WO2020004582A1 - Sludge thickening apparatus and sludge thickening method - Google Patents

Sludge thickening apparatus and sludge thickening method Download PDF

Info

Publication number
WO2020004582A1
WO2020004582A1 PCT/JP2019/025699 JP2019025699W WO2020004582A1 WO 2020004582 A1 WO2020004582 A1 WO 2020004582A1 JP 2019025699 W JP2019025699 W JP 2019025699W WO 2020004582 A1 WO2020004582 A1 WO 2020004582A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
flocculant
concentrated
reaction tank
concentrator
Prior art date
Application number
PCT/JP2019/025699
Other languages
French (fr)
Japanese (ja)
Inventor
井上 健
久夫 大清水
賢二 木幡
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2020004582A1 publication Critical patent/WO2020004582A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances

Definitions

  • the present invention relates to a sludge concentration device and a sludge concentration method.
  • Priority is claimed on Japanese Patent Application No. 2018-124461 filed on June 29, 2018, the content of which is incorporated herein by reference.
  • ⁇ Sludge generated in the treatment of sewage, human waste, wastewater, etc. is subjected to a dehydration treatment to remove water contained in the sludge by a dehydrator in order to discard or incinerate.
  • a dehydration treatment to remove water contained in the sludge by a dehydrator in order to discard or incinerate.
  • the higher the sludge concentration the higher the sludge dewatering efficiency. Therefore, prior to the dehydration treatment, a treatment for condensing sludge is performed prior to the dehydration treatment.
  • Various methods have been proposed for the sludge concentration treatment.
  • Patent Document 1 discloses that the concentrated sludge is refluxed to the coagulation reaction tank, and the flocculation, concentration and coagulation of the sludge are repeated, thereby increasing the denseness and mechanical strength of the flocculent floc and improving the concentration of the concentrated sludge. A method is described.
  • Patent Literature 2 discloses an apparatus for coagulating sludge with a coagulant prior to sludge dewatering treatment and then concentrating the sludge to a coagulated sludge concentration suitable for dewatering treatment.
  • Patent Document 3 discloses that an inorganic flocculant is added to sludge before a reactor, a polymer flocculant is added to sludge after flocculation reaction after a reactor, and an inorganic flocculant is added to concentrated sludge after concentration.
  • a method is described in which a coagulant is added to further reduce the water content of a dehydrated cake obtained by dehydrating the same.
  • the present invention has been made in view of the above circumstances, and reduces the water content of a dewatered cake obtained by dewatering concentrated sludge without increasing the size of equipment, and / or reduces the amount of a coagulant added.
  • An object of the present invention is to provide a possible sludge concentrating device and a sludge concentrating method.
  • the sludge concentrating device of the present invention is a coagulation reaction tank that reacts sludge with a coagulant to generate coagulated sludge, and a concentrator that forms coagulated sludge by condensing coagulated sludge extracted from the coagulation reaction tank.
  • the sludge concentrating device of the present invention may further include a sludge ring flow path for recirculating a part of the concentrated sludge formed by the concentrator to the flocculation reaction tank.
  • the sludge concentrating device of the present invention is a coagulation reaction tank that reacts sludge with a coagulant to generate coagulated sludge, and a concentrator that forms coagulated sludge by condensing coagulated sludge extracted from the coagulation reaction tank.
  • the concentrator includes a filtration filter on a peripheral wall, and a coagulated sludge extracted from the coagulation reaction tank is introduced from one end of the cylinder, and inside the cylinder.
  • a helical screw that is provided coaxially and is driven to rotate and guides the coagulated sludge to the other end while compressing the coagulated sludge, and a separated liquid provided over the cylindrical body and separated from the coagulated sludge via the filtration filter And an outer container for collecting and discharging the same to the outside.
  • the concentrator may be any one of an inclined screen, a filter cloth traveling type, a rotary screen type, and a screw press type.
  • the sludge concentrating device of the present invention may be provided with a dehydrator for dehydrating the concentrated sludge at a point ahead of the discharge path.
  • the flocculant is re-condensed into the flocculated sludge after concentration by the second flocculant charging device.
  • the concentrated sludge can be re-agglomerated in the drainage channel, the dewatering property of the concentrated sludge can be further improved, the water content of the dewatered cake after dewatering can be further reduced, and / or the amount of the coagulant added can be reduced. . Further, by further providing a sludge ring flow path for recirculating a part of the concentrated sludge to the flocculation reaction tank, it is possible to extend the residence time of the concentrated sludge in the flocculation reaction tank. By increasing the strength, the water content of the dewatered cake after dehydration can be further reduced and / or the amount of the coagulant added can be reduced.
  • a part of the concentrated sludge is recirculated to the coagulation reaction tank, and the remaining part of the concentrated sludge is discharged to the outside, so that the residence time of the concentrated sludge in the coagulation reaction tank can be extended. Thereby, the denseness and mechanical strength of the aggregated floc can be increased.
  • the remaining portion of the concentrated sludge concentrated in the concentrator is discharged to the outside without passing through the flocculation reaction tank, sludge having a low flocculation density remaining in the flocculation reaction tank may flow out together with the concentrated sludge.
  • the water content of the dewatered cake after dewatering the concentrated sludge can be reduced and / or the amount of the coagulant added can be reduced.
  • the sludge enrichment method of the present invention comprises the steps of: adding a flocculant to the sludge; reacting the sludge with the flocculant to generate a flocculated sludge; and forming the concentrated sludge by concentrating the flocculated sludge.
  • the sludge concentration method of the present invention may further include a return step of returning a part of the concentrated sludge after the concentration step to the flocculation step.
  • a coagulant is added to the sludge, a coagulation step of generating the coagulated sludge by reacting the sludge and the coagulant, forming a concentrated sludge by concentrating the coagulated sludge A concentration step; a return step of returning a part of the concentrated sludge after the concentration step to the coagulation step; and a discharge step of discharging the remaining part of the concentrated sludge after the concentration step to the outside.
  • a return rate of the concentrated sludge in the return step may be in a range of 10 to 70%.
  • the flocculant fed in the flocculating step may be an inorganic flocculant and a polymer flocculant.
  • the flocculant to be charged in the flocculant recharging step may be a polymer flocculant.
  • the flocculant charged in the flocculating step is an inorganic flocculant and a polymer flocculant
  • the flocculant charged in the flocculant recharging step is a polymer flocculant.
  • the proportion of the polymer flocculant charged in the flocculating step is 40 to 90%
  • the proportion of the polymer flocculant to be charged in the flocculant recharging step may be 10 to 60%.
  • the coagulation step, the concentration step, and the coagulant re-injection step of injecting another coagulant into the concentrated sludge in the discharge step are provided.
  • the coagulant is re-introduced into the coagulated sludge after concentration, it is possible to re-aggregate the concentrated sludge in the drainage process, to further improve the dewaterability of the concentrated sludge, and / or the water content of the dewatered cake after dewatering.
  • the addition amount of the flocculant can be further reduced.
  • the sludge concentration method has a flocculation step, a concentration step, a sludge ring flow path for returning part of the concentrated sludge to the flocculation step, and a discharge step for discharging the remaining part of the concentrated sludge to the outside.
  • a part of the concentrated sludge is returned to the coagulation step, and the remaining part of the concentrated sludge is discharged to the outside in the discharging step, so that the residence time of the concentrated sludge in the coagulation step can be extended. And the mechanical strength can be increased.
  • the remaining portion of the concentrated sludge concentrated in the concentration step is discharged to the outside without going through the flocculation step, there is no possibility that sludge having a low flocculation density staying in the flocculation step flows out together with the concentrated sludge.
  • the water content of the dewatered cake after dewatering the concentrated sludge and / or the amount of the coagulant added can be reduced.
  • a sludge concentrating apparatus and a sludge concentrating method capable of reducing the water content of the dewatered cake after dewatering the concentrated sludge and the addition amount of the flocculant without increasing the size of the equipment.
  • Drawing 1 is a mimetic diagram showing the sludge concentration device of a 1st embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a material balance in an agglutination reaction tank.
  • Drawing 3 is a mimetic diagram showing the sludge concentration device of a 2nd embodiment of the present invention.
  • the coagulated sludge generated by the reaction between the sludge and the coagulant is further concentrated to reduce the volume to form concentrated sludge.
  • it is effective to extend the reaction time between the flocculant and the sludge.
  • the treatment amount of the concentrated sludge decreases, and the volume of the coagulation reaction tank increases in order to store a large amount of sludge. Therefore, the present inventors have studied and found that a part of the concentrated sludge is refluxed to the coagulation reaction tank to extend the coagulation reaction time, and the remaining sludge is discharged outside without passing through the coagulation reaction tank.
  • a sludge concentrator 1 As shown in FIG. 1, a sludge concentrator 1 according to a first embodiment of the present invention includes a coagulation reaction tank 2, a concentrator 3, a sludge supply path 4, a discharge path 5, a sludge ring flow path 6, Is provided. A dehydrator (not shown) may be provided at the end of the discharge path 5.
  • the coagulation reaction tank 2 generates coagulated sludge by reacting sludge with a coagulant.
  • the coagulation reaction tank 2 has a reaction tank 21.
  • a raw mud supply pipe 22 for supplying raw sludge is provided below the reaction tank 21.
  • a supply device 23 for supplying an inorganic flocculant to sludge and a supply device 24 for supplying a polymer flocculant to sludge are provided in the middle of the raw mud supply pipe 22.
  • the position of the inorganic coagulant supply device 23 is on the upstream side of the raw mud supply pipe 22 in the raw mud supply direction with respect to the polymer coagulant supply device 24.
  • the reaction tank 21 is provided with a stirring means 26 which is rotationally driven by a motor 25 provided coaxially therein to stir the sludge and the flocculant to promote the generation of the flocculated sludge.
  • the stirring means 26 is, for example, one in which a rotating blade 26a is attached to the tip of a rotating shaft 27.
  • a supply outlet 28 for supplying the coagulated sludge to the concentrator 3 is provided at the upper part of the reaction tank 21, a supply outlet 28 for supplying the coagulated sludge to the concentrator 3 is provided.
  • the sludge supply passage 4 is provided to supply the coagulated sludge from the coagulation reaction tank 2 to the concentrator 3 through the supply outlet 28.
  • the concentrator 3 condenses the coagulated sludge extracted from the coagulation reaction tank 2 to form concentrated sludge.
  • the concentrator 3 includes a cylindrical body 31 and an outer container 32 provided to cover the cylindrical body 31.
  • the cylindrical body 31 has a supply inlet 34a on the wall near the upper end through which the flocculated sludge is supplied from the flocculation reaction tank 21 through the sludge supply passage 4, and a filtration filter 35 for separating and filtering the liquid contained in the sludge on the peripheral wall. It has.
  • the filtration filter 35 is made of, for example, a punching plate or / and a wedge wire, and the hole diameter of the punching plate or the slit width of the wedge wire is arbitrarily selected. Improves the flock separation performance.
  • the cylindrical body 31 is provided with an outlet 38 for discharging the concentrated sludge on a wall surface near the lower end thereof.
  • the cylindrical body 31 is provided with a pressurizing means 33 for transporting the sludge supplied from the supply inlet 34a toward the outlet 38 while compressing the sludge therein.
  • the pumping means 33 includes a screw rotating shaft 36 provided coaxially inside the cylindrical body 31 and a helical screw 37 attached to the screw rotating shaft 36, and is rotationally driven by the motor 30. The coagulated sludge is guided from the upper part to the lower part of the cylindrical body 31 while being compressed by the rotation of the spiral screw 37.
  • An upper connecting pipe 41, a central connecting pipe 42, and a lower connecting pipe 43 are connected to the upper end 32a, the central part 32b, and the lower end 32b of the outer container 32, respectively, and the respective connecting pipes 41, 42, 43 are separated. It is connected to the liquid tank 44.
  • the separated liquid tank 44 stores the separated liquid separated from the concentrated sludge.
  • An overflow pipe 45 is provided inside the separation liquid tank 44. One end 45a of the overflow pipe 45 is inside the separation liquid tank 44, and the other end 45b is outside the separation liquid tank 44. The separation liquid is discharged to the outside of the separation liquid tank 44 by the overflow pipe 45.
  • the discharge path 5 is provided for discharging the concentrated sludge from the concentrator 3 to the outside through the outlet 38 of the concentrator 3.
  • a sludge recirculation path 6 is provided branching in the middle of the discharge path 5, and a part of the concentrated sludge flows into the sludge recirculation path 6, and the rest of the concentrated sludge flows through the discharge path 5.
  • a dehydrator (not shown) is provided at the end of the discharge path 5.
  • a discharge pump 5 a is provided in the middle of the discharge passage 5, and sends the concentrated sludge discharged from the outlet 38 of the concentrator 3 to the downstream side of the drain passage 5.
  • the sludge recirculation path 6 is provided to branch off from the middle of the discharge path 5 and to recirculate a part of the concentrated sludge from the concentrator 3 to the coagulation reaction tank 2.
  • the sludge return path 6 is connected to a raw mud supply pipe 22.
  • the connection position of the sludge recirculation path 6 to the raw mud supply pipe 22 is a position between the polymer flocculant supply device 24 and the reaction tank 21.
  • a return pump 6a is provided in the middle of the sludge return passage 6, a return pump 6a is provided in the middle of the sludge return passage 6, a return pump 6a is provided.
  • the recirculation pump 6 a sends a part of the concentrated sludge discharged from the outlet 38 of the concentrator 3 to the downstream side of the sludge recirculation path 6.
  • the return rate of the concentrated sludge can be adjusted in the range of 10 to 70% by the reflux pump 6a.
  • the sludge concentration method of the present embodiment includes a flocculation step, a concentration step, a return step, and a discharge step. Hereinafter, each step will be described.
  • a flocculant is introduced into the sludge, and the sludge and the flocculant are reacted to generate flocculated sludge.
  • raw sludge is supplied to the reaction tank 21 by the raw mud supply pipe 22 of FIG.
  • the supply device 23 supplies an inorganic flocculant to the raw sludge
  • the supply device 24 supplies a polymer flocculant to the raw sludge.
  • the raw sludge to which the inorganic flocculant and the polymer flocculant are added is guided from the lower part to the upper part of the reaction tank 21 while being stirred by the stirring means 26 inside the reaction tank 21, during which the raw sludge and the flocculant are mixed. Reaction proceeds to form coagulated sludge.
  • the flocculated sludge that has reached the upper part of the reaction tank 21 is supplied to the upper part of the concentrator 3 (cylindrical body 31) through the sludge supply path 4.
  • an iron coagulant such as ferric chloride and polyiron sulfate
  • an aluminum coagulant such as aluminum sulfate, aluminum chloride and polyaluminum chloride
  • iron coagulant such as ferric chloride and polyiron sulfate
  • aluminum coagulant such as aluminum sulfate
  • the inorganic flocculant is usually acidic, and the pH value of the sludge is lowered by adding the inorganic flocculant to the raw sludge.
  • the polymer coagulant used in combination with the inorganic coagulant is an amphoteric polymer coagulant
  • the lower limit of pH at which coagulation can be performed with the amphoteric polymer coagulant is about 3.5.
  • the pH is preferably 3.5 or more, for example, about 4.5 to 5.0.
  • amphoteric polymer flocculant As the polymer flocculant to be added to the sludge after adding the inorganic flocculant and conditioning, it is preferable to use an amphoteric polymer flocculant.
  • amphoteric polymer flocculant include a copolymer of an anionic monomer component and a cationic monomer component, a copolymer of an anionic monomer component, a copolymer of a cationic monomer component and a nonionic monomer component, or an anionic monomer component.
  • a nonionic monomer component such as a Mannich modified product or a Hoffman decomposition product.
  • anionic monomer component examples include acrylic acid (AA), sodium acrylate (NaA), methacrylic acid, sodium methacrylate, and the like.
  • Examples of the cationic monomer component include dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, and quaternized products thereof.
  • Specific examples of the quaternary compound include dimethylaminoethyl acrylate quaternary compound (DAA) and dimethylaminoethyl methacrylate quaternary compound (DAM).
  • DAPAAm dimethylaminopropylacrylamide hydrochloride
  • nonionic monomer component examples include acrylamide (AAm), methacrylamide, and N, N-dimethyl (meth) acrylamide.
  • these copolymers include a DAA / AA / AAm copolymer, a DAM / AA / AAm copolymer, a DAA / DAM / AA / AAm copolymer, and a DAPAAm / AA / AAm copolymer. , DAA / AA copolymers, and Mannich-modified NaA / AAm copolymers.
  • the concentrated sludge generated by the flocculation step is concentrated to form a concentrated sludge.
  • the coagulated sludge supplied to the inside of the cylindrical body 31 is transferred toward the lower part of the cylindrical body 31 while being compressed by the helical screw 37 rotating inside the cylindrical body 31.
  • the liquid component contained in the coagulated sludge is separated as a separated liquid through the filter 35 and continuously discharged to the outer container 32 side. Then, with the separation of the separated liquid, the concentration of the coagulated sludge proceeds.
  • the separated liquid separated into the outer container 32 is sent to the separated liquid tank 44 through the upper connecting pipe 41, the central connecting pipe 42, and the lower connecting pipe 43.
  • the balance between the amount of the separated liquid remaining in the outer container 32 and the amount discharged from the upper connecting pipe 41, the central connecting pipe 42, and the lower connecting pipe 43 is determined by the overflow pipe 45 installed in the separated liquid tank 44. It is adjusted by the height of one end 45a. When the liquid level of the separated liquid is higher than one end 45 a of the overflow pipe 45, the separated liquid is discharged to the outside through the overflow pipe 45.
  • the concentrated sludge is transferred through the cylindrical body 31 and then discharged from the outlet 38 to the discharge path 5.
  • the concentrated sludge is sent to the downstream side of the drainage channel 5 by a drainage pump 5 a provided in the middle of the drainage channel 5.
  • Part of the concentrated sludge is returned to the reaction tank 21 in a return step as described later, but the remaining part of the concentrated sludge that has not been returned further moves through the discharge path 5 and reaches a dehydrator (not shown).
  • the concentrated sludge that has reached the dehydrator is dehydrated by the dehydrator to be a dewatered cake.
  • a part of the concentrated sludge is returned to the reaction tank 21 through the sludge ring channel 6 branched from the middle of the drainage channel 5.
  • the return rate of the concentrated sludge is adjusted to a range of 10 to 70% by the reflux pump 6a.
  • the return rate is a ratio of the amount of concentrated sludge returned to the total amount of concentrated sludge discharged from the thickener 3. This ratio is a volume ratio. If the return rate of the concentrated sludge is less than 10%, it is not preferable because the densification of the concentrated sludge and the improvement in mechanical strength cannot be achieved. On the other hand, if the return rate exceeds 70%, the concentrated sludge exceeding the treatment capacity of the flocculation reaction tank 2 is returned, and the flocculation reaction tank overflows, which is not preferable.
