속 고정화 펩타이드(210)에 의해 상기 전극(100) 상에 고정된 것을 특징으로 한다.
이때, 상기 전극(100)은 패턴이 형성된 전극일 수 있다.
도 3은 본 발명의 일실시예에 따른 용존 일산화탄소 센서를 나타낸 그림이다.
도 3을 참조하면, 본 발명의 실시예에 따른 용존 일산화탄소 센서는 기재(10), 상기 기재(10) 상에 위치하는 전극(100), 상기 전극(100) 상에 고정된 일산화탄소 탈수소효소(200)를 포함할 수 있다.
이때, 상기 일산화탄소 탈수소효소(200)은 상기 일산화탄소 탈수소효소(200)에 발현된 금속 고정화 펩타이드(210)에 의해 상기 전극(100) 상에 고정된 것을 특징으로 한다.
이때, 상기 일산화탄소 탈수소효소(200)는 활성자리가 위치하는L단위(220) 및 상기 L단위(220)와 연결된 M단위(230)를 포함할 수 있다.
이때, 상기 금속 고정화 펩타이드(210)는 상기 L단위(220) 또는 M단위(230) 중 어느 하나에 발현되는 것을 특징으로 한다.
이때, 상기 일산화탄소 탈수소효소(200)는 활성자리가 위치하는L단위(220)에 코팩터(240)를 더 포함할 수 있다.
이때, 상기 코팩터(240)은 상기 일산화탄소 탈수소효소(200)의 효소반응을 촉진하기 위해 추가된 것일 수 있다.
본 발명의 실시예에 따른 용존 일산화탄소 센서는 효소의 활성자리에서 일어나는 화학반응에 의해 발생하는 전자에 의한 전류 변화를 통해 용존 일산화탄소를 검출한다. 이때, 상기 용존 일산화탄소 센서의 성능을 향상시키기 위해서는 상기 효소의 활성자리에서 발생한 전자를 전극에 효과적으로 전달하는 것이 중요하다. 이때, 상기 효소의 활성자리에서 생성된 전자를 효과적으로 전극에 전달하기 위해서는 상기 효소의 활성자리와 전극 사이의 거리를 단축하는 것이 중요하다.
본 발명의 실시예에 따른 용존 일산화탄소 센서는 상기 효소의 활성자리가 위치하는 L 서브유닛 또는 M서브유닛 또는 S서브유닛에 상기 금속 고정화 펩타이드를 발현시켜 전극에 직접 고정함으로써, 상기 활성자리와 전극의 거리를 가깝게 고정하였다.
효소가 전극으로 전자를 전달하는 방식은 MET(Mediated electron transfer)와 DET(Direct electron transfer)로 나눌 수 있는데, MET에서는 중간 매개체로 인하여 전자 포텐셜이 낮아지는 문제가 발생한다. 효율적인 전자 전달을 위해서는 전자 전달 거리가 매우 중요한데, MET에서는 중간 매개체로 인하여 전자 전달 거리가 멀어지기 때문에 발생하는 문제이다. 본 발명에서는 일산화탄소 탈수소효소에 발현된 금속 고정화 펩타이드를 직접 금속 전극패턴에 고정시키므로 일산화탄소 탈수소효소가 금속 전극패턴에 매우 가깝게 고정될 수 있고, 따라서 DET가 가능해지며, 전자 포텐셜을 높게 유지할 수 있다. 전자 전달 거리에 따른 전자 전달 효율은 하기 식 (1)에 의해 정해질 수 있다.
Figure PCTKR2019007767-appb-img-000001
(1)
(상기 식 (1)에서
Figure PCTKR2019007767-appb-img-000002
는 전자 전달율 상수, d는 실제 전자 전달 거리, G는 자유에너지, λ는 재구성 에너지이다.)
따라서, 본 발명의 실시예에 따른 용존 일산화탄소 센서는 일산화탄소 탈수소효소를 상기 일산화탄소 탈수소효소에 발현된 금속 고정화 펩타이드를 이용하여 전극에 직접 고정함으로써, 상기 효소의 활성자리와 전극 간의 거리를 단축하여 상기 용존 일산화탄소 센서의 성능을 향상시킬 수 있다.
