WO2020004190A1 - Thermal spraying device - Google Patents

Thermal spraying device Download PDF

Info

Publication number
WO2020004190A1
WO2020004190A1 PCT/JP2019/024348 JP2019024348W WO2020004190A1 WO 2020004190 A1 WO2020004190 A1 WO 2020004190A1 JP 2019024348 W JP2019024348 W JP 2019024348W WO 2020004190 A1 WO2020004190 A1 WO 2020004190A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
thermal spray
flow path
section
Prior art date
Application number
PCT/JP2019/024348
Other languages
French (fr)
Japanese (ja)
Inventor
克治 門沢
杉原 和佳
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2020004190A1 publication Critical patent/WO2020004190A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3423Connecting means, e.g. electrical connecting means or fluid connections
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Definitions

  • the following disclosure relates to a thermal spraying device.
  • the thermal spray device transports the thermal spray material and the working gas to the thermal spray gun, and applies electric power to the thermal spray gun to generate plasma.
  • the thermal spray material is melted by the heat of the generated plasma, and is sprayed onto an object together with the working gas that has been turned into plasma to form a coating.
  • the thermal spraying is a surface modification technique that generates plasma, melts the thermal spray material using the heat of the plasma, and forms a thermal spray coating on the surface of the target using the molten thermal spray material.
  • a plasma spraying device has been proposed wherein the means for axially feeding powdered or gaseous material into the plasma torch has a supply tube for feeding powdered or gaseous sprayed material into the plasma channel inlet nozzle. Have been.
  • the supply tube is arranged coaxially with the central axis of the thermal spraying device so that the thermal spray material passes through the hottest core of the plasma torch (Patent Document 1).
  • the powder of the spray material is supplied to a discharge space formed between the first electrode and the second electrode so as to be slidable along the center axis of the plasma.
  • a plasma torch provided with a spraying material introduction pipe to be heated (Patent Document 2).
  • the present disclosure provides a technique for improving the thermal spray performance of a thermal spray apparatus in view of the above-described problems.
  • the thermal spraying device includes a cathode, an anode, and an inner tube.
  • the cathode is substantially cylindrical, and a flow path through which the thermal spray material passes is formed along the axis.
  • the anode is arranged to face the downstream end of the cathode, and generates a plasma between the anode and the cathode by arc discharge.
  • the inner tube is arranged so that the axes of the cathode and the anode substantially coincide with each other, and forms at least two flow paths in the cathode.
  • At least two flow paths formed by the inner tube include a first flow passage in the inner tube that allows the thermal spray material to pass along the axis of the cathode.
  • at least two flow paths formed by the inner pipe are provided outside the inner pipe, radially outside the first flow path, at least partially surrounded by the cathode, and provided with a second flow path through which the insulating gas passes. Including roads.
  • FIG. 1 is a figure showing an example of the composition of the thermal spraying device concerning an embodiment.
  • FIG. 2 is a diagram illustrating an example of a configuration of the thermal spray gun according to the embodiment.
  • FIG. 3A is a perspective view illustrating an example of a configuration of a cathode according to the embodiment.
  • FIG. 3B is a cross-sectional view along X1-X1 of the cathode shown in FIG. 3A.
  • FIG. 3C is a cross-sectional view illustrating another example of the configuration of the cathode according to the embodiment.
  • FIG. 4A is a perspective view illustrating an example of the configuration of the anode according to the embodiment.
  • FIG. 4B is an X2-X2 cross-sectional view of the anode shown in FIG. 4A.
  • FIG. 5 is a diagram for describing a unit structure of the thermal spray gun according to the embodiment.
  • FIG. 6A is a schematic cross-sectional view illustrating a plurality of flow paths formed in the thermal spray gun according to the embodiment.
  • FIG. 6B is a schematic diagram illustrating a plurality of flow paths formed in the thermal spray gun according to the embodiment.
  • FIG. 7A is a diagram illustrating an example of a flow velocity distribution in the thermal spray gun according to the embodiment.
  • FIG. 7B is a diagram illustrating an example of a flow velocity distribution in a thermal spray gun having no double tube structure according to the embodiment.
  • thermal spray material adheres to the inside of the thermal spraying device as one of the causes for lowering the performance of the thermal spraying device.
  • the temperature of the part where the arc current is generated between the anode and the cathode during plasma spraying easily exceeds 1000 ° C.
  • the powder of the thermal spray material adheres to the cathode inner wall heated to a high temperature by the arc discharge, it may be melted and fixed on the cathode inner wall.
  • sticking and deposition of the spraying material becomes remarkable, and there is a possibility that a flow path formed at the axis of the cylindrical cathode and through which the spraying material passes is blocked.
  • the adhesion of the thermal spray material frequently occurs at the tapered portion where the inside diameter of the cathode is reduced. From this, it is considered that the more the wall portion with which the thermal spray material collides when the thermal spray material passes through the inside of the cathode, the more the thermal spray material tends to adhere.
  • the present inventors placed the sprayed powder on the base material whose temperature was controlled at room temperature, 205 ° C., and 405 ° C., respectively, and then dropped the sprayed powder that had not adhered by standing and hitting the base material. Thereafter, an experiment was conducted to examine the degree of adhesion of the thermal spray powder adhered to the substrate. As a result, it was found that when the temperature of the base material was room temperature, the adhered sprayed powder could be removed by a treatment such as physically rubbing. On the other hand, when the temperature of the base material was 205 ° C. or 405 ° C., it was not possible to completely remove the sprayed powder adhered by a treatment such as physical rubbing. From this, the present inventors have found that it is effective to control the temperature of the member through which the thermal spray material passes as low as possible in order to prevent the thermal spray material from adhering.
  • lithium has high reactivity, it is distributed as a powder material in a state of being coated with lithium carbonate or the like. For this reason, when lithium is used as a thermal spray material, lithium carbonate is melted and the inner lithium is melted to form a thermal spray coating.
  • the melting point of lithium is about 180 ° C, whereas the melting point of lithium carbonate is over 700 ° C.
  • FIG. 1 is a diagram illustrating an example of a configuration of a thermal spraying apparatus 1000 according to the embodiment.
  • the thermal spraying apparatus 1000 includes a thermal spray gun 1, a thermal spray material supply unit 2, a heat insulating gas supply unit 3, and a carrier gas supply unit 4.
  • Thermal spraying apparatus 1000 also includes power supply 5 and cooling unit 6.
  • the thermal spray gun 1 is an axial supply type thermal spraying device that supplies thermal spray material from an axial center.
  • a spray material mixed with a carrier gas (working gas) such as an argon gas passes through a flow path provided along the axis of the spray gun 1.
  • the thermal spray gun 1 melts the thermal spray material by the heat of the plasma generated on the downstream side of the flow path, and sprays a plasma jet of the molten thermal spray material toward the target to form a thermal spray coating on the target. . Details of the configuration of the thermal spray gun 1 will be described later. In the following description of the embodiments, “upstream” and “downstream” indicate upstream and downstream of the flow of the thermal spray material.
  • upstream refers to the source of the thermal spray material supplied to the thermal spray gun 1, that is, the direction of the thermal spray material supply unit 2.
  • downstream refers to the supply destination of the thermal spray material supplied to the thermal spray gun 1, that is, the direction in which the thermal spray target is arranged.
  • the thermal spray material is a powder thermal spray material.
  • the type of the thermal spray material is not particularly limited as long as it is a powder.
  • the thermal spray material supply unit 2 supplies the thermal spray material to the thermal spray gun 1.
  • the thermal spray material supply unit 2 transports the thermal spray material to the thermal spray gun 1 using argon gas or the like as a carrier gas.
  • the specific structure of the thermal spray material supply unit 2 is not particularly limited.
  • the thermal spray material supply unit 2 is an example of a first supply unit.
  • the heat-insulating gas supply unit 3 supplies a heat-insulating gas to the spray gun 1.
  • the heat insulating gas is a gas for suppressing a temperature rise of the members of the thermal spray gun 1.
  • As the heat insulating gas for example, an argon gas can be used.
  • the specific structure of the heat-insulating gas supply unit 3 is not particularly limited.
  • the insulating gas supply unit 3 is an example of a second supply unit.
  • the carrier gas supply unit 4 supplies a carrier gas for sending a spray jet of the melted spray material from the spray gun 1 toward the target.
  • a carrier gas for example, an argon gas can be used.
  • the carrier gas supply unit 4 is an example of a third supply unit. Note that the same gas may be used as the insulating gas and the carrier gas.
  • the heat insulating gas, the thermal spray material (including the carrier gas), the flow rate of the carrier gas, and the like can be independently controlled.
  • the power supply 5 supplies electric power for causing arc discharge between the electrodes of the thermal spray gun 1.
  • the cooling unit 6 is a functional unit for cooling each part of the thermal spray gun 1 heated by the thermal spraying process.
  • the cooling unit 6 includes, for example, a storage unit that stores the cooling medium, a pump that sends out the cooling medium, and a pipe through which the cooling medium passes. A part of the conduit through which the cooling medium passes is disposed in the spray gun 1.
  • the cooling medium is sent out to each part of the thermal spray gun 1 via a predetermined pipe, heated in the thermal spray gun 1, and then returned to the storage unit via a predetermined pipe.
  • the temperature of the cooling medium is controlled by a temperature adjusting unit (not shown).
  • the thermal spraying apparatus 1000 also includes a chamber 7, a mounting table 8, a stage 9, a driving unit 10, a pump 11, an air conditioner 12, a control unit 13, and a storage unit 14.
  • the chamber 7 accommodates an object to be sprayed.
  • the chamber 7 has a structure capable of maintaining the internal space at a vacuum.
  • An injection port of the spray gun 1 protrudes into the chamber 7 from an upper wall of the chamber 7 so that a spray jet can be sprayed from the spray gun 1 onto an object placed in the chamber 7.
  • the mounting table 8 is a table on which an object to be sprayed is mounted on the upper surface.
  • the target object W is mounted on the mounting table 8.
  • the mounting table 8 is positioned so that an object can be arranged at a position facing the injection port of the spray gun 1.
  • the stage 9 is a structure disposed below the mounting table 8.
  • the stage 9 holds the mounting table 8 at a predetermined position.
  • the drive unit 10 is connected to the stage 9 to enable the two-dimensional movement of the mounting table 8 in a horizontal plane (perpendicular to the axis of the spray gun 1).
  • the structure may be such that the mounting table 8 can be moved up and down and rotated manually.
  • the detailed structures of the mounting table 8, the stage 9, and the driving unit 10 are not particularly limited as long as the structure has a structure that can place the object to be sprayed at a desired position.
  • the pump 11 is connected to the chamber 7 and evacuates the chamber 7.
  • the pump 11 is, for example, a vacuum pump.
  • the air conditioner 12 is a device for maintaining the temperature and humidity in the room where the thermal spraying device 1000 is disposed at a predetermined value. Some thermal spray materials react to temperature and humidity, such as those that ignite when contacted with water. For this reason, the temperature and humidity in the room where the thermal spraying device 1000 is disposed are controlled by the air conditioner 12 according to the characteristics of the thermal spraying material to be used.
  • the control unit 13 controls the operation of each unit of the thermal spraying apparatus 1000.
  • the storage unit 14 stores a program for controlling the operation of each unit of the thermal spraying apparatus 1000.
  • the control unit 13 and the storage unit 14 are, for example, computers having a CPU (Central Processing Unit) and a memory.
  • the storage unit 14 stores programs for controlling various processes executed in the thermal spraying apparatus 1000.
  • the control unit 13 controls the operation of the thermal spraying apparatus 1000 by reading and executing the program stored in the storage unit 14.
  • Such a program may have been recorded on a computer-readable storage medium, and may be installed in the storage unit 14 from the storage medium.
  • Examples of the storage medium readable by the computer include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magneto-optical disk (MO), and a memory card.
  • the thermal spraying apparatus 1000 configured as described above, first, an object to be thermal sprayed is placed on the mounting table 8 in the chamber 7. Then, under the control of the control unit 13 based on the program stored in the storage unit 14, the thermal spray material mixed with the carrier gas is supplied to the thermal spray gun 1 from the thermal spray material supply unit 2. Insulating gas is supplied from the insulating gas supply unit 3 to the spray gun 1. Further, a carrier gas is supplied from the carrier gas supply unit 4 to the spray gun 1. On the other hand, the control unit 13 controls the power supply 5 to generate an arc discharge in the thermal spray gun 1 to generate plasma and to melt the supplied thermal spray material.
  • the molten thermal spray material together with the carrier gas supplied from the carrier gas supply unit 4, becomes a thermal spray jet and collides with an object to form a thermal spray coating.
  • the temperature and humidity are controlled by the air conditioner 12 in the room where the thermal spraying device 1000 is disposed.
  • the inside of the chamber 7 is maintained at an atmospheric pressure or a vacuum atmosphere by the pump 11.
  • FIG. 2 is a diagram illustrating an example of a configuration of the thermal spray gun 1 according to the embodiment.
  • the thermal spray gun 1 includes a space S formed along the axis of the thermal spray gun 1, a cathode C, and an anode A arranged to face the cathode C.
  • the space S is a substantially cylindrical space. At least two flow paths described later are formed in the space S.
  • the cathode C is arranged to surround the downstream portion of the space S, and the thermal spray material passes along the axis of the cathode C.
  • the anode A is arranged to face the downstream end of the cathode C, and generates plasma with the cathode C by arc discharge.
  • the cathode C and the anode A are physically and electrically separated electrodes forming a pair.
  • An arc discharge is generated between the cathode C and the anode A in a circumferential shape.
  • a flow path is formed around the cathode C and the anode A, through which a cooling medium CM for absorbing heat generated by the arc discharge circulates.
  • the cooling medium CM is, for example, water.
  • the flow path in which the cooling medium CM circulates forms a part of the cooling unit 6 shown in FIG.
  • FIG. 3A is a perspective view showing an example of the configuration of the cathode C according to the embodiment.
  • FIG. 3B is a cross-sectional view taken along the line AA of the cathode C shown in FIG. 3A.
  • the cathode C has a cylindrical portion C1 having a cylindrical shape, and a projection portion C2 provided at an upstream end of the cylindrical portion C1 and protruding radially outward of the cylindrical portion C1.
  • the cylindrical portion C1 In a state where the cathode C is attached to the thermal spray gun 1, the cylindrical portion C1 is disposed on the downstream side, and the projection C2 is disposed on the upstream side.
  • the cylindrical portion C1 has a tapered shape tapering toward the downstream end.
  • the inner diameter D1 at the upstream end of the cylindrical portion C1 is larger than the inner diameter D2 at the downstream end of the cylindrical portion C1 (see FIG. 3B).
  • the shape of the cylindrical portion C1 of the cathode C is not particularly limited, and may be a shape having no taper.
  • the inner diameter of the cylindrical portion C1 of the cathode C may be formed in a straight shape.
  • FIG. 3C is a cross-sectional view illustrating another example of the configuration of the cathode C according to the embodiment.
  • the inner diameter D1 of the upstream end of the cylindrical portion C1 and the inner diameter D2 of the downstream end substantially match.
  • the axis of the cathode C When mounted on the thermal spray gun 1, the axis of the cathode C substantially coincides with the axial center of the thermal spray gun 1.
  • the protrusion C2 is a locking portion, for example, a flange that locks the cathode C at a predetermined position when the cathode C is attached to the thermal spray gun 1.
  • the outer diameter D3 of the projection C2 is different from the outer diameter of the cylindrical portion C1 in order to increase the efficiency of heat transfer to other members of the spray gun 1 that comes into contact with the cathode C when the cathode C is attached to the spray gun 1. It is preferable to make the difference as large as possible.
  • FIG. 4A is a perspective view showing an example of the configuration of the anode A according to the embodiment.
  • FIG. 4B is a cross-sectional view taken along the line BB of the anode A shown in FIG. 4A.
  • the anode A has a cylindrical portion A1 having a cylindrical shape, and a protrusion A2 provided at an upstream end of the cylindrical portion A1 and protruding radially outward of the cylindrical portion A1.
  • the cylindrical portion A1 is disposed on the downstream side
  • the protrusion A2 is disposed on the upstream side.
  • the protrusion A2 is a locking portion, for example, a flange that locks the anode A at a predetermined position when the anode A is attached to the thermal spray gun 1.
  • the specific configuration of the anode A is not particularly limited as long as the outer diameter of the protrusion A2 is larger than the outer diameter of the cylindrical portion A1.
  • the outer diameter of the projection A2 should be as large as possible from the outer diameter of the cylindrical part A1 in order to increase the efficiency of heat conduction to a member that comes into contact with the anode A when the anode A is attached to the thermal spray gun 1. Is preferred.
  • the thermal spray gun 1 has a transport pipe section 100, a cathode section 200, and an anode section 300 from the upstream side to the downstream side.
  • the transport pipe section 100, the cathode section 200, and the anode section 300 each constitute an independent unit, and have a structure that can be detached independently.
  • the transport pipe section 100 has an inner pipe 101, a main body section 102, a holding flange 103, and an adjusting screw 104.
  • the inner pipe 101 is a hollow pipe that forms two or more flow paths in the space S.
  • the axis of the inner tube 101 substantially coincides with the axes of the cathode C and the anode A.
  • the inner pipe 101 extends from the upstream end of the transport pipe section 100 toward the downstream end, and has a length reaching the downstream end of the cathode C along the axis of the cathode C arranged downstream of the transport pipe section 100. .
  • the upstream end of the inner pipe 101 is located on the upstream side of the upstream end of the transport pipe section 100, and is connected to a pipe for transporting the thermal spray material extending from the thermal spray material supply section 2 (not shown).
  • the internal space of the inner tube 101 forms a first flow path F1 (see FIG. 6) through which the thermal spray material passes along the axis of the cathode C.
  • the inner pipe 101 is fitted in a hollow cylindrical main body 102, and a second flow path F2 (FIG. 6) through which heat insulating gas flows between the inner wall of the main body 102, the inner wall of the cathode C, and the outer wall of the inner pipe 101. Ref) is formed.
  • the second flow path F2 is formed radially outward of the first flow path F1.
  • the inner tube 101 is arranged such that at least a part of the second flow path F2 is surrounded by the cathode C.
  • the outer diameter of the inner tube 101 is formed to be smaller at least in part than the inner diameters of the main body 102 and the cathode C.
  • the inner tube 101 has substantially the same inner diameter and outer diameter in the axial direction.
  • the inner pipe 101 may be formed in a tapered shape.
  • the inner pipe 101 is a hollow pipe formed of a high melting point material such as tungsten or zirconia.
  • the dimensions of the inner tube 101 are, for example, an outer diameter of ⁇ 4 mm (mm) and an inner diameter of ⁇ 3 mm.
  • the main body 102 has a flange 102a, a body detail 102b, a first cylindrical portion 102c, and a second cylindrical portion 102d from the upstream end to the downstream end of the main body 102.
  • the main body 102 is a substantially cylindrical member having a space S formed therein.
  • the flange 102a, the body detail 102b, the first cylindrical portion 102c, and the second cylindrical portion 102d are integrally formed.
  • the flange 102a is located at the upstream end of the main body 102 and has a larger outer diameter than the body detail 102b.
  • the flange 102a and the body detail 102b are configured as portions having different outer diameters, but the flange 102a and the body detail 102b may have the same outer diameter.
  • the first cylindrical portion 102c has an outer diameter larger than the body detail 102b. However, the first cylindrical portion 102c and the body detail 102b may have the same outer diameter.
  • a portion of the first cylindrical portion 102c is formed with a lateral hole 110 and a screw portion 111 that extend from the outside in the radial direction toward the axis and penetrate the first cylindrical portion 102c.
  • the horizontal hole 110 is a hole extending in the radial direction from the inner circumference of the first cylindrical portion 102c to a predetermined radial position of the first cylindrical portion 102c.
  • the screw portion 111 is a threaded hole that communicates with the lateral hole 110 and extends radially toward the outer periphery of the first cylindrical portion 102c.
  • the threaded end of the pipe connected to the heat-insulating gas supply unit 3 is screwed into the screw 111.
  • the thread portion 111 is configured to engage with, for example, a tube fitting.
  • a second cylindrical portion 102d having a smaller outer diameter than the first cylindrical portion 102c is formed downstream of the first cylindrical portion 102c.
  • the second cylindrical portion 102d is a sleeve extending downstream from the first cylindrical portion 102c.
  • a threaded surface is formed on the outer peripheral surface of the second cylindrical portion 102d over a predetermined length from the upstream end. The threaded surface is formed to have a dimension that is screwed with a threaded portion 201c of the cathode portion 200 described later.
  • the second cylindrical portion 102d has a lateral hole extending radially from the inner periphery to the outer periphery and penetrating the second cylindrical portion 102d.
  • the side hole is formed as a threaded hole and has a dimension that allows the adjustment screw 104 to be screwed.
  • a plurality of lateral holes are arranged at equal intervals over the outer circumferential direction of the second cylindrical portion 102d.
  • the lateral holes are formed at three places on the outer periphery of the second cylindrical portion 102d.
  • the number of side holes is not particularly limited.
  • the number of the horizontal holes may be four or more as long as the inner tube 101 inserted into the main body 102 can be fixed by the adjusting screw 104 screwed into the horizontal hole.
  • the position where the lateral hole is formed is not particularly limited as long as it is on the second cylindrical portion 102d.