  • the concentrated sludge returned to the reaction tank 21 through the sludge ring flow path 6 joins the raw sludge flowing through the raw sludge supply pipe 22 at a position between the supply device 24 and the reaction tank 21. Since the raw sludge has already been added with the inorganic flocculant and the polymer flocculant, a part of the flocculant acts on the returned concentrated sludge.
  • the returned concentrated sludge is released from the concentrated state in the reaction tank 21, forms a flocculated floc, and flows in the reaction tank 21.
  • Such flocculated floc is mixed with the raw sludge and the flocculant and the flocculation reaction proceeds, during which the particle size is larger, and the denseness and mechanical strength are larger.
  • FIG. 2 shows the material balance in the agglutination reaction tank 2.
  • V is the volume of the coagulation reaction tank [m 3 ]
  • Q is the flow rate of the sludge and the separated liquid [m 3 / h]
  • C is the solid content concentration (sludge concentration) in the reaction tank [% TS]
  • n is the concentration.
  • R is the return ratio of the concentrated sludge [%] (0 ⁇ R ⁇ 100)
  • i is the inflow sludge
  • f is the concentrated sludge supplied to the dehydrator
  • r is the returned sludge.
  • B indicate a separated solution.
  • the sludge concentration C in the reaction tank 21 is represented by the following equation (1).
  • the residence time SRT of the sludge in the reaction tank 21 is represented by the following equation (3).
  • the return rate R of the concentrated sludge is set to 70% or less in view of safety.
  • the flocculation reaction tank 2 As described above, according to the sludge concentrating apparatus 1 of the present embodiment, the flocculation reaction tank 2, the concentrator 3, the sludge supply path 4, and the sludge reflux for recirculating a part of the concentrated sludge to the coagulation reaction tank 2.
  • the apparatus is provided with a passage 6 and a discharge path 5 for discharging the remaining portion of the concentrated sludge to the outside.
  • the part of the concentrated sludge is returned to the coagulation reaction tank 2 and the remaining portion of the concentrated sludge is discharged to the outside.
  • the residence time of the concentrated sludge in the tank 2 can be prolonged, whereby the denseness and mechanical strength of the flocculated floc can be increased.
  • the sludge having a low coagulation density remaining in the coagulation reaction tank 2 is discharged to the outside together with the concentrated sludge. No risk of spill.
  • the water content of the dewatered cake after dewatering the concentrated sludge can be reduced. Further, the amount of the coagulant added can be reduced.
  • the concentrator 3 is provided with the filtration filter 35 on the peripheral wall, and is provided inside the cylindrical body 31 into which the flocculated sludge is introduced from one end thereof. Since it has the helical screw 37 and the outer container 32 for collecting and discharging the separated liquid separated from the coagulated sludge through the filtration filter 35, the sludge is continuously concentrated to concentrate the sludge and the separated liquid. And the amount of concentrated sludge can be improved.
  • the dewatering device for dewatering the concentrated sludge is provided at the end of the discharge passage 5, the concentrated sludge can be efficiently reduced in volume to a dewatered cake. .
  • the flocculation step, the concentration step, a return step of returning part of the concentrated sludge to the flocculation step, and a discharge step of discharging the remaining part of the concentrated sludge to the outside Since a part of the concentrated sludge is returned to the coagulation step and the remaining part of the concentrated sludge is discharged to the outside in the discharge step, the residence time of the concentrated sludge in the coagulation step can be extended. The density and mechanical strength of the floc can be increased.
  • the remaining portion of the concentrated sludge concentrated in the concentration step is discharged outside without going through the flocculation step, there is no possibility that sludge having a low flocculation density staying in the flocculation step flows out together with the concentrated sludge.
  • the water content of the dewatered cake after dewatering the concentrated sludge and / or the amount of the coagulant added can be reduced.
  • the denseness and mechanical strength of the flocculated floc can be increased.
  • a sludge concentrating device 51 As shown in FIG. 3, a sludge concentrating device 51 according to a second embodiment of the present invention includes a coagulation reaction tank 2, a concentrator 3, a sludge supply passage 4, a discharge passage 5, a sludge ring passage 6, , A first flocculant charging device 52 and a second flocculant charging device 53.
  • a dehydrator (not shown) may be provided at the end of the discharge path 5.
  • the coagulation reaction tank 2, the concentrator 3, the sludge supply path 4, the discharge path 5, and the sludge ring flow path 6 in the present embodiment are the same as the coagulation reaction tank 2, the concentrator 3, and the sludge supply path 4, described in the first embodiment. Since the discharge channel 5 and the sludge ring channel 6 are the same, the description is omitted or simplified in this embodiment.
  • the coagulation reaction tank 2 has a reaction tank 21. Further, a lower part of the reaction tank 21 is provided with a raw mud supply pipe 22 for supplying raw sludge. In the middle of the raw mud supply pipe 22, a first flocculant charging device 52 is provided.
  • the first flocculant charging device 52 includes a supply device 23 that supplies an inorganic flocculant to sludge, and a supply device 24 that supplies a polymer flocculant to sludge.
  • the position of the inorganic coagulant supply device 23 is on the upstream side of the raw mud supply pipe 22 in the raw mud supply direction with respect to the polymer coagulant supply device 24.
  • a supply outlet 28 for supplying the coagulated sludge to the concentrator 3 is provided at the upper part of the reaction tank 21.
  • the concentrator 3 includes a cylindrical body 31 and an outer container 32.
  • the peripheral wall of the cylindrical body 31 is provided with a filter 35 for separating and filtering the liquid contained in the sludge.
  • the cylindrical body 31 is provided with an outlet 38 for discharging the concentrated sludge on a wall surface near the lower end thereof.
  • the cylindrical body 31 is provided with a pressure feeding means 33.
  • the pumping means 33 includes a screw rotating shaft 36 and a helical screw 37, and is driven to rotate by the motor 30.
  • a separation liquid tank 44 is connected to the outer container 32 via an upper connecting pipe 41, a central connecting pipe 42, and a lower connecting pipe 43.
  • An overflow pipe 45 is provided inside the separation liquid tank 44.
  • the discharge path 5 is provided for discharging the concentrated sludge from the concentrator 3 to the outside through the outlet 38 of the concentrator 3.
  • a sludge recirculation path 6 is provided branching in the middle of the discharge path 5, and a part of the concentrated sludge flows into the sludge recirculation path 6, and the rest of the concentrated sludge flows through the discharge path 5.
  • a dehydrator (not shown) is provided at the end of the discharge path 5.
  • a discharge pump 5 a is provided in the middle of the discharge path 5, and sends the concentrated sludge discharged from the outlet 38 of the concentrator 3 to the downstream side of the drain path 5.
  • the drainage channel 5 downstream of the junction between the drainage channel 5 and the sludge recirculation channel 6 is provided with a second coagulant charging device 53.
  • the second coagulant charging device 53 adds a coagulant to the coagulated sludge flowing through the drainage channel 5.
  • the coagulant added in the second coagulant charging device 53 is preferably a polymer coagulant.
  • the sludge recirculation path 6 is provided to branch off from the middle of the discharge path 5 and to recirculate a part of the concentrated sludge from the concentrator 3 to the coagulation reaction tank 2.
  • the sludge return path 6 is connected to a raw mud supply pipe 22.
  • the connection position of the sludge recirculation path 6 to the raw mud supply pipe 22 is a position between the polymer flocculant supply device 24 and the reaction tank 21.
  • a return pump 6a is provided in the middle of the sludge return path 6, and the return rate of the concentrated sludge can be adjusted within a range of 10 to 70% by the return pump 6a.
  • the sludge concentration method of the present embodiment includes a flocculation step, a concentration step, a return step, a discharge step, and a flocculant re-charging step.
  • a flocculation step a concentration step
  • a return step a concentration step
  • a discharge step a flocculant re-charging step
  • a flocculant is introduced into the sludge, and the sludge and the flocculant are reacted to generate flocculated sludge.
  • raw sludge is supplied to the reaction tank 21 by the raw mud supply pipe 22 of FIG.
  • the inorganic flocculant is supplied to the raw sludge by the supply device 23 of the first flocculant supply device 52, and the polymer flocculant is further supplied to the raw sludge by the supply device 24.
  • the raw sludge to which the inorganic flocculant and the polymer flocculant are added is guided from the lower part to the upper part of the reaction tank 21 while being stirred, and the floc is formed.
  • the flocculated sludge that has reached the upper part of the reaction tank 21 is supplied to the upper part of the concentrator 3 (cylindrical body 31) through the sludge supply path 4.
  • the same inorganic coagulant and polymer coagulant as in the first embodiment can be used.
  • the concentrated sludge generated by the flocculation step is concentrated to form a concentrated sludge.
  • the coagulated sludge supplied to the inside of the cylindrical body 31 is transferred toward the lower part of the cylindrical body 31 while being compressed by the spiral screw 37.
  • the liquid component contained in the coagulated sludge is separated through the filtration filter 35 as a separated liquid. Then, with the separation of the separated liquid, the concentration of the coagulated sludge proceeds.
  • the separated liquid separated into the outer container 32 is sent to the separated liquid tank 44 through the upper connecting pipe 41, the central connecting pipe 42, and the lower connecting pipe 43, as in the case of the first embodiment. Is discharged to the outside through the upper connecting pipe 41, the central connecting pipe 42, and the lower connecting pipe 43, as in the case of the first embodiment. Is discharged to the outside through the upper connecting pipe 41, the central connecting pipe 42, and the lower connecting pipe 43, as in the case of the first embodiment. Is discharged to the outside through
  • the concentrated sludge is transferred through the cylindrical body 31 and then discharged from the outlet 38 to the discharge path 5.
  • the concentrated sludge is sent to the downstream side of the drainage channel 5 by a drainage pump 5 a provided in the middle of the drainage channel 5.
  • a part of the concentrated sludge is returned to the reaction tank 21 by a return step as described later, but the remaining part of the concentrated sludge that has not been returned further moves through the discharge path 5 and reaches a dehydrator (not shown).
  • the concentrated sludge that has reached the dehydrator is dehydrated by the dehydrator to be a dewatered cake.
  • the concentrated sludge moving in the drainage path 5 is added with the polymer flocculant by the second flocculant supply device 53 before reaching the dehydrator.
  • the concentrated sludge to which the polymer flocculant has been added reacts with the flocculant while moving in the discharge path 5 and is coagulated, and is less likely to be broken while moving in the drain path.
  • the flocculant is added to the concentrated sludge after passing through the concentrator 3, the solid-liquid separation of the sludge by the filter 35 in the concentrator 3 is not adversely affected.
  • a part of the concentrated sludge is returned to the reaction tank 21 through the sludge ring flow path 6 branched from the middle of the drainage channel 5.
  • the return rate of the concentrated sludge may be adjusted to a range of 10 to 70% by the reflux pump 6a.
  • the concentrated sludge returned to the reaction tank 21 through the sludge ring flow path 6 is mixed with the raw sludge flowing through the raw sludge supply pipe 22 at a position between the supply device 24 and the reaction tank 21 as in the first embodiment. Join.
  • the returned concentrated sludge is released from the concentrated state in the reaction tank 21, forms a flocculated floc, and flows in the reaction tank 21.
  • the flocculated floc is mixed with the raw sludge and the flocculant and the flocculation reaction proceeds, during which the particle size is larger, and the denseness and mechanical strength are larger.
  • the input amount of the polymer flocculant will be described.
  • the ratio of the polymer flocculant to be charged in the flocculating step is 40 to 90%, and the ratio is charged in the flocculant re-charging step.
  • the proportion of the polymer flocculant is preferably set to 10 to 60%.
  • the content by setting the content to 90% or less, the amount of unreacted coagulant in the coagulation step is reduced, so that clogging of the filtration filter 35 can be prevented at the time of solid-liquid separation of sludge in the next concentration step.
  • the ratio of the polymer flocculant to be charged in the flocculant re-charging step to 10% or more, the concentrated sludge flowing through the drainage channel 5 can be further flocculated, and the destruction of the moving concentrated sludge can be prevented.
  • the content by setting the content to 60% or less, excessive aggregation can be prevented, and the solid-liquid separation in the dehydrator can be efficiently performed.
  • the coagulation reaction tank 2 As described above, according to the sludge concentration apparatus 51 of the present embodiment, the coagulation reaction tank 2, the concentrator 3, the sludge supply path 4, the discharge path 5 for discharging the concentrated sludge to the outside, the coagulation reaction tank 2 is provided with a first flocculant charging device 52 for charging a flocculant, and a second flocculant charging device 53 for charging another flocculant in the discharge passage 5 through which the concentrated sludge flows.
  • the coagulant is re-introduced into the coagulated sludge after the concentration by the coagulant charging device 53 of the above, so that the concentrated sludge can be re-coagulated in the drainage channel 5, the dewaterability of the concentrated sludge is further improved, The water content of the dehydrated cake and / or the amount of the coagulant added can be further reduced. Further, since the coagulant is added again to the concentrated sludge after passing through the concentrator 3, the clogging of the filtration filter 35 can be suppressed without affecting the solid-liquid separation of the sludge by the filtration filter 35 in the concentrator 3.
  • the residence time of the concentrated sludge in the flocculation reaction tank 2 can be extended, thereby increasing the density of the flocculated floc.
  • the mechanical strength can be increased, and the water content of the dewatered cake after dehydration and / or the amount of hand-operated flocculants can be further reduced.
  • a flocculation step a concentration step, and a flocculant re-feeding step of feeding another flocculant to the concentrated sludge in the discharging step.
  • the charging step since the flocculant is re-charged to the flocculated sludge after the concentration, the concentrated sludge can be re-coagulated in the drainage step, and the dewaterability of the concentrated sludge is further improved, and the water content of the dewatered cake after the dehydration and And / or the amount of the coagulant added can be further reduced.
  • a sludge concentrator capable of reducing the water content of a dewatered cake and / or the amount of a coagulant added after dewatering a concentrated sludge without increasing the size of the equipment.
  • a sludge concentration method can be provided.
  • the concentrator 3 is an example of the concentrator 3 including the cylindrical body 31 having the filtration filter 35 on the peripheral wall, the spiral screw 37, and the outer container 32.
  • the concentrator 3 may be any of a sludge screen, a filter cloth traveling type, a rotary screen type, and a screw press type sludge concentrator.
  • the supply device 23 for the inorganic coagulant and the supply device 24 for the polymer coagulant are provided in the raw mud supply pipe 22. Both may be provided in the reaction tank 21, or the supply device 23 may be provided in the raw mud supply pipe 22, and the supply device 24 may be provided in the reaction tank 21.
  • the supply device 23 of the inorganic coagulant may be omitted, and when the supply device 23 is omitted, it is preferable to use a cationic polymer coagulant as the polymer coagulant.
  • the sludge recirculation path 6 is connected to the raw mud supply pipe 22 at a position between the polymer coagulant supply device 24 and the reaction tank 21, it may be connected to the reaction tank 21 or may be connected to the inorganic coagulation pipe.
  • the raw sludge supply pipe 22 may be connected to a position upstream of the agent supply device 23 or between the supply device 23 and the supply device 24.
  • the sludge concentration device 51 having the sludge circulation channel 6 and the sludge concentration method having the return step have been described.
  • a sludge concentration method having no return step may be used. That is, a polymer flocculant is added to all of the concentrated sludge concentrated by the concentrator 3 by the second flocculant charging device 53 to aggregate the concentrated sludge, and the concentrated sludge is not returned to the flocculation reaction tank 2. Is also good. In this case, since the concentrated sludge is not returned to the coagulation reaction tank 2, the residence time of the sludge in the coagulation reaction tank 2 is reduced, and the denseness and mechanical strength of the coagulated floc cannot be increased.
  • the reaction time between the sludge and the flocculant can be substantially extended, and the denseness and mechanical strength of the concentrated sludge can be reduced. Can increase.
  • the sludge concentrator shown in FIG. 3 was installed in a sewage treatment plant, and a flocculation step and a concentration step were performed on raw sludge, and a return step and a recondensing step were further performed as necessary.
  • the raw sludge is a mixed raw sludge having a TS of about 0.86 to 1.20%
  • the inorganic coagulant is an iron-based inorganic coagulant (trade name: Polytec, manufactured by Nittetsu Mining Co., Ltd.). Used an amphoteric polymer flocculant (trade name: Chrisbest P-353, manufactured by Kurita Water Industries Ltd.).
  • a rotary snail dehydrator was used as the dehydrator. Table 1 shows the results.
  • Comparative Example 1-1 and Comparative Example 1-2 are examples in which the return step and the re-aggregation step were not performed.
  • the amount of the polymer coagulant added was 0.55% ⁇ TS and 0.48% ⁇ TS, and the water content of the dehydrated cake was 76.9% and 78.4%, respectively.
  • Example 1-1 is an example in which the return step was performed and the re-aggregation step was not performed.
  • the water content of the dehydrated cake was 75.8%, which was lower than Comparative Examples 1-1 and 1-2.
  • Example 1-2 is an example in which the reaggregation step was performed without performing the return step. In this case, even if the addition rate of the flocculant is lower than that of Comparative Example 1-1, the water content of the dewatered cake is 77.1%, and a dewatered cake having substantially the same water content as Comparative Example 1-1 can be obtained. Was completed.
  • Example 1-2 the addition rate of the coagulant was the same as that of Comparative Example 1-2, but in Example 1-2, the water content of the dehydrated cake was lower than that of Comparative Example 1-2.
  • Embodiment 1-3 is an example in which both the returning step and the re-aggregation step are performed. In this case, the water content of the dehydrated cake was 75.2% even if the addition rate of the flocculant was lower than that of Comparative Example 1-1 or Comparative Example 1-2. It became lower than -2.
  • Example 2 and Comparative Example 2 The sludge concentrator shown in FIG. 3 was installed in a sewage treatment plant, and a flocculation step and a concentration step were performed on raw sludge, and a return step and a recondensing step were further performed as necessary.
  • the raw sludge is a mixed raw sludge having a TS of about 0.86 to 1.20%
  • the inorganic coagulant is an iron-based inorganic coagulant (trade name: Polytec, manufactured by Nittetsu Mining Co., Ltd.). Used an amphoteric polymer flocculant (trade name: Chrisbest P-353, manufactured by Kurita Water Industries Ltd.).
  • a belt press dehydrator was used as the dehydrator. Table 2 shows the results.
  • Comparative Example 2 is an example in which the return step and the re-aggregation step were not performed.
  • the water content of the dehydrated cake was as high as 78.8%.
  • Example 2 is an example in which the return step was performed and the re-aggregation step was not performed.
  • the water content of the dehydrated cake was 77.5%, which was lower than Comparative Example 2.
  • the water content of the dewatered cake after dewatering the concentrated sludge and / or the amount of the coagulant added can be reduced without increasing the size of the equipment.
  • the present invention can reduce the water content of the dewatered cake and / or the amount of the coagulant added after dewatering the concentrated sludge without increasing the size of the equipment, and therefore has high industrial utility value.