따라서, 본 발명의 실시예에 따른 용존 일산화탄소 센서는 금속 고정화 펩타이드를 통해 효소의 활성자리와 전극을 가깝게 고정함으로써, 전자 전달 효율을 향상시킬 수 있다.
이때, 상기 일산화탄소 탈수소효소(200)는 프린팅, 침액(Dipping) 또는 침적법을 통해 상기 전극 상에 고정시키는 것을 특징으로 한다.
이때, 상기 용존 일산화탄소 센서는 상기 효소반응에 의해 하기 식(1)의 반응이 일어나는 것을 특징으로 한다.
CO + H 2O →CO 2 + 2H + + 2e - 식(1)
도4는 자체 마스크 건식 식각기술을 이용한 서브파장 나노구조의 나노패턴전극의 제작 과정을 도시한 모식도이다.
도 4를 참조하면, 먼저 실리콘 기판(Si substrate) 상에 은 나노입자(Ag nanoparticles)로 패턴을 형성하였다(S100).
다음, 건식 식각을 통해 상기 실리콘 기판을 식각하여 서브파장 나노구조 패턴이 형성된 실리콘 기판을 형성하였다(S200).
그 다음, 서브파장 나노구조 패턴이 형성된 실리콘 기판 상에 금(Au)을 증착하여 서브파장 나노구조의 나노패턴전극을 형성하였다(S300).
실시예 1
CODH효소 200㎕를 함유한 3ml의 50mM PB 버퍼에 1cm 2의 금 패턴전극을 교반하며 1시간동안 침지하여 본 발명의 실시예에 따른 용존 일산화탄소 센서를 제조하였다.
실험예 1
먼저, 탈 이온수를 실온에서 30 분 동안 CO로 버블링하여 CO 포화 표준용액을 제조하였으며, CO 함량은 포화 용해도로부터 계산하여 0.95 mM이었다.
상기 실시예1에 의해 제조된 용존 일산화탄소 센서, 백금(Pt)와이어 및 Ag/AgCl로 구성된 3전극 시스템을 이용하여 전위차계를 통해 순환전압-전류를 측정하였다.
이때, CO 포화 된 표준용액의 분액을 용액에 연속적으로 첨가 하였다.
이때, 상기 순환전압-전류는 30°C 및 50mM PB(pH 7.2) 조건에서 가스 기밀 전기 화학전지에서 수행되었다.
전류 측정에 있어서, 정상 상태 전류가 달성 된 후에 실시간 데이터를 기록되었다.
실험예 2
먼저, 탈 이온수를 실온에서 30 분 동안 CO로 버블링하여 CO 포화 표준용액을 제조하였으며, CO 함량은 포화 용해도로부터 계산하여 0.95 mM이었다.
금전극, 백금(Pt)와이어 및 Ag/AgCl로 구성된 3전극 시스템을 이용하여 전위차계를 통해 순환전압-전류를 측정하였다.
이때, CO 포화 된 표준용액의 분액을 용액에 연속적으로 첨가 하였다.
이때, 상기 순환전압-전류는 30°C 및 50mM PB(pH 7.2) 조건에서 가스 기밀 전기 화학전지에서 수행되었다.
전류 측정에 있어서, 정상 상태 전류가 달성 된 후에 실시간 데이터를 기록되었다.
실험예 3
상기 실험예 1에서 CO 표준용액의 분액을 첨가하지 않은 점을 제외하고는 실험예1과 동일하게 순환전압-전류를 측정하였다.
실험예 4
상기 실험예 2에서 CO 표준용액의 분액을 첨가하지 않은 점을 제외하고는 실험예1과 동일하게 순환전압-전류를 측정하였다.
실험예 1내지 4에 대한 결과를 도 5의 그래프로 나타내었다.
도 5는 본 발명의 일실시예에 따른 용존 일산화탄소 센서의 순환전압전류 그래프이다.
도 5의 (a)는 상기 실험예 1 내지 5의 순환전압-전류 그래프이다. 이때, CO/CODH/Au는 실험예 1, CO/ Au는 실험예 2, CODH/Au는 실험예 3 그리고 Bare Au는 실험예 4의 결과값을 나타낸다. 도 5의 (a)를 참조하면, CO가 없는 경우 또는 본 발명의 일실시예에 따라 효소를 구비한 용존 일산화탄소 센서가 없는 경우에는 전위 범위에서 산화환원 피크를 나타내지 않음을 알 수 있다. 또한, 본 발명의 일실시예에 따른 실험예 1의 경우 100㎂ 이상의 산화환원 피크가 나타남을 확인하였다.