  • the adjustment screw 104 fixes the inner tube 101 in the main body 102.
  • the adjusting screw 104 is, for example, a set screw.
  • the adjustment screw 104 can be formed of metal, SUS, or the like.
  • the adjustment screw 104 is an example of a second locking portion.
  • the inner diameter of the main body 102 has a size that fits with the inner pipe 101 on the upstream side.
  • the inner diameter of the main body 102 has a size that fits with the inner pipe 101 up to the upstream side of the flange 102a, the body detail 102b, and the first cylindrical portion 102c.
  • the inner diameter of the main body 102 is larger than the outer diameter of the inner tube 101 from the downstream side, that is, from the middle of the first cylindrical portion 102c to the downstream end of the second cylindrical portion 102d.
  • the main body 102 is formed so that the inner diameter is about 1 mm to 2 mm larger than the outer diameter of the inner tube 101 on the downstream side.
  • the position where the inner diameter of the main body 102 changes is not particularly limited as long as the second flow path F2 and the lateral hole 110 can be configured to communicate with each other.
  • the inner diameter of the downstream side of the main body 102 is substantially the same as the inner diameter of the cathode C.
  • the holding flange 103 is formed to have substantially the same outer diameter and inner diameter as the flange 102a.
  • the holding flange 103 is fixed to the flange 102 a at the upstream end of the main body 102 with the inner pipe 101 inserted into the main body 102.
  • the holding flange 103 is, for example, screwed to the flange 102a in the axial direction.
  • the holding flange 103 and a fixing means such as a screw for fixing the holding flange 103 to the flange 102a are examples of a first locking portion.
  • the inner tube 101 When attaching the inner tube 101 to the main body 102, first, attach the O-ring 107 near the upstream end of the inner tube 101. Then, the inner tube 101 is inserted from the upstream end of the main body 102, and the O-ring 107 is adjusted so as to be located at the upstream end of the main body 102. Then, the upstream end of the inner pipe 101 is inserted into a hole formed in the center of the holding flange 103. Thereafter, the holding flange 103 is fixed to the main body 102 by pressing the downstream end face of the holding flange 103 against the main body 102 and crushing the O-ring 107 while screwing the holding flange 103 from the upstream end side. Thereby, the inner tube 101 is fixed to the main body 102. Further, the O-ring 107 functions as a vacuum seal that seals a gap between the inner tube 101 and the main body 102.
  • the inner tube 101 is further fixed to the main body 102 at the second cylindrical portion 102d of the main body 102.
  • the inner diameter of the main body 102 is configured to be larger than the outer diameter of the inner tube 101 on the downstream side. Therefore, when the inner pipe 101 is inserted into the main body 102, the inner pipe 101 is in a cantilever state with the holding flange 103 as a fulcrum. For this reason, in the downstream portion of the inner pipe 101, the interval between the inner peripheral surface of the main body 102 and the outer peripheral surface of the inner pipe 101 is not constant over the circumference.
  • the distance between the inner peripheral surface of the main body 102 and the outer peripheral surface of the inner tube 101 is adjusted to be uniform in the circumferential direction. .
  • the cathode section 200 has a main body section 201, a cover 202, and a spacer 203.
  • the main body 201 is a hollow cylindrical member.
  • the second cylindrical portion 102d of the transport pipe portion 100 is accommodated in a cylindrical space formed along the axis of the main body 201.
  • the O-ring 204 is interposed between the main body portion 201 and the second cylindrical portion 102d so that a vacuum sealing function is exhibited.
  • On the inner peripheral surface of the main body part 201 a screw part 201a to be screwed with the threaded surface of the second cylindrical part 102d of the transport pipe part 100 is formed.
  • the screw part 201a is formed on the inner peripheral upstream side of the main body part 201. Further, the inner peripheral downstream side of the main body 201 has a size fitting with the outer diameter of the second cylindrical portion 102d.
  • a protruding portion 201b protruding radially inward is formed at the inner peripheral downstream end of the main body 201.
  • the protrusion 201b is configured such that the inner diameter is fitted to the outer diameter of the cylindrical portion C1 of the cathode C.
  • the inner diameter of the main body 201 is substantially the same as the outer diameter of the protrusion C2 of the cathode C.
  • a space 206 through which the cooling medium CM flows is also formed in the main body 201.
  • the space 206 communicates with at least two pipes 207, and the cooling medium CM circulates through the pipes 207.
  • the space 206 and the pipeline 207 constitute a part of the cooling unit 6.
  • FIG. 2 shows only one conduit 207.
  • the cover 202 is a cylindrical member that covers the main body 201 from the outer peripheral side.
  • the cover 202 is formed of an insulating material.
  • An O-ring groove 210 is provided on the upstream end surface near the outer periphery of the main body 201, and when the cover 202 is mounted on the main body 201, the O-ring is sandwiched between the two and fixed.
  • the axial length of the cover 202 is set such that the downstream end of the cover 202 is located downstream of the downstream end of the main body 201 when the cover 202 is mounted on the outer periphery of the main body 201. In the example of FIG.
  • the axial length of the cover 202 is such that when the cover 202 is mounted with the spacer 203 fixed to the main body 201, the entire main body 201 and the spacer 203 are covered by the cover 202.
  • the means for fixing the spacer 203 to the main body 201 is not particularly limited.
  • a plurality of lateral holes 212 are formed at equal intervals along the circumferential direction.
  • the lateral hole 212 extends from the inner circumference to the outer circumference of the cover 202 to near the center in the radial direction.
  • a screw portion 213 communicating with the lateral hole 212 and penetrating the cover 202 in the radial direction together with the lateral hole 212 is formed.
  • the screw portion 213 is a threaded hole.
  • the screw part 213 is screwed with a threaded end of a pipe part for supplying the carrier gas from the carrier gas supply part 4.
  • the thread 213 is configured to engage with, for example, a tube fitting.
  • the spacer 203 is a ring-shaped insulating member.
  • the spacer 203 has a groove formed on the outer circumference in the circumferential direction.
  • a plurality of holes 211 are formed on the bottom surface of the groove at uniform intervals in the circumferential direction.
  • the plurality of holes 211 penetrate the spacer 203 in the radial direction from the bottom surface of the groove to the inner peripheral surface.
  • the carrier gas introduced from the lateral hole 212 and the screw portion 213 formed in the cover 202 enters the space formed by the groove of the spacer 203 between the spacer 203 and the cover 202, and passes through the plurality of holes 211 to connect with the cathode C. It is supplied between the anodes A. Since the spacer 203 and the cover 202 are made of an insulating material, the state where the cathode C and the surroundings are insulated is maintained. The electrically separated state is maintained between the cathode C and the anode A.
  • the anode section 300 is a cylindrical member having a cylindrical hole formed along the axis.
  • the inner diameter of the anode part 300 is formed to be substantially the same size as the outer diameter of the cylindrical part A1 of the anode A.
  • the outer diameter of the anode section 300 is substantially the same as the outer diameter of the cover 202 of the cathode section 200.
  • the upstream end face of the anode part 300 is formed in a size that the projection A2 of the anode A is locked.
  • a ring-shaped projection 301 having substantially the same radial dimension as the downstream end face of the cover 202 is provided on the outer edge of the upstream end face of the anode section 300.
  • the inner diameter of the protrusion 301 is substantially the same as the outer diameter of the protrusion A2 of the anode A.
  • the step formed on the upstream end face of the anode section 300 formed by the projection section 301 functions as a positioning section when the anode A is attached to the anode section 300.
  • O-ring grooves 302 and 303 are formed on the upstream end face of the anode section 300 at the portion where the anode A contacts and the portion where the cover 202 contacts. O-rings are arranged in the O-ring grooves 302 and 303 when the anode unit 300 is attached to the cathode unit 200. When the O-ring is pressed, the space between the cathode section 200 and the anode section 300 is sealed. Further, in the example of FIG. 2, a screw part 214 is formed by cutting out a part of the outer peripheral surface of the cover 202, and the cover 202 and the anode part 300 are screwed with the screw part 214 by a screw.
  • a space 304 through which the cooling medium CM flows is formed in the anode section 300.
  • the space 304 communicates with at least two pipes 305, through which the cooling medium CM circulates.
  • the space 304 and the conduit 305 constitute a part of the cooling unit 6.
  • FIG. 2 shows only one conduit 305.
  • a flange 306 for fixing the thermal spray gun 1 to the chamber 7 is provided at a downstream end of the anode part 300.
  • the flange 306 is a projection that extends radially outward at the downstream end of the anode unit 300.
  • a screw hole is formed in the flange 306 so as to penetrate the flange 306 in the axial direction. The thermal spray gun 1 can be screwed to the chamber 7 using the screw hole.
  • FIG. 5 is a diagram for describing a unit structure of the thermal spray gun 1 according to the embodiment.
  • FIG. 5 shows a state in which the thermal spray gun 1 is disassembled into a transport pipe section 100, a cathode C, a cathode section 200, an anode A, and an anode section 300.
  • the transport pipe section 100 can be detached from the cathode section 200 by rotating the transport section 100 about the cathode section 200 around the axis.
  • the transport pipe section 100 and the cathode section 200 are mutually connected by screwing a screw section 201a formed on the main body section 201 of the cathode section 200 and a threaded surface formed on the second cylindrical section 102d of the transport pipe section 100. It is fixed to. Therefore, the transport pipe 100 can be easily detached from the cathode 200 by rotating the entire transport pipe 100 around the axis of the transport pipe 100 as a rotation axis.
  • the cathode C housed in the main body 201 of the cathode 200 is exposed. Since the cathode C is held in a state of being locked to the projection 201b of the main body 201, it can be easily taken out from the upstream side. Therefore, replacement and maintenance of the cathode C can be easily performed.
  • the transport tube 100 is mounted from above the cathode C, so that the cathode C and the main body 201 are in close contact with each other, and heat transfer is performed well.
  • the anode part 300 can be easily removed from the cathode part 200 by loosening the screw of the screw part 214 that fastens the cover 202 of the cathode part 200 and the anode part 300. Further, the anode A is locked to the anode unit 300 by placing the protrusion A2 on the upstream end surface of the anode unit 300. Therefore, when the anode section 300 is detached from the cathode section 200, the anode A can be easily taken out. Therefore, replacement and maintenance of the anode A can be easily performed.
  • the transport tube 100 and the anode 300 can be integrally removed from the cathode 200. Therefore, there is no need to disassemble the thermal spray gun 1 finely for replacement and maintenance of the anode A and the cathode C, and replacement and maintenance of the anode A and the cathode C can be easily performed.
  • the transport pipe section 100 can be easily removed from the cathode section 200, replacement and maintenance of the inner pipe 101 can be easily performed.
  • the inner pipe 101 is fixed to the transport pipe section 100 by a holding flange 103, a screw, an O-ring (first locking portion), and an adjusting screw 104 (second locking portion).
  • the holding flange 103 can be easily removed by removing a screw without removing the transport pipe section 100 from the cathode section 200.
  • the adjusting screw 104 can be easily removed because the adjusting screw 104 is exposed to the outside by removing the transport pipe section 100 from the cathode section 200. Therefore, even if the thermal spray material adheres to the inner tube 101, the inner tube 101 can be easily removed, and replacement and maintenance can be easily performed.
  • the double pipe structure provided in the thermal spray gun 1 according to the embodiment will be further described.
  • 6A and 6B are views for explaining a double-pipe structure in the thermal spray gun 1 according to the embodiment.
  • the double tube structure is one in which a flow path through which a heat insulating gas passes is provided outside a flow path through which the thermal spray material passes.
  • the double tube structure improves the performance of the thermal spraying device by suppressing the temperature rise of the members of the thermal spray gun 1 and suppressing the deposition of the thermal spray material.
  • FIG. 6A is a schematic cross-sectional view showing a plurality of flow paths formed in the thermal spray gun 1 according to the embodiment.
  • FIG. 6B is a schematic diagram illustrating a plurality of flow paths formed in the thermal spray gun 1 according to the embodiment.
  • FIG. 6A shows a state near the cathode C in a state where the inner tube 101 is inserted into the main body 102 and the cathode C.
  • the inner pipe 101 extends to the downstream end of the cathode C through the inside of the main body 102 of the transport pipe 100.
  • the inner tube 101 is fixed so that the axis thereof substantially coincides with the axis of the main body 102 and the cathode C. That is, the inner tube 101 is locked to the holding flange 103 via the O-ring 107 at the upstream end of the main body 102, and is fixed to the second cylindrical portion 102d by the adjusting screw 104 at a predetermined position on the downstream side. .
  • the first flow path F1 is a flow path formed inside the inner pipe 101.
  • the first flow path F1 extends axially to the downstream end of the cathode C along the axis of the transport pipe 100 and the cathode C.
  • the upstream end of the first flow path F1 is connected to the thermal spray material supply unit 2.
  • the thermal spray material supplied from the thermal spray material supply unit 2 is sent downstream through the first flow path F1.
  • the second flow path F2 is a flow path formed between the outer circumference of the inner tube 101, the inner circumference of the main body 102, and the inner circumference of the cathode C.
  • the inner diameter of the main body 102 is configured to be larger by about 1 mm to 2 mm than the outer diameter of the inner tube 101 on the downstream side. Therefore, on the downstream side of the main body 102, a second flow path F2 having a ring-shaped cross section with a width of about 1 to 2 mm is formed between the outer circumference of the inner tube 101 and the inner circumference of the main body 102. 6B). Insulation gas is supplied into the main body 102 through a lateral hole 110 and a screw portion 111 (see FIG.
  • the heat-insulating gas can flow through the second flow path F2 from any portion of the transport pipe section 100 disposed upstream of the cathode C to the downstream.
  • the flow of the thermal spray material is indicated by a white arrow
  • the flow of the heat insulating gas is indicated by a dotted arrow.
  • At least a portion of the adjusting screw 104 protrudes into the second flow path F2, and is fixed by pressing the inner tube 101 from the outside in the radial direction to the inside.
  • the heat insulating gas flowing through the second flow path F2 serves as a heat insulating layer.
  • the temperature of the wall surface (the temperature of the inner tube 101) constituting the first flow path F1 is equal to the temperature of the outer circumference of the second flow path F2 (the inner circumference of the cathode C and the inner circumference of the second cylindrical portion 102d). Temperature).
  • the rate of adhesion can be significantly reduced. For this reason, it is possible to avoid poor melting caused by clogging of the thermal spraying gun 1 with the thermal spray material, and it is possible to greatly increase the time until the clogging occurs.
  • the sprayed material does not adhere to the cathode C and the second cylindrical portion 102d due to the double tube structure of the embodiment, and the sprayed material adheres to the inner tube 101 due to the effect of suppressing the temperature rise of the insulating gas. It can be greatly reduced. Furthermore, the thermal spray gun 1 according to the embodiment can also suppress the adhesion of the thermal spray material to the anode A due to the effect of the heat insulating gas.
  • the flow velocity distribution at the outlet (jet port) of the anode A should be such that the flow velocity outside the axis is larger.
  • FIG. 7A is a diagram illustrating an example of a flow velocity distribution in the thermal spray gun 1 according to the embodiment.
  • the heat insulating gas is delivered via the second flow path F2.
  • the heat insulating gas and the carrier gas are mixed on the downstream side of the cathode C, and the flow velocity radially outside the axis at the injection port of the anode A is increased.
  • FIG. 7B is a diagram illustrating an example of a flow velocity distribution in a thermal spraying gun having no double tube structure according to the embodiment.
  • the flow velocity distribution at the injection port of the anode A is larger than the flow velocity at the radially outer side than the axial center due to the introduction of the carrier gas.
  • the radially outer flow velocity is smaller in the flow velocity distribution of FIG. 7B because there is no increase in the flow velocity due to the insulating gas.
  • the double-pipe structure according to the embodiment by changing the flow velocity distribution in the injection port of the anode A to a more preferable state, it is preferable to further suppress the adhesion of the sprayed material to the wall surface of the anode A. The effect is obtained.
  • the position where the horizontal hole for screwing the adjustment screw 104 is formed be as downstream as possible in order to stably hold the inner tube 101. Further, by fixing the inner tube 101 on the downstream side, disturbance of the flow of the thermal spray material near the cathode C can be suppressed, and the quality of the thermal spray coating can be stabilized. However, from the viewpoint of suppressing heat transfer to the inner tube 101 via the adjustment screw 104 attached to the side hole, it is preferable to form the side hole as far as possible from the cathode C where the temperature becomes high. Therefore, it is preferable to appropriately adjust the position where the lateral hole is formed according to the material and length of the inner tube 101, the material of the adjusting screw 104, and the like.
  • the position where the horizontal hole 110 for inserting the heat-insulating gas is formed can also be changed according to the length and material of the inner tube 101.
  • the side hole 110 is provided in the first cylindrical portion 102c, but the present invention is not limited to this, and the side hole 110 may be provided further upstream or downstream.
  • the inner diameter and outer diameter of the cathode C, the inner diameter, the outer diameter and the thickness of the inner tube 101, the inner diameter and the outer diameter of the anode A, and the like can be appropriately changed according to the material to be sprayed.
  • thermal spray gun 1 the type of thermal spray material used in thermal spray gun 1 is not particularly limited.
  • the thermal spraying apparatus 1000 includes the cathode C, the anode A, and the inner tube 101.
  • the cathode C has a substantially cylindrical shape, and a flow path through which the thermal spray material passes is formed along the axis.
  • the anode A is arranged to face the downstream end of the cathode C, and generates plasma with the cathode C by arc discharge.
  • the inner tube 101 is arranged so that the axis of the cathode C and the axis of the anode A substantially coincide with each other, and forms at least two flow paths F1 and F2 in the cathode C.
  • At least two flow paths F1 and F2 formed by the inner pipe 101 include a first flow path F1 that allows the thermal spray material to pass through the inner pipe 101 along the axis of the cathode C. Further, at least two flow paths F1 and F2 formed by the inner pipe 101 are formed outside the inner pipe 101 on the radial outside of the first flow path F1, and at least a part of the first flow path F1 is surrounded by the cathode C. And a second flow path F2 through which the fluid flows. As described above, by providing the flow path through which the heat-insulating gas flows outside the flow path through which the thermal spray material flows, the thermal spray performance of the thermal spraying apparatus 1000 can be improved.
  • the thermal spraying apparatus 1000 includes a first supply unit (thermal spray material supply unit 2) for supplying a thermal spray material to the first flow path F1, and a thermal insulating gas in the second flow path F2. And a third supply unit (a carrier gas supply unit 4) for supplying a carrier gas between the downstream end of the cathode C and the anode A. May be provided. Further, the thermal spraying apparatus 1000 controls the supply amounts from the first to third supply units independently so that the flow velocity distribution of the gas discharged to the downstream side of the anode A is outside the anode A in the radial direction. The control unit 13 adjusts the flow velocity so as to be a flow velocity distribution larger than the flow velocity at the center in the radial direction.
  • the thermal spraying apparatus 1000 is disposed on the upstream side of the cathode C, accommodates at least a part of the inner pipe 101, and accommodates the transport pipe section 100 for transporting the thermal spray material, and accommodates the cathode C. And an anode unit 300 that accommodates the anode A.
  • the transport tube 100 is configured to be detachable independently, and the cathode C can be independently replaced by removing the transport tube 100. Therefore, replacement and maintenance of the cathode C can be easily performed.
  • the anode unit 300 is configured to be independently detachable, and by removing the anode unit 300, the anode A can be replaced independently. Therefore, replacement and maintenance of the anode A can be easily performed.
  • the transport pipe 100 is configured to fix the inner pipe 101 to the transport pipe 100 at the upstream end of the transport pipe 100 with the inner pipe 101 housed in a fixed position. 1 locking portion (holding flange 103, flange 102a, screw, O-ring). Therefore, the inner pipe 101 can be easily fixed to the transport pipe section 100. Further, the contact between the inner tube 101 and the cathode C can be suppressed to suppress the temperature rise of the inner tube 101, and the adhesion and deposition of the thermal spray material on the inner tube 101 can be prevented.
  • the transport pipe section 100 further includes a second locking section (adjustment screw 104) that fixes the inner pipe 101 downstream of the first locking section. Therefore, the thermal spraying apparatus 1000 can fix the inner tube 101 more stably. Further, the contact between the inner tube 101 and the cathode C can be suppressed to suppress the temperature rise of the inner tube 101, and the adhesion and deposition of the thermal spray material on the inner tube 101 can be prevented.
  • At least a part of the second locking portion is disposed in the second flow path F2.
  • the transport pipe section 100 has a main body section 102 having a cylindrical space for accommodating the inner pipe 101, and the cylindrical space is fitted with the inner pipe 101 on the upstream side. It may have a matching dimension and have a larger diameter on the downstream side than on the upstream side.
  • Thermal spraying apparatus 1 Thermal spray gun 2 Thermal spray material supply unit 3 Thermal insulation gas supply unit 4 Carrier gas supply unit 13 Control unit 14 Storage unit 100 Transport pipe unit 101 Inner pipe 102 Main body 102a Flange 102b Body detail 102c First cylindrical part 102d Second Cylindrical part 103 Holding flange 104 Adjusting screw 107 O-ring 110 Side hole 111 Screw part 200 Cathode part 201 Body part 201a Screw part 201b Projection part 202 Cover 203 Spacer 206 Space 207 Pipe line 211 Hole 212 Side hole 213 Screw part 300 Anode part A Anode A1 Tube portion A2 Projection portion C Cathode C1 Tube portion C2 Projection portion F1 First flow path F2 Second flow path W Object