Abstract

A sludge thickening device according to this embodiment of the present invention comprises a condensation reaction tank that reacts sludge with flocculent to generate condensed sludge, a thickening machine that thickens the condensed sludge extracted from the condensation reaction tank to form thickened sludge, a sludge supply path that supplies the condensed sludge from the condensation reaction tank to the thickening machine, a sludge reflux path that refluxes a part of the thickened sludge formed by the thickening machine to the condensation reaction tank, and a discharge path that discharges the rest of the thickened sludge formed by the thickening machine to the outside.

Description

汚泥濃縮装置及び汚泥濃縮方法Sludge thickening device and sludge thickening method
 本発明は、汚泥濃縮装置及び汚泥濃縮方法に関する。
 本願は、2018年6月29日に、日本に出願された特願2018-124461号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a sludge concentration device and a sludge concentration method.
Priority is claimed on Japanese Patent Application No. 2018-124461 filed on June 29, 2018, the content of which is incorporated herein by reference.
 下水、し尿、廃水などの処理において発生する汚泥は、廃棄または焼却するために、汚泥に含まれる水分を脱水機により取り除くための脱水処理が行われている。汚泥の脱水処理では、汚泥濃度が高い程、汚泥の脱水効率が向上する。そこで、脱水処理に先立ち、汚泥を濃縮する処理が行われる。汚泥濃縮処理に関して、各種方法が提案されている。 汚 Sludge generated in the treatment of sewage, human waste, wastewater, etc. is subjected to a dehydration treatment to remove water contained in the sludge by a dehydrator in order to discard or incinerate. In the sludge dewatering treatment, the higher the sludge concentration, the higher the sludge dewatering efficiency. Therefore, prior to the dehydration treatment, a treatment for condensing sludge is performed. Various methods have been proposed for the sludge concentration treatment.
 特許文献1には、濃縮汚泥の全部を凝集反応槽に還流し、汚泥の凝集、濃縮、凝集を繰り返すことにより、凝集フロックの緻密度と機械的強度を増大させ、濃縮汚泥の濃縮度を向上させる方法が記載されている。
 特許文献2には、汚泥脱水処理に先立って汚泥を凝集剤で凝集させてから、脱水処理に適した凝集汚泥濃度に汚泥を濃縮する装置が記載されている。
 特許文献3には、反応器の前において汚泥に無機凝集剤を添加し、反応器の後ろにおいて凝集反応後の汚泥に高分子凝集剤を添加し、更に、濃縮後の濃縮汚泥に対して無機凝集剤を添加することにより、これを脱水して得られる脱水ケーキの含水率をより一層低減させる方法が記載されている。
Patent Document 1 discloses that the concentrated sludge is refluxed to the coagulation reaction tank, and the flocculation, concentration and coagulation of the sludge are repeated, thereby increasing the denseness and mechanical strength of the flocculent floc and improving the concentration of the concentrated sludge. A method is described.
Patent Literature 2 discloses an apparatus for coagulating sludge with a coagulant prior to sludge dewatering treatment and then concentrating the sludge to a coagulated sludge concentration suitable for dewatering treatment.
Patent Document 3 discloses that an inorganic flocculant is added to sludge before a reactor, a polymer flocculant is added to sludge after flocculation reaction after a reactor, and an inorganic flocculant is added to concentrated sludge after concentration. A method is described in which a coagulant is added to further reduce the water content of a dehydrated cake obtained by dehydrating the same.
特開2003-285100号公報JP-A-2003-285100 特許第4711071号公報Japanese Patent No. 4711071 特許第5423256号公報Japanese Patent No. 5423256
 特許文献1に記載の技術では、濃縮汚泥の全量を凝集反応槽に還流し、凝集反応槽から汚泥を排出しているが、凝集反応槽内にて凝集が十分に進んでいない汚泥が濃縮汚泥とともに排出されるおそれがあり、脱水後の脱水ケーキの含水率を低減できないおそれがある。また、濃縮汚泥の全量を凝集反応槽に還流するため、還流用ポンプの要求能力が過剰に上昇するなど、設備の規模が大型化し、設備の稼働するために多大なエネルギーが必要になる問題がある。
 また、特許文献2に記載の技術では、濃縮汚泥を凝集反応槽に還流させないため、濃縮汚泥の濃度を高めるために、汚泥処理流量を下げるか、凝集反応槽の容積を増やす必要があった。しかし、汚泥処理流量を下げる場合は、目標とする処理量もしくは脱水機運転時間をクリアできない問題が発生しうる。また、凝集反応槽の容積を増やす場合は、設置スペースを大きく確保しなければならない問題が起こりうる。
 更に、特許文献3に記載の技術では、凝集反応後の汚泥に高分子凝集剤を添加するが、凝集処理の過程で高分子凝集剤を過剰に添加すると、汚泥のろ過性が下がり、凝集汚泥から分離する分離液量が減り、濃縮機への給泥量が濃縮汚泥量と分離液量を上回ることにより、オーバーフローが起きてしまう問題があった。
 また、いずれの方法においても、凝集剤の添加量が多くなるという問題を有していた。
In the technology described in Patent Document 1, the entire amount of the concentrated sludge is returned to the coagulation reaction tank and the sludge is discharged from the coagulation reaction tank. However, the sludge that has not sufficiently coagulated in the coagulation reaction tank is concentrated sludge. And the water content of the dewatered cake after dewatering may not be reduced. In addition, since the entire amount of concentrated sludge is returned to the coagulation reaction tank, the required capacity of the reflux pump is excessively increased, and the scale of the equipment becomes large, and there is a problem that a large amount of energy is required to operate the equipment. is there.
Further, in the technique described in Patent Literature 2, since the concentrated sludge is not refluxed to the coagulation reaction tank, it was necessary to reduce the sludge treatment flow rate or increase the capacity of the coagulation reaction tank in order to increase the concentration of the concentrated sludge. However, when decreasing the sludge treatment flow rate, a problem may occur in which the target treatment amount or the dehydrator operation time cannot be cleared. In addition, when increasing the volume of the agglutination reaction tank, a problem that a large installation space must be ensured may occur.
Further, in the technology described in Patent Document 3, a polymer flocculant is added to the sludge after the flocculation reaction. However, if a polymer flocculant is excessively added in the course of the flocculation treatment, the filterability of the sludge decreases, and the flocculated sludge is reduced. There is a problem that overflow occurs because the amount of separated liquid separated from the wastewater is reduced and the amount of sludge supplied to the concentrator exceeds the amount of concentrated sludge and the amount of separated liquid.
In addition, any of the methods has a problem that the amount of the coagulant added increases.
 本発明は上記事情に鑑みてなされたものであり、設備を大型化させることなく、濃縮汚泥を脱水することで得られる脱水ケーキの含水率を低減させること及び/又は凝集剤の添加量を低減可能な汚泥濃縮装置及び汚泥濃縮方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and reduces the water content of a dewatered cake obtained by dewatering concentrated sludge without increasing the size of equipment, and / or reduces the amount of a coagulant added. An object of the present invention is to provide a possible sludge concentrating device and a sludge concentrating method.
上記課題を解決するため、本発明は以下の構成を採用する。
 本発明の汚泥濃縮装置は、汚泥と凝集剤とを反応させて凝集汚泥を生成する凝集反応槽と、前記凝集反応槽から抜き出された凝集汚泥を濃縮して濃縮汚泥を形成する濃縮機と、前記凝集反応槽から前記濃縮機に凝集汚泥を供給する汚泥供給路と、前記濃縮機により形成された濃縮汚泥を、外部に排出する排出路と、前記凝集反応槽に前記凝集剤を投入する第1の凝集剤投入装置と、前記濃縮汚泥が流れる前記排出路内に、別の凝集剤を投入する第2の凝集剤投入装置と、を備える。
 また、本発明の汚泥濃縮装置は、前記濃縮機により形成された濃縮汚泥の一部を前記凝集反応槽に環流させる汚泥環流路が更に備えられていてもよい。
 本発明の汚泥濃縮装置は、汚泥と凝集剤とを反応させて凝集汚泥を生成する凝集反応槽と、前記凝集反応槽から抜き出された凝集汚泥を濃縮して濃縮汚泥を形成する濃縮機と、前記凝集反応槽から前記濃縮機に凝集汚泥を供給する汚泥供給路と、前記濃縮機により形成された濃縮汚泥の一部を前記凝集反応槽に環流させる汚泥環流路と、前記濃縮機により形成された濃縮汚泥の残部を、外部に排出する排出路と、を備える。
 また、本発明の汚泥濃縮装置は、前記濃縮機が、周壁に濾過フィルタを備え、前記凝集反応槽から抜き出された凝集汚泥がその一端から導入される円筒体と、前記円筒体の内部に同軸に設けられて回転駆動され、前記凝集汚泥を圧縮しながら他端部に導く螺旋状スクリューと、前記円筒体を覆って設けられて前記濾過フィルタを介して前記凝集汚泥から分離された分離液を集めて外部に排出する外容器とを備えたものでもよい。
 また、本発明の汚泥濃縮装置は、前記濃縮機が、傾斜スクリーン、濾布走行式、ロータリースクリーン式、またはスクリュープレス式の何れかの汚泥濃縮機であってもよい。
 また、本発明の汚泥濃縮装置は、前記排出路の先に、前記濃縮汚泥を脱水する脱水機が備えられていてもよい。
In order to solve the above problems, the present invention employs the following configurations.
The sludge concentrating device of the present invention is a coagulation reaction tank that reacts sludge with a coagulant to generate coagulated sludge, and a concentrator that forms coagulated sludge by condensing coagulated sludge extracted from the coagulation reaction tank. A sludge supply path for supplying coagulated sludge from the coagulation reaction tank to the concentrator, a discharge path for discharging the concentrated sludge formed by the concentrator to the outside, and charging the coagulant into the coagulation reaction tank. A first flocculant charging device; and a second flocculant charging device for charging another flocculant into the discharge passage through which the concentrated sludge flows.
Further, the sludge concentrating device of the present invention may further include a sludge ring flow path for recirculating a part of the concentrated sludge formed by the concentrator to the flocculation reaction tank.
The sludge concentrating device of the present invention is a coagulation reaction tank that reacts sludge with a coagulant to generate coagulated sludge, and a concentrator that forms coagulated sludge by condensing coagulated sludge extracted from the coagulation reaction tank. A sludge supply path for supplying coagulated sludge from the coagulation reaction tank to the concentrator, a sludge ring flow path for recirculating a part of the condensed sludge formed by the concentrator to the coagulation reaction tank, formed by the concentrator And a discharge path for discharging the remaining portion of the concentrated sludge to the outside.
Further, in the sludge concentrating apparatus of the present invention, the concentrator includes a filtration filter on a peripheral wall, and a coagulated sludge extracted from the coagulation reaction tank is introduced from one end of the cylinder, and inside the cylinder. A helical screw that is provided coaxially and is driven to rotate and guides the coagulated sludge to the other end while compressing the coagulated sludge, and a separated liquid provided over the cylindrical body and separated from the coagulated sludge via the filtration filter And an outer container for collecting and discharging the same to the outside.
Further, in the sludge concentrator of the present invention, the concentrator may be any one of an inclined screen, a filter cloth traveling type, a rotary screen type, and a screw press type.
Moreover, the sludge concentrating device of the present invention may be provided with a dehydrator for dehydrating the concentrated sludge at a point ahead of the discharge path.
 上記の汚泥濃縮装置によれば、凝集反応槽と、濃縮機と、汚泥供給路と、濃縮汚泥を外部に排出する排出路と、凝集反応槽に凝集剤を投入する第1の凝集剤投入装置と、濃縮汚泥が流れる排出路内に、別の凝集剤を投入する第2の凝集剤投入装置とを備えており、第2の凝集剤投入装置によって、濃縮後の凝集汚泥に凝集剤を再投入するので、排水路中で濃縮汚泥を再凝集させることができ、濃縮汚泥の脱水性をより向上させ、脱水後の脱水ケーキの含水量をより低減及び/又は凝集剤の添加量を低減できる。
 更に、濃縮汚泥の一部を前記凝集反応槽に環流させる汚泥環流路を更に備えることで、凝集反応槽における濃縮汚泥の滞留時間を延ばすことができ、これにより、凝集フロックの緻密度と機械的強度を増大させ、脱水後の脱水ケーキの含水量をより一層低減及び/又は凝集剤の添加量を低減できる。
According to the above-mentioned sludge concentration apparatus, the flocculation reaction tank, the concentrator, the sludge supply path, the discharge path for discharging the concentrated sludge to the outside, and the first flocculant charging apparatus for charging the flocculant into the flocculation reaction tank And a second flocculant charging device for charging another flocculant in the discharge passage through which the concentrated sludge flows. The flocculant is re-condensed into the flocculated sludge after concentration by the second flocculant charging device. Since it is charged, the concentrated sludge can be re-agglomerated in the drainage channel, the dewatering property of the concentrated sludge can be further improved, the water content of the dewatered cake after dewatering can be further reduced, and / or the amount of the coagulant added can be reduced. .
Further, by further providing a sludge ring flow path for recirculating a part of the concentrated sludge to the flocculation reaction tank, it is possible to extend the residence time of the concentrated sludge in the flocculation reaction tank. By increasing the strength, the water content of the dewatered cake after dehydration can be further reduced and / or the amount of the coagulant added can be reduced.
 また、上記の汚泥濃縮装置によれば、凝集反応槽と、濃縮機と、汚泥供給路と、濃縮汚泥の一部を凝集反応槽に環流させる汚泥環流路と、濃縮汚泥の残部を外部に排出する排出路とを備えており、濃縮汚泥の一部を凝集反応槽に環流させるとともに、濃縮汚泥の残部を外部に排出するので、凝集反応槽における濃縮汚泥の滞留時間を延ばすことができ、これにより、凝集フロックの緻密度と機械的強度を増大させることができる。また、濃縮機において濃縮された濃縮汚泥の残部を、凝集反応槽を通過させることなく外部に排出するので、凝集反応槽に滞留している凝集密度の低い汚泥が濃縮汚泥とともに外部に流出するおそれがなく、これにより、濃縮汚泥を脱水後の脱水ケーキの含水率を低減及び/又は凝集剤の添加量を低減できるようになる。 Further, according to the above-mentioned sludge concentrator, the coagulation reaction tank, the concentrator, the sludge supply path, the sludge ring flow path for recirculating a part of the condensed sludge to the coagulation reaction tank, and discharging the remaining part of the condensed sludge to the outside. And a part of the concentrated sludge is recirculated to the coagulation reaction tank, and the remaining part of the concentrated sludge is discharged to the outside, so that the residence time of the concentrated sludge in the coagulation reaction tank can be extended. Thereby, the denseness and mechanical strength of the aggregated floc can be increased. In addition, since the remaining portion of the concentrated sludge concentrated in the concentrator is discharged to the outside without passing through the flocculation reaction tank, sludge having a low flocculation density remaining in the flocculation reaction tank may flow out together with the concentrated sludge. Thus, the water content of the dewatered cake after dewatering the concentrated sludge can be reduced and / or the amount of the coagulant added can be reduced.
 次に、本発明の汚泥濃縮方法は、汚泥に凝集剤を投入し、前記汚泥と前記凝集剤とを反応させて凝集汚泥を生成する凝集工程と、前記凝集汚泥を濃縮して濃縮汚泥を形成する濃縮工程と、前記濃縮工程後の前記濃縮汚泥を、外部に排出する排出工程と、前記排出工程中の前記濃縮汚泥に対して、別の凝集剤を投入する凝集剤再投入工程と、を備える。
 また、本発明の汚泥濃縮方法は、前記濃縮工程後の前記濃縮汚泥の一部を前記凝集工程に返送する返送工程を更に備えていてもよい。
 また、本発明の汚泥濃縮方法は、汚泥に凝集剤を投入し、前記汚泥と前記凝集剤とを反応させて凝集汚泥を生成する凝集工程と、前記凝集汚泥を濃縮して濃縮汚泥を形成する濃縮工程と、前記濃縮工程後の前記濃縮汚泥の一部を前記凝集工程に返送する返送工程と、前記濃縮工程後の前記濃縮汚泥の残部を、外部に排出する排出工程と、を備える。
 また、本発明の汚泥濃縮方法は、前記返送工程における前記濃縮汚泥の返送率が10~70%の範囲であってもよい。
 また、本発明の汚泥濃縮方法は、前記凝集工程において投入する凝集剤が、無機凝集剤及び高分子凝集剤であってもよい。
 また、本発明の汚泥濃縮方法は、前記凝集剤再投入工程において投入する凝集剤が、高分子凝集剤であってもよい。
 また、本発明の汚泥濃縮方法は、前記凝集工程において投入する凝集剤が、無機凝集剤及び高分子凝集剤であり、前記凝集剤再投入工程において投入する凝集剤が、高分子凝集剤であり、前記凝集工程及び前記凝集剤再投入工程における前記高分子凝集剤の合計投入量を100%としたとき、前記凝集工程において投入する前記高分子凝集剤の割合が40~90%であり、前記凝集剤再投入工程において投入する前記高分子凝集剤の割合が10~60%であってもよい。
Next, the sludge enrichment method of the present invention comprises the steps of: adding a flocculant to the sludge; reacting the sludge with the flocculant to generate a flocculated sludge; and forming the concentrated sludge by concentrating the flocculated sludge. A thickening step, a discharging step of discharging the concentrated sludge after the thickening step to the outside, and a flocculant re-feeding step of feeding another flocculant to the concentrated sludge during the discharging step. Prepare.
Further, the sludge concentration method of the present invention may further include a return step of returning a part of the concentrated sludge after the concentration step to the flocculation step.
Further, the sludge concentration method of the present invention, a coagulant is added to the sludge, a coagulation step of generating the coagulated sludge by reacting the sludge and the coagulant, forming a concentrated sludge by concentrating the coagulated sludge A concentration step; a return step of returning a part of the concentrated sludge after the concentration step to the coagulation step; and a discharge step of discharging the remaining part of the concentrated sludge after the concentration step to the outside.
Further, in the sludge concentration method of the present invention, a return rate of the concentrated sludge in the return step may be in a range of 10 to 70%.
Further, in the sludge concentration method of the present invention, the flocculant fed in the flocculating step may be an inorganic flocculant and a polymer flocculant.
In the sludge concentration method of the present invention, the flocculant to be charged in the flocculant recharging step may be a polymer flocculant.
In the method for concentrating sludge of the present invention, the flocculant charged in the flocculating step is an inorganic flocculant and a polymer flocculant, and the flocculant charged in the flocculant recharging step is a polymer flocculant. When the total amount of the polymer flocculant in the flocculating step and the flocculant re-charging step is 100%, the proportion of the polymer flocculant charged in the flocculating step is 40 to 90%, The proportion of the polymer flocculant to be charged in the flocculant recharging step may be 10 to 60%.
 また、上記の汚泥濃縮方法によれば、凝集工程と、濃縮工程と、排出工程中の濃縮汚泥に対して別の凝集剤を投入する凝集剤再投入工程を備えており、凝集剤再投入工程において、濃縮後の凝集汚泥に凝集剤を再投入するので、排水工程において濃縮汚泥を再凝集させることができ、濃縮汚泥の脱水性をより向上させ、脱水後の脱水ケーキの含水量及び/又は凝集剤の添加量をより低減できる。
 更に、濃縮汚泥の一部を凝集工程に返送させる返送工程を更に備えることで、凝集工程における濃縮汚泥の滞留時間を延ばすことができ、これにより、凝集フロックの緻密度と機械的強度を増大させ、脱水後の脱水ケーキの含水量及び/又は凝集剤の添加量をより一層低減できる。
Further, according to the above-mentioned sludge concentration method, the coagulation step, the concentration step, and the coagulant re-injection step of injecting another coagulant into the concentrated sludge in the discharge step are provided. In, because the coagulant is re-introduced into the coagulated sludge after concentration, it is possible to re-aggregate the concentrated sludge in the drainage process, to further improve the dewaterability of the concentrated sludge, and / or the water content of the dewatered cake after dewatering. The addition amount of the flocculant can be further reduced.
Furthermore, by further providing a return step of returning a part of the concentrated sludge to the flocculation step, it is possible to extend the residence time of the concentrated sludge in the flocculation step, thereby increasing the denseness and mechanical strength of the flocculated floc. In addition, the water content of the dewatered cake after dehydration and / or the amount of the coagulant added can be further reduced.
 上記の汚泥濃縮方法によれば、凝集工程と、濃縮工程と、濃縮汚泥の一部を凝集工程に返送する汚泥環流路と、濃縮汚泥の残部を外部に排出する排出工程とを有しており、濃縮汚泥の一部を凝集工程に返送させるとともに、排出工程によって濃縮汚泥の残部を外部に排出するので、凝集工程における濃縮汚泥の滞留時間を延ばすことができ、これにより、凝集フロックの緻密度と機械的強度を増大させることができる。また、濃縮工程において濃縮された濃縮汚泥の残部を、凝集工程を経ることなく外部に排出するので、凝集工程において滞留する凝集密度の低い汚泥が濃縮汚泥とともに外部に流出するおそれがなく、これにより、濃縮汚泥を脱水後の脱水ケーキの含水率及び/又は凝集剤の添加量を低減できるようになる。 According to the above-mentioned sludge concentration method, it has a flocculation step, a concentration step, a sludge ring flow path for returning part of the concentrated sludge to the flocculation step, and a discharge step for discharging the remaining part of the concentrated sludge to the outside. In addition, a part of the concentrated sludge is returned to the coagulation step, and the remaining part of the concentrated sludge is discharged to the outside in the discharging step, so that the residence time of the concentrated sludge in the coagulation step can be extended. And the mechanical strength can be increased. Also, since the remaining portion of the concentrated sludge concentrated in the concentration step is discharged to the outside without going through the flocculation step, there is no possibility that sludge having a low flocculation density staying in the flocculation step flows out together with the concentrated sludge. In addition, the water content of the dewatered cake after dewatering the concentrated sludge and / or the amount of the coagulant added can be reduced.
