WO2020004530A1 - Data distribution server and data distribution system - Google Patents

Data distribution server and data distribution system Download PDF

Info

Publication number
WO2020004530A1
WO2020004530A1 PCT/JP2019/025546 JP2019025546W WO2020004530A1 WO 2020004530 A1 WO2020004530 A1 WO 2020004530A1 JP 2019025546 W JP2019025546 W JP 2019025546W WO 2020004530 A1 WO2020004530 A1 WO 2020004530A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference station
positioning
data
data distribution
distribution server
Prior art date
Application number
PCT/JP2019/025546
Other languages
French (fr)
Japanese (ja)
Inventor
純 柴田
邦彦 酒井原
山崎 靖久
一幸 吉野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020004530A1 publication Critical patent/WO2020004530A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method

Definitions

  • the present invention relates to a data distribution server and a data distribution system for performing interference positioning using signals from positioning satellites (hereinafter, artificial satellites that can be used for positioning are collectively referred to as “satellite”).
  • satellites hereinafter, artificial satellites that can be used for positioning are collectively referred to as “satellite”.
  • a positioning system using interference positioning (RTK calculation) by a RTK (Real Time Kinematic) method has been considered in order to measure a position of an object such as a moving object with high accuracy (for example, see Patent Document 1).
  • the RTK method performs positioning of a predetermined point using a positioning signal transmitted by a satellite. It is expected that highly accurate positioning will be realized by applying the interference positioning by the RTK method.
  • a positioning terminal When performing a RTK calculation, a positioning terminal receives a positioning signal transmitted from a satellite (not shown) of a GNSS (Global Navigation Satellite System) and uses the positioning signal to perform positioning data (hereinafter, “positioning terminal positioning data”). ).
  • the GNSS is a general term for satellite navigation systems having performance (accuracy and reliability) usable for civil aviation navigation, such as GPS (Global Positioning System), BeiDou, and GLONASS.
  • the positioning signal includes an L1 signal (1575.42 MHz) and an L2 signal (1227.60 MHz) transmitted from a GPS satellite.
  • the positioning terminal transmits, from a reference station whose position is known, positioning data at the reference station (hereinafter, referred to as “reference station positioning data”) and information indicating the current position (coordinates on the earth) of the reference station (hereinafter, “position information”). ), And performs an RTK operation using the positioning terminal positioning data, the reference station positioning data, and the position information to calculate the current position.
  • reference station positioning data positioning data at the reference station
  • position information information indicating the current position (coordinates on the earth) of the reference station
  • the positioning terminal user receives the service of the existing positioning system, that is, the provision of the positioning data and the position information of the reference station, it is necessary to communicate with the reference station for each positioning terminal.
  • the service of the existing positioning system that is, the provision of the positioning data and the position information of the reference station
  • most of the burden such as management of communication between the positioning terminal and the reference station is left to the user of the positioning terminal. Not be. Therefore, as the number of positioning terminals increases, the burden on the users of the positioning terminals increases.
  • the non-limiting embodiment of the present disclosure discloses a data distribution server and a data distribution system that can reduce the burden on the user of the positioning terminal.
  • a data distribution server includes a communication unit that communicates with each of a first reference station whose position is unknown and a second reference station whose position is known, and a processor that performs arithmetic processing,
  • the communication unit receives, from the first reference station, positioning data of the first reference station, and receives, from the second reference station, positioning data of the second reference station and position information of the second reference station.
  • the position of the first reference station is calculated by performing a positioning operation using the positioning data of the first reference station, the positioning data of the second reference station, and the position information of the second reference station.
  • a data distribution system includes a first reference station that calculates positioning data based on positioning signals transmitted from a plurality of satellites, and a second reference station whose positioning data and position are known.
  • a data distribution server that calculates the position of the first reference station by performing positioning calculation using the positioning data of the second reference station and the position information of the second reference station, and converts the positioning data based on positioning signals transmitted from a plurality of satellites.
  • a positioning terminal that calculates a position by performing a positioning operation using the calculated positioning data, the positioning data of the first reference station, and the position information of the first reference station.
  • the data distribution server can calculate the position of the first reference station. Therefore, even if it is difficult for the user to measure an accurate position on the map, a reference station can be easily added. This allows the user of the positioning terminal to install or use a reference station that meets his or her needs, thereby reducing the burden on the user of the positioning terminal.
  • FIG. 1 is a diagram illustrating a configuration of a data distribution system according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a block diagram illustrating a configuration of a positioning terminal according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration of a data distribution server according to Embodiment 1 of the present disclosure.
  • FIG. 3 is a diagram showing a sequence of the data distribution system according to the first embodiment of the present disclosure.
  • Flow chart showing positioning processing according to Embodiment 1 of the present disclosure Diagram showing a configuration of a data distribution system according to Embodiment 2 of the present disclosure The figure which shows the sequence of the data distribution system which concerns on Embodiment 2 of this indication.
  • the data distribution system 1 includes a reference station 10, a positioning terminal 20, and a data distribution server 30.
  • the data distribution system 1 uses reference station positioning data (hereinafter, “existing reference station positioning data”) of a reference station of an existing positioning system (hereinafter, “existing reference station”, not shown).
  • the reference station 10 is different from the reference station of the existing positioning system, and is independently installed in the data distribution system 1.
  • a plurality of reference stations 10 may be provided.
  • FIG. 1 shows an example in which two reference stations 10-1 and 10-2 are installed.
  • the reference station 10 receives a positioning signal transmitted from a GNSS satellite (not shown), and generates positioning data (hereinafter, referred to as “self-contained reference station positioning data”) using the positioning signal.
  • self-contained reference station positioning data positioning data
  • the reference station 10 since the reference station 10 is not assumed to be a reference station provided by an existing positioning system, the expression “self-installed” is used for information related to the reference station 10.
  • the reference station 10 performs wireless communication with the data distribution server 30, transmits self-established reference station positioning data to the data distribution server 30, and transmits position information of the reference station 10 from the data distribution server 30 (hereinafter, “self-installed reference station position information”). Called).
  • the reference station 10 performs wireless communication with the positioning terminal 20 existing in the communication area, and transmits the self-installed reference station positioning data and the self-installed reference station position information to the positioning terminal 20.
  • FIG. 1 shows an example in which the reference station 10-1 communicates with the positioning terminals 20-1, 20-2, and 20-3, and the reference station 10-2 communicates with the positioning terminals 20-4 and 20-5. Is shown.
  • the positioning terminal 20 receives the positioning signal received from the GNSS satellite, and generates positioning terminal positioning data using the positioning signal. In addition, the positioning terminal 20 performs wireless communication with the nearby reference station 10, and receives self-installed reference station positioning data and self-installed reference station position information from the reference station 10.
  • the positioning terminal 20 performs an RTK operation using the positioning terminal positioning data, the own reference station positioning data, and the own reference station position information, and calculates the current position (coordinates on the earth) of the positioning terminal 20.
  • the coordinates are generally three-dimensional coordinates such as latitude, longitude and altitude, but may be two-dimensional coordinates such as latitude and longitude.
  • the positioning terminal 20 includes a dedicated terminal for positioning, a personal computer having a positioning function, a smartphone, a tablet, a server for performing a positioning service, and the like. Further, the positioning terminal 20 may be installed on a moving object (for example, a vehicle) from which coordinates are to be obtained.
  • the data distribution server 30 communicates with the existing reference station, and receives the existing reference station positioning data and the existing reference station position information from the existing reference station. Further, the data distribution server 30 performs wireless communication with the reference station 10 and receives self-installed reference station positioning data from the reference station 10.
  • the data distribution server 30 performs an RTK operation using the existing reference station positioning data, the existing reference station position information, and the own reference station positioning data, calculates the current position (coordinates on the earth) of the reference station 10, and installs it in the reference station 10. Transmit the reference station location information.
  • the data distribution server 30 receives the self-installed reference station positioning data from each of the reference stations 10 in a time-division manner, calculates the current position of each of the reference stations 10, and Send location information to.
  • the data distribution server 30 receives time-divisionally the own reference station positioning data of the reference station 10-1 and the own reference station positioning data of the reference station 10-2, Calculate the current position respectively.
  • the reference station 10 includes a processor 101, a storage unit 102, an input unit 103, an output unit 104, a first communication unit 105, a second communication unit 106, a reception unit 107, 110.
  • the processor 101 controls other elements of the reference station 10 via the bus 110.
  • a general-purpose CPU Central Processing Unit
  • the processor 101 executes a predetermined program to generate positioning reference station positioning data using the positioning signal.
  • the storage unit 102 acquires various information from other elements, and temporarily or permanently retains the information.
  • the storage unit 102 is a general term for a so-called primary storage device and a secondary storage device.
  • a plurality of storage units 102 may be physically arranged.
  • As the storage unit 102 for example, a DRAM (Direct Random Access Memory), an HDD (Hard Disk Drive), and an SSD (Solid State Drive) are used.
  • the input unit 103 receives information from outside.
  • the external information received by the input unit 103 includes information related to input from the operator of the reference station 10 and the like.
  • the input unit 103 can be configured by using an input interface such as a keyboard.
  • the output unit 104 presents information to the outside.
  • the information presented by the output unit 104 includes information related to positioning and the like.
  • the output unit 104 can be configured by using an existing output interface such as a display.
  • the first communication unit 105 communicates with an external device via a communication path.
  • Devices to be communicated by the communication unit 105 include the positioning terminal 20.
  • the first communication unit 105 can be configured by using a communication interface capable of communicating with an existing communication network such as a wireless LAN communication network.
  • the second communication unit 106 communicates with an external device via a communication path.
  • Devices to be communicated by the communication unit 106 include the data distribution server 30.
  • the second communication unit 106 can be configured by using a communication interface capable of communicating with an existing communication network such as a 3G communication network or an LTE communication network.
  • the receiving unit 107 receives a positioning signal from a satellite, and outputs the positioning signal to the processor 101 via the bus 110.
  • the configuration of the reference station 10 is an example. Some of the components of the reference station 10 may be integrated and configured. A part of each component of the reference station 10 may be divided into a plurality of components. Some of the components of the reference station 10 may be omitted. The reference station 10 may be configured by adding other elements.
  • the positioning terminal 20 includes a processor 201, a storage unit 202, an input unit 203, an output unit 204, a communication unit 205, a reception unit 206, and a bus 210.
  • the processor 201 controls other elements of the positioning terminal 20 via the bus 210.
  • the processor 201 for example, a general-purpose CPU is used.
  • the processor 201 executes a predetermined program to generate positioning terminal positioning data using the positioning signal. Further, the processor 201 performs an RTK calculation using the positioning terminal positioning data, the self-established reference station positioning data, and the self-established reference station position information, and calculates the current position of the positioning terminal 20. The details of the function of the processor 201 will be described later.
  • the storage unit 202 acquires various information from other elements and temporarily or permanently retains the information.
  • the storage unit 202 is a general term for a so-called primary storage device and a secondary storage device.
  • a plurality of storage units 202 may be physically arranged.
  • As the storage unit 202 for example, a DRAM, HDD, or SSD is used.
  • the input unit 203 receives information from outside.
  • the external information received by the input unit 203 includes information related to input from an operator of the positioning terminal 20 and the like.
  • the input unit 203 can be configured by using an input interface such as a keyboard.
  • the output unit 204 presents information to the outside.
  • the information presented by the output unit 204 includes information related to positioning and the like.
  • the output unit 204 can be configured by using an existing output interface such as a display.
  • the communication unit 205 communicates with an external device via a communication path.
  • Devices to be communicated by the communication unit 205 include the reference station 10.
  • the communication unit 205 can be configured by using a communication interface capable of communicating with an existing communication network such as a wireless LAN communication network.
  • the receiving unit 206 receives the positioning signal from the satellite and outputs the positioning signal to the processor 201 via the bus 210.
  • the configuration of the positioning terminal 20 is an example. Some of the components of the positioning terminal 20 may be integrated and configured. Some of the components of the positioning terminal 20 may be divided into a plurality of components. Some of the components of the positioning terminal 20 may be omitted. The positioning terminal 20 may be configured by adding other elements.
  • the data distribution server 30 includes a processor 301, a storage unit 302, an input unit 303, an output unit 304, a communication unit 305, and a bus 310.
  • the processor 301 controls other elements of the data distribution server 30 via the bus 310.
  • the processor 301 for example, a general-purpose CPU is used. Further, the processor 301 performs an RTK operation using the existing reference station positioning data, the existing reference station position information, and the own reference station positioning data, and calculates the current position of the reference station 10.
  • the storage unit 302 acquires various information from other elements and temporarily or permanently retains the information.
  • the storage unit 302 is a general term for a so-called primary storage device and a secondary storage device.
  • a plurality of storage units 302 may be physically arranged.
  • the input unit 303 receives information from outside.
  • the external information received by the input unit 303 includes information related to input from an operator of the data distribution server 30 and the like.
  • the input unit 303 can be configured by using an input interface such as a keyboard.
  • the output unit 304 presents information to the outside.
  • the information presented by the output unit 304 includes information related to positioning and the like.
  • the output unit 304 can be configured by using an existing output interface such as a display.
  • the communication unit 305 communicates with an external device via a communication path.
  • Devices to be communicated by the communication unit 305 include the existing reference station and the reference station 10.
  • the communication unit 305 can be configured using a communication interface that can communicate with an existing communication network such as a 3G communication network or an LTE communication network.
  • the processor 201 performs interference positioning (RTK operation) by the RTK method using the positioning terminal positioning data, the self-established reference station positioning data, and the self-established reference station position information, and calculates a positioning solution (fixed solution or float solution).
  • a positioning solution fixed solution or float solution
  • the processor 201 performs a quality check using an AR (Ambiguity Ratio) value obtained by the RTK operation, and determines that a correct fix solution has been obtained when the AR value is equal to or larger than a predetermined threshold (for example, 3.0).
  • a predetermined threshold for example, 3.0
  • a fixed solution is output, and when the AR value is less than a predetermined threshold (for example, 3.0), it is determined that a correct positioning solution has not been obtained, and a float solution is output.
  • the processor 201 sets the RTK positioning solution as the current position (coordinates on the earth) of the positioning terminal 20 and outputs the current position of the positioning terminal 20 to the output unit 204.
  • the positioning data includes pseudorange information, carrier wave phase information, and Doppler frequency information.
  • the pseudo distance information is information relating to the distance between the satellite and its own station (the reference station 10 or the positioning terminal 20).
  • the processor can calculate the distance between the satellite and the own station by analyzing the positioning signal. Specifically, the processor firstly (1) differs between the pattern of the code carried by the positioning signal and the pattern of the code generated by the own station, and (2) includes the message (NAVDATA) included in the positioning signal. The arrival time of the positioning signal is obtained based on two pieces of information, namely, the satellite signal generation time and the own station signal reception time. Then, the processor obtains a pseudo distance between the satellite and the own station by multiplying the arrival time by the speed of light. This distance includes an error due to a difference between the clock of the satellite and the clock of the own station. Usually, pseudorange information is generated for four or more satellites to reduce this error.
  • the carrier phase information is the phase of the positioning signal received by the own station.
  • the positioning signal is a predetermined sine wave.
  • the processor can calculate the phase of the positioning signal by analyzing the received positioning signal.
  • the Doppler frequency information is information relating to the relative speed between the satellite and its own station.
  • the processor can generate Doppler frequency information by analyzing the positioning signal.
  • the positioning data is generated by the processor 101 of the reference station 10 and the processor 201 of the positioning terminal 20, respectively.
  • the RTK operation is an operation for executing the RTK method which is one of the interference positioning.
  • the RTK method is to perform positioning at a predetermined point by using a carrier phase integrated value of a positioning signal transmitted by a satellite.
  • the carrier phase integrated value is the sum of (1) the number of waves of the positioning signal from the satellite to a predetermined point and (2) the phase. If the carrier phase integrated value is obtained, the frequency (and wavelength) of the positioning signal is known, so that the distance from the satellite to a predetermined point can be obtained.
  • the number of waves of the positioning signal is unknown and is called integer ambiguity or integer value bias.
  • the double difference is a value obtained by calculating a difference (single difference) between the carrier phase integrated values of one receiver for two satellites between the two receivers (the reference station 10 and the positioning terminal 20 in the first embodiment). Is the difference.
  • the first embodiment four or more satellites are used for positioning using the RTK method. Therefore, double differences are calculated for the number of combinations of four or more satellites. In this calculation, reference station positioning data and positioning terminal positioning data are used.
  • the estimation of the integer ambiguity can be performed by various methods.