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Nozzles (AREA)

Abstract

This thermal spraying device comprises a cathode, an anode, and an inner tubing. The cathode is approximately cylindrical and has a flow path which is formed along the center axis and through which a spraying material passes. The anode, disposed opposite the downstream end of the cathode, generates arc discharge plasma with the cathode. The inner tubing: is disposed such that the center axes of the cathode and the anode are substantially matching; and forms at least two flow paths within the cathode. The at least two flow paths formed by the inner tubing include, inside the inner tubing, a first flow path for passing a spraying material along the cathode center axis. The at least two flow paths formed by the inner tubing include, outside the inner tubing, a second flow path which is formed on the radial outer-side of the first flow path, at least a portion of which is surrounded by the cathode, and which is for passing an insulative gas.

Description

溶射装置Thermal spray equipment
 以下の開示は、溶射装置に関する。 The following disclosure relates to a thermal spraying device.
 溶射装置は、溶射材料と作動ガスとを溶射ガンへ輸送し、溶射ガンへ電力を印加してプラズマを発生させる。溶射ガンにおいては、発生したプラズマの熱により溶射材料が溶融され、プラズマ化した作動ガスとともに対象物へ溶射されて皮膜を形成する。溶射とは、プラズマを発生させ、プラズマの熱を用いて溶射材料を溶融し、溶融した溶射材料により対象物表面に溶射皮膜を形成する表面改質技術である。 The thermal spray device transports the thermal spray material and the working gas to the thermal spray gun, and applies electric power to the thermal spray gun to generate plasma. In the thermal spray gun, the thermal spray material is melted by the heat of the generated plasma, and is sprayed onto an object together with the working gas that has been turned into plasma to form a coating. The thermal spraying is a surface modification technique that generates plasma, melts the thermal spray material using the heat of the plasma, and forms a thermal spray coating on the surface of the target using the molten thermal spray material.
 溶射装置により形成される溶射皮膜の品質向上のため、様々な技術が提案されている。たとえば、粉末材料または気体材料をプラズマトーチの中に軸方向に送給するための手段が、粉末または気体の溶射材料をプラズマチャネル入口ノズルの中に送り込むための供給チューブを有するプラズマ溶射装置が提案されている。供給チューブは、溶射材料がプラズマトーチの最高温のコアを貫通するよう溶射装置の中心軸と同軸に配置される(特許文献1)。 様 々 Various techniques have been proposed to improve the quality of thermal spray coatings formed by thermal spray equipment. For example, a plasma spraying device has been proposed wherein the means for axially feeding powdered or gaseous material into the plasma torch has a supply tube for feeding powdered or gaseous sprayed material into the plasma channel inlet nozzle. Have been. The supply tube is arranged coaxially with the central axis of the thermal spraying device so that the thermal spray material passes through the hottest core of the plasma torch (Patent Document 1).
 また、溶射材料の利用効率を向上させるため、プラズマの中心軸に沿って摺動可能に設けられ、第1電極と第2電極との間に形成される放電空間に溶射材料の粉体を供給する溶射材料導入管を備えるプラズマトーチが提案されている(特許文献2)。 In addition, in order to improve the utilization efficiency of the spray material, the powder of the spray material is supplied to a discharge space formed between the first electrode and the second electrode so as to be slidable along the center axis of the plasma. There has been proposed a plasma torch provided with a spraying material introduction pipe to be heated (Patent Document 2).
特開平05-84455号公報JP 05-84455 A 特開2016-85811号公報JP 2016-85811 A
 ところで従来、溶射材料の粉末粒子が大きい場合、プラズマトーチを通過しても溶射材料が溶融されず、溶射皮膜の表面の品質が劣ったものとなる可能性があることが指摘されている(特許文献1)。また、プラズマを用いた溶射装置においては、溶射材料の粉体が放電空間の中心軸から外れ、溶融した溶射材料が陽極の内面に付着する可能性があることが指摘されている(特許文献2)。 By the way, it has been pointed out that when the powder particles of the thermal spray material are large, the thermal spray material is not melted even after passing through a plasma torch, and the surface quality of the thermal spray coating may be inferior (Patent) Reference 1). Further, in a thermal spraying apparatus using plasma, it is pointed out that the powder of the thermal spray material may be displaced from the central axis of the discharge space and the molten thermal spray material may adhere to the inner surface of the anode (Patent Document 2). ).
 本開示は、上記のような課題に鑑みて、溶射装置の溶射性能を向上させる技術を提供する。 The present disclosure provides a technique for improving the thermal spray performance of a thermal spray apparatus in view of the above-described problems.
 開示する実施形態において、溶射装置は、カソードと、アノードと、内管とを備える。カソードは略円筒状であり、軸心に沿って溶射材料が通過する流路が形成される。アノードは、カソードの下流端に対向して配置され、カソードとの間にアーク放電によりプラズマを生成する。内管は、カソードおよびアノードの軸心と軸心が略一致するよう配置され、カソード内に少なくとも2つの流路を形成する。内管が形成する少なくとも2つの流路は、当該内管内に、カソードの軸心に沿って溶射材料を通過させる第1の流路を含む。また、内管が形成する少なくとも2つの流路は、当該内管外に、第1の流路の径方向外側に形成され少なくとも一部がカソードに包囲され、断熱ガスを通過させる第2の流路を含む。 In the disclosed embodiment, the thermal spraying device includes a cathode, an anode, and an inner tube. The cathode is substantially cylindrical, and a flow path through which the thermal spray material passes is formed along the axis. The anode is arranged to face the downstream end of the cathode, and generates a plasma between the anode and the cathode by arc discharge. The inner tube is arranged so that the axes of the cathode and the anode substantially coincide with each other, and forms at least two flow paths in the cathode. At least two flow paths formed by the inner tube include a first flow passage in the inner tube that allows the thermal spray material to pass along the axis of the cathode. In addition, at least two flow paths formed by the inner pipe are provided outside the inner pipe, radially outside the first flow path, at least partially surrounded by the cathode, and provided with a second flow path through which the insulating gas passes. Including roads.
 開示する実施態様によれば、溶射装置の溶射性能を向上させることができるという効果を奏する。 According to the disclosed embodiment, there is an effect that the thermal spraying performance of the thermal spraying device can be improved.
図1は、実施形態に係る溶射装置の構成の一例を示す図である。 Drawing 1 is a figure showing an example of the composition of the thermal spraying device concerning an embodiment. 図2は、実施形態に係る溶射ガンの構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a configuration of the thermal spray gun according to the embodiment. 図3Aは、実施形態に係るカソードの構成の一例を示す斜視図である。FIG. 3A is a perspective view illustrating an example of a configuration of a cathode according to the embodiment. 図3Bは、図3Aに示すカソードのX1-X1断面図である。FIG. 3B is a cross-sectional view along X1-X1 of the cathode shown in FIG. 3A. 図3Cは、実施形態に係るカソードの構成の他の例を示す断面図である。FIG. 3C is a cross-sectional view illustrating another example of the configuration of the cathode according to the embodiment. 図4Aは、実施形態に係るアノードの構成の一例を示す斜視図である。FIG. 4A is a perspective view illustrating an example of the configuration of the anode according to the embodiment. 図4Bは、図4Aに示すアノードのX2-X2断面図である。FIG. 4B is an X2-X2 cross-sectional view of the anode shown in FIG. 4A. 図5は、実施形態に係る溶射ガンのユニット構造について説明するための図である。FIG. 5 is a diagram for describing a unit structure of the thermal spray gun according to the embodiment. 図6Aは、実施形態に係る溶射ガン内に形成される複数の流路を示す概略断面図である。FIG. 6A is a schematic cross-sectional view illustrating a plurality of flow paths formed in the thermal spray gun according to the embodiment. 図6Bは、実施形態に係る溶射ガン内に形成される複数の流路を示す概略図である。FIG. 6B is a schematic diagram illustrating a plurality of flow paths formed in the thermal spray gun according to the embodiment. 図7Aは、実施形態に係る溶射ガンにおける流速分布の一例を示す図である。FIG. 7A is a diagram illustrating an example of a flow velocity distribution in the thermal spray gun according to the embodiment. 図7Bは、実施形態に係る二重管構造をもたない溶射ガンにおける流速分布の一例を示す図である。FIG. 7B is a diagram illustrating an example of a flow velocity distribution in a thermal spray gun having no double tube structure according to the embodiment.
 以下、添付図面を参照して、本願の開示する溶射装置の実施形態を詳細に説明する。なお、以下に示す各実施形態により本開示が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Hereinafter, embodiments of the thermal spraying apparatus disclosed in the present application will be described in detail with reference to the accompanying drawings. The present disclosure is not limited by each embodiment described below. Further, it is necessary to keep in mind that the drawings are schematic, and the dimensional relationships of the respective elements, the ratios of the respective elements, and the like may be different from actual ones. Further, the drawings may include portions having different dimensional relationships and ratios. In addition, the embodiments can be appropriately combined within a range that does not contradict processing contents.
<溶射ガン内の溶射材料の付着>
 上記のように、溶射装置の性能を低下させる一因として、溶射材料が溶射装置内部へ付着することが指摘されている。プラズマ溶射の際にアノードとカソードとの間のアーク電流が発生する部分の温度は容易に1000℃を超える。このため、アーク放電により高温となったカソード内壁に溶射材料の粉体が付着すると、カソード内壁上で溶融して固着する場合がある。そして、長時間にわたって溶射ガンを使用した場合、溶射材料の固着堆積が顕著になり、円筒状のカソードの軸心に形成された溶射材料が通過する流路を閉塞する可能性がある。
<Adhesion of thermal spray material in thermal spray gun>
As described above, it has been pointed out that the thermal spray material adheres to the inside of the thermal spraying device as one of the causes for lowering the performance of the thermal spraying device. The temperature of the part where the arc current is generated between the anode and the cathode during plasma spraying easily exceeds 1000 ° C. For this reason, if the powder of the thermal spray material adheres to the cathode inner wall heated to a high temperature by the arc discharge, it may be melted and fixed on the cathode inner wall. When the spraying gun is used for a long time, sticking and deposition of the spraying material becomes remarkable, and there is a possibility that a flow path formed at the axis of the cylindrical cathode and through which the spraying material passes is blocked.
 この点、本発明者らの実験によれば、溶射材料の付着は、カソードの内径が狭くなるテーパ部分で多く発生する。このことから、カソード内を溶射材料が通過する際に溶射材料が衝突する壁部分が多いほど溶射材料の付着が起こりやすいと考えられる。 点 In this regard, according to the experiments performed by the present inventors, the adhesion of the thermal spray material frequently occurs at the tapered portion where the inside diameter of the cathode is reduced. From this, it is considered that the more the wall portion with which the thermal spray material collides when the thermal spray material passes through the inside of the cathode, the more the thermal spray material tends to adhere.
 しかし、テーパ部分を有しないカソードの場合であっても、溶射材料がカソード内壁に付着し、付着が始まった部分を核として堆積が進むことが確認されている。 However, it has been confirmed that even in the case of a cathode having no tapered portion, the sprayed material adheres to the inner wall of the cathode, and deposition proceeds with the portion where the attachment has started as a nucleus.
 そこで、本発明者らは、溶射粉体をそれぞれ、室温、205℃、405℃に温度制御した基材に載せた後、基材を立てて叩くことで付着していない溶射粉体を落とした後、基材に付着した溶射粉体の付着度合を調べる実験を行った。この結果、基材の温度が室温の場合は、付着した溶射粉体を物理的にこする等の処理で除去することができることが分かった。これに対し、基材の温度が205℃および405℃の場合はいずれも、物理的にこする等の処理によって付着した溶射粉体を完全に除去することはできなかった。このことから、本発明者らは、溶射材料の付着を防止するためには、溶射材料が通過する部材の温度をできる限り低く制御することが有効であるとの知見を得た。 Therefore, the present inventors placed the sprayed powder on the base material whose temperature was controlled at room temperature, 205 ° C., and 405 ° C., respectively, and then dropped the sprayed powder that had not adhered by standing and hitting the base material. Thereafter, an experiment was conducted to examine the degree of adhesion of the thermal spray powder adhered to the substrate. As a result, it was found that when the temperature of the base material was room temperature, the adhered sprayed powder could be removed by a treatment such as physically rubbing. On the other hand, when the temperature of the base material was 205 ° C. or 405 ° C., it was not possible to completely remove the sprayed powder adhered by a treatment such as physical rubbing. From this, the present inventors have found that it is effective to control the temperature of the member through which the thermal spray material passes as low as possible in order to prevent the thermal spray material from adhering.
 なお、実験は、溶射材料としてリチウムを用いて行った。リチウムは反応性が高いため、炭酸リチウム等で被覆した状態で粉体材料として流通している。このため、溶射材料としてリチウムを使用する場合、炭酸リチウムを溶融させて内側のリチウムを溶融して溶射皮膜とする。リチウムの融点は約180℃であるのに対して、炭酸リチウムの融点は700℃を超える。 実 験 The experiment was performed using lithium as the thermal spray material. Since lithium has high reactivity, it is distributed as a powder material in a state of being coated with lithium carbonate or the like. For this reason, when lithium is used as a thermal spray material, lithium carbonate is melted and the inner lithium is melted to form a thermal spray coating. The melting point of lithium is about 180 ° C, whereas the melting point of lithium carbonate is over 700 ° C.
<実施形態に係る溶射装置の構成の一例>
 図1は、実施形態に係る溶射装置1000の構成の一例を示す図である。溶射装置1000は、溶射ガン1と、溶射材料供給部2と、断熱ガス供給部3と、キャリアガス供給部4と、を備える。溶射装置1000はまた、電源5と、冷却部6と、を備える。
<Example of configuration of thermal spraying device according to embodiment>
FIG. 1 is a diagram illustrating an example of a configuration of a thermal spraying apparatus 1000 according to the embodiment. The thermal spraying apparatus 1000 includes a thermal spray gun 1, a thermal spray material supply unit 2, a heat insulating gas supply unit 3, and a carrier gas supply unit 4. Thermal spraying apparatus 1000 also includes power supply 5 and cooling unit 6.
 溶射ガン1は、溶射材料を軸心から供給する軸心供給型の溶射装置である。溶射ガン1の軸心に沿って設けられる流路内を、アルゴンガス等のキャリアガス(作動ガス)に混入された溶射材料が通過する。溶射ガン1は、流路の下流側において生成されるプラズマの熱で溶射材料を溶融し、溶融された溶射材料のプラズマ噴流を対象物に向けて噴射して対象物上に溶射皮膜を形成する。溶射ガン1の構成の詳細については後述する。なお、以下の実施形態の説明において、上流および下流とは、溶射材料の流れの上流下流を指す。すなわち、上流とは、溶射ガン1に供給される溶射材料の供給元、すなわち溶射材料供給部2の方向を指す。また、下流とは、溶射ガン1に供給される溶射材料の供給先、すなわち溶射の対象物が配置される方向を指す。 The thermal spray gun 1 is an axial supply type thermal spraying device that supplies thermal spray material from an axial center. A spray material mixed with a carrier gas (working gas) such as an argon gas passes through a flow path provided along the axis of the spray gun 1. The thermal spray gun 1 melts the thermal spray material by the heat of the plasma generated on the downstream side of the flow path, and sprays a plasma jet of the molten thermal spray material toward the target to form a thermal spray coating on the target. . Details of the configuration of the thermal spray gun 1 will be described later. In the following description of the embodiments, “upstream” and “downstream” indicate upstream and downstream of the flow of the thermal spray material. That is, the term “upstream” refers to the source of the thermal spray material supplied to the thermal spray gun 1, that is, the direction of the thermal spray material supply unit 2. The term “downstream” refers to the supply destination of the thermal spray material supplied to the thermal spray gun 1, that is, the direction in which the thermal spray target is arranged.
 なお、本実施形態では、溶射材料は、粉末状の溶射材料とする。粉末状であれば溶射材料の種類は特に限定されない。 In this embodiment, the thermal spray material is a powder thermal spray material. The type of the thermal spray material is not particularly limited as long as it is a powder.
 溶射材料供給部2は、溶射ガン1に溶射材料を供給する。溶射材料供給部2は、アルゴンガス等をキャリアガスとして溶射材料を溶射ガン1に輸送する。溶射材料供給部2の具体的な構造は特に限定されない。溶射材料供給部2は、第1の供給部の一例である。 The thermal spray material supply unit 2 supplies the thermal spray material to the thermal spray gun 1. The thermal spray material supply unit 2 transports the thermal spray material to the thermal spray gun 1 using argon gas or the like as a carrier gas. The specific structure of the thermal spray material supply unit 2 is not particularly limited. The thermal spray material supply unit 2 is an example of a first supply unit.
 断熱ガス供給部3は、溶射ガン1に断熱ガスを供給する。断熱ガスは、溶射ガン1の部材の昇温を抑制するためのガスである。断熱ガスとして、たとえば、アルゴンガスを使用することができる。断熱ガス供給部3の具体的な構造は特に限定されない。断熱ガス供給部3は、第2の供給部の一例である。 (4) The heat-insulating gas supply unit 3 supplies a heat-insulating gas to the spray gun 1. The heat insulating gas is a gas for suppressing a temperature rise of the members of the thermal spray gun 1. As the heat insulating gas, for example, an argon gas can be used. The specific structure of the heat-insulating gas supply unit 3 is not particularly limited. The insulating gas supply unit 3 is an example of a second supply unit.
 キャリアガス供給部4は、溶融された溶射材料の溶射噴流を溶射ガン1から対象物に向けて送りだすためのキャリアガスを供給する。キャリアガスとして、たとえば、アルゴンガスを使用することができる。キャリアガス供給部4は、第3の供給部の一例である。なお、断熱ガスおよびキャリアガスとして同一のガスを使用してもよい。なお、断熱ガス、溶射材料(キャリアガス含む)、キャリアガスの流量等はそれぞれ独立して制御可能である。 The carrier gas supply unit 4 supplies a carrier gas for sending a spray jet of the melted spray material from the spray gun 1 toward the target. As a carrier gas, for example, an argon gas can be used. The carrier gas supply unit 4 is an example of a third supply unit. Note that the same gas may be used as the insulating gas and the carrier gas. The heat insulating gas, the thermal spray material (including the carrier gas), the flow rate of the carrier gas, and the like can be independently controlled.
 電源5は、溶射ガン1が備える電極間にアーク放電を生じさせるための電力を供給する。 The power supply 5 supplies electric power for causing arc discharge between the electrodes of the thermal spray gun 1.
 冷却部6は、溶射処理によって加熱される溶射ガン1の各部を冷却するための機能部である。冷却部6はたとえば、冷却媒体を貯蔵する貯蔵部と、冷却媒体を送出するためのポンプと、冷却媒体が通過する管路と、を備える。冷却媒体が通過する管路の一部は溶射ガン1内に配置される。冷却媒体は、所定の管路を介して溶射ガン1の各部に送出され、溶射ガン1内で加熱された後、所定の管路を介して貯蔵部に送り返される。冷却媒体の温度は温度調整部(図示せず)により制御される。 The cooling unit 6 is a functional unit for cooling each part of the thermal spray gun 1 heated by the thermal spraying process. The cooling unit 6 includes, for example, a storage unit that stores the cooling medium, a pump that sends out the cooling medium, and a pipe through which the cooling medium passes. A part of the conduit through which the cooling medium passes is disposed in the spray gun 1. The cooling medium is sent out to each part of the thermal spray gun 1 via a predetermined pipe, heated in the thermal spray gun 1, and then returned to the storage unit via a predetermined pipe. The temperature of the cooling medium is controlled by a temperature adjusting unit (not shown).
 溶射装置1000はまた、チャンバ7、載置台8、ステージ9、駆動部10、ポンプ11、空調装置12、制御部13および記憶部14を備える。 The thermal spraying apparatus 1000 also includes a chamber 7, a mounting table 8, a stage 9, a driving unit 10, a pump 11, an air conditioner 12, a control unit 13, and a storage unit 14.
 チャンバ7は、溶射処理の対象である対象物を収容する。チャンバ7は、内部空間を真空に維持することができる構造を有する。チャンバ7内に載置される対象物に溶射ガン1から溶射噴流を吹き付けることができるよう、チャンバ7の上部壁から溶射ガン1の噴射口がチャンバ7内に突出する。 The chamber 7 accommodates an object to be sprayed. The chamber 7 has a structure capable of maintaining the internal space at a vacuum. An injection port of the spray gun 1 protrudes into the chamber 7 from an upper wall of the chamber 7 so that a spray jet can be sprayed from the spray gun 1 onto an object placed in the chamber 7.
 載置台8は、上面に溶射の対象物が載置される台である。図1の例では、載置台8上に対象物Wが載置されている。載置台8は、溶射ガン1の噴射口に対向する位置に対象物を配置できるよう位置決めされる。 The mounting table 8 is a table on which an object to be sprayed is mounted on the upper surface. In the example of FIG. 1, the target object W is mounted on the mounting table 8. The mounting table 8 is positioned so that an object can be arranged at a position facing the injection port of the spray gun 1.
 ステージ9は、載置台8の下部に配置される構造物である。ステージ9は、載置台8を所定の位置に保持する。 The stage 9 is a structure disposed below the mounting table 8. The stage 9 holds the mounting table 8 at a predetermined position.
 駆動部10は、ステージ9に接続され載置台8の(溶射ガン1の軸心に対して垂直な)水平面内での二次元移動を可能としている。なお、手動により載置台8の上下動や回転も可能な構造となっていてもよい。 The drive unit 10 is connected to the stage 9 to enable the two-dimensional movement of the mounting table 8 in a horizontal plane (perpendicular to the axis of the spray gun 1). The structure may be such that the mounting table 8 can be moved up and down and rotated manually.
 なお、載置台8、ステージ9および駆動部10の詳細な構造は特に限定されず、溶射の対象物を所望の位置に配置することができる構造を有していればよい。 Note that the detailed structures of the mounting table 8, the stage 9, and the driving unit 10 are not particularly limited as long as the structure has a structure that can place the object to be sprayed at a desired position.
