WO2020004657A1 - Device and method for acquiring eyeglass frame shape data, system for providing lens, and non-transitory computer-readable recording medium - Google Patents

Device and method for acquiring eyeglass frame shape data, system for providing lens, and non-transitory computer-readable recording medium Download PDF

Info

Publication number
WO2020004657A1
WO2020004657A1 PCT/JP2019/025965 JP2019025965W WO2020004657A1 WO 2020004657 A1 WO2020004657 A1 WO 2020004657A1 JP 2019025965 W JP2019025965 W JP 2019025965W WO 2020004657 A1 WO2020004657 A1 WO 2020004657A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
shape data
rim
shape
stylus
Prior art date
Application number
PCT/JP2019/025965
Other languages
French (fr)
Japanese (ja)
Inventor
喬弘 鈴江
Original Assignee
ホヤ レンズ タイランド リミテッド
喬弘 鈴江
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホヤ レンズ タイランド リミテッド, 喬弘 鈴江 filed Critical ホヤ レンズ タイランド リミテッド
Publication of WO2020004657A1 publication Critical patent/WO2020004657A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/24Measuring arrangements characterised by the use of mechanical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C1/00Assemblies of lenses with bridges or browbars
    • G02C1/06Bridge or browbar secured to or integral with closed rigid rims for the lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C13/00Assembling; Repairing; Cleaning