  • the integer ambiguity can be estimated by executing a procedure of (1) estimating a float solution by the least square method and (2) testing a fixed solution based on the float solution.
  • ⁇ ⁇ ⁇ Estimation of a float solution by the least squares method is performed by creating a simultaneous equation using a combination of double differences generated for each time unit, and solving the created simultaneous equation by the least squares method.
  • the reference station positioning data, the positioning terminal positioning data, and the known coordinates of the reference station 10 are used.
  • the real number estimated value of the integer ambiguity thus obtained is called a float solution (estimated solution).
  • the float solution obtained as described above is a real number
  • the true value of the integer ambiguity is an integer. Therefore, it is necessary to round the float solution to an integer value.
  • the solution determined to be somewhat certain as an integer bias by the test is called a fixed solution (precision positioning solution).
  • a quality check is performed using the AR value obtained by the RTK operation, and a correct integer value is tested based on the result of the quality check.
  • the reference station positioning data is used in order to efficiently narrow down the candidates of the integer value.
  • the reference station 10 generates own reference station positioning data using a positioning signal from a satellite (S401), and transmits the own reference station positioning data to the data distribution server 30 (S402).
  • the data distribution server 30 performs an RTK calculation using the self-established reference station positioning data, the existing reference station positioning data, and the existing reference station position information to calculate a positioning solution (S403). Then, the data distribution server 30 sets the RTK positioning solution as the current position of the reference station 10, and transmits the own reference station position information to the reference station 10 (S404).
  • the data distribution server 30 receives the existing reference station positioning data each time it receives the own reference station positioning data from the reference station 10. Since the relative position of the satellite and the state of the atmosphere seen from the existing reference station and the reference station 10 change according to time, in order to calculate the position of the reference station 10 with high accuracy, it is the same as or close to the own reference station positioning data. This is because it is desirable to use the existing reference station positioning data at the time.
  • the data distribution server 30 may be configured to process a plurality of reference stations 10 at the same time.
  • the reference station 10 In order for the reference station 10 to calculate the position of the reference station 10, it is necessary to receive the existing reference station position information. Since the position information of the existing reference station rarely changes with time, the timing at which the reference station 10 receives the existing reference station position information may be arbitrary.
  • the reference station 10 transmits the own reference station positioning data and the own reference station position information to the positioning terminal 20 (S405).
  • the reference station 10 may transmit the own reference station positioning data and the own reference station position information at a timing different from the timing at which the own reference station position information is received.
  • the positioning terminal 20 calculates its own position by reflecting the status of the satellite and the like at the timing of receiving the self-installed reference station positioning data.
  • the positioning terminal 20 generates positioning terminal positioning data using a positioning signal from a satellite (S406), and performs an RTK operation using the positioning terminal positioning data, the self-established reference station positioning data, and the self-established reference station position information. Then, a positioning solution is calculated (S407). Then, the positioning terminal 20 outputs the RTK positioning solution as the current position of the positioning terminal 20.
  • the positioning process may be started when the power of the positioning terminal 20 is turned on. Further, when a command to start the positioning process is input by the input unit 203 of the positioning terminal 20, the positioning process may be started.
  • the processor 201 clears the inside of the storage unit 202.
  • receiving section 206 receives a positioning signal from each satellite. Also, in ST503, communication section 205 receives self-installed reference station positioning data and self-installed reference station position information from reference station 10.
  • the processor 201 generates positioning terminal positioning data using a positioning signal from a satellite.
  • the processor 201 executes an RTK operation using the positioning terminal positioning data, the self-established reference station positioning data, and the self-established reference station position information.
  • the processor 201 checks the AR value obtained by the RTK operation in ST505.
  • the processor 201 performs a quality check on whether or not sufficient positioning quality has been obtained by confirming the AR value.
  • output section 204 outputs the positioning solution of the RTK operation as a fixed solution, that is, a precise positioning solution.
  • This precise positioning solution represents the current position (coordinates on the earth) of the positioning terminal 20.
  • output section 204 outputs the positioning solution of the RTK operation as a float solution, that is, a guess solution.
  • the data distribution system 1 including the independently installed reference station 10 and the data distribution server 30 is constructed.
  • the data distribution server 30 calculates the position of the reference station 10 by performing an RTK operation using the own reference station positioning data, the existing reference station positioning data, and the existing reference station position information generated by the reference station 10.
  • the reference station 10 receives the own reference station position information from the data distribution server 30 and transmits the own reference station positioning data and the own reference station position information to the positioning terminal 20.
  • the positioning terminal 20 can receive the data necessary for positioning from the reference station 10, so that it can calculate the positioning solution by executing the RTK calculation.
  • the data distribution server 30 calculates the position of the reference station 10, even a user who does not have specialized knowledge can easily set the reference station 10. Accordingly, the user of the positioning terminal 20 can install or use the reference station 10 that meets the demand, so that the burden on the user of the positioning terminal 20 can be reduced.
  • a service usage fee is generally paid for each device that uses an existing reference station. Therefore, when the positioning terminal 20 communicates directly with the existing reference station, the cost burden on the user increases according to the number of the positioning terminals 20.
  • the device that receives information directly from the existing reference station is one data distribution server 30. Therefore, according to the present embodiment, the service usage fee can be reduced as compared with the case where a plurality of positioning terminals 20 receive information directly from the existing reference station.
  • the data distribution server 30 receives and provides the existing reference station positioning data to each of the plurality of reference stations 10 at a necessary timing. Therefore, the contract between the existing reference station and the data distribution server 30 can be reused for a plurality of reference stations 10. As a result, when the number of reference stations 10 using the data distribution server 30 increases, the usage fee paid by the provider of the data distribution server 30 to the existing reference station can be shared among the users of the reference station 10.
  • each of the plurality of positioning terminals 20 can perform positioning. Burden is reduced.
  • the installer of the reference station 10 and the user of the positioning terminal 20 are the same, but the installer of the reference station 10 and the user of the positioning terminal 20 may be different. In this case, similarly, the service usage fee of the existing reference station can be suppressed.
  • the timing at which the reference station 10 performs the process of acquiring the own reference station position information described in S401 to S404 may be arbitrary.
  • the timing when the power of the reference station 10 is turned on, the timing when the user receives an instruction, the timing when the positioning terminal 20 first requests the transmission of the self-installed reference station position information, and the like are considered.
  • a timing may be instructed from the data distribution server 30.
  • the number of positioning terminals 20 that can obtain data necessary for positioning in real time is limited by the upper limit of the transmission capability of the existing reference station. Therefore, when the number of positioning terminals 20 increases, there is a possibility that some of the positioning terminals 20 may not be able to obtain data necessary for positioning in real time.
  • the reference station 10 directly communicates with the existing reference station, and the reference station 10 transmits data necessary for positioning to the positioning terminal 20. Therefore, even if the number of the positioning terminals 20 greatly increases, the communication load that increases with the number can be absorbed by the reference station 10. Therefore, the burden on the existing reference station can be reduced.
  • communication between the existing reference station and the data distribution server 30, communication between the data distribution server 30 and the reference station 10, and communication between the reference station 10 and the positioning terminal 20 are performed in a time-division manner.
  • other multiplex communication methods may be used.
  • As a multiplexing method in one-to-many communication various methods such as frequency division and code division are known.
  • the communication between the existing reference station and the data distribution server 30 is advantageously performed in a time-division manner in order to maintain consistency with an existing service that returns necessary data in response to a request from each contractor.
  • the data distribution system 1A includes a reference station 10A, a positioning terminal 20A, and a data distribution server 30A.
  • Embodiment 2 is different from Embodiment 1 in that the reference station 10A and the positioning terminal 20A do not perform wireless communication, and the positioning terminal 20A and the data distribution server 30A perform wireless communication.
  • the reference station 10A does not need to receive the position information of the reference station 10A from the data distribution server 30A, and does not need to transmit the self-installed reference station positioning data and the position information of the reference station 10A to the positioning terminal 20A. Therefore, the first communication unit 105 is not required in the reference station 10A.
  • the other functions of the reference station 10A are common to those of the reference station 10 described in the first embodiment.
  • the positioning terminal 20A receives the self-installed reference station positioning data and the position information of the reference station 10A from the data distribution server 30A.
  • the other functions of the positioning terminal 20A are the same as those of the positioning terminal 20 described in the first embodiment.
  • the data distribution server 30A transmits the position information of the reference station 10A located near the positioning terminal 20A to the positioning terminal 20A.
  • the data distribution server 30A transmits the position information of the reference station 10A-1 to the positioning terminals 20A-1, 20A-2, and 20A-3, and transmits the position information of the reference station 10A-1 to the positioning terminals 20A-4 and 20A-5.
  • the location information of 10A-2 is transmitted.
  • the other functions of data distribution server 30A are the same as those of data distribution server 30 described in the first embodiment.
  • the reference station 10A generates own reference station positioning data using a positioning signal from a satellite (S601), and transmits the own reference station positioning data to the data distribution server 30A (S602).
  • the data distribution server 30A performs an RTK operation using the own reference station positioning data, the existing reference station positioning data, and the existing reference station position information to calculate a positioning solution (S603). Then, the data distribution server 30A sets the RTK positioning solution as the current position of the reference station 10A, and transmits the self-installed reference station positioning data and the position information of the reference station 10A to the positioning terminal 20A (S604).
  • the positioning terminal 20A generates positioning terminal positioning data using a positioning signal from a satellite (S605), and performs an RTK operation using the positioning terminal positioning data, the self-installed reference station positioning data, and the position information of the reference station 10A. Then, a positioning solution is calculated (S606). Then, the positioning terminal 20A outputs the RTK positioning solution as the current position of the positioning terminal 20.
  • the data distribution system 1A including the independently installed reference station 10A and the data distribution server 30A is constructed. Then, the data distribution server 30A calculates the position of the reference station 10A by performing an RTK operation using the self-established reference station positioning data, the existing reference station positioning data, and the existing reference station position information generated by the reference station 10A. The self-located reference station positioning data and the position information of the reference station 10A are transmitted.
  • the positioning terminal 20A can receive the data necessary for positioning from the reference station 10A, and thus can execute the RTK calculation to calculate the positioning solution.
  • the data distribution server 30A calculates the position of the reference station 10A, even a user having no special knowledge can easily set the reference station 10A. Accordingly, the user of the positioning terminal 20A can install or use the reference station 10A that meets his or her own needs, so that the burden on the user of the positioning terminal 20A can be reduced.
  • a service usage fee is generally paid for each device that uses an existing reference station. Therefore, when the positioning terminal 20A directly communicates with the existing reference station, the cost burden on the user increases according to the number of the positioning terminals 20A.
  • the device that receives information directly from the existing reference station is one data distribution server 30A. Therefore, according to the present embodiment, the service usage fee can be reduced as compared with a mode in which the plurality of positioning terminals 20A receive information directly from the existing reference station.
  • the data distribution server 30A receives the existing reference station positioning data at a necessary timing for each of the plurality of reference stations 10A, and calculates the position of the reference station 10A. Therefore, the contract between the existing reference station and the data distribution server 30A can be used for a plurality of reference stations 10A. Thus, if the number of reference stations 10A using the data distribution server 30A increases, the usage fee paid by the provider of the data distribution server 30A to the existing reference station can be shared among the users of the reference station 10A.
  • the positioning can be performed at each of the plurality of positioning terminals 20A. Can be reduced.
  • the installer of the reference station 10A and the user of the positioning terminal 20A are the same, but the installer of the reference station 10A and the user of the positioning terminal 20A may be different. In this case, similarly, the service usage fee of the existing reference station can be suppressed.
  • the reference station 10A does not perform any processing other than generating the own reference station positioning data and transmitting the own reference station positioning data to the data distribution server 30A. Therefore, the reference station 10A can be realized with a very simple configuration. This facilitates downsizing of the reference station 10A, and allows the reference station 10A to be mounted on various devices.
  • the types, arrangements, numbers, and the like of the members are not limited to the above-described embodiments, but deviate from the gist of the invention, for example, by appropriately replacing the components with those having the same functions and effects. It can be changed appropriately within a range not to be performed.
  • the timing at which the data distribution server 30A calculates the RTK positioning solution, which is the position of the reference station 10A, described in S603 may be arbitrary. For example, the timing when the power of the reference station 10A is turned on, the timing when the user receives an instruction, the timing when the positioning terminal 20A first requests the provision of the position information of the reference station 10A, and the like can be considered. In order to distribute the load on the data distribution server 30A, the timing may be determined by the data distribution server 30A.
  • the present disclosure has been described with respect to an example in which the present disclosure is configured using hardware.
  • the present disclosure can be realized by software in cooperation with hardware.
  • the positions of the reference stations 10 and 10A in the above embodiments are not necessarily fixed.
  • the functions of the reference stations 10 and 10A may be provided in a large mobile body, and the functions of the positioning terminals 20 and 20A may be provided in a small mobile body carried by the large mobile body.
  • the coordinates of the small mobile unit can be calculated by moving the large mobile unit to the work site using the small mobile unit and making the large mobile unit function as the reference stations 10 and 10A during the work. Since the reference stations 10 and 10A serve as a reference for information used for calculating the positions of the positioning terminals 20 and 20A, when performing work using a small mobile in the above example, the large mobile must be stopped. Is desirable.
  • the reference stations 10 and 10A do not necessarily need to be larger objects than the positioning terminals 20 and 20A.
  • a small device that can be carried by the user and installed at the work site may be used as the reference stations 10 and 10A.
  • the communication between the existing reference station and the data distribution server 30A, the communication between the data distribution server 30A and the reference station 10A, and the communication between the existing reference station and the positioning terminal 20A are performed in a time-division manner. This may be performed, or another multiplex communication method may be used. As a multiplexing method in one-to-many communication, various methods such as frequency division and code division are known. However, it is useful to perform communication with the existing reference station in a time sharing manner in order to maintain consistency with the existing service that returns necessary data in response to a request from each subscriber.
  • the service may be provided only when the positioning terminals 20, 20A can be authenticated as the terminals related to the reference stations 10, 10A. This can prevent unauthorized use of the service by an unauthorized positioning terminal.
  • authentication may be performed using known security (such as authentication when connecting to Wi-Fi (registered trademark)) in the connection between the reference station 10 and the positioning terminal 20.
  • Wi-Fi registered trademark
  • the positioning terminal 20A when performing communication between the positioning terminal 20A and the existing reference station, the positioning terminal 20A authenticates information indicating the related reference station 10A (for example, the ID of the reference station 10A) and its validity. For example, authentication may be performed by transmitting information (eg, a password) to be authenticated.
  • the reference station in the existing service is referred to as “existing reference station” and is distinguished from the reference stations 10 and 10A.
  • the existing service provider can extend the service of the “existing reference station” by using the method of each of the above embodiments, add the same function as the existing reference station to the reference stations 10 and 10A, and provide services to the other reference stations 10 and 10A.
  • the system according to the first or second embodiment may be constructed by regarding it as an “existing reference station”.
  • Each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit.
  • the integrated circuit may control each functional block used in the description of the above embodiments, and may have an input and an output. These may be individually formed into one chip, or may be formed into one chip so as to include a part or all of each functional block.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • circuit integration is not limited to an LSI, and may be realized using a dedicated circuit or a general-purpose processor.
  • a programmable FPGA Field Programmable Gate Array
  • a reconfigurable processor in which connection and setting of circuit cells inside the LSI can be reconfigured may be used.
  • the present disclosure can be expressed as a control method executed in a wireless communication device or a control device.
  • the present disclosure can be expressed as a program for causing a computer to execute the control method.
  • the present disclosure can be expressed as a recording medium on which such a program is recorded so as to be readable by a computer. That is, the present disclosure can be expressed in any of the categories of the device, the method, the program, and the recording medium.
  • the present disclosure does not limit the type, arrangement, number, and the like of the members to the above-described embodiment, and deviates from the gist of the invention, for example, by appropriately replacing the components with those having the same operation and effect. It can be changed appropriately within a range not to be performed.
  • the present disclosure is suitable for performing interference positioning using a signal from a satellite.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