 本発明によれば、設備を大型化させることなく、濃縮汚泥を脱水後の脱水ケーキの含水率及び凝集剤の添加量を低減させることが可能な汚泥濃縮装置及び汚泥濃縮方法を提供できる。 According to the present invention, it is possible to provide a sludge concentrating apparatus and a sludge concentrating method capable of reducing the water content of the dewatered cake after dewatering the concentrated sludge and the addition amount of the flocculant without increasing the size of the equipment.
図1は、本発明の第1の実施形態の汚泥濃縮装置を示す模式図。Drawing 1 is a mimetic diagram showing the sludge concentration device of a 1st embodiment of the present invention. 図2は、凝集反応槽における物質収支を説明する図。FIG. 2 is a diagram illustrating a material balance in an agglutination reaction tank. 図3は、本発明の第2の実施形態の汚泥濃縮装置を示す模式図。Drawing 3 is a mimetic diagram showing the sludge concentration device of a 2nd embodiment of the present invention.
 汚泥と凝集剤との反応によって生成する凝集汚泥は、減容化させるために、更に濃縮されて濃縮汚泥とされる。濃縮汚泥を緻密化させるためには、凝集剤と汚泥との反応時間を延長させることが有効である。しかしながら、汚泥の凝集反応時間を延長すると、濃縮汚泥の処理量が減少し、また、多量の汚泥を貯留させるために凝集反応槽の容積が増大する。そこで、本発明者らが検討したところ、濃縮汚泥の一部を凝集反応槽に還流させて凝集反応時間を延長させるとともに濃縮汚泥の残部を凝集反応槽を経由させることなく外部に排出させることで、緻密化させた濃縮汚泥を排出させることを見出した。また、濃縮後に排出される濃縮汚泥に凝集剤を再投入することで、排出中の濃縮汚泥を更に凝集させることを見出しした。これにより、汚泥濃縮装置の規模を拡大させることなく、濃縮汚泥を緻密化させて、脱水しやすい濃縮汚泥を形成させ、汚泥の減容化を図ることに成功した。 凝集 The coagulated sludge generated by the reaction between the sludge and the coagulant is further concentrated to reduce the volume to form concentrated sludge. In order to densify the concentrated sludge, it is effective to extend the reaction time between the flocculant and the sludge. However, when the coagulation reaction time of the sludge is extended, the treatment amount of the concentrated sludge decreases, and the volume of the coagulation reaction tank increases in order to store a large amount of sludge. Therefore, the present inventors have studied and found that a part of the concentrated sludge is refluxed to the coagulation reaction tank to extend the coagulation reaction time, and the remaining sludge is discharged outside without passing through the coagulation reaction tank. It was found that dense sludge was discharged. Further, they have found that the concentrated sludge being discharged is further coagulated by re-introducing the flocculant into the concentrated sludge discharged after the concentration. As a result, without increasing the size of the sludge concentrating device, the concentrated sludge was densified to form concentrated sludge that was easily dewatered, and the volume of sludge was successfully reduced.
 以下、本発明の実施形態である汚泥濃縮装置及び汚泥濃縮方法について図面を参照して説明する。 Hereinafter, a sludge concentration apparatus and a sludge concentration method according to embodiments of the present invention will be described with reference to the drawings.
(第1の実施形態)
 図1に示すように、本発明の第1の実施形態である汚泥濃縮装置1は、凝集反応槽2と、濃縮機3と、汚泥供給路4と、排出路5と、汚泥環流路6とを備える。また、排出路5の先には、図示略の脱水機が備えられていてもよい。
(1st Embodiment)
As shown in FIG. 1, a sludge concentrator 1 according to a first embodiment of the present invention includes a coagulation reaction tank 2, a concentrator 3, a sludge supply path 4, a discharge path 5, a sludge ring flow path 6, Is provided. A dehydrator (not shown) may be provided at the end of the discharge path 5.
 凝集反応漕2は、汚泥と凝集剤とを反応させて凝集汚泥を生成する。凝集反応槽2は反応槽21を有する。反応槽21の下部に原汚泥を供給する原泥供給管22を備えている。
原泥供給管22の途中には、汚泥に無機凝集剤を供給する供給装置23と、汚泥に高分子凝集剤を供給する供給装置24が備えられている。無機凝集剤の供給装置23の位置は、高分子凝集剤の供給装置24に対し、原泥供給管22における原泥の供給方向の上流側にある。
The coagulation reaction tank 2 generates coagulated sludge by reacting sludge with a coagulant. The coagulation reaction tank 2 has a reaction tank 21. A raw mud supply pipe 22 for supplying raw sludge is provided below the reaction tank 21.
A supply device 23 for supplying an inorganic flocculant to sludge and a supply device 24 for supplying a polymer flocculant to sludge are provided in the middle of the raw mud supply pipe 22. The position of the inorganic coagulant supply device 23 is on the upstream side of the raw mud supply pipe 22 in the raw mud supply direction with respect to the polymer coagulant supply device 24.
 反応槽21は、汚泥と凝集剤を撹拌して凝集汚泥の生成促進を行うために、その内部に同軸に設けられたモータ25により回転駆動される撹拌手段26を備えている。この撹拌手段26は、例えばその回転軸27の先端に、回転羽根26aが取り付けられたものからなる。反応槽21の上部には、凝集汚泥を濃縮機3に供給する供給出口28が設けられている。 The reaction tank 21 is provided with a stirring means 26 which is rotationally driven by a motor 25 provided coaxially therein to stir the sludge and the flocculant to promote the generation of the flocculated sludge. The stirring means 26 is, for example, one in which a rotating blade 26a is attached to the tip of a rotating shaft 27. At the upper part of the reaction tank 21, a supply outlet 28 for supplying the coagulated sludge to the concentrator 3 is provided.
 汚泥供給路4は、供給出口28を通じて凝集汚泥を凝集反応槽2から濃縮機3に供給するために設けられている。 The sludge supply passage 4 is provided to supply the coagulated sludge from the coagulation reaction tank 2 to the concentrator 3 through the supply outlet 28.
 濃縮機3は、凝集反応槽2から抜き出された凝集汚泥を濃縮して濃縮汚泥を形成する。
濃縮機3は、円筒体31と、円筒体31を覆って設けられる外容器32とを備えている。
円筒体31は、その上端近傍壁面に、汚泥供給路4を通じて凝集反応漕21から凝集汚泥が供給される供給入口34aを備え、周壁に汚泥に含まれる液体を分離・濾過するための濾過フィルタ35を備えている。この濾過フィルタ35は、例えばパンチングプレートまたは/およびウェッジワイヤなどからなり、パンチングプレートの孔径またはウェッジワイヤのスリット幅を任意に選定し、1枚または複数枚重ねて用いられることにより、液体分と凝集フロックの分離性能を高めている。また、円筒体31は、その下端近傍壁面に、濃縮汚泥を排出するための出口38を備えている。
The concentrator 3 condenses the coagulated sludge extracted from the coagulation reaction tank 2 to form concentrated sludge.
The concentrator 3 includes a cylindrical body 31 and an outer container 32 provided to cover the cylindrical body 31.
The cylindrical body 31 has a supply inlet 34a on the wall near the upper end through which the flocculated sludge is supplied from the flocculation reaction tank 21 through the sludge supply passage 4, and a filtration filter 35 for separating and filtering the liquid contained in the sludge on the peripheral wall. It has. The filtration filter 35 is made of, for example, a punching plate or / and a wedge wire, and the hole diameter of the punching plate or the slit width of the wedge wire is arbitrarily selected. Improves the flock separation performance. Further, the cylindrical body 31 is provided with an outlet 38 for discharging the concentrated sludge on a wall surface near the lower end thereof.
 さらに、円筒体31は、その内部に上記供給入口34aから供給された汚泥を圧縮しながら出口38に向けて移送する圧送手段33を備えている。この圧送手段33は、円筒体31の内部に同軸に設けられるスクリュー回転軸36と、このスクリュー回転軸36に取り付けられた螺旋状スクリュー37とからなり、モータ30により回転駆動される。この螺旋状スクリュー37の回転により凝集汚泥は圧縮されながら円筒体31の上部から下部に導かれる。 Further, the cylindrical body 31 is provided with a pressurizing means 33 for transporting the sludge supplied from the supply inlet 34a toward the outlet 38 while compressing the sludge therein. The pumping means 33 includes a screw rotating shaft 36 provided coaxially inside the cylindrical body 31 and a helical screw 37 attached to the screw rotating shaft 36, and is rotationally driven by the motor 30. The coagulated sludge is guided from the upper part to the lower part of the cylindrical body 31 while being compressed by the rotation of the spiral screw 37.
 また、外容器32の上端部32a、中央部32bおよび下端部32bには、それぞれ上方接続管41、中央接続管42および下方接続管43が接続され、それぞれの接続管41、42、43は分離液槽44に接続されている。 An upper connecting pipe 41, a central connecting pipe 42, and a lower connecting pipe 43 are connected to the upper end 32a, the central part 32b, and the lower end 32b of the outer container 32, respectively, and the respective connecting pipes 41, 42, 43 are separated. It is connected to the liquid tank 44.
 分離液漕44には、濃縮汚泥から分離された分離液が貯留される。分離液漕44の内部には、オーバーフロー管45が配設されている。オーバーフロー管45の一端45aは分離液槽44内にあり、他端45bは分離液槽44外にある。オーバーフロー管45によって分離液が分離液槽44の外部に排出されるようになっている。 The separated liquid tank 44 stores the separated liquid separated from the concentrated sludge. An overflow pipe 45 is provided inside the separation liquid tank 44. One end 45a of the overflow pipe 45 is inside the separation liquid tank 44, and the other end 45b is outside the separation liquid tank 44. The separation liquid is discharged to the outside of the separation liquid tank 44 by the overflow pipe 45.
 排出路5は、濃縮機3の出口38を通じて濃縮汚泥を濃縮機3から外部に排出するために設けられている。排出路5の途中には汚泥還流路6が分岐して設けられており、濃縮汚泥の一部は汚泥還流路6に流され、濃縮汚泥の残部が排出路5を流れる。排出路5の先には図示略の脱水機がある。また、排出路5の途中には排出用ポンプ5aが備えられており、濃縮機3の出口38から排出された濃縮汚泥を排水路5の下流側に送り出す。 The discharge path 5 is provided for discharging the concentrated sludge from the concentrator 3 to the outside through the outlet 38 of the concentrator 3. A sludge recirculation path 6 is provided branching in the middle of the discharge path 5, and a part of the concentrated sludge flows into the sludge recirculation path 6, and the rest of the concentrated sludge flows through the discharge path 5. A dehydrator (not shown) is provided at the end of the discharge path 5. Further, a discharge pump 5 a is provided in the middle of the discharge passage 5, and sends the concentrated sludge discharged from the outlet 38 of the concentrator 3 to the downstream side of the drain passage 5.
 汚泥還流路6は、排出路5の途中から分岐して、濃縮汚泥の一部を濃縮機3から凝集反応槽2に還流するために設けられている。汚泥還流路6は原泥供給管22に接続されている。原泥供給管22に対する汚泥還流路6の接続位置は、高分子凝集剤の供給装置24と反応槽21との間の位置である。汚泥還流路6の途中には還流用ポンプ6aが備えられている。還流用ポンプ6aは、濃縮機3の出口38から排出された濃縮汚泥の一部を、汚泥還流路6の下流側に送り出す。還流用ポンプ6aによって、濃縮汚泥の返送率を10~70%の範囲に調整可能である。 The sludge recirculation path 6 is provided to branch off from the middle of the discharge path 5 and to recirculate a part of the concentrated sludge from the concentrator 3 to the coagulation reaction tank 2. The sludge return path 6 is connected to a raw mud supply pipe 22. The connection position of the sludge recirculation path 6 to the raw mud supply pipe 22 is a position between the polymer flocculant supply device 24 and the reaction tank 21. In the middle of the sludge return passage 6, a return pump 6a is provided. The recirculation pump 6 a sends a part of the concentrated sludge discharged from the outlet 38 of the concentrator 3 to the downstream side of the sludge recirculation path 6. The return rate of the concentrated sludge can be adjusted in the range of 10 to 70% by the reflux pump 6a.
 次に、図1に示す汚泥濃縮装置1を用いた汚泥濃縮方法を説明する。本実施形態の汚泥濃縮方法は、凝集工程と、濃縮工程と、返送工程と、排出工程とを備えている。以下、各工程について説明する。 Next, a sludge concentration method using the sludge concentration device 1 shown in FIG. 1 will be described. The sludge concentration method of the present embodiment includes a flocculation step, a concentration step, a return step, and a discharge step. Hereinafter, each step will be described.
 凝集工程では、汚泥に凝集剤を投入して、汚泥と凝集剤とを反応させて凝集汚泥を生成する。具体的には図1の原泥供給管22によって反応槽21に原汚泥を供給する。このとき、供給装置23によって原汚泥に無機凝集剤を供給し、更に、供給装置24によって原汚泥に高分子凝集剤を供給する。無機凝集剤及び高分子凝集剤が添加された原汚泥は、反応槽21内部において撹拌手段26によって撹拌されながら、反応槽21の下部から上部に向けて導かれ、この間に原汚泥と凝集剤との反応が進み、凝集汚泥が形成される。反応槽21の上部に達した凝集汚泥は、汚泥供給路4を通じて濃縮機3(円筒体31)の上部に供給される。 In the flocculation step, a flocculant is introduced into the sludge, and the sludge and the flocculant are reacted to generate flocculated sludge. Specifically, raw sludge is supplied to the reaction tank 21 by the raw mud supply pipe 22 of FIG. At this time, the supply device 23 supplies an inorganic flocculant to the raw sludge, and the supply device 24 supplies a polymer flocculant to the raw sludge. The raw sludge to which the inorganic flocculant and the polymer flocculant are added is guided from the lower part to the upper part of the reaction tank 21 while being stirred by the stirring means 26 inside the reaction tank 21, during which the raw sludge and the flocculant are mixed. Reaction proceeds to form coagulated sludge. The flocculated sludge that has reached the upper part of the reaction tank 21 is supplied to the upper part of the concentrator 3 (cylindrical body 31) through the sludge supply path 4.
 無機凝集剤としては、塩化第二鉄、ポリ硫酸鉄などの鉄系凝集剤、硫酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウムなどのアルミニウム系凝集剤などを用いることができる。これらは1種を単独で用いても良く、2種以上を併用しても良い。 As the inorganic coagulant, an iron coagulant such as ferric chloride and polyiron sulfate, an aluminum coagulant such as aluminum sulfate, aluminum chloride and polyaluminum chloride can be used. These may be used alone or in combination of two or more.
 無機凝集剤は通常酸性であり、原泥に無機凝集剤を添加することにより、汚泥のpH値が下がる。無機凝集剤と併用する高分子凝集剤が両性高分子凝集剤である場合、両性高分子凝集剤で凝集処理可能なpHの下限は3.5程度であるため、無機凝集剤添加後の汚泥のpHは、3.5以上、例えば4.5~5.0程度であることが好ましい。 (4) The inorganic flocculant is usually acidic, and the pH value of the sludge is lowered by adding the inorganic flocculant to the raw sludge. When the polymer coagulant used in combination with the inorganic coagulant is an amphoteric polymer coagulant, the lower limit of pH at which coagulation can be performed with the amphoteric polymer coagulant is about 3.5. The pH is preferably 3.5 or more, for example, about 4.5 to 5.0.
 無機凝集剤を添加して調質した後の汚泥に添加する高分子凝集剤としては、両性高分子凝集剤を用いることが好ましい。両性高分子凝集剤としては、例えばアニオン性のモノマー成分とカチオン性のモノマー成分の共重合体、アニオン性のモノマー成分、カチオン性のモノマー成分及びノニオン性のモノマー成分の共重合体、あるいはアニオン性のモノマー成分とノニオン性のモノマー成分の共重合体のマンニッヒ変性物又はホフマン分解物などを挙げることができる。 As the polymer flocculant to be added to the sludge after adding the inorganic flocculant and conditioning, it is preferable to use an amphoteric polymer flocculant. Examples of the amphoteric polymer flocculant include a copolymer of an anionic monomer component and a cationic monomer component, a copolymer of an anionic monomer component, a copolymer of a cationic monomer component and a nonionic monomer component, or an anionic monomer component. And a nonionic monomer component, such as a Mannich modified product or a Hoffman decomposition product.
 アニオン性のモノマー成分としては、例えばアクリル酸(AA)、アクリル酸ナトリウム(NaA)、メタクリル酸、メタクリル酸ナトリウムなどを挙げることができる。 Examples of the anionic monomer component include acrylic acid (AA), sodium acrylate (NaA), methacrylic acid, sodium methacrylate, and the like.
 カチオン性のモノマーの成分としては、例えばジメチルアミノエチル(メタ)アクリレート,ジメチルアミノプロピル(メタ)アクリレート、及びそれらの四級化物などを挙げることができる。四級化物としては、具体的にはジメチルアミノエチルアクリレート四級化物(DAA)やジメチルアミノエチルメタクリレート四級化物(DAM)などを挙げることができる。また、ジメチルアミノプロピルアクリルアミドの塩酸塩(DAPAAm)を用いても良い。 (4) Examples of the cationic monomer component include dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, and quaternized products thereof. Specific examples of the quaternary compound include dimethylaminoethyl acrylate quaternary compound (DAA) and dimethylaminoethyl methacrylate quaternary compound (DAM). Alternatively, dimethylaminopropylacrylamide hydrochloride (DAPAAm) may be used.
 ノニオン性のモノマー成分としては、例えばアクリルアミド(AAm)、メタアクリルアミド、N,N-ジメチル(メタ)アクリルアミドなどを挙げることができる。 Examples of the nonionic monomer component include acrylamide (AAm), methacrylamide, and N, N-dimethyl (meth) acrylamide.
 また、これらの共重合体として、具体的にはDAA/AA/AAm共重合体、DAM/AA/AAm共重合体、DAA/DAM/AA/AAm共重合体、DAPAAm/AA/AAm共重合体、DAA/AA共重合体、NaA/AAm共重合体のマンニッヒ変性物などを挙げることができる。 Specific examples of these copolymers include a DAA / AA / AAm copolymer, a DAM / AA / AAm copolymer, a DAA / DAM / AA / AAm copolymer, and a DAPAAm / AA / AAm copolymer. , DAA / AA copolymers, and Mannich-modified NaA / AAm copolymers.
 次に、濃縮工程では、凝集工程によって生成された凝集汚泥を濃縮することで、濃縮汚泥を形成する。具体的には、円筒体31の内部に供給された凝集汚泥は、円筒体31の内部で回転する螺旋状スクリュー37により圧縮されながら、円筒体31下部に向けて移送される。この過程で、凝集汚泥に含まれる液体分が分離液として濾過フィルタ35を通して分離され、外容器32側に連続的に排出される。そして、この分離液の分離に伴って凝集汚泥の濃縮が進行される。 Next, in the concentration step, the concentrated sludge generated by the flocculation step is concentrated to form a concentrated sludge. Specifically, the coagulated sludge supplied to the inside of the cylindrical body 31 is transferred toward the lower part of the cylindrical body 31 while being compressed by the helical screw 37 rotating inside the cylindrical body 31. In this process, the liquid component contained in the coagulated sludge is separated as a separated liquid through the filter 35 and continuously discharged to the outer container 32 side. Then, with the separation of the separated liquid, the concentration of the coagulated sludge proceeds.
 尚、外容器32に分離された分離液は、上方接続管41、中央接続管42および下方接続管43を通じて分離液槽44に送られる。分離液が外容器32内で滞留する量と、上方接続管41、中央接続管42および下方接続管43から排出される量とのバランスは、分離液槽44内に設置されたオーバーフロー管45の一端45aの高さによって調節される。オーバーフロー管45の一端45aよりも分離液の液面が高くなると、オーバーフロー管45を介して分離液が外部に排出される。このようにして分離液の量のバランスを維持することにより、濾過面では取り出される分離液量に相当する差圧が生じ、濾過面の閉塞、およびSSリークがなく、分離液のスムーズな濾過ができる。 The separated liquid separated into the outer container 32 is sent to the separated liquid tank 44 through the upper connecting pipe 41, the central connecting pipe 42, and the lower connecting pipe 43. The balance between the amount of the separated liquid remaining in the outer container 32 and the amount discharged from the upper connecting pipe 41, the central connecting pipe 42, and the lower connecting pipe 43 is determined by the overflow pipe 45 installed in the separated liquid tank 44. It is adjusted by the height of one end 45a. When the liquid level of the separated liquid is higher than one end 45 a of the overflow pipe 45, the separated liquid is discharged to the outside through the overflow pipe 45. By maintaining the balance of the amount of the separated liquid in this manner, a differential pressure corresponding to the amount of the separated liquid taken out at the filtration surface is generated, and there is no clogging of the filtration surface, no SS leak, and smooth filtration of the separated liquid is achieved. it can.
 一方、排出工程として、濃縮汚泥は、円筒体31中を移送された後、出口38から排出路5に排出される。排出路5の途中に備えられた排出用ポンプ5aによって、濃縮汚泥を排水路5の下流側に送り出す。濃縮汚泥の一部は、後述するように返送工程によって反応槽21に返送されるが、返送されなかった濃縮汚泥の残部は、排出路5を更に移動し、図示略の脱水機まで到達する。脱水機まで到達した濃縮汚泥は、脱水機によって脱水されて脱水ケーキとされる。 On the other hand, in the discharge step, the concentrated sludge is transferred through the cylindrical body 31 and then discharged from the outlet 38 to the discharge path 5. The concentrated sludge is sent to the downstream side of the drainage channel 5 by a drainage pump 5 a provided in the middle of the drainage channel 5. Part of the concentrated sludge is returned to the reaction tank 21 in a return step as described later, but the remaining part of the concentrated sludge that has not been returned further moves through the discharge path 5 and reaches a dehydrator (not shown). The concentrated sludge that has reached the dehydrator is dehydrated by the dehydrator to be a dewatered cake.