 ポンプ11は、チャンバ7と接続され、チャンバ7内の真空排気を行う。ポンプ11はたとえば、真空ポンプである。 The pump 11 is connected to the chamber 7 and evacuates the chamber 7. The pump 11 is, for example, a vacuum pump.
 空調装置12は、溶射装置1000が配置される室内の温度や湿度を所定値に維持するための装置である。溶射材料の中には水に接触すると発火するもの等、温度や湿度に反応するものがある。このため、溶射装置1000が配置される室内の温度および湿度は、使用する溶射材料の特性に合わせて空調装置12により制御される。 The air conditioner 12 is a device for maintaining the temperature and humidity in the room where the thermal spraying device 1000 is disposed at a predetermined value. Some thermal spray materials react to temperature and humidity, such as those that ignite when contacted with water. For this reason, the temperature and humidity in the room where the thermal spraying device 1000 is disposed are controlled by the air conditioner 12 according to the characteristics of the thermal spraying material to be used.
 制御部13は、溶射装置1000の各部の動作を制御する。記憶部14は、溶射装置1000の各部の動作を制御するためのプログラムを記憶する。制御部13および記憶部14は、たとえば、CPU(Central Processing Unit)とメモリを備えるコンピュータである。記憶部14は、溶射装置1000において実行される各種の処理を制御するプログラムが格納される。制御部13は、記憶部14に記憶されたプログラムを読み出して実行することによって溶射装置1000の動作を制御する。 The control unit 13 controls the operation of each unit of the thermal spraying apparatus 1000. The storage unit 14 stores a program for controlling the operation of each unit of the thermal spraying apparatus 1000. The control unit 13 and the storage unit 14 are, for example, computers having a CPU (Central Processing Unit) and a memory. The storage unit 14 stores programs for controlling various processes executed in the thermal spraying apparatus 1000. The control unit 13 controls the operation of the thermal spraying apparatus 1000 by reading and executing the program stored in the storage unit 14.
 なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から記憶部14にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネトオプティカルディスク(MO)、メモリカードなどがある。 Note that such a program may have been recorded on a computer-readable storage medium, and may be installed in the storage unit 14 from the storage medium. Examples of the storage medium readable by the computer include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magneto-optical disk (MO), and a memory card.
 上記のように構成された溶射装置1000では、まず、溶射処理の対象である対象物が、チャンバ7内の載置台8上に載置される。そして、記憶部14に記憶されたプログラムに基づき制御部13の制御下で、溶射ガン1に溶射材料供給部2からキャリアガスに混入された溶射材料が供給される。また、断熱ガス供給部3から溶射ガン1に断熱ガスが供給される。また、キャリアガス供給部4から溶射ガン1にキャリアガスが供給される。他方、制御部13は電源5を制御して、溶射ガン1内にアーク放電を生じさせてプラズマを生成し、供給される溶射材料を溶融する。溶融された溶射材料は、キャリアガス供給部4から供給されるキャリアガスとともに、溶射噴流となって対象物に衝突し、溶射皮膜を形成する。溶射処理の間、溶射装置1000が配置される室内は空調装置12により温度および湿度が制御される。また、溶射処理の間、ポンプ11によってチャンバ7内は大気圧もしくは真空雰囲気に維持される。 In the thermal spraying apparatus 1000 configured as described above, first, an object to be thermal sprayed is placed on the mounting table 8 in the chamber 7. Then, under the control of the control unit 13 based on the program stored in the storage unit 14, the thermal spray material mixed with the carrier gas is supplied to the thermal spray gun 1 from the thermal spray material supply unit 2. Insulating gas is supplied from the insulating gas supply unit 3 to the spray gun 1. Further, a carrier gas is supplied from the carrier gas supply unit 4 to the spray gun 1. On the other hand, the control unit 13 controls the power supply 5 to generate an arc discharge in the thermal spray gun 1 to generate plasma and to melt the supplied thermal spray material. The molten thermal spray material, together with the carrier gas supplied from the carrier gas supply unit 4, becomes a thermal spray jet and collides with an object to form a thermal spray coating. During the thermal spraying process, the temperature and humidity are controlled by the air conditioner 12 in the room where the thermal spraying device 1000 is disposed. During the thermal spraying process, the inside of the chamber 7 is maintained at an atmospheric pressure or a vacuum atmosphere by the pump 11.
<溶射ガンの構成の一例>
 図2は、実施形態に係る溶射ガン1の構成の一例を示す図である。図2に示すように、溶射ガン1は、溶射ガン1の軸心に沿って形成される空間Sと、カソードCと、カソードCに対向して配置されるアノードAと、を備える。空間Sは略円筒状の空間である。空間S内に後述する少なくとも2つの流路が形成される。カソードCは、空間Sの下流部分を包囲するよう配置され、カソードCの軸心に沿って溶射材料が通過する。アノードAは、カソードCの下流端に対向して配置され、カソードCとの間にアーク放電によりプラズマを生成する。カソードCとアノードAとは物理的、電気的に分離され対をなす電極である。アーク放電はカソードCとアノードAとの間で円周状に発生する。カソードCおよびアノードAの周囲には、アーク放電により発生する熱を吸収するための冷却媒体CMが循環する流路が形成される。冷却媒体CMはたとえば水である。冷却媒体CMが循環する流路は図1に示す冷却部6の一部を構成する。
<Example of spray gun configuration>
FIG. 2 is a diagram illustrating an example of a configuration of the thermal spray gun 1 according to the embodiment. As shown in FIG. 2, the thermal spray gun 1 includes a space S formed along the axis of the thermal spray gun 1, a cathode C, and an anode A arranged to face the cathode C. The space S is a substantially cylindrical space. At least two flow paths described later are formed in the space S. The cathode C is arranged to surround the downstream portion of the space S, and the thermal spray material passes along the axis of the cathode C. The anode A is arranged to face the downstream end of the cathode C, and generates plasma with the cathode C by arc discharge. The cathode C and the anode A are physically and electrically separated electrodes forming a pair. An arc discharge is generated between the cathode C and the anode A in a circumferential shape. A flow path is formed around the cathode C and the anode A, through which a cooling medium CM for absorbing heat generated by the arc discharge circulates. The cooling medium CM is, for example, water. The flow path in which the cooling medium CM circulates forms a part of the cooling unit 6 shown in FIG.
 図3Aは、実施形態に係るカソードCの構成の一例を示す斜視図である。図3Bは、図3Aに示すカソードCのA-A断面図である。図3Aに示すように、カソードCは、円筒形状の筒部C1と、筒部C1の上流端に設けられ筒部C1の径方向外側に突出する突起部C2と、を有する。カソードCを溶射ガン1に取り付けた状態において、筒部C1は下流側、突起部C2は上流側に配置される。筒部C1は下流端に向けて先細となったテーパ形状を有する。筒部C1の上流端の内径D1は、筒部C1の下流端の内径D2よりも大きい(図3B参照)。ただし、カソードCの筒部C1の形状は特に限定されず、テーパをもたない形状としてもよい。たとえば、図3Cに示すように、カソードCの筒部C1の内径をストレート形状に構成してもよい。図3Cは、実施形態に係るカソードCの構成の他の例を示す断面図である。図3Cの例の場合には、筒部C1の上流端の内径D1と下流端の内径D2とが略一致する。溶射ガン1に取り付けた状態において、カソードCの軸心は溶射ガン1の軸心と略一致する。突起部C2は、カソードCを溶射ガン1に取り付けた状態において、カソードCを所定位置に係止する係止部たとえばフランジである。突起部C2の外径D3は、カソードCを溶射ガン1に取り付けた状態において、カソードCと接触する溶射ガン1の他の部材への熱伝導効率を高めるため、筒部C1の外径との差をできるだけ大きくすることが好ましい。 FIG. 3A is a perspective view showing an example of the configuration of the cathode C according to the embodiment. FIG. 3B is a cross-sectional view taken along the line AA of the cathode C shown in FIG. 3A. As shown in FIG. 3A, the cathode C has a cylindrical portion C1 having a cylindrical shape, and a projection portion C2 provided at an upstream end of the cylindrical portion C1 and protruding radially outward of the cylindrical portion C1. In a state where the cathode C is attached to the thermal spray gun 1, the cylindrical portion C1 is disposed on the downstream side, and the projection C2 is disposed on the upstream side. The cylindrical portion C1 has a tapered shape tapering toward the downstream end. The inner diameter D1 at the upstream end of the cylindrical portion C1 is larger than the inner diameter D2 at the downstream end of the cylindrical portion C1 (see FIG. 3B). However, the shape of the cylindrical portion C1 of the cathode C is not particularly limited, and may be a shape having no taper. For example, as shown in FIG. 3C, the inner diameter of the cylindrical portion C1 of the cathode C may be formed in a straight shape. FIG. 3C is a cross-sectional view illustrating another example of the configuration of the cathode C according to the embodiment. In the example of FIG. 3C, the inner diameter D1 of the upstream end of the cylindrical portion C1 and the inner diameter D2 of the downstream end substantially match. When mounted on the thermal spray gun 1, the axis of the cathode C substantially coincides with the axial center of the thermal spray gun 1. The protrusion C2 is a locking portion, for example, a flange that locks the cathode C at a predetermined position when the cathode C is attached to the thermal spray gun 1. The outer diameter D3 of the projection C2 is different from the outer diameter of the cylindrical portion C1 in order to increase the efficiency of heat transfer to other members of the spray gun 1 that comes into contact with the cathode C when the cathode C is attached to the spray gun 1. It is preferable to make the difference as large as possible.
 図4Aは、実施形態に係るアノードAの構成の一例を示す斜視図である。図4Bは、図4Aに示すアノードAのB-B断面図である。図4Aに示すように、アノードAは、円筒形状の筒部A1と、筒部A1の上流端に設けられ筒部A1の径方向外側に突出する突起部A2と、を有する。アノードAを溶射ガン1に取り付けた状態において、筒部A1は下流側、突起部A2は上流側に配置される。また、溶射ガン1に取り付けた状態において、アノードAの軸心は溶射ガン1の軸心と略一致する。突起部A2は、アノードAを溶射ガン1に取り付けた状態において、アノードAを所定位置に係止する係止部たとえばフランジである。突起部A2の外径が筒部A1の外径より大きく構成されていれば、アノードAの具体的な構成は特に限定されない。なお、突起部A2の外径は、アノードAを溶射ガン1に取り付けた状態において、アノードAと接触する部材への熱伝導効率を高めるため、筒部A1の外径との差をできるだけ大きくすることが好ましい。 FIG. 4A is a perspective view showing an example of the configuration of the anode A according to the embodiment. FIG. 4B is a cross-sectional view taken along the line BB of the anode A shown in FIG. 4A. As shown in FIG. 4A, the anode A has a cylindrical portion A1 having a cylindrical shape, and a protrusion A2 provided at an upstream end of the cylindrical portion A1 and protruding radially outward of the cylindrical portion A1. When the anode A is attached to the spray gun 1, the cylindrical portion A1 is disposed on the downstream side, and the protrusion A2 is disposed on the upstream side. In the state where the anode A is attached to the thermal spray gun 1, the axial center of the anode A substantially coincides with the axial center of the thermal spray gun 1. The protrusion A2 is a locking portion, for example, a flange that locks the anode A at a predetermined position when the anode A is attached to the thermal spray gun 1. The specific configuration of the anode A is not particularly limited as long as the outer diameter of the protrusion A2 is larger than the outer diameter of the cylindrical portion A1. The outer diameter of the projection A2 should be as large as possible from the outer diameter of the cylindrical part A1 in order to increase the efficiency of heat conduction to a member that comes into contact with the anode A when the anode A is attached to the thermal spray gun 1. Is preferred.
 図2に戻り、溶射ガン1は、上流側から下流側に向けて、輸送管部100、カソード部200およびアノード部300を有する。輸送管部100、カソード部200およびアノード部300はそれぞれ独立したユニットを構成し、独立して取り外し可能な構造を有する。 戻 り Returning to FIG. 2, the thermal spray gun 1 has a transport pipe section 100, a cathode section 200, and an anode section 300 from the upstream side to the downstream side. The transport pipe section 100, the cathode section 200, and the anode section 300 each constitute an independent unit, and have a structure that can be detached independently.
<輸送管部100の構成の一例>
 輸送管部100は、内管101と、本体部102と、保持フランジ103と、調整ネジ104と、を有する。
<Example of configuration of transport pipe section 100>
The transport pipe section 100 has an inner pipe 101, a main body section 102, a holding flange 103, and an adjusting screw 104.
 内管101は、空間S内に2以上の流路を形成する中空のパイプである。内管101が溶射ガン1に取り付けられるとき、内管101の軸心はカソードCおよびアノードAの軸心と略一致する。内管101は、輸送管部100の上流端から下流端に向けて延び、輸送管部100の下流側に配置されるカソードCの軸心に沿ってカソードCの下流端に至る長さを有する。内管101の上流端は輸送管部100の上流端よりも上流側に位置し、溶射材料供給部2から伸びた溶射材料を輸送する管と接続される(図示せず)。 The inner pipe 101 is a hollow pipe that forms two or more flow paths in the space S. When the inner tube 101 is attached to the spray gun 1, the axis of the inner tube 101 substantially coincides with the axes of the cathode C and the anode A. The inner pipe 101 extends from the upstream end of the transport pipe section 100 toward the downstream end, and has a length reaching the downstream end of the cathode C along the axis of the cathode C arranged downstream of the transport pipe section 100. . The upstream end of the inner pipe 101 is located on the upstream side of the upstream end of the transport pipe section 100, and is connected to a pipe for transporting the thermal spray material extending from the thermal spray material supply section 2 (not shown).
 内管101の内部空間は、カソードCの軸心に沿って溶射材料を通過させる第1の流路F1(図6参照)を形成する。内管101は、中空円筒状の本体部102内にはめ込まれ、本体部102の内壁およびカソードCの内壁と内管101の外壁との間に断熱ガスが流れる第2の流路F2(図6参照)が形成される。第2の流路F2は、第1の流路F1の径方向外側に形成される。また、内管101は、第2の流路F2の少なくとも一部がカソードCに包囲されるよう、配置される。このため、内管101の外径は、少なくとも一部において本体部102およびカソードCの内径よりも小さく形成される。図2の例では、内管101は軸方向にわたって略同一の内径および外径を有する。ただし、内管101をテーパ形状に構成してもよい。 内部 The internal space of the inner tube 101 forms a first flow path F1 (see FIG. 6) through which the thermal spray material passes along the axis of the cathode C. The inner pipe 101 is fitted in a hollow cylindrical main body 102, and a second flow path F2 (FIG. 6) through which heat insulating gas flows between the inner wall of the main body 102, the inner wall of the cathode C, and the outer wall of the inner pipe 101. Ref) is formed. The second flow path F2 is formed radially outward of the first flow path F1. The inner tube 101 is arranged such that at least a part of the second flow path F2 is surrounded by the cathode C. For this reason, the outer diameter of the inner tube 101 is formed to be smaller at least in part than the inner diameters of the main body 102 and the cathode C. In the example of FIG. 2, the inner tube 101 has substantially the same inner diameter and outer diameter in the axial direction. However, the inner pipe 101 may be formed in a tapered shape.
 内管101は、たとえばタングステンやジルコニアなどの高融点材料で形成される中空のパイプである。内管101の寸法はたとえば、外径がφ4ミリメートル(mm)、内径がφ3mmである。 The inner pipe 101 is a hollow pipe formed of a high melting point material such as tungsten or zirconia. The dimensions of the inner tube 101 are, for example, an outer diameter of φ4 mm (mm) and an inner diameter of φ3 mm.
 本体部102は、本体部102の上流端から下流端にかけて、フランジ102aと、胴細部102bと、第1円筒部102cと、第2円筒部102dと、を有する。本体部102は内部に空間Sが形成される略円筒状の部材である。フランジ102a、胴細部102b、第1円筒部102cおよび第2円筒部102dは一体に形成される。 The main body 102 has a flange 102a, a body detail 102b, a first cylindrical portion 102c, and a second cylindrical portion 102d from the upstream end to the downstream end of the main body 102. The main body 102 is a substantially cylindrical member having a space S formed therein. The flange 102a, the body detail 102b, the first cylindrical portion 102c, and the second cylindrical portion 102d are integrally formed.
 フランジ102aは本体部102の上流端に位置し、胴細部102bよりも大きな外径を有する。なお、図2の例ではフランジ102aと胴細部102bは異なる外径を有する部分として構成したが、フランジ102aおよび胴細部102bは同じ外径としてもよい。 The flange 102a is located at the upstream end of the main body 102 and has a larger outer diameter than the body detail 102b. In the example of FIG. 2, the flange 102a and the body detail 102b are configured as portions having different outer diameters, but the flange 102a and the body detail 102b may have the same outer diameter.
 第1円筒部102cは、胴細部102bよりも大きな外径を有する。ただし、第1円筒部102cおよび胴細部102bは同じ外径としてもよい。第1円筒部102cの一部には径方向外側から軸心に向けて延び、第1円筒部102cを貫通する横穴110およびネジ部111が形成されている。横穴110は、第1円筒部102cの内周から第1円筒部102cの径方向所定位置まで径方向に延びる穴である。ネジ部111は横穴110と連通し、第1円筒部102cの外周に向けて径方向に延びるねじ切りされた穴である。ネジ部111内には、断熱ガス供給部3に接続される管部のねじ切りされた端部がねじ込まれる。ネジ部111はたとえば、チューブフィッティングと係合するよう構成される。 The first cylindrical portion 102c has an outer diameter larger than the body detail 102b. However, the first cylindrical portion 102c and the body detail 102b may have the same outer diameter. A portion of the first cylindrical portion 102c is formed with a lateral hole 110 and a screw portion 111 that extend from the outside in the radial direction toward the axis and penetrate the first cylindrical portion 102c. The horizontal hole 110 is a hole extending in the radial direction from the inner circumference of the first cylindrical portion 102c to a predetermined radial position of the first cylindrical portion 102c. The screw portion 111 is a threaded hole that communicates with the lateral hole 110 and extends radially toward the outer periphery of the first cylindrical portion 102c. The threaded end of the pipe connected to the heat-insulating gas supply unit 3 is screwed into the screw 111. The thread portion 111 is configured to engage with, for example, a tube fitting.
 第1円筒部102cの下流側には第1円筒部102cよりも外径が小さい第2円筒部102dが形成される。第2円筒部102dは、第1円筒部102cから下流に向けて延びるスリーブである。第2円筒部102dの外周面には、上流端から所定長さにわたってねじ切り面が形成される。当該ねじ切り面は、後述するカソード部200のネジ部201cと螺合する寸法に形成される。また、第2円筒部102dには、内周から外周に径方向に延び、第2円筒部102dを貫通する横穴が形成される。横穴はねじ切り穴として形成され、調整ネジ104をねじ込むことができる寸法を有する。横穴は、第2円筒部102dの外周周方向にわたって均等な間隔で複数配置される。たとえば、横穴は第2円筒部102dの外周上3か所に形成される。ただし、横穴の数は特に限定されない。横穴にねじ込まれた調整ネジ104により、本体部102内に挿通された内管101を固定することができれば、横穴の数は4以上または2であってよい。また、横穴を形成する位置も、第2円筒部102d上であれば特に限定されない。 第 A second cylindrical portion 102d having a smaller outer diameter than the first cylindrical portion 102c is formed downstream of the first cylindrical portion 102c. The second cylindrical portion 102d is a sleeve extending downstream from the first cylindrical portion 102c. A threaded surface is formed on the outer peripheral surface of the second cylindrical portion 102d over a predetermined length from the upstream end. The threaded surface is formed to have a dimension that is screwed with a threaded portion 201c of the cathode portion 200 described later. The second cylindrical portion 102d has a lateral hole extending radially from the inner periphery to the outer periphery and penetrating the second cylindrical portion 102d. The side hole is formed as a threaded hole and has a dimension that allows the adjustment screw 104 to be screwed. A plurality of lateral holes are arranged at equal intervals over the outer circumferential direction of the second cylindrical portion 102d. For example, the lateral holes are formed at three places on the outer periphery of the second cylindrical portion 102d. However, the number of side holes is not particularly limited. The number of the horizontal holes may be four or more as long as the inner tube 101 inserted into the main body 102 can be fixed by the adjusting screw 104 screwed into the horizontal hole. Further, the position where the lateral hole is formed is not particularly limited as long as it is on the second cylindrical portion 102d.
 調整ネジ104は、本体部102内に内管101を固定する。調整ネジ104はたとえばセットスクリューである。調整ネジ104は、金属、SUS等で形成することができる。調整ネジ104は、第2の係止部の一例である。 The adjustment screw 104 fixes the inner tube 101 in the main body 102. The adjusting screw 104 is, for example, a set screw. The adjustment screw 104 can be formed of metal, SUS, or the like. The adjustment screw 104 is an example of a second locking portion.
 本体部102の内径は、上流側において内管101と嵌め合う寸法を有する。図2の例では、本体部102の内径は、フランジ102a、胴細部102bおよび第1円筒部102cの上流側までは、内管101と嵌め合う寸法を有する。そして、下流側すなわち第1円筒部102cの途中から第2円筒部102dの下流端までは、本体部102の内径は、内管101の外径よりも大きい。たとえば、本体部102は、内径が下流側において内管101の外径より1mmから2mm程度大きくなるよう形成される。ただし、第2の流路F2と横穴110とが連通するように構成できる限り、本体部102の内径が変化する位置は特に限定されない。なお、本体部102の下流側の内径はカソードCの内径と略同一である。 内径 The inner diameter of the main body 102 has a size that fits with the inner pipe 101 on the upstream side. In the example of FIG. 2, the inner diameter of the main body 102 has a size that fits with the inner pipe 101 up to the upstream side of the flange 102a, the body detail 102b, and the first cylindrical portion 102c. The inner diameter of the main body 102 is larger than the outer diameter of the inner tube 101 from the downstream side, that is, from the middle of the first cylindrical portion 102c to the downstream end of the second cylindrical portion 102d. For example, the main body 102 is formed so that the inner diameter is about 1 mm to 2 mm larger than the outer diameter of the inner tube 101 on the downstream side. However, the position where the inner diameter of the main body 102 changes is not particularly limited as long as the second flow path F2 and the lateral hole 110 can be configured to communicate with each other. The inner diameter of the downstream side of the main body 102 is substantially the same as the inner diameter of the cathode C.