Definitions

  • the present disclosure relates to spectacle lenses, and more specifically, to a technique for acquiring data for processing a lens mounted on a frame.
  • Patent Document 1 discloses a technique for “obtaining a processed eyeglass lens shape including a stepped processed shape of an eyeglass lens”.
  • the method for obtaining a spectacle lens processing shape for attaching a prescription lens having a thicker refractive power than the provided lens to the rim comprises the provided lens A lens contour obtaining step of obtaining a contour of the mounted lens, and a rim boundary obtaining step of obtaining an inner boundary of the rim on the mounted lens surface in a state where the mounted lens is mounted on the rim.
  • the step processing of the entire circumference of the lens is performed using the step amount obtained by the measurement, but the outer shape of the step-processed lens is not necessarily excellent in quality. It was hard to say. In many cases, a pre-processing test is required before the step processing, or fine adjustment of the size, correction of the step shape, and other fine corrections are required after the step processing.
  • the conventional technology for acquiring the external shape it can be realized only when the person acquiring the external shape of the lens, such as a processor, has a frame at hand, but it takes time and effort. In some cases, the accuracy was not good. For example, when scanning the outer shape of the lens, remove the dummy lens from the frame, place it on the scanner base so that it is horizontal with the concave surface of the dummy lens facing up, and perform two-dimensional scanning with the scanner. Was being done. In this case, it is not always possible to say that the lens with the concave surface facing upward is in a horizontal state, and as a result, the outer shape of the lens after step processing does not match the shape of the rim of the frame, and the lens is inserted into the frame. The appearance after was not good. In addition, a PD (Pupillary Distance) deviation and an axis deviation also occurred.
  • PD Physical Pilly Distance
  • an object in one aspect is to provide an apparatus for measuring the shape of an eyeglass frame so that the processing accuracy of a lens is improved. That is.
  • An object in another aspect is to provide an apparatus capable of processing a lens according to the shape of a frame even when the frame is not at hand.
  • An object in another aspect is to provide a system in which the processing accuracy of a lens is improved.
  • Another object of the present invention is to provide a method for measuring the shape of a spectacle frame such that the processing accuracy of a lens is improved.
  • an apparatus for measuring a shape of an eyeglass frame includes: an acquiring unit configured to acquire shape data of the outer shape of the frame and shape data of the rim of the frame; and a rim such that a reference point of the shape data of the rim is a frame center based on the shape data of the outer shape. For converting the shape data of the rim, and output means for outputting the shape data of the outer shape and the converted rim shape data.
  • an apparatus for measuring the shape of a spectacle frame includes an acquisition unit for acquiring shape data of a frame outer shape and shape data of a rim of a frame, and a reference point of the shape data of the outer shape.
  • the output means further outputs a processing order for a lens to be fitted to the frame.
  • the apparatus further includes a display device for displaying whether or not the lens can be processed based on the external shape data and the converted rim shape data.
  • obtaining the shape data of the outer shape of the frame includes calculating a tilt angle of the frame by three-dimensional measurement, leveling the frame by tilting the frame by the tilt angle, Measuring the outer shape of the frame.
  • the obtaining means includes a stylus.
  • the stylus includes either a stylus whose tip is hemispherical or a stylus whose cross-section is part of a circle.
  • obtaining the rim shape data comprises raising the stylus along the concave rim of the frame while pressing the cylindrical portion of the stylus against the frame, and, after the stylus has stopped rising, Turning 360 degrees while maintaining the contact state between the stylus and the rim is included.
  • a lens comprising: the device according to any one of the above, and a device for outputting shape data of the outer shape of the frame and shape data of the rim output from the device.
  • a system is provided for:
  • a lens comprising: the apparatus according to any of the above; and a 3D printer for manufacturing a lens based on shape data of a frame outer shape and shape data of a rim.
  • a system is provided.
  • a method for measuring the shape of a spectacle frame.
  • the step of obtaining shape data of the outer shape of the frame, the step of obtaining shape data of the rim of the frame, and the reference point of the shape data of the rim is a frame center based on the shape data of the outer shape.
  • the method includes a step of converting the rim shape data, and a step of outputting the shape data of the outer shape and the converted rim shape data.
  • a method for measuring a shape of a spectacle frame includes obtaining shape data of a shape of the frame, obtaining shape data of a rim of the frame, and determining a shape of the shape data of the shape.
  • the method includes a step of converting the shape data of the outer shape so that the point becomes a frame center based on the shape data of the rim, and a step of outputting the shape data of the outer shape and the converted rim shape data.
  • the outputting step further includes outputting a processing order of the lens to be fitted into the frame.
  • the method according to an aspect further includes a step of displaying whether or not the lens can be processed based on the shape data of the outer shape and the shape data of the converted rim.
  • acquiring shape data of the outer shape of the frame includes calculating a tilt angle of the frame by three-dimensional measurement, leveling the frame by tilting the frame by the tilt angle, Measuring the outer shape of the completed frame.
  • the step of obtaining includes obtaining shape data with a stylus.
  • acquiring the rim shape data includes raising the stylus along the concave rim of the frame while pressing the cylindrical portion of the stylus against the frame; and, after the stylus stops rising, the stylus. And turning 360 degrees while maintaining the contact state between the rim and the rim.
  • a non-transitory computer-readable recording medium storing a plurality of instructions for controlling an apparatus for measuring a shape of an eyeglass frame.
  • the plurality of instructions include: obtaining a shape data of an outer shape of the frame in a horizontal state; obtaining shape data of a rim on a concave side of the frame; Converting the shape data of the rim so that the reference point of the shape data is a frame center based on the shape data of the outer shape, and outputting the shape data of the outer shape and the converted rim shape data. Let it run.
  • the plurality of instructions when a plurality of instructions are executed by a computer on a non-transitory computer-readable recording medium, the plurality of instructions cause the computer to obtain shape data of a frame outer shape. Acquiring the shape data of the frame rim, converting the shape data of the outer shape so that the reference point of the shape data of the outer shape is a frame center based on the shape data of the rim, Outputting the converted rim shape data.
  • the outputting step further includes outputting a processing order of a lens to be fitted into the frame.
  • a non-transitory computer-readable recording medium when a plurality of instructions are executed by a computer, the plurality of instructions are based on the shape data of the outer shape and the shape data of the converted rim. A step of displaying whether or not the lens can be processed is further executed.
  • acquiring the shape data of the outer shape of the frame includes calculating the tilt angle of the frame by three-dimensional measurement, and tilting the frame by the tilt angle. Leveling and measuring the profile of the leveled frame.
  • the step of acquiring includes acquiring shape data with a stylus.
  • acquiring the rim shape data includes raising the stylus along the concave rim of the frame while pressing the cylindrical portion of the stylus against the frame; After the ascent of the stylus has stopped, turning 360 degrees while maintaining the contact state between the stylus and the rim.
  • the external shape of the spectacle frame can be obtained with high accuracy, so that the processing accuracy of the lens can be improved.
  • the lens can be processed according to the shape of the frame even when the frame is not at hand.
  • FIG. 1 is a diagram illustrating an outline of a configuration of a system 100 according to an embodiment.
  • FIG. 4 is a block diagram illustrating a hardware configuration of a general-purpose computer 200 functioning as a terminal 120 or a terminal 130.
  • 3 is a flowchart illustrating a part of a process performed by the system 100.
  • FIG. 3 is a diagram illustrating an appearance of a frame tracer 110.
  • FIG. 4 is a diagram schematically illustrating a state where a frame tracer measures an outer shape of a rim of a frame.
  • FIG. 2 is a diagram illustrating an appearance of a stylus 115 according to one embodiment.
  • FIG. 3 is a diagram illustrating a state in which a stylus 115 according to one embodiment is in contact with an inner circumference of a rim 401.
  • FIG. 5 is a cross-sectional view illustrating a state in which stylus 115 and rim 401 are in contact according to one embodiment.
  • FIG. 4 is a diagram illustrating an outer shape of a rim 401 obtained based on two-dimensional shape data obtained by a frame tracer.
  • FIG. 4 is a diagram illustrating an outer shape of a rim 401 obtained based on three-dimensional shape data obtained by a frame tracer.
  • step shape data is acquired, for example, as follows.
  • the measurer performs three-dimensional measurement of the frame shape using a known measuring device (frame tracer), and the measuring device calculates the tilt angle of the frame.
  • the tilt mechanism of the measuring device tilts the frame by the same angle as the tilt angle to make the frame horizontal with one eye.
  • the tilt mechanism is realized by, for example, a Frame @ Swing method mounted on a frame tracer (product number: GT5000) provided by HOYA.
  • the measuring device measures the outer shape of the frame which is maintained horizontally.
  • the measuring device measures the outer shape of the frame by tracing the base (groove) of the rim on which the lens is fitted, and acquires the measurement result as the first frame shape.
  • the measurement device acquires the second frame shape. For example, the measuring device raises the stylus along the concave rim of the frame while pressing the cylindrical portion of the stylus against the inner peripheral portion of the frame. The stylus stops when the projection of the stylus hits the frame. When the stylus stops, the measuring device applies a load above the stylus to maintain the state of contact between the stylus and the frame, and makes the stylus make a full circuit along the inner periphery of the frame to obtain three-dimensional shape data of the frame. To get.
  • the measuring device converts the obtained two shape data into conventional frame shape data, and converts the shape data of the rim on the concave side of the frame into a polar coordinate system (r ( ⁇ )).
  • the reason for the conversion is that the frame center based on the frame shape data does not match the frame center based on the rim shape data.
  • Each data after conversion calculated by the measuring device is input to the data communication terminal.
  • the data communication terminal is realized by, for example, a general-purpose computer having a known configuration.
  • the data communication terminal is connected to the control device of the lens processing machine via the Internet, a VPN (Virtual Private Network) or another communication line.
  • the processing machine is used by the whole eyeglasses or by the companies that provide the lenses.
  • the control device is used by the business operator or by a third party who has a close relationship with the business operator.
  • the data communication terminal transmits the lens processing order and the converted shape data obtained for the lens to the control device of the lens maker.
  • the control device receives the processing order and each shape data, the order for requesting the step processing of the lens is established.
  • the processing machine processes the lens based on each shape data. More specifically, after marking and a lens block, the lens is put into a processing machine in the same manner as in a normal cutting process.
  • the control device transmits the first shape data (outer shape data of the frame) and the second shape data (rim shape data) of the step processing to the processing machine. .
  • the processing machine performs the outer shape processing and the step processing based on the given data, with the frame center of the frame shape as a position reference.
  • the lens maker measures the circumference of the lens and supplies the processed lens (also referred to as a cut lens) to a customer (a spectacles store). If an order to place the lens in the frame has been issued, the customer places the lens in the frame (rim) of the frame. According to such a configuration, it is ensured that the step shape formed on the outer periphery of the lens corresponds to the shape of the rim of the spectacle frame, so that the accuracy in fitting the lens to the rim can be improved.
  • control device may notify the data communication terminal of the fact.
  • a prototype of a lens may be created using each shape data obtained by measuring the eyeglass frame.
  • the lens may be manufactured by a 3D printer using each shape data output from the frame tracer.
  • the spectacles store can put the prototype lens manufactured by the 3D printer into the spectacle frame selected by the general user.
  • a general user can check the usability by wearing spectacles in which the prototype lens is fitted.
  • the step-processed lens is held by the step formed on the inner peripheral portion of the frame.
  • the lens is fitted to a predetermined position obtained by the measurement with respect to the frame. Can be suppressed.
  • FIG. 1 is a diagram showing an outline of a configuration of a system 100 according to one embodiment.
  • the system 100 is realized by a spectacles store 101 and a lens maker 102.
  • the eyeglass store 101 includes a frame tracer 110 and a terminal 120.
  • the lens maker 102 includes a terminal 130 and a lens processing machine 140.
  • the terminal 120 and the terminal 130 are communicably connected to each other by, for example, the Internet or a VPN (Virtual Private Network).
  • VPN Virtual Private Network
  • the frame tracer 110 includes an input IF (Interface) 111, a control circuit 112, a tilt mechanism 113, an actuator 114, a stylus 115, an amplifier 116, an AD (Analog to Digital) converter 117, an arithmetic circuit 118, And an output IF 119.
  • the frame tracer 110 measures the shape of the frame of the glasses, in particular, the shape of the rim.
  • the frame tracer 110 traces the base of the rim (groove, rim line) and traces the end receiving the lens.
  • a rim for receiving a lens is configured in a stepped shape.
  • the input IF 111 receives an input of an instruction to the frame tracer 110.
  • the input IF 111 is implemented by, for example, a touch panel or other soft keys, a dial switch, or other hard keys.
  • the control circuit 112 controls the operation of the frame tracer 110 based on an instruction given to the input IF 111. In one aspect, the control circuit 112 controls the position of the tilt mechanism 113. In another aspect, control circuit 112 sends commands to actuator 114 to move or pivot stylus 115.
  • the tilt mechanism 113 is configured to rotate in order to change the attitude (inclination) of the frame.
  • the tilt mechanism 113 changes the inclination of the tray on which the frame is placed, for example.
  • the actuator 114 turns the stylus 115. Further, the actuator 114 moves the stylus 115 so as to rotate the inner circumference of the rim.
  • Amplifier 116 amplifies an analog signal output according to movement of stylus 115.
  • the amplified signal is input to the AD converter 117.
  • the AD converter 117 converts an analog signal into a digital signal.
  • the digital signal is input to the arithmetic circuit 118.
  • the arithmetic circuit 118 calculates frame shape data, particularly rim shape data, using the input digital signal. For example, the arithmetic circuit 118 calculates the tilt angle of the frame by three-dimensional measurement, and measures the outer shape of the leveled frame by tilting the tilt angle.
  • the calculated shape data includes two-dimensional data and three-dimensional data.
  • the output IF 119 outputs the shape data obtained by the arithmetic circuit 118 to the outside of the frame tracer 110.
  • the shape data is input to the terminal 120.
  • the terminal 120 receives the data acquired by the frame tracer 110.
  • the terminal 120 is realized by, for example, a general-purpose computer having a known configuration. General purpose computers may include desktop terminals, laptop terminals, tablet terminals, and the like.
  • the terminal 120 is connected to the terminal 130.
  • the terminal 120 transmits to the terminal 130 the shape data obtained by the measurement of the frame and the order data requesting the processing of the lens used for the frame.
  • the terminal 130 receives each data transmitted from the terminal 120.
  • the terminal 130 is also realized by a general-purpose computer having a known configuration, similarly to the terminal 120.
  • the terminal 130 verifies by simulation whether or not lens processing using the received data is actually possible.
  • the terminal 130 transmits to the terminal 120 that the order for requesting the lens processing has been received. Further, terminal 130 transmits the data to lens processing machine 140.
  • the terminal 130 confirms that lens processing using the received data cannot be realized, the terminal 130 notifies the terminal 120 of the fact and does not accept an order based on the order data.
  • the groove rim line
  • the lens processing machine 140 When the order is accepted, the lens processing machine 140 performs the step processing of the lens using the shape data received by the terminal 130 from the terminal 120.
  • the processed lens is transmitted to the spectacles store 101 as a processed lens when it is determined that the lens is non-defective after a predetermined inspection process.
  • the terminal 120 may transmit shape data of the outer shape of the frame and shape data of the rim to a terminal (not shown) used by the lens designer.
  • the lens designer can design the lens using these shape data and change the specifications of the lens as needed, so that the design efficiency can be improved.
  • the frame tracer 110 shown in FIG. 1 may include, but is not limited to, at least one processor (CPU), at least one ASIC (Application Specific Integrated Circuit), and / or at least one FPGA (Field Programmable Gate Array). It can be realized by a circuit including at least one semiconductor integrated circuit.
  • the at least one processor is configured to perform all or some functions of the frame tracer 110 by reading one or more instructions from at least one tangible machine-readable storage medium.
  • Such storage media include, but are not limited to, any kind of hard disk, any kind of optical medium such as CD (Compact Disc) or DVD (Digital Verstaile Disc), any kind of medium such as volatile memory and non-volatile memory. It can take many forms, including a semiconductor memory.
  • Volatile media can include DRAM (Dynamic Random Access Memory) and SRAM (Static Random Access Memory). Non-volatile media may include ROM (Read Only Memory) or NVRAM (Non-Volatile RAM).
  • a semiconductor memory can also be a semiconductor circuit that can be part of a circuit with at least one processor.
  • the ASIC may be an integrated circuit configured to perform all or some of the functions shown in FIG.
  • An FPGA may be an integrated circuit configured to perform, after manufacture, all or some of the functions illustrated in FIG.
  • FIG. 2 is a block diagram showing a hardware configuration of general-purpose computer 200 functioning as terminal 120 or terminal 130.
  • the computer 200 includes, as main components, a CPU (Central Processing Unit) 1 for executing a program, a mouse 2 and a keyboard 3 for receiving an instruction input by a user of the computer 200, and data generated by execution of the program by the CPU 1.
  • a RAM 4 for volatilely storing data input via the mouse 2 or the keyboard 3
  • a hard disk 5 for nonvolatilely storing data
  • Each component is mutually connected by a bus.
  • the optical disk drive 6 is loaded with a CD-ROM 9 and other optical disks.
  • the communication IF 7 includes, but is not limited to, a USB (Universal Serial Bus) interface, a wired LAN (Local Area Network), a wireless LAN, a Bluetooth (registered trademark) interface, and the like.
  • the processing in the computer 200 is realized by each hardware and software executed by the CPU 1.
  • Such software may be stored in the hard disk 5 in advance.
  • the software is stored in a CD-ROM 9 or other non-volatile computer-readable data recording medium, and is distributed as a program product.
  • the software may be provided as a downloadable program product by an information provider connected to the Internet or another network.
  • Such software is temporarily stored in the hard disk 5 after being read from the data recording medium by the optical disk drive 6 or another data reader, or downloaded via the communication IF 7.
  • the software is read from the hard disk 5 by the CPU 1 and stored in the RAM 4 in the form of an executable program.
  • CPU 1 executes the program.
  • Each component constituting the computer 200 shown in FIG. 2 is a general component. Therefore, it can be said that an essential part according to the present embodiment is a program stored in computer 200. Since the operation of the hardware of computer 200 is well known, detailed description will not be repeated.
  • the data recording medium is not limited to a CD-ROM, FD (Flexible Disk), and hard disk, but may be a magnetic tape, a cassette tape, an optical disk (MO (Magnetic Optical Disc) / MD (Mini Disc) / DVD (Digital Versatile Disc)). ), IC (Integrated Circuit) card (including memory card), optical card, mask ROM, EPROM (Electronically Programmable Read-Only Memory), EEPROM (Electronically Erasable Programmable Read-Only Memory), flash ROM, SSD (Solid State Drive) ) May be a non-volatile data recording medium that carries a fixed program such as a semiconductor memory.
  • IC Integrated Circuit
  • the program referred to here may include not only a program directly executable by the CPU but also a program in a source program format, a compressed program, an encrypted program, and the like.
  • FIG. 3 is a flowchart illustrating a part of the processing performed in system 100.
  • step S310 the system 100 three-dimensionally measures the frame with the frame tracer 110 having a known mechanical mechanism capable of tilting the frame, and calculates the tilt angle of the frame.
  • step S320 after calculating the tilt angle of the frame, the frame tracer 110 tilts the frame by a tilt mechanism equivalent to the tilt angle to bring the frame into a horizontal state with one eye.
  • step S330 the frame tracer 110 measures the outer shape of the frame again.
  • step S340 the frame tracer 110 raises the stylus along the concave rim of the frame while pressing the cylindrical portion of the stylus against the frame.
  • the frame tracer 110 applies 360 ° while applying a load upward. Rotate to measure the shape and obtain a three-dimensional shape.
  • step S350 the frame tracer 110 acquires frame shape data a (r ⁇ z, xyz) and step shape data b (r ⁇ z, xyz) as a result of the three-dimensional shape measurement.
  • the frame shape data a corresponds to data obtained by tracing a groove at the base of a rim constituting the frame.
  • the step shape data b corresponds to data obtained by tracing the end of the rim on the inner side (eyeball side) of the concave surface of the frame.
  • step S360 the frame tracer 110 replaces the acquired frame shape data a and step shape data b with the format of the conventional frame shape data. Further, the frame tracer 110 replaces the step shape data b with the radius data of the frame shape data a with the frame center as a reference point.
  • step S370 the frame tracer 110 converts the frame shape data a into frame shape data conforming to the VCA (Visual Clip Art) format.
  • the frame tracer 110 further converts the frame shape data a into shape data with the reference point of the step shape based on the step shape data b as the frame center.
  • step S380 terminal 120 transfers these two data from the front-end system to the factory server (for example, terminal 130) when transmitting the cut order.
  • the terminal 130 uses these data to determine whether or not the difference between the outer shape and the concave rim shape is equal to or greater than a predetermined value. For example, when the difference is 9 mm or more, the factory server (terminal 130) notifies the terminal 120 that the order cannot be received.
  • the terminal 130 determines that lens processing based on the data transmitted from the terminal 120 is possible, the terminal 130 transmits the frame shape data a and the step shape data b, and an instruction to start lens processing to the lens processing machine 140. I do.
  • the lens processing machine 140 processes the lens using these data.
  • the processed lens is sent from the lens maker 102 to the spectacle store 101.
  • FIG. 4 is a diagram illustrating an appearance of the frame tracer 110.
  • the frame tracer 110 includes a tilt mechanism 113 and a main body 410.
  • the tilt mechanism 113 can rotate by a tilt angle 420 by a rotation mechanism controlled by the control circuit 112 disposed inside the main body 410.
  • FIG. 5 is a diagram schematically illustrating how the frame tracer 110 measures the outer shape of the rim 401 of the frame 400.
  • stylus 115 is moved to the rim line of rim 401 in response to movement of actuator 114. Thereafter, the stylus 115 rotates and turns while maintaining the state of contact with the rim 401, and measures the shapes of the rim 401 for the right eye lens and the rim 402 for the left eye of the frame 400, respectively.
  • FIG. 6 is a diagram illustrating an appearance of stylus 115 according to one embodiment.
  • the stylus 115 has a protrusion 610.
  • the protrusion 610 hits the step, the contact state between the rim 401 and the stylus 115 is maintained.
  • FIG. 7 is a diagram showing a state in which stylus 115 according to one embodiment is in contact with the inner periphery of rim 401.
  • FIG. 8 is a cross-sectional view showing a state in which stylus 115 and rim 401 are in contact according to one embodiment.
  • the protrusion 610 is in contact with the side surface of a groove (rim line) formed on the inner periphery of the rim 401.
  • the end of the outer periphery of the step-processed lens is fitted into the groove. It is desirable that the outer diameter of the protrusion 610 be smaller than the interval between the grooves.
  • the shape of the protrusion 610 be cylindrical at the side surface and hemispherical at the tip (semicircular cross section). If the projection 610 is shaped like a flat plate and the stylus is scanned along the curve of the rim 401, the projection 610 may be caught by friction with the rim, and the rim shape may not be measured properly. is there. However, if the side surface of the protrusion 610 is cylindrical and the tip is hemispherical, the inside can be measured smoothly along the curve of the rim 401.
  • the stylus 115 is in contact with the end of the groove of the rim 401 on the protrusion 610 and the side surface of the shaft of the stylus 115.
  • the force by which the protrusion 610 presses the rim 401 acts on the stylus 115 so that this contact state is maintained.
  • a point 750 defines the inside of the rim groove serving as the lens outer shape.
  • the point 751 defines the inner diameter of the rim to be the step processing position.
  • FIG. 9 is a diagram illustrating the outer shape of the rim 401 obtained based on the two-dimensional shape data obtained by the frame tracer.
  • Line 910 represents the contour of the concave end of the frame. In one aspect, the contour corresponds to a contact portion between the stylus 115 and the rim 401.
  • the line 920 corresponds to a groove formed inside the rim 401.
  • FIG. 10 is a diagram showing the outer shape of the rim 401 obtained based on the three-dimensional shape data obtained by the frame tracer.
  • line 1010 represents the contour of the concave end of the frame.
  • the contour corresponds to a contact portion between the stylus 115 and the rim 401.
  • the line 1020 corresponds to a groove formed inside the rim 401.
  • the present embodiment it is possible to acquire accurate data of the step shape of the rim of the selected frame. As a result, the framing accuracy when the lens processed using the data is fitted to the rim of the frame is improved. Further, when processing the lens, the actual thing of the selected frame is not always necessary, so that the place where the frame is selected and the place where the lens is processed may be separated.
  • a potential customer selects a frame at a spectacles store, obtains shape data by measuring the outer shape of the selected frame, processes the lens using the shape data sent from the spectacles store, and processes It is also possible to send the obtained lens to an eyeglass store.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

The present invention discloses technology for measuring a frame shape in a way that enhances lens step processing accuracy. In the present invention, a frame tracer comprises a tilt mechanism (113) capable of making a frame horizontal, a stylus (115), a control circuit (112) for controlling the operation of the tilt mechanism and the stylus, and a calculation circuit (118) for calculating shape data on the basis of the output of the stylus. The control circuit controls an actuator (114) so as to make the stylus trace a groove part of a rim of an eyeglass frame and trace a step formed in the rim of the eyeglass frame. The calculation circuit (118) converts rim step shape data such that the frame center of shape data for the external shape of the frame is a common reference. An output interface (119) outputs the shape data for the external shape and the converted shape data to a terminal (120) connected to the frame tracer (110). Each type of output shape data is transmitted to a lens maker terminal (130).