 次に、返送工程として、排水路5の途中から分岐された汚泥環流路6を通じて、濃縮汚泥の一部を反応槽21に返送する。このとき、還流用ポンプ6aによって、濃縮汚泥の返送率を10~70%の範囲に調整する。返送率は、濃縮機3から排出された濃縮汚泥の全量に対する、返送される濃縮汚泥の量の割合である。なお、この割合は体積割合である。
濃縮汚泥の返送率が10%未満では濃縮汚泥の緻密化と機械強度の向上を達成できないので好ましくない。また、返送率が70%を超えると、凝集反応槽2の処理能力を超えた濃縮汚泥が返送されてしまい、凝集反応槽がオーバーフローしてしまうので好ましくない。
Next, as a return step, a part of the concentrated sludge is returned to the reaction tank 21 through the sludge ring channel 6 branched from the middle of the drainage channel 5. At this time, the return rate of the concentrated sludge is adjusted to a range of 10 to 70% by the reflux pump 6a. The return rate is a ratio of the amount of concentrated sludge returned to the total amount of concentrated sludge discharged from the thickener 3. This ratio is a volume ratio.
If the return rate of the concentrated sludge is less than 10%, it is not preferable because the densification of the concentrated sludge and the improvement in mechanical strength cannot be achieved. On the other hand, if the return rate exceeds 70%, the concentrated sludge exceeding the treatment capacity of the flocculation reaction tank 2 is returned, and the flocculation reaction tank overflows, which is not preferable.
 汚泥環流路6を通じて反応槽21に返送される濃縮汚泥は、供給装置24と反応槽21との間の位置にて、原泥供給管22を流れる原汚泥と合流する。原汚泥には、既に無機凝集剤及び高分子凝集剤が添加されているため、返送された濃縮汚泥にも凝集剤の一部が作用することになる。返送された濃縮汚泥は、反応槽21で濃縮状態から開放され、凝集フロックの形態となり、反応槽21中を流動する。このような凝集フロックは、原汚泥および凝集剤と混合されて凝集反応が進行し、この間に、粒径がより大きく、且つ、緻密度と機械的強度がより大きいものとなる。 濃縮 The concentrated sludge returned to the reaction tank 21 through the sludge ring flow path 6 joins the raw sludge flowing through the raw sludge supply pipe 22 at a position between the supply device 24 and the reaction tank 21. Since the raw sludge has already been added with the inorganic flocculant and the polymer flocculant, a part of the flocculant acts on the returned concentrated sludge. The returned concentrated sludge is released from the concentrated state in the reaction tank 21, forms a flocculated floc, and flows in the reaction tank 21. Such flocculated floc is mixed with the raw sludge and the flocculant and the flocculation reaction proceeds, during which the particle size is larger, and the denseness and mechanical strength are larger.
 このように、汚泥の凝集、濃縮、凝集を繰り返すことにより、凝集フロックの粒径の成長、緻密度と機械的強度の増大が促進され、汚泥の濃縮が進行される。 繰 り 返 す By repeating the coagulation, concentration and coagulation of the sludge in this way, the growth of the particle size of the coagulated floc, the increase in the denseness and the mechanical strength are promoted, and the sludge is concentrated.
 図2は、凝集反応槽2における物質収支を示す。図2中、Vは凝集反応槽容積[m]、Qは汚泥および分離液流量[m/h]、Cは反応槽内の固形分濃度(汚泥濃度)[%TS]、nは濃縮機による汚泥の濃縮倍率[倍]、Rは濃縮汚泥の返送率[%](0≦R<100)、iは流入汚泥、fは脱水機に供給される濃縮汚泥、rは返送される汚泥、bは分離液を示す。 FIG. 2 shows the material balance in the agglutination reaction tank 2. In FIG. 2, V is the volume of the coagulation reaction tank [m 3 ], Q is the flow rate of the sludge and the separated liquid [m 3 / h], C is the solid content concentration (sludge concentration) in the reaction tank [% TS], and n is the concentration. Sludge concentration ratio [times], R is the return ratio of the concentrated sludge [%] (0 ≦ R <100), i is the inflow sludge, f is the concentrated sludge supplied to the dehydrator, and r is the returned sludge. , B indicate a separated solution.
 反応槽21内の汚泥濃度Cは、以下の式(1)で示される。 汚 The sludge concentration C in the reaction tank 21 is represented by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 仮に、汚泥の濃縮倍率n=4[倍]の時、濃縮汚泥の返送率R=30[%]の場合と、濃縮汚泥を返送しない場合(R=0%)とを比較すると、反応槽21内の汚泥濃度は、下記式(2)のように、約1.3倍となる。 If the sludge concentration ratio n = 4 [times] and the return ratio of the concentrated sludge R = 30 [%] is compared with the case where the concentrated sludge is not returned (R = 0%), the reaction tank 21 The sludge concentration inside is about 1.3 times as shown in the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、反応槽21における汚泥の滞留時間SRTは以下の式(3)で示される。 Further, the residence time SRT of the sludge in the reaction tank 21 is represented by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記と同様に、汚泥の濃縮倍率n=4[倍]の時、濃縮汚泥の返送率RR=30[%]の場合と、濃縮汚泥を返送しない場合(R=0%)とを比較すると、反応槽21におけるSRTは、下記式(4)のように、約1.3倍となる。 Similarly to the above, when the sludge concentration ratio n = 4 [times], a comparison is made between the case where the return rate RR of the concentrated sludge is 30% and the case where the concentrated sludge is not returned (R = 0%). The SRT in the reaction tank 21 becomes about 1.3 times as shown in the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なお、濃縮倍率n=1~5[倍]の条件では、濃縮汚泥の返送率R=80[%]以上では、返送される汚泥の流量が、原汚泥の流入量に対して同等から4倍程度となり、汚泥の還流機構の大型化もしくは還流用ポンプの設備費の上昇が予想されるので、本実施形態では安全を見て、濃縮汚泥の返送率Rを70%以下とする。 Note that, under the condition of the concentration ratio n = 1 to 5 [times], when the return ratio R of the concentrated sludge is 80% or more, the flow rate of the returned sludge is equal to or four times the flow amount of the raw sludge. It is expected that the sludge recirculation mechanism will be enlarged or the equipment cost of the recirculation pump will increase. Therefore, in this embodiment, the return rate R of the concentrated sludge is set to 70% or less in view of safety.
 以上説明したように、本実施形態の汚泥濃縮装置1によれば、凝集反応槽2と、濃縮機3と、汚泥供給路4と、濃縮汚泥の一部を凝集反応槽2に環流させる汚泥環流路6と、濃縮汚泥の残部を外部に排出する排出路5とを備えており、濃縮汚泥の一部を凝集反応槽2に環流させるとともに、濃縮汚泥の残部を外部に排出するので、凝集反応槽2における濃縮汚泥の滞留時間を延ばすことができ、これにより、凝集フロックの緻密度と機械的強度を増大させることができる。また、濃縮機3において濃縮された濃縮汚泥の残部を、凝集反応槽2を通過させることなく外部に排出するので、凝集反応槽2に滞留している凝集密度の低い汚泥が濃縮汚泥とともに外部に流出するおそれがない。以上により、濃縮汚泥を脱水後の脱水ケーキの含水率を低減できるようになる。また、凝集剤の添加量を低減することが可能となる。 As described above, according to the sludge concentrating apparatus 1 of the present embodiment, the flocculation reaction tank 2, the concentrator 3, the sludge supply path 4, and the sludge reflux for recirculating a part of the concentrated sludge to the coagulation reaction tank 2. The apparatus is provided with a passage 6 and a discharge path 5 for discharging the remaining portion of the concentrated sludge to the outside. The part of the concentrated sludge is returned to the coagulation reaction tank 2 and the remaining portion of the concentrated sludge is discharged to the outside. The residence time of the concentrated sludge in the tank 2 can be prolonged, whereby the denseness and mechanical strength of the flocculated floc can be increased. In addition, since the remaining sludge concentrated in the concentrator 3 is discharged to the outside without passing through the coagulation reaction tank 2, the sludge having a low coagulation density remaining in the coagulation reaction tank 2 is discharged to the outside together with the concentrated sludge. No risk of spill. As described above, the water content of the dewatered cake after dewatering the concentrated sludge can be reduced. Further, the amount of the coagulant added can be reduced.
 また、本実施形態の汚泥濃縮装置1によれば、濃縮機3が、周壁に濾過フィルタ35を備え、凝集汚泥がその一端から導入される円筒体31と、円筒体31の内部に設けられた螺旋状スクリュー37と、濾過フィルタ35を介して凝集汚泥から分離された分離液を集めて外部に排出する外容器32とを備えているので、連続的に汚泥を濃縮して濃縮汚泥と分離液とに分離することができ、濃縮汚泥の処理量を向上できる。
 また、本実施形態の汚泥濃縮装置1によれば、排出路5の先に、濃縮汚泥を脱水する脱水機が備えられているので、濃縮汚泥を効率よく脱水ケーキまで減容化させることができる。
Further, according to the sludge concentrating apparatus 1 of the present embodiment, the concentrator 3 is provided with the filtration filter 35 on the peripheral wall, and is provided inside the cylindrical body 31 into which the flocculated sludge is introduced from one end thereof. Since it has the helical screw 37 and the outer container 32 for collecting and discharging the separated liquid separated from the coagulated sludge through the filtration filter 35, the sludge is continuously concentrated to concentrate the sludge and the separated liquid. And the amount of concentrated sludge can be improved.
Further, according to the sludge concentration apparatus 1 of the present embodiment, since the dewatering device for dewatering the concentrated sludge is provided at the end of the discharge passage 5, the concentrated sludge can be efficiently reduced in volume to a dewatered cake. .
 次に、本実施形態の汚泥濃縮方法によれば、凝集工程と、濃縮工程と、濃縮汚泥の一部を凝集工程に返送する返送工程と、濃縮汚泥の残部を外部に排出する排出工程とを有しており、濃縮汚泥の一部を凝集工程に返送させるとともに、排出工程によって濃縮汚泥の残部を外部に排出するので、凝集工程における濃縮汚泥の滞留時間を延ばすことができ、これにより、凝集フロックの緻密度と機械的強度を増大させることができる。また、濃縮工程において濃縮された濃縮汚泥の残部を、凝集工程を経ることなく外部に排出するので、凝集工程において滞留する凝集密度の低い汚泥が濃縮汚泥とともに外部に流出するおそれがない。以上により、濃縮汚泥を脱水後の脱水ケーキの含水率及び/又は凝集剤の添加量を低減できるようになる。 Next, according to the sludge concentration method of the present embodiment, the flocculation step, the concentration step, a return step of returning part of the concentrated sludge to the flocculation step, and a discharge step of discharging the remaining part of the concentrated sludge to the outside Since a part of the concentrated sludge is returned to the coagulation step and the remaining part of the concentrated sludge is discharged to the outside in the discharge step, the residence time of the concentrated sludge in the coagulation step can be extended. The density and mechanical strength of the floc can be increased. Further, since the remaining portion of the concentrated sludge concentrated in the concentration step is discharged outside without going through the flocculation step, there is no possibility that sludge having a low flocculation density staying in the flocculation step flows out together with the concentrated sludge. As described above, the water content of the dewatered cake after dewatering the concentrated sludge and / or the amount of the coagulant added can be reduced.
 また、本実施形態の汚泥濃縮方法によれば、返送工程における濃縮汚泥の返送率を10~70%の範囲とするので、凝集フロックの緻密度と機械的強度を増大させることができる。 According to the sludge concentration method of the present embodiment, since the return rate of the concentrated sludge in the return step is in the range of 10 to 70%, the denseness and mechanical strength of the flocculated floc can be increased.
(第2の実施形態)
 図3に示すように、本発明の第2の実施形態である汚泥濃縮装置51は、凝集反応槽2と、濃縮機3と、汚泥供給路4と、排出路5と、汚泥環流路6と、第1の凝集剤投入装置52と、第2の凝集剤投入装置53とを備える。また、排出路5の先には、図示略の脱水機が備えられていてもよい。
(Second embodiment)
As shown in FIG. 3, a sludge concentrating device 51 according to a second embodiment of the present invention includes a coagulation reaction tank 2, a concentrator 3, a sludge supply passage 4, a discharge passage 5, a sludge ring passage 6, , A first flocculant charging device 52 and a second flocculant charging device 53. A dehydrator (not shown) may be provided at the end of the discharge path 5.
 本実施形態における凝集反応槽2、濃縮機3、汚泥供給路4、排出路5及び汚泥環流路6は、第1の実施形態において説明した凝集反応槽2、濃縮機3、汚泥供給路4、排出路5及び汚泥環流路6と同様なので、本実施形態では説明を省略あるいは簡略にする。 The coagulation reaction tank 2, the concentrator 3, the sludge supply path 4, the discharge path 5, and the sludge ring flow path 6 in the present embodiment are the same as the coagulation reaction tank 2, the concentrator 3, and the sludge supply path 4, described in the first embodiment. Since the discharge channel 5 and the sludge ring channel 6 are the same, the description is omitted or simplified in this embodiment.
 凝集反応漕2は、反応槽21を有する。また、反応槽21の下部には、原汚泥を供給する原泥供給管22を備えている。原泥供給管22の途中には、第1の凝集剤投入装置52が備えられている。第1の凝集剤投入装置52は、汚泥に無機凝集剤を供給する供給装置23と、汚泥に高分子凝集剤を供給する供給装置24とから構成されている。無機凝集剤の供給装置23の位置は、高分子凝集剤の供給装置24に対し、原泥供給管22における原泥の供給方向の上流側にある。反応槽21の上部には、凝集汚泥を濃縮機3に供給する供給出口28が設けられている。 The coagulation reaction tank 2 has a reaction tank 21. Further, a lower part of the reaction tank 21 is provided with a raw mud supply pipe 22 for supplying raw sludge. In the middle of the raw mud supply pipe 22, a first flocculant charging device 52 is provided. The first flocculant charging device 52 includes a supply device 23 that supplies an inorganic flocculant to sludge, and a supply device 24 that supplies a polymer flocculant to sludge. The position of the inorganic coagulant supply device 23 is on the upstream side of the raw mud supply pipe 22 in the raw mud supply direction with respect to the polymer coagulant supply device 24. At the upper part of the reaction tank 21, a supply outlet 28 for supplying the coagulated sludge to the concentrator 3 is provided.
 濃縮機3は、円筒体31と、外容器32とを備えている。円筒体31の周壁には、汚泥に含まれる液体を分離・濾過するための濾過フィルタ35を備えている。また、円筒体31は、その下端近傍壁面に、濃縮汚泥を排出するための出口38を備えている。 The concentrator 3 includes a cylindrical body 31 and an outer container 32. The peripheral wall of the cylindrical body 31 is provided with a filter 35 for separating and filtering the liquid contained in the sludge. Further, the cylindrical body 31 is provided with an outlet 38 for discharging the concentrated sludge on a wall surface near the lower end thereof.
 さらに、円筒体31には圧送手段33を備えている。圧送手段33は、スクリュー回転軸36及び螺旋状スクリュー37からなり、モータ30により回転駆動される。 Furthermore, the cylindrical body 31 is provided with a pressure feeding means 33. The pumping means 33 includes a screw rotating shaft 36 and a helical screw 37, and is driven to rotate by the motor 30.
 また、外容器32には、上方接続管41、中央接続管42および下方接続管43を介して、分離液槽44が接続されている。分離液漕44の内部には、オーバーフロー管45が配設されている。 分離 Further, a separation liquid tank 44 is connected to the outer container 32 via an upper connecting pipe 41, a central connecting pipe 42, and a lower connecting pipe 43. An overflow pipe 45 is provided inside the separation liquid tank 44.
 排出路5は、濃縮機3の出口38を通じて濃縮汚泥を濃縮機3から外部に排出するために設けられている。排出路5の途中には汚泥還流路6が分岐して設けられており、濃縮汚泥の一部は汚泥還流路6に流され、濃縮汚泥の残部が排出路5を流れる。排出路5の先には図示略の脱水機がある。また、排出路5の途中には排出用ポンプ5aが備えられており、濃縮機3の出口38から排出された濃縮汚泥を排水路5の下流側に送り出す。 The discharge path 5 is provided for discharging the concentrated sludge from the concentrator 3 to the outside through the outlet 38 of the concentrator 3. A sludge recirculation path 6 is provided branching in the middle of the discharge path 5, and a part of the concentrated sludge flows into the sludge recirculation path 6, and the rest of the concentrated sludge flows through the discharge path 5. A dehydrator (not shown) is provided at the end of the discharge path 5. Further, a discharge pump 5 a is provided in the middle of the discharge path 5, and sends the concentrated sludge discharged from the outlet 38 of the concentrator 3 to the downstream side of the drain path 5.
 また、排水路5と汚泥還流路6との分岐点よりも下流側の排水路5には、第2の凝集剤投入装置53が備えられている。第2の凝集剤投入装置53は、排水路5を流れる凝集汚泥に凝集剤を添加する。第2の凝集剤投入装置53において添加する凝集剤は、高分子凝集剤であることが好ましい。 排水 The drainage channel 5 downstream of the junction between the drainage channel 5 and the sludge recirculation channel 6 is provided with a second coagulant charging device 53. The second coagulant charging device 53 adds a coagulant to the coagulated sludge flowing through the drainage channel 5. The coagulant added in the second coagulant charging device 53 is preferably a polymer coagulant.
 汚泥還流路6は、排出路5の途中から分岐して、濃縮汚泥の一部を濃縮機3から凝集反応槽2に還流するために設けられている。汚泥還流路6は原泥供給管22に接続されている。原泥供給管22に対する汚泥還流路6の接続位置は、高分子凝集剤の供給装置24と反応槽21との間の位置である。汚泥還流路6の途中には還流用ポンプ6aが備えられており、還流用ポンプ6aによって濃縮汚泥の返送率を10~70%の範囲に調整可能である。 The sludge recirculation path 6 is provided to branch off from the middle of the discharge path 5 and to recirculate a part of the concentrated sludge from the concentrator 3 to the coagulation reaction tank 2. The sludge return path 6 is connected to a raw mud supply pipe 22. The connection position of the sludge recirculation path 6 to the raw mud supply pipe 22 is a position between the polymer flocculant supply device 24 and the reaction tank 21. A return pump 6a is provided in the middle of the sludge return path 6, and the return rate of the concentrated sludge can be adjusted within a range of 10 to 70% by the return pump 6a.
 次に、図3に示す汚泥濃縮装置51を用いた汚泥濃縮方法を説明する。本実施形態の汚泥濃縮方法は、凝集工程と、濃縮工程と、返送工程と、排出工程と、凝集剤再投入工程とを備えている。以下、各工程について説明する。 Next, a sludge concentration method using the sludge concentration device 51 shown in FIG. 3 will be described. The sludge concentration method of the present embodiment includes a flocculation step, a concentration step, a return step, a discharge step, and a flocculant re-charging step. Hereinafter, each step will be described.
 凝集工程では、汚泥に凝集剤を投入して、汚泥と凝集剤とを反応させて凝集汚泥を生成する。具体的には図3の原泥供給管22によって反応槽21に原汚泥を供給する。このとき、第1凝集剤供給装置52の供給装置23によって原汚泥に無機凝集剤を供給し、更に、供給装置24によって原汚泥に高分子凝集剤を供給する。無機凝集剤及び高分子凝集剤が添加された原汚泥は、撹拌されつつ、反応槽21の下部から上部に向けて導かれ、凝集汚泥が形成される。反応槽21の上部に達した凝集汚泥は、汚泥供給路4を通じて濃縮機3(円筒体31)の上部に供給される。無機凝集剤及び高分子凝集剤は、第1の実施形態と同様のものを用いることができる。 In the flocculation step, a flocculant is introduced into the sludge, and the sludge and the flocculant are reacted to generate flocculated sludge. Specifically, raw sludge is supplied to the reaction tank 21 by the raw mud supply pipe 22 of FIG. At this time, the inorganic flocculant is supplied to the raw sludge by the supply device 23 of the first flocculant supply device 52, and the polymer flocculant is further supplied to the raw sludge by the supply device 24. The raw sludge to which the inorganic flocculant and the polymer flocculant are added is guided from the lower part to the upper part of the reaction tank 21 while being stirred, and the floc is formed. The flocculated sludge that has reached the upper part of the reaction tank 21 is supplied to the upper part of the concentrator 3 (cylindrical body 31) through the sludge supply path 4. The same inorganic coagulant and polymer coagulant as in the first embodiment can be used.
 次に、濃縮工程では、凝集工程によって生成された凝集汚泥を濃縮することで、濃縮汚泥を形成する。具体的には、円筒体31の内部に供給された凝集汚泥を、螺旋状スクリュー37により圧縮させながら、円筒体31下部に向けて移送される。この過程で、凝集汚泥に含まれる液体分が分離液として濾過フィルタ35を通して分離される。そして、この分離液の分離に伴って凝集汚泥の濃縮が進行される。 Next, in the concentration step, the concentrated sludge generated by the flocculation step is concentrated to form a concentrated sludge. Specifically, the coagulated sludge supplied to the inside of the cylindrical body 31 is transferred toward the lower part of the cylindrical body 31 while being compressed by the spiral screw 37. In this process, the liquid component contained in the coagulated sludge is separated through the filtration filter 35 as a separated liquid. Then, with the separation of the separated liquid, the concentration of the coagulated sludge proceeds.