The present invention reduces the load on a user of a positioning terminal. In the present invention, a reference station (10) uses positioning signals from satellites to generate self-set reference station positioning data (S401) and transfers the self-set reference station positioning data to a data distribution server (30) (S402). The data distribution server (30) calculates the position of the reference station (10) by carrying out RTK computation using the self-set reference station positioning data, preset reference station positioning data, and preset reference station position information (S403) and transmits self-set reference station position information to the reference station (10) (S404). Next, the reference station (10) transmits the self-set reference station positioning data and self-set reference station position information to a positioning terminal (20) (S405). Then, the positioning terminal (20) uses the positioning signals from satellites to generate positioning terminal positioning data (S406) and calculates a positioning solution by carrying out RTK computation using the positioning terminal positioning data, self-set reference station positioning data, and self-set reference station position information.

Description

データ配信サーバおよびデータ配信システムData distribution server and data distribution system
 本発明は、測位衛星(以下、測位に利用できる人工衛星を総称して「衛星」とする)からの信号を利用して干渉測位を行う場合のデータ配信サーバおよびデータ配信システムに関する。 {Circle over (1)} The present invention relates to a data distribution server and a data distribution system for performing interference positioning using signals from positioning satellites (hereinafter, artificial satellites that can be used for positioning are collectively referred to as “satellite”).
 従来、移動体等の対象物の位置を高精度に測量するために、RTK(Real Time Kinematic)法による干渉測位(RTK演算)を利用した測位システムが考えられている(例えば特許文献1参照)。RTK法とは、衛星が送信する測位信号を用いて所定の地点の測位を行うものである。このRTK法による干渉測位を適用することにより、高精度な測位を実現することが期待されている。 2. Description of the Related Art Conventionally, a positioning system using interference positioning (RTK calculation) by a RTK (Real Time Kinematic) method has been considered in order to measure a position of an object such as a moving object with high accuracy (for example, see Patent Document 1). . The RTK method performs positioning of a predetermined point using a positioning signal transmitted by a satellite. It is expected that highly accurate positioning will be realized by applying the interference positioning by the RTK method.
 測位端末は、RTK演算を行う際、GNSS(Global Navigation Satellite System)の衛星(図示せず)から送信される測位信号を受信し、測位信号を用いて測位データ(以下、「測位端末測位データ」という)を生成する。なお、GNSSとは、GPS(Global Positioning System)、BeiDou、GLONASS等の民間航空航法に使用可能な性能(精度・信頼性)を持つ衛星航法システムの総称である。測位信号には、GPS衛星から送信されるL1信号(1575.42MHz)、L2信号(1227.60MHz)等がある。 When performing a RTK calculation, a positioning terminal receives a positioning signal transmitted from a satellite (not shown) of a GNSS (Global Navigation Satellite System) and uses the positioning signal to perform positioning data (hereinafter, “positioning terminal positioning data”). ). The GNSS is a general term for satellite navigation systems having performance (accuracy and reliability) usable for civil aviation navigation, such as GPS (Global Positioning System), BeiDou, and GLONASS. The positioning signal includes an L1 signal (1575.42 MHz) and an L2 signal (1227.60 MHz) transmitted from a GPS satellite.
 測位端末は、位置が既知である基準局から、該基準局における測位データ(以下、「基準局測位データ」という)および該基準局の現在の位置(地球上の座標)を示す情報(以下、「位置情報」という)を受信し、測位端末測位データ、基準局測位データおよび位置情報を用いてRTK演算を行い、現在の位置を算出する。 The positioning terminal transmits, from a reference station whose position is known, positioning data at the reference station (hereinafter, referred to as “reference station positioning data”) and information indicating the current position (coordinates on the earth) of the reference station (hereinafter, “position information”). ), And performs an RTK operation using the positioning terminal positioning data, the reference station positioning data, and the position information to calculate the current position.
特開2002-318273号公報JP-A-2002-318273
 測位端末のユーザは、既存の測位システムのサービス、すなわち基準局の測位データおよび位置情報の提供を受ける場合、測位端末毎に基準局との通信を行う必要があった。ここで、測位端末のユーザが、既存の測位システムの基準局を制御することは難しいため、測位端末と基準局との間の通信の管理などの負担の大部分は、測位端末のユーザが負わなくてはならない。そのため、測位端末の台数が増えると、測位端末のユーザの負担が大きくなってしまう。 ユ ー ザ When the positioning terminal user receives the service of the existing positioning system, that is, the provision of the positioning data and the position information of the reference station, it is necessary to communicate with the reference station for each positioning terminal. Here, since it is difficult for the user of the positioning terminal to control the reference station of the existing positioning system, most of the burden such as management of communication between the positioning terminal and the reference station is left to the user of the positioning terminal. Not be. Therefore, as the number of positioning terminals increases, the burden on the users of the positioning terminals increases.
 本開示の非限定的な実施例は、測位端末のユーザの負担を軽減できるデータ配信サーバおよびデータ配信システムを開示する。 The non-limiting embodiment of the present disclosure discloses a data distribution server and a data distribution system that can reduce the burden on the user of the positioning terminal.
 本開示の一態様に係るデータ配信サーバは、位置が未知である第1基準局および位置が既知である第2基準局のそれぞれと通信を行う通信部と、演算処理を行うプロセッサと、を具備し、前記通信部は、前記第1基準局から、前記第1基準局の測位データを受信し、前記第2基準局から、前記第2基準局の測位データおよび前記第2基準局の位置情報を受信し、前記プロセッサは、前記第1基準局の測位データ、前記第2基準局の測位データおよび前記第2基準局の位置情報を用いて測位演算を行うことにより、前記第1基準局の位置を算出する。 A data distribution server according to an aspect of the present disclosure includes a communication unit that communicates with each of a first reference station whose position is unknown and a second reference station whose position is known, and a processor that performs arithmetic processing, The communication unit receives, from the first reference station, positioning data of the first reference station, and receives, from the second reference station, positioning data of the second reference station and position information of the second reference station. The position of the first reference station is calculated by performing a positioning operation using the positioning data of the first reference station, the positioning data of the second reference station, and the position information of the second reference station.
 本開示の一態様に係るデータ配信システムは、複数の衛星から送信される測位信号に基づいて測位データを算出する第1基準局と、前記第1基準局の測位データ、位置が既知である第2基準局の測位データおよび前記第2基準局の位置情報を用いて測位演算を行うことにより、前記第1基準局の位置を算出するデータ配信サーバと、複数の衛星から送信される測位信号に基づいて測位データを算出し、算出した測位データ、前記第1基準局の測位データおよび前記第1基準局の位置情報を用いて測位演算を行うことにより、位置を算出する測位端末と、を具備する。 A data distribution system according to an aspect of the present disclosure includes a first reference station that calculates positioning data based on positioning signals transmitted from a plurality of satellites, and a second reference station whose positioning data and position are known. A data distribution server that calculates the position of the first reference station by performing positioning calculation using the positioning data of the second reference station and the position information of the second reference station, and converts the positioning data based on positioning signals transmitted from a plurality of satellites. A positioning terminal that calculates a position by performing a positioning operation using the calculated positioning data, the positioning data of the first reference station, and the position information of the first reference station.
 なお、これらの包括的または具体的な態様は、システム、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 Note that these comprehensive or specific aspects may be realized by a system, an integrated circuit, a computer program, or a recording medium, and any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium. May be realized.
 本開示の一態様によれば、データ配信サーバが第1基準局の位置を算出することができる。これにより、地図上の正確な位置を測量することが困難なユーザであっても、容易に基準局を追加することができる。これにより、測位端末のユーザは自らの要望に合う基準局を設置もしくは利用することが可能となるので、測位端末のユーザの負担を軽減させることができる。 According to one aspect of the present disclosure, the data distribution server can calculate the position of the first reference station. Thereby, even if it is difficult for the user to measure an accurate position on the map, a reference station can be easily added. This allows the user of the positioning terminal to install or use a reference station that meets his or her needs, thereby reducing the burden on the user of the positioning terminal.
 本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。 更 Additional advantages and effects of one embodiment of the present disclosure will be apparent from the description and the drawings. Such advantages and / or advantages are each provided by some embodiments and by the features described in the specification and drawings, but not necessarily all to achieve one or more identical features. There is no.
本開示の実施の形態1に係るデータ配信システムの構成を示す図1 is a diagram illustrating a configuration of a data distribution system according to Embodiment 1 of the present disclosure. 本開示の実施の形態1に係る基準局の構成を示すブロック図Block diagram showing a configuration of a reference station according to Embodiment 1 of the present disclosure. 本開示の実施の形態1に係る測位端末の構成を示すブロック図FIG. 2 is a block diagram illustrating a configuration of a positioning terminal according to Embodiment 1 of the present disclosure. 本開示の実施の形態1に係るデータ配信サーバの構成を示す図FIG. 2 is a diagram illustrating a configuration of a data distribution server according to Embodiment 1 of the present disclosure. 本開示の実施の形態1に係るデータ配信システムのシーケンスを示す図FIG. 3 is a diagram showing a sequence of the data distribution system according to the first embodiment of the present disclosure. 本開示の実施の形態1に係る測位処理を示すフロー図Flow chart showing positioning processing according to Embodiment 1 of the present disclosure 本開示の実施の形態2に係るデータ配信システムの構成を示す図Diagram showing a configuration of a data distribution system according to Embodiment 2 of the present disclosure 本開示の実施の形態2に係るデータ配信システムのシーケンスを示す図The figure which shows the sequence of the data distribution system which concerns on Embodiment 2 of this indication.
 以下、図面を適宜参照して、本発明の実施の形態について、詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. However, an unnecessary detailed description may be omitted. For example, a detailed description of well-known matters and a repeated description of substantially the same configuration may be omitted. This is to prevent the following description from being unnecessarily redundant and to facilitate understanding of those skilled in the art.
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the claimed subject matter.
 (実施の形態1)
 <データ配信システムの構成>
 まず、実施の形態1に係るデータ配信システム1の構成について図1を用いて説明する。図1に示すように、データ配信システム1は、基準局10と、測位端末20と、データ配信サーバ30と、から構成される。なお、データ配信システム1は、既存の測位システムの基準局(以下、「既設基準局」という、図示せず)の基準局測位データ(以下、「既設基準局測位データ」という)を利用する。
(Embodiment 1)
<Configuration of data distribution system>
First, the configuration of the data distribution system 1 according to the first embodiment will be described with reference to FIG. As shown in FIG. 1, the data distribution system 1 includes a reference station 10, a positioning terminal 20, and a data distribution server 30. The data distribution system 1 uses reference station positioning data (hereinafter, “existing reference station positioning data”) of a reference station of an existing positioning system (hereinafter, “existing reference station”, not shown).
 基準局10は、既存の測位システムの基準局とは異なり、データ配信システム1において独自に設置される。基準局10は複数設置されても良い。図1は、2台の基準局10-1、10-2が設置されている例を示す。 The reference station 10 is different from the reference station of the existing positioning system, and is independently installed in the data distribution system 1. A plurality of reference stations 10 may be provided. FIG. 1 shows an example in which two reference stations 10-1 and 10-2 are installed.
 基準局10は、GNSS衛星(図示せず)から送信された測位信号を受信し、測位信号を用いて測位データ(以下、「自設基準局測位データ」という)を生成する。なお、本実施の形態では、基準局10は既存の測位システムが提供する基準局ではないものを想定しているため、基準局10に関連する情報には「自設」という表現を用いる。また、基準局10は、データ配信サーバ30と無線通信を行い、データ配信サーバ30に自設基準局測位データを送信し、データ配信サーバ30から基準局10の位置情報(以下、「自設基準局位置情報」という)を受信する。また、基準局10は、通信エリア内に存在する測位端末20と無線通信を行い、測位端末20に自設基準局測位データおよび自設基準局位置情報を送信する。図1は、基準局10-1が、測位端末20-1、20-2、20-3と通信を行い、基準局10-2が、測位端末20-4、20-5と通信を行っている例を示す。 The reference station 10 receives a positioning signal transmitted from a GNSS satellite (not shown), and generates positioning data (hereinafter, referred to as “self-contained reference station positioning data”) using the positioning signal. In this embodiment, since the reference station 10 is not assumed to be a reference station provided by an existing positioning system, the expression “self-installed” is used for information related to the reference station 10. In addition, the reference station 10 performs wireless communication with the data distribution server 30, transmits self-established reference station positioning data to the data distribution server 30, and transmits position information of the reference station 10 from the data distribution server 30 (hereinafter, “self-installed reference station position information”). Called). Further, the reference station 10 performs wireless communication with the positioning terminal 20 existing in the communication area, and transmits the self-installed reference station positioning data and the self-installed reference station position information to the positioning terminal 20. FIG. 1 shows an example in which the reference station 10-1 communicates with the positioning terminals 20-1, 20-2, and 20-3, and the reference station 10-2 communicates with the positioning terminals 20-4 and 20-5. Is shown.
 測位端末20は、GNSS衛星から受信した測位信号を受信し、測位信号を用いて測位端末測位データを生成する。また、測位端末20は、近傍に存在する基準局10と無線通信を行い、基準局10から自設基準局測位データおよび自設基準局位置情報を受信する。 The positioning terminal 20 receives the positioning signal received from the GNSS satellite, and generates positioning terminal positioning data using the positioning signal. In addition, the positioning terminal 20 performs wireless communication with the nearby reference station 10, and receives self-installed reference station positioning data and self-installed reference station position information from the reference station 10.
 測位端末20は、測位端末測位データ、自設基準局測位データおよび自設基準局位置情報を用いてRTK演算を行い、測位端末20の現在の位置(地球上の座標)を算出する。座標は、例えば、緯度・経度・高度の三次元座標が一般的であるが、緯度・経度などの二次元座標であってもよい。なお、測位端末20には、測位用の専用端末、測位機能を有するパーソナルコンピュータ、スマートフォン、タブレット、測位サービスを行うサーバ等が含まれる。また、測位端末20は、座標を求める対象である移動体(例えば車輌など)に設置されてもよい。 (4) The positioning terminal 20 performs an RTK operation using the positioning terminal positioning data, the own reference station positioning data, and the own reference station position information, and calculates the current position (coordinates on the earth) of the positioning terminal 20. The coordinates are generally three-dimensional coordinates such as latitude, longitude and altitude, but may be two-dimensional coordinates such as latitude and longitude. In addition, the positioning terminal 20 includes a dedicated terminal for positioning, a personal computer having a positioning function, a smartphone, a tablet, a server for performing a positioning service, and the like. Further, the positioning terminal 20 may be installed on a moving object (for example, a vehicle) from which coordinates are to be obtained.
 データ配信サーバ30は、既設基準局と通信を行い、既設基準局から既設基準局測位データおよび既設基準局位置情報を受信する。また、データ配信サーバ30は、基準局10と無線通信を行い、基準局10から自設基準局測位データを受信する。 The data distribution server 30 communicates with the existing reference station, and receives the existing reference station positioning data and the existing reference station position information from the existing reference station. Further, the data distribution server 30 performs wireless communication with the reference station 10 and receives self-installed reference station positioning data from the reference station 10.
 データ配信サーバ30は、既設基準局測位データ、既設基準局位置情報および自設基準局測位データを用いてRTK演算を行い、基準局10の現在の位置(地球上の座標)を算出し、基準局10に自設基準局位置情報を送信する。なお、複数の基準局10が設置されている場合、データ配信サーバ30は、各基準局10から時分割で自設基準局測位データを受信し、各基準局10の現在の位置をそれぞれ算出し、各基準局10に位置情報を送信する。図1の例では、データ配信サーバ30が、基準局10-1の自設基準局測位データと、基準局10-2の自設基準局測位データを時分割で受信し、基準局10-1、10-2の現在の位置をそれぞれ算出する。 The data distribution server 30 performs an RTK operation using the existing reference station positioning data, the existing reference station position information, and the own reference station positioning data, calculates the current position (coordinates on the earth) of the reference station 10, and installs it in the reference station 10. Transmit the reference station location information. When a plurality of reference stations 10 are installed, the data distribution server 30 receives the self-installed reference station positioning data from each of the reference stations 10 in a time-division manner, calculates the current position of each of the reference stations 10, and Send location information to. In the example of FIG. 1, the data distribution server 30 receives time-divisionally the own reference station positioning data of the reference station 10-1 and the own reference station positioning data of the reference station 10-2, Calculate the current position respectively.
 <基準局の構成>
 次に、実施の形態1に係る基準局10の構成について図2を用いて説明する。図2に示すように、基準局10は、プロセッサ101と、記憶部102と、入力部103と、出力部104と、第1通信部105と、第2通信部106と、受信部107と、バス110と、を有している。
<Configuration of reference station>
Next, the configuration of reference station 10 according to Embodiment 1 will be described using FIG. As shown in FIG. 2, the reference station 10 includes a processor 101, a storage unit 102, an input unit 103, an output unit 104, a first communication unit 105, a second communication unit 106, a reception unit 107, 110.
 プロセッサ101は、バス110を介して基準局10の他の要素を制御する。プロセッサ101として、例えば、汎用CPU(Central Processing Unit)が用いられる。また、プロセッサ101は、所定のプログラムを実行することにより、測位信号を用いて自設基準局測位データを生成する。 The processor 101 controls other elements of the reference station 10 via the bus 110. As the processor 101, for example, a general-purpose CPU (Central Processing Unit) is used. In addition, the processor 101 executes a predetermined program to generate positioning reference station positioning data using the positioning signal.
 記憶部102は、他の要素から様々な情報を取得し、一時的あるいは恒久的にその情報を保持する。記憶部102は、いわゆる一次記憶装置と二次記憶装置の総称である。記憶部102は、物理的に複数配置されても良い。記憶部102として、例えば、DRAM(Direct Random Access Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)が用いられる。 The storage unit 102 acquires various information from other elements, and temporarily or permanently retains the information. The storage unit 102 is a general term for a so-called primary storage device and a secondary storage device. A plurality of storage units 102 may be physically arranged. As the storage unit 102, for example, a DRAM (Direct Random Access Memory), an HDD (Hard Disk Drive), and an SSD (Solid State Drive) are used.
 入力部103は、外部からの情報を受け付ける。入力部103が受け付ける外部からの情報には、基準局10の操作者からの入力に関する情報などが含まれる。一例としてキーボード等の入力インターフェースを用いることで入力部103を構成することができる。 (4) The input unit 103 receives information from outside. The external information received by the input unit 103 includes information related to input from the operator of the reference station 10 and the like. As an example, the input unit 103 can be configured by using an input interface such as a keyboard.
 出力部104は、外部へ情報を提示する。出力部104が提示する情報には、測位に関する情報などが含まれる。一例としてディスプレイ等の既存の出力インターフェースを用いることで出力部104を構成することができる。 (4) The output unit 104 presents information to the outside. The information presented by the output unit 104 includes information related to positioning and the like. For example, the output unit 104 can be configured by using an existing output interface such as a display.
 第1通信部105は、通信路を介して外部の機器と通信を行う。通信部105が通信する対象(通信対象)の機器には、測位端末20が含まれる。一例として無線LAN通信網など既存の通信網と通信可能な通信インターフェースを用いることで第1通信部105を構成することができる。 (4) The first communication unit 105 communicates with an external device via a communication path. Devices to be communicated by the communication unit 105 (communication targets) include the positioning terminal 20. For example, the first communication unit 105 can be configured by using a communication interface capable of communicating with an existing communication network such as a wireless LAN communication network.
 第2通信部106は、通信路を介して外部の機器と通信を行う。通信部106が通信する対象(通信対象)の機器には、データ配信サーバ30が含まれる。一例として、3G通信網、LTE通信網など既存の通信網と通信可能な通信インターフェースを用いることで第2通信部106を構成することができる。 The second communication unit 106 communicates with an external device via a communication path. Devices to be communicated by the communication unit 106 (communication targets) include the data distribution server 30. As an example, the second communication unit 106 can be configured by using a communication interface capable of communicating with an existing communication network such as a 3G communication network or an LTE communication network.
 受信部107は、衛星からの測位信号を受信し、バス110を介して測位信号をプロセッサ101に出力する。 The receiving unit 107 receives a positioning signal from a satellite, and outputs the positioning signal to the processor 101 via the bus 110.
 なお、上記の基準局10の構成は一例である。基準局10の各構成要素の一部を統合して構成することもできる。基準局10の各構成要素の一部を複数の要素に分割して構成することもできる。基準局10の各構成要素の一部を省略することもできる。基準局10に他の要素を付加して構成することもできる。 The configuration of the reference station 10 is an example. Some of the components of the reference station 10 may be integrated and configured. A part of each component of the reference station 10 may be divided into a plurality of components. Some of the components of the reference station 10 may be omitted. The reference station 10 may be configured by adding other elements.
 <測位端末の構成>
 次に、実施の形態1に係る測位端末20の構成について図3を用いて説明する。図3に示すように、測位端末20は、プロセッサ201と、記憶部202と、入力部203と、出力部204と、通信部205と、受信部206と、バス210と、を備えている。
<Configuration of positioning terminal>
Next, the configuration of the positioning terminal 20 according to Embodiment 1 will be described using FIG. As shown in FIG. 3, the positioning terminal 20 includes a processor 201, a storage unit 202, an input unit 203, an output unit 204, a communication unit 205, a reception unit 206, and a bus 210.
 プロセッサ201は、バス210を介して測位端末20の他の要素を制御する。プロセッサ201として、例えば、汎用CPUが用いられる。また、プロセッサ201は、所定のプログラムを実行することにより、測位信号を用いて測位端末測位データを生成する。また、プロセッサ201は、測位端末測位データ、自設基準局測位データおよび自設基準局位置情報を用いてRTK演算を行い、測位端末20の現在の位置を算出する。なお、プロセッサ201の機能の詳細については後述する。 The processor 201 controls other elements of the positioning terminal 20 via the bus 210. As the processor 201, for example, a general-purpose CPU is used. The processor 201 executes a predetermined program to generate positioning terminal positioning data using the positioning signal. Further, the processor 201 performs an RTK calculation using the positioning terminal positioning data, the self-established reference station positioning data, and the self-established reference station position information, and calculates the current position of the positioning terminal 20. The details of the function of the processor 201 will be described later.
 記憶部202は、他の要素から様々な情報を取得し、一時的あるいは恒久的にその情報を保持する。記憶部202は、いわゆる一次記憶装置と二次記憶装置の総称である。記憶部202は、物理的に複数配置されても良い。記憶部202として、例えば、DRAM、HDD、SSDが用いられる。 The storage unit 202 acquires various information from other elements and temporarily or permanently retains the information. The storage unit 202 is a general term for a so-called primary storage device and a secondary storage device. A plurality of storage units 202 may be physically arranged. As the storage unit 202, for example, a DRAM, HDD, or SSD is used.
 入力部203は、外部からの情報を受け付ける。入力部203が受け付ける外部からの情報には、測位端末20の操作者からの入力に関する情報などが含まれる。一例としてキーボード等の入力インターフェースを用いることで入力部203を構成することができる。 (4) The input unit 203 receives information from outside. The external information received by the input unit 203 includes information related to input from an operator of the positioning terminal 20 and the like. As an example, the input unit 203 can be configured by using an input interface such as a keyboard.
 出力部204は、外部へ情報を提示する。出力部204が提示する情報には、測位に関する情報などが含まれる。一例としてディスプレイ等の既存の出力インターフェースを用いることで出力部204を構成することができる。 (4) The output unit 204 presents information to the outside. The information presented by the output unit 204 includes information related to positioning and the like. For example, the output unit 204 can be configured by using an existing output interface such as a display.
 通信部205は、通信路を介して外部の機器と通信を行う。通信部205が通信する対象(通信対象)の機器には、基準局10が含まれる。一例として、無線LAN通信網など既存の通信網と通信可能な通信インターフェースを用いることで通信部205を構成することができる。 (4) The communication unit 205 communicates with an external device via a communication path. Devices to be communicated by the communication unit 205 (communication targets) include the reference station 10. As an example, the communication unit 205 can be configured by using a communication interface capable of communicating with an existing communication network such as a wireless LAN communication network.
 受信部206は、衛星からの測位信号を受信し、バス210を介して測位信号をプロセッサ201に出力する。 The receiving unit 206 receives the positioning signal from the satellite and outputs the positioning signal to the processor 201 via the bus 210.
 なお、上記の測位端末20の構成は一例である。測位端末20の各構成要素の一部を統合して構成することもできる。測位端末20の各構成要素の一部を複数の要素に分割して構成することもできる。測位端末20の各構成要素の一部を省略することもできる。測位端末20に他の要素を付加して構成することもできる。 The configuration of the positioning terminal 20 is an example. Some of the components of the positioning terminal 20 may be integrated and configured. Some of the components of the positioning terminal 20 may be divided into a plurality of components. Some of the components of the positioning terminal 20 may be omitted. The positioning terminal 20 may be configured by adding other elements.
 <データ配信サーバの構成>
 次に、実施の形態1に係るデータ配信サーバ30の構成について図3を用いて説明する。図3に示すように、データ配信サーバ30は、プロセッサ301と、記憶部302と、入力部303と、出力部304と、通信部305と、バス310と、を備えている。
<Configuration of data distribution server>
Next, the configuration of the data distribution server 30 according to the first embodiment will be described with reference to FIG. As shown in FIG. 3, the data distribution server 30 includes a processor 301, a storage unit 302, an input unit 303, an output unit 304, a communication unit 305, and a bus 310.
 プロセッサ301は、バス310を介してデータ配信サーバ30の他の要素を制御する。プロセッサ301として、例えば、汎用CPUが用いられる。また、プロセッサ301は、既設基準局測位データ、既設基準局位置情報および自設基準局測位データを用いてRTK演算を行い、基準局10の現在の位置を算出する。 The processor 301 controls other elements of the data distribution server 30 via the bus 310. As the processor 301, for example, a general-purpose CPU is used. Further, the processor 301 performs an RTK operation using the existing reference station positioning data, the existing reference station position information, and the own reference station positioning data, and calculates the current position of the reference station 10.
 記憶部302は、他の要素から様々な情報を取得し、一時的あるいは恒久的にその情報を保持する。記憶部302は、いわゆる一次記憶装置と二次記憶装置の総称である。記憶部302は、物理的に複数配置されても良い。記憶部302として、例えば、DRAM、HDD、SSDが用いられる。 The storage unit 302 acquires various information from other elements and temporarily or permanently retains the information. The storage unit 302 is a general term for a so-called primary storage device and a secondary storage device. A plurality of storage units 302 may be physically arranged. As the storage unit 302, for example, a DRAM, an HDD, or an SSD is used.
 入力部303は、外部からの情報を受け付ける。入力部303が受け付ける外部からの情報には、データ配信サーバ30の操作者からの入力に関する情報などが含まれる。一例としてキーボード等の入力インターフェースを用いることで入力部303を構成することができる。 (4) The input unit 303 receives information from outside. The external information received by the input unit 303 includes information related to input from an operator of the data distribution server 30 and the like. As an example, the input unit 303 can be configured by using an input interface such as a keyboard.
 出力部304は、外部へ情報を提示する。出力部304が提示する情報には、測位に関する情報などが含まれる。一例としてディスプレイ等の既存の出力インターフェースを用いることで出力部304を構成することができる。 (4) The output unit 304 presents information to the outside. The information presented by the output unit 304 includes information related to positioning and the like. For example, the output unit 304 can be configured by using an existing output interface such as a display.
 通信部305は、通信路を介して外部の機器と通信を行う。通信部305が通信する対象(通信対象)の機器には、既設基準局および基準局10が含まれる。一例として、3G通信網、LTE通信網など既存の通信網と通信可能な通信インターフェースを用いることで通信部305を構成することができる。 The communication unit 305 communicates with an external device via a communication path. Devices to be communicated by the communication unit 305 (communication targets) include the existing reference station and the reference station 10. As an example, the communication unit 305 can be configured using a communication interface that can communicate with an existing communication network such as a 3G communication network or an LTE communication network.
 <測位端末のプロセッサの測位端末座標出力機能>
 次に、測位端末20のプロセッサ201による、測位端末20の現在の位置(地球上の座標)を出力する機能について詳細に説明する。
<Positioning terminal coordinate output function of positioning terminal processor>
Next, the function of outputting the current position (coordinates on the earth) of the positioning terminal 20 by the processor 201 of the positioning terminal 20 will be described in detail.
 プロセッサ201は、測位端末測位データ、自設基準局測位データおよび自設基準局位置情報を用いてRTK法による干渉測位(RTK演算)を実行し、測位解(フィックス解またはフロート解)を算出する。以下、RTK演算によって得られる測位解を「RTK測位解」という。プロセッサ201は、RTK演算によって得られるAR(Ambiguity Ratio)値を用いて品質チェックを行い、AR値が所定の閾値(例えば3.0)以上の場合には、正しいフィックス解が得られたと判定しフィックス解を出力し、AR値が所定の閾値(例えば3.0)未満の場合には、正しい測位解が得られなかったと判定し、フロート解を出力する。 The processor 201 performs interference positioning (RTK operation) by the RTK method using the positioning terminal positioning data, the self-established reference station positioning data, and the self-established reference station position information, and calculates a positioning solution (fixed solution or float solution). Hereinafter, the positioning solution obtained by the RTK calculation is referred to as “RTK positioning solution”. The processor 201 performs a quality check using an AR (Ambiguity Ratio) value obtained by the RTK operation, and determines that a correct fix solution has been obtained when the AR value is equal to or larger than a predetermined threshold (for example, 3.0). A fixed solution is output, and when the AR value is less than a predetermined threshold (for example, 3.0), it is determined that a correct positioning solution has not been obtained, and a float solution is output.
 そして、プロセッサ201は、RTK測位解を測位端末20の現在の位置(地球上の座標)とし、測位端末20の現在の位置を出力部204に出力する。 {Circle around (2)} Then, the processor 201 sets the RTK positioning solution as the current position (coordinates on the earth) of the positioning terminal 20 and outputs the current position of the positioning terminal 20 to the output unit 204.
 <測位データ>
 次に、測位データについて説明する。実施の形態1において測位データには擬似距離情報、搬送波位相情報およびドップラー周波数情報が含まれる。
<Positioning data>
Next, positioning data will be described. In the first embodiment, the positioning data includes pseudorange information, carrier wave phase information, and Doppler frequency information.
 擬似距離情報とは、衛星と自局(基準局10あるいは測位端末20)との距離に関する情報である。プロセッサ(プロセッサ101あるいはプロセッサ201)は、測位信号を解析することにより衛星と自局との距離を算出することができる。具体的には、プロセッサは、まず、(1)測位信号が搬送したコードのパターンと自局が生成したコードのパターンとの相違、および、(2)測位信号に含まれるメッセージ(NAVDATA)に含まれる衛星の信号生成時刻と自局の信号受信時刻、の2つの情報に基づいて測位信号の到達時間を求める。そして、プロセッサは、当該到達時間に光速を乗ずることにより衛星と自局との擬似距離を求める。この距離には衛星のクロックと自局のクロックとの相違等に起因する誤差が含まれる。通常、この誤差を軽減させるために4つ以上の衛星に対して擬似距離情報が生成される。 The pseudo distance information is information relating to the distance between the satellite and its own station (the reference station 10 or the positioning terminal 20). The processor (processor 101 or processor 201) can calculate the distance between the satellite and the own station by analyzing the positioning signal. Specifically, the processor firstly (1) differs between the pattern of the code carried by the positioning signal and the pattern of the code generated by the own station, and (2) includes the message (NAVDATA) included in the positioning signal. The arrival time of the positioning signal is obtained based on two pieces of information, namely, the satellite signal generation time and the own station signal reception time. Then, the processor obtains a pseudo distance between the satellite and the own station by multiplying the arrival time by the speed of light. This distance includes an error due to a difference between the clock of the satellite and the clock of the own station. Usually, pseudorange information is generated for four or more satellites to reduce this error.
 搬送波位相情報とは、自局が受信した測位信号の位相である。測位信号は所定の正弦波である。プロセッサは、受信した測位信号を解析することにより測位信号の位相を算出することができる。 The carrier phase information is the phase of the positioning signal received by the own station. The positioning signal is a predetermined sine wave. The processor can calculate the phase of the positioning signal by analyzing the received positioning signal.
 ドップラー周波数情報とは、衛星と自局との相対的な速度に関する情報である。プロセッサは、測位信号を解析することによりドップラー周波数情報を生成することができる。 The Doppler frequency information is information relating to the relative speed between the satellite and its own station. The processor can generate Doppler frequency information by analyzing the positioning signal.
 以上のようにして、基準局10のプロセッサ101および測位端末20のプロセッサ201によって、それぞれ測位データが生成される。 As described above, the positioning data is generated by the processor 101 of the reference station 10 and the processor 201 of the positioning terminal 20, respectively.
 <RTK演算>
 次に、RTK演算について説明する。RTK演算は干渉測位の一つであるRTK法を実行する演算である。
<RTK operation>
Next, the RTK operation will be described. The RTK operation is an operation for executing the RTK method which is one of the interference positioning.
 RTK法とは、衛星が送信する測位信号の搬送波位相積算値を用いて所定の地点の測位を行うものである。搬送波位相積算値とは、衛星から所定の地点までの(1)測位信号の波の数と(2)位相との和である。搬送波位相積算値が求まれば、測位信号の周波数(および波長)が既知であるので、衛星から所定の地点までの距離を求めることができる。測位信号の波の数は、未知数であるので整数アンビギュイティまたは整数値バイアスと呼ばれる。 The RTK method is to perform positioning at a predetermined point by using a carrier phase integrated value of a positioning signal transmitted by a satellite. The carrier phase integrated value is the sum of (1) the number of waves of the positioning signal from the satellite to a predetermined point and (2) the phase. If the carrier phase integrated value is obtained, the frequency (and wavelength) of the positioning signal is known, so that the distance from the satellite to a predetermined point can be obtained. The number of waves of the positioning signal is unknown and is called integer ambiguity or integer value bias.
 RTK法を実行するにあたって重要なことはノイズの除去と、整数アンビギュイティの推定(決定)である。 Important points in executing the RTK method are noise removal and estimation (determination) of the integer ambiguity.
 RTK法では、二重差と呼ばれる差を演算することにより、ノイズの除去を行うことができる。二重差とは2つの衛星に対する1つの受信機の搬送波位相積算値の差(一重差)を2つの受信機(実施の形態1においては基準局10と測位端末20)の間でそれぞれ算出した値の差である。実施の形態1においてはRTK法を用いた測位のために4つ以上の衛星を使用する。従って、4つ以上の衛星の組み合わせの数だけ二重差を演算することになる。この演算では、基準局測位データおよび測位端末測位データが用いられる。 In the RTK method, noise can be removed by calculating a difference called a double difference. The double difference is a value obtained by calculating a difference (single difference) between the carrier phase integrated values of one receiver for two satellites between the two receivers (the reference station 10 and the positioning terminal 20 in the first embodiment). Is the difference. In the first embodiment, four or more satellites are used for positioning using the RTK method. Therefore, double differences are calculated for the number of combinations of four or more satellites. In this calculation, reference station positioning data and positioning terminal positioning data are used.
 RTK法では、整数アンビギュイティの推定を様々な方法で行うことができる。例えば、(1)最小二乗法によるフロート解の推定、および、(2)フロート解に基づくフィックス解の検定という手順を実行することにより整数アンビギュイティの推定を行うことができる。 In the RTK method, the estimation of the integer ambiguity can be performed by various methods. For example, the integer ambiguity can be estimated by executing a procedure of (1) estimating a float solution by the least square method and (2) testing a fixed solution based on the float solution.
 最小二乗法によるフロート解の推定は、時間単位毎に生成した二重差の組み合わせを用いて連立方程式を作成し、作成した連立方程式を最小二乗法によって解くことにより実行される。この演算では、基準局測位データ、測位端末測位データおよび基準局10の既知の座標が用いられる。このようにして求められた整数アンビギュイティの実数推定値をフロート解(推測解)と呼ぶ。 フ ロ ー Estimation of a float solution by the least squares method is performed by creating a simultaneous equation using a combination of double differences generated for each time unit, and solving the created simultaneous equation by the least squares method. In this calculation, the reference station positioning data, the positioning terminal positioning data, and the known coordinates of the reference station 10 are used. The real number estimated value of the integer ambiguity thus obtained is called a float solution (estimated solution).
 以上のようにして求められたフロート解は実数であるのに対して、整数アンビギュイティの真の値は整数である。よって、フロート解を丸めることにより整数値にする作業が必要になる。しかし、フロート解を丸める組み合わせには複数通りの候補が考えられる。従って、候補の中から正しい整数値を検定する必要がある。検定によって整数値バイアスとしてある程度確からしいとされた解をフィックス解(精密測位解)と呼ぶ。実施の形態1ではRTK演算によって得られるAR値を用いて品質チェックを行い、品質チェックの結果に基づいて正しい整数値を検定する。なお、整数値の候補の絞込みを効率化するために基準局測位データが用いられる。 While the float solution obtained as described above is a real number, the true value of the integer ambiguity is an integer. Therefore, it is necessary to round the float solution to an integer value. However, there are several possible combinations for rounding the float solution. Therefore, it is necessary to test the correct integer value from the candidates. The solution determined to be somewhat certain as an integer bias by the test is called a fixed solution (precision positioning solution). In the first embodiment, a quality check is performed using the AR value obtained by the RTK operation, and a correct integer value is tested based on the result of the quality check. In addition, the reference station positioning data is used in order to efficiently narrow down the candidates of the integer value.
 <データ配信システムのシーケンス>
 次に、実施の形態1に係るデータ配信システム1のシーケンスについて図5を用いて説明する。
<Sequence of data distribution system>
Next, a sequence of the data distribution system 1 according to the first embodiment will be described with reference to FIG.
 まず、基準局10が、衛星からの測位信号を用いて自設基準局測位データを生成し(S401)、データ配信サーバ30に自設基準局測位データを送信する(S402)。 First, the reference station 10 generates own reference station positioning data using a positioning signal from a satellite (S401), and transmits the own reference station positioning data to the data distribution server 30 (S402).
 次に、データ配信サーバ30が、自設基準局測位データ、既設基準局測位データおよび既設基準局位置情報を用いてRTK演算を実行し、測位解を算出する(S403)。そして、データ配信サーバ30は、RTK測位解を基準局10の現在の位置とし、基準局10に自設基準局位置情報を送信する(S404)。 Next, the data distribution server 30 performs an RTK calculation using the self-established reference station positioning data, the existing reference station positioning data, and the existing reference station position information to calculate a positioning solution (S403). Then, the data distribution server 30 sets the RTK positioning solution as the current position of the reference station 10, and transmits the own reference station position information to the reference station 10 (S404).
 なお、データ配信サーバ30は、基準局10から自設基準局測位データを受信する度に、既設基準局測位データを受信する。既設基準局および基準局10から見える衛星の相対的な位置や大気の状態は、時刻に応じて変化するため、基準局10の位置を高精度に算出するためには、自設基準局測位データと同一又は近い時刻の既設基準局測位データを使用することが望ましいためである。ここで、基準局10が複数存在する場合には、それぞれの基準局10から同時に自設基準局測位データが届くことは現実的にはまれであるため、データ配信サーバ30は、各基準局10向けの自設基準局測位データの要求を時分割で行う。ただし、データ配信サーバ30が、同時に複数の基準局10を処理できる構成にしても構わない。 The data distribution server 30 receives the existing reference station positioning data each time it receives the own reference station positioning data from the reference station 10. Since the relative position of the satellite and the state of the atmosphere seen from the existing reference station and the reference station 10 change according to time, in order to calculate the position of the reference station 10 with high accuracy, it is the same as or close to the own reference station positioning data. This is because it is desirable to use the existing reference station positioning data at the time. Here, when there are a plurality of reference stations 10, it is rare in reality that the self-installed reference station positioning data simultaneously arrives from each of the reference stations 10. A request for reference station positioning data is made in a time-division manner. However, the data distribution server 30 may be configured to process a plurality of reference stations 10 at the same time.
 なお、基準局10が基準局10の位置を算出するためには、既設基準局位置情報を受信する必要がある。既設基準局の位置情報が時刻に応じて変化することは極めてまれであるため、基準局10が既設基準局位置情報を受信するタイミングは任意で構わない。 In order for the reference station 10 to calculate the position of the reference station 10, it is necessary to receive the existing reference station position information. Since the position information of the existing reference station rarely changes with time, the timing at which the reference station 10 receives the existing reference station position information may be arbitrary.
 次に、基準局10が、測位端末20に自設基準局測位データおよび自設基準局位置情報を送信する(S405)。なお、基準局10は、自設基準局位置情報を受信したタイミングと異なるタイミングで自設基準局測位データおよび自設基準局位置情報を送信しても構わない。ただし、この場合、測位端末20に対して自設基準局測位データを送るタイミングで、衛星からの測位信号を用いて自設基準局測位データを生成しなおすことが望ましい。測位端末20は、自設基準局測位データを受信したタイミングにおける衛星等の状況を反映して自らの位置を算出するためである。 Next, the reference station 10 transmits the own reference station positioning data and the own reference station position information to the positioning terminal 20 (S405). Note that the reference station 10 may transmit the own reference station positioning data and the own reference station position information at a timing different from the timing at which the own reference station position information is received. However, in this case, it is desirable to re-generate the local reference station positioning data using the positioning signal from the satellite at the timing of transmitting the local reference station positioning data to the positioning terminal 20. The positioning terminal 20 calculates its own position by reflecting the status of the satellite and the like at the timing of receiving the self-installed reference station positioning data.
 次に、測位端末20が、衛星からの測位信号を用いて測位端末測位データを生成し(S406)、測位端末測位データ、自設基準局測位データおよび自設基準局位置情報を用いてRTK演算を実行し、測位解を算出する(S407)。そして、測位端末20は、RTK測位解を測位端末20の現在の位置として出力する。 Next, the positioning terminal 20 generates positioning terminal positioning data using a positioning signal from a satellite (S406), and performs an RTK operation using the positioning terminal positioning data, the self-established reference station positioning data, and the self-established reference station position information. Then, a positioning solution is calculated (S407). Then, the positioning terminal 20 outputs the RTK positioning solution as the current position of the positioning terminal 20.
 <測位処理のフロー>
 次に、実施の形態1に係る測位端末20の測位処理のフローについて図6を用いて説明する。なお、測位処理を開始するタイミングについては特に限定は無い。例えば、測位端末20の電源が投入された際に、測位処理を開始しても良い。また、測位端末20の入力部203によって測位処理を開始するコマンドが入力された際に、測位処理を開始しても良い。
<Positioning process flow>
Next, a flow of the positioning process of the positioning terminal 20 according to Embodiment 1 will be described with reference to FIG. Note that there is no particular limitation on the timing at which the positioning process is started. For example, the positioning process may be started when the power of the positioning terminal 20 is turned on. Further, when a command to start the positioning process is input by the input unit 203 of the positioning terminal 20, the positioning process may be started.
 まず、ST501において、プロセッサ201が、記憶部202の記憶内部をクリアする。 First, in ST501, the processor 201 clears the inside of the storage unit 202.
 次に、ST502において、受信部206が、各衛星から測位信号を受信する。また、ST503において、通信部205が基準局10から自設基準局測位データおよび自設基準局位置情報を受信する。 Next, in ST502, receiving section 206 receives a positioning signal from each satellite. Also, in ST503, communication section 205 receives self-installed reference station positioning data and self-installed reference station position information from reference station 10.
 次に、ST504において、プロセッサ201が、衛星からの測位信号を用いて測位端末測位データを生成する。 Next, in ST504, the processor 201 generates positioning terminal positioning data using a positioning signal from a satellite.
 次に、ST505において、プロセッサ201が、測位端末測位データ、自設基準局測位データおよび自設基準局位置情報を用いてRTK演算を実行する。 Next, in ST505, the processor 201 executes an RTK operation using the positioning terminal positioning data, the self-established reference station positioning data, and the self-established reference station position information.
 次に、ST506において、プロセッサ201が、ST505のRTK演算によって得られたAR値を確認する。 Next, in ST506, the processor 201 checks the AR value obtained by the RTK operation in ST505.
 そして、ST507において、プロセッサ201が、十分な測位品質が得られたか否かの品質チェックを、AR値を確認することにより行う。 Then, in ST507, the processor 201 performs a quality check on whether or not sufficient positioning quality has been obtained by confirming the AR value.
 AR値が閾値(例えば、3.0)以上の場合(ST507:YES)、ST508において、出力部204が、そのRTK演算の測位解をフィックス解、即ち、精密測位解として出力する。この精密測位解は、測位端末20の現在の位置(地球上の座標)を表すものである。 If the AR value is equal to or greater than a threshold value (for example, 3.0) (ST507: YES), in ST508, output section 204 outputs the positioning solution of the RTK operation as a fixed solution, that is, a precise positioning solution. This precise positioning solution represents the current position (coordinates on the earth) of the positioning terminal 20.
 一方、AR値が閾値未満の場合(ST507:NO)、ST509において、出力部204が、そのRTK演算の測位解をフロート解、即ち、推測解として出力する。 On the other hand, if the AR value is less than the threshold value (ST507: NO), in ST509, output section 204 outputs the positioning solution of the RTK operation as a float solution, that is, a guess solution.
 <効果>
 以上のように、実施の形態1では、独自に設置された基準局10とデータ配信サーバ30を含むデータ配信システム1を構築する。そして、データ配信サーバ30が、基準局10で生成された自設基準局測位データ、既設基準局測位データおよび既設基準局位置情報を用いてRTK演算を実行して基準局10の位置を算出する。基準局10は、データ配信サーバ30から自設基準局位置情報を受信し、測位端末20に自設基準局測位データおよび自設基準局位置情報を送信する。
<Effect>
As described above, in the first embodiment, the data distribution system 1 including the independently installed reference station 10 and the data distribution server 30 is constructed. Then, the data distribution server 30 calculates the position of the reference station 10 by performing an RTK operation using the own reference station positioning data, the existing reference station positioning data, and the existing reference station position information generated by the reference station 10. The reference station 10 receives the own reference station position information from the data distribution server 30 and transmits the own reference station positioning data and the own reference station position information to the positioning terminal 20.
 これにより、測位端末20は、基準局10から測位に必要なデータを受信できるので、RTK演算を実行して測位解を算出できる。 Thereby, the positioning terminal 20 can receive the data necessary for positioning from the reference station 10, so that it can calculate the positioning solution by executing the RTK calculation.
 そして、実施の形態1によれば、データ配信サーバ30が、基準局10の位置を算出するため、専門知識を持たないユーザであっても基準局10を容易に設定することができる。これにより、測位端末20のユーザは、要望に合う基準局10を設置もしくは利用することが可能となるので、測位端末20のユーザの負担を軽減させることができる。 According to the first embodiment, since the data distribution server 30 calculates the position of the reference station 10, even a user who does not have specialized knowledge can easily set the reference station 10. Accordingly, the user of the positioning terminal 20 can install or use the reference station 10 that meets the demand, so that the burden on the user of the positioning terminal 20 can be reduced.
 また、従来の測位システムでは、既設基準局を利用する装置1台毎にサービス利用料を支払う形態が一般的である。そのため、測位端末20が既設基準局と直接通信する場合には、測位端末20の数に応じてユーザの費用負担も増加していた。これに対し、実施の形態1によれば、既設基準局から直接的に情報を受信する装置は1台のデータ配信サーバ30である。したがって、本実施の形態によれば、複数の測位端末20が既設基準局から直接的に情報を受信する形態と比べて、サービス利用料を抑えることができる。 In a conventional positioning system, a service usage fee is generally paid for each device that uses an existing reference station. Therefore, when the positioning terminal 20 communicates directly with the existing reference station, the cost burden on the user increases according to the number of the positioning terminals 20. On the other hand, according to the first embodiment, the device that receives information directly from the existing reference station is one data distribution server 30. Therefore, according to the present embodiment, the service usage fee can be reduced as compared with the case where a plurality of positioning terminals 20 receive information directly from the existing reference station.
 また、前述した通り、このデータ配信サーバ30は、複数の基準局10それぞれに対して、既設基準局測位データを必要なタイミングで受信して提供する。したがって、既設基準局とデータ配信サーバ30との間の契約を複数の基準局10向けに使いまわすことが可能となる。これにより、データ配信サーバ30を利用する基準局10が増えれば、データ配信サ-バ30の提供者が既設基準局に支払う利用料を基準局10のユーザ間で分担させることができる。 As described above, the data distribution server 30 receives and provides the existing reference station positioning data to each of the plurality of reference stations 10 at a necessary timing. Therefore, the contract between the existing reference station and the data distribution server 30 can be reused for a plurality of reference stations 10. As a result, when the number of reference stations 10 using the data distribution server 30 increases, the usage fee paid by the provider of the data distribution server 30 to the existing reference station can be shared among the users of the reference station 10.
 すなわち、基準局10または測位端末20のユーザは、データ配信システム1の提供者に所定のサービス利用料を支払えば、複数の測位端末20のそれぞれで測位を行うことができるので、測位端末20のユーザの負担は軽減される。なお、実施の形態1では、基準局10の設置者と測位端末20のユーザは同一であることを想定しているが、基準局10の設置者と測位端末20のユーザとは異なっていても良い。この場合も、同様に、既設基準局のサービス利用料を抑制することができる。 That is, if the user of the reference station 10 or the positioning terminal 20 pays a predetermined service usage fee to the provider of the data distribution system 1, each of the plurality of positioning terminals 20 can perform positioning. Burden is reduced. In the first embodiment, it is assumed that the installer of the reference station 10 and the user of the positioning terminal 20 are the same, but the installer of the reference station 10 and the user of the positioning terminal 20 may be different. In this case, similarly, the service usage fee of the existing reference station can be suppressed.
 また、実施の形態1において、S401~S404にて説明した、基準局10が自設基準局位置情報を取得する処理を行うタイミングは任意で構わない。例えば、基準局10の電源が投入されたタイミング、ユーザの指示を受けたタイミング、測位端末20から最初に自設基準局位置情報の送信を求められたタイミングなどが考えられる。また、データ配信サーバ30における負荷を分散させるため、データ配信サーバ30からタイミングを指示しても良い。 In addition, in the first embodiment, the timing at which the reference station 10 performs the process of acquiring the own reference station position information described in S401 to S404 may be arbitrary. For example, the timing when the power of the reference station 10 is turned on, the timing when the user receives an instruction, the timing when the positioning terminal 20 first requests the transmission of the self-installed reference station position information, and the like are considered. Further, in order to distribute the load on the data distribution server 30, a timing may be instructed from the data distribution server 30.
 また、既設基準局と測位端末20とが直接通信する従来の構成では、測位に必要なデータをリアルタイムで入手できる測位端末20の数は、既設基準局の送信能力の上限によって制限を受ける。そのため、測位端末20の数が増加すると、一部の測位端末20が、測位に必要なデータをリアルタイムに得られなくなるおそれがある。これに対し、実施の形態1の構成によれば、既設基準局と直接やり取りを行うのは基準局10であり、基準局10が測位端末20に対して測位に必要なデータを送信する。したがって、測位端末20の数が大きく増加しても、それに伴って増加する通信の負担は、基準局10で吸収することができる。したがって、既設基準局の負担を軽減することができる。 In the conventional configuration in which the existing reference station and the positioning terminal 20 directly communicate with each other, the number of positioning terminals 20 that can obtain data necessary for positioning in real time is limited by the upper limit of the transmission capability of the existing reference station. Therefore, when the number of positioning terminals 20 increases, there is a possibility that some of the positioning terminals 20 may not be able to obtain data necessary for positioning in real time. On the other hand, according to the configuration of the first embodiment, the reference station 10 directly communicates with the existing reference station, and the reference station 10 transmits data necessary for positioning to the positioning terminal 20. Therefore, even if the number of the positioning terminals 20 greatly increases, the communication load that increases with the number can be absorbed by the reference station 10. Therefore, the burden on the existing reference station can be reduced.
 また、上記実施の形態では、既設基準局とデータ配信サーバ30との間の通信、データ配信サーバ30と基準局10との間の通信、および、基準局10と測位端末20の間の通信は時分割で行っていたが、他の多重通信の方法を用いても良い。一対多通信における多重化の手法としては、周波数分割、符号分割など様々なものが知られている。ただし、既設基準局とデータ配信サーバ30との間の通信は、各契約者からの求めに応じて必要なデータを返す既存のサービスと整合性を取るため、時分割で行うことは有益である。 Further, in the above embodiment, communication between the existing reference station and the data distribution server 30, communication between the data distribution server 30 and the reference station 10, and communication between the reference station 10 and the positioning terminal 20 are performed in a time-division manner. However, other multiplex communication methods may be used. As a multiplexing method in one-to-many communication, various methods such as frequency division and code division are known. However, the communication between the existing reference station and the data distribution server 30 is advantageously performed in a time-division manner in order to maintain consistency with an existing service that returns necessary data in response to a request from each contractor.
 (実施の形態2)
 実施の形態2においては、実施の形態1で説明したデータ配信システム1の基準局10、測位端末20、データ配信サーバ30それぞれに対して変更になる部分があるため、以下、データ配信システム1A、基準局10A、測位端末20A、データ配信サーバ30Aとする。
(Embodiment 2)
In the second embodiment, since there is a change in each of the reference station 10, the positioning terminal 20, and the data distribution server 30 of the data distribution system 1 described in the first embodiment, the data distribution system 1A, the reference station 10A, a positioning terminal 20A, and a data distribution server 30A.
 <データ配信システムの構成>
 まず、実施の形態2に係るデータ配信システム1Aの構成について図7を用いて説明する。図7に示すように、データ配信システム1Aは、基準局10Aと、測位端末20Aと、データ配信サーバ30Aと、から構成される。実施の形態2では、基準局10Aと測位端末20Aとが無線通信を行わず、測位端末20Aとデータ配信サーバ30Aとが無線通信を行う点で、実施の形態1と異なる。
<Configuration of data distribution system>
First, the configuration of a data distribution system 1A according to Embodiment 2 will be described with reference to FIG. As shown in FIG. 7, the data distribution system 1A includes a reference station 10A, a positioning terminal 20A, and a data distribution server 30A. Embodiment 2 is different from Embodiment 1 in that the reference station 10A and the positioning terminal 20A do not perform wireless communication, and the positioning terminal 20A and the data distribution server 30A perform wireless communication.
 基準局10Aは、データ配信サーバ30Aから基準局10Aの位置情報を受信する必要が無く、測位端末20Aに自設基準局測位データおよび基準局10Aの位置情報を送信する必要が無い。このため、基準局10Aにおいて、第1通信部105は不要となる。なお、その他の基準局10Aの機能は、実施の形態1で説明した基準局10のものと共通する。 The reference station 10A does not need to receive the position information of the reference station 10A from the data distribution server 30A, and does not need to transmit the self-installed reference station positioning data and the position information of the reference station 10A to the positioning terminal 20A. Therefore, the first communication unit 105 is not required in the reference station 10A. The other functions of the reference station 10A are common to those of the reference station 10 described in the first embodiment.
 測位端末20Aは、データ配信サーバ30Aから自設基準局測位データおよび基準局10Aの位置情報を受信する。なお、その他の測位端末20Aの機能は、実施の形態1で説明した測位端末20のものと共通する。 The positioning terminal 20A receives the self-installed reference station positioning data and the position information of the reference station 10A from the data distribution server 30A. The other functions of the positioning terminal 20A are the same as those of the positioning terminal 20 described in the first embodiment.
 データ配信サーバ30Aは、測位端末20Aに、該測位端末20Aの近傍に位置する基準局10Aの位置情報を送信する。図7の例では、データ配信サーバ30Aは、測位端末20A-1、20A-2、20A-3に、基準局10A-1の位置情報を送信し、測位端末20A-4、20A-5に、基準局10A-2の位置情報を送信する。なお、その他のデータ配信サーバ30Aの機能は、実施の形態1で説明したデータ配信サーバ30のものと共通する。 The data distribution server 30A transmits the position information of the reference station 10A located near the positioning terminal 20A to the positioning terminal 20A. In the example of FIG. 7, the data distribution server 30A transmits the position information of the reference station 10A-1 to the positioning terminals 20A-1, 20A-2, and 20A-3, and transmits the position information of the reference station 10A-1 to the positioning terminals 20A-4 and 20A-5. The location information of 10A-2 is transmitted. The other functions of data distribution server 30A are the same as those of data distribution server 30 described in the first embodiment.
 <データ配信システムのシーケンス>
 次に、実施の形態2に係るデータ配信システム1Aのシーケンスについて図8を用いて説明する。
<Sequence of data distribution system>
Next, a sequence of the data distribution system 1A according to the second embodiment will be described with reference to FIG.
 まず、基準局10Aが、衛星からの測位信号を用いて自設基準局測位データを生成し(S601)、データ配信サーバ30Aに自設基準局測位データを送信する(S602)。 First, the reference station 10A generates own reference station positioning data using a positioning signal from a satellite (S601), and transmits the own reference station positioning data to the data distribution server 30A (S602).
 次に、データ配信サーバ30Aが、自設基準局測位データ、既設基準局測位データおよび既設基準局位置情報を用いてRTK演算を実行し、測位解を算出する(S603)。そして、データ配信サーバ30Aは、RTK測位解を基準局10Aの現在の位置とし、測位端末20Aに、自設基準局測位データおよび基準局10Aの位置情報を送信する(S604)。 Next, the data distribution server 30A performs an RTK operation using the own reference station positioning data, the existing reference station positioning data, and the existing reference station position information to calculate a positioning solution (S603). Then, the data distribution server 30A sets the RTK positioning solution as the current position of the reference station 10A, and transmits the self-installed reference station positioning data and the position information of the reference station 10A to the positioning terminal 20A (S604).
 次に、測位端末20Aが、衛星からの測位信号を用いて測位端末測位データを生成し(S605)、測位端末測位データ、自設基準局測位データおよび基準局10Aの位置情報を用いてRTK演算を実行し、測位解を算出する(S606)。そして、測位端末20Aは、RTK測位解を測位端末20の現在の位置として出力する。 Next, the positioning terminal 20A generates positioning terminal positioning data using a positioning signal from a satellite (S605), and performs an RTK operation using the positioning terminal positioning data, the self-installed reference station positioning data, and the position information of the reference station 10A. Then, a positioning solution is calculated (S606). Then, the positioning terminal 20A outputs the RTK positioning solution as the current position of the positioning terminal 20.
 <効果>
 以上のように、実施の形態2では、独自に設置された基準局10Aとデータ配信サーバ30Aを含むデータ配信システム1Aを構築する。そして、データ配信サーバ30Aが、基準局10Aで生成された自設基準局測位データ、既設基準局測位データおよび既設基準局位置情報を用いてRTK演算を実行して基準局10Aの位置を算出し、測位端末20Aに自設基準局測位データおよび基準局10Aの位置情報を送信する。
<Effect>
As described above, in the second embodiment, the data distribution system 1A including the independently installed reference station 10A and the data distribution server 30A is constructed. Then, the data distribution server 30A calculates the position of the reference station 10A by performing an RTK operation using the self-established reference station positioning data, the existing reference station positioning data, and the existing reference station position information generated by the reference station 10A. The self-located reference station positioning data and the position information of the reference station 10A are transmitted.
 これにより、測位端末20Aは、基準局10Aから測位に必要なデータを受信できるので、RTK演算を実行して測位解を算出できる。 Thereby, the positioning terminal 20A can receive the data necessary for positioning from the reference station 10A, and thus can execute the RTK calculation to calculate the positioning solution.
 実施の形態2によれば、データ配信サーバ30Aが、基準局10Aの位置を算出するため、専門知識を持たないユーザであっても基準局10Aを容易に設定することができる。これにより、測位端末20Aのユーザは自らの要望に合う基準局10Aを設置もしくは利用することが可能となるので、測位端末20Aのユーザの負担を軽減させることができる。 According to the second embodiment, since the data distribution server 30A calculates the position of the reference station 10A, even a user having no special knowledge can easily set the reference station 10A. Accordingly, the user of the positioning terminal 20A can install or use the reference station 10A that meets his or her own needs, so that the burden on the user of the positioning terminal 20A can be reduced.
 また、従来の測位システムでは、既設基準局を利用する装置1台毎にサービス利用料を支払う形態が一般的である。そのため、測位端末20Aが既設基準局と直接通信する場合には、測位端末20Aの数に応じてユーザの費用負担も増加していた。これに対し、実施の形態1によれば、既設基準局から直接的に情報を受信する装置は1台のデータ配信サーバ30Aである。したがって、本実施の形態によれば、複数の測位端末20Aが既設基準局から直接的に情報を受信する形態と比べて、サービス利用料を抑えることができる。 In a conventional positioning system, a service usage fee is generally paid for each device that uses an existing reference station. Therefore, when the positioning terminal 20A directly communicates with the existing reference station, the cost burden on the user increases according to the number of the positioning terminals 20A. On the other hand, according to the first embodiment, the device that receives information directly from the existing reference station is one data distribution server 30A. Therefore, according to the present embodiment, the service usage fee can be reduced as compared with a mode in which the plurality of positioning terminals 20A receive information directly from the existing reference station.
 また、前述した通り、このデータ配信サーバ30Aは、複数の基準局10Aそれぞれに対して、既設基準局測位データを必要なタイミングで受信し、基準局10Aの位置を算出する。したがって、既設基準局とデータ配信サーバ30Aとの間の契約を複数の基準局10A向けに使いまわすことが可能となる。これにより、データ配信サーバ30Aを利用する基準局10Aが増えれば、データ配信サ-バ30Aの提供者が既設基準局に支払う利用料を基準局10Aのユーザ間で分担させることができる。 As described above, the data distribution server 30A receives the existing reference station positioning data at a necessary timing for each of the plurality of reference stations 10A, and calculates the position of the reference station 10A. Therefore, the contract between the existing reference station and the data distribution server 30A can be used for a plurality of reference stations 10A. Thus, if the number of reference stations 10A using the data distribution server 30A increases, the usage fee paid by the provider of the data distribution server 30A to the existing reference station can be shared among the users of the reference station 10A.
 すなわち、基準局10Aまたは測位端末20Aのユーザは、データ配信システム1の提供者に所定のサービス利用料を支払えば、複数の測位端末20Aのそれぞれで測位を行うことができるので、従来に比べて負担を軽減できる。なお、実施の形態2では、基準局10Aの設置者と測位端末20Aのユーザは同一であることを想定しているが、基準局10Aの設置者と測位端末20Aのユーザとは異なっていても良い。この場合も、同様に、既設基準局のサービス利用料を抑制することができる。 That is, if the user of the reference station 10A or the positioning terminal 20A pays a predetermined service usage fee to the provider of the data distribution system 1, the positioning can be performed at each of the plurality of positioning terminals 20A. Can be reduced. In the second embodiment, it is assumed that the installer of the reference station 10A and the user of the positioning terminal 20A are the same, but the installer of the reference station 10A and the user of the positioning terminal 20A may be different. In this case, similarly, the service usage fee of the existing reference station can be suppressed.
 また、実施の形態2によれば、基準局10Aは自設基準局測位データを生成し、データ配信サーバ30Aに自設基準局測位データを送信する以外の処理は行わない。そのため、基準局10Aを極めて単純な構成で実現することができる。これにより、基準局10Aの小型化が容易になり、多様な装置に基準局10Aを搭載することが可能になる。 According to the second embodiment, the reference station 10A does not perform any processing other than generating the own reference station positioning data and transmitting the own reference station positioning data to the data distribution server 30A. Therefore, the reference station 10A can be realized with a very simple configuration. This facilitates downsizing of the reference station 10A, and allows the reference station 10A to be mounted on various devices.
 なお、本開示は、部材の種類、配置、個数等は前述の実施の形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更することができる。
 また、実施の形態2において、S603にて説明した、データ配信サーバ30Aにて、基準局10Aの位置であるRTK測位解を算出するタイミングは任意で構わない。例えば、基準局10Aの電源が投入されたタイミング、ユーザの指示を受けたタイミング、測位端末20Aから最初に基準局10Aの位置情報の提供を求められたタイミングなどが考えられる。また、データ配信サーバ30Aにおける負荷を分散させるため、データ配信サーバ30Aにてタイミングを決定しても良い。
Note that, in the present disclosure, the types, arrangements, numbers, and the like of the members are not limited to the above-described embodiments, but deviate from the gist of the invention, for example, by appropriately replacing the components with those having the same functions and effects. It can be changed appropriately within a range not to be performed.
Further, in the second embodiment, the timing at which the data distribution server 30A calculates the RTK positioning solution, which is the position of the reference station 10A, described in S603 may be arbitrary. For example, the timing when the power of the reference station 10A is turned on, the timing when the user receives an instruction, the timing when the positioning terminal 20A first requests the provision of the position information of the reference station 10A, and the like can be considered. In order to distribute the load on the data distribution server 30A, the timing may be determined by the data distribution server 30A.
 以上、図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、開示の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described with reference to the drawings, it goes without saying that the present disclosure is not limited to such examples. It will be apparent to those skilled in the art that various changes or modifications can be made within the scope of the claims, and these naturally belong to the technical scope of the present disclosure. I understand. Further, each component in the above embodiment may be arbitrarily combined without departing from the spirit of the disclosure.
 上記各実施の形態では、本開示はハードウェアを用いて構成する例にとって説明したが、本開示はハードウェアとの連携においてソフトウェアでも実現することも可能である。 In the above embodiments, the present disclosure has been described with respect to an example in which the present disclosure is configured using hardware. However, the present disclosure can be realized by software in cooperation with hardware.
 また、上記各実施の形態における基準局10、10Aは、必ずしも位置が固定されているものではなくともよい。例えば、大型移動体に基準局10、10Aの機能を設け、当該大型移動体にて運ばれる小型移動体に測位端末20、20Aの機能を設けても良い。これにより、小型移動体を用いて行う作業現場に大型移動体を移動させ、作業時には大型移動体を基準局10、10Aとして機能させることで、小型移動体の座標を算出することができる。基準局10、10Aは、測位端末20、20Aの位置の算出に用いる情報の基準となるため、上記の例で小型移動体を用いた作業を行う場合には、大型移動体は停止していることが望ましい。ただし、大型移動体が移動する場合であっても、停止する度に基準局10、10Aとしての位置情報等を取得しなおせばよいため、必ずしも作業中に停止させ続ける必要はない。このような状況の具体的な例としては、大型移動体であるトラックなどにより、小型移動体であるドローン等を運搬し、運搬先にてドローン等による作業を行うことなどが考えられる。なお、上記の説明では、大型移動体/小型移動体という表現を用いて説明したが、本発明では、必ずしも基準局10、10Aが、測位端末20、20Aよりも大きな物体である必要はない。例えば、基準局10、10Aとしてユーザが携帯し作業の現場で設置できる小型の装置を用いてもよい。 The positions of the reference stations 10 and 10A in the above embodiments are not necessarily fixed. For example, the functions of the reference stations 10 and 10A may be provided in a large mobile body, and the functions of the positioning terminals 20 and 20A may be provided in a small mobile body carried by the large mobile body. Thus, the coordinates of the small mobile unit can be calculated by moving the large mobile unit to the work site using the small mobile unit and making the large mobile unit function as the reference stations 10 and 10A during the work. Since the reference stations 10 and 10A serve as a reference for information used for calculating the positions of the positioning terminals 20 and 20A, when performing work using a small mobile in the above example, the large mobile must be stopped. Is desirable. However, even when the large moving object moves, it is only necessary to acquire the position information and the like as the reference stations 10 and 10A each time the large moving object is stopped. As a specific example of such a situation, it is conceivable to transport a drone or the like as a small mobile body by a truck or the like as a large mobile body, and perform work using the drone or the like at the destination. In the above description, the description has been made using the expression of the large mobile unit / small mobile unit. However, in the present invention, the reference stations 10 and 10A do not necessarily need to be larger objects than the positioning terminals 20 and 20A. For example, a small device that can be carried by the user and installed at the work site may be used as the reference stations 10 and 10A.
 また、上記各実施の形態において、既設基準局とデータ配信サーバ30Aとの間の通信、データ配信サーバ30Aと基準局10Aとの間の通信、既設基準局と測位端末20Aとの間の通信は時分割で行ってもよいし、他の多重通信の方法を用いても良い。一対多通信における多重化の手法としては、周波数分割、符号分割など様々なものが知られている。ただし、既設基準局との通信は、各契約者からの求めに応じて必要なデータを返す既存のサービスと整合性を取るため、時分割で行うと有益である。 In each of the above embodiments, the communication between the existing reference station and the data distribution server 30A, the communication between the data distribution server 30A and the reference station 10A, and the communication between the existing reference station and the positioning terminal 20A are performed in a time-division manner. This may be performed, or another multiplex communication method may be used. As a multiplexing method in one-to-many communication, various methods such as frequency division and code division are known. However, it is useful to perform communication with the existing reference station in a time sharing manner in order to maintain consistency with the existing service that returns necessary data in response to a request from each subscriber.
 また、上記各実施の形態において、測位端末20、20Aが基準局10、10Aと関連のある端末であることが認証できた場合にのみ、サービスを提供するよう構成しても良い。これにより、不正な測位端末によるサービスの不正利用を防止することができる。実施の形態1では、基準局10と測位端末20の接続における既知のセキュリティ(Wi-Fi(登録商標)との接続時の認証など)で認証するものとしてもよい。また、実施の形態2では、測位端末20Aと既設基準局との通信を行う際に、当該測位端末20Aが、関連する基準局10Aを示す情報(例えば、基準局10AのID)と、その正当性を認証する情報(例えば、パスワード)などを送信することによって認証することなどが考えられる。 In addition, in each of the above-described embodiments, the service may be provided only when the positioning terminals 20, 20A can be authenticated as the terminals related to the reference stations 10, 10A. This can prevent unauthorized use of the service by an unauthorized positioning terminal. In the first embodiment, authentication may be performed using known security (such as authentication when connecting to Wi-Fi (registered trademark)) in the connection between the reference station 10 and the positioning terminal 20. Further, in the second embodiment, when performing communication between the positioning terminal 20A and the existing reference station, the positioning terminal 20A authenticates information indicating the related reference station 10A (for example, the ID of the reference station 10A) and its validity. For example, authentication may be performed by transmitting information (eg, a password) to be authenticated.
 また、上記各実施の形態では、既存のサービスにおける基準局を「既設基準局」と呼び、基準局10、10Aと区別していたが、本発明では、技術的な意味では区別する必要はない。すなわち、既存のサービス業者が上記各実施の形態の手法を用いて「既設基準局」のサービスを拡張したり、基準局10、10Aに既設基準局と同様の機能を追加し、他の基準局10、10Aに対する「既設基準局」であるものと見做して実施の形態1または2のシステムを構築したりしてもよい。 In each of the above embodiments, the reference station in the existing service is referred to as “existing reference station” and is distinguished from the reference stations 10 and 10A. However, in the present invention, it is not necessary to distinguish in the technical sense. That is, the existing service provider can extend the service of the “existing reference station” by using the method of each of the above embodiments, add the same function as the existing reference station to the reference stations 10 and 10A, and provide services to the other reference stations 10 and 10A. The system according to the first or second embodiment may be constructed by regarding it as an “existing reference station”.
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。集積回路は、上記実施の形態の説明に用いた各機能ブロックを制御し、入力と出力を備えてもよい。これらは個別に1チップ化されてもよいし、各機能ブロックの一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. The integrated circuit may control each functional block used in the description of the above embodiments, and may have an input and an output. These may be individually formed into one chip, or may be formed into one chip so as to include a part or all of each functional block. The name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法にはLSIに限らず、専用回路または汎用プロセッサを用いて実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、又は、LSI内部の回路セルの接続、設定が再構成可能なリコンフィグラブル・プロセッサーを利用してもよい。 The technique of circuit integration is not limited to an LSI, and may be realized using a dedicated circuit or a general-purpose processor. After the LSI is manufactured, a programmable FPGA (Field Programmable Gate Array) or a reconfigurable processor in which connection and setting of circuit cells inside the LSI can be reconfigured may be used.
 更には、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、別技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてあり得る。 (4) Further, if a technology for forming an integrated circuit that replaces the LSI appears due to the progress of the semiconductor technology or another technology derived therefrom, the function blocks may be naturally integrated using another technology. Application of biotechnology and the like are possible.
 なお、本開示は、無線通信装置、または制御装置において実行される制御方法として表現することが可能である。また、本開示は、かかる制御方法をコンピュータにより動作させるためのプログラムとして表現することも可能である。更に、本開示は、かかるプログラムをコンピュータによる読み取りが可能な状態で記録した記録媒体として表現することも可能である。すなわち、本開示は、装置、方法、プログラム、記録媒体のうち、いずれのカテゴリーにおいても表現可能である。 Note that the present disclosure can be expressed as a control method executed in a wireless communication device or a control device. In addition, the present disclosure can be expressed as a program for causing a computer to execute the control method. Further, the present disclosure can be expressed as a recording medium on which such a program is recorded so as to be readable by a computer. That is, the present disclosure can be expressed in any of the categories of the device, the method, the program, and the recording medium.
 また、本開示は、部材の種類、配置、個数等は前述の実施の形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更することができる。 Further, the present disclosure does not limit the type, arrangement, number, and the like of the members to the above-described embodiment, and deviates from the gist of the invention, for example, by appropriately replacing the components with those having the same operation and effect. It can be changed appropriately within a range not to be performed.
 2018年6月28日出願の特願2018-122998の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of Japanese Patent Application No. 2018-122998 filed on Jun. 28, 2018, including the specification, drawings and abstract, is incorporated herein by reference in its entirety.
 本開示は、衛星からの信号を利用して干渉測位を行う場合に好適である。 The present disclosure is suitable for performing interference positioning using a signal from a satellite.
 1、1A データ配信システム
 10、10A 基準局
 20、20A 測位端末
 30、30A データ配信サーバ
 101、201、301 プロセッサ
 102、202、302 記憶部
 103、203、303 入力部
 104、204、304 出力部
 105 第1通信部
 106 第2通信部
 107、206 受信部
 110、210、310 バス
 205、305 通信部
1, 1A data distribution system 10, 10A reference station 20, 20A positioning terminal 30, 30A data distribution server 101, 201, 301 processor 102, 202, 302 storage unit 103, 203, 303 input unit 104, 204, 304 output unit 105 1 communication unit 106 second communication unit 107, 206 receiving unit 110, 210, 310 bus 205, 305 communication unit

Claims (15)

  1.  位置が未知である第1基準局および位置が既知である第2基準局のそれぞれと通信を行う通信部と、
     演算処理を行うプロセッサと、
     を具備し、
     前記通信部は、
     前記第1基準局から、前記第1基準局の測位データを受信し、
     前記第2基準局から、前記第2基準局の測位データおよび前記第2基準局の位置情報を受信し、
     前記プロセッサは、
     前記第1基準局の測位データ、前記第2基準局の測位データおよび前記第2基準局の位置情報を用いて測位演算を行うことにより、前記第1基準局の位置を算出する、
     データ配信サーバ。
    A communication unit that communicates with each of the first reference station whose position is unknown and the second reference station whose position is known;
    A processor for performing arithmetic processing;
    With
    The communication unit,
    Receiving positioning data of the first reference station from the first reference station;
    Receiving, from the second reference station, positioning data of the second reference station and position information of the second reference station;
    The processor comprises:
    Calculating the position of the first reference station by performing a positioning operation using the positioning data of the first reference station, the positioning data of the second reference station, and the position information of the second reference station;
    Data distribution server.
  2.  前記第1基準局の測位データは、前記第1基準局において、複数の衛星から送信される測位信号に基づいて算出され、
     前記第2基準局の測位データは、前記第2基準局において、複数の衛星から送信される測位信号に基づいて算出される、
     請求項1に記載のデータ配信サーバ。
    The positioning data of the first reference station is calculated by the first reference station based on positioning signals transmitted from a plurality of satellites,
    The positioning data of the second reference station is calculated in the second reference station based on positioning signals transmitted from a plurality of satellites.
    The data distribution server according to claim 1.
  3.  前記通信部は、
     前記第1基準局に前記第1基準局の位置情報を送信する、
     請求項1に記載のデータ配信サーバ。
    The communication unit,
    Transmitting the position information of the first reference station to the first reference station;
    The data distribution server according to claim 1.
  4.  前記通信部は、
     複数の衛星から送信される測位信号に基づいて測位データを算出する測位端末に、前記第1基準局の測位データおよび前記第1基準局の位置情報を送信する、
     請求項1に記載のデータ配信サーバ。
    The communication unit,
    Transmitting the positioning data of the first reference station and the position information of the first reference station to a positioning terminal that calculates positioning data based on positioning signals transmitted from a plurality of satellites;
    The data distribution server according to claim 1.
  5.  前記通信部は、
     前記第1基準局が複数設置されている場合、前記第1基準局のそれぞれから前記第1基準局の測位データを受信し、
     前記プロセッサは、
     前記第1基準局のそれぞれの位置を算出する、
     請求項1に記載のデータ配信サーバ。
    The communication unit,
    When a plurality of the first reference stations are installed, receiving the positioning data of the first reference station from each of the first reference stations,
    The processor comprises:
    Calculating the position of each of the first reference stations;
    The data distribution server according to claim 1.
  6.  前記通信部は、
     前記第2基準局の測位データを、前記第1基準局のそれぞれから前記第1基準局の測位データを受信した時点に対応する時点で受信し、
     前記第1基準局それぞれの位置を、前記第1基準局それぞれの測位データを受信した時点に対応する第2基準局の測位データを用いて算出する、
     請求項5に記載のデータ配信サーバ。
    The communication unit,
    Receiving the positioning data of the second reference station at a time corresponding to the time of receiving the positioning data of the first reference station from each of the first reference stations;
    Calculating the position of each of the first reference stations using the positioning data of the second reference station corresponding to the time when the positioning data of each of the first reference stations is received;
    The data distribution server according to claim 5.
  7.  複数の衛星から送信される測位信号に基づいて測位データを算出する第1基準局と、
     前記第1基準局の測位データ、位置が既知である第2基準局の測位データおよび前記第2基準局の位置情報を用いて測位演算を行うことにより、前記第1基準局の位置を算出するデータ配信サーバと、
     複数の衛星から送信される測位信号に基づいて測位データを算出し、算出した測位データ、前記第1基準局の測位データおよび前記第1基準局の位置情報を用いて測位演算を行うことにより、位置を算出する測位端末と、
     を具備するデータ配信システム。
    A first reference station that calculates positioning data based on positioning signals transmitted from a plurality of satellites;
    A data distribution server that calculates the position of the first reference station by performing positioning calculation using the positioning data of the first reference station, the positioning data of the second reference station whose position is known, and the position information of the second reference station; ,
    By calculating positioning data based on positioning signals transmitted from a plurality of satellites and performing a positioning operation using the calculated positioning data, the positioning data of the first reference station, and the position information of the first reference station, the position is calculated. A positioning terminal to be calculated;
    A data distribution system comprising:
  8.  前記第2基準局の測位データは、前記第2基準局において、複数の衛星から送信される測位信号に基づいて算出される、
     請求項7に記載のデータ配信システム。
    The positioning data of the second reference station is calculated in the second reference station based on positioning signals transmitted from a plurality of satellites.
    The data distribution system according to claim 7.
  9.  前記データ配信サーバは、
     前記第1基準局に前記第1基準局の位置情報を送信し、
     前記第1基準局は、
     前記測位端末に、前記第1基準局の測位データおよび前記第1基準局の位置情報を送信する、
     請求項7に記載のデータ配信システム。
    The data distribution server,
    Transmitting location information of the first reference station to the first reference station;
    The first reference station includes:
    Transmitting, to the positioning terminal, positioning data of the first reference station and position information of the first reference station;
    The data distribution system according to claim 7.
  10.  前記データ配信サーバは、
     前記測位端末に、前記第1基準局の測位データおよび前記第1基準局の位置情報を送信する、
     請求項7に記載のデータ配信システム。
    The data distribution server,
    Transmitting, to the positioning terminal, positioning data of the first reference station and position information of the first reference station;
    The data distribution system according to claim 7.
  11.  前記データ配信サーバは、
     前記第1基準局が複数設置されている場合、前記第1基準局のそれぞれから前記第1基準局の測位データを受信し、前記第1基準局のそれぞれの位置を算出する、
     請求項7に記載のデータ配信システム。
    The data distribution server,
    When a plurality of the first reference stations are installed, the positioning data of the first reference station is received from each of the first reference stations, and the position of each of the first reference stations is calculated.
    The data distribution system according to claim 7.
  12.  前記データ配信サーバは、
     前記第2基準局の測位データを、前記第1基準局のそれぞれから前記第1基準局の測位データを受信した時点に対応する時点で受信し、
     前記第1基準局それぞれの位置を、前記第1基準局それぞれの測位データを受信した時点に対応する第2基準局の測位データを用いて算出する、
     請求項11に記載のデータ配信システム。
    The data distribution server,
    Receiving the positioning data of the second reference station at a time corresponding to the time of receiving the positioning data of the first reference station from each of the first reference stations;
    Calculating the position of each of the first reference stations using the positioning data of the second reference station corresponding to the time when the positioning data of each of the first reference stations is received;
    The data distribution system according to claim 11.
  13.  前記データ配信システムは、前記第1基準局と通信する複数の測位端末を含み、
     前記第1基準局は、前記複数の測位端末それぞれに対して、前記第1基準局の測位データおよび前記第1基準局の位置情報を送信する、
     請求項7に記載のデータ配信システム。
    The data distribution system includes a plurality of positioning terminals communicating with the first reference station,
    The first reference station transmits, to each of the plurality of positioning terminals, positioning data of the first reference station and position information of the first reference station,
    The data distribution system according to claim 7.
  14.  前記データ配信システムは、前記第1基準局と対応付けられた複数の測位端末を含み、
     前記データ配信サーバは、前記複数の測位端末それぞれに対して、前記測位端末が対応付けられている第1基準局の測位データ、および、前記測位端末が対応付けられている第1基準局の位置情報を送信する、
     請求項7に記載のデータ配信システム。
    The data distribution system includes a plurality of positioning terminals associated with the first reference station,
    The data distribution server, for each of the plurality of positioning terminals, the positioning data of the first reference station associated with the positioning terminal, and the location information of the first reference station associated with the positioning terminal Send,
    The data distribution system according to claim 7.
  15.  位置が未知である第1基準局から、前記第1基準局の測位データを受信し、
     位置が既知である第2基準局から、前記第2基準局の測位データおよび前記第2基準局の位置情報を受信し、
     前記第1基準局の測位データ、前記第2基準局の測位データおよび前記第2基準局の位置情報を用いて測位演算を行うことにより、前記第1基準局の位置を算出する、
     データ配信方法。
    Receiving, from a first reference station whose position is unknown, positioning data of the first reference station,
    From a second reference station whose position is known, receiving positioning data of the second reference station and position information of the second reference station,
    Calculating the position of the first reference station by performing a positioning operation using the positioning data of the first reference station, the positioning data of the second reference station, and the position information of the second reference station;
    Data delivery method.
PCT/JP2019/025546 2018-06-28 2019-06-27 Data distribution server and data distribution system WO2020004530A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018122998A JP2020003341A (en) 2018-06-28 2018-06-28 Data delivery server and data delivery system
JP2018-122998 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020004530A1 true WO2020004530A1 (en) 2020-01-02

Family

ID=68986602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025546 WO2020004530A1 (en) 2018-06-28 2019-06-27 Data distribution server and data distribution system

Country Status (2)

Country Link
JP (1) JP2020003341A (en)
WO (1) WO2020004530A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146112A (en) * 1994-11-18 1996-06-07 Furuno Electric Co Ltd Locating system
US20120029810A1 (en) * 2010-07-30 2012-02-02 Dai Liwen L System and Method for Moving-Base RTK Measurements
JP2015075380A (en) * 2013-10-08 2015-04-20 鹿島建設株式会社 Real-time kinematic system and position measurement method
JP2017219412A (en) * 2016-06-07 2017-12-14 三菱電機株式会社 Positioning server, mobile body, positioning system, positioning method, and positioning program
JP2018066577A (en) * 2016-10-17 2018-04-26 一般財団法人 衛星測位利用推進センター Positioning processing system, method, computer program, positioning processing device and user terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146112A (en) * 1994-11-18 1996-06-07 Furuno Electric Co Ltd Locating system
US20120029810A1 (en) * 2010-07-30 2012-02-02 Dai Liwen L System and Method for Moving-Base RTK Measurements
JP2015075380A (en) * 2013-10-08 2015-04-20 鹿島建設株式会社 Real-time kinematic system and position measurement method
JP2017219412A (en) * 2016-06-07 2017-12-14 三菱電機株式会社 Positioning server, mobile body, positioning system, positioning method, and positioning program
JP2018066577A (en) * 2016-10-17 2018-04-26 一般財団法人 衛星測位利用推進センター Positioning processing system, method, computer program, positioning processing device and user terminal

Also Published As

Publication number Publication date
JP2020003341A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
Tu et al. Modeling and performance analysis of precise time transfer based on BDS triple-frequency un-combined observations
CN110361692B (en) Fusion positioning method and device
CN101981465B (en) Support the use of virtual reference station
JP6625237B2 (en) Positioning reinforcement device, positioning reinforcement system and positioning reinforcement method
CN101636665B (en) Assistance data provision
US10473792B2 (en) Positioning systems
WO2020084888A1 (en) Server, satellite positioning system, and satellite positioning method
CN110050201A (en) Method and system for shared convergence data
KR102166976B1 (en) Unlimited network-realtime kinematic method and virtual reference station using thereof
CN102016618A (en) Providing positioning assistance data
US20190113625A1 (en) Secure global navigation satellite systems
Diessongo et al. Precise position determination using a Galileo E5 single-frequency receiver
JP7220399B2 (en) Server, satellite positioning system, and satellite positioning method
JP7153842B2 (en) Positioning method and positioning terminal
EP3809163A1 (en) Positioning method and positioning terminal
WO2020004530A1 (en) Data distribution server and data distribution system
WO2018225421A1 (en) Positioning method and positioning terminal
US20230152472A1 (en) Precise point positioning (ppp)-based real time kinematic (rtk) correction
WO2018110026A1 (en) Positioning method, distribution method, positioning terminal, and positioning system
JP6920596B2 (en) IFB correction value estimation method, device and server
JP2022013481A (en) Positioning system, communication device, and positioning method
WO2020004538A1 (en) Structure monitoring server and structure monitoring system
WO2018110025A1 (en) Positioning method and positioning terminal
CN118226467A (en) Time synchronization method, device, electronic equipment, medium and product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826496

Country of ref document: EP

Kind code of ref document: A1