 保持フランジ103は、フランジ102aと略同一の外径及び内径に形成される。保持フランジ103は、内管101を本体部102内に挿入した状態で、本体部102の上流端においてフランジ102aに固定される。保持フランジ103はたとえば、フランジ102aに軸方向にねじ止めされる。保持フランジ103および保持フランジ103をフランジ102aに固定するネジ等の固定手段は、第1の係止部の一例である。 The holding flange 103 is formed to have substantially the same outer diameter and inner diameter as the flange 102a. The holding flange 103 is fixed to the flange 102 a at the upstream end of the main body 102 with the inner pipe 101 inserted into the main body 102. The holding flange 103 is, for example, screwed to the flange 102a in the axial direction. The holding flange 103 and a fixing means such as a screw for fixing the holding flange 103 to the flange 102a are examples of a first locking portion.
 内管101を本体部102に取り付ける際は、まず、内管101の上流端近傍にOリング107を取り付ける。そして、本体部102の上流端から内管101を挿入し、Oリング107が本体部102の上流端に位置するように調整する。そして、内管101の上流端を保持フランジ103の中央に形成された穴に挿通する。その後、保持フランジ103の下流端面を本体部102に押し付けてOリング107を押しつぶしつつ、保持フランジ103の上流端側からねじ止めすることにより保持フランジ103を本体部102に固定する。これによって、内管101が本体部102に固定される。また、Oリング107が内管101と本体部102との間の隙間を封止する真空シールとして機能する。 取 り 付 け る When attaching the inner tube 101 to the main body 102, first, attach the O-ring 107 near the upstream end of the inner tube 101. Then, the inner tube 101 is inserted from the upstream end of the main body 102, and the O-ring 107 is adjusted so as to be located at the upstream end of the main body 102. Then, the upstream end of the inner pipe 101 is inserted into a hole formed in the center of the holding flange 103. Thereafter, the holding flange 103 is fixed to the main body 102 by pressing the downstream end face of the holding flange 103 against the main body 102 and crushing the O-ring 107 while screwing the holding flange 103 from the upstream end side. Thereby, the inner tube 101 is fixed to the main body 102. Further, the O-ring 107 functions as a vacuum seal that seals a gap between the inner tube 101 and the main body 102.
 内管101はさらに、本体部102の第2円筒部102dにおいて本体部102に固定される。上述の通り、本体部102の内径は下流側において内管101の外径よりも大きく構成される。このため、内管101を本体部102に挿通すると、内管101は、保持フランジ103を支点とする片持ち状態となる。このため、内管101の下流側部分において、本体部102の内周面と内管101の外周面との間の間隔が円周にわたって一定とならない。そこで、第2円筒部102dに形成された横穴に調整ネジ104をねじ込むことで、本体部102の内周面と内管101の外周面との間の間隔が周方向にわたって均一となるよう調整する。 The inner tube 101 is further fixed to the main body 102 at the second cylindrical portion 102d of the main body 102. As described above, the inner diameter of the main body 102 is configured to be larger than the outer diameter of the inner tube 101 on the downstream side. Therefore, when the inner pipe 101 is inserted into the main body 102, the inner pipe 101 is in a cantilever state with the holding flange 103 as a fulcrum. For this reason, in the downstream portion of the inner pipe 101, the interval between the inner peripheral surface of the main body 102 and the outer peripheral surface of the inner pipe 101 is not constant over the circumference. Then, by screwing the adjusting screw 104 into the lateral hole formed in the second cylindrical portion 102d, the distance between the inner peripheral surface of the main body 102 and the outer peripheral surface of the inner tube 101 is adjusted to be uniform in the circumferential direction. .
<カソード部200の構成の一例>
 カソード部200は、本体部201と、カバー202と、スペーサ203と、を有する。
<Example of configuration of cathode unit 200>
The cathode section 200 has a main body section 201, a cover 202, and a spacer 203.
 本体部201は中空円筒形状の部材である。本体部201の軸心に沿って形成される円筒状の空間には、輸送管部100の第2円筒部102dが収容される。第2円筒部102dを収容する際は、本体部201と第2円筒部102dとの間にOリング204を挟み込んで、真空シール機能が発揮されるように構成する。本体部201の内周面上には、輸送管部100の第2円筒部102dのねじ切り面と螺合するネジ部201aが形成される。ネジ部201aは、本体部201の内周上流側に形成される。また、本体部201の内周下流側は、第2円筒部102dの外径と嵌め合い寸法となっている。 The main body 201 is a hollow cylindrical member. The second cylindrical portion 102d of the transport pipe portion 100 is accommodated in a cylindrical space formed along the axis of the main body 201. When accommodating the second cylindrical portion 102d, the O-ring 204 is interposed between the main body portion 201 and the second cylindrical portion 102d so that a vacuum sealing function is exhibited. On the inner peripheral surface of the main body part 201, a screw part 201a to be screwed with the threaded surface of the second cylindrical part 102d of the transport pipe part 100 is formed. The screw part 201a is formed on the inner peripheral upstream side of the main body part 201. Further, the inner peripheral downstream side of the main body 201 has a size fitting with the outer diameter of the second cylindrical portion 102d.
 本体部201の内周下流端には、径方向内側に向かって突出する突起部201bが形成される。突起部201bは、内径がカソードCの筒部C1の外径と嵌め合い寸法となるよう構成される。また、ネジ部201aおよび突起部201bが形成されていない部分においては、本体部201の内径はカソードCの突起部C2の外径と略同一である。 突起 At the inner peripheral downstream end of the main body 201, a protruding portion 201b protruding radially inward is formed. The protrusion 201b is configured such that the inner diameter is fitted to the outer diameter of the cylindrical portion C1 of the cathode C. In a portion where the screw portion 201a and the protrusion 201b are not formed, the inner diameter of the main body 201 is substantially the same as the outer diameter of the protrusion C2 of the cathode C.
 本体部201にはまた、冷却媒体CMが流れる空間206が形成される。空間206は少なくとも2つの管路207と連通し、管路207を介して冷却媒体CMが循環する。空間206および管路207は、冷却部6の一部を構成する。なお、図2には1つの管路207のみ示す。 空間 A space 206 through which the cooling medium CM flows is also formed in the main body 201. The space 206 communicates with at least two pipes 207, and the cooling medium CM circulates through the pipes 207. The space 206 and the pipeline 207 constitute a part of the cooling unit 6. FIG. 2 shows only one conduit 207.
 カバー202は、本体部201を外周側から覆う円筒状の部材である。カバー202は絶縁性材料で形成される。本体部201の外周近傍上流側端面にはOリング溝210が設けられ、カバー202を本体部201に装着する際は、両者の間にOリングを挟み込んだうえで固定する。カバー202の軸方向長さは、カバー202を本体部201の外周に装着した場合に、カバー202の下流端が本体部201の下流端よりも下流側に位置するように設定される。図2の例では、カバー202の軸方向長さは、本体部201にスペーサ203を固定した状態でカバー202を装着すると、本体部201およびスペーサ203の全体がカバー202に覆われるような長さに設定されている。なお、本体部201にスペーサ203を固定するための手段は特に限定されない。 The cover 202 is a cylindrical member that covers the main body 201 from the outer peripheral side. The cover 202 is formed of an insulating material. An O-ring groove 210 is provided on the upstream end surface near the outer periphery of the main body 201, and when the cover 202 is mounted on the main body 201, the O-ring is sandwiched between the two and fixed. The axial length of the cover 202 is set such that the downstream end of the cover 202 is located downstream of the downstream end of the main body 201 when the cover 202 is mounted on the outer periphery of the main body 201. In the example of FIG. 2, the axial length of the cover 202 is such that when the cover 202 is mounted with the spacer 203 fixed to the main body 201, the entire main body 201 and the spacer 203 are covered by the cover 202. Is set to The means for fixing the spacer 203 to the main body 201 is not particularly limited.
 スペーサ203に接触するカバー202の下流端近傍には、周方向に沿って均一間隔に複数の横穴212が形成される。横穴212は、カバー202の内周から外周に向けて径方向中央近傍までに延びる。さらに、横穴212と連通し、横穴212とともにカバー202を径方向に貫通するネジ部213が形成される。ネジ部213はねじ切りされた穴である。ネジ部213は、キャリアガス供給部4からキャリアガスを供給する管部のねじ切り端と螺合する。ネジ部213はたとえば、チューブフィッティングと係合するよう構成される。 横 Near the downstream end of the cover 202 which comes into contact with the spacer 203, a plurality of lateral holes 212 are formed at equal intervals along the circumferential direction. The lateral hole 212 extends from the inner circumference to the outer circumference of the cover 202 to near the center in the radial direction. Further, a screw portion 213 communicating with the lateral hole 212 and penetrating the cover 202 in the radial direction together with the lateral hole 212 is formed. The screw portion 213 is a threaded hole. The screw part 213 is screwed with a threaded end of a pipe part for supplying the carrier gas from the carrier gas supply part 4. The thread 213 is configured to engage with, for example, a tube fitting.
 スペーサ203は、リング形状の絶縁性部材である。スペーサ203は、外周上に周方向に形成された溝を有する。溝の底面には複数の孔211が周方向に均一の間隔をおいて形成される。複数の孔211は、溝の底面から内周面まで径方向にスペーサ203を貫通する。カバー202に形成される横穴212およびネジ部213から導入されるキャリアガスは、スペーサ203とカバー202の間にスペーサ203の溝によって形成される空間に入り込み、複数の孔211を通ってカソードCとアノードAの間に供給される。スペーサ203およびカバー202は絶縁性部材で構成されているため、カソードCと周囲とが絶縁された状態が維持される。カソードCとアノードAとの間も電気的に分離された状態が維持される。 The spacer 203 is a ring-shaped insulating member. The spacer 203 has a groove formed on the outer circumference in the circumferential direction. A plurality of holes 211 are formed on the bottom surface of the groove at uniform intervals in the circumferential direction. The plurality of holes 211 penetrate the spacer 203 in the radial direction from the bottom surface of the groove to the inner peripheral surface. The carrier gas introduced from the lateral hole 212 and the screw portion 213 formed in the cover 202 enters the space formed by the groove of the spacer 203 between the spacer 203 and the cover 202, and passes through the plurality of holes 211 to connect with the cathode C. It is supplied between the anodes A. Since the spacer 203 and the cover 202 are made of an insulating material, the state where the cathode C and the surroundings are insulated is maintained. The electrically separated state is maintained between the cathode C and the anode A.
<アノード部300の構成の一例>
 アノード部300は、軸心に沿って筒状の孔が形成される円筒状部材である。アノード部300の内径は、アノードAの筒部A1の外径と略同一の大きさに形成される。アノード部300の外径は、カソード部200のカバー202の外径と略同一である。
<Example of configuration of anode unit 300>
The anode section 300 is a cylindrical member having a cylindrical hole formed along the axis. The inner diameter of the anode part 300 is formed to be substantially the same size as the outer diameter of the cylindrical part A1 of the anode A. The outer diameter of the anode section 300 is substantially the same as the outer diameter of the cover 202 of the cathode section 200.
 アノード部300の上流端面は、アノードAの突起部A2が係止する大きさに形成される。アノード部300の上流端面には、外縁にカバー202の下流端面と略同一の径方向寸法を有するリング状の突起部301が設けられている。突起部301の内径は、アノードAの突起部A2の外径と略同一である。突起部301により形成される、アノード部300の上流端面の段差は、アノード部300にアノードAを取り付ける際の位置決め部として機能する。 上流 The upstream end face of the anode part 300 is formed in a size that the projection A2 of the anode A is locked. A ring-shaped projection 301 having substantially the same radial dimension as the downstream end face of the cover 202 is provided on the outer edge of the upstream end face of the anode section 300. The inner diameter of the protrusion 301 is substantially the same as the outer diameter of the protrusion A2 of the anode A. The step formed on the upstream end face of the anode section 300 formed by the projection section 301 functions as a positioning section when the anode A is attached to the anode section 300.
 アノード部300の上流端面の、アノードAが接触する部分とカバー202が接触する部分のそれぞれに、Oリング溝302、303が形成される。Oリング溝302、303には、アノード部300をカソード部200に取り付ける際にOリングが配置される。Oリングが押圧されることにより、カソード部200とアノード部300との間が封止される。また、図2の例では、カバー202の外周面の一部を切り欠いてネジ部214が形成されており、ネジ部214においてネジによりカバー202とアノード部300とをねじ止めしている。 O- ring grooves 302 and 303 are formed on the upstream end face of the anode section 300 at the portion where the anode A contacts and the portion where the cover 202 contacts. O-rings are arranged in the O- ring grooves 302 and 303 when the anode unit 300 is attached to the cathode unit 200. When the O-ring is pressed, the space between the cathode section 200 and the anode section 300 is sealed. Further, in the example of FIG. 2, a screw part 214 is formed by cutting out a part of the outer peripheral surface of the cover 202, and the cover 202 and the anode part 300 are screwed with the screw part 214 by a screw.
 また、アノード部300には、冷却媒体CMが流れる空間304が形成される。空間304は少なくとも2つの管路305と連通し、管路305を介して冷却媒体CMが循環する。空間304および管路305は、冷却部6の一部を構成する。なお、図2には、1つの管路305のみを示す。 {Circle around (3)} A space 304 through which the cooling medium CM flows is formed in the anode section 300. The space 304 communicates with at least two pipes 305, through which the cooling medium CM circulates. The space 304 and the conduit 305 constitute a part of the cooling unit 6. FIG. 2 shows only one conduit 305.
 また、アノード部300の下流端には、溶射ガン1をチャンバ7に固定するためのフランジ306が設けられる。フランジ306は、アノード部300の下流端において径方向外側に延びる突起部である。フランジ306には軸方向にフランジ306を貫通するネジ穴が形成されており、当該ネジ穴を利用して溶射ガン1をチャンバ7にねじ止めすることができる。 フ ラ ン ジ Furthermore, a flange 306 for fixing the thermal spray gun 1 to the chamber 7 is provided at a downstream end of the anode part 300. The flange 306 is a projection that extends radially outward at the downstream end of the anode unit 300. A screw hole is formed in the flange 306 so as to penetrate the flange 306 in the axial direction. The thermal spray gun 1 can be screwed to the chamber 7 using the screw hole.
<ユニット構造>
 図5は、実施形態に係る溶射ガン1のユニット構造について説明するための図である。図5は、溶射ガン1を輸送管部100、カソードC、カソード部200、アノードA、アノード部300に分解した状態を示す。
<Unit structure>
FIG. 5 is a diagram for describing a unit structure of the thermal spray gun 1 according to the embodiment. FIG. 5 shows a state in which the thermal spray gun 1 is disassembled into a transport pipe section 100, a cathode C, a cathode section 200, an anode A, and an anode section 300.
 輸送管部100は、カソード部200に対して軸心を回転軸として回転させることにより、カソード部200から取り外すことができる。輸送管部100とカソード部200とは、カソード部200の本体部201に形成されたネジ部201aと輸送管部100の第2円筒部102dに形成されたねじ切り面とが螺合することにより相互に固定されている。したがって、輸送管部100の軸心を回転軸として輸送管部100全体を回転させることにより、容易に輸送管部100をカソード部200から取り外すことができる。 (4) The transport pipe section 100 can be detached from the cathode section 200 by rotating the transport section 100 about the cathode section 200 around the axis. The transport pipe section 100 and the cathode section 200 are mutually connected by screwing a screw section 201a formed on the main body section 201 of the cathode section 200 and a threaded surface formed on the second cylindrical section 102d of the transport pipe section 100. It is fixed to. Therefore, the transport pipe 100 can be easily detached from the cathode 200 by rotating the entire transport pipe 100 around the axis of the transport pipe 100 as a rotation axis.
 輸送管部100をカソード部200から取り外すと、カソード部200の本体部201内に収容されているカソードCが露出する。カソードCは、本体部201の突起部201bに係止した状態で保持されているため、上流側から容易に取り出すことができる。このため、カソードCの交換や保守を容易に行うことができる。なお、カソードCが溶射ガン1内に収容されているときは、カソードCの上から輸送管部100が装着されることによりカソードCと本体部201とが密着し熱伝達が良好に行われる。 取 り 外 す When the transport pipe 100 is removed from the cathode 200, the cathode C housed in the main body 201 of the cathode 200 is exposed. Since the cathode C is held in a state of being locked to the projection 201b of the main body 201, it can be easily taken out from the upstream side. Therefore, replacement and maintenance of the cathode C can be easily performed. When the cathode C is housed in the thermal spray gun 1, the transport tube 100 is mounted from above the cathode C, so that the cathode C and the main body 201 are in close contact with each other, and heat transfer is performed well.
 さらに、アノード部300は、カソード部200のカバー202とアノード部300とを締着しているネジ部214のネジを緩めることにより、容易にカソード部200から取り外すことができる。また、アノードAは、アノード部300の上流端面に突起部A2を載置することでアノード部300に係止されている。このため、アノード部300をカソード部200から取り外すと、アノードAを容易に取り出すことができる。このため、アノードAの交換や保守を容易に行うことができる。 (4) Further, the anode part 300 can be easily removed from the cathode part 200 by loosening the screw of the screw part 214 that fastens the cover 202 of the cathode part 200 and the anode part 300. Further, the anode A is locked to the anode unit 300 by placing the protrusion A2 on the upstream end surface of the anode unit 300. Therefore, when the anode section 300 is detached from the cathode section 200, the anode A can be easily taken out. Therefore, replacement and maintenance of the anode A can be easily performed.
 このように、輸送管部100、アノード部300それぞれを一体としてカソード部200から取り外すことができる。このため、アノードAおよびカソードCの交換および保守のために細かく溶射ガン1を分解する手間が必要なく、アノードAおよびカソードCの交換および保守を容易に行うことができる。 Thus, the transport tube 100 and the anode 300 can be integrally removed from the cathode 200. Therefore, there is no need to disassemble the thermal spray gun 1 finely for replacement and maintenance of the anode A and the cathode C, and replacement and maintenance of the anode A and the cathode C can be easily performed.
 また、輸送管部100をカソード部200から容易に取り外すことができるため、内管101の交換や保守も容易に行うことができる。内管101は輸送管部100に対して、保持フランジ103、ネジ、Oリング(第1の係止部)および調整ネジ104(第2の係止部)によって固定されている。保持フランジ103は、輸送管部100をカソード部200から取り外さなくともネジを外すことで容易に取り外し可能である。また、調整ネジ104は、輸送管部100をカソード部200から取り外すことで外側に露出するため、容易に取り外すことができる。このため、仮に内管101に溶射材料の付着等が生じた場合であっても、内管101を容易に取り外して交換や保守を容易に行うことができる。 Further, since the transport pipe section 100 can be easily removed from the cathode section 200, replacement and maintenance of the inner pipe 101 can be easily performed. The inner pipe 101 is fixed to the transport pipe section 100 by a holding flange 103, a screw, an O-ring (first locking portion), and an adjusting screw 104 (second locking portion). The holding flange 103 can be easily removed by removing a screw without removing the transport pipe section 100 from the cathode section 200. The adjusting screw 104 can be easily removed because the adjusting screw 104 is exposed to the outside by removing the transport pipe section 100 from the cathode section 200. Therefore, even if the thermal spray material adheres to the inner tube 101, the inner tube 101 can be easily removed, and replacement and maintenance can be easily performed.
<実施形態における二重管構造>
 次に、実施形態に係る溶射ガン1が備える二重管構造についてさらに説明する。図6Aおよび図6Bは、実施形態に係る溶射ガン1における二重管構造について説明するための図である。ここで、二重管構造とは、溶射材料が通過する流路の外側に断熱ガスが通過する流路を設けたものである。二重管構造は、溶射ガン1の部材の昇温を抑制して溶射材料の堆積を抑制することにより、溶射装置の性能を向上させる。
<Double tube structure in the embodiment>
Next, the double pipe structure provided in the thermal spray gun 1 according to the embodiment will be further described. 6A and 6B are views for explaining a double-pipe structure in the thermal spray gun 1 according to the embodiment. Here, the double tube structure is one in which a flow path through which a heat insulating gas passes is provided outside a flow path through which the thermal spray material passes. The double tube structure improves the performance of the thermal spraying device by suppressing the temperature rise of the members of the thermal spray gun 1 and suppressing the deposition of the thermal spray material.
 図6Aは、実施形態に係る溶射ガン1内に形成される複数の流路を示す概略断面図である。図6Bは、実施形態に係る溶射ガン1内に形成される複数の流路を示す概略図である。 FIG. 6A is a schematic cross-sectional view showing a plurality of flow paths formed in the thermal spray gun 1 according to the embodiment. FIG. 6B is a schematic diagram illustrating a plurality of flow paths formed in the thermal spray gun 1 according to the embodiment.
 図6Aは、本体部102およびカソードC内に内管101を挿通した状態におけるカソードC近傍の状態を示す。図6Aの状態においては、内管101は、輸送管部100の本体部102内を通過してカソードCの下流端まで延びている。内管101は、軸心が本体部102およびカソードCの軸心と略一致するように固定されている。すなわち、内管101は、本体部102の上流端においてOリング107を介して保持フランジ103に係止されるとともに、下流側所定の位置において調整ネジ104によって第2円筒部102dに固定されている。 FIG. 6A shows a state near the cathode C in a state where the inner tube 101 is inserted into the main body 102 and the cathode C. In the state of FIG. 6A, the inner pipe 101 extends to the downstream end of the cathode C through the inside of the main body 102 of the transport pipe 100. The inner tube 101 is fixed so that the axis thereof substantially coincides with the axis of the main body 102 and the cathode C. That is, the inner tube 101 is locked to the holding flange 103 via the O-ring 107 at the upstream end of the main body 102, and is fixed to the second cylindrical portion 102d by the adjusting screw 104 at a predetermined position on the downstream side. .
 内管101が図6Aのように装着されているとき、溶射ガン1の中には軸方向に延びる二つの流路が形成される。一つは、カソードCの軸中心に沿って形成される第1の流路F1である。もう一つは、第1の流路F1の径方向外側に形成されて少なくとも一部がカソードCに包囲される第2の流路F2である。 と き When the inner tube 101 is mounted as shown in FIG. 6A, two flow paths extending in the axial direction are formed in the spray gun 1. One is a first flow path F1 formed along the axial center of the cathode C. The other is a second flow path F2 formed outside the first flow path F1 in the radial direction and at least partially surrounded by the cathode C.