 尚、外容器32に分離された分離液は、第1の実施形態の場合と同様に、上方接続管41、中央接続管42および下方接続管43を通じて分離液槽44に送られ、オーバーフロー管45を介して外部に排出される。 The separated liquid separated into the outer container 32 is sent to the separated liquid tank 44 through the upper connecting pipe 41, the central connecting pipe 42, and the lower connecting pipe 43, as in the case of the first embodiment. Is discharged to the outside through
 排出工程では、濃縮汚泥が円筒体31中を移送された後、出口38から排出路5に排出される。排出路5の途中に備えられた排出用ポンプ5aによって、濃縮汚泥を排水路5の下流側に送り出す。濃縮汚泥の一部は、後述するように返送工程によって反応槽21に返送されるが、返送されなかった濃縮汚泥の残部は、排出路5を更に移動し、図示略の脱水機まで到達する。脱水機まで到達した濃縮汚泥は、脱水機によって脱水されて脱水ケーキとされる。 In the discharge step, the concentrated sludge is transferred through the cylindrical body 31 and then discharged from the outlet 38 to the discharge path 5. The concentrated sludge is sent to the downstream side of the drainage channel 5 by a drainage pump 5 a provided in the middle of the drainage channel 5. A part of the concentrated sludge is returned to the reaction tank 21 by a return step as described later, but the remaining part of the concentrated sludge that has not been returned further moves through the discharge path 5 and reaches a dehydrator (not shown). The concentrated sludge that has reached the dehydrator is dehydrated by the dehydrator to be a dewatered cake.
 排水路5を移動する濃縮汚泥は、汚泥還流路6との分岐部を通過後、脱水機に到達する前に、第2の凝集剤供給装置53によって高分子凝集剤が添加される。高分子凝集剤が添加された濃縮汚泥は、排出路5を移動する間に凝集剤と反応して凝集し、排水路を移動する間に破壊されにくくなる。また、濃縮機3を通過した後の濃縮汚泥に凝集剤を添加するので、濃縮機3における濾過フィルタ35による汚泥の固液分離に悪影響を及ぼさない。 (4) After passing through the branch with the sludge recirculation path 6, the concentrated sludge moving in the drainage path 5 is added with the polymer flocculant by the second flocculant supply device 53 before reaching the dehydrator. The concentrated sludge to which the polymer flocculant has been added reacts with the flocculant while moving in the discharge path 5 and is coagulated, and is less likely to be broken while moving in the drain path. In addition, since the flocculant is added to the concentrated sludge after passing through the concentrator 3, the solid-liquid separation of the sludge by the filter 35 in the concentrator 3 is not adversely affected.
 次に、返送工程として、排水路5の途中から分岐された汚泥環流路6を通じて、濃縮汚泥の一部を反応槽21に返送する。このとき、還流用ポンプ6aによって、濃縮汚泥の返送率を10~70%の範囲に調整するとよい。 Next, as a return step, a part of the concentrated sludge is returned to the reaction tank 21 through the sludge ring flow path 6 branched from the middle of the drainage channel 5. At this time, the return rate of the concentrated sludge may be adjusted to a range of 10 to 70% by the reflux pump 6a.
 汚泥環流路6を通じて反応槽21に返送される濃縮汚泥は、第1の実施形態と同様に、供給装置24と反応槽21との間の位置にて、原泥供給管22を流れる原汚泥と合流する。返送された濃縮汚泥は、反応槽21で濃縮状態から開放され、凝集フロックの形態となり、反応槽21中を流動する。凝集フロックは、原汚泥および凝集剤と混合されて凝集反応が進行し、この間に、粒径がより大きく、且つ、緻密度と機械的強度がより大きいものとなる。 The concentrated sludge returned to the reaction tank 21 through the sludge ring flow path 6 is mixed with the raw sludge flowing through the raw sludge supply pipe 22 at a position between the supply device 24 and the reaction tank 21 as in the first embodiment. Join. The returned concentrated sludge is released from the concentrated state in the reaction tank 21, forms a flocculated floc, and flows in the reaction tank 21. The flocculated floc is mixed with the raw sludge and the flocculant and the flocculation reaction proceeds, during which the particle size is larger, and the denseness and mechanical strength are larger.
 ここで、高分子凝集剤の投入量について説明する。凝集工程及び凝集剤再投入工程における高分子凝集剤の合計投入量を100%としたとき、凝集工程において投入する高分子凝集剤の割合は40~90%とし、凝集剤再投入工程において投入する高分子凝集剤の割合は10~60%とすることが好ましい。
 凝集工程において投入する高分子凝集剤の割合が40%以上にすることで、凝集工程における凝集剤が十分となり、凝集汚泥を確実に形成できるようになる。また、90%以下とすることで、凝集工程において未反応の凝集剤が少なくなり、次の濃縮工程における汚泥の固液分離の際に濾過フィルタ35の目詰まりを予防できるようになる。
 また、凝集剤再投入工程において投入する高分子凝集剤の割合を10%以上とすることで、排水路5を流れる濃縮汚泥を更に凝集させることができ、移動中の濃縮汚泥の破壊を予防できる。また、60%以下とすることで、過剰な凝集を防止し、脱水機における固液分離を効率よく行うことができる。
Here, the input amount of the polymer flocculant will be described. When the total input amount of the polymer flocculant in the flocculating step and the flocculant re-charging step is 100%, the ratio of the polymer flocculant to be charged in the flocculating step is 40 to 90%, and the ratio is charged in the flocculant re-charging step. The proportion of the polymer flocculant is preferably set to 10 to 60%.
By setting the ratio of the polymer coagulant to be added in the coagulation step to 40% or more, the coagulant in the coagulation step becomes sufficient and the coagulated sludge can be surely formed. Further, by setting the content to 90% or less, the amount of unreacted coagulant in the coagulation step is reduced, so that clogging of the filtration filter 35 can be prevented at the time of solid-liquid separation of sludge in the next concentration step.
Further, by setting the ratio of the polymer flocculant to be charged in the flocculant re-charging step to 10% or more, the concentrated sludge flowing through the drainage channel 5 can be further flocculated, and the destruction of the moving concentrated sludge can be prevented. . Further, by setting the content to 60% or less, excessive aggregation can be prevented, and the solid-liquid separation in the dehydrator can be efficiently performed.
 以上説明したように、本実施形態の汚泥濃縮装置51によれば、凝集反応槽2と、濃縮機3と、汚泥供給路4と、濃縮汚泥を外部に排出する排出路5と、凝集反応槽2に凝集剤を投入する第1の凝集剤投入装置52と、濃縮汚泥が流れる排出路5内に、別の凝集剤を投入する第2の凝集剤投入装置53とを備えており、第2の凝集剤投入装置53によって、濃縮後の凝集汚泥に凝集剤を再投入するので、排水路5中で濃縮汚泥を再凝集させることができ、濃縮汚泥の脱水性をより向上させ、脱水後の脱水ケーキの含水量及び/又は凝集剤の添加量をより低減できる。
 また、濃縮機3を通過した後の濃縮汚泥に凝集剤を再度添加するので、濃縮機3における濾過フィルタ35による汚泥の固液分離に悪影響を及ぼさず、濾過フィルタ35の目詰まりを抑制できる。
 更に、濃縮汚泥の一部を凝集反応槽2に環流させる汚泥環流路6を更に備えることで、凝集反応槽2における濃縮汚泥の滞留時間を延ばすことができ、これにより、凝集フロックの緻密度と機械的強度を増大させ、脱水後の脱水ケーキの含水量及び/又は凝集剤の手化量をより一層低減できる。
As described above, according to the sludge concentration apparatus 51 of the present embodiment, the coagulation reaction tank 2, the concentrator 3, the sludge supply path 4, the discharge path 5 for discharging the concentrated sludge to the outside, the coagulation reaction tank 2 is provided with a first flocculant charging device 52 for charging a flocculant, and a second flocculant charging device 53 for charging another flocculant in the discharge passage 5 through which the concentrated sludge flows. The coagulant is re-introduced into the coagulated sludge after the concentration by the coagulant charging device 53 of the above, so that the concentrated sludge can be re-coagulated in the drainage channel 5, the dewaterability of the concentrated sludge is further improved, The water content of the dehydrated cake and / or the amount of the coagulant added can be further reduced.
Further, since the coagulant is added again to the concentrated sludge after passing through the concentrator 3, the clogging of the filtration filter 35 can be suppressed without affecting the solid-liquid separation of the sludge by the filtration filter 35 in the concentrator 3.
Further, by further providing a sludge ring flow path 6 for recirculating a part of the concentrated sludge to the flocculation reaction tank 2, the residence time of the concentrated sludge in the flocculation reaction tank 2 can be extended, thereby increasing the density of the flocculated floc. The mechanical strength can be increased, and the water content of the dewatered cake after dehydration and / or the amount of hand-operated flocculants can be further reduced.
 また、本実施形態の汚泥濃縮方法によれば、凝集工程と、濃縮工程と、排出工程中の濃縮汚泥に対して別の凝集剤を投入する凝集剤再投入工程を備えており、凝集剤再投入工程において、濃縮後の凝集汚泥に凝集剤を再投入するので、排水工程において濃縮汚泥を再凝集させることができ、濃縮汚泥の脱水性をより向上させ、脱水後の脱水ケーキの含水量及び/又は凝集剤の添加量をより低減できる。
 更に、濃縮汚泥の一部を凝集工程に返送させる返送工程を更に備えることで、凝集工程における濃縮汚泥の滞留時間を延ばすことができ、これにより、凝集フロックの緻密度と機械的強度を増大させ、脱水後の脱水ケーキの含水量及び/又は凝集剤の添加量をより一層低減できる。
Further, according to the sludge concentration method of the present embodiment, there is provided a flocculation step, a concentration step, and a flocculant re-feeding step of feeding another flocculant to the concentrated sludge in the discharging step. In the charging step, since the flocculant is re-charged to the flocculated sludge after the concentration, the concentrated sludge can be re-coagulated in the drainage step, and the dewaterability of the concentrated sludge is further improved, and the water content of the dewatered cake after the dehydration and And / or the amount of the coagulant added can be further reduced.
Furthermore, by further providing a return step of returning a part of the concentrated sludge to the flocculation step, it is possible to extend the residence time of the concentrated sludge in the flocculation step, thereby increasing the denseness and mechanical strength of the flocculated floc. In addition, the water content of the dewatered cake after dehydration and / or the amount of the coagulant added can be further reduced.
 以上説明したように、本発明によれば、設備を大型化させることなく、濃縮汚泥を脱水後の脱水ケーキの含水率及び/又は凝集剤の添加量を低減させることが可能な汚泥濃縮装置及び汚泥濃縮方法を提供できる。 As described above, according to the present invention, a sludge concentrator capable of reducing the water content of a dewatered cake and / or the amount of a coagulant added after dewatering a concentrated sludge without increasing the size of the equipment. A sludge concentration method can be provided.
 なお、第1、第2の本実施形態においては、濃縮機3として、周壁に濾過フィルタ35を備えた円筒体31と、螺旋状スクリュー37と、外容器32とを備えた濃縮機3を例にして説明したが、本発明はこれに限定する必要はなく、濃縮機3が、傾斜スクリーン、濾布走行式、ロータリースクリーン式、またはスクリュープレス式の何れかの汚泥濃縮機であってもよい。
 また、第1、第2の実施形態においては、無機凝集剤の供給装置23と高分子凝集剤の供給装置24とは、原泥供給管22に設けられているが、供給装置23、24の両方を反応槽21に設けても良いし、供給装置23は原泥供給管22に設け、供給装置24は反応槽21に設けても良い。なお、無機凝集剤の供給装置23は省略しても良く、供給装置23を省略した場合には、高分子凝集剤はカチオン性高分子凝集剤を用いることが好ましい。
 汚泥還流路6は原泥供給管22の、高分子凝集剤の供給装置24と反応槽21との間の位置に接続されているが、反応槽21に接続されていても良いし、無機凝集剤の供給装置23より上流の位置や供給装置23と供給装置24の間で原汚泥供給管22に接続されていても良い。
In the first and second embodiments, the concentrator 3 is an example of the concentrator 3 including the cylindrical body 31 having the filtration filter 35 on the peripheral wall, the spiral screw 37, and the outer container 32. However, the present invention is not limited to this, and the concentrator 3 may be any of a sludge screen, a filter cloth traveling type, a rotary screen type, and a screw press type sludge concentrator. .
In the first and second embodiments, the supply device 23 for the inorganic coagulant and the supply device 24 for the polymer coagulant are provided in the raw mud supply pipe 22. Both may be provided in the reaction tank 21, or the supply device 23 may be provided in the raw mud supply pipe 22, and the supply device 24 may be provided in the reaction tank 21. The supply device 23 of the inorganic coagulant may be omitted, and when the supply device 23 is omitted, it is preferable to use a cationic polymer coagulant as the polymer coagulant.
Although the sludge recirculation path 6 is connected to the raw mud supply pipe 22 at a position between the polymer coagulant supply device 24 and the reaction tank 21, it may be connected to the reaction tank 21 or may be connected to the inorganic coagulation pipe. The raw sludge supply pipe 22 may be connected to a position upstream of the agent supply device 23 or between the supply device 23 and the supply device 24.
 また、第2の実施形態において、汚泥環流路6を備えた汚泥濃縮装置51と、返送工程を有する汚泥濃縮方法とについて説明したが、本発明は、汚泥環流路6を有しない汚泥濃縮装置や、返送工程を有しない汚泥濃縮方法であってもよい。すなわち、濃縮機3によって濃縮された濃縮汚泥の全部に、第2凝集剤投入装置53によって高分子凝集剤を添加して濃縮汚泥を凝集させ、凝集反応槽2には濃縮汚泥を返送しなくてもよい。
 この場合、凝集反応槽2に濃縮汚泥を返送しないので、凝集反応槽2における汚泥の滞留時間が減少して凝集フロックの緻密度と機械的強度を増大できなくなるが、その代わりに、第2凝集剤投入装置53によって濃縮汚泥に高分子凝集剤を添加して濃縮汚泥を凝集させるため、汚泥と凝集剤との反応時間を実質的に延ばすことができ、濃縮汚泥の緻密度と機械的強度を増大できる。
Further, in the second embodiment, the sludge concentration device 51 having the sludge circulation channel 6 and the sludge concentration method having the return step have been described. Alternatively, a sludge concentration method having no return step may be used. That is, a polymer flocculant is added to all of the concentrated sludge concentrated by the concentrator 3 by the second flocculant charging device 53 to aggregate the concentrated sludge, and the concentrated sludge is not returned to the flocculation reaction tank 2. Is also good.
In this case, since the concentrated sludge is not returned to the coagulation reaction tank 2, the residence time of the sludge in the coagulation reaction tank 2 is reduced, and the denseness and mechanical strength of the coagulated floc cannot be increased. Since the polymer sludge is added to the concentrated sludge by the agent feeding device 53 to coagulate the concentrated sludge, the reaction time between the sludge and the flocculant can be substantially extended, and the denseness and mechanical strength of the concentrated sludge can be reduced. Can increase.
(実施例1-1~1-3及び比較例1-1、1-2)
 以下、本発明の実施例について説明する。図3に示す汚泥濃縮装置を下水処理場に設置し、原汚泥に対して凝集工程及び濃縮工程を実施し、更に必要に応じて返送工程及び再凝縮工程を行った。原汚泥は、TS:0.86~1.20%程度の混合生汚泥とし、無機凝集剤は鉄系無機凝集剤(商品名:ポリテツ、日鉄鉱業株式会社製)を用い、高分子凝集剤は両性高分子凝集剤(商品名:クリベストP-353、栗田工業株式会社製)を用いた。また、脱水機としては、ロータリースネイル脱水機を用いた。結果を表1に示す。
(Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2)
Hereinafter, examples of the present invention will be described. The sludge concentrator shown in FIG. 3 was installed in a sewage treatment plant, and a flocculation step and a concentration step were performed on raw sludge, and a return step and a recondensing step were further performed as necessary. The raw sludge is a mixed raw sludge having a TS of about 0.86 to 1.20%, and the inorganic coagulant is an iron-based inorganic coagulant (trade name: Polytec, manufactured by Nittetsu Mining Co., Ltd.). Used an amphoteric polymer flocculant (trade name: Chrisbest P-353, manufactured by Kurita Water Industries Ltd.). In addition, a rotary snail dehydrator was used as the dehydrator. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 比較例1-1および比較例1-2は、返送工程及び再凝集工程を実施しなかった例である。この場合、高分子凝集剤の添加量は0.55%・TS、0.48%・TSで脱水ケーキの含水率はそれぞれ76.9%、78.4%であった。 Comparative Example 1-1 and Comparative Example 1-2 are examples in which the return step and the re-aggregation step were not performed. In this case, the amount of the polymer coagulant added was 0.55% · TS and 0.48% · TS, and the water content of the dehydrated cake was 76.9% and 78.4%, respectively.
 一方、実施例1-1は、返送工程を実施し、再凝集工程を実施しなかった例である。この場合、脱水ケーキの含水率は75.8%となり、比較例1-1、比較例1-2よりも低くなった。
 実施例1-2は、返送工程を実施せず、再凝集工程を実施した例である。この場合、比較例1-1よりも凝集剤の添加率を低くしても、脱水ケーキの含水率は77.1%となり、比較例1-1とほぼ同等の含水率の脱水ケーキを得ることができた。また、実施例1-2は、比較例1-2と、凝集剤の添加率は同じであるが、実施例1-2は比較例1-2よりも脱水ケーキの含水率は低くなった。
 更に、実施例1-3は、返送工程及び再凝集工程の両方を実施した例である。この場合、凝集剤の添加率は、比較例1-1および比較例1-2の何れより低くしても、脱水ケーキの含水率は75.2%となり、比較例1-1および比較例1-2よりも低くなった。
On the other hand, Example 1-1 is an example in which the return step was performed and the re-aggregation step was not performed. In this case, the water content of the dehydrated cake was 75.8%, which was lower than Comparative Examples 1-1 and 1-2.
Example 1-2 is an example in which the reaggregation step was performed without performing the return step. In this case, even if the addition rate of the flocculant is lower than that of Comparative Example 1-1, the water content of the dewatered cake is 77.1%, and a dewatered cake having substantially the same water content as Comparative Example 1-1 can be obtained. Was completed. Further, in Example 1-2, the addition rate of the coagulant was the same as that of Comparative Example 1-2, but in Example 1-2, the water content of the dehydrated cake was lower than that of Comparative Example 1-2.
Further, Embodiment 1-3 is an example in which both the returning step and the re-aggregation step are performed. In this case, the water content of the dehydrated cake was 75.2% even if the addition rate of the flocculant was lower than that of Comparative Example 1-1 or Comparative Example 1-2. It became lower than -2.
(実施例2及び比較例2)
 図3に示す汚泥濃縮装置を下水処理場に設置し、原汚泥に対して凝集工程及び濃縮工程を実施し、更に必要に応じて返送工程及び再凝縮工程を行った。原汚泥は、TS:0.86~1.20%程度の混合生汚泥とし、無機凝集剤は鉄系無機凝集剤(商品名:ポリテツ、日鉄鉱業株式会社製)を用い、高分子凝集剤は両性高分子凝集剤(商品名:クリベストP-353、栗田工業株式会社製)を用いた。また、脱水機としては、ベルトプレス脱水機を用いた。結果を表2に示す。
(Example 2 and Comparative Example 2)
The sludge concentrator shown in FIG. 3 was installed in a sewage treatment plant, and a flocculation step and a concentration step were performed on raw sludge, and a return step and a recondensing step were further performed as necessary. The raw sludge is a mixed raw sludge having a TS of about 0.86 to 1.20%, and the inorganic coagulant is an iron-based inorganic coagulant (trade name: Polytec, manufactured by Nittetsu Mining Co., Ltd.). Used an amphoteric polymer flocculant (trade name: Chrisbest P-353, manufactured by Kurita Water Industries Ltd.). A belt press dehydrator was used as the dehydrator. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 比較例2は、返送工程及び再凝集工程を実施しなかった例である。この場合、脱水ケーキの含水率は78.8%と高い値になった。 Comparative Example 2 is an example in which the return step and the re-aggregation step were not performed. In this case, the water content of the dehydrated cake was as high as 78.8%.
 一方、実施例2は、返送工程を実施し、再凝集工程を実施しなかった例である。この場合、脱水ケーキの含水率は77.5%となり、比較例2よりも低くなった。 On the other hand, Example 2 is an example in which the return step was performed and the re-aggregation step was not performed. In this case, the water content of the dehydrated cake was 77.5%, which was lower than Comparative Example 2.
 以上説明した様に、本発明によれば、設備を大型化させることなく、濃縮汚泥を脱水後の脱水ケーキの含水率及び/又は凝集剤の添加量を低減させることができる。 As described above, according to the present invention, the water content of the dewatered cake after dewatering the concentrated sludge and / or the amount of the coagulant added can be reduced without increasing the size of the equipment.
 本発明は、設備を大型化させることなく、濃縮汚泥を脱水後の脱水ケーキの含水率及び/又は凝集剤の添加量を低減させることができるため、産業上の利用価値が高いものとなる。 The present invention can reduce the water content of the dewatered cake and / or the amount of the coagulant added after dewatering the concentrated sludge without increasing the size of the equipment, and therefore has high industrial utility value.
 1、51…汚泥濃縮装置、2…凝集反応槽、3…濃縮機、4…汚泥供給路、5…排出路、6…汚泥環流路、31…円筒体、32…外容器、35…濾過フィルタ、37…螺旋状スクリュー、52…第1の凝集剤投入装置、53…第2の凝集剤投入装置。 DESCRIPTION OF SYMBOLS 1, 51 ... Sludge concentrating apparatus, 2 ... Coagulation reaction tank, 3 ... Concentrator, 4 ... Sludge supply path, 5 ... Discharge path, 6 ... Sludge ring flow path, 31 ... Cylindrical body, 32 ... Outer container, 35 ... Filtration filter Reference numeral 37 denotes a helical screw, 52 denotes a first flocculant feeding device, and 53 denotes a second flocculant feeding device.

Claims (13)

  1.  汚泥と凝集剤とを反応させて凝集汚泥を生成する凝集反応槽と、
     前記凝集反応槽から抜き出された凝集汚泥を濃縮して濃縮汚泥を形成する濃縮機と、
     前記凝集反応槽から前記濃縮機に凝集汚泥を供給する汚泥供給路と、
     前記濃縮機により形成された濃縮汚泥を、外部に排出する排出路と、
     前記凝集反応槽に前記凝集剤を投入する第1の凝集剤投入装置と、
     前記濃縮汚泥が流れる前記排出路内に、別の凝集剤を投入する第2の凝集剤投入装置と、
    を備える汚泥濃縮装置。
    A flocculation reaction tank that reacts sludge with a flocculant to produce flocculated sludge,
    A concentrator for concentrating the coagulated sludge extracted from the coagulation reaction tank to form a concentrated sludge,
    A sludge supply path for supplying coagulated sludge from the coagulation reaction tank to the concentrator,
    A discharge path for discharging the concentrated sludge formed by the concentrator to the outside,
    A first flocculant charging device for charging the flocculant into the flocculation reaction tank,
    A second flocculant charging device for charging another flocculant into the discharge passage through which the concentrated sludge flows,
    Sludge concentrator equipped with.
  2.  前記濃縮機により形成された濃縮汚泥の一部を前記凝集反応槽に環流させる汚泥環流路が更に備えられることを特徴とする請求項1に記載の汚泥濃縮装置。 The sludge concentrator according to claim 1, further comprising: a sludge ring flow path for recirculating a part of the concentrated sludge formed by the concentrator to the flocculation reaction tank.
  3.  汚泥と凝集剤とを反応させて凝集汚泥を生成する凝集反応槽と、
     前記凝集反応槽から抜き出された凝集汚泥を濃縮して濃縮汚泥を形成する濃縮機と、
     前記凝集反応槽から前記濃縮機に凝集汚泥を供給する汚泥供給路と、
     前記濃縮機により形成された濃縮汚泥の一部を前記凝集反応槽に環流させる汚泥環流路と、
     前記濃縮機により形成された濃縮汚泥の残部を、外部に排出する排出路と、を備える汚泥濃縮装置。
    A flocculation reaction tank that reacts sludge with a flocculant to produce flocculated sludge,
    A concentrator for concentrating the coagulated sludge extracted from the coagulation reaction tank to form a concentrated sludge,
    A sludge supply path for supplying coagulated sludge from the coagulation reaction tank to the concentrator,
    A sludge ring channel that recirculates a part of the concentrated sludge formed by the concentrator to the flocculation reaction tank,
    A sludge concentrating device comprising: a discharge path for discharging the remaining sludge formed by the concentrator to the outside.
  4.  前記濃縮機は、周壁に濾過フィルタを備え、前記凝集反応槽から抜き出された凝集汚泥がその一端から導入される円筒体と、
     前記円筒体の内部に同軸に設けられて回転駆動され、前記凝集汚泥を圧縮しながら他端部に導く螺旋状スクリューと、
     前記円筒体を覆って設けられて前記濾過フィルタを介して前記凝集汚泥から分離された分離液を集めて外部に排出する外容器とを備えたものである請求項1乃至請求項3の何れか一項に記載の汚泥濃縮装置。
    The concentrator has a filtration filter on the peripheral wall, a cylindrical body into which the flocculated sludge extracted from the flocculation reaction tank is introduced from one end thereof,
    A helical screw that is coaxially provided inside the cylindrical body, is driven to rotate, and guides the flocculated sludge to the other end while compressing the sludge.
    4. An outer container provided to cover the cylindrical body and collects a separated liquid separated from the flocculated sludge through the filtration filter and discharges the separated liquid to the outside. The sludge concentrator according to claim 1.
  5.  前記濃縮機は、傾斜スクリーン、濾布走行式、ロータリースクリーン式、またはスクリュープレス式の何れかの汚泥濃縮機である請求項1乃至請求項3の何れか一項に記載の汚泥濃縮装置。 The sludge concentrator according to any one of claims 1 to 3, wherein the concentrator is any one of a slant screen, a filter cloth traveling type, a rotary screen type, and a screw press type.
  6.  前記排出路の先に、前記濃縮汚泥を脱水する脱水機が備えられている請求項1乃至請求項5の何れか一項に記載の汚泥濃縮装置。 The sludge concentrator according to any one of claims 1 to 5, wherein a dehydrator for dehydrating the concentrated sludge is provided at the end of the discharge path.
  7.  汚泥に凝集剤を投入し、前記汚泥と前記凝集剤とを反応させて凝集汚泥を生成する凝集工程と、
     前記凝集汚泥を濃縮して濃縮汚泥を形成する濃縮工程と、
     前記濃縮工程後の前記濃縮汚泥を、外部に排出する排出工程と、
     前記排出工程中の前記濃縮汚泥に対して、別の凝集剤を投入する凝集剤再投入工程と、を備える汚泥濃縮方法。
    A flocculating step of feeding a flocculant to the sludge, and reacting the sludge with the flocculant to generate a flocculated sludge;
    A concentration step of concentrating the coagulated sludge to form a concentrated sludge,
    A discharge step of discharging the concentrated sludge after the concentration step to the outside,
    A coagulant re-injection step of injecting another coagulant into the concentrated sludge in the discharging step.
  8.  前記濃縮工程後の前記濃縮汚泥の一部を前記凝集工程に返送する返送工程を更に備えることを特徴とする請求項7に記載の汚泥濃縮方法。 The sludge concentration method according to claim 7, further comprising a return step of returning a part of the concentrated sludge after the concentration step to the coagulation step.
  9.  汚泥に凝集剤を投入し、前記汚泥と前記凝集剤とを反応させて凝集汚泥を生成する凝集工程と、
     前記凝集汚泥を濃縮して濃縮汚泥を形成する濃縮工程と、
     前記濃縮工程後の前記濃縮汚泥の一部を前記凝集工程に返送する返送工程と、
     前記濃縮工程後の前記濃縮汚泥の残部を、外部に排出する排出工程と、を備える汚泥濃縮方法。
    A flocculating step of introducing a flocculant into the sludge, and reacting the sludge with the flocculant to generate a flocculated sludge,
    A concentration step of concentrating the coagulated sludge to form a concentrated sludge;
    A return step of returning a part of the concentrated sludge after the concentration step to the flocculation step,
    A discharge step of discharging the remaining portion of the concentrated sludge after the concentration step to the outside.
  10.  前記返送工程における前記濃縮汚泥の返送率が10~70%の範囲である請求項8または請求項9に記載の汚泥濃縮方法。 The sludge concentration method according to claim 8, wherein a return rate of the concentrated sludge in the return step is in a range of 10 to 70%.
  11.  前記凝集工程において投入する凝集剤が、無機凝集剤及び高分子凝集剤である請求項7乃至請求項10の何れか一項に記載の汚泥濃縮方法。 The method for concentrating sludge according to any one of claims 7 to 10, wherein the coagulant to be added in the coagulation step is an inorganic coagulant and a polymer coagulant.
  12.  前記凝集剤再投入工程において投入する凝集剤が、高分子凝集剤である請求項7、8、10及び11の何れか一項に記載の汚泥濃縮方法。 凝集 The method for concentrating sludge according to any one of claims 7, 8, 10 and 11, wherein the coagulant charged in the coagulant recharging step is a polymer coagulant.
  13.  前記凝集工程において投入する凝集剤が、無機凝集剤及び高分子凝集剤であり、
     前記凝集剤再投入工程において投入する凝集剤が、高分子凝集剤であり、
     前記凝集工程及び前記凝集剤再投入工程における前記高分子凝集剤の合計投入量を100%としたとき、前記凝集工程において投入する前記高分子凝集剤の割合が40~90%であり、前記凝集剤再投入工程において投入する前記高分子凝集剤の割合が10~60%である、請求項7、8、10及び11の何れか一項に記載の汚泥濃縮方法。
    The coagulant to be added in the coagulation step is an inorganic coagulant and a polymer coagulant,
    The flocculant to be charged in the flocculant recharging step is a polymer flocculant,
    Assuming that the total amount of the polymer flocculant added in the flocculating step and the flocculant re-charging step is 100%, the ratio of the polymer flocculant charged in the flocculating step is 40 to 90%, The sludge concentration method according to any one of claims 7, 8, 10 and 11, wherein the proportion of the polymer flocculant charged in the agent recharging step is 10 to 60%.
PCT/JP2019/025699 2018-06-29 2019-06-27 Sludge thickening apparatus and sludge thickening method WO2020004582A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-124461 2018-06-29
JP2018124461A JP2020001016A (en) 2018-06-29 2018-06-29 Sludge concentration device and sludge concentration method

Publications (1)

Publication Number Publication Date
WO2020004582A1 true WO2020004582A1 (en) 2020-01-02

Family

ID=68984900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025699 WO2020004582A1 (en) 2018-06-29 2019-06-27 Sludge thickening apparatus and sludge thickening method

Country Status (2)

Country Link
JP (1) JP2020001016A (en)
WO (1) WO2020004582A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656800A (en) * 1979-10-16 1981-05-18 Mitsubishi Electric Corp Dehydration method of sludge
JPH1128500A (en) * 1997-07-08 1999-02-02 Kurita Water Ind Ltd Sludge treating device
JP2003285100A (en) * 2002-03-27 2003-10-07 Kurita Water Ind Ltd Concentration apparatus for sludge
JP2012200652A (en) * 2011-03-24 2012-10-22 Kurita Water Ind Ltd Biological treatment apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656800A (en) * 1979-10-16 1981-05-18 Mitsubishi Electric Corp Dehydration method of sludge
JPH1128500A (en) * 1997-07-08 1999-02-02 Kurita Water Ind Ltd Sludge treating device
JP2003285100A (en) * 2002-03-27 2003-10-07 Kurita Water Ind Ltd Concentration apparatus for sludge
JP2012200652A (en) * 2011-03-24 2012-10-22 Kurita Water Ind Ltd Biological treatment apparatus

Also Published As

Publication number Publication date
JP2020001016A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
US7323108B1 (en) Combined biological and ballasted flocculation process for treating wastewater
JP5423256B2 (en) Sludge dewatering method and sludge dewatering device
CN111777232A (en) Production wastewater defluorination treatment system and method
JP2009165964A (en) Method and system for dehydrating sludge
KR101658044B1 (en) Advanced treatment apparatus
JP3550955B2 (en) Sludge treatment equipment
JP2013233509A (en) Method and apparatus of dehydration of organic sludge
JP3340477B2 (en) Coagulation treatment of organic wastewater
WO2020004582A1 (en) Sludge thickening apparatus and sludge thickening method
JP2019072675A (en) Coagulation sedimentation apparatus and coagulation sedimentation treatment method
CN112358116A (en) Efficient sludge backflow system and method for reinforcing magnetic coagulation separation process
JPH02180700A (en) Dehydration of organic sludge
CN211111231U (en) Sewage treatment equipment
JP2019107593A (en) Deodorization treatment system and organic matter treatment method
WO2002092520A1 (en) Sludge concentrating method and device
JP6425900B2 (en) Sludge dewatering system and dewatering method of sludge
CN115448570A (en) Fly ash leachate sludge treatment system
RU2530041C1 (en) Method of purifying industrial waste water
JP2982225B2 (en) Organic sludge dewatering method
CN210711226U (en) Sludge recycling system for coal slime treatment
JP3951115B2 (en) Sludge concentrator
JP6362304B2 (en) Sludge treatment method and apparatus
JPH04267994A (en) Metal-containing waste-water method
JP2018099658A (en) Sludge dehydration system and method
CN209065501U (en) A kind of desulfurization wastewater treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827571

Country of ref document: EP

Kind code of ref document: A1