도 5의 (b)는 상기 실험예 1의 실험을 50mVs -1의 스캔속도로 5사이클동안 반복 측정한 그래프이다. 도 4의 (b)를 참조하면, 본 발명의 일실시예에 따른 센서를 이용한 경우 반복측정을 수행하더라도 상대표준편차가 8%미만을 갖는 양극 피크 전류를 나타내므로 본 발명의 일실시예에 따른 용존 일산화탄소 센서의 안정성이 확인되었다.
실험예 5
전류 스캔속도에 따른 영향을 알아보기 위해 상기 실험예 1의 실험을 10mVs -1 내지 100 mVs -1의 범위 안에서 스캔 속도를 달리하여 수행하였다.
이에 대한 결과를 도 5에 나타내었다.
도 6은 본 발명의 일실시예에 따른 용존 일산화탄소 센서의 스캔속도-전류 그래프이다.
도 6의 (a)는 다양한 스캔속도에서의 순환전압-전류 그래프이다. 도 5의 (b)는 스캔속도에 따른 최대 전류값에 대한 양극 전류 피크의 플롯 그래프이다.
도 6을 참조하면, 산화 환원 전류 피크, 최대전류값 및 스캔 속도는 선형 관계를 나타냄을 알 수 있다. 이는 본 발명의 일실시예에 따른 센서의 효소-전극간 전자 직접전달 시스템이 표면 제어 공정에 의해 지배됨을 나타낸다.
도 7은 본 발명의 실시예에 따른 일산화탄소 센서의 순환전압전류 그래프와 스캔속도-전류 그래프이다.
본 발명의 일실시예에 따른 용존 일산화탄소 센서는 효소 기반 바이오 센서로, 용존 일산화탄소 농도에 따라 달라지는 전류값을 측정하여 용존 일산화탄소를 검출한다.
효소 기반 바이오 센서는 효소의 기질 특이성으로 인한 고민감성, 고선택성 및 소형화 및 대량 생산 가능성 때문에 많은 주목을 받고 있다. 따라서, 본 발명의 일실시예에 따른 용존 일산화탄소 센서는 일산화탄소를 기질로 하여 전자를 생성하는 효소를 이용하여 일산화탄소에 대한 선택성이 높은 센서를 제공할 수 있다.
전류값 측정 효소 바이오 센서의 검출 원리는 효소의 활성자리(active site)와 작동 전위에 도달하는 전극 표면 사이의 전자전달 (ET, electron transfer)을 기반으로 한다. 이러한 효소 기반 센서의 전자전달 방식은 크게 직접전자전달(DET, direct electron transfer)과 매개전자전달(MET, mediated electron transfer)가 있다. 이중 직접전자전달은 매개전자전달보다 전자 이동경로가 단순하며 빠른 응답속도를 가진다.
효소 활성자리와 전극 표면 사이의 전자전달 효율은 생체 전기 화학 장치, 효소 연료 전지, 바이오 센서 및 광합성 장치의 성능에 상당한 영향을 미친다. 따라서 높은 전자전달 효율을 가지는 효소 기반 센서를 제공하기 위해서는 직접전자전달이 가능한 효소를 이용하는 것이 바람직하다.
따라서 본 발명의 실시예에 따르면, 효소반응에 의해 액체 내 용존 일산화탄소 직접 검출이 가능한 센서를 제공할 수 있다.
또한, 본 발명의 일실시예에 따른 용존 일산화탄소 센서는 전극에 직접전자전달이 가능한 효소를 이용하여 빠른 응답속도를 가지는 용존 일산화탄소 센서를 제공할 수 있다.
나아가, 본 발명의 일실시예에 따른 용존 일산화탄소 센서는 액체 내 용해된 일산화탄소(CO) 농도의 실시간 모니터링이 가능하다.
본 발명의 다른 실시예에 따른 용존 일산화탄소 검출방법을 설명한다.