Description

眼鏡フレームの形状データを取得するための装置および方法、レンズを提供するためのシステム、ならびに、一時的でないコンピュータ読取り可能な記録媒体Apparatus and method for obtaining shape data of eyeglass frame, system for providing lens, and non-transitory computer-readable recording medium
 本開示は眼鏡のレンズに関し、より特定的には、フレームに装着されるレンズを加工するためのデータを取得する技術に関する。 The present disclosure relates to spectacle lenses, and more specifically, to a technique for acquiring data for processing a lens mounted on a frame.
 眼鏡の提供において、眼鏡のユーザが選択したフレームの形状に適合するようにレンズを加工する技術が知られている。たとえば、特開2012-185490号公報(特許文献1)は、「眼鏡レンズの段付き加工形状を含む眼鏡レンズ加工形状を取得する」ための技術を開示している。当該技術によると、「眼鏡フレームのリムに取り付けられている備え付けレンズに代えて、備え付けレンズよりコバが厚い屈折力を持つ度付きレンズをリムに取り付けるための眼鏡レンズ加工形状取得方法は、備え付けレンズの輪郭を取得するレンズ輪郭取得ステップと、備え付けレンズがリムに取り付けられた状態で、前記備え付けレンズ面上での、リムの内側境界を取得するリム境界取得ステップと、を有し、備え付けレンズの輪郭に基づいて度付きレンズの外形加工形状を取得し、リムの内側境界に基づいて度付きレンズの段付き加工形状を取得する」というものである([要約]参照)。 提供 In providing eyeglasses, there is known a technique of processing a lens so as to conform to a shape of a frame selected by a user of the eyeglasses. For example, Japanese Patent Application Laid-Open No. 2012-185490 (Patent Document 1) discloses a technique for “obtaining a processed eyeglass lens shape including a stepped processed shape of an eyeglass lens”. According to the technique, `` instead of the provided lens attached to the rim of the spectacle frame, the method for obtaining a spectacle lens processing shape for attaching a prescription lens having a thicker refractive power than the provided lens to the rim comprises the provided lens A lens contour obtaining step of obtaining a contour of the mounted lens, and a rim boundary obtaining step of obtaining an inner boundary of the rim on the mounted lens surface in a state where the mounted lens is mounted on the rim. Acquire the external processing shape of the prescription lens based on the contour, and obtain the stepped processing shape of the prescription lens based on the inner boundary of the rim ”(see [abstract]).
特開2012-185490号公報JP 2012-185490 A
 従来の技術によると、レンズの全周のステップ加工は、測定によって得られたステップ量を用いて行なわれていたが、ステップ加工されたレンズの外形形状は、必ずしも品質的に優れているとは言い難かった。多くの場合、ステップ加工の前に事前の加工テストが必要であり、あるいは、サイズ微調整、ステップ形状の修正その他の微修正がステップ加工後に必要であった。 According to the conventional technology, the step processing of the entire circumference of the lens is performed using the step amount obtained by the measurement, but the outer shape of the step-processed lens is not necessarily excellent in quality. It was hard to say. In many cases, a pre-processing test is required before the step processing, or fine adjustment of the size, correction of the step shape, and other fine corrections are required after the step processing.
 また、外形形状を取得するための従来の技術によれば、加工業者のようにレンズの外形形状を取得する者が手元にフレームを有している場合に限り実現できる一方、手間がかかり、また、精度がよくない場合もあった。たとえば、レンズの外形をスキャンする際には、フレームからダミーレンズを取り外し、そのダミーレンズの凹面を上にした状態で水平になるようにスキャナーの土台に配置し、当該スキャナーによる二次元的なスキャンが行なわれていた。この場合、必ずしも凹面を上にしたレンズが水平の状態にあるとは言い難く、その結果、ステップ加工後のレンズの外形形状とフレームのリムの形状とが一致せず、レンズをフレームに入れた後の見た目が良くなかった。また、PD(Pupillary Distance)ずれや軸ずれも発生していた。 Further, according to the conventional technology for acquiring the external shape, it can be realized only when the person acquiring the external shape of the lens, such as a processor, has a frame at hand, but it takes time and effort. In some cases, the accuracy was not good. For example, when scanning the outer shape of the lens, remove the dummy lens from the frame, place it on the scanner base so that it is horizontal with the concave surface of the dummy lens facing up, and perform two-dimensional scanning with the scanner. Was being done. In this case, it is not always possible to say that the lens with the concave surface facing upward is in a horizontal state, and as a result, the outer shape of the lens after step processing does not match the shape of the rim of the frame, and the lens is inserted into the frame. The appearance after was not good. In addition, a PD (Pupillary Distance) deviation and an axis deviation also occurred.
 したがって、レンズのステップ加工の精度を高める技術が必要とされている。また、PDずれや軸ずれが発生しないようにレンズの外形形状を加工するための技術が必要とされている。 Therefore, there is a need for a technique for increasing the accuracy of lens step processing. Further, there is a need for a technique for processing the outer shape of a lens so that a PD shift or an axis shift does not occur.
 本開示は、上述のような問題点を解決するためになされたものであって、ある局面における目的は、レンズの加工精度が向上するように眼鏡フレームの形状を計測するための装置を提供することである。別の局面における目的は、フレームが手元にない場合でも当該フレームの形状に応じてレンズを加工できる装置を提供することである。 The present disclosure has been made in order to solve the above-described problems, and an object in one aspect is to provide an apparatus for measuring the shape of an eyeglass frame so that the processing accuracy of a lens is improved. That is. An object in another aspect is to provide an apparatus capable of processing a lens according to the shape of a frame even when the frame is not at hand.
 他の局面における目的は、レンズの加工精度が向上するシステムを提供することである。他の局面における目的は、レンズの加工精度が向上するように眼鏡フレームの形状を計測するための方法を提供することである。さらに他の局面における目的は、レンズの加工精度が向上するように眼鏡フレームの形状を計測する装置を制御するためのプログラムを提供することである。 目的 An object in another aspect is to provide a system in which the processing accuracy of a lens is improved. Another object of the present invention is to provide a method for measuring the shape of a spectacle frame such that the processing accuracy of a lens is improved. It is still another object of the present invention to provide a program for controlling an apparatus for measuring the shape of a spectacle frame so that the processing accuracy of a lens is improved.
 ある実施の形態に従うと、眼鏡フレームの形状を計測するための装置が提供される。この装置は、フレームの外形の形状データとフレームのリムの形状データとを取得するための取得手段と、リムの形状データの基準点が、外形の形状データに基づくフレームセンターとなるように、リムの形状データを変換するための変換手段と、外形の形状データと変換後のリムの形状データとを出力するための出力手段とを備える。 According to one embodiment, there is provided an apparatus for measuring a shape of an eyeglass frame. The apparatus includes: an acquiring unit configured to acquire shape data of the outer shape of the frame and shape data of the rim of the frame; and a rim such that a reference point of the shape data of the rim is a frame center based on the shape data of the outer shape. For converting the shape data of the rim, and output means for outputting the shape data of the outer shape and the converted rim shape data.
 他の実施の形態に従う、眼鏡フレームの形状を計測するための装置は、フレームの外形の形状データとフレームのリムの形状データとを取得するための取得手段と、外形の形状データの基準点が、リムの形状データに基づくフレームセンターとなるように、外形の形状データを変換するための変換手段と、外形の形状データと変換後のリムの形状データとを出力するための出力手段とを備える。 According to another embodiment, an apparatus for measuring the shape of a spectacle frame includes an acquisition unit for acquiring shape data of a frame outer shape and shape data of a rim of a frame, and a reference point of the shape data of the outer shape. A conversion unit for converting the shape data of the outer shape so as to be a frame center based on the shape data of the rim, and an output unit for outputting the shape data of the outer shape and the converted rim shape data. .
 ある実施の形態に従うと、出力手段は、フレームにはめ込まれるレンズの加工注文をさらに出力する。 According to one embodiment, the output means further outputs a processing order for a lens to be fitted to the frame.
 ある実施の形態に従うと、上記装置は、外形の形状データと変換後のリムの形状データとに基づくレンズの加工の可否を表示するための表示装置をさらに備える。 According to one embodiment, the apparatus further includes a display device for displaying whether or not the lens can be processed based on the external shape data and the converted rim shape data.
 ある実施の形態に従うと、フレームの外形の形状データを取得することは、3次元計測によりフレームのあおり角を算出することと、あおり角だけフレームを傾けることによりフレームを水平にすることと、水平にされたフレームの外形を計測することとを含む。 According to one embodiment, obtaining the shape data of the outer shape of the frame includes calculating a tilt angle of the frame by three-dimensional measurement, leveling the frame by tilting the frame by the tilt angle, Measuring the outer shape of the frame.
 ある実施の形態に従うと、取得手段は、スタイラスを含む。
 ある実施の形態に従うと、スタイラスは、その先端が半球面であるスタイラス、または、その断面が円形の一部であるスタイラスのいずれかを含む。
According to one embodiment, the obtaining means includes a stylus.
According to one embodiment, the stylus includes either a stylus whose tip is hemispherical or a stylus whose cross-section is part of a circle.
 ある実施の形態に従うと、リムの形状データを取得することは、スタイラスの円柱部分をフレームに押し付けながらスタイラスをフレームの凹面側のリムに沿って上昇させることと、スタイラスの上昇が停止した後に、スタイラスとリムとの接触状態を維持しつつ360度旋回させることとを含む。 According to one embodiment, obtaining the rim shape data comprises raising the stylus along the concave rim of the frame while pressing the cylindrical portion of the stylus against the frame, and, after the stylus has stopped rising, Turning 360 degrees while maintaining the contact state between the stylus and the rim is included.
 ある実施の形態に従うと、上記のいずれかに記載の装置と、当該装置から出力されるフレームの外形の形状データと、リムの形状データとを出力するための装置とを備える、レンズを提供するためのシステムが提供される。 According to an embodiment, there is provided a lens comprising: the device according to any one of the above, and a device for outputting shape data of the outer shape of the frame and shape data of the rim output from the device. A system is provided for:
 ある実施の形態に従うと、上記のいずれかに記載の装置と、フレームの外形の形状データと、リムの形状データとに基づくレンズを製造するための3Dプリンタとを備える、レンズを提供するためのシステムが提供される。 According to an embodiment, there is provided a lens comprising: the apparatus according to any of the above; and a 3D printer for manufacturing a lens based on shape data of a frame outer shape and shape data of a rim. A system is provided.
 ある実施の形態に従うと、眼鏡フレームの形状を計測するための方法が提供される。この方法は、フレームの外形の形状データを取得するステップと、フレームのリムの形状データを取得するステップと、リムの形状データの基準点が、外形の形状データに基づくフレームセンターとなるように、リムの形状データを変換するステップと、外形の形状データと変換後のリムの形状データとを出力するステップとを備える。 According to one embodiment, a method is provided for measuring the shape of a spectacle frame. In this method, the step of obtaining shape data of the outer shape of the frame, the step of obtaining shape data of the rim of the frame, and the reference point of the shape data of the rim is a frame center based on the shape data of the outer shape. The method includes a step of converting the rim shape data, and a step of outputting the shape data of the outer shape and the converted rim shape data.
 他の実施の形態に従うと、眼鏡フレームの形状を計測するための方法は、フレームの外形の形状データを取得するステップと、フレームのリムの形状データを取得するステップと、外形の形状データの基準点が、リムの形状データに基づくフレームセンターとなるように、外形の形状データを変換するステップと、外形の形状データと変換後のリムの形状データとを出力するステップとを備える。 According to another embodiment, a method for measuring a shape of a spectacle frame includes obtaining shape data of a shape of the frame, obtaining shape data of a rim of the frame, and determining a shape of the shape data of the shape. The method includes a step of converting the shape data of the outer shape so that the point becomes a frame center based on the shape data of the rim, and a step of outputting the shape data of the outer shape and the converted rim shape data.
 ある局面に従う方法おいて、出力するステップは、フレームにはめ込まれるレンズの加工注文をさらに出力することを含む。 お い て In the method according to an aspect, the outputting step further includes outputting a processing order of the lens to be fitted into the frame.
 ある局面に従う方法は、外形の形状データと変換後のリムの形状データとに基づくレンズの加工の可否を表示するステップをさらに備える。 方法 The method according to an aspect further includes a step of displaying whether or not the lens can be processed based on the shape data of the outer shape and the shape data of the converted rim.
 ある局面に従う方法において、フレームの外形の形状データを取得することは、3次元計測によりフレームのあおり角を算出することと、あおり角だけフレームを傾けることによりフレームを水平にすることと、水平にされたフレームの外形を計測することとを含む。 In a method according to an aspect, acquiring shape data of the outer shape of the frame includes calculating a tilt angle of the frame by three-dimensional measurement, leveling the frame by tilting the frame by the tilt angle, Measuring the outer shape of the completed frame.
 ある局面に従う方法において、取得するステップは、スタイラスにより形状データを取得することを含む。 方法 In a method according to an aspect, the step of obtaining includes obtaining shape data with a stylus.
 ある局面に従う方法において、リムの形状データを取得することは、スタイラスの円柱部分をフレームに押し付けながらスタイラスをフレームの凹面側のリムに沿って上昇させることと、スタイラスの上昇が停止した後に、スタイラスとリムとの接触状態を維持しつつ360度旋回させることとを含む。 In a method according to an aspect, acquiring the rim shape data includes raising the stylus along the concave rim of the frame while pressing the cylindrical portion of the stylus against the frame; and, after the stylus stops rising, the stylus. And turning 360 degrees while maintaining the contact state between the rim and the rim.
 他の実施の形態に従うと、眼鏡フレームの形状を計測するための装置を制御する複数の命令を格納した一時的でないコンピュータ読取り可能な記録媒体が提供される。複数の命令がコンピュータによって実行されると、複数の命令は、コンピュータに、水平状態のフレームの外形の形状データを取得するステップと、フレームの凹面側のリムの形状データを取得するステップと、リムの形状データの基準点が、外形の形状データに基づくフレームセンターとなるように、リムの形状データを変換するステップと、外形の形状データと変換後のリムの形状データとを出力するステップとを実行させる。 According to another embodiment, there is provided a non-transitory computer-readable recording medium storing a plurality of instructions for controlling an apparatus for measuring a shape of an eyeglass frame. When the plurality of instructions are executed by the computer, the plurality of instructions include: obtaining a shape data of an outer shape of the frame in a horizontal state; obtaining shape data of a rim on a concave side of the frame; Converting the shape data of the rim so that the reference point of the shape data is a frame center based on the shape data of the outer shape, and outputting the shape data of the outer shape and the converted rim shape data. Let it run.