 第1の流路F1は、内管101の内側に形成される流路である。第1の流路F1は、輸送管部100およびカソードCの軸心に沿って軸方向にカソードCの下流端まで延びる。第1の流路F1の上流端は、溶射材料供給部2に接続される。溶射材料供給部2から供給される溶射材料は、第1の流路F1を通って下流へと送られる。 The first flow path F1 is a flow path formed inside the inner pipe 101. The first flow path F1 extends axially to the downstream end of the cathode C along the axis of the transport pipe 100 and the cathode C. The upstream end of the first flow path F1 is connected to the thermal spray material supply unit 2. The thermal spray material supplied from the thermal spray material supply unit 2 is sent downstream through the first flow path F1.
 第2の流路F2は、内管101の外周と本体部102の内周およびカソードCの内周との間に形成される流路である。上述のように、本体部102の内径は下流側において内管101の外径よりも1mmから2mm程度大きくなるよう構成されている。このため、本体部102の下流側において、内管101の外周と本体部102の内周との間に1~2mm程度の幅の断面リング形状の第2の流路F2が形成される(図6B参照)。本体部102内には、第1円筒部102cを径方向に貫通する横穴110およびネジ部111(図2参照)を介して断熱ガスが供給される。横穴110およびネジ部111は、第2の流路F2と連通するように構成される。このため、カソードCの上流に配置される輸送管部100の任意の箇所から下流に向けて、第2の流路F2に断熱ガスを流すことができる。図6Aにおいては、溶射材料の流れを白抜きの矢印で示し、断熱ガスの流れを点線の矢印で示している。 The second flow path F2 is a flow path formed between the outer circumference of the inner tube 101, the inner circumference of the main body 102, and the inner circumference of the cathode C. As described above, the inner diameter of the main body 102 is configured to be larger by about 1 mm to 2 mm than the outer diameter of the inner tube 101 on the downstream side. Therefore, on the downstream side of the main body 102, a second flow path F2 having a ring-shaped cross section with a width of about 1 to 2 mm is formed between the outer circumference of the inner tube 101 and the inner circumference of the main body 102. 6B). Insulation gas is supplied into the main body 102 through a lateral hole 110 and a screw portion 111 (see FIG. 2) penetrating the first cylindrical portion 102c in the radial direction. The lateral hole 110 and the screw portion 111 are configured to communicate with the second flow path F2. Therefore, the heat-insulating gas can flow through the second flow path F2 from any portion of the transport pipe section 100 disposed upstream of the cathode C to the downstream. In FIG. 6A, the flow of the thermal spray material is indicated by a white arrow, and the flow of the heat insulating gas is indicated by a dotted arrow.
 第2の流路F2の中には、調整ネジ104の少なくとも一部が突出し、内管101を径方向外側から内側に向けて押圧することで固定している。 調整 At least a portion of the adjusting screw 104 protrudes into the second flow path F2, and is fixed by pressing the inner tube 101 from the outside in the radial direction to the inside.
 このように、溶射材料が通過する流路を断熱ガスが流れる流路で包囲した二重管構造とすることで、第2の流路F2を流れる断熱ガスが断熱層の役割を果たす。このため、第1の流路F1を構成する壁面の温度(内管101の温度)は、第2の流路F2の外周の温度(カソードCの内周、第2円筒部102dの内周の温度)と比べて著しく低下する。このため、溶射材料が第1の流路F1の壁面に接触したとしても付着する割合を大幅に低減することができる。このため、溶射ガン1内に溶射材料が詰まることにより発生する溶融不良を回避し、詰まりが発生するまでの時間を大幅に増加させることができる。 Thus, by forming the flow path through which the thermal spray material passes through the double pipe structure surrounded by the flow path through which the heat insulating gas flows, the heat insulating gas flowing through the second flow path F2 serves as a heat insulating layer. For this reason, the temperature of the wall surface (the temperature of the inner tube 101) constituting the first flow path F1 is equal to the temperature of the outer circumference of the second flow path F2 (the inner circumference of the cathode C and the inner circumference of the second cylindrical portion 102d). Temperature). For this reason, even if the thermal spray material contacts the wall surface of the first flow path F1, the rate of adhesion can be significantly reduced. For this reason, it is possible to avoid poor melting caused by clogging of the thermal spraying gun 1 with the thermal spray material, and it is possible to greatly increase the time until the clogging occurs.
<流速分布>
 上記のように、実施形態の二重管構造によりカソードCや第2円筒部102dに溶射材料が付着することがなく、内管101への溶射材料の付着も断熱ガスの昇温抑制効果により、大幅に減少させることができる。さらに、実施形態に係る溶射ガン1は、断熱ガスの効果によりアノードAへの溶射材料の付着も抑制することができる。
<Flow velocity distribution>
As described above, the sprayed material does not adhere to the cathode C and the second cylindrical portion 102d due to the double tube structure of the embodiment, and the sprayed material adheres to the inner tube 101 due to the effect of suppressing the temperature rise of the insulating gas. It can be greatly reduced. Furthermore, the thermal spray gun 1 according to the embodiment can also suppress the adhesion of the thermal spray material to the anode A due to the effect of the heat insulating gas.
 安定したプラズマ炎を生成するためには、アノードAの出口(噴出口)における流速分布は、軸心よりも外側の流速が大きくなる方がよいことが知られている。そして、外側の流速を大きくすることでさらに、アノードAの壁面への溶射材料の付着が抑えられる。 It is known that in order to generate a stable plasma flame, the flow velocity distribution at the outlet (jet port) of the anode A should be such that the flow velocity outside the axis is larger. By increasing the flow rate on the outside, the adhesion of the sprayed material to the wall surface of the anode A can be further suppressed.
 上記のように、実施形態に係る溶射ガン1は、溶射材料が流れる第1の流路F1に加えて、断熱ガスが流れる第2の流路F2を軸方向に延在するように設ける。このため、カソードCの下流側において、溶射材料(および作動ガス)、スペーサ203を介して供給されるキャリアガスのほか、断熱ガスが噴射口方向に送出される。図7Aは、実施形態に係る溶射ガン1における流速分布の一例を示す図である。 As described above, in the thermal spray gun 1 according to the embodiment, in addition to the first flow path F1 through which the thermal spray material flows, the second flow path F2 through which the heat insulating gas flows is provided to extend in the axial direction. Therefore, on the downstream side of the cathode C, the thermal spray material (and the working gas), the carrier gas supplied via the spacer 203, and the adiabatic gas are sent out toward the injection port. FIG. 7A is a diagram illustrating an example of a flow velocity distribution in the thermal spray gun 1 according to the embodiment.
 図7Aに示すように、溶射ガン1においては、カソードCとアノードAの間に送出されるキャリアガスに加えて、第2の流路F2を介して断熱ガスが送出される。このため、カソードCの下流側において断熱ガスとキャリアガスが混合し、アノードAの噴射口において軸心よりも径方向外側の流速が大きくなる。 As shown in FIG. 7A, in the thermal spray gun 1, in addition to the carrier gas delivered between the cathode C and the anode A, the heat insulating gas is delivered via the second flow path F2. For this reason, the heat insulating gas and the carrier gas are mixed on the downstream side of the cathode C, and the flow velocity radially outside the axis at the injection port of the anode A is increased.
 これに対し、図7Bは、実施形態に係る二重管構造をもたない溶射ガンにおける流速分布の一例を示す図である。図7Bに示すように二重管構造をもたない場合であっても、キャリアガスの導入により、アノードAの噴射口における流速分布は、軸心よりも径方向外側の流速が大きい状態とはなっている。しかし、図7Aに示す実施形態の場合と比較すると、断熱ガスによる流速の増加がない分だけ、図7Bの流速分布においては、径方向外側の流速が小さい。このように、実施形態に係る二重管構造によれば、アノードAの噴射口における流速分布をさらに好ましい状態に変化させることで、アノードAの壁面への溶射材料の付着をさらに抑制するという好ましい効果が得られる。 On the other hand, FIG. 7B is a diagram illustrating an example of a flow velocity distribution in a thermal spraying gun having no double tube structure according to the embodiment. As shown in FIG. 7B, even when the structure does not have the double pipe structure, the flow velocity distribution at the injection port of the anode A is larger than the flow velocity at the radially outer side than the axial center due to the introduction of the carrier gas. Has become. However, compared to the embodiment shown in FIG. 7A, the radially outer flow velocity is smaller in the flow velocity distribution of FIG. 7B because there is no increase in the flow velocity due to the insulating gas. As described above, according to the double-pipe structure according to the embodiment, by changing the flow velocity distribution in the injection port of the anode A to a more preferable state, it is preferable to further suppress the adhesion of the sprayed material to the wall surface of the anode A. The effect is obtained.
<変形例>
<調整ネジ104の位置>
 なお、調整ネジ104をねじ入れるための横穴を形成する位置は、内管101を安定して保持するためには、できるだけ下流側にすることが好ましい。また、内管101を下流側で固定することにより、カソードC付近での溶射材料の流れの乱れを抑止することができ、溶射皮膜の品質を安定させることができる。ただし、横穴に取り付けられた調整ネジ104を介した内管101への伝熱を抑制する観点からは、高温となるカソードCからできるだけ離れた位置に横穴を形成することが好ましい。したがって、横穴を形成する位置は、内管101の材質や長さ、調整ネジ104の材質等に応じて適宜調整することが好ましい。
<Modification>
<Position of adjustment screw 104>
It is preferable that the position where the horizontal hole for screwing the adjustment screw 104 is formed be as downstream as possible in order to stably hold the inner tube 101. Further, by fixing the inner tube 101 on the downstream side, disturbance of the flow of the thermal spray material near the cathode C can be suppressed, and the quality of the thermal spray coating can be stabilized. However, from the viewpoint of suppressing heat transfer to the inner tube 101 via the adjustment screw 104 attached to the side hole, it is preferable to form the side hole as far as possible from the cathode C where the temperature becomes high. Therefore, it is preferable to appropriately adjust the position where the lateral hole is formed according to the material and length of the inner tube 101, the material of the adjusting screw 104, and the like.
<断熱ガスの流路の構成>
 断熱ガスを挿入する横穴110を形成する位置についても、内管101の長さや材質等に応じて変更することができる。図2の例においては、横穴110を第1円筒部102cに設けるものとしたが、これに限定されず、横穴110をさらに上流側または下流側に設けるものとしてもよい。
<Structure of heat insulating gas flow path>
The position where the horizontal hole 110 for inserting the heat-insulating gas is formed can also be changed according to the length and material of the inner tube 101. In the example of FIG. 2, the side hole 110 is provided in the first cylindrical portion 102c, but the present invention is not limited to this, and the side hole 110 may be provided further upstream or downstream.
<その他>
 また、カソードCの内径および外径、内管101の内径、外径および肉厚、アノードAの内径および外径等も、溶射する材料等に応じて適宜変更することができる。
<Others>
Further, the inner diameter and outer diameter of the cathode C, the inner diameter, the outer diameter and the thickness of the inner tube 101, the inner diameter and the outer diameter of the anode A, and the like can be appropriately changed according to the material to be sprayed.
 また、溶射ガン1において使用する溶射材料の種類も特に限定されない。 種類 In addition, the type of thermal spray material used in thermal spray gun 1 is not particularly limited.
<実施形態の効果>
 上記のように、実施形態に係る溶射装置1000は、カソードCと、アノードAと、内管101とを備える。カソードCは略円筒状であり、軸心に沿って溶射材料が通過する流路が形成される。アノードAは、カソードCの下流端に対向して配置され、カソードCとの間にアーク放電によりプラズマを生成する。内管101は、カソードCおよびアノードAの軸心と軸心が略一致するよう配置され、カソードC内に少なくとも2つの流路F1,F2を形成する。内管101が形成する少なくとも2つの流路F1,F2は、当該内管101内に、カソードCの軸心に沿って溶射材料を通過させる第1の流路F1を含む。また、内管101が形成する少なくとも2つの流路F1,F2は、当該内管101外に、第1の流路F1の径方向外側に形成され少なくとも一部がカソードCに包囲され、断熱ガスを通過させる第2の流路F2を含む。このように、溶射材料が流れる流路の外側に断熱ガスが流れる流路を設けたことで、溶射装置1000の溶射性能を向上させることができる。すなわち、カソードCの温度に比して内管101の温度の上昇が抑制され、溶射材料が内管101に接触した場合でもそのまま付着することを防止することができる。このため、溶射ガン1内での溶射材料の堆積による処理効率の低下を抑制することができる。
<Effects of Embodiment>
As described above, the thermal spraying apparatus 1000 according to the embodiment includes the cathode C, the anode A, and the inner tube 101. The cathode C has a substantially cylindrical shape, and a flow path through which the thermal spray material passes is formed along the axis. The anode A is arranged to face the downstream end of the cathode C, and generates plasma with the cathode C by arc discharge. The inner tube 101 is arranged so that the axis of the cathode C and the axis of the anode A substantially coincide with each other, and forms at least two flow paths F1 and F2 in the cathode C. At least two flow paths F1 and F2 formed by the inner pipe 101 include a first flow path F1 that allows the thermal spray material to pass through the inner pipe 101 along the axis of the cathode C. Further, at least two flow paths F1 and F2 formed by the inner pipe 101 are formed outside the inner pipe 101 on the radial outside of the first flow path F1, and at least a part of the first flow path F1 is surrounded by the cathode C. And a second flow path F2 through which the fluid flows. As described above, by providing the flow path through which the heat-insulating gas flows outside the flow path through which the thermal spray material flows, the thermal spray performance of the thermal spraying apparatus 1000 can be improved. That is, an increase in the temperature of the inner tube 101 is suppressed as compared with the temperature of the cathode C, and even when the sprayed material comes into contact with the inner tube 101, it can be prevented from adhering as it is. For this reason, it is possible to suppress a decrease in processing efficiency due to the deposition of the thermal spray material in the thermal spray gun 1.
 また、開示する一つの実施形態において、溶射装置1000は、第1の流路F1に溶射材料を供給する第1の供給部(溶射材料供給部2)と、第2の流路F2に断熱ガスを供給する第2の供給部(断熱ガス供給部3)と、カソードCの下流端とアノードAとの間にキャリアガスを供給する第3の供給部(キャリアガス供給部4)と、をさらに備えてもよい。また、溶射装置1000は、第1から第3の供給部からの供給量各々を独立して制御して、アノードAの下流側に排出される気体の流速分布が、アノードAの径方向外側の流速が径方向中心の流速よりも大きい流速分布となるよう調節する制御部13を備える。このため、カソードC表面への溶射材料の付着や堆積だけでなく、アノードA表面への溶射材料の付着や堆積を防止することができる。また、溶射品質を向上させることができる。 Further, in one embodiment to be disclosed, the thermal spraying apparatus 1000 includes a first supply unit (thermal spray material supply unit 2) for supplying a thermal spray material to the first flow path F1, and a thermal insulating gas in the second flow path F2. And a third supply unit (a carrier gas supply unit 4) for supplying a carrier gas between the downstream end of the cathode C and the anode A. May be provided. Further, the thermal spraying apparatus 1000 controls the supply amounts from the first to third supply units independently so that the flow velocity distribution of the gas discharged to the downstream side of the anode A is outside the anode A in the radial direction. The control unit 13 adjusts the flow velocity so as to be a flow velocity distribution larger than the flow velocity at the center in the radial direction. Therefore, it is possible to prevent not only the adhesion and deposition of the thermal spray material on the surface of the cathode C but also the adhesion and deposition of the thermal spray material on the surface of the anode A. Further, the spraying quality can be improved.
 また、開示する一つの実施形態において、溶射装置1000は、カソードCの上流側に配置され、内管101の少なくとも一部を収容し、溶射材料を輸送する輸送管部100と、カソードCを収容するカソード部200と、アノードAを収容するアノード部300と、を備える。そして、輸送管部100は単独で取り外し可能に構成され、輸送管部100を取り外すことによりカソードCを独立して交換可能である。このため、カソードCの交換や保守を容易に実行することができる。 Further, in one disclosed embodiment, the thermal spraying apparatus 1000 is disposed on the upstream side of the cathode C, accommodates at least a part of the inner pipe 101, and accommodates the transport pipe section 100 for transporting the thermal spray material, and accommodates the cathode C. And an anode unit 300 that accommodates the anode A. The transport tube 100 is configured to be detachable independently, and the cathode C can be independently replaced by removing the transport tube 100. Therefore, replacement and maintenance of the cathode C can be easily performed.
 また、開示する一つの実施形態において、アノード部300は単独で取り外し可能に構成され、アノード部300を取り外すことによりアノードAを独立して交換可能である。このため、アノードAの交換や保守を容易に実行することができる。 In addition, in one disclosed embodiment, the anode unit 300 is configured to be independently detachable, and by removing the anode unit 300, the anode A can be replaced independently. Therefore, replacement and maintenance of the anode A can be easily performed.
 また、開示する一つの実施形態において、輸送管部100は、内管101を定位置に収容した状態で、輸送管部100の上流側端部において内管101を輸送管部100に固定する第1の係止部(保持フランジ103、フランジ102a、ネジ、Oリング)、を備える。このため、内管101を容易に輸送管部100に固定することができる。また、内管101とカソードCとの接触を抑制して内管101の昇温を抑制することができ、内管101への溶射材料の付着や堆積を防止することができる。 In one embodiment to be disclosed, the transport pipe 100 is configured to fix the inner pipe 101 to the transport pipe 100 at the upstream end of the transport pipe 100 with the inner pipe 101 housed in a fixed position. 1 locking portion (holding flange 103, flange 102a, screw, O-ring). Therefore, the inner pipe 101 can be easily fixed to the transport pipe section 100. Further, the contact between the inner tube 101 and the cathode C can be suppressed to suppress the temperature rise of the inner tube 101, and the adhesion and deposition of the thermal spray material on the inner tube 101 can be prevented.
 また、開示する一つの実施形態において、輸送管部100は、内管101を、第1の係止部よりも下流側で固定する第2の係止部(調整ネジ104)をさらに備える。このため、溶射装置1000は、内管101をより安定して固定することができる。また、内管101とカソードCとの接触を抑制して内管101の昇温を抑制することができ、内管101への溶射材料の付着や堆積を防止することができる。 In addition, in one disclosed embodiment, the transport pipe section 100 further includes a second locking section (adjustment screw 104) that fixes the inner pipe 101 downstream of the first locking section. Therefore, the thermal spraying apparatus 1000 can fix the inner tube 101 more stably. Further, the contact between the inner tube 101 and the cathode C can be suppressed to suppress the temperature rise of the inner tube 101, and the adhesion and deposition of the thermal spray material on the inner tube 101 can be prevented.
 また、開示する一つの実施形態において、第2の係止部は少なくとも一部が第2の流路F2内に配置される。このように内管101と溶射装置1000の他の部分とを接続する第2の係止部を断熱ガスが流れる第2の流路F2内に配置することで、内管101の昇温をさらに抑制することができる。 In one disclosed embodiment, at least a part of the second locking portion is disposed in the second flow path F2. By arranging the second locking portion connecting the inner tube 101 and the other part of the thermal spraying apparatus 1000 in the second flow path F2 through which the heat-insulating gas flows, the temperature of the inner tube 101 can be further increased. Can be suppressed.
 また、開示する一つの実施形態において、輸送管部100は、内管101を収容する円筒状の空間を有する本体部102を有し、当該円筒状の空間は、上流側において内管101と嵌め合い寸法を有し、下流側において上流側よりも大径を有してもよい。このように本体部102を構成することで、内管101を本体部102に挿通することで、容易に2つの流路をカソードC内に形成することができる。このため、簡易な構成により溶射装置1000の溶射性能を向上させることができる。 Further, in one disclosed embodiment, the transport pipe section 100 has a main body section 102 having a cylindrical space for accommodating the inner pipe 101, and the cylindrical space is fitted with the inner pipe 101 on the upstream side. It may have a matching dimension and have a larger diameter on the downstream side than on the upstream side. By configuring the main body 102 in this way, by inserting the inner tube 101 through the main body 102, two flow paths can be easily formed in the cathode C. Therefore, the thermal spraying performance of the thermal spraying apparatus 1000 can be improved with a simple configuration.
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 実 施 The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. Indeed, the embodiments described above can be embodied in various forms. Further, the above embodiments may be omitted, replaced, or modified in various forms without departing from the scope and spirit of the appended claims.
1000 溶射装置
1 溶射ガン
2 溶射材料供給部
3 断熱ガス供給部
4 キャリアガス供給部
13 制御部
14 記憶部
100 輸送管部
101 内管
102 本体部
102a フランジ
102b 胴細部
102c 第1円筒部
102d 第2円筒部
103 保持フランジ
104 調整ネジ
107 Oリング
110 横穴
111 ネジ部
200 カソード部
201 本体部
201a ネジ部
201b 突起部
202 カバー
203 スペーサ
206 空間
207 管路
211 孔
212 横穴
213 ネジ部
300 アノード部
A アノード
A1 筒部
A2 突起部
C カソード
C1 筒部
C2 突起部
F1 第1の流路
F2 第2の流路
W 対象物
1000 Thermal spraying apparatus 1 Thermal spray gun 2 Thermal spray material supply unit 3 Thermal insulation gas supply unit 4 Carrier gas supply unit 13 Control unit 14 Storage unit 100 Transport pipe unit 101 Inner pipe 102 Main body 102a Flange 102b Body detail 102c First cylindrical part 102d Second Cylindrical part 103 Holding flange 104 Adjusting screw 107 O-ring 110 Side hole 111 Screw part 200 Cathode part 201 Body part 201a Screw part 201b Projection part 202 Cover 203 Spacer 206 Space 207 Pipe line 211 Hole 212 Side hole 213 Screw part 300 Anode part A Anode A1 Tube portion A2 Projection portion C Cathode C1 Tube portion C2 Projection portion F1 First flow path F2 Second flow path W Object