도 8은 본 발명의 다른 실시예에 따른 용존 일산화탄소 검출방법을 도시한 순서도이다.
도 8을 참조하면, 상기 용존 일산화탄소 검출방법은 본 발명의 일실시예에 따른 용존 일산화탄소 센서를 전류값 검출기에 전기적으로 연결하는 단계(S100), 상기 검출기에 연결된 상기 용존 일산화탄소 센서를 분석대상 액체 내에 침지하는 단계(S200), 상기 액체 내에 침지된 용존 일산화탄소 센서에 전압을 인가하는 단계(S300) 및 상기 용존 일산화탄소 센서의 효소반응에 의해 발생하는 전류변화를 상기 검출기로 검출하는 단계(S400)를 포함할 수 있다.
이때, 상기 용존 일산화탄소 검출방법은 상기 분석대상 액체 내의 용존 일산화탄소를 실시간 검출하는 것을 특징으로 한다.
이때, 용존 일산화탄소 검출방법은 상기 효소반응에 의해 하기 식(1)의 반응이 일어나는 것을 특징으로 한다.
CO + H 2O →CO 2 + 2H + + 2e - 식(1)
이때, 상기 분석대상 액체의 pH는 6.5 내지 7.5인 것을 특징으로 한다.
실험예 6
용존 일산화탄소 검출시 센서가 함유하는 효소의 양에 의한 영향을 평가하였다.
먼저, 전극 표면에 각각 100㎕, 200㎕, 400㎕의 CODH를 로딩하여 용존 일산화탄소 센서를 제조하였다. 이때, 효소는 각각 0.147mU, 0.293mU, 0.586mU의 농도로 금(Au)전극 상에 고정되었다.
다음, 각각 -0.8V 내지 +0.2 V 전위 (pH 7.2)에서 CV 측정을 실시하였다. 이때, 전기 화학 셀의 PB는 CO 함량 그 포화 용해도로부터 계산하여 0.95 mM이었다.
이에 대한 결과를 도 8에 나타내었다.
도 9는 본 발명의 다른 실시예에 따른 용존 일산화탄소 검출방법에 따라 검출한 효소 로딩량-전류 그래프이다.
도 9의 (a)는 각각의 효소 로딩량에 따른 순환전압-전류 그래프이고, 도 9의 (b)는 효소의 양에 따른 최대전류값을 나타낸 그래프이다.
도 9를 참조하면, 효소의 양에 따라 산화환원 전류 피크가 증가함을 알 수 있다. 이는 산화환원 반응이 효소의 양에 의존한다는 것을 의미한다. 또한, 로딩량이 100㎕에서 200㎕으로 증가함에 따라 최대 전류값이 크게 증가한 반면, 200㎕에서 400㎕으로 증가할 경우에는 최대 전류값의 증가량이 작음을 확인할 수 있다. 이는 400㎕를 넘는 효소 로딩은 크게 유의미하지 않다는 것을 뜻한다.
실험예 7
본발명의 실시예에 따른 용존 일산화탄소 센서를 이용한 검출방법의 분석능을 평가하였다.
이를 위해 각각 0, 5psi, 10psi, 15psi의 일산화탄소(CO)분압에서 순환전압-전류(CV)를 측정하였다.
헨리의 법칙에 따르면, 용액 내의 용질 가스의 농도는 용액 위의 가스의 분압에 직접 비례한다. 따라서 CO 분압을 증가 시키면 용해 된 CO의 농도가 증가한다. 따라서, 용해 된 일산화탄소에 대한 바이오 센서의 분석 성능은 상이한 일산화탄소 분압에서 CV를 수행함으로써 평가되었다. 이에 대한 결과는 도 8에 나타내었다.
도 10은 본 발명의 다른 실시예에 따른 용존 일산화탄소 검출방법에 따라 검출한 일산화탄소 부분압-전류 그래프이다.
도 10의 (a)는 다양한 CO 부분압에서의 순환전압-전류를 나타낸 그래프이고, 도 10의 (b)는 CO 부분압에 따른 최대 전류를 나타낸 그래프이다. 도 10을 참조하면, CO 부분압이 상이하더라도 CV 패턴은 유사하나, 피크 산화 전류는 특정 전위 범위에서 CO 분압과 선형 적으로 관련이 있음을 알 수 있다. 이는 효소의 산화환원 반응 수준이 용존 이산화탄소의 농도에 비례함을 의미한다..
실험예 8
본 발명의 실시예에 따른 용존 일산화탄소 검출방법의 일산화탄소 농도에 대한 전류 측정 성능을 시험하였다.
이때, 전류 측정은 상기 실험예 1의 방법과 같았으며, 50mVs -1의 스캔 속도에서 -0.02V의 인가 전압을 사용하였다.
이때, 일산화탄소의 농도는 23 μM 내지 335 μM의 CO 포화 표준용액(PB)의 순차적 첨가에 의해 조절되었으며, 각각의 경우 5초 이내에 정상상태 신호를 생성하였다. 이에 대한 결과는 도 9에 나타내었다.
도 11은 본 발명의 다른 실시예에 따른 용존 일산화탄소 검출방법에 따라 검출한 용존 일산화탄소 농도-전류 그래프이다.
도 11의 (a)는 CO 포화 표준 용액 스파이크 (↓로 표시)를 표시한 연속적인 용존 일산화탄소 센서의 전류 전류 응답그래프이고, 도 11의 (b)는 용존 CO 농도에 따른 전류값을 나타낸 그래프이다. 도 11을 참조하면, 23μM 내지 190μM의 용존 일산화탄소 농도 범위에서 전류값과 일산화탄소 농도가 선형 비례를 이루는 것을 알 수 있다. 이때의 상관계수는 0.937로 신뢰도가 높음을 확인하였으며, 센서의 민감도를 나타내는 기울기값은 250 μAmM -1cm -2로 확인되었다. 이를 통해 본 발명의 실시예에 따른 용존 일산화탄소 센서를 이용한 용존 일산화탄소 검출방법의 반응 속도 및 신뢰도가 높음을 알 수 있다.
본 발명의 실시예에 따른 용존 일산화탄소 검출방법은 효소 기반 바이오 센서를 이용하여, 용존 일산화탄소 농도에 따라 달라지는 전류값을 측정하여 용존 일산화탄소를 검출한다.
효소 기반 바이오 센서는 효소의 기질 특이성으로 인한 고민감성, 고선택성 및 소형화 및 대량 생산 가능성 때문에 많은 주목을 받고 있다. 따라서, 본 발명의 일실시예에 따른 용존 일산화탄소 센서는 일산화탄소를 기질로 하여 전자를 생성하는 효소를 이용하여 일산화탄소에 대한 선택성이 높은 센서를 제공할 수 있다.
전류값 측정 효소 바이오 센서의 검출 원리는 효소의 활성자리(active site)와 작동 전위에 도달하는 전극 표면 사이의 전자전달 (ET, electron transfer)을 기반으로 한다. 이러한 효소 기반 센서의 전자전달 방식은 크게 직접전자전달(DET, direct electron transfer)과 매개전자전달(MET, mediated electron transfer)가 있다. 이중 직접전자전달은 매개전자전달보다 전자 이동경로가 단순하며 빠른 응답속도를 가진다.
효소 활성자리와 전극 표면 사이의 전자전달 효율은 생체 전기 화학 장치, 효소 연료 전지, 바이오 센서 및 광합성 장치의 성능에 상당한 영향을 미친다. 따라서 높은 전자전달 효율을 가지는 효소 기반 센서를 제공하기 위해서는 직접전자전달이 가능한 효소를 이용하는 것이 바람직하다.
따라서 본 발명의 실시예에 따르면, 효소반응에 의해 액체 내 용존 일산화탄소 직접 검출이 가능하다.
또한, 본 발명의 실시예에 따른 용존 일산화탄소 검출방법은 전극에 직접전자전달이 가능한 효소를 이용하여 빠른 응답속도를 가질 수 있다.
나아가, 본 발명의 실시예에 따른 용존 일산화탄소 검출방법은 액체 내 용해된 일산화탄소(CO) 농도의 실시간 모니터링이 가능하다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
<부호의 설명>
10 : 기재
100 : 전극
200 : 일산화탄소 탈수소효소
210 : 금속 고정화 펩타이드
220 : L단위
230 : M단위
240 : 코팩터

Claims (13)

  1. 나노패턴전극; 및
    상기 나노패턴전극 상에 고정된 일산화탄소 탈수소효소를 포함하고,
    상기 일산화탄소 탈수소효소의 효소반응을 통해 용액 내 용존 일산화탄소 농도를 직접 검출하는 것을 특징으로 하는 용존 일산화탄소 센서.
  2. 제1항에 있어서,
    상기 일산화탄소 탈수소효소는 상기 효소반응을 통해 생성된 전자를 상기 전극에 직접 전달하는 것을 특징으로 하는 용존 일산화탄소 센서.
  3. 제1항에 있어서,
    상기 나노패턴전극은 Pt, Cu, Zn, Fe, Ni, Co, Mn, Au, Ag, 탄소섬유, 탄소나노튜브, 그래핀 또는 그라파이트를 포함하는 것을 특징으로 하는 용존 일산화탄소 센서.
  4. 제1항에 있어서,
    상기 나노패턴전극은 자체 마스크 건식 식각 기술을 이용한 서브파장 나노구조를 가지는것을 특징으로 하는 용존 일산화탄소 센서.
  5. 제1항에 있어서,
    상기 나노패턴전극은 피라미드 형태의 패턴을 가지는 것을 특징으로 하는 용존 일산화탄소 센서.
  6. 제5항에 있어서,
    상기 피라미드 형태의 패턴의 높이는 10nm 내지 200nm인 것을 특징으로 하는 용존 일산화탄소 센서.
  7. 제5항에 있어서,
    상기 피라미드 형태의 패턴의 간격은 10nm 내지 200nm인 것을 특징으로 하는 용존 일산화탄소 센서.
  8. 제1항에 있어서,
    상기 일산화탄소 탈수소효소는 활성자리가 위치하는L단위, 상기 L단위와 연결된 M단위, 및 상기 M단위와 연결된 S단위를 포함하고,
    상기 L단위, 상기 M단위 또는 상기 S단위에 발현된 금속 고정화 펩타이드에 의해 상기 나노패턴전극에 고정되는 것을 특징으로 하는 용존 일산화탄소 센서.
  9. 제1항에 있어서,
    상기 일산화탄소 탈수소효소는 프린팅, 침액(Dipping) 또는 침적법을 통해 상기 나노패턴전극 상에 고정시키는 것을 특징으로 하는 용존 일산화탄소 센서.
  10. 제1항에 있어서,
    상기 효소반응에 의해 하기 식(1)의 반응이 일어나는 것을 특징으로 하는 용존 일산화탄소 센서.
    CO + H 2O →CO 2 + 2H + + 2e - 식(1)
  11. 제1항의 용존 일산화탄소 센서를 전류값 검출기에 전기적으로 연결하는 단계;
    상기 검출기에 연결된 상기 용존 일산화탄소 센서를 분석대상 액체 내에 침지하는 단계;
    상기 액체 내에 침지된 용존 일산화탄소 센서에 전압을 인가하는 단계;
    상기 용존 일산화탄소 센서의 효소반응에 의해 발생하는 전류변화를 상기 검출기로 검출하는 단계를 포함하고,
    상기 분석대상 액체 내의 용존 일산화탄소를 실시간 검출하는 것을 특징으로 하는 용존 일산화탄소 검출방법.
  12. 제11항에 있어서,
    상기 효소반응에 의해 하기 식(1)의 반응이 일어나는 것을 특징으로 하는 용존 일산화탄소 검출방법.
    CO + H 2O →CO 2 + 2H + + 2e - 식(1)
  13. 제11항에 있어서,
    상기 분석대상 액체의 pH가 6.5 내지 7.5인 것을 특징으로 하는 용존 일산화탄소 검출방법.
PCT/KR2019/007767 2018-06-27 2019-06-26 효소 기반 용존 일산화탄소 센서 WO2020004959A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/256,193 US20210262966A1 (en) 2018-06-27 2019-06-26 Enzyme-based dissolved carbon monoxide sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0074241 2018-06-27
KR1020180074241A KR102144082B1 (ko) 2018-06-27 2018-06-27 효소 기반 용존 일산화탄소 센서

Publications (1)

Publication Number Publication Date
WO2020004959A1 true WO2020004959A1 (ko) 2020-01-02

Family

ID=68984571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007767 WO2020004959A1 (ko) 2018-06-27 2019-06-26 효소 기반 용존 일산화탄소 센서

Country Status (2)

Country Link
KR (1) KR102144082B1 (ko)
WO (1) WO2020004959A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010111514A (ko) * 2000-06-12 2001-12-19 차근식 마이크로 칩형 이산화탄소 기체센서
US20050244811A1 (en) * 2003-12-15 2005-11-03 Nano-Proprietary, Inc. Matrix array nanobiosensor
JP2007509355A (ja) * 2003-10-24 2007-04-12 バイエル・ヘルスケア・エルエルシー 酵素的電気化学的バイオセンサ
KR20150094070A (ko) * 2014-02-10 2015-08-19 한국과학기술원 액체 내 용존 일산화탄소 측정용 센서소자 및 센싱방법
KR20160063900A (ko) * 2014-11-27 2016-06-07 아이오틴 주식회사 혈당 센서 및 그 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101772988B1 (ko) 2016-07-20 2017-08-31 (주)센코 전기화학식 일산화탄소 가스 센서

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010111514A (ko) * 2000-06-12 2001-12-19 차근식 마이크로 칩형 이산화탄소 기체센서
JP2007509355A (ja) * 2003-10-24 2007-04-12 バイエル・ヘルスケア・エルエルシー 酵素的電気化学的バイオセンサ
US20050244811A1 (en) * 2003-12-15 2005-11-03 Nano-Proprietary, Inc. Matrix array nanobiosensor
KR20150094070A (ko) * 2014-02-10 2015-08-19 한국과학기술원 액체 내 용존 일산화탄소 측정용 센서소자 및 센싱방법
KR20160063900A (ko) * 2014-11-27 2016-06-07 아이오틴 주식회사 혈당 센서 및 그 제조방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods

Also Published As

Publication number Publication date
KR20200001368A (ko) 2020-01-06
KR102144082B1 (ko) 2020-08-12

Similar Documents

Publication Publication Date Title
WO2020004959A1 (ko) 효소 기반 용존 일산화탄소 센서
Chen et al. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell
Yin et al. Study of indium tin oxide thin film for separative extended gate ISFET
van der Schoot et al. ISFET based enzyme sensors
AU5205896A (en) Method and apparatus for reduction of bias in amperometric sensors
Clarke et al. The development and application of biosensing devices for bioreactor monitoring and control
Yang et al. Sensing and pH-imaging properties of niobium oxide prepared by rapid thermal annealing for electrolyte–insulator–semiconductor structure and light-addressable potentiometric sensor
Fiaccabrino et al. Electrochemical characterization of thin-film carbon interdigitated electrode arrays
Murakami et al. A micro planar ampehometric glucose sensor using an isfet as a reference electrode
Yoshinobu et al. Alternative sensor materials for light-addressable potentiometric sensors
Miyamoto et al. Development of an amperometric alcohol sensor based on immobilized alcohol dehydrogenase and entrapped NAD+
WO2017069415A1 (en) A sensor and method for manufacturing the sensor
Fernandez et al. Development of an oxygen sensor for molter 44.5% lead–55.5% bismuth alloy
US20210262966A1 (en) Enzyme-based dissolved carbon monoxide sensor
Zou et al. Preparation of manganese dioxide nanozyme as catalyst for electrochemical sensing of hydrogen peroxide
WO2022131494A1 (ko) 바이오센서
Flexer et al. Extracting kinetic parameters for homogeneous [Os (bpy) 2ClPyCOOH]+ mediated enzyme reactions from cyclic voltammetry and simulations
WO2018174455A1 (ko) 가스 센서 및 그 제조 방법
Nagy et al. Screen-printed amperometric microcell for proline iminopeptidase enzyme activity assay
WO2023277518A1 (ko) 바이오센서
Puig-Lleixà et al. Potentiometric pH sensors based on urethane–acrylate photocurable polymer membranes
Nozaki et al. Kinetic study on the dimerization reaction of 9-methoxyanthracene cation radical by means of fast scan cyclic voltammetry
CA2073107A1 (en) Capacitively measuring chemical sensor system
JPS6017346A (ja) 一種以上の酵素を用いる検定方法
Bard et al. Applications of Scanning Electrochemical Microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19825875

Country of ref document: EP

Kind code of ref document: A1