 他の実施の形態に従う、一時的でないコンピュータ読取り可能な記録媒体において、複数の命令がコンピュータによって実行されると、当該複数の命令は、当該コンピュータに、フレームの外形の形状データを取得するステップと、フレームのリムの形状データを取得するステップと、外形の形状データの基準点が、リムの形状データに基づくフレームセンターとなるように、外形の形状データを変換するステップと、外形の形状データと変換後のリムの形状データとを出力するステップとを実行させる。 According to another embodiment, when a plurality of instructions are executed by a computer on a non-transitory computer-readable recording medium, the plurality of instructions cause the computer to obtain shape data of a frame outer shape. Acquiring the shape data of the frame rim, converting the shape data of the outer shape so that the reference point of the shape data of the outer shape is a frame center based on the shape data of the rim, Outputting the converted rim shape data.
 ある局面に従う一時的でないコンピュータ読取り可能な記録媒体において、出力するステップは、フレームにはめ込まれるレンズの加工注文をさらに出力することを含む。 に お い て In the non-transitory computer-readable recording medium according to an aspect, the outputting step further includes outputting a processing order of a lens to be fitted into the frame.
 ある局面に従う一時的でないコンピュータ読取り可能な記録媒体において、複数の命令がコンピュータによって実行されると、当該複数の命令は、当該コンピュータに、外形の形状データと変換後のリムの形状データとに基づくレンズの加工の可否を表示するステップをさらに実行させる。 In a non-transitory computer-readable recording medium according to an aspect, when a plurality of instructions are executed by a computer, the plurality of instructions are based on the shape data of the outer shape and the shape data of the converted rim. A step of displaying whether or not the lens can be processed is further executed.
 ある局面に従う一時的でないコンピュータ読取り可能な記録媒体において、フレームの外形の形状データを取得することは、3次元計測によりフレームのあおり角を算出することと、あおり角だけフレームを傾けることによりフレームを水平にすることと、水平にされたフレームの外形を計測することとを含む。 In a non-temporary computer-readable recording medium according to a certain aspect, acquiring the shape data of the outer shape of the frame includes calculating the tilt angle of the frame by three-dimensional measurement, and tilting the frame by the tilt angle. Leveling and measuring the profile of the leveled frame.
 ある局面に従う一時的でないコンピュータ読取り可能な記録媒体において、取得するステップは、スタイラスにより形状データを取得することを含む。 (4) In the non-transitory computer-readable recording medium according to an aspect, the step of acquiring includes acquiring shape data with a stylus.
 ある局面に従う一時的でないコンピュータ読取り可能な記録媒体において、リムの形状データを取得することは、スタイラスの円柱部分をフレームに押し付けながらスタイラスをフレームの凹面側のリムに沿って上昇させることと、スタイラスの上昇が停止した後に、スタイラスとリムとの接触状態を維持しつつ360度旋回させることとを含む。 In the non-transitory computer-readable recording medium according to an aspect, acquiring the rim shape data includes raising the stylus along the concave rim of the frame while pressing the cylindrical portion of the stylus against the frame; After the ascent of the stylus has stopped, turning 360 degrees while maintaining the contact state between the stylus and the rim.
 ある局面において、眼鏡フレームの外形形状を精度よく取得できるのでレンズの加工精度が向上し得る。別の局面において、フレームが手元にない場合でも当該フレームの形状に応じてレンズを加工することができる。 に お い て In one aspect, the external shape of the spectacle frame can be obtained with high accuracy, so that the processing accuracy of the lens can be improved. In another aspect, the lens can be processed according to the shape of the frame even when the frame is not at hand.
 この発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解されるこの発明に関する次の詳細な説明から明らかとなるであろう。 The above and other objects, features, aspects and advantages of the present invention will become apparent from the following detailed description of the present invention that is understood in connection with the accompanying drawings.
一実施の形態に従うシステム100の構成の概要を表す図である。FIG. 1 is a diagram illustrating an outline of a configuration of a system 100 according to an embodiment. 端末120または端末130として機能する汎用のコンピュータ200のハードウェア構成を表わすブロック図である。FIG. 4 is a block diagram illustrating a hardware configuration of a general-purpose computer 200 functioning as a terminal 120 or a terminal 130. システム100で行なわれる処理の一部を表すフローチャートである。3 is a flowchart illustrating a part of a process performed by the system 100. フレームトレーサ110の外観を表す図である。FIG. 3 is a diagram illustrating an appearance of a frame tracer 110. フレームトレーサ110がフレーム400のリム401の外形形状を測定する様子を模式的に表す図である。FIG. 4 is a diagram schematically illustrating a state where a frame tracer measures an outer shape of a rim of a frame. 一実施の形態に従うスタイラス115の外観を表す図である。FIG. 2 is a diagram illustrating an appearance of a stylus 115 according to one embodiment. 一実施の形態に従うスタイラス115がリム401の内周に接触している状態を表す図である。FIG. 3 is a diagram illustrating a state in which a stylus 115 according to one embodiment is in contact with an inner circumference of a rim 401. 一実施の形態に従うスタイラス115とリム401とが接触している状態を表す断面図である。FIG. 5 is a cross-sectional view illustrating a state in which stylus 115 and rim 401 are in contact according to one embodiment. フレームトレーサによって得られた二次元形状データに基づいて得られるリム401の外形を表す図である。FIG. 4 is a diagram illustrating an outer shape of a rim 401 obtained based on two-dimensional shape data obtained by a frame tracer. フレームトレーサによって得られた三次元形状データに基づいて得られるリム401の外形を表す図である。FIG. 4 is a diagram illustrating an outer shape of a rim 401 obtained based on three-dimensional shape data obtained by a frame tracer.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same components are denoted by the same reference numerals. Their names and functions are the same. Therefore, detailed description thereof will not be repeated.
 [概要]
 まず、本実施の形態において開示される技術思想の概要について説明する。フレームにはめ込まれるレンズをステップ加工するために、フレームの形状データ(ステップ形状のデータ)は、例えば、以下のように取得される。
[Overview]
First, an outline of the technical concept disclosed in the present embodiment will be described. In order to step-process a lens to be fitted into a frame, frame shape data (step shape data) is acquired, for example, as follows.
 (1)計測者は、公知の測定装置(フレームトレーサ)を用いてフレーム形状の3次元測定を行ない、測定装置は、フレームの煽り(あおり)角を算出する。 (1) The measurer performs three-dimensional measurement of the frame shape using a known measuring device (frame tracer), and the measuring device calculates the tilt angle of the frame.
 (2)フレームの煽り角が算出されると、測定装置のチルト機構は、その煽り角と同じ角度だけフレームを傾けて、当該フレームを片目水平の状態とする。当該チルト機構は、例えば、HOYA社から提供されているフレームトレーサ(品番:GT5000)に搭載されているFrame Swing方法により実現される。 (2) When the tilt angle of the frame is calculated, the tilt mechanism of the measuring device tilts the frame by the same angle as the tilt angle to make the frame horizontal with one eye. The tilt mechanism is realized by, for example, a Frame @ Swing method mounted on a frame tracer (product number: GT5000) provided by HOYA.
 (3)測定装置は、水平に維持されているフレームの外形形状を測定する。たとえば、測定装置は、レンズがはめ込まれるリムの基底部(溝部)をトレースすることにより、フレームの外形形状を測定し、測定結果を第1のフレーム形状として取得する。 (3) The measuring device measures the outer shape of the frame which is maintained horizontally. For example, the measuring device measures the outer shape of the frame by tracing the base (groove) of the rim on which the lens is fitted, and acquires the measurement result as the first frame shape.
 (4)測定装置は、第2のフレーム形状を取得する。例えば、測定装置は、スタイラスの円柱部分を当該フレームの内周部分に押しつけながら、フレームの凹面側のリムに沿ってスタイラスを上昇させる。スタイラスの突起部がフレームに当たるとスタイラスが停止する。スタイラスが停止すると、測定装置は、当該スタイラスの上方に負荷をかけることでスタイラスとフレームとの接触状態を維持しつつ、フレームの内周に沿ってスタイラスを一周させて、フレームの3次元形状データを取得する。 (4) The measurement device acquires the second frame shape. For example, the measuring device raises the stylus along the concave rim of the frame while pressing the cylindrical portion of the stylus against the inner peripheral portion of the frame. The stylus stops when the projection of the stylus hits the frame. When the stylus stops, the measuring device applies a load above the stylus to maintain the state of contact between the stylus and the frame, and makes the stylus make a full circuit along the inner periphery of the frame to obtain three-dimensional shape data of the frame. To get.
 (5)測定装置は、取得した二つの形状データを従来のフレーム形状データに変換し、フレームの凹面側のリムの形状データを、外形の形状データのフレームセンターを基準とする極座標系(r(θ))における半径データに変換する。変換する理由は、フレーム形状データに基づくフレームセンターと、リムの形状データに基づくフレームセンターとが一致しないためである。測定装置によって算出された変換後の各データは、データ通信端末に入力される。データ通信端末は、例えば、周知の構成を有する汎用コンピュータによって実現される。データ通信端末は、インターネット、VPN(Virtual Private Network)その他の通信回線により、レンズの加工機の制御装置に接続されている。加工機は眼鏡全体あるいはレンズを提供する事業者によって使用される。制御装置は、当該事業者によって、あるいは、当該事業者と密接な関係を有する第三者によって使用される。 (5) The measuring device converts the obtained two shape data into conventional frame shape data, and converts the shape data of the rim on the concave side of the frame into a polar coordinate system (r ( θ)). The reason for the conversion is that the frame center based on the frame shape data does not match the frame center based on the rim shape data. Each data after conversion calculated by the measuring device is input to the data communication terminal. The data communication terminal is realized by, for example, a general-purpose computer having a known configuration. The data communication terminal is connected to the control device of the lens processing machine via the Internet, a VPN (Virtual Private Network) or another communication line. The processing machine is used by the whole eyeglasses or by the companies that provide the lenses. The control device is used by the business operator or by a third party who has a close relationship with the business operator.
 (6)データ通信端末は、レンズの加工注文と、当該レンズについて取得された上記変換後の各形状データを、レンズメーカーの制御装置に送信する。制御装置が加工注文と各形状データを受信すると、レンズのステップ加工を依頼するための発注が成立する。 (6) The data communication terminal transmits the lens processing order and the converted shape data obtained for the lens to the control device of the lens maker. When the control device receives the processing order and each shape data, the order for requesting the step processing of the lens is established.
 (7)加工機は、各形状データに基づいてレンズを加工する。より詳しくは、通常のカット工程と同様に、マーキング、レンズブロックの後、レンズが加工機に投入される。制御装置は、加工機に、外形加工のための第1の形状データ(フレームの外形形状データ)と、ステップ加工のための第2の形状データ(リムの形状データ)とを加工機に送信する。加工機は、与えられたデータに従って、フレーム形状のフレームセンターを位置の基準として、外形加工およびステップ加工を行なう。 (7) The processing machine processes the lens based on each shape data. More specifically, after marking and a lens block, the lens is put into a processing machine in the same manner as in a normal cutting process. The control device transmits the first shape data (outer shape data of the frame) and the second shape data (rim shape data) of the step processing to the processing machine. . The processing machine performs the outer shape processing and the step processing based on the given data, with the frame center of the frame shape as a position reference.
 (8)レンズの加工が完了すると、レンズメーカは、レンズの周長を計測し、顧客(眼鏡販売店)に加工後のレンズ(カットレンズともいう。)を供給する。レンズをフレームに入れる注文が発行されている場合には、顧客は、レンズをフレームの枠(リム)に入れる。このような構成によれば、レンズの外周に形成されたステップ形状が、眼鏡フレームのリムの形状に対応していることが確実になるので、レンズをリムにはめ込む場合の精度が向上し得る。 (8) When the processing of the lens is completed, the lens maker measures the circumference of the lens and supplies the processed lens (also referred to as a cut lens) to a customer (a spectacles store). If an order to place the lens in the frame has been issued, the customer places the lens in the frame (rim) of the frame. According to such a configuration, it is ensured that the step shape formed on the outer periphery of the lens corresponds to the shape of the rim of the spectacle frame, so that the accuracy in fitting the lens to the rim can be improved.
 (9)なお、各形状データがレンズ加工について規定された条件を満たさない場合には、制御装置は、その旨をデータ通信端末に通知し得る。 (9) When each shape data does not satisfy the conditions specified for lens processing, the control device may notify the data communication terminal of the fact.
 (10)さらに別の局面において、レンズの試作品が、眼鏡フレームの計測により取得された各形状データを用いて作成されてもよい。例えば、フレームトレーサから出力される各形状データを用いる3Dプリンタがレンズを製造してもよい。この場合、眼鏡販売店は、一般ユーザが選択した眼鏡フレームに対して3Dプリンタで製造された試作レンズを入れることができる。一般ユーザは、試作レンズがはめ込まれた眼鏡を装着することにより使用感を確認することができる。 (10) In still another aspect, a prototype of a lens may be created using each shape data obtained by measuring the eyeglass frame. For example, the lens may be manufactured by a 3D printer using each shape data output from the frame tracer. In this case, the spectacles store can put the prototype lens manufactured by the 3D printer into the spectacle frame selected by the general user. A general user can check the usability by wearing spectacles in which the prototype lens is fitted.
 上記のようなアルゴリズムにより、フレームの内周のステップ形状が正確に取得されるので、当該フレームにはめ込まれるレンズの外周部も正確に加工できる。その結果、当該フレームと当該レンズからなる眼鏡全体の外観が向上し得る。 (4) Since the step shape of the inner circumference of the frame is accurately obtained by the above algorithm, the outer circumference of the lens to be fitted into the frame can be accurately processed. As a result, the overall appearance of the glasses including the frame and the lens can be improved.
 ステップ加工されたレンズは、フレームの内周部に形成された段差部によって保持される。レンズとフレームとのはめ合い精度が向上する結果、レンズがフレームに対して計測によって得られた所定の位置に嵌め合されるので、PDずれあるいは軸ずれのような位置決め不備に基づく不良の発生が抑制され得る。 The step-processed lens is held by the step formed on the inner peripheral portion of the frame. As a result of the improvement of the fitting accuracy between the lens and the frame, the lens is fitted to a predetermined position obtained by the measurement with respect to the frame. Can be suppressed.
 [システム構成]
 図1を参照して、眼鏡を提供するためのシステム100について説明する。図1は、一実施の形態に従うシステム100の構成の概要を表す図である。システム100は、眼鏡販売店101と、レンズメーカ102とによって実現される。眼鏡販売店101は、フレームトレーサ110と端末120とを備える。レンズメーカ102は、端末130とレンズ加工機140とを備える。端末120と端末130とは、例えばインターネットあるいはVPN(Virtual Private Network)によって、双方向に通信可能に接続されている。
[System configuration]
With reference to FIG. 1, a system 100 for providing glasses is described. FIG. 1 is a diagram showing an outline of a configuration of a system 100 according to one embodiment. The system 100 is realized by a spectacles store 101 and a lens maker 102. The eyeglass store 101 includes a frame tracer 110 and a terminal 120. The lens maker 102 includes a terminal 130 and a lens processing machine 140. The terminal 120 and the terminal 130 are communicably connected to each other by, for example, the Internet or a VPN (Virtual Private Network).
 フレームトレーサ110は、入力IF(Interface)111と、制御回路112と、チルト機構113と、アクチュエータ114と、スタイラス115と、増幅器116と、AD(Analog to Digital)コンバータ117と、演算回路118と、出力IF119とを備える。フレームトレーサ110は、メガネのフレームの形状、特に、リムの形状を測定する。たとえば、フレームトレーサ110は、リムの基底部(溝部、リム線)をトレースし、また、レンズを受ける端部をトレースする。ある局面に従うフレームにおいて、レンズの装着を受けるリムは、段差形状に構成されている。 The frame tracer 110 includes an input IF (Interface) 111, a control circuit 112, a tilt mechanism 113, an actuator 114, a stylus 115, an amplifier 116, an AD (Analog to Digital) converter 117, an arithmetic circuit 118, And an output IF 119. The frame tracer 110 measures the shape of the frame of the glasses, in particular, the shape of the rim. For example, the frame tracer 110 traces the base of the rim (groove, rim line) and traces the end receiving the lens. In a frame according to a certain aspect, a rim for receiving a lens is configured in a stepped shape.
 入力IF111は、フレームトレーサ110に対する指示の入力を受け付ける。入力IF111は、たとえば、タッチパネルその他のソフトキー、ダイヤルスイッチその他のハードキーによって実現される。 (4) The input IF 111 receives an input of an instruction to the frame tracer 110. The input IF 111 is implemented by, for example, a touch panel or other soft keys, a dial switch, or other hard keys.
 制御回路112は、入力IF111に対して与えられた指示に基づいて、フレームトレーサ110の動作を制御する。ある局面において、制御回路112は、チルト機構113の位置を制御する。別の局面において、制御回路112は、スタイラス115を移動あるいは旋回させるために、アクチュエータ114に命令を送る。 The control circuit 112 controls the operation of the frame tracer 110 based on an instruction given to the input IF 111. In one aspect, the control circuit 112 controls the position of the tilt mechanism 113. In another aspect, control circuit 112 sends commands to actuator 114 to move or pivot stylus 115.
 チルト機構113は、フレームの姿勢(傾き)を変えるために、回転するように構成されている。チルト機構113は、たとえば、フレームが載置されるトレイの傾きを変える。 The tilt mechanism 113 is configured to rotate in order to change the attitude (inclination) of the frame. The tilt mechanism 113 changes the inclination of the tray on which the frame is placed, for example.
 アクチュエータ114は、スタイラス115を旋回させる。また、アクチュエータ114は、リムの内周を回転するようにスタイラス115を移動させる。 The actuator 114 turns the stylus 115. Further, the actuator 114 moves the stylus 115 so as to rotate the inner circumference of the rim.
 増幅器116は、スタイラス115の移動に応じて出力されるアナログ信号を増幅する。増幅された信号は、ADコンバータ117に入力される。 Amplifier 116 amplifies an analog signal output according to movement of stylus 115. The amplified signal is input to the AD converter 117.
 ADコンバータ117は、アナログ信号をデジタル信号に変換する。デジタル信号は演算回路118に入力される。 The AD converter 117 converts an analog signal into a digital signal. The digital signal is input to the arithmetic circuit 118.
 演算回路118は、入力されたデジタル信号を用いて、フレームの形状データ、特に、リムの形状データを算出する。例えば、演算回路118は、3次元計測によりフレームのあおり角を算出し、あおり角だけ傾けることにより水平にされたフレームの外形を計測する。算出される形状データは、二次元データおよび三次元データを含む。 The arithmetic circuit 118 calculates frame shape data, particularly rim shape data, using the input digital signal. For example, the arithmetic circuit 118 calculates the tilt angle of the frame by three-dimensional measurement, and measures the outer shape of the leveled frame by tilting the tilt angle. The calculated shape data includes two-dimensional data and three-dimensional data.
 出力IF119は、演算回路118によって得られた形状データをフレームトレーサ110の外部に出力する。たとえば、形状データは、端末120に入力される。 The output IF 119 outputs the shape data obtained by the arithmetic circuit 118 to the outside of the frame tracer 110. For example, the shape data is input to the terminal 120.
 端末120は、フレームトレーサ110によって取得されたデータの入力を受ける。端末120は、例えば、周知の構成を有する汎用コンピュータによって実現される。汎用コンピュータは、デスクトップ端末、ラップトップ端末、タブレット端末等を含み得る。端末120は、端末130に接続されている。端末120は、フレームの計測によって得られた各形状データと、当該フレームに用いられるレンズの加工を依頼する発注データとを端末130に送信する。 The terminal 120 receives the data acquired by the frame tracer 110. The terminal 120 is realized by, for example, a general-purpose computer having a known configuration. General purpose computers may include desktop terminals, laptop terminals, tablet terminals, and the like. The terminal 120 is connected to the terminal 130. The terminal 120 transmits to the terminal 130 the shape data obtained by the measurement of the frame and the order data requesting the processing of the lens used for the frame.
 レンズメーカ102において、端末130は、端末120から送信された各データを受信する。端末130も、端末120と同様に、周知の構成を有する汎用コンピュータによって実現される。端末130は、受信した各データを用いたレンズ加工が実際に可能かどうかをシミュレーションにより検証する。端末130は、レンズ加工が実際に可能であることを確認すると、レンズの加工を依頼する注文を受け付けた旨を端末120に送信する。また、端末130は、そのデータをレンズ加工機140に送信する。他方、端末130は、受信した各データを用いたレンズ加工が実現できないことを確認すると、端末120にその旨を通知し、当該発注データに基づく発注を受け付けない。これにより、加工後のレンズがリムの内周に設けられた溝(リム線)に適切にはめ込めないという問題の発生を防止できる。 In the lens maker 102, the terminal 130 receives each data transmitted from the terminal 120. The terminal 130 is also realized by a general-purpose computer having a known configuration, similarly to the terminal 120. The terminal 130 verifies by simulation whether or not lens processing using the received data is actually possible. When confirming that the lens processing is actually possible, the terminal 130 transmits to the terminal 120 that the order for requesting the lens processing has been received. Further, terminal 130 transmits the data to lens processing machine 140. On the other hand, when the terminal 130 confirms that lens processing using the received data cannot be realized, the terminal 130 notifies the terminal 120 of the fact and does not accept an order based on the order data. Thus, it is possible to prevent the problem that the processed lens cannot be properly fitted into the groove (rim line) provided on the inner periphery of the rim.
 注文が受け付けられると、レンズ加工機140は、端末130が端末120から受信した形状データを用いて、レンズのステップ加工を行なう。加工後のレンズは、予め定められた検査工程を経て、当該レンズが良品であると判定されると、眼鏡販売店101に加工済みレンズとして送信される。 When the order is accepted, the lens processing machine 140 performs the step processing of the lens using the shape data received by the terminal 130 from the terminal 120. The processed lens is transmitted to the spectacles store 101 as a processed lens when it is determined that the lens is non-defective after a predetermined inspection process.
 別の局面において、端末120は、レンズデザイナーが使用する端末(図示しない)に対して、フレームの外形の形状データと、リムの形状データとを送信してもよい。レンズデザイナーは、これらの形状データを用いて、レンズを設計し、必要に応じてレンズの仕様を変更できるので、設計効率が向上し得る。 In another aspect, the terminal 120 may transmit shape data of the outer shape of the frame and shape data of the rim to a terminal (not shown) used by the lens designer. The lens designer can design the lens using these shape data and change the specifications of the lens as needed, so that the design efficiency can be improved.
 図1に示されるフレームトレーサ110は、以下に限定されないが、少なくとも一つのプロセッサ(CPU)、少なくとも一つのASIC(Application Specific Integrated Circuit)、および/または、少なくとも一つのFPGA(Field Programmable Gate Array)のような少なくとも一つの半導体集積回路を含む回路によって実現され得る。少なくとも一つのプロセッサは、少なくとも一つの機械読み取り可能な有形の記憶媒体から一つ以上の命令を読み取ることにより、フレームトレーサ110の全てのまたは一部の機能を実行するように構成されている。そのような記憶媒体は、以下に限定されないが、あらゆる種類のハードディスク、CD(Compact Disc)またはDVD(Digital Verstaile Disc)のようなあらゆる種類の光媒体、揮発メモリおよび不揮発メモリのようなあらゆる種類の半導体メモリを含む多くの形態をとり得る。揮発媒体は、DRAM(Dynamic Random Access Memory)およびSRAM(Static Random Access Memory)を含み得る。不揮発媒体は、ROM(Read Only Memory)またはNVRAM(Non-Volatile RAM)を含み得る。半導体メモリは、また、少なくとも一つのプロセッサと共に回路の一部になり得る半導体回路であり得る。ASICは、図1に示される全てのあるいは一部の機能を実行するように構成された集積回路であり得る。FPGAは、製造後に、図1に示される全てのあるいは一部の機能を実行するように構成された集積回路であり得る。 The frame tracer 110 shown in FIG. 1 may include, but is not limited to, at least one processor (CPU), at least one ASIC (Application Specific Integrated Circuit), and / or at least one FPGA (Field Programmable Gate Array). It can be realized by a circuit including at least one semiconductor integrated circuit. The at least one processor is configured to perform all or some functions of the frame tracer 110 by reading one or more instructions from at least one tangible machine-readable storage medium. Such storage media include, but are not limited to, any kind of hard disk, any kind of optical medium such as CD (Compact Disc) or DVD (Digital Verstaile Disc), any kind of medium such as volatile memory and non-volatile memory. It can take many forms, including a semiconductor memory. Volatile media can include DRAM (Dynamic Random Access Memory) and SRAM (Static Random Access Memory). Non-volatile media may include ROM (Read Only Memory) or NVRAM (Non-Volatile RAM). A semiconductor memory can also be a semiconductor circuit that can be part of a circuit with at least one processor. The ASIC may be an integrated circuit configured to perform all or some of the functions shown in FIG. An FPGA may be an integrated circuit configured to perform, after manufacture, all or some of the functions illustrated in FIG.
 [端末の構成]
 図2を参照して、端末120,端末130を実現するコンピュータの構成について説明する。図2は、端末120または端末130として機能する汎用のコンピュータ200のハードウェア構成を表わすブロック図である。
[Terminal configuration]
With reference to FIG. 2, a configuration of a computer that realizes the terminals 120 and 130 will be described. FIG. 2 is a block diagram showing a hardware configuration of general-purpose computer 200 functioning as terminal 120 or terminal 130.
 コンピュータ200は、主たる構成要素として、プログラムを実行するCPU(Central Processing Unit)1と、コンピュータ200のユーザによる指示の入力を受けるマウス2およびキーボード3と、CPU1によるプログラムの実行により生成されたデータ、又はマウス2若しくはキーボード3を介して入力されたデータを揮発的に格納するRAM4と、データを不揮発的に格納するハードディスク5と、光ディスク駆動装置6と、モニタ8と、通信IF(Interface)7とを備える。各構成要素は、相互にバスによって接続されている。光ディスク駆動装置6には、CD-ROM9その他の光ディスクが装着される。通信IF7は、USB(Universal Serial Bus)インターフェイス、有線LAN(Local Area Network)、無線LAN、Bluetooth(登録商標)インターフェイス等を含むが、これらに限られない。 The computer 200 includes, as main components, a CPU (Central Processing Unit) 1 for executing a program, a mouse 2 and a keyboard 3 for receiving an instruction input by a user of the computer 200, and data generated by execution of the program by the CPU 1. Alternatively, a RAM 4 for volatilely storing data input via the mouse 2 or the keyboard 3, a hard disk 5 for nonvolatilely storing data, an optical disk drive 6, a monitor 8, and a communication IF (Interface) 7. Is provided. Each component is mutually connected by a bus. The optical disk drive 6 is loaded with a CD-ROM 9 and other optical disks. The communication IF 7 includes, but is not limited to, a USB (Universal Serial Bus) interface, a wired LAN (Local Area Network), a wireless LAN, a Bluetooth (registered trademark) interface, and the like.
 コンピュータ200における処理は、各ハードウェアと、CPU1により実行されるソフトウェアとによって実現される。このようなソフトウェアは、ハードディスク5に予め格納されている場合がある。また、ソフトウェアは、CD-ROM9その他のコンピュータ読み取り可能な不揮発性のデータ記録媒体に格納されて、プログラム製品として流通している場合もある。あるいは、当該ソフトウェアは、インターネットその他のネットワークに接続されている情報提供事業者によってダウンロード可能なプログラム製品として提供される場合もある。このようなソフトウェアは、光ディスク駆動装置6その他のデータ読取装置によってデータ記録媒体から読み取られて、あるいは、通信IF7を介してダウンロードされた後、ハードディスク5に一旦格納される。そのソフトウェアは、CPU1によってハードディスク5から読み出され、RAM4に実行可能なプログラムの形式で格納される。CPU1は、そのプログラムを実行する。 The processing in the computer 200 is realized by each hardware and software executed by the CPU 1. Such software may be stored in the hard disk 5 in advance. In some cases, the software is stored in a CD-ROM 9 or other non-volatile computer-readable data recording medium, and is distributed as a program product. Alternatively, the software may be provided as a downloadable program product by an information provider connected to the Internet or another network. Such software is temporarily stored in the hard disk 5 after being read from the data recording medium by the optical disk drive 6 or another data reader, or downloaded via the communication IF 7. The software is read from the hard disk 5 by the CPU 1 and stored in the RAM 4 in the form of an executable program. CPU 1 executes the program.
 図2に示されるコンピュータ200を構成する各構成要素は、一般的なものである。したがって、本実施の形態に係る本質的な部分は、コンピュータ200に格納されたプログラムであるともいえる。コンピュータ200のハードウェアの動作は周知であるので、詳細な説明は繰り返さない。 各 Each component constituting the computer 200 shown in FIG. 2 is a general component. Therefore, it can be said that an essential part according to the present embodiment is a program stored in computer 200. Since the operation of the hardware of computer 200 is well known, detailed description will not be repeated.
 なお、データ記録媒体としては、CD-ROM、FD(Flexible Disk)、ハードディスクに限られず、磁気テープ、カセットテープ、光ディスク(MO(Magnetic Optical Disc)/MD(Mini Disc)/DVD(Digital Versatile Disc))、IC(Integrated Circuit)カード(メモリカードを含む)、光カード、マスクROM、EPROM(Electronically Programmable Read-Only Memory)、EEPROM(Electronically Erasable Programmable Read-Only Memory)、フラッシュROM、SSD(Solid State Drive)などの半導体メモリ等の固定的にプログラムを担持する不揮発性のデータ記録媒体でもよい。 The data recording medium is not limited to a CD-ROM, FD (Flexible Disk), and hard disk, but may be a magnetic tape, a cassette tape, an optical disk (MO (Magnetic Optical Disc) / MD (Mini Disc) / DVD (Digital Versatile Disc)). ), IC (Integrated Circuit) card (including memory card), optical card, mask ROM, EPROM (Electronically Programmable Read-Only Memory), EEPROM (Electronically Erasable Programmable Read-Only Memory), flash ROM, SSD (Solid State Drive) ) May be a non-volatile data recording medium that carries a fixed program such as a semiconductor memory.
 ここでいうプログラムとは、CPUにより直接実行可能なプログラムだけでなく、ソースプログラム形式のプログラム、圧縮処理されたプログラム、暗号化されたプログラム等を含み得る。 プ ロ グ ラ ム The program referred to here may include not only a program directly executable by the CPU but also a program in a source program format, a compressed program, an encrypted program, and the like.
 [制御構造]
 図3を参照して、システム100の制御構造について説明する。図3は、システム100で行なわれる処理の一部を表すフローチャートである。
[Control structure]
A control structure of the system 100 will be described with reference to FIG. FIG. 3 is a flowchart illustrating a part of the processing performed in system 100.
 ステップS310にて、システム100は、フレームをチルトさせることのできる公知のメカ機構を有したフレームトレーサ110でフレームを3次元的に測定し、フレームの煽り角を算出する。 In step S310, the system 100 three-dimensionally measures the frame with the frame tracer 110 having a known mechanical mechanism capable of tilting the frame, and calculates the tilt angle of the frame.
 ステップS320にて、フレームトレーサ110は、フレームの煽り角を算出したら、そのあおり角と同等なだけチルト機構でフレームを傾け、フレームを片眼水平の状態にする。 In step S320, after calculating the tilt angle of the frame, the frame tracer 110 tilts the frame by a tilt mechanism equivalent to the tilt angle to bring the frame into a horizontal state with one eye.
 ステップS330にて、フレームトレーサ110は、フレームの外形形状を再度測定する。 In step S330, the frame tracer 110 measures the outer shape of the frame again.
 ステップS340にて、フレームトレーサ110は、スタイラスの円柱部分をフレームに押しつけながら、スタイラスをフレームの凹面側のリムに沿って上昇させ、スタイラスがある位置で停止したら、上方に負荷をかけながら360度回転させて形状測定を行い、3次元形状を取得する。 In step S340, the frame tracer 110 raises the stylus along the concave rim of the frame while pressing the cylindrical portion of the stylus against the frame. When the stylus stops at a position where the stylus is located, the frame tracer 110 applies 360 ° while applying a load upward. Rotate to measure the shape and obtain a three-dimensional shape.
 ステップS350にて、フレームトレーサ110は、3次元の形状測定の結果として、フレーム形状データa(rθz,xyz)と、ステップ形状データb(rθz,xyz)とを取得する。ある局面において、フレーム形状データaは、フレームを構成するリムの基底にある溝部のトレースにより得られるデータに相当する。ステップ形状データbは、フレームの凹面の内側(眼球側)のリムの端部をトレースすることにより得られるデータに相当する。 In step S350, the frame tracer 110 acquires frame shape data a (rθz, xyz) and step shape data b (rθz, xyz) as a result of the three-dimensional shape measurement. In a certain aspect, the frame shape data a corresponds to data obtained by tracing a groove at the base of a rim constituting the frame. The step shape data b corresponds to data obtained by tracing the end of the rim on the inner side (eyeball side) of the concave surface of the frame.
 ステップS360にて、フレームトレーサ110は、取得したフレーム形状データa、ステップ形状データbを従来のフレーム形状データの形式に置換する。さらに、フレームトレーサ110は、ステップ形状データbを、フレーム形状データaについてのフレームセンターを基準点とする半径データに置換する。 In step S360, the frame tracer 110 replaces the acquired frame shape data a and step shape data b with the format of the conventional frame shape data. Further, the frame tracer 110 replaces the step shape data b with the radius data of the frame shape data a with the frame center as a reference point.
 ステップS370にて、フレームトレーサ110は、フレーム形状データaをVCA(Visual Clip Art)形式に則ったフレーム形状データに変換する。フレームトレーサ110は、さらに、フレーム形状データaを、ステップ形状データbに基づくステップ形状の基準点をフレームセンターとする形状データに変換する。 In step S370, the frame tracer 110 converts the frame shape data a into frame shape data conforming to the VCA (Visual Clip Art) format. The frame tracer 110 further converts the frame shape data a into shape data with the reference point of the step shape based on the step shape data b as the frame center.
 ステップS380にて、端末120は、カットオーダー送信時に、これら2つのデータをフロントエンドシステムから工場サーバー(たとえば、端末130)へ転送する。オーダーを受信すると、端末130は、これらのデータを用いて、外形形状と凹面側リム形状との差が予め定められた値以上あるか否かを判断する。例えば、この差が9mm以上ある場合には、工場サーバー(端末130)は、当該注文を受けられない旨を端末120に通知する。他方、端末130は、端末120から送られたデータに基づくレンズ加工が可能であると判断すると、フレーム形状データaおよびステップ形状データbと、レンズ加工を開始する命令とをレンズ加工機140に送信する。レンズ加工機140は、これらのデータを用いてレンズを加工する。加工されたレンズは、レンズメーカ102から眼鏡販売店101に送られる。 In step S380, terminal 120 transfers these two data from the front-end system to the factory server (for example, terminal 130) when transmitting the cut order. Upon receiving the order, the terminal 130 uses these data to determine whether or not the difference between the outer shape and the concave rim shape is equal to or greater than a predetermined value. For example, when the difference is 9 mm or more, the factory server (terminal 130) notifies the terminal 120 that the order cannot be received. On the other hand, if the terminal 130 determines that lens processing based on the data transmitted from the terminal 120 is possible, the terminal 130 transmits the frame shape data a and the step shape data b, and an instruction to start lens processing to the lens processing machine 140. I do. The lens processing machine 140 processes the lens using these data. The processed lens is sent from the lens maker 102 to the spectacle store 101.
 図4を参照して、フレームトレーサ110の構成について説明する。図4は、フレームトレーサ110の外観を表す図である。フレームトレーサ110は、チルト機構113と本体410とを備える。チルト機構113は、本体410の内部に配置されている制御回路112によって制御される回転機構により、チルト角420だけ回転し得る。 (4) The configuration of the frame tracer 110 will be described with reference to FIG. FIG. 4 is a diagram illustrating an appearance of the frame tracer 110. The frame tracer 110 includes a tilt mechanism 113 and a main body 410. The tilt mechanism 113 can rotate by a tilt angle 420 by a rotation mechanism controlled by the control circuit 112 disposed inside the main body 410.
 図5を参照して、フレームトレーサ110についてさらに説明する。図5は、フレームトレーサ110がフレーム400のリム401の外形形状を測定する様子を模式的に表す図である。ある局面において、スタイラス115は、アクチュエータ114の運動に応じてリム401のリム線まで移動される。その後、スタイラス115は、リム401との接触状態を維持した状態で回転および旋回して、フレーム400の右目レンズ用のリム401および左目用のリム402の形状をそれぞれ計測する。 (5) The frame tracer 110 will be further described with reference to FIG. FIG. 5 is a diagram schematically illustrating how the frame tracer 110 measures the outer shape of the rim 401 of the frame 400. In one aspect, stylus 115 is moved to the rim line of rim 401 in response to movement of actuator 114. Thereafter, the stylus 115 rotates and turns while maintaining the state of contact with the rim 401, and measures the shapes of the rim 401 for the right eye lens and the rim 402 for the left eye of the frame 400, respectively.
 図6を参照して、スタイラス115の構造について説明する。図6は、一実施の形態に従うスタイラス115の外観を表す図である。スタイラス115は、突起部610を有する。リムの内周がリム線による段差を有する場合、突起部610は段差に当たると、リム401とスタイラス115との接触状態が維持される。 With reference to FIG. 6, the structure of the stylus 115 will be described. FIG. 6 is a diagram illustrating an appearance of stylus 115 according to one embodiment. The stylus 115 has a protrusion 610. When the inner periphery of the rim has a step due to the rim wire, when the protrusion 610 hits the step, the contact state between the rim 401 and the stylus 115 is maintained.
 図7および図8を参照して、フレームとスタイラスとの関係について説明する。図7は、一実施の形態に従うスタイラス115がリム401の内周に接触している状態を表す図である。図8は、一実施の形態に従うスタイラス115とリム401とが接触している状態を表す断面図である。 関係 The relationship between the frame and the stylus will be described with reference to FIGS. FIG. 7 is a diagram showing a state in which stylus 115 according to one embodiment is in contact with the inner periphery of rim 401. FIG. FIG. 8 is a cross-sectional view showing a state in which stylus 115 and rim 401 are in contact according to one embodiment.
 図7に示されるように、突起部610は、リム401の内周に形成された溝(リム線)の側面に接触している。その溝には、ステップ加工されたレンズの外周の端部が嵌め合される。突起部610の外径は、溝の間隔よりも小さいことが望ましい。 突起 As shown in FIG. 7, the protrusion 610 is in contact with the side surface of a groove (rim line) formed on the inner periphery of the rim 401. The end of the outer periphery of the step-processed lens is fitted into the groove. It is desirable that the outer diameter of the protrusion 610 be smaller than the interval between the grooves.
 また、ある局面において、突起部610の形状は、その側面が円筒であり、かつ先端が半球面状(断面が半円形状)であることが好ましい。仮に、突起部610が平たい板のような形状である場合、リム401のカーブに沿ってスタイラスを走査させると、突起部610がリムとの摩擦によって引っかかり、うまくリムの形状を測定できない可能性がある。しかしながら、突起部610の側面が円筒であり、かつ先端が半球面状であれば、リム401のカーブに沿って内側を滑らかに測定することができる。 In addition, in one aspect, it is preferable that the shape of the protrusion 610 be cylindrical at the side surface and hemispherical at the tip (semicircular cross section). If the projection 610 is shaped like a flat plate and the stylus is scanned along the curve of the rim 401, the projection 610 may be caught by friction with the rim, and the rim shape may not be measured properly. is there. However, if the side surface of the protrusion 610 is cylindrical and the tip is hemispherical, the inside can be measured smoothly along the curve of the rim 401.
 図8に示されるように、より詳しくは、ある局面において、スタイラス115は、突起部610と、スタイラス115の軸の側面とにおいて、リム401の溝の端部と接触している。この接触の状態が維持されるように、突起部610がリム401を押す力がスタイラス115に作用している。図8において、点750は、レンズ外形となるリム溝内側を規定する。点751は、ステップ加工位置となるリム内径を規定する。 As shown in FIG. 8, more specifically, in one aspect, the stylus 115 is in contact with the end of the groove of the rim 401 on the protrusion 610 and the side surface of the shaft of the stylus 115. The force by which the protrusion 610 presses the rim 401 acts on the stylus 115 so that this contact state is maintained. In FIG. 8, a point 750 defines the inside of the rim groove serving as the lens outer shape. The point 751 defines the inner diameter of the rim to be the step processing position.
 図9および図10を参照して、形状データに基づいて得られる外形について説明する。図9は、フレームトレーサによって得られた二次元形状データに基づいて得られるリム401の外形を表す図である。線910は、フレームの凹面側の端部の輪郭を表す。ある局面において、当該輪郭は、スタイラス115とリム401との接触部分に相当する。線920は、リム401の内側に形成された溝部に相当する。 With reference to FIG. 9 and FIG. 10, the outer shape obtained based on the shape data will be described. FIG. 9 is a diagram illustrating the outer shape of the rim 401 obtained based on the two-dimensional shape data obtained by the frame tracer. Line 910 represents the contour of the concave end of the frame. In one aspect, the contour corresponds to a contact portion between the stylus 115 and the rim 401. The line 920 corresponds to a groove formed inside the rim 401.
 図10は、フレームトレーサによって得られた三次元形状データに基づいて得られるリム401の外形を表す図である。図9に示される場合と同様に、線1010は、フレームの凹面側の端部の輪郭を表す。ある局面において、当該輪郭は、スタイラス115とリム401との接触部分に相当する。線1020は、リム401の内側に形成された溝部に相当する。 FIG. 10 is a diagram showing the outer shape of the rim 401 obtained based on the three-dimensional shape data obtained by the frame tracer. As in the case shown in FIG. 9, line 1010 represents the contour of the concave end of the frame. In one aspect, the contour corresponds to a contact portion between the stylus 115 and the rim 401. The line 1020 corresponds to a groove formed inside the rim 401.
 以上のようにして、本実施の形態によれば、選択されたフレームのリムのステップ形状の正確なデータを取得することが可能になる。その結果、そのデータを用いて加工されたレンズを当該フレームのリムにはめ込む場合の枠入れ精度が向上する。また、レンズを加工する際に、選択されたフレームの現物は必ずしも必要ではなくなるので、フレームが選択される場所とレンズを加工する場所とが離れていてもよい。したがって、たとえば、眼鏡販売店においてフレームを潜在顧客に選択させ、選択されたフレームの外形を計測することにより形状データを取得し、眼鏡販売店から送られる形状データを用いてレンズを加工し、加工されたレンズを眼鏡販売店に送付することも可能になる。 As described above, according to the present embodiment, it is possible to acquire accurate data of the step shape of the rim of the selected frame. As a result, the framing accuracy when the lens processed using the data is fitted to the rim of the frame is improved. Further, when processing the lens, the actual thing of the selected frame is not always necessary, so that the place where the frame is selected and the place where the lens is processed may be separated. Thus, for example, a potential customer selects a frame at a spectacles store, obtains shape data by measuring the outer shape of the selected frame, processes the lens using the shape data sent from the spectacles store, and processes It is also possible to send the obtained lens to an eyeglass store.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 2 マウス、3 キーボード、4 RAM、5 ハードディスク、6 光ディスク駆動装置、7 通信IF 8 モニタ、9 ROM、100 システム、101 眼鏡販売店、102 レンズメーカ、110 フレームトレーサ、112 制御回路、113 チルト機構、114 アクチュエータ、115 スタイラス、116 増幅器、117 コンバータ、118 演算回路、120,130 端末、140 レンズ加工機、200 コンピュータ、400 フレーム、401,402 リム、410 本体、420 チルト角、610 突起部、910,920,1010,1020 線。 2 mouse, 3 keyboard, 4 RAM, 5 hard disk, 6 optical disk drive, 7 communication IF 8 monitor, 9 ROM, 100 system, 101 eyeglass store, 102 lens manufacturer, 110 frame tracer, 112 control circuit, 113 tilt mechanism, 114 actuator, 115 stylus, 116 amplifier, 117 converter, 118 operation circuit, 120, 130 terminal, 140 lens processing machine, 200 computer, 400 frame, 401, 402 rim, 410 body, 420 tilt angle, 610 projection, 910, 920, 1010, 1020 line.

Claims (20)

  1.  眼鏡フレームの形状を計測するための装置であって、
     フレームの外形の形状データと前記フレームのリムの形状データとを取得するための取得手段と、
     前記リムの形状データの基準点が、前記外形の形状データに基づくフレームセンターとなるように、前記リムの形状データを変換するための変換手段と、
     前記外形の形状データと変換後の前記リムの形状データとを出力するための出力手段とを備える、装置。
    An apparatus for measuring the shape of the eyeglass frame,
    Acquisition means for acquiring shape data of the outer shape of the frame and shape data of the rim of the frame,
    Conversion means for converting the shape data of the rim so that the reference point of the shape data of the rim is a frame center based on the shape data of the outer shape;
    An output unit configured to output the shape data of the outer shape and the shape data of the rim after the conversion.
  2.  眼鏡フレームの形状を計測するための装置であって、
     フレームの外形の形状データと前記フレームのリムの形状データとを取得するための取得手段と、
     前記外形の形状データの基準点が、前記リムの形状データに基づくフレームセンターとなるように、前記外形の形状データを変換するための変換手段と、
     前記外形の形状データと変換後の前記リムの形状データとを出力するための出力手段とを備える、装置。
    An apparatus for measuring the shape of the eyeglass frame,
    Acquisition means for acquiring shape data of the outer shape of the frame and shape data of the rim of the frame,
    Conversion means for converting the shape data of the outer shape so that a reference point of the shape data of the outer shape is a frame center based on the shape data of the rim;
    An output unit configured to output the shape data of the outer shape and the shape data of the rim after the conversion.
  3.  前記出力手段は、前記フレームにはめ込まれるレンズの加工注文をさらに出力する、請求項1または2に記載の装置。 The apparatus according to claim 1 or 2, wherein the output unit further outputs a processing order for a lens to be fitted to the frame.
  4.  前記外形の形状データと変換後の前記リムの形状データとに基づくレンズの加工の可否を表示するための表示装置をさらに備える、請求項1~3のいずれかに記載の装置。 The apparatus according to any one of claims 1 to 3, further comprising a display device for displaying whether or not the lens can be processed based on the shape data of the outer shape and the converted shape data of the rim.
  5.  前記フレームの外形の形状データを取得することは、
     3次元計測により前記フレームのあおり角を算出することと、
     前記あおり角だけ前記フレームを傾けることにより前記フレームを水平にすることと、
     水平にされた前記フレームの外形を計測することとを含む、請求項1~4のいずれかに記載の装置。
    Acquiring the shape data of the outer shape of the frame,
    Calculating the tilt angle of the frame by three-dimensional measurement;
    Leveling the frame by tilting the frame by the tilt angle,
    The apparatus according to any of the preceding claims, comprising measuring an outline of the frame that has been leveled.
  6.  前記取得手段は、スタイラスを含む、請求項1~5のいずれかに記載の装置。 The apparatus according to any one of claims 1 to 5, wherein the acquisition unit includes a stylus.
  7.  前記スタイラスは、その先端が半球面であるスタイラス、または、その断面が円形の一部であるスタイラスのいずれかを含む、請求項6に記載の装置。 7. The apparatus according to claim 6, wherein the stylus includes a stylus having a hemispherical tip or a stylus having a circular cross section.
  8.  前記リムの形状データを取得することは、
     前記スタイラスの円柱部分を前記フレームに押し付けながら前記スタイラスを前記フレームの凹面側のリムに沿って上昇させることと、
     前記スタイラスの上昇が停止した後に、前記スタイラスと前記リムとの接触状態を維持しつつ360度旋回させることとを含む、請求項6または7に記載の装置。
    Acquiring the rim shape data includes:
    Raising the stylus along the concave rim of the frame while pressing the cylindrical portion of the stylus against the frame;
    The apparatus according to claim 6 or 7, further comprising: rotating the stylus 360 degrees while maintaining the contact between the stylus and the rim after the stylus stops rising.
  9.  請求項1~8のいずれかに記載の装置と、
     前記装置から出力される前記フレームの外形の形状データと、前記リムの形状データとを出力するための装置とを備える、レンズを提供するためのシステム。
    An apparatus according to any one of claims 1 to 8,
    A system for providing a lens, comprising: a device for outputting shape data of the outer shape of the frame output from the device and shape data of the rim.
  10.  請求項1~8のいずれかに記載の装置と、
     前記フレームの外形の形状データと、前記リムの形状データとに基づくレンズを製造するための3Dプリンタとを備える、レンズを提供するためのシステム。
    An apparatus according to any one of claims 1 to 8,
    A system for providing a lens, comprising: a 3D printer for manufacturing a lens based on shape data of the outer shape of the frame and shape data of the rim.
  11.  眼鏡フレームの形状を計測するための方法であって、
     フレームの外形の形状データを取得するステップと、
     前記フレームのリムの形状データを取得するステップと、
     前記リムの形状データの基準点が、前記外形の形状データに基づくフレームセンターとなるように、前記リムの形状データを変換するステップと、
     前記外形の形状データと変換後の前記リムの形状データとを出力するステップとを備える、方法。
    A method for measuring the shape of an eyeglass frame,
    Obtaining shape data of the outer shape of the frame;
    Obtaining shape data of the rim of the frame;
    Converting the rim shape data so that the reference point of the rim shape data is a frame center based on the outer shape data;
    Outputting the shape data of the outer shape and the converted shape data of the rim.
  12.  眼鏡フレームの形状を計測するための方法であって、
     フレームの外形の形状データを取得するステップと、
     前記フレームのリムの形状データを取得するステップと、
     前記外形の形状データの基準点が、前記リムの形状データに基づくフレームセンターとなるように、前記外形の形状データを変換するステップと、
     前記外形の形状データと変換後の前記リムの形状データとを出力するステップとを備える、方法。
    A method for measuring the shape of an eyeglass frame,
    Obtaining shape data of the outer shape of the frame;
    Obtaining shape data of the rim of the frame;
    Converting the shape data of the outer shape so that the reference point of the shape data of the outer shape is a frame center based on the shape data of the rim;
    Outputting the shape data of the outer shape and the converted shape data of the rim.
  13.  前記出力するステップは、前記フレームにはめ込まれるレンズの加工注文をさらに出力することを含む、請求項11または12に記載の方法。 The method according to claim 11 or 12, wherein the outputting step further comprises outputting a processing order of a lens to be fitted into the frame.
  14.  前記外形の形状データと変換後の前記リムの形状データとに基づくレンズの加工の可否を表示するステップをさらに備える、請求項11~13のいずれかに記載の方法。 The method according to any one of claims 11 to 13, further comprising a step of displaying whether or not the lens can be processed based on the shape data of the outer shape and the converted shape data of the rim.
  15.  前記フレームの外形の形状データを取得することは、
     3次元計測により前記フレームのあおり角を算出することと、
     前記あおり角だけ前記フレームを傾けることにより前記フレームを水平にすることと、
     水平にされた前記フレームの外形を計測することとを含む、請求項11~14のいずれかに記載の方法。
    Acquiring the shape data of the outer shape of the frame,
    Calculating the tilt angle of the frame by three-dimensional measurement;
    Leveling the frame by tilting the frame by the tilt angle,
    The method according to any of claims 11 to 14, comprising measuring an outline of the leveled frame.
  16.  前記取得するステップは、スタイラスにより前記形状データを取得することを含む、請求項11~15のいずれかに記載の方法。 The method according to any one of claims 11 to 15, wherein the obtaining step includes obtaining the shape data with a stylus.
  17.  前記リムの形状データを取得することは、
     前記スタイラスの円柱部分を前記フレームに押し付けながら前記スタイラスを前記フレームの凹面側のリムに沿って上昇させることと、
     前記スタイラスの上昇が停止した後に、前記スタイラスと前記リムとの接触状態を維持しつつ360度旋回させることとを含む、請求項16に記載の方法。
    Acquiring the rim shape data includes:
    Raising the stylus along the concave rim of the frame while pressing the cylindrical portion of the stylus against the frame;
    17. The method of claim 16, further comprising: after the stylus has stopped lifting, turning 360 degrees while maintaining contact between the stylus and the rim.
  18.  眼鏡フレームの形状を計測するための装置を制御する複数の命令を格納した一時的でないコンピュータ読取り可能な記録媒体であって、前記複数の命令がコンピュータによって実行されると、前記複数の命令は、前記コンピュータに、
     水平状態のフレームの外形の形状データを取得するステップと、
     前記フレームの凹面側のリムの形状データを取得するステップと、
     前記リムの形状データの基準点が、前記外形の形状データに基づくフレームセンターとなるように、前記リムの形状データを変換するステップと、
     前記外形の形状データと変換後の前記リムの形状データとを出力するステップとを実行させる、一時的でないコンピュータ読取り可能な記録媒体。
    A non-transitory computer-readable recording medium storing a plurality of instructions for controlling an apparatus for measuring the shape of the eyeglass frame, wherein the plurality of instructions, when executed by a computer, the plurality of instructions, To the computer,
    Obtaining shape data of the outer shape of the frame in a horizontal state;
    Obtaining shape data of the rim on the concave side of the frame;
    Converting the rim shape data so that the reference point of the rim shape data is a frame center based on the outer shape data;
    Outputting the shape data of the outer shape and the converted shape data of the rim.
  19.  眼鏡フレームの形状を計測するための装置を制御する複数の命令を格納した一時的でないコンピュータ読取り可能な記録媒体であって、前記複数の命令がコンピュータによって実行されると、前記複数の命令は、前記コンピュータに、
     フレームの外形の形状データを取得するステップと、
     前記フレームのリムの形状データを取得するステップと、
     前記外形の形状データの基準点が、前記リムの形状データに基づくフレームセンターとなるように、前記外形の形状データを変換するステップと、
     前記外形の形状データと変換後の前記リムの形状データとを出力するステップとを実行させる、一時的でないコンピュータ読取り可能な記録媒体。
    A non-transitory computer-readable recording medium storing a plurality of instructions for controlling an apparatus for measuring the shape of the eyeglass frame, wherein the plurality of instructions, when executed by a computer, the plurality of instructions, To the computer,
    Obtaining shape data of the outer shape of the frame;
    Obtaining shape data of the rim of the frame;
    Converting the shape data of the outer shape so that the reference point of the shape data of the outer shape is a frame center based on the shape data of the rim;
    Outputting the shape data of the outer shape and the converted shape data of the rim.
  20.  前記出力するステップは、前記フレームにはめ込まれるレンズの加工注文をさらに出力することを含む、請求項18または19に記載の一時的でないコンピュータ読取り可能な記録媒体。 20. The non-transitory computer-readable storage medium of claim 18 or 19, wherein the outputting step further comprises outputting a processing order of a lens to be fitted into the frame.
PCT/JP2019/025965 2018-06-29 2019-06-28 Device and method for acquiring eyeglass frame shape data, system for providing lens, and non-transitory computer-readable recording medium WO2020004657A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-124090 2018-06-29
JP2018124090A JP7081996B2 (en) 2018-06-29 2018-06-29 A device and method for acquiring shape data of a spectacle frame, a system for providing a lens, and a program for controlling the device.

Publications (1)

Publication Number Publication Date
WO2020004657A1 true WO2020004657A1 (en) 2020-01-02

Family

ID=68984456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025965 WO2020004657A1 (en) 2018-06-29 2019-06-28 Device and method for acquiring eyeglass frame shape data, system for providing lens, and non-transitory computer-readable recording medium

Country Status (2)

Country Link
JP (1) JP7081996B2 (en)
WO (1) WO2020004657A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666553A (en) * 1992-08-06 1994-03-08 Hoya Corp Method for compensating measurement of frame shape of spectacles
JP2009243950A (en) * 2008-03-28 2009-10-22 Topcon Corp Eyeglass frame shape measuring apparatus
US20100094589A1 (en) * 2006-12-18 2010-04-15 Essilor International (Compagnie Generale D'optique) Method of correcting the shape of a sensed curve approximating a longitudinal trace of a bezel of an eyeglass frame, and a method of acquiring the shape of an outline of such a bezel
WO2014103800A1 (en) * 2012-12-25 2014-07-03 Hoya株式会社 Lens machining system, order placement terminal device, and lens ordering method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666553A (en) * 1992-08-06 1994-03-08 Hoya Corp Method for compensating measurement of frame shape of spectacles
US20100094589A1 (en) * 2006-12-18 2010-04-15 Essilor International (Compagnie Generale D'optique) Method of correcting the shape of a sensed curve approximating a longitudinal trace of a bezel of an eyeglass frame, and a method of acquiring the shape of an outline of such a bezel
JP2009243950A (en) * 2008-03-28 2009-10-22 Topcon Corp Eyeglass frame shape measuring apparatus
WO2014103800A1 (en) * 2012-12-25 2014-07-03 Hoya株式会社 Lens machining system, order placement terminal device, and lens ordering method

Also Published As

Publication number Publication date
JP2020003380A (en) 2020-01-09
JP7081996B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
JP7257448B2 (en) LENS METER WITHOUT FIXTURES AND METHOD OF OPERATION THEREOF
JP4086429B2 (en) Evaluation method and apparatus for spectacle lens
US9509986B2 (en) Electronic device and method for calibrating spectral confocal sensors
EP2820377B1 (en) Data processor for a metrological apparatus for measuring a surface characteristic of a workpiece and corresponding measuring method
JP6510630B2 (en) Glasses wearing parameter measurement system, program for measurement, method of measurement thereof, and method of manufacturing spectacle lens
JP6984071B1 (en) Lens meter system without equipment
JP2019052983A (en) Calibration method and calibrator
US20140374595A1 (en) Inspection device of radioactive waste body and inspection method of radioactive waste body
JP2017003279A (en) Camera calibration method
EP2863171B1 (en) Measurement method with improved precision in measurement point capture
WO2020004657A1 (en) Device and method for acquiring eyeglass frame shape data, system for providing lens, and non-transitory computer-readable recording medium
CN107430289B (en) System and method for determining angle of repose of asymmetric lens
JP2023126360A (en) Surface quality measuring device and correlation generating method
JP2017211313A (en) Image processing device, image processing method and program
JP6446176B2 (en) Spectacle lens manufacturing system and spectacle lens manufacturing method
JP4477909B2 (en) Glasses wearing simulation system and image generation method
JP6162907B2 (en) Shape measuring apparatus and shape measuring method
WO2018103143A1 (en) Imaging method and apparatus for virtual reality device, and virtual reality device
EP2820375A1 (en) Surface measurement apparatus and method
JP5389579B2 (en) Surface shape measurement method
JP2016070706A (en) Calculation method, measurement device, program, and information processing device
JP4462772B2 (en) Shape measuring device
EP1832388A1 (en) Equipment for capturing the contour, markings, bores, millings and etchings of an ophthalmic lens or template lens for glasses
Rodriguez-Ibanez et al. Squareness error calibration of a CMM for quality control of ophthalmic lenses
US20160131477A1 (en) Measurement value correction method, computer-readable recording medium, and measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826718

Country of ref document: EP

Kind code of ref document: A1