Claims (9)

  1.  軸心に沿って溶射材料が通過する流路が形成される略円筒状のカソードと、
     前記カソードの下流端に対向して配置され、前記カソードとの間にアーク放電によりプラズマを生成するアノードと、
     前記カソードおよび前記アノードの軸心と軸心が略一致するよう配置され、前記カソード内に少なくとも2つの流路を形成する内管と、
     を備え、
     前記内管は、
     当該内管内に、前記カソードの軸心に沿って溶射材料を通過させる第1の流路と、
     当該内管外に、前記第1の流路の径方向外側に形成され少なくとも一部が前記カソードに包囲され、断熱ガスを通過させる第2の流路と、
     を含む前記少なくとも2つの流路を形成する溶射装置。
    A substantially cylindrical cathode in which a flow path through which the sprayed material passes is formed along the axis,
    An anode that is arranged to face a downstream end of the cathode and generates plasma by arc discharge between the cathode and the anode;
    An inner tube arranged so that the axis of the cathode and the axis of the anode substantially coincide with each other, and forming at least two flow paths in the cathode;
    With
    The inner tube is
    A first flow path through which the sprayed material passes along the axis of the cathode in the inner tube;
    Outside the inner tube, a second flow path formed radially outside of the first flow path and at least partially surrounded by the cathode, and passing a heat-insulating gas;
    A thermal spraying device for forming the at least two flow paths.
  2.  前記第1の流路に溶射材料を供給する第1の供給部と、
     前記第2の流路に断熱ガスを供給する第2の供給部と、
     前記カソードの下流端と前記アノードとの間にキャリアガスを供給する第3の供給部と、
     前記第1から第3の供給部からの供給量各々を独立して制御して、前記アノードの下流側に排出される気体の流速分布が、前記アノードの径方向外側の流速が径方向中心の流速よりも大きい流速分布となるよう調節する制御部と、
     をさらに備える請求項1に記載の溶射装置。
    A first supply unit that supplies a thermal spray material to the first flow path;
    A second supply unit that supplies a heat-insulating gas to the second flow path;
    A third supply unit that supplies a carrier gas between the downstream end of the cathode and the anode;
    By independently controlling the supply amounts from the first to third supply units, the flow velocity distribution of the gas discharged to the downstream side of the anode is such that the flow velocity on the radially outer side of the anode is radially centered. A control unit for adjusting the flow velocity distribution to be larger than the flow velocity,
    The thermal spraying apparatus according to claim 1, further comprising:
  3.  前記カソードの上流側に配置され、前記内管の少なくとも一部を収容し、前記溶射材料を輸送する輸送管部と、
     前記カソードを収容するカソード部と、
     前記アノードを収容するアノード部と、
     を備え、
     前記輸送管部は単独で取り外し可能に構成され、前記輸送管部を取り外すことにより前記カソードを独立して交換可能である、
     請求項1または2に記載の溶射装置。
    A transport pipe portion that is disposed on the upstream side of the cathode and accommodates at least a part of the inner pipe, and transports the thermal spray material.
    A cathode section for housing the cathode,
    An anode section that houses the anode;
    With
    The transport tube portion is configured to be independently detachable, and the cathode is independently exchangeable by removing the transport tube portion.
    The thermal spraying device according to claim 1.
  4.  前記カソードの上流側に配置され、前記内管の少なくとも一部を収容し、前記溶射材料を輸送する輸送管部と、
     前記カソードを収容するカソード部と、
     前記アノードを収容するアノード部と、
     を備え、
     前記アノード部は単独で取り外し可能に構成され、前記アノード部を取り外すことにより前記アノードを独立して交換可能である、
     請求項1または2に記載の溶射装置。
    A transport pipe portion that is disposed on the upstream side of the cathode and accommodates at least a part of the inner pipe, and transports the thermal spray material.
    A cathode section for housing the cathode,
    An anode section that houses the anode;
    With
    The anode unit is configured to be independently detachable, and the anode is independently replaceable by removing the anode unit.
    The thermal spraying device according to claim 1.
  5.  前記カソードの上流側に配置され、前記内管の少なくとも一部を収容し、前記溶射材料を輸送する輸送管部と、
     前記カソードを収容するカソード部と、
     前記アノードを収容するアノード部と、
     を備え、
     前記輸送管部は単独で取り外し可能に構成され、前記輸送管部を取り外すことにより前記カソードを独立して交換可能であり、
     前記アノード部は単独で取り外し可能に構成され、前記アノード部を取り外すことにより前記アノードを独立して交換可能である、
     請求項1または2に記載の溶射装置。
    A transport pipe portion that is disposed on the upstream side of the cathode and accommodates at least a part of the inner pipe, and transports the thermal spray material.
    A cathode section for housing the cathode,
    An anode section that houses the anode;
    With
    The transport tube portion is configured to be independently detachable, the cathode can be independently replaced by removing the transport tube portion,
    The anode unit is configured to be independently detachable, and the anode is independently replaceable by removing the anode unit.
    The thermal spraying device according to claim 1.
  6.  前記輸送管部は、
      前記内管を定位置に収容した状態で、前記輸送管部の上流側端部において前記内管を前記輸送管部に固定する第1の係止部、を備える請求項3から5のいずれか1項に記載の溶射装置。
    The transport pipe section,
    6. The apparatus according to claim 3, further comprising a first locking portion that fixes the inner pipe to the transport pipe at an upstream end of the transport pipe in a state where the inner pipe is housed in a fixed position. 7. 2. The thermal spraying apparatus according to claim 1.
  7.  前記輸送管部は、
      前記内管を、前記第1の係止部よりも下流側で固定する第2の係止部をさらに備える請求項6に記載の溶射装置。
    The transport pipe section,
    The thermal spraying device according to claim 6, further comprising a second locking portion that fixes the inner pipe on a downstream side of the first locking portion.
  8.  前記第2の係止部は少なくとも一部が前記第2の流路内に配置される請求項7に記載の溶射装置。 The thermal spraying apparatus according to claim 7, wherein at least a part of the second locking portion is disposed in the second flow path.
  9.  前記輸送管部は、
      前記内管を収容する円筒状の空間を有する本体部を有し、当該円筒状の空間は、上流側において前記内管と嵌め合い寸法を有し、下流側において上流側よりも大径を有する請求項6から8のいずれか1項に記載の溶射装置。
    The transport pipe section,
    A main body having a cylindrical space accommodating the inner tube, the cylindrical space having a fitting size with the inner tube on the upstream side, and having a larger diameter on the downstream side than on the upstream side; The thermal spraying device according to any one of claims 6 to 8.
PCT/JP2019/024348 2018-06-26 2019-06-19 Thermal spraying device WO2020004190A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018120515 2018-06-26
JP2018-120515 2018-06-26

Publications (1)

Publication Number Publication Date
WO2020004190A1 true WO2020004190A1 (en) 2020-01-02

Family

ID=68985031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024348 WO2020004190A1 (en) 2018-06-26 2019-06-19 Thermal spraying device

Country Status (1)

Country Link
WO (1) WO2020004190A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7119048B2 (en) 2015-12-07 2022-08-16 ザイマージェン インコーポレイテッド Improvement of microbial strains by HTP genome manipulation platform

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036692A1 (en) * 1996-03-29 1997-10-09 Metalspray, U.S.A., Inc. Thermal spray systems
JP2001003151A (en) * 1999-06-18 2001-01-09 Agency Of Ind Science & Technol Plasma spraying device
WO2008026479A1 (en) * 2006-09-01 2008-03-06 Kabushiki Kaisha Kobe Seiko Sho Acceleration nozzle and ejection nozzle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036692A1 (en) * 1996-03-29 1997-10-09 Metalspray, U.S.A., Inc. Thermal spray systems
JP2001003151A (en) * 1999-06-18 2001-01-09 Agency Of Ind Science & Technol Plasma spraying device
WO2008026479A1 (en) * 2006-09-01 2008-03-06 Kabushiki Kaisha Kobe Seiko Sho Acceleration nozzle and ejection nozzle device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"The Handbook of thermal spray technology", THE THERMAL SPRAYING SOCIETY OF JAPAN, 30 May 1998 (1998-05-30), pages 134 - 135 , 146-147 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7119048B2 (en) 2015-12-07 2022-08-16 ザイマージェン インコーポレイテッド Improvement of microbial strains by HTP genome manipulation platform

Similar Documents

Publication Publication Date Title
JP7317013B2 (en) Cryogenically cooled rotatable electrostatic chuck
JP4607852B2 (en) Plasma arc torch and assembly and disassembly method of plasma arc torch
KR101413806B1 (en) Showerhead electrode assembly with gas flow modification for extended electrode life
TWI616949B (en) Hybrid ceramic showerhead
CN109256326B (en) Member for plasma processing apparatus and sputtering method thereof
CN111065760B (en) Turbulent vortex multi-zone precursor vaporizer
US8136480B2 (en) Physical vapor deposition system
US9972477B2 (en) Multiple point gas delivery apparatus for etching materials
JP4664679B2 (en) Plasma spraying equipment
US20160074887A1 (en) Plasma spraying apparatus
WO2004079811A1 (en) Plasma processing apparatus and method
WO2020004190A1 (en) Thermal spraying device
JP5515277B2 (en) Plasma spraying equipment
JP4481167B2 (en) Thermal spray equipment
US20150097486A1 (en) Multizone hollow cathode discharge system with coaxial and azimuthal symmetry and with consistent central trigger
JP2007324186A (en) Plasma processing apparatus
KR100805354B1 (en) Vaporizer for liquid source
KR20110083832A (en) Plasma processing apparatus
JP5246542B2 (en) Vacuum deposition system
TWI730407B (en) Ion implantation processes and apparatus using gallium
JP2016143533A (en) Plasma spray apparatus
JP5111348B2 (en) High frequency induction thermal plasma equipment
JP2006100078A (en) Plasma torch
JP4151592B2 (en) Mass spectrometer
WO2015147127A1 (en) Plasma spraying device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP