WO2020004147A1 - Rotary shaft for rotary electronic component, method for manufacturing rotary shaft, and rotary electronic component - Google Patents

Rotary shaft for rotary electronic component, method for manufacturing rotary shaft, and rotary electronic component Download PDF

Info

Publication number
WO2020004147A1
WO2020004147A1 PCT/JP2019/024106 JP2019024106W WO2020004147A1 WO 2020004147 A1 WO2020004147 A1 WO 2020004147A1 JP 2019024106 W JP2019024106 W JP 2019024106W WO 2020004147 A1 WO2020004147 A1 WO 2020004147A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
main body
shaft
rotary
flange
Prior art date
Application number
PCT/JP2019/024106
Other languages
French (fr)
Japanese (ja)
Inventor
正護 床井
吉昭 野村
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020004147A1 publication Critical patent/WO2020004147A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H19/00Switches operated by an operating part which is rotatable about a longitudinal axis thereof and which is acted upon directly by a solid body external to the switch, e.g. by a hand
    • H01H19/02Details
    • H01H19/10Movable parts; Contacts mounted thereon
    • H01H19/20Driving mechanisms allowing angular displacement of the operating part to be effective in either direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H25/00Switches with compound movement of handle or other operating part
    • H01H25/06Operating part movable both angularly and rectilinearly, the rectilinear movement being along the axis of angular movement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/08Controlling members for hand actuation by rotary movement, e.g. hand wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G5/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • G05G5/03Means for enhancing the operator's awareness of arrival of the controlling member at a command or datum position; Providing feel, e.g. means for creating a counterforce

Definitions

  • the present invention relates to a rotary shaft for a rotary electronic component, a method for manufacturing the same, and a rotary electronic component.
  • a rotary shaft for a rotary electronic component there is a rotary shaft described in WO2017 / 169625 (Patent Document 1).
  • This rotary shaft is used for a rotary encoder, and the rotation angle of the rotary shaft is regulated by a regulating member.
  • the flange of the rotating shaft contacts the regulating member.
  • the flange is made of metal
  • the main body other than the flange is made of resin
  • the main body and the flange are insert-molded to form the rotating shaft. It is conceivable to manufacture.
  • the rotary shaft for a rotary electronic component of the present invention A body having a head and legs made of resin, and including a shaft extending in a direction penetrating the head and legs.
  • a bearing hole and a gate mark are provided on the upper surface of the head,
  • the bearing hole extends along the axis of the main body so as to overlap the axis of the main body, When viewed from the axial direction of the main body, at least a part of the gate mark overlaps with the through hole.
  • the rotary shaft for a rotary electronic component of the present invention since the main body portion made of resin and the flange portion made of metal are provided, the rotary shaft is used for the rotary electronic component, and the rotation angle of the rotary shaft is regulated by the regulating member. In this case, wear of the flange of the rotating shaft can be reduced.
  • the member to be measured for rotation can be connected to the bearing hole, and the member to be measured for rotation is rotated together with the rotating shaft, and the rotation amount of the member to be measured for rotation is measured. Can be measured.
  • the gate mark overlaps the through hole, when manufacturing a rotating shaft by insert molding, when injecting resin from the gate of the insert molding die by setting the flange portion to the insert molding die, The resin can smoothly pass through the through hole of the flange, and a good quality rotary shaft can be manufactured by favorably insert-molding the main body and the flange.
  • the shape of the through hole is a polygon when viewed from the axial direction of the main body.
  • the polygon is not limited to a polygon having a perfect corner, but also includes a polygon having a chamfered or rounded corner.
  • the main body attached to the through hole is positioned relative to the flange in the rotation direction.
  • the main body and the flange are an integrated insert molded body.
  • the main body and the flange are integrated insert molded bodies, the quality can be improved.
  • the center of the gate mark overlaps with the through hole when viewed from the axial direction of the main body.
  • the resin when a rotary shaft is manufactured by insert molding, when the resin is injected from the gate of the insert molding die, the resin can more smoothly pass through the through hole of the flange portion, and the rotary shaft of higher quality can be obtained. Can be manufactured.
  • the rotary shaft for a rotary electronic component at least half of the area of the gate mark overlaps with the through hole when viewed from the axial direction of the main body.
  • the resin when a rotary shaft is manufactured by insert molding, when the resin is injected from the gate of the insert molding die, the resin can more smoothly pass through the through hole of the flange portion, and the rotary shaft of higher quality can be obtained. Can be manufactured.
  • the inner surface of the bearing hole is located inside the inner surface of the through hole when viewed from the axial direction of the main body.
  • the resin when a rotary shaft is manufactured by insert molding, when the resin is injected from the gate of the insert molding die, the resin can more smoothly pass through the through hole of the flange portion, and the rotary shaft of higher quality can be obtained. Can be manufactured.
  • the bottom of the bearing hole is located below the upper surface of the flange.
  • the distance between the bearing hole and the flange can be reduced, and when the rotation amount measurement member is connected to the bearing hole to rotate the rotation amount measurement member together with the rotary shaft, the rotation amount rotation member rotates.
  • the moment when transmitting the force to the flange can be reduced.
  • the outer surface of the main body and the inner surface of the bearing hole are: It has portions that are parallel to each other.
  • the thickness of the main body can be ensured in this portion, and the strength of the main body can be ensured.
  • an outer surface shape of the main body and an inner surface shape of the bearing hole are polygonal, and three sides of an inner surface of the bearing hole are It is parallel to the three sides of the outer surface.
  • the thickness of the main body can be secured in the three parallel portions, and the strength of the main body can be further secured.
  • the inner surface of the through hole and the inner surface of the bearing hole are , Portions that are parallel to each other.
  • the thickness of the main body can be ensured at that portion, and the strength of the main body can be ensured.
  • the inner surface shape of the through hole and the inner surface shape of the bearing hole are polygonal, and three sides of the inner surface of the bearing hole are It is parallel to the three sides of the inner surface.
  • the thickness of the main body can be secured in the three parallel portions, and the strength of the main body can be further secured.
  • a part of the upper surface of the flange is covered by the main body,
  • the upper surface side of the inner surface of the through hole has a chamfer.
  • the concentration of the stress that the main body receives from the chamfered portion of the inner surface of the through hole can be reduced.
  • a lower surface side of an inner surface of the through hole has a chamfered portion with which the main body contacts.
  • the flange portion since the main body portion contacts the chamfered portion on the inner surface of the through hole, the flange portion is difficult to come off from the main body portion, and the connection reliability between the flange portion and the main body portion can be improved.
  • a rotary shaft for the rotary electronic component A regulating member for regulating a rotation angle of the rotating shaft by contacting the flange of the rotating shaft.
  • the member to be measured for the amount of rotation can be connected to the rotating shaft, and the quality of the rotating shaft can be improved.
  • a metal plate having a through-hole formed therein Preparing a metal plate having a through-hole formed therein, a step of preparing an insert molding die having a gate communicating with the internal space and the internal space in which the projection for forming a bearing hole is formed, Setting the metal plate in the internal space of the insert molding die so that the through hole overlaps at least a part of the gate and the projection as viewed from a direction orthogonal to the metal plate; Injecting a resin into the internal space from the gate, A step of curing the resin to form an insert molded body of the resin and the metal plate, Removing the insert molded body from the insert mold, Punching the metal plate of the insert molded body into a flange shape.
  • the resin when the metal plate is set in the mold for insert molding and the resin is injected from the gate, the resin can smoothly pass through the through hole of the metal plate, and the resin and the metal plate are preferably insert-molded.
  • a high quality rotary shaft having a bearing hole can be manufactured with good mass productivity.
  • the center of the gate and the through hole overlap with each other when viewed from a direction perpendicular to the metal plate.
  • the resin when injecting the resin from the gate, the resin can pass through the through hole of the flange more smoothly, and a rotary shaft with higher quality can be manufactured.
  • the member to be measured for the amount of rotation can be connected to improve the quality.
  • FIG. 4 is an exploded perspective view of the rotary encoder as viewed from above.
  • FIG. 3 is an exploded perspective view of the rotary encoder as viewed from below. It is sectional drawing of a rotary encoder.
  • FIG. 3 is an exploded perspective view of the encoder mechanism as viewed from below. It is the perspective view seen from the lower part of an encoder mechanism. It is a circuit diagram showing an equivalent circuit of an encoder mechanism.
  • FIG. 4 is a waveform diagram showing an output waveform of an encoder mechanism.
  • FIG. 14A It is a top view of an encoder board, a shaft, and the 1st and 2nd restriction member. It is an exploded perspective view of an encoder board, a click spring, and a pendulum. It is explanatory drawing explaining operation
  • FIG. 14B is a sectional view taken along line BB of FIG. 14B. It is explanatory drawing explaining the method of manufacturing a shaft. It is explanatory drawing explaining the method of manufacturing a shaft. It is explanatory drawing explaining the method of manufacturing a shaft. It is explanatory drawing explaining the method of manufacturing a shaft. It is explanatory drawing explaining the method of manufacturing a shaft. It is explanatory drawing explaining the method of manufacturing a shaft.
  • FIG. 1 is a perspective view of a rotary encoder 1 as an example of a rotary electronic component according to an embodiment of the present invention as viewed from above.
  • FIG. 2 is a perspective view of the rotary encoder 1 as viewed from below.
  • FIG. 3 is an exploded perspective view of the rotary encoder 1 as viewed from above.
  • FIG. 4 is an exploded perspective view of the rotary encoder 1 as viewed from below.
  • FIG. 5 is a sectional view of the rotary encoder 1.
  • the width direction of the rotary encoder 1 is defined as the X direction
  • the length direction of the rotary encoder 1 is defined as the Y direction.
  • the positive direction in the Z direction is the upper side
  • the negative direction in the Z direction is the lower side.
  • the rotary encoder 1 includes a casing 2 and a rotating shaft (hereinafter, referred to as a shaft) attached to the casing 2 so as to be rotatable about an axis and movable along the axis. 3), a regulating member (click spring 55, pendulum 56, 57) for regulating the rotation angle of the shaft 3, an encoder mechanism 6 for detecting the rotation direction and the rotation angle of the shaft 3, and movement along the axis of the shaft 3. And a switch mechanism 7 pressed against the shaft 3 by the
  • the regulating members click spring 55, pendulum 56, 57), encoder mechanism 6, and switch mechanism 7 are arranged in order from the upper side to the lower side along the axis of the shaft 3.
  • the click spring 55 is an example of a contact member.
  • the pendulum 56 is an example of a first contact member
  • the pendulum 57 is an example of a second contact member.
  • the casing 2 is made of, for example, metal.
  • the shaft 3, the regulating member (the click spring 55, the pendulum 56, 57), the encoder mechanism 6, and the switch mechanism 7 are integrally assembled.
  • the casing 2 includes an upper wall 21, side walls 22, 22 provided on both sides of the upper wall 21 in the X direction and extending downward, and a protruding wall provided in the forward direction of the upper wall 21 and extending downward in the Y direction. 23, and a protruding piece 24 provided in the negative direction of the Y direction of the upper wall 21 and extending downward.
  • the upper wall 21 has one hole 21a and four recesses 21b around the hole 21a.
  • the side wall 22 has a hole 22a on the lower side and a groove 22b on the upper side.
  • a locking portion 22c protruding inside the casing 2 is provided on the inner surface of the hole 22a.
  • the protruding wall 23 extends over the entire length of the upper wall 21 in the X direction.
  • the protruding piece 24 is provided at the center of the upper wall 21 in the X direction.
  • the shaft 3 has a head 35, a gear-shaped flange 30, and a leg 36.
  • the head 35 and the leg 36 are made of, for example, resin, and the flange 30 is made of, for example, metal.
  • the head 35, the gear-shaped flange 30 and the legs 36 are arranged in order from the upper side to the lower side along the axis.
  • the gear-shaped flange portion 30 includes a plurality of convex portions 31 and concave portions 32.
  • the plurality of convex portions 31 and concave portions 32 are alternately arranged in the circumferential direction.
  • the head 35 penetrates the hole 21 a of the upper wall 21 of the casing 2.
  • the user can operate the shaft 3 by connecting the measured rotation amount member (not shown) to the head 35 and operating the measured rotation amount member from outside the casing 2. .
  • the encoder mechanism 6 includes an encoder board 60 as an example of a base member, resistor patterns 61, 62, and 63 provided on the encoder board 60, and an electrical circuit provided on the encoder board 60 and electrically connected to the resistor patterns 61, 62, and 63.
  • a moving element 66 is provided to the rotor 65 and slidably contacts the resistor patterns 61, 62, 63.
  • the encoder board 60 is made of, for example, resin.
  • a regulating member (click spring 55, pendulum 56, 57) is attached to the upper surface 60a of the encoder board 60.
  • Protrusions 60b are provided on both sides of the encoder substrate 60 in the X direction.
  • the protrusion 60b is fitted in the groove 22b of the side wall 22 of the casing 2.
  • Both sides of the encoder board 60 in the Y direction are sandwiched between the projecting wall 23 and the projecting piece 24.
  • the encoder board 60 is fixed to the casing 2 by the groove 22 b of the side wall 22, the projecting wall 23, and the projecting piece 24.
  • the groove 22 b of the side wall 22, the protruding wall 23, and the protruding piece 24 constitute an encoder fixing portion for fixing the encoder board 60.
  • the resistor patterns 61, 62, 63 are provided on the lower surface of the encoder board 60.
  • the resistor patterns 61, 62, and 63 are for detecting the rotation direction and the rotation angle of the shaft 3.
  • the first resistor pattern 61, the second resistor pattern 62, and the third resistor pattern 63 are formed in a ring shape and are arranged concentrically.
  • the first resistor pattern 61, the second resistor pattern 62, and the third resistor pattern 63 are arranged in order from the outside in the radial direction to the inside.
  • the first resistor pattern 61 and the second resistor pattern 62 are each formed intermittently.
  • the third resistor pattern 63 is formed continuously.
  • the encoder terminals 601, 602, and 603 are insert-molded on the encoder substrate 60.
  • the first encoder terminal 601 is electrically connected to the first resistor pattern 61
  • the second encoder terminal 602 is electrically connected to the second resistor pattern 62
  • the third encoder terminal 603 is connected to the third resistor pattern 603. It is electrically connected to the body pattern 63.
  • the rotor 65 is positioned in the circumferential direction with respect to the shaft 3 and is movable in the axial direction. More specifically, the rotor 65 has a D-shaped hole 65a. The outer peripheral surface of the leg 36 of the shaft 3 is formed in a D shape. The D-shaped leg 36 is fitted into the D-shaped hole 65a, so that the rotor 65 is fixed to the shaft 3 in the circumferential direction but not in the axial direction.
  • the rotor 65 is formed in a substantially elliptical shape.
  • the rotor 65 has a long diameter portion 651 where the outer diameter of the rotor 65 is a long diameter, and a short diameter portion 652 where the outside diameter of the rotor 65 is a short diameter.
  • the length of the long diameter portion 651 is larger than the gap between the locking portions 22c of the opposing side wall 22, and the length of the short diameter portion 652 is smaller than the gap between the locking portions 22c of the opposing side wall 22.
  • the locking portion 22c is configured such that the short diameter portion 652 is detached without being locked, and the long diameter portion 651 can be disengaged by rotation of the rotor 65.
  • the slider 66 is made of, for example, metal.
  • the slider 66 is fixed to two protrusions 65b on the upper surface of the rotor 65.
  • the slider 66 is formed in an annular shape.
  • the slider 66 has a first contact portion 661, a second contact portion 662, and a third contact portion 663.
  • the first contact part 661, the second contact part 662, and the third contact part 663 are arranged in order from the outside in the radial direction to the inside.
  • the first contact portion 661, the second contact portion 662, and the third contact portion 663 are electrically connected.
  • the first contact portion 661 can contact the first resistor pattern 61
  • the second contact portion 662 can contact the second resistor pattern 62
  • the third contact portion 663 can contact the third resistor pattern 63. Contact is possible.
  • the switch mechanism 7 includes a switch board 70, first to third switch terminals 701, 702, and 703 provided on the switch board 70, and a conductor provided on the switch board 70 and pressed by the leg 36 of the shaft 3. 71.
  • the conductor 71 is electrically connected to the first and second switch terminals 701 and 702.
  • the conductor 71 is pressed by the leg 36 of the shaft 3 and is electrically connected to the third switch terminal 703, and conducts between the first and second switch terminals 701 and 702 and the third switch terminal 703.
  • the switch signal is turned on.
  • each function operates when the switch signal is turned on. Note that only one of the first and second switch terminals 701 and 702 may be provided.
  • Protrusions 70b are provided on both sides of the switch substrate 70 in the X direction.
  • the protrusion 70 b is fitted into the hole 22 a of the side wall 22 of the casing 2.
  • the switch board 70 is fixed to the casing 2 by the hole 22 a of the side wall 22.
  • the hole 22a of the side wall 22 constitutes a switch fixing part for fixing the switch board 70.
  • a step 70c is provided on one side of the lower surface of the switch substrate 70 in the X direction. Ends of the bent encoder terminals 601, 602, and 603 are locked to the step 70c. That is, the encoder board 60 and the switch board 70 are integrally held by the bent encoder terminals 601, 602, and 603.
  • the depth of the step 70c is greater than the thickness of the encoder terminals 601, 602, 603.
  • the lower surface of the switch substrate 70 can be used as the installation surface instead of the encoder terminals 601, 602, and 603.
  • the first to third switch terminals 701, 702, and 703 are insert-molded on the switch substrate 70.
  • the third switch terminal 703 is located between the first switch terminal 701 and the second switch terminal 702.
  • the conductor 71 has elasticity.
  • the conductor 71 is formed in a dome shape.
  • the conductor 71 is fitted into the recess 70 a on the upper surface of the switch board 70.
  • the peripheral portion 71a of the conductor 71 is electrically connected to the first and second switch terminals 701 and 702.
  • the zenith portion 71b of the conductor 71 is separated from the third switch terminal 703 in the free state of the conductor 71, and is pressed by the leg 36 of the shaft 3 to be electrically connected to the third switch terminal 703.
  • the leg 36 of the shaft 3 presses the zenith portion 71b of the conductor 71, and the zenith portion 71b of the conductor 71 is electrically connected to the third switch terminal 703. Is done.
  • the first and second switch terminals 701 and 702 and the third switch terminal 703 are electrically connected, and the switch signal is turned on.
  • the conductor 71 returns to the free state, so that the shaft 3 moves upward, and the zenith portion 71b of the conductor 71 is separated from the third switch terminal 703. .
  • the first and second switch terminals 701 and 702 and the third switch terminal 703 are not electrically connected, and the switch signal is turned off.
  • FIG. 6 is an exploded perspective view of the encoder mechanism 6 as viewed from below.
  • first, second, and third electrode portions 671, 672, and 673 are provided on the lower surface of the encoder substrate 60.
  • the first electrode portion 671, the second electrode portion 672, and the third electrode portion 673 are formed in a ring shape and are arranged concentrically.
  • the first electrode portion 671, the second electrode portion 672, and the third electrode portion 673 are arranged in order from the outside in the radial direction to the inside.
  • the first electrode unit 671 is electrically connected to the end 601a of the first encoder terminal 601; the second electrode unit 672 is electrically connected to the end 602a of the second encoder terminal 602; Reference numeral 673 is electrically connected to the end 603a of the third encoder terminal 603.
  • An insulating sheet 68 is laminated on the first, second, and third electrode portions 671, 672, 673.
  • the insulating sheet 68 includes a first electrode portion 671 and a second electrode portion 672 such that the first electrode portion 671 is intermittently exposed in the circumferential direction and the second electrode portion 672 is intermittently exposed in the circumferential direction. Cover. That is, the insulating sheet 68 has a plurality of holes 68a intermittently arranged in the circumferential direction, and the first electrode portion 671 and the second electrode portion 672 are exposed from the holes 68a of the insulating sheet 68.
  • the third electrode portion 673 is not covered with the insulating sheet 68.
  • the first resistor pattern 61 is electrically connected to the first encoder terminal 601 via the first electrode portion 671
  • the second resistor pattern 62 is electrically connected to the first encoder terminal 601 via the second electrode portion 672.
  • the second resistor terminal 603 is electrically connected to the second encoder terminal 602
  • the third resistor pattern 63 is electrically connected to the third encoder terminal 603 via the third electrode portion 673.
  • FIG. 7 is a perspective view of the encoder mechanism 6 as viewed from below. As shown in FIG. 7, the first contact portion 661 of the slider 66 is located at a position corresponding to the first resistor pattern 61, and the second contact portion 662 of the slider 66 is located at the position of the second resistor pattern 62. The third contact 663 of the slider 66 is located at a position corresponding to the third resistor pattern 63.
  • the first contact portion 661 alternately contacts the first resistor pattern 61 and the insulating sheet 68
  • the second contact portion 662 contacts the second resistor pattern 62 and the insulating sheet 68.
  • 68 alternately.
  • the third contact portion 663 is always in contact with the third resistor pattern 63. That is, by the rotation of the slider 66, the first encoder terminal 601 and the third encoder terminal 603 are intermittently electrically connected, and the second encoder terminal 602 and the third encoder terminal 603 are intermittently connected. It is electrically connected.
  • FIG. 8 is a circuit diagram showing an equivalent circuit of the encoder mechanism 6.
  • FIG. 9 is a waveform diagram showing an output waveform of the encoder mechanism 6.
  • a current flows between the points A and C, and the A signal is turned on.
  • the second encoder terminal 602 and the third encoder terminal 603 are electrically connected, a current flows between the points B and C, and the B signal is turned on.
  • the rotation angle of the slider 66 from the start of the OFF of the A signal to the start of the next OFF is 60 deg.
  • the difference between the start of turning off the A signal and the start of turning off the B signal is 15 deg in the rotation angle of the slider 66.
  • the change of the combination of ON and OFF of the A signal and the B signal is divided into 24. That is, it is possible to determine that the rotation angle of the slider 66 changes every 15 degrees during one rotation of the slider 66. Therefore, the rotation direction and rotation angle (rotation amount) of the slider 66 can be determined by judging a change in the A signal and the B signal.
  • FIG. 10 is a plan view of the encoder board 60, the shaft 3, and the regulating members (the click spring 55, the pendulums 56 and 57).
  • FIG. 11 is an exploded perspective view of the encoder board 60 and the regulating members (the click spring 55 and the pendulums 56 and 57).
  • the regulating members (the click spring 55 and the pendulums 56 and 57) are arranged so as to surround the flange 30 of the shaft 3 when viewed from the direction of the shaft 3 a of the shaft 3.
  • the pendulums 56 and 57 are made of, for example, a rigid body such as a metal.
  • the pendulums 56 and 57 are provided at annular bases 56a and 57a provided with through holes 56d and 57d, arms 56b and 57b extending from the annular bases 56a and 57a, and distal ends (free ends) of the arms 56b and 57b.
  • each of the pendulums 56 and 57 is rotatably connected to the encoder board 60. You may.
  • the click spring 55 is held on the upper surface 60a of the encoder board 60 such that the click spring 55 can move entirely within a predetermined range.
  • the click spring 55 is provided at one end of the base 55a so as to be engaged with a U-shaped elastically deformable base 55a so as to surround the outer periphery of the flange 30 and the contact portion 56c of the pendulum 56.
  • the first locking portion 55b, a stopper portion 55c protruding outward at one end of the base portion 55a, and a second locking portion 55c provided at the other end of the base portion 55a so as to lock on the contact portion 57c side of the pendulum 57.
  • a second locking portion 55d and a stopper portion 55e protruding outward at one end of the base portion 55a.
  • the contact portions 60c and 60d are provided at the corners of the encoder board 60.
  • the stopper portion 55c of the click spring 55 is arranged at a distance from the contact portion 60c of the encoder board 60.
  • the stopper portion 55e of the click spring 55 is arranged at a distance from the contact portion 60d of the encoder board 60.
  • the first locking portion 55b and the second locking portion 55d of the click spring 55 have arc-shaped convex surfaces 111 and 112 (curved surfaces) radially inside the shaft 3.
  • the contact portions 56c, 57c of the pendulums 56, 57 are provided on the radially outer side of the shaft 3 with arc-shaped concave surfaces 121 facing the first locking portion 55b and the second locking portion 55d of the click spring 55, respectively. 122 (curved surface).
  • the arc-shaped convex surface 111 of the first locking portion 55b of the click spring 55 and the arc-shaped concave surface 121 on the radially outer side of the contact portion 56c of the pendulum 56 come into contact with each other, and the first spring 55 of the click spring 55
  • the contact portion 56c of the pendulum 56 is locked to the locking portion 55b.
  • the arc-shaped convex surface 112 of the second locking portion 55d of the click spring 55 and the arc-shaped concave surface 122 on the radially outer side of the contact portion 57c of the pendulum 57 come into contact with each other.
  • the contact portion 57c of the pendulum 57 is locked to the second locking portion 55d.
  • the contact portions 56c, 57c of the pendulums 56, 57 can come into contact with the flange 30 (shown in FIG. 10) of the shaft 3, respectively.
  • the contact portions 56c, 57c of the pendulums 56, 57 are urged toward the shaft 3 from the radial outside of the shaft 3 by the click spring 55, and are urged toward the convex portion 31 of the flange 30 of the shaft 3. While being in contact, it fits into the recess 32 of the flange 30 of the shaft 3 to regulate the rotation angle of the shaft 3.
  • FIG. 12 is an explanatory diagram for explaining the operations of the flange portion 30 of the shaft 3, the click spring 55, and the pendulums 56 and 57.
  • the contact portions 56c and 57c of the pendulums 56 and 57 come into contact with the vertices of the convex portion 31 of the flange portion 30, as shown in FIG.
  • the stopper 55c of the click spring 55 is in contact with or close to the contact portion 60c of the encoder board 60
  • the stopper 55e of the click spring 55 is in contact with or close to the contact 60d of the encoder board 60. I do.
  • the contact portions 56c, 57c of the pendulums 56, 57 ride over the convex portions 31 of the flange portion 30 and fit into the concave portions 32 of the flange portion 30 again.
  • the contact portion 56c of the pendulum 56 and the contact portion 57c of the pendulum 57 are simultaneously fitted into the concave portions 32, 32 located on opposite sides.
  • the contact portion 56 c of the pendulum 56 When the shaft 3 is rotated in the clockwise direction A, the contact portion 56 c of the pendulum 56 receives a force outward by the convex portion 31 of the flange portion 30, and the pendulum 56 rotates counterclockwise around the hinge pin 82. I do.
  • the contact portion 57c of the pendulum 57 receives an outward force by the convex portion 31 of the flange portion 30, and the pendulum 57 rotates clockwise around the hinge pin 82. Move.
  • the contact portion 56 c of the pendulum 56 receives a force outward by the convex portion 31 of the flange portion 30, and the pendulum 56 rotates counterclockwise around the hinge pin 82.
  • the contact portion 57c of the pendulum 57 receives an outward force by the convex portion 31 of the flange portion 30, and the pendulum 57 rotates clockwise about the hinge pin 82. I do.
  • Two pins 81 are provided on the upper surface 60 a of the encoder board 60 and radially inside the shaft 3 of the click spring 55.
  • the movement of the click spring 55 in the Y and X directions is restricted by the contact portions 60 c and 60 d of the pin 81 and the encoder board 60.
  • the click spring 55 is held on the encoder board 60 so as to be entirely movable within a predetermined range.
  • FIG. 13 is a perspective view of the shaft 3.
  • FIG. 14A is a plan view of the shaft 3.
  • FIG. 14B is a side view of the shaft 3.
  • FIG. 15A is a sectional view taken along line AA of FIG. 14A.
  • FIG. 15B is a sectional view taken along line BB of FIG. 14B.
  • the shaft 3 has a main body 34 and a flange 30 coaxially attached to a shaft 34a of the main body 34.
  • the axis 34 a of the main body 34 extends in a direction penetrating the head 35 and the leg 36, and coincides with the axis 3 a of the shaft 3.
  • the main body 34 has a head 35 and legs 36 made of resin.
  • the head 35 is thicker than the legs 36.
  • the head 35 and the leg 36 are integrally continuous.
  • the flange portion 30 is made of metal and formed in a flat plate shape. The flange 30 is fitted into the lower part of the head 35. That is, the flange portion 30 is located between the head portion 35 and the leg portion 36 when viewed from a direction orthogonal to the axis 34a of the main body portion 34.
  • the main body 34 and the flange 30 are an integrated insert molded body.
  • the collar portion 30 has a through hole 33 through which the main body portion 34 penetrates and overlaps with the shaft 34 a of the main body portion 34.
  • the shaft 34 a of the main body 34 coincides with the center of the through hole 33.
  • the inner surface 330 of the through hole 33 contacts the outer surface 340 of the main body 34.
  • the bearing hole 37 extends along the axis 34 a of the main body 34 so as to overlap with the axis 34 a of the main body 34.
  • the bearing hole 37 includes the shaft 34a of the main body 34 when viewed from the axis 34a of the main body 34, and is viewed from the upper surface of the head 35 when viewed from the direction orthogonal to the shaft 34a of the main body 34. It extends along the axis 34a of the main body 34.
  • the axis of the bearing hole 37 coincides with the axis 34 a of the main body 34.
  • At least a part of the gate mark 38 overlaps the through hole 33 when viewed from the axis 34a of the main body 34.
  • the shaft 3 has the main body 34 made of resin and the flange 30 made of metal, when the rotation angle of the shaft 3 is regulated by the regulating member, the wear of the flange 30 of the shaft 3 can be reduced.
  • the rotation amount measurement member can be connected to the bearing hole 37, and the rotation amount measurement member is rotated together with the shaft 3, and the rotation amount measurement member is rotated. Can be measured.
  • the flange 30 is set in an insert molding die and resin is injected from the gate of the insert molding die.
  • the resin can smoothly pass through the through hole 33 of the flange portion 30, and the shaft portion 3 with good quality can be manufactured by favorably insert-molding the main body portion 34 and the flange portion 30. That is, the flow resistance of the resin can be reduced, and defects due to insufficient resin can be reduced.
  • the gate mark 38 can be formed on the upper surface which is used for connecting the member to be measured for the amount of rotation and does not require accuracy. That is, the lower surface of the shaft 3 where the gate mark 38 is not provided can be used as a switch surface which is used for pressing the switch mechanism 7 and requires accuracy.
  • the outer peripheral surface of the head 35 has two side surfaces facing each other. Accordingly, even if the rotation amount measurement member is attached so as to cover the head 35, the rotation amount measurement member can be positioned in the circumferential direction with respect to the shaft 3.
  • the shape of the through hole 33 (the shape of the inner surface 330) is a polygon when viewed from the direction of the axis 34 a of the main body 34.
  • the shape of the inner surface 330 of the through hole 33 is a pentagon, but may be any shape as long as it is a polygon. Therefore, the main body 34 attached to the through hole 33 is positioned relative to the flange 30 in the rotation direction. That is, the main body portion 34 and the flange portion 30 rotate while rotating and maintaining a relative positional relationship without idling.
  • the shape of the inner surface 330 of the through hole 33 may be a non-polygonal shape such as an elliptical shape or a non-circular shape, and the main body portion 34 is positioned relative to the flange portion 30 in the rotation direction.
  • a circular shape is not preferable because positioning cannot be performed.
  • the center 38 a of the gate mark 38 preferably overlaps the through hole 33 when viewed from the axis 34 a of the main body 34 (that is, when viewed from above).
  • the gate mark 38 has a circular shape in plan view. Therefore, when the shaft 3 is manufactured by insert molding, when the resin is injected from the gate of the insert molding die, the resin can pass through the through hole 33 of the flange 30 more smoothly, and the shaft 3 with higher quality can be manufactured. .
  • the inner surface 370 of the bearing hole 37 be located inside the inner surface 330 of the through hole 33 when viewed from the direction of the shaft 34 a of the main body 34. Therefore, when the shaft 3 is manufactured by insert molding, when the resin is injected from the gate of the insert molding die, the resin can pass through the through hole 33 of the flange 30 more smoothly, and the shaft 3 with higher quality can be manufactured. .
  • the bottom 371 of the bearing hole 37 is preferably located below the upper surface 331 of the flange 30. Specifically, the bottom 371 of the bearing hole 37 is located between the upper surface 331 and the lower surface 332 of the flange 30. Therefore, the distance between the bearing hole 37 and the flange 30 can be reduced, and when the rotation amount measurement member is connected to the bearing hole 37 to rotate the rotation amount measurement member together with the shaft 3, the rotational force of the rotation amount measurement member is reduced. The moment transmitted to the flange 30 can be reduced. In addition, the bearing hole 37 can be deepened, and the posture when the rotation amount measurement target member is connected to the bearing hole 37 can be stabilized.
  • the outer surface 340 of the main body 34 and the inner surface 370 of the bearing hole 37 are parallel to each other. It is preferable to have In other words, since the inner surface 330 of the through hole 33 corresponds to the outer surface 340 of the main body 34, it is preferable that the inner surface 330 of the through hole 33 and the inner surface 370 of the bearing hole 37 have portions that are parallel to each other. . In particular, at least the thinnest portions of the inner surface 330 of the through hole 33 and the inner surface 370 of the bearing hole 37 are preferably parallel to each other. Therefore, in this portion, the thickness of the main body 34 can be ensured, and the strength of the main body 34 can be ensured.
  • the shape of the outer surface 340 of the main body 34 (that is, the inner surface 330 of the through hole 33) and the shape of the inner surface 370 of the bearing hole 37 are polygonal.
  • the shape of the outer surface 340 of the main body 34 (that is, the inner surface 330 of the through hole 33) is a pentagon, and the shape of the inner surface 370 of the bearing hole 37 is a quadrangle. Any shape may be used.
  • Three of the four sides of the inner surface 370 of the bearing hole 37 are parallel to three of the five sides of the outer surface 340 of the main body 34 (that is, the inner surface 330 of the through hole 33). Therefore, the thickness of the main body 34 can be ensured in the three parallel portions, and the strength of the main body 34 can be further ensured.
  • a part of the upper surface 331 of the flange 30 is covered by the head 35 of the main body 34.
  • the upper surface side of the inner surface 330 of the through hole 33 preferably has a first chamfered portion 330a. Therefore, the concentration of the stress that the head 35 receives from the first chamfered portion 330a of the inner surface 330 of the through hole 33 can be reduced.
  • the lower surface side of the inner surface 330 of the through hole 33 has a second chamfered portion 330b that comes into contact with the head 35 of the main body portion. Therefore, even if a part of the lower surface 332 of the flange portion 30 is not covered with the main body portion 34, the main body portion 34 contacts the second chamfered portion 330b of the inner surface 330 of the through hole 33, so that the flange portion 30 is It becomes difficult to come off from the main body 34, and the connection reliability between the flange 30 and the main body 34 can be improved. Note that a part of the lower surface 332 of the flange portion 30 may be covered by the main body portion 34 without providing the second chamfered portion 330 b on the lower surface side of the inner surface 330 of the through hole 33. Can be prevented.
  • a metal plate 300 having a through hole 33 formed therein is prepared, and an insert mold 100 is prepared.
  • the insert molding die 100 has an internal space 101 in which a projection 102 for forming a bearing hole is formed, and a gate 103 communicating with the internal space 101.
  • the insert mold 100 has an upper mold 100a and a lower mold 100b.
  • the upper mold 100a has a space for forming the head 35 of the main body 34.
  • the lower mold 100b has a space for forming the leg 36 of the main body 34.
  • the protrusion 102 and the gate 103 are provided on the upper mold 100a.
  • the projection 102 serves as a core for forming the bearing hole 37.
  • Gate 103 serves as an injection port for injecting resin into internal space 101.
  • the metal plate 300 is placed in the internal space 101 of the insert molding die 100 such that the through hole 33 overlaps at least a part of the gate 103 and the projection 102 when viewed from a direction orthogonal to the metal plate 300 (when viewed from above). set. That is, the metal plate 300 is sandwiched between the upper mold 100a and the lower mold 100b. The space of the upper mold 100a and the space of the lower mold 100b communicate with each other through the through hole 33.
  • a resin is injected into the internal space 101 from the gate 103.
  • the through-hole 33 overlaps the gate 103, it is effective in reducing the flow resistance of the resin, and the resin can pass through the through-hole 33 of the metal plate 300 smoothly, as shown by the dotted arrow. Can sufficiently fill the space of the upper mold 100a and the space of the lower mold 100b.
  • the resin and the metal plate 300 can be favorably insert-molded.
  • the center of the gate 103 and the through hole 33 overlap, and the resin can pass through the through hole 33 more smoothly.
  • the resin is cured to form an insert molded body 110 of the resin and the metal plate 300.
  • the upper mold 100a and the lower mold 100b are separated from each other, and as shown in FIG. Remove.
  • the insert molded body 110 has a main body 34 and a metal plate 300.
  • the main body 34 has a head 35 and legs 36.
  • the gate mark 38 on the head 35 is formed by cutting the resin injected into the gate 103 when removing the insert molded body 110 from the insert mold 100.
  • the metal plate 30 of the insert molded body 110 is punched into a flange shape, and a plurality of shafts 3 having the main body 34 and the flange 30 are simultaneously manufactured as shown in FIG. 16C.
  • the main body portion 34 and the flange portion 30 can be favorably insert-molded, and the high quality shaft 3 having the bearing hole 37 can be manufactured with high mass productivity.
  • the present invention is not limited to the above-described embodiment, and the design can be changed without departing from the gist of the present invention.
  • the rotary encoder is described as an example of the rotary electronic component.
  • the rotary electronic component of the present invention is not limited to the rotary encoder, and is applicable to other rotary electronic components such as a potentiometer and a trimmer capacitor. can do. That is, in addition to the shaft for the rotary encoder, a rotary shaft for rotary electronic components can be applied.
  • the rotary encoder including the restricting member having the click spring 55 (biasing member) and the pendulums 56 and 57 (contact member) has been described.
  • the restricting member includes the convex portion and the concave portion of the shaft flange.
  • the present invention may be applied to a rotary electronic component including one contact member that contacts the shaft and one urging member that urges the contact member from the radial outside of the shaft toward the shaft.
  • the regulating member, the encoder mechanism, and the switch mechanism are arranged in order from the upper side to the lower side along the axis of the shaft.
  • the regulating member, the encoder mechanism, and the switch mechanism are arranged along the axis of the shaft. The order may be changed.
  • Rotary encoder (rotary electronic components) 2 Casing 3 Shaft (rotary shaft for rotary electronic components) 3a shaft 30 flange portion 300 metal plate 33 through hole 330 inner surface 330a first chamfered portion 330b second chamfered portion 331 upper surface 332 lower surface 34 body portion 34a shaft 340 outer surface 35 head 36 leg portion 37 bearing hole 370 inner surface 371 bottom portion 38 gate mark 38a center 55 click spring (biasing member) 56,57 pendulum (contact member) 6 Encoder mechanism 60 Encoder board (base member) 61, 62, 63 Resistor pattern 65 Rotor 66 Slider 7 Switch mechanism 70 Switch board 71 Conductor 100 Insert molding die 101 Internal space 102 Bearing hole forming projection 103 Gate 110 Insert molded body

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Rotary Switch, Piano Key Switch, And Lever Switch (AREA)

Abstract

This rotary shaft for a rotary electronic component is provided with: a body part that has a head and a leg each made of a resin and that includes a shaft extending through the head and the leg; and a flange part that is made of metal and is attached coaxially to the shaft of the body part. The flange part has a through-hole through which the body part penetrates and which overlaps the shaft of the body part. A bearing hole and a gate mark are provided to the upper surface of the head, the bearing hole extends along the shaft of the body part so as to overlap the shaft of the body part, and at least a part of the gate mark overlaps the through-hole when seen along the direction of the shaft of the body part.

Description

回転式電子部品用回転シャフト、その製造方法および回転式電子部品Rotary shaft for rotary electronic component, method of manufacturing the same, and rotary electronic component
 本発明は、回転式電子部品用回転シャフト、その製造方法および回転式電子部品に関する。 The present invention relates to a rotary shaft for a rotary electronic component, a method for manufacturing the same, and a rotary electronic component.
 従来、回転式電子部品用回転シャフトとしては、WO2017/169625号公報(特許文献1)に記載されたものがある。この回転シャフトは、回転エンコーダに用いられ、回転シャフトの回転角度は、規制部材により規制されている。回転シャフトの鍔部は、規制部材に接触する。ここで、回転シャフトの鍔部の摩耗を防止しようとすると、鍔部を金属から構成し、鍔部以外の本体部を樹脂から構成し、本体部と鍔部をインサート成型して、回転シャフトを製造することが考えられる。 Conventionally, as a rotary shaft for a rotary electronic component, there is a rotary shaft described in WO2017 / 169625 (Patent Document 1). This rotary shaft is used for a rotary encoder, and the rotation angle of the rotary shaft is regulated by a regulating member. The flange of the rotating shaft contacts the regulating member. Here, in order to prevent wear of the flange of the rotating shaft, the flange is made of metal, the main body other than the flange is made of resin, and the main body and the flange are insert-molded to form the rotating shaft. It is conceivable to manufacture.
WO2017/169625号公報WO2017 / 169625
 ところで、前記従来の回転シャフトでは、使用者は、回転シャフトを直接に操作することを想定しており、回転量を測定される回転量被測定部材を別途回転シャフトに接続することを考慮していなかった。
 仮に、回転量被測定部材を接続する構造を回転シャフトに付加する場合、回転シャフトの構造が複雑となり、インサート成型により回転シャフトを製造しようとすると、製造が困難で、回転シャフトの品質が低下するおそれがある。特に、小型の回転シャフトにおいてこの構造を付加する場合、量産性良くインサート成型できず、回転シャフトの品質の低下が顕著となる。
By the way, in the conventional rotary shaft, it is assumed that the user directly operates the rotary shaft, and that a rotation amount measurement member whose rotation amount is measured is separately connected to the rotary shaft. Did not.
If a structure for connecting the member to be measured for the amount of rotation is added to the rotating shaft, the structure of the rotating shaft becomes complicated. There is a risk. In particular, when this structure is added to a small rotating shaft, insert molding cannot be performed with good mass productivity, and the quality of the rotating shaft is significantly reduced.
 そこで、本発明の課題は、回転量被測定部材を接続できる品質のよい回転式電子部品用回転シャフト、その製造方法および回転式電子部品を提供することにある。 Accordingly, it is an object of the present invention to provide a high quality rotary shaft for a rotary electronic component to which a member to be rotated can be connected, a method for manufacturing the same, and a rotary electronic component.
 前記課題を解決するため、本発明の回転式電子部品用回転シャフトは、
 樹脂からなる頭部および脚部を有し、前記頭部および前記脚部を貫く方向に延びる軸を含む本体部と、
 前記本体部の軸に同軸に取り付けられ金属からなる鍔部と
を備え、
 前記鍔部は、前記本体部が貫通し前記本体部の軸と重なる貫通穴を有し、
 前記頭部の上面には、軸受穴とゲート痕が設けられ、
 前記軸受穴は、前記本体部の軸と重なるように前記本体部の軸に沿って延在し、
 前記本体部の軸方向から見て、前記ゲート痕の少なくとも一部は、前記貫通穴と重なる。
In order to solve the above problems, the rotary shaft for a rotary electronic component of the present invention,
A body having a head and legs made of resin, and including a shaft extending in a direction penetrating the head and legs.
A flange made of metal attached coaxially to the axis of the main body,
The flange has a through hole through which the main body penetrates and overlaps the axis of the main body,
A bearing hole and a gate mark are provided on the upper surface of the head,
The bearing hole extends along the axis of the main body so as to overlap the axis of the main body,
When viewed from the axial direction of the main body, at least a part of the gate mark overlaps with the through hole.
 本発明の回転式電子部品用回転シャフトによれば、樹脂からなる本体部と金属からなる鍔部を備えるので、回転シャフトを回転式電子部品に用い、回転シャフトの回転角度を規制部材により規制させた場合、回転シャフトの鍔部の摩耗を低減できる。 According to the rotary shaft for a rotary electronic component of the present invention, since the main body portion made of resin and the flange portion made of metal are provided, the rotary shaft is used for the rotary electronic component, and the rotation angle of the rotary shaft is regulated by the regulating member. In this case, wear of the flange of the rotating shaft can be reduced.
 また、頭部の上面には軸受穴が設けられているので、回転量被測定部材を軸受穴に接続でき、回転量被測定部材を回転シャフトと共に回転させて、回転量被測定部材の回転量を測定することができる。 Also, since a bearing hole is provided on the upper surface of the head, the member to be measured for rotation can be connected to the bearing hole, and the member to be measured for rotation is rotated together with the rotating shaft, and the rotation amount of the member to be measured for rotation is measured. Can be measured.
 また、ゲート痕の少なくとも一部は、貫通穴と重なるので、インサート成型で回転シャフトを製造する場合、鍔部をインサート成型用型にセットしてインサート成型用型のゲートから樹脂を注入するとき、樹脂は鍔部の貫通穴を円滑に通過でき、本体部と鍔部を良好にインサート成型して品質のよい回転シャフトを製造できる。 Also, since at least a part of the gate mark overlaps the through hole, when manufacturing a rotating shaft by insert molding, when injecting resin from the gate of the insert molding die by setting the flange portion to the insert molding die, The resin can smoothly pass through the through hole of the flange, and a good quality rotary shaft can be manufactured by favorably insert-molding the main body and the flange.
 また、回転式電子部品用回転シャフトの一実施形態では、前記貫通穴の形状は、前記本体部の軸方向から見て、多角形である。
 ここで、多角形とは、完全な角を有するものに限られず、角が面取りされ又は丸まっているものも含むものとする。
In one embodiment of the rotary shaft for a rotary electronic component, the shape of the through hole is a polygon when viewed from the axial direction of the main body.
Here, the polygon is not limited to a polygon having a perfect corner, but also includes a polygon having a chamfered or rounded corner.
 前記実施形態によれば、貫通穴に取り付けられた本体部は、鍔部に対して、回転方向に相対的に位置決めされる。 According to the above embodiment, the main body attached to the through hole is positioned relative to the flange in the rotation direction.
 また、回転式電子部品用回転シャフトの一実施形態では、前記本体部と前記鍔部は、一体化されたインサート成型体である。 In one embodiment of the rotary shaft for a rotary electronic component, the main body and the flange are an integrated insert molded body.
 前記実施形態によれば、本体部と鍔部は、一体化されたインサート成型体であるので、品質を向上できる。 According to the above-described embodiment, since the main body and the flange are integrated insert molded bodies, the quality can be improved.
 また、回転式電子部品用回転シャフトの一実施形態では、前記本体部の軸方向から見て、前記ゲート痕の中心は、前記貫通穴と重なる。 In one embodiment of the rotary shaft for a rotary electronic component, the center of the gate mark overlaps with the through hole when viewed from the axial direction of the main body.
 前記実施形態によれば、インサート成型で回転シャフトを製造する場合、インサート成型用型のゲートから樹脂を注入するとき、樹脂は鍔部の貫通穴を一層円滑に通過でき、一層品質のよい回転シャフトを製造できる。 According to the embodiment, when a rotary shaft is manufactured by insert molding, when the resin is injected from the gate of the insert molding die, the resin can more smoothly pass through the through hole of the flange portion, and the rotary shaft of higher quality can be obtained. Can be manufactured.
 また、回転式電子部品用回転シャフトの一実施形態では、前記本体部の軸方向から見て、前記ゲート痕の面積の半分以上は、前記貫通穴と重なる。 In one embodiment of the rotary shaft for a rotary electronic component, at least half of the area of the gate mark overlaps with the through hole when viewed from the axial direction of the main body.
 前記実施形態によれば、インサート成型で回転シャフトを製造する場合、インサート成型用型のゲートから樹脂を注入するとき、樹脂は鍔部の貫通穴を一層円滑に通過でき、一層品質のよい回転シャフトを製造できる。 According to the embodiment, when a rotary shaft is manufactured by insert molding, when the resin is injected from the gate of the insert molding die, the resin can more smoothly pass through the through hole of the flange portion, and the rotary shaft of higher quality can be obtained. Can be manufactured.
 また、回転式電子部品用回転シャフトの一実施形態では、前記本体部の軸方向から見て、前記軸受穴の内面は、前記貫通穴の内面の内側に位置する。 In one embodiment of the rotary shaft for a rotary electronic component, the inner surface of the bearing hole is located inside the inner surface of the through hole when viewed from the axial direction of the main body.
 前記実施形態によれば、インサート成型で回転シャフトを製造する場合、インサート成型用型のゲートから樹脂を注入するとき、樹脂は鍔部の貫通穴を一層円滑に通過でき、一層品質のよい回転シャフトを製造できる。 According to the embodiment, when a rotary shaft is manufactured by insert molding, when the resin is injected from the gate of the insert molding die, the resin can more smoothly pass through the through hole of the flange portion, and the rotary shaft of higher quality can be obtained. Can be manufactured.
 また、回転式電子部品用回転シャフトの一実施形態では、前記軸受穴の底部は、前記鍔部の上面より下側に位置する。 In one embodiment of the rotary shaft for a rotary electronic component, the bottom of the bearing hole is located below the upper surface of the flange.
 前記実施形態によれば、軸受穴と鍔部の距離を近くでき、回転量被測定部材を軸受穴に接続して回転量被測定部材を回転シャフトと共に回転させるとき、回転量被測定部材の回転力を鍔部に伝える際のモーメントを小さくできる。 According to the above embodiment, the distance between the bearing hole and the flange can be reduced, and when the rotation amount measurement member is connected to the bearing hole to rotate the rotation amount measurement member together with the rotary shaft, the rotation amount rotation member rotates. The moment when transmitting the force to the flange can be reduced.
 また、回転式電子部品用回転シャフトの一実施形態では、前記本体部の軸に直交し前記軸受穴および前記鍔部に交差する断面において、前記本体部の外面と前記軸受穴の内面とは、互いに平行となる部分を有する。 In one embodiment of the rotary shaft for a rotary electronic component, in a cross section orthogonal to the axis of the main body and intersecting the bearing hole and the flange, the outer surface of the main body and the inner surface of the bearing hole are: It has portions that are parallel to each other.
 前記実施形態によれば、本体部の外面と軸受穴の内面とは、互いに平行となる部分を有するので、当該部分において、本体部の厚みを確保でき、本体部の強度を確保できる。 According to the above embodiment, since the outer surface of the main body and the inner surface of the bearing hole have portions that are parallel to each other, the thickness of the main body can be ensured in this portion, and the strength of the main body can be ensured.
 また、回転式電子部品用回転シャフトの一実施形態では、前記本体部の外面形状および前記軸受穴の内面形状は、多角形であって、前記軸受穴の内面の3辺は、前記本体部の外面の3辺に平行となる。 In one embodiment of the rotary shaft for a rotary electronic component, an outer surface shape of the main body and an inner surface shape of the bearing hole are polygonal, and three sides of an inner surface of the bearing hole are It is parallel to the three sides of the outer surface.
 前記実施形態によれば、平行となる3辺の部分において、本体部の厚みを確保でき、本体部の強度を一層確保できる。 According to the above-described embodiment, the thickness of the main body can be secured in the three parallel portions, and the strength of the main body can be further secured.
 また、回転式電子部品用回転シャフトの一実施形態では、前前記本体部の軸に直交し前記軸受穴および前記鍔部に交差する断面において、前記貫通穴の内面と前記軸受穴の内面とは、互いに平行となる部分を有する。 Further, in one embodiment of the rotary shaft for a rotary electronic component, in a cross section orthogonal to the axis of the front body portion and intersecting the bearing hole and the flange portion, the inner surface of the through hole and the inner surface of the bearing hole are , Portions that are parallel to each other.
 前記実施形態によれば、貫通穴の内面と軸受穴の内面とは、互いに平行となる部分を有するので、当該部分において、本体部の厚みを確保でき、本体部の強度を確保できる。 According to the above embodiment, since the inner surface of the through hole and the inner surface of the bearing hole have portions that are parallel to each other, the thickness of the main body can be ensured at that portion, and the strength of the main body can be ensured.
 また、回転式電子部品用回転シャフトの一実施形態では、前記貫通穴の内面形状および前記軸受穴の内面形状は、多角形であって、前記軸受穴の内面の3辺は、前記貫通穴の内面の3辺に平行となる。 In one embodiment of the rotary shaft for a rotary electronic component, the inner surface shape of the through hole and the inner surface shape of the bearing hole are polygonal, and three sides of the inner surface of the bearing hole are It is parallel to the three sides of the inner surface.
 前記実施形態によれば、平行となる3辺の部分において、本体部の厚みを確保でき、本体部の強度を一層確保できる。 According to the above-described embodiment, the thickness of the main body can be secured in the three parallel portions, and the strength of the main body can be further secured.
 また、回転式電子部品用回転シャフトの一実施形態では、
 前記鍔部の上面の一部は、前記本体部に覆われ、
 前記貫通穴の内面の上面側は、面取り部を有する。
In one embodiment of the rotary shaft for rotary electronic components,
A part of the upper surface of the flange is covered by the main body,
The upper surface side of the inner surface of the through hole has a chamfer.
 前記実施形態によれば、本体部が貫通穴の内面の面取り部から受ける応力の集中を緩和できる。 According to the embodiment, the concentration of the stress that the main body receives from the chamfered portion of the inner surface of the through hole can be reduced.
 また、回転式電子部品用回転シャフトの一実施形態では、前記貫通穴の内面の下面側は、前記本体部が接触する面取り部を有する。 In one embodiment of the rotary shaft for a rotary electronic component, a lower surface side of an inner surface of the through hole has a chamfered portion with which the main body contacts.
 前記実施形態によれば、本体部が貫通穴の内面の面取り部に接触することで、鍔部が本体部から抜け難くなって、鍔部と本体部の接続信頼性を向上できる。 According to the above-described embodiment, since the main body portion contacts the chamfered portion on the inner surface of the through hole, the flange portion is difficult to come off from the main body portion, and the connection reliability between the flange portion and the main body portion can be improved.
 また、回転式電子部品の一実施形態では、
 前記回転式電子部品用回転シャフトと、
 前記回転シャフトの前記鍔部に接触して前記回転シャフトの回転角度を規制する規制部材と
を備える。
In one embodiment of the rotary electronic component,
A rotary shaft for the rotary electronic component,
A regulating member for regulating a rotation angle of the rotating shaft by contacting the flange of the rotating shaft.
 前記実施形態によれば、回転シャフトに回転量被測定部材を接続でき、回転シャフトの品質を向上できる。 According to the above embodiment, the member to be measured for the amount of rotation can be connected to the rotating shaft, and the quality of the rotating shaft can be improved.
 また、回転式電子部品用回転シャフトの製造方法の一実施形態では、
 貫通穴が形成された金属板を準備し、軸受穴形成用凸部が形成された内部空間と前記内部空間に連通するゲートを有するインサート成型用型を準備する工程と、
 前記金属板に直交する方向から見て前記貫通穴が前記ゲートの少なくとも一部および前記凸部に重なるように前記金属板を前記インサート成型用型の前記内部空間にセットする工程と、
 前記ゲートから前記内部空間内に樹脂を注入する工程と、
 樹脂を硬化して樹脂と金属板のインサート成型体を形成する工程と、
 前記インサート成型用型から前記インサート成型体を取り外す工程と、
 前記インサート成型体の前記金属板を鍔形状に打ち抜く工程と
を備える。
In one embodiment of the method for manufacturing a rotary shaft for a rotary electronic component,
Preparing a metal plate having a through-hole formed therein, a step of preparing an insert molding die having a gate communicating with the internal space and the internal space in which the projection for forming a bearing hole is formed,
Setting the metal plate in the internal space of the insert molding die so that the through hole overlaps at least a part of the gate and the projection as viewed from a direction orthogonal to the metal plate;
Injecting a resin into the internal space from the gate,
A step of curing the resin to form an insert molded body of the resin and the metal plate,
Removing the insert molded body from the insert mold,
Punching the metal plate of the insert molded body into a flange shape.
 前記実施形態によれば、金属板をインサート成型用型にセットしてゲートから樹脂を注入するとき、樹脂は金属板の貫通穴を円滑に通過でき、樹脂と金属板を良好にインサート成型して軸受穴を有する品質のよい回転シャフトを量産性良く製造できる。 According to the embodiment, when the metal plate is set in the mold for insert molding and the resin is injected from the gate, the resin can smoothly pass through the through hole of the metal plate, and the resin and the metal plate are preferably insert-molded. A high quality rotary shaft having a bearing hole can be manufactured with good mass productivity.
 また、回転式電子部品用回転シャフトの製造方法の一実施形態では、前記セットする工程において、前記金属板に直交する方向から見て前記ゲートの中心と前記貫通穴が重なる。 In one embodiment of the method for manufacturing a rotary shaft for a rotary electronic component, in the setting step, the center of the gate and the through hole overlap with each other when viewed from a direction perpendicular to the metal plate.
 前記実施形態によれば、ゲートから樹脂を注入するとき、樹脂は鍔部の貫通穴を一層円滑に通過でき、一層品質のよい回転シャフトを製造できる。 According to the above embodiment, when injecting the resin from the gate, the resin can pass through the through hole of the flange more smoothly, and a rotary shaft with higher quality can be manufactured.
 本発明の回転式電子部品用回転シャフト、その製造方法および回転式電子部品によれば、回転量被測定部材を接続でき品質を向上できる。 According to the rotary shaft for a rotary electronic component, the method for manufacturing the same, and the rotary electronic component of the present invention, the member to be measured for the amount of rotation can be connected to improve the quality.
本発明の一実施形態の回転式電子部品の一例としての回転エンコーダの上方からみた斜視図である。It is the perspective view seen from the upper part of the rotary encoder as an example of the rotary electronic component of one embodiment of the present invention. 回転エンコーダの下方からみた斜視図である。It is the perspective view seen from the lower part of a rotary encoder. 回転エンコーダの上方からみた分解斜視図である。FIG. 4 is an exploded perspective view of the rotary encoder as viewed from above. 回転エンコーダの下方からみた分解斜視図である。FIG. 3 is an exploded perspective view of the rotary encoder as viewed from below. 回転エンコーダの断面図である。It is sectional drawing of a rotary encoder. エンコーダ機構の下方からみた分解斜視図である。FIG. 3 is an exploded perspective view of the encoder mechanism as viewed from below. エンコーダ機構の下方からみた斜視図である。It is the perspective view seen from the lower part of an encoder mechanism. エンコーダ機構の等価回路を示す回路図である。It is a circuit diagram showing an equivalent circuit of an encoder mechanism. エンコーダ機構の出力波形を示す波形図である。FIG. 4 is a waveform diagram showing an output waveform of an encoder mechanism. エンコーダ基板、シャフトおよび第1、第2規制部材の平面図である。It is a top view of an encoder board, a shaft, and the 1st and 2nd restriction member. エンコーダ基板とクリックバネおよび振り子の分解斜視図である。It is an exploded perspective view of an encoder board, a click spring, and a pendulum. シャフトの鍔部とクリックバネおよび振り子の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the collar part of a shaft, a click spring, and a pendulum. シャフトの斜視図である。It is a perspective view of a shaft. シャフトの平面図である。It is a top view of a shaft. シャフトの側面図である。It is a side view of a shaft. 図14AのA-A断面図である。It is AA sectional drawing of FIG. 14A. 図14BのB-B断面図である。FIG. 14B is a sectional view taken along line BB of FIG. 14B. シャフトを製造する方法を説明する説明図である。It is explanatory drawing explaining the method of manufacturing a shaft. シャフトを製造する方法を説明する説明図である。It is explanatory drawing explaining the method of manufacturing a shaft. シャフトを製造する方法を説明する説明図である。It is explanatory drawing explaining the method of manufacturing a shaft.
 以下、本発明を図示の実施の形態により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
 図1は、本発明の一実施形態の回転式電子部品の一例としての回転エンコーダ1の上方からみた斜視図である。図2は、回転エンコーダ1の下方からみた斜視図である。図3は、回転エンコーダ1の上方からみた分解斜視図である。図4は、回転エンコーダ1の下方からみた分解斜視図である。図5は、回転エンコーダ1の断面図である。 FIG. 1 is a perspective view of a rotary encoder 1 as an example of a rotary electronic component according to an embodiment of the present invention as viewed from above. FIG. 2 is a perspective view of the rotary encoder 1 as viewed from below. FIG. 3 is an exploded perspective view of the rotary encoder 1 as viewed from above. FIG. 4 is an exploded perspective view of the rotary encoder 1 as viewed from below. FIG. 5 is a sectional view of the rotary encoder 1.
 各図において、回転エンコーダ1の幅方向をX方向とし、回転エンコーダ1の長さ方向をY方向とする。回転エンコーダ1の高さ方向をZ方向とする。Z方向の正方向を上側とし、Z方向の負方向を下側とする。 In each figure, the width direction of the rotary encoder 1 is defined as the X direction, and the length direction of the rotary encoder 1 is defined as the Y direction. Let the height direction of the rotary encoder 1 be the Z direction. The positive direction in the Z direction is the upper side, and the negative direction in the Z direction is the lower side.
 図1から図5に示すように、回転エンコーダ1は、ケーシング2と、軸を中心として回転可能となりかつ軸に沿って移動可能となるようにケーシング2に取り付けられた回転シャフト(以下、シャフトという)3と、シャフト3の回転角度を規制する規制部材(クリックバネ55,振り子56,57)と、シャフト3の回転方向および回転角度を検知するエンコーダ機構6と、シャフト3の軸に沿った移動によりシャフト3に押圧されるスイッチ機構7とを有する。規制部材(クリックバネ55,振り子56,57)とエンコーダ機構6とスイッチ機構7とは、シャフト3の軸に沿って、上側から下側に順に配置されている。クリックバネ55は接触部材の一例である。また、振り子56は第1の接触部材の一例であり、振り子57は第2の接触部材の一例である。 As shown in FIGS. 1 to 5, the rotary encoder 1 includes a casing 2 and a rotating shaft (hereinafter, referred to as a shaft) attached to the casing 2 so as to be rotatable about an axis and movable along the axis. 3), a regulating member (click spring 55, pendulum 56, 57) for regulating the rotation angle of the shaft 3, an encoder mechanism 6 for detecting the rotation direction and the rotation angle of the shaft 3, and movement along the axis of the shaft 3. And a switch mechanism 7 pressed against the shaft 3 by the The regulating members (click spring 55, pendulum 56, 57), encoder mechanism 6, and switch mechanism 7 are arranged in order from the upper side to the lower side along the axis of the shaft 3. The click spring 55 is an example of a contact member. The pendulum 56 is an example of a first contact member, and the pendulum 57 is an example of a second contact member.
 ケーシング2は、例えば、金属から構成される。ケーシング2は、シャフト3と規制部材(クリックバネ55,振り子56,57)とエンコーダ機構6とスイッチ機構7とを一体に組み付ける。 The casing 2 is made of, for example, metal. In the casing 2, the shaft 3, the regulating member (the click spring 55, the pendulum 56, 57), the encoder mechanism 6, and the switch mechanism 7 are integrally assembled.
 ケーシング2は、上壁21と、上壁21のX方向の両側に設けられ下方に延在する側壁22,22と、上壁21のY方向の正方向に設けられ下方に延在する突壁23と、上壁21のY方向の負方向に設けられ下方に延在する突片24とを有する。上壁21は、1つの孔部21aとその孔部21aの回りに4つの凹部21bを有する。側壁22は、下側に孔部22aと上側に溝部22bとを有する。孔部22aの内面には、ケーシング2の内側に突出する係止部22cが設けられている。突壁23は、上壁21のX方向の全長にわたって延在している。突片24は、上壁21のX方向の中央部に設けられている。 The casing 2 includes an upper wall 21, side walls 22, 22 provided on both sides of the upper wall 21 in the X direction and extending downward, and a protruding wall provided in the forward direction of the upper wall 21 and extending downward in the Y direction. 23, and a protruding piece 24 provided in the negative direction of the Y direction of the upper wall 21 and extending downward. The upper wall 21 has one hole 21a and four recesses 21b around the hole 21a. The side wall 22 has a hole 22a on the lower side and a groove 22b on the upper side. On the inner surface of the hole 22a, a locking portion 22c protruding inside the casing 2 is provided. The protruding wall 23 extends over the entire length of the upper wall 21 in the X direction. The protruding piece 24 is provided at the center of the upper wall 21 in the X direction.
 シャフト3は、頭部35と歯車状の鍔部30と脚部36とを有する。頭部35と脚部36は、例えば、樹脂で構成され、鍔部30は、例えば、金属で構成されている。頭部35と歯車状の鍔部30と脚部36とは、軸に沿って、上側から下側に順に配置されている。歯車状の鍔部30は、複数の凸部31および凹部32を含む。複数の凸部31および凹部32は、周方向に交互に配列されている。頭部35は、ケーシング2の上壁21の孔部21aを貫通している。使用者は、回転量を測定される(図示しない)回転量被測定部材を頭部35に接続し、ケーシング2の外側から回転量被測定部材を操作して、シャフト3を操作することができる。 The shaft 3 has a head 35, a gear-shaped flange 30, and a leg 36. The head 35 and the leg 36 are made of, for example, resin, and the flange 30 is made of, for example, metal. The head 35, the gear-shaped flange 30 and the legs 36 are arranged in order from the upper side to the lower side along the axis. The gear-shaped flange portion 30 includes a plurality of convex portions 31 and concave portions 32. The plurality of convex portions 31 and concave portions 32 are alternately arranged in the circumferential direction. The head 35 penetrates the hole 21 a of the upper wall 21 of the casing 2. The user can operate the shaft 3 by connecting the measured rotation amount member (not shown) to the head 35 and operating the measured rotation amount member from outside the casing 2. .
 エンコーダ機構6は、ベース部材の一例としてのエンコーダ基板60と、エンコーダ基板60に設けられた抵抗体パターン61,62,63と、エンコーダ基板60に設けられ、抵抗体パターン61,62,63に電気的に接続されるエンコーダ端子601,602,603と、シャフト3とともに回転可能となるようにシャフト3に取り付けられたロータ65と、ロータ65に取り付けられ抵抗体パターン61,62,63と摺接する摺動子66とを有する。 The encoder mechanism 6 includes an encoder board 60 as an example of a base member, resistor patterns 61, 62, and 63 provided on the encoder board 60, and an electrical circuit provided on the encoder board 60 and electrically connected to the resistor patterns 61, 62, and 63. Encoder terminals 601, 602, 603, which are electrically connected, a rotor 65 attached to the shaft 3 so as to be rotatable with the shaft 3, and a slider which is attached to the rotor 65 and slidably contacts the resistor patterns 61, 62, 63. And a moving element 66.
 エンコーダ基板60は、例えば、樹脂から構成される。エンコーダ基板60の上面60aに、規制部材(クリックバネ55,振り子56,57)が取り付けられている。エンコーダ基板60のX方向の両側には、突部60bが設けられている。突部60bは、ケーシング2の側壁22の溝部22bに嵌め込まれている。エンコーダ基板60のY方向の両側は、突壁23と突片24によって挟まれている。このように、エンコーダ基板60は、側壁22の溝部22bと突壁23と突片24とによって、ケーシング2に固定されている。言い換えると、側壁22の溝部22bと突壁23と突片24とは、エンコーダ基板60を固定するエンコーダ固定部を構成する。 The encoder board 60 is made of, for example, resin. A regulating member (click spring 55, pendulum 56, 57) is attached to the upper surface 60a of the encoder board 60. Protrusions 60b are provided on both sides of the encoder substrate 60 in the X direction. The protrusion 60b is fitted in the groove 22b of the side wall 22 of the casing 2. Both sides of the encoder board 60 in the Y direction are sandwiched between the projecting wall 23 and the projecting piece 24. Thus, the encoder board 60 is fixed to the casing 2 by the groove 22 b of the side wall 22, the projecting wall 23, and the projecting piece 24. In other words, the groove 22 b of the side wall 22, the protruding wall 23, and the protruding piece 24 constitute an encoder fixing portion for fixing the encoder board 60.
 抵抗体パターン61,62,63は、エンコーダ基板60の下面に設けられている。抵抗体パターン61,62,63は、シャフト3の回転方向および回転角度を検知するためのものである。第1抵抗体パターン61と第2抵抗体パターン62と第3抵抗体パターン63とは、環状に形成され、同心状に配置されている。第1抵抗体パターン61と第2抵抗体パターン62と第3抵抗体パターン63とは、径方向の外側から内側に順に配置されている。第1抵抗体パターン61と第2抵抗体パターン62とは、それぞれ、間欠的に形成されている。第3抵抗体パターン63は、連続的に形成されている。 The resistor patterns 61, 62, 63 are provided on the lower surface of the encoder board 60. The resistor patterns 61, 62, and 63 are for detecting the rotation direction and the rotation angle of the shaft 3. The first resistor pattern 61, the second resistor pattern 62, and the third resistor pattern 63 are formed in a ring shape and are arranged concentrically. The first resistor pattern 61, the second resistor pattern 62, and the third resistor pattern 63 are arranged in order from the outside in the radial direction to the inside. The first resistor pattern 61 and the second resistor pattern 62 are each formed intermittently. The third resistor pattern 63 is formed continuously.
 エンコーダ端子601,602,603は、エンコーダ基板60にインサート成形されている。第1エンコーダ端子601は、第1抵抗体パターン61に電気的に接続され、第2エンコーダ端子602は、第2抵抗体パターン62に電気的に接続され、第3エンコーダ端子603は、第3抵抗体パターン63に電気的に接続されている。 The encoder terminals 601, 602, and 603 are insert-molded on the encoder substrate 60. The first encoder terminal 601 is electrically connected to the first resistor pattern 61, the second encoder terminal 602 is electrically connected to the second resistor pattern 62, and the third encoder terminal 603 is connected to the third resistor pattern 603. It is electrically connected to the body pattern 63.
 ロータ65は、シャフト3に対して、周方向に位置決めされ、かつ、軸方向に移動可能となる。具体的に述べると、ロータ65は、D形状の孔部65aを有する。シャフト3の脚部36の外周面は、D形状に形成されている。D形状の脚部36が、D形状の孔部65aに嵌合されて、ロータ65は、シャフト3に対して周方向に固定され軸方向に固定されない。 The rotor 65 is positioned in the circumferential direction with respect to the shaft 3 and is movable in the axial direction. More specifically, the rotor 65 has a D-shaped hole 65a. The outer peripheral surface of the leg 36 of the shaft 3 is formed in a D shape. The D-shaped leg 36 is fitted into the D-shaped hole 65a, so that the rotor 65 is fixed to the shaft 3 in the circumferential direction but not in the axial direction.
 ロータ65は、略長円形状に形成されている。ロータ65は、ロータ65の外径が長径となる長径部651と、ロータ65の外径が短径となる短径部652とを有する。長径部651の長さは、対向する側壁22の係止部22cの間の隙間よりも大きく、短径部652の長さは、対向する側壁22の係止部22cの間の隙間よりも小さい。言い換えると、係止部22cは、短径部652が係止しないで離脱され、かつ、長径部651がロータ65の回転により係脱可能となるように、構成されている。 The rotor 65 is formed in a substantially elliptical shape. The rotor 65 has a long diameter portion 651 where the outer diameter of the rotor 65 is a long diameter, and a short diameter portion 652 where the outside diameter of the rotor 65 is a short diameter. The length of the long diameter portion 651 is larger than the gap between the locking portions 22c of the opposing side wall 22, and the length of the short diameter portion 652 is smaller than the gap between the locking portions 22c of the opposing side wall 22. . In other words, the locking portion 22c is configured such that the short diameter portion 652 is detached without being locked, and the long diameter portion 651 can be disengaged by rotation of the rotor 65.
 摺動子66は、例えば、金属から構成される。摺動子66は、ロータ65の上面の2つの突部65bに固定される。摺動子66は、環状に形成される。摺動子66は、第1接点部661と第2接点部662と第3接点部663とを有する。第1接点部661と第2接点部662と第3接点部663とは、径方向の外側から内側に順に配置されている。第1接点部661と第2接点部662と第3接点部663とは、導通している。第1接点部661は、第1抵抗体パターン61に接触可能となり、第2接点部662は、第2抵抗体パターン62に接触可能となり、第3接点部663は、第3抵抗体パターン63に接触可能となる。 The slider 66 is made of, for example, metal. The slider 66 is fixed to two protrusions 65b on the upper surface of the rotor 65. The slider 66 is formed in an annular shape. The slider 66 has a first contact portion 661, a second contact portion 662, and a third contact portion 663. The first contact part 661, the second contact part 662, and the third contact part 663 are arranged in order from the outside in the radial direction to the inside. The first contact portion 661, the second contact portion 662, and the third contact portion 663 are electrically connected. The first contact portion 661 can contact the first resistor pattern 61, the second contact portion 662 can contact the second resistor pattern 62, and the third contact portion 663 can contact the third resistor pattern 63. Contact is possible.
 スイッチ機構7は、スイッチ基板70と、スイッチ基板70に設けられた第1から第3スイッチ端子701,702,703と、スイッチ基板70に設けられ、シャフト3の脚部36に押圧される導電体71とを有する。導電体71は、第1、第2スイッチ端子701,702に電気的に接続される。導電体71は、シャフト3の脚部36に押圧されて、第3スイッチ端子703に電気的に接続され、第1、第2スイッチ端子701,702と第3スイッチ端子703とを導通する。第1、第2スイッチ端子701,702と第3スイッチ端子703とが導通すると、スイッチ信号がオンとなる。例えば、スイッチ信号のオンにより、各機能が動作する。なお、第1、第2スイッチ端子701,702のうちの一方のスイッチ端子のみ設けてもよい。 The switch mechanism 7 includes a switch board 70, first to third switch terminals 701, 702, and 703 provided on the switch board 70, and a conductor provided on the switch board 70 and pressed by the leg 36 of the shaft 3. 71. The conductor 71 is electrically connected to the first and second switch terminals 701 and 702. The conductor 71 is pressed by the leg 36 of the shaft 3 and is electrically connected to the third switch terminal 703, and conducts between the first and second switch terminals 701 and 702 and the third switch terminal 703. When the first and second switch terminals 701 and 702 and the third switch terminal 703 conduct, the switch signal is turned on. For example, each function operates when the switch signal is turned on. Note that only one of the first and second switch terminals 701 and 702 may be provided.
 スイッチ基板70のX方向の両側には、突部70bが設けられている。突部70bは、ケーシング2の側壁22の孔部22aに嵌め込まれている。このように、スイッチ基板70は、側壁22の孔部22aによって、ケーシング2に固定されている。言い換えると、側壁22の孔部22aは、スイッチ基板70を固定するスイッチ固定部を構成する。 突 Protrusions 70b are provided on both sides of the switch substrate 70 in the X direction. The protrusion 70 b is fitted into the hole 22 a of the side wall 22 of the casing 2. As described above, the switch board 70 is fixed to the casing 2 by the hole 22 a of the side wall 22. In other words, the hole 22a of the side wall 22 constitutes a switch fixing part for fixing the switch board 70.
 スイッチ基板70の下面のX方向の一辺には、段部70cが設けられている。段部70cには、折り曲げられたエンコーダ端子601,602,603の端部が、係止している。つまり、エンコーダ基板60とスイッチ基板70とは、折り曲げられたエンコーダ端子601,602,603によって、一体に抱えられている。 段 A step 70c is provided on one side of the lower surface of the switch substrate 70 in the X direction. Ends of the bent encoder terminals 601, 602, and 603 are locked to the step 70c. That is, the encoder board 60 and the switch board 70 are integrally held by the bent encoder terminals 601, 602, and 603.
 段部70cの深さは、エンコーダ端子601,602,603の厚みよりも深い。これにより、スイッチ基板70の下面を実装基板に設置したとき、エンコーダ端子601,602,603でなく、スイッチ基板70の下面を設置面とできる。 The depth of the step 70c is greater than the thickness of the encoder terminals 601, 602, 603. Thus, when the lower surface of the switch substrate 70 is installed on the mounting substrate, the lower surface of the switch substrate 70 can be used as the installation surface instead of the encoder terminals 601, 602, and 603.
 第1から第3スイッチ端子701,702,703は、スイッチ基板70にインサート成形されている。第3スイッチ端子703は、第1スイッチ端子701と第2スイッチ端子702との間に、位置する。 The first to third switch terminals 701, 702, and 703 are insert-molded on the switch substrate 70. The third switch terminal 703 is located between the first switch terminal 701 and the second switch terminal 702.
 導電体71は、弾性を有する。導電体71は、ドーム状に形成されている。導電体71は、スイッチ基板70の上面の凹部70aに嵌め込まれている。 The conductor 71 has elasticity. The conductor 71 is formed in a dome shape. The conductor 71 is fitted into the recess 70 a on the upper surface of the switch board 70.
 導電体71の周縁部分71aは、第1、第2スイッチ端子701,702に電気的に接続されている。導電体71の天頂部分71bは、導電体71の自由状態で、第3スイッチ端子703から離隔する一方、シャフト3の脚部36に押圧されて第3スイッチ端子703に電気的に接続される。 (4) The peripheral portion 71a of the conductor 71 is electrically connected to the first and second switch terminals 701 and 702. The zenith portion 71b of the conductor 71 is separated from the third switch terminal 703 in the free state of the conductor 71, and is pressed by the leg 36 of the shaft 3 to be electrically connected to the third switch terminal 703.
 つまり、シャフト3を下側に押圧すると、シャフト3の脚部36が、導電体71の天頂部分71bを押圧して、導電体71の天頂部分71bが、第3スイッチ端子703に電気的に接続される。これにより、第1、第2スイッチ端子701,702と第3スイッチ端子703とが、電気的に接続されて、スイッチ信号がオンとなる。 That is, when the shaft 3 is pressed downward, the leg 36 of the shaft 3 presses the zenith portion 71b of the conductor 71, and the zenith portion 71b of the conductor 71 is electrically connected to the third switch terminal 703. Is done. As a result, the first and second switch terminals 701 and 702 and the third switch terminal 703 are electrically connected, and the switch signal is turned on.
 一方、シャフト3の下側への押圧を解除すると、導電体71が自由状態に戻ることで、シャフト3が上側に移動し、導電体71の天頂部分71bが、第3スイッチ端子703から離隔する。これにより、第1、第2スイッチ端子701,702と第3スイッチ端子703とが、電気的に接続されず、スイッチ信号がオフとなる。 On the other hand, when the pressing on the lower side of the shaft 3 is released, the conductor 71 returns to the free state, so that the shaft 3 moves upward, and the zenith portion 71b of the conductor 71 is separated from the third switch terminal 703. . As a result, the first and second switch terminals 701 and 702 and the third switch terminal 703 are not electrically connected, and the switch signal is turned off.
 図6は、エンコーダ機構6の下方からみた分解斜視図である。図6に示すように、エンコーダ基板60の下面には、第1、第2、第3電極部671,672,673が設けられている。第1電極部671と第2電極部672と第3電極部673とは、環状に形成され、同心状に配置されている。第1電極部671と第2電極部672と第3電極部673とは、径方向の外側から内側に順に配置されている。第1電極部671は、第1エンコーダ端子601の端部601aに電気的に接続され、第2電極部672は、第2エンコーダ端子602の端部602aに電気的に接続され、第3電極部673は、第3エンコーダ端子603の端部603aに電気的に接続されている。 FIG. 6 is an exploded perspective view of the encoder mechanism 6 as viewed from below. As shown in FIG. 6, first, second, and third electrode portions 671, 672, and 673 are provided on the lower surface of the encoder substrate 60. The first electrode portion 671, the second electrode portion 672, and the third electrode portion 673 are formed in a ring shape and are arranged concentrically. The first electrode portion 671, the second electrode portion 672, and the third electrode portion 673 are arranged in order from the outside in the radial direction to the inside. The first electrode unit 671 is electrically connected to the end 601a of the first encoder terminal 601; the second electrode unit 672 is electrically connected to the end 602a of the second encoder terminal 602; Reference numeral 673 is electrically connected to the end 603a of the third encoder terminal 603.
 第1、第2、第3電極部671,672,673上には、絶縁シート68が積層されている。絶縁シート68は、第1電極部671が周方向に間欠的に露出し、かつ、第2電極部672が周方向に間欠的に露出するように、第1電極部671および第2電極部672を覆う。つまり、絶縁シート68は、周方向に間欠的に配置される複数の孔部68aを有し、第1電極部671および第2電極部672が、絶縁シート68の孔部68aから、露出する。第3電極部673は、絶縁シート68に覆われていない。 絶 縁 An insulating sheet 68 is laminated on the first, second, and third electrode portions 671, 672, 673. The insulating sheet 68 includes a first electrode portion 671 and a second electrode portion 672 such that the first electrode portion 671 is intermittently exposed in the circumferential direction and the second electrode portion 672 is intermittently exposed in the circumferential direction. Cover. That is, the insulating sheet 68 has a plurality of holes 68a intermittently arranged in the circumferential direction, and the first electrode portion 671 and the second electrode portion 672 are exposed from the holes 68a of the insulating sheet 68. The third electrode portion 673 is not covered with the insulating sheet 68.
 第1電極部671が絶縁シート68から露出している部分に第1抵抗体パターン61を設け、第2電極部672が絶縁シート68から露出している部分に第2抵抗体パターン62を設け、第3電極部673に第3抵抗体パターン63を設けている。 A first resistor pattern 61 is provided at a portion where the first electrode portion 671 is exposed from the insulating sheet 68, and a second resistor pattern 62 is provided at a portion where the second electrode portion 672 is exposed from the insulating sheet 68. The third resistor pattern 63 is provided on the third electrode portion 673.
 これにより、第1抵抗体パターン61は、第1電極部671を介して、第1エンコーダ端子601に電気的に接続され、第2抵抗体パターン62は、第2電極部672を介して、第2エンコーダ端子602に電気的に接続され、第3抵抗体パターン63は、第3電極部673を介して、第3エンコーダ端子603に電気的に接続される。 Thereby, the first resistor pattern 61 is electrically connected to the first encoder terminal 601 via the first electrode portion 671, and the second resistor pattern 62 is electrically connected to the first encoder terminal 601 via the second electrode portion 672. The second resistor terminal 603 is electrically connected to the second encoder terminal 602, and the third resistor pattern 63 is electrically connected to the third encoder terminal 603 via the third electrode portion 673.
 図7は、エンコーダ機構6の下方からみた斜視図である。図7に示すように、摺動子66の第1接点部661は、第1抵抗体パターン61に対応した位置にあり、摺動子66の第2接点部662は、第2抵抗体パターン62に対応した位置にあり、摺動子66の第3接点部663は、第3抵抗体パターン63に対応した位置にある。 FIG. 7 is a perspective view of the encoder mechanism 6 as viewed from below. As shown in FIG. 7, the first contact portion 661 of the slider 66 is located at a position corresponding to the first resistor pattern 61, and the second contact portion 662 of the slider 66 is located at the position of the second resistor pattern 62. The third contact 663 of the slider 66 is located at a position corresponding to the third resistor pattern 63.
 そして、摺動子66の回転により、第1接点部661は、第1抵抗体パターン61と絶縁シート68とに交互に接触し、第2接点部662は、第2抵抗体パターン62と絶縁シート68とに交互に接触する。第3接点部663は、常時、第3抵抗体パターン63に接触している。つまり、摺動子66の回転により、第1エンコーダ端子601と第3エンコーダ端子603とが、間欠的に電気的に接続され、第2エンコーダ端子602と第3エンコーダ端子603とが、間欠的に電気的に接続される。 Then, by the rotation of the slider 66, the first contact portion 661 alternately contacts the first resistor pattern 61 and the insulating sheet 68, and the second contact portion 662 contacts the second resistor pattern 62 and the insulating sheet 68. And 68 alternately. The third contact portion 663 is always in contact with the third resistor pattern 63. That is, by the rotation of the slider 66, the first encoder terminal 601 and the third encoder terminal 603 are intermittently electrically connected, and the second encoder terminal 602 and the third encoder terminal 603 are intermittently connected. It is electrically connected.
 図8は、エンコーダ機構6の等価回路を示す回路図である。図9は、エンコーダ機構6の出力波形を示す波形図である。図8と図9に示すように、第1エンコーダ端子601と第3エンコーダ端子603とが、電気的に接続されると、A点とC点の間に電流が流れて、A信号がオンとなる。第2エンコーダ端子602と第3エンコーダ端子603とが、電気的に接続されると、B点とC点の間に電流が流れて、B信号がオンとなる。 FIG. 8 is a circuit diagram showing an equivalent circuit of the encoder mechanism 6. FIG. 9 is a waveform diagram showing an output waveform of the encoder mechanism 6. As shown in FIGS. 8 and 9, when the first encoder terminal 601 and the third encoder terminal 603 are electrically connected, a current flows between the points A and C, and the A signal is turned on. Become. When the second encoder terminal 602 and the third encoder terminal 603 are electrically connected, a current flows between the points B and C, and the B signal is turned on.
 摺動子66の時計回り方向の回転において、A信号のオフの始まりから次のオフの始まりまでの摺動子66の回転角度は、60degとなる。B信号についても同様である。また、A信号のオフの始まりとB信号のオフの始まりのずれは、摺動子66の回転角度において、15degとなる。そして、摺動子66の1回転(つまり、摺動子66の回転角度は、360degである)において、A信号およびB信号のオンとオフの組み合わせの変化は、24に分けられる。つまり、摺動子66の1回転において、摺動子66の回転角度が15degごとに変化することを判断できる。したがって、A信号とB信号の変化を判断することで、摺動子66の回転方向と回転角度(回転量)を判断できる。 In the clockwise rotation of the slider 66, the rotation angle of the slider 66 from the start of the OFF of the A signal to the start of the next OFF is 60 deg. The same applies to the B signal. The difference between the start of turning off the A signal and the start of turning off the B signal is 15 deg in the rotation angle of the slider 66. Then, in one rotation of the slider 66 (that is, the rotation angle of the slider 66 is 360 deg), the change of the combination of ON and OFF of the A signal and the B signal is divided into 24. That is, it is possible to determine that the rotation angle of the slider 66 changes every 15 degrees during one rotation of the slider 66. Therefore, the rotation direction and rotation angle (rotation amount) of the slider 66 can be determined by judging a change in the A signal and the B signal.
 図10は、エンコーダ基板60、シャフト3および規制部材(クリックバネ55,振り子56,57)の平面図である。図11は、エンコーダ基板60と規制部材(クリックバネ55,振り子56,57)の分解斜視図である。 FIG. 10 is a plan view of the encoder board 60, the shaft 3, and the regulating members (the click spring 55, the pendulums 56 and 57). FIG. 11 is an exploded perspective view of the encoder board 60 and the regulating members (the click spring 55 and the pendulums 56 and 57).
 図10と図11に示すように、規制部材(クリックバネ55,振り子56,57)は、シャフト3の軸3a方向からみて、シャフト3の鍔部30を囲むように配置されている。 As shown in FIGS. 10 and 11, the regulating members (the click spring 55 and the pendulums 56 and 57) are arranged so as to surround the flange 30 of the shaft 3 when viewed from the direction of the shaft 3 a of the shaft 3.
 振り子56,57は、例えば、金属などの剛体から構成される。この振り子56,57は、貫通穴56d,57dが設けられた環状基部56a,57aと、環状基部56a,57aから延びるアーム部56b,57bと、アーム部56b,57bの先端(自由端)に設けられた接点部56c,57cを有する。振り子56,57の貫通穴56d,57dに、エンコーダ基板60の上面60aに設けられた2つのヒンジピン82が挿入された状態で、振り子56,57の夫々がエンコーダ基板60に回動可能に連結されている。振り子56の接点部56cは、第1の係止部を兼ねると共に、振り子56の接点部57cは、第2の係止部を兼ねる。 The pendulums 56 and 57 are made of, for example, a rigid body such as a metal. The pendulums 56 and 57 are provided at annular bases 56a and 57a provided with through holes 56d and 57d, arms 56b and 57b extending from the annular bases 56a and 57a, and distal ends (free ends) of the arms 56b and 57b. Provided contact portions 56c and 57c. With the two hinge pins 82 provided on the upper surface 60a of the encoder board 60 inserted into the through holes 56d, 57d of the pendulums 56, 57, the pendulums 56, 57 are rotatably connected to the encoder board 60, respectively. ing. The contact portion 56c of the pendulum 56 also serves as a first locking portion, and the contact portion 57c of the pendulum 56 also serves as a second locking portion.
 なお、振り子56,57側にピンを設け、エンコーダ基板60に設けられた穴に振り子56,57のピンを挿入することによって、振り子56,57の夫々をエンコーダ基板60に回動可能に連結してもよい。 By providing pins on the pendulums 56 and 57 and inserting the pins of the pendulums 56 and 57 into holes provided in the encoder board 60, each of the pendulums 56 and 57 is rotatably connected to the encoder board 60. You may.
 また、クリックバネ55は、予め決められた範囲内で全体が移動可能なようにエンコーダ基板60の上面60aに保持されている。また、クリックバネ55は、鍔部30の外周を囲むようにU字型をした弾性変形可能な基部55aと、振り子56の接点部56c側に係止するように、基部55aの一端に設けられた第1の係止部55bと、基部55aの一端に外側に突設されたストッパー部55cと、振り子57の接点部57c側に係止するように、基部55aの他端に設けられた第2の係止部55dと、基部55aの一端に外側に突設されたストッパー部55eを有する。 The click spring 55 is held on the upper surface 60a of the encoder board 60 such that the click spring 55 can move entirely within a predetermined range. The click spring 55 is provided at one end of the base 55a so as to be engaged with a U-shaped elastically deformable base 55a so as to surround the outer periphery of the flange 30 and the contact portion 56c of the pendulum 56. The first locking portion 55b, a stopper portion 55c protruding outward at one end of the base portion 55a, and a second locking portion 55c provided at the other end of the base portion 55a so as to lock on the contact portion 57c side of the pendulum 57. A second locking portion 55d and a stopper portion 55e protruding outward at one end of the base portion 55a.
 なお、エンコーダ基板60のコーナー部に当接部60c,60dを設けている。クリックバネ55のストッパー部55cは、エンコーダ基板60の当接部60cと間隔をあけて配置されている。また、クリックバネ55のストッパー部55eは、エンコーダ基板60の当接部60dと間隔をあけて配置されている。 (4) The contact portions 60c and 60d are provided at the corners of the encoder board 60. The stopper portion 55c of the click spring 55 is arranged at a distance from the contact portion 60c of the encoder board 60. The stopper portion 55e of the click spring 55 is arranged at a distance from the contact portion 60d of the encoder board 60.
 また、クリックバネ55の第1の係止部55b,第2の係止部55dは、シャフト3の径方向内側に円弧形状の凸面111,112(湾曲面)を有している。一方、振り子56,57の接点部56c,57cは、シャフト3の径方向外側に、クリックバネ55の第1の係止部55b,第2の係止部55dに対向する円弧形状の凹面121,122(湾曲面)を有している。 The first locking portion 55b and the second locking portion 55d of the click spring 55 have arc-shaped convex surfaces 111 and 112 (curved surfaces) radially inside the shaft 3. On the other hand, the contact portions 56c, 57c of the pendulums 56, 57 are provided on the radially outer side of the shaft 3 with arc-shaped concave surfaces 121 facing the first locking portion 55b and the second locking portion 55d of the click spring 55, respectively. 122 (curved surface).
 クリックバネ55の第1の係止部55bの円弧形状の凸面111と、振り子56の接点部56cの径方向外側の円弧形状の凹面121とが、互いに接触して、クリックバネ55の第1の係止部55bに振り子56の接点部56cが係止する。また、クリックバネ55の第2の係止部55dの円弧形状の凸面112と、振り子57の接点部57cの径方向外側の円弧形状の凹面122とが、互いに接触して、クリックバネ55の第2の係止部55dに振り子57の接点部57cが係止する。 The arc-shaped convex surface 111 of the first locking portion 55b of the click spring 55 and the arc-shaped concave surface 121 on the radially outer side of the contact portion 56c of the pendulum 56 come into contact with each other, and the first spring 55 of the click spring 55 The contact portion 56c of the pendulum 56 is locked to the locking portion 55b. Also, the arc-shaped convex surface 112 of the second locking portion 55d of the click spring 55 and the arc-shaped concave surface 122 on the radially outer side of the contact portion 57c of the pendulum 57 come into contact with each other. The contact portion 57c of the pendulum 57 is locked to the second locking portion 55d.
 振り子56,57の接点部56c,57cは、それぞれ、シャフト3の鍔部30(図10に示す)に接触可能となる。この振り子56,57の接点部56c,57cは、クリックバネ55によりシャフト3の径方向外側からシャフト3側に向かって付勢されて、シャフト3の鍔部30の凸部31に付勢して接触する一方、シャフト3の鍔部30の凹部32に嵌まってシャフト3の回転角度を規制する。 接点 The contact portions 56c, 57c of the pendulums 56, 57 can come into contact with the flange 30 (shown in FIG. 10) of the shaft 3, respectively. The contact portions 56c, 57c of the pendulums 56, 57 are urged toward the shaft 3 from the radial outside of the shaft 3 by the click spring 55, and are urged toward the convex portion 31 of the flange 30 of the shaft 3. While being in contact, it fits into the recess 32 of the flange 30 of the shaft 3 to regulate the rotation angle of the shaft 3.
 図12は、シャフト3の鍔部30とクリックバネ55および振り子56,57の動作を説明する説明図である。 FIG. 12 is an explanatory diagram for explaining the operations of the flange portion 30 of the shaft 3, the click spring 55, and the pendulums 56 and 57.
 振り子56,57の接点部56c,57cが鍔部30の凹部32に嵌まった図10に示す状態から、シャフト3を軸3aを中心として回転させると、クリックバネ55が弾性変形しながら、振り子56,57の接点部56c,57cをシャフト3の径方向外側からシャフト3側に向かって付勢しつつ、鍔部30の凸部31により外向きに力を受けた振り子56,57がヒンジピン82を中心に外側に回動する。そうして、振り子56,57の接点部56c,57cは、図12に示すように、鍔部30の凸部31の頂点と接する。ここで、クリックバネ55のストッパー部55cは、エンコーダ基板60の当接部60cに接するかまたは近接すると共に、クリックバネ55のストッパー部55eは、エンコーダ基板60の当接部60dに接するかまたは近接する。 When the shaft 3 is rotated about the shaft 3a from the state shown in FIG. 10 in which the contact portions 56c and 57c of the pendulums 56 and 57 are fitted in the concave portions 32 of the flange 30, the click spring 55 is elastically deformed and the pendulum is The pendulums 56, 57, which are urged outward by the projections 31 of the flange 30 while urging the contact portions 56c, 57c of the 56, 57 from the radially outer side of the shaft 3 toward the shaft 3, become hinge pins 82. To the outside around the center. Then, the contact portions 56c and 57c of the pendulums 56 and 57 come into contact with the vertices of the convex portion 31 of the flange portion 30, as shown in FIG. Here, the stopper 55c of the click spring 55 is in contact with or close to the contact portion 60c of the encoder board 60, and the stopper 55e of the click spring 55 is in contact with or close to the contact 60d of the encoder board 60. I do.
 その後、振り子56,57の接点部56c,57cは、鍔部30の凸部31を乗り越えて、再び鍔部30の凹部32に嵌まる。このとき、振り子56の接点部56cと振り子57の接点部57cとは、互いに反対側に位置する凹部32,32に、同時に嵌まる。 Thereafter, the contact portions 56c, 57c of the pendulums 56, 57 ride over the convex portions 31 of the flange portion 30 and fit into the concave portions 32 of the flange portion 30 again. At this time, the contact portion 56c of the pendulum 56 and the contact portion 57c of the pendulum 57 are simultaneously fitted into the concave portions 32, 32 located on opposite sides.
 シャフト3を時計回り方向Aに回転するとき、振り子56の接点部56cは、鍔部30の凸部31により外向きに力を受けて、振り子56がヒンジピン82を中心に反時計回りに回動する。一方、シャフト3を時計回り方向Aに回転するとき、振り子57の接点部57cは、鍔部30の凸部31により外向きに力を受けて、振り子57がヒンジピン82を中心に時計回りに回動する。 When the shaft 3 is rotated in the clockwise direction A, the contact portion 56 c of the pendulum 56 receives a force outward by the convex portion 31 of the flange portion 30, and the pendulum 56 rotates counterclockwise around the hinge pin 82. I do. On the other hand, when rotating the shaft 3 in the clockwise direction A, the contact portion 57c of the pendulum 57 receives an outward force by the convex portion 31 of the flange portion 30, and the pendulum 57 rotates clockwise around the hinge pin 82. Move.
 同様に、シャフト3を反時計回り方向Bに回転すると、振り子56の接点部56cは、鍔部30の凸部31により外向きに力を受けて、振り子56がヒンジピン82を中心に反時計回りに回動する。一方、シャフト3を時計回り方向Bに回転すると、振り子57の接点部57cは、鍔部30の凸部31により外向きに力を受けて、振り子57がヒンジピン82を中心に時計回りに回動する。 Similarly, when the shaft 3 is rotated in the counterclockwise direction B, the contact portion 56 c of the pendulum 56 receives a force outward by the convex portion 31 of the flange portion 30, and the pendulum 56 rotates counterclockwise around the hinge pin 82. To rotate. On the other hand, when the shaft 3 is rotated in the clockwise direction B, the contact portion 57c of the pendulum 57 receives an outward force by the convex portion 31 of the flange portion 30, and the pendulum 57 rotates clockwise about the hinge pin 82. I do.
 エンコーダ基板60の上面60aかつクリックバネ55のシャフト3の径方向の内側に、2つのピン81を設けている。このピン81とエンコーダ基板60の当接部60c,60dによって、クリックバネ55のY方向とX方向の移動を規制する。このように、クリックバネ55は、予め決められた範囲内で全体が移動可能なようにエンコーダ基板60に保持されている。 、 2 Two pins 81 are provided on the upper surface 60 a of the encoder board 60 and radially inside the shaft 3 of the click spring 55. The movement of the click spring 55 in the Y and X directions is restricted by the contact portions 60 c and 60 d of the pin 81 and the encoder board 60. As described above, the click spring 55 is held on the encoder board 60 so as to be entirely movable within a predetermined range.
 図13は、シャフト3の斜視図である。図14Aは、シャフト3の平面図である。図14Bは、シャフト3の側面図である。図15Aは、図14AのA-A断面図である。図15Bは、図14BのB-B断面図である。 FIG. 13 is a perspective view of the shaft 3. FIG. 14A is a plan view of the shaft 3. FIG. 14B is a side view of the shaft 3. FIG. 15A is a sectional view taken along line AA of FIG. 14A. FIG. 15B is a sectional view taken along line BB of FIG. 14B.
 図13から図15Bに示すように、シャフト3は、本体部34と、本体部34の軸34aに同軸に取り付けられた鍔部30とを有する。本体部34の軸34aは、頭部35および脚部36を貫く方向に延び、シャフト3の軸3aに一致する。本体部34は、樹脂からなる頭部35および脚部36を有する。頭部35は、脚部36よりも太い。頭部35と脚部36は、一体に連続している。鍔部30は、金属からなり、平板状に形成される。鍔部30は、頭部35の下部分に嵌め込まれる。つまり、鍔部30は、本体部34の軸34aに直交する方向からみて、頭部35と脚部36の間に位置する。本体部34と鍔部30は、一体化されたインサート成型体である。 シ ャ フ ト As shown in FIGS. 13 to 15B, the shaft 3 has a main body 34 and a flange 30 coaxially attached to a shaft 34a of the main body 34. The axis 34 a of the main body 34 extends in a direction penetrating the head 35 and the leg 36, and coincides with the axis 3 a of the shaft 3. The main body 34 has a head 35 and legs 36 made of resin. The head 35 is thicker than the legs 36. The head 35 and the leg 36 are integrally continuous. The flange portion 30 is made of metal and formed in a flat plate shape. The flange 30 is fitted into the lower part of the head 35. That is, the flange portion 30 is located between the head portion 35 and the leg portion 36 when viewed from a direction orthogonal to the axis 34a of the main body portion 34. The main body 34 and the flange 30 are an integrated insert molded body.
 鍔部30は、本体部34が貫通し本体部34の軸34aと重なる貫通穴33を有する。本体部34の軸34aは、貫通穴33の中心に一致する。貫通穴33の内面330は、本体部34の外面340に接触する。 The collar portion 30 has a through hole 33 through which the main body portion 34 penetrates and overlaps with the shaft 34 a of the main body portion 34. The shaft 34 a of the main body 34 coincides with the center of the through hole 33. The inner surface 330 of the through hole 33 contacts the outer surface 340 of the main body 34.
 頭部35の上面には、軸受穴37とゲート痕38が設けられている。軸受穴37とゲート痕38は、隣接して設けられている。軸受穴37は、回転量被測定部材が差し込まれる穴である。ゲート痕38は、インサート成型用型のゲートから樹脂を注入したときのゲートの痕である。なお、後述する様に、ゲート痕はインサート成型用型から取り外す際に注入された樹脂を切断することにより得られるものである。そのため、ゲート痕の上面は荒れたものである場合があるが、図面上では模式的に平坦に示している。 軸 受 A bearing hole 37 and a gate mark 38 are provided on the upper surface of the head 35. The bearing hole 37 and the gate mark 38 are provided adjacent to each other. The bearing hole 37 is a hole into which the rotation amount measurement target member is inserted. The gate mark 38 is a mark of the gate when resin is injected from the gate of the insert molding die. In addition, as described later, the gate mark is obtained by cutting the resin injected when the resin is removed from the insert mold. For this reason, the upper surface of the gate mark may be rough, but is schematically shown flat in the drawing.
 軸受穴37は、本体部34の軸34aと重なるように本体部34の軸34aに沿って延在している。言い換えると、軸受穴37は、本体部34の軸34a方向から見て、本体部34の軸34aを含み、かつ、本体部34の軸34aに直交する方向から見て、頭部35の上面から本体部34の軸34aに沿って延在する。具体的には、軸受穴37の軸は、本体部34の軸34aに一致する。本体部34の軸34a方向から見て、ゲート痕38の少なくとも一部は、貫通穴33と重なる。 The bearing hole 37 extends along the axis 34 a of the main body 34 so as to overlap with the axis 34 a of the main body 34. In other words, the bearing hole 37 includes the shaft 34a of the main body 34 when viewed from the axis 34a of the main body 34, and is viewed from the upper surface of the head 35 when viewed from the direction orthogonal to the shaft 34a of the main body 34. It extends along the axis 34a of the main body 34. Specifically, the axis of the bearing hole 37 coincides with the axis 34 a of the main body 34. At least a part of the gate mark 38 overlaps the through hole 33 when viewed from the axis 34a of the main body 34.
 したがって、シャフト3は、樹脂からなる本体部34と金属からなる鍔部30とを有するので、シャフト3の回転角度を規制部材により規制させたとき、シャフト3の鍔部30の摩耗を低減できる。 Therefore, since the shaft 3 has the main body 34 made of resin and the flange 30 made of metal, when the rotation angle of the shaft 3 is regulated by the regulating member, the wear of the flange 30 of the shaft 3 can be reduced.
 また、頭部35の上面には軸受穴37が設けられているので、回転量被測定部材を軸受穴37に接続でき、回転量被測定部材をシャフト3と共に回転させて、回転量被測定部材の回転量を測定することができる。 In addition, since the bearing hole 37 is provided on the upper surface of the head 35, the rotation amount measurement member can be connected to the bearing hole 37, and the rotation amount measurement member is rotated together with the shaft 3, and the rotation amount measurement member is rotated. Can be measured.
 また、ゲート痕38の少なくとも一部は、貫通穴33と重なるので、インサート成型でシャフト3を製造する場合、鍔部30をインサート成型用型にセットしてインサート成型用型のゲートから樹脂を注入するとき、樹脂は鍔部30の貫通穴33を円滑に通過でき、本体部34と鍔部30を良好にインサート成型して品質のよいシャフト3を製造できる。つまり、樹脂の流動抵抗を低減でき、樹脂不足による不良を低減できる。 In addition, since at least a part of the gate mark 38 overlaps the through hole 33, when manufacturing the shaft 3 by insert molding, the flange 30 is set in an insert molding die and resin is injected from the gate of the insert molding die. In this case, the resin can smoothly pass through the through hole 33 of the flange portion 30, and the shaft portion 3 with good quality can be manufactured by favorably insert-molding the main body portion 34 and the flange portion 30. That is, the flow resistance of the resin can be reduced, and defects due to insufficient resin can be reduced.
 また、軸受穴37とゲート痕38は、同一の上面に設けられているので、回転量被測定部材を接続するために使用され精度を必要としない上面にゲート痕38を形成できる。つまり、ゲート痕38を設けないシャフト3の下面を、スイッチ機構7を押圧するために使用され精度を必要とするスイッチ面として利用できる。 軸 受 Since the bearing hole 37 and the gate mark 38 are provided on the same upper surface, the gate mark 38 can be formed on the upper surface which is used for connecting the member to be measured for the amount of rotation and does not require accuracy. That is, the lower surface of the shaft 3 where the gate mark 38 is not provided can be used as a switch surface which is used for pressing the switch mechanism 7 and requires accuracy.
 図14Aに示すように、頭部35の外周面は、互いに対向する2つの側面を有する。これにより、回転量被測定部材を頭部35を覆うように取り付けても、回転量被測定部材をシャフト3に対して周方向に位置決めすることができる。 AAs shown in FIG. 14A, the outer peripheral surface of the head 35 has two side surfaces facing each other. Accordingly, even if the rotation amount measurement member is attached so as to cover the head 35, the rotation amount measurement member can be positioned in the circumferential direction with respect to the shaft 3.
 図15Bに示すように、貫通穴33の形状(内面330の形状)は、本体部34の軸34a方向から見て、多角形である。この実施形態では、貫通穴33の内面330の形状は、5角形であるが、多角形であれば如何なる形状であってもよい。したがって、貫通穴33に取り付けられた本体部34は、鍔部30に対して、回転方向に相対的に位置決めされる。つまり、本体部34と鍔部30は、回転時に、空回りすることなく、相対的な位置関係を保ったまま回転する。なお、貫通穴33の内面330の形状は、楕円形などの非多角形や非円形であってもよく、本体部34は、鍔部30に対して、回転方向に相対的に位置決めされる。ただし、円形は、位置決めできないので好ましくない。 As shown in FIG. 15B, the shape of the through hole 33 (the shape of the inner surface 330) is a polygon when viewed from the direction of the axis 34 a of the main body 34. In this embodiment, the shape of the inner surface 330 of the through hole 33 is a pentagon, but may be any shape as long as it is a polygon. Therefore, the main body 34 attached to the through hole 33 is positioned relative to the flange 30 in the rotation direction. That is, the main body portion 34 and the flange portion 30 rotate while rotating and maintaining a relative positional relationship without idling. The shape of the inner surface 330 of the through hole 33 may be a non-polygonal shape such as an elliptical shape or a non-circular shape, and the main body portion 34 is positioned relative to the flange portion 30 in the rotation direction. However, a circular shape is not preferable because positioning cannot be performed.
 図15Bに示すように、本体部34の軸34a方向から見て(つまり、上方向から見て)、ゲート痕38の中心38aは、貫通穴33と重なることが好ましい。ゲート痕38は、平面視円形である。したがって、インサート成型でシャフト3を製造する場合、インサート成型用型のゲートから樹脂を注入するとき、樹脂は鍔部30の貫通穴33を一層円滑に通過でき、一層品質のよいシャフト3を製造できる。 As shown in FIG. 15B, the center 38 a of the gate mark 38 preferably overlaps the through hole 33 when viewed from the axis 34 a of the main body 34 (that is, when viewed from above). The gate mark 38 has a circular shape in plan view. Therefore, when the shaft 3 is manufactured by insert molding, when the resin is injected from the gate of the insert molding die, the resin can pass through the through hole 33 of the flange 30 more smoothly, and the shaft 3 with higher quality can be manufactured. .
 図15Bに示すように、本体部34の軸34a方向から見て、ゲート痕38の面積の半分以上は、貫通穴33と重なることが好ましい。したがって、インサート成型でシャフト3を製造する場合、インサート成型用型のゲートから樹脂を注入するとき、樹脂は鍔部30の貫通穴33を一層円滑に通過でき、一層品質のよいシャフト3を製造できる。 BAs shown in FIG. 15B, it is preferable that at least half of the area of the gate mark 38 overlaps with the through hole 33 when viewed from the axis 34a of the main body 34. Therefore, when the shaft 3 is manufactured by insert molding, when the resin is injected from the gate of the insert molding die, the resin can pass through the through hole 33 of the flange 30 more smoothly, and the shaft 3 with higher quality can be manufactured. .
 図15Bに示すように、本体部34の軸34a方向から見て、軸受穴37の内面370は、貫通穴33の内面330の内側に位置することが好ましい。したがって、インサート成型でシャフト3を製造する場合、インサート成型用型のゲートから樹脂を注入するとき、樹脂は鍔部30の貫通穴33を一層円滑に通過でき、一層品質のよいシャフト3を製造できる。 BAs shown in FIG. 15B, it is preferable that the inner surface 370 of the bearing hole 37 be located inside the inner surface 330 of the through hole 33 when viewed from the direction of the shaft 34 a of the main body 34. Therefore, when the shaft 3 is manufactured by insert molding, when the resin is injected from the gate of the insert molding die, the resin can pass through the through hole 33 of the flange 30 more smoothly, and the shaft 3 with higher quality can be manufactured. .
 図15Aに示すように、軸受穴37の底部371は、鍔部30の上面331より下側に位置することが好ましい。具体的に述べると、軸受穴37の底部371は、鍔部30の上面331と下面332の間に位置する。したがって、軸受穴37と鍔部30の距離を近くでき、回転量被測定部材を軸受穴37に接続して回転量被測定部材をシャフト3と共に回転させるとき、回転量被測定部材の回転力を鍔部30に伝える際のモーメントを小さくできる。また、軸受穴37を深くでき、回転量被測定部材を軸受穴37に接続するときの姿勢を安定できる。 AAs shown in FIG. 15A, the bottom 371 of the bearing hole 37 is preferably located below the upper surface 331 of the flange 30. Specifically, the bottom 371 of the bearing hole 37 is located between the upper surface 331 and the lower surface 332 of the flange 30. Therefore, the distance between the bearing hole 37 and the flange 30 can be reduced, and when the rotation amount measurement member is connected to the bearing hole 37 to rotate the rotation amount measurement member together with the shaft 3, the rotational force of the rotation amount measurement member is reduced. The moment transmitted to the flange 30 can be reduced. In addition, the bearing hole 37 can be deepened, and the posture when the rotation amount measurement target member is connected to the bearing hole 37 can be stabilized.
 図15Bに示すように、本体部34の軸34aに直交し軸受穴37および鍔部30に交差する断面において、本体部34の外面340と軸受穴37の内面370とは、互いに平行となる部分を有することが好ましい。言い換えると、貫通穴33の内面330は、本体部34の外面340に対応しているため、貫通穴33の内面330と軸受穴37の内面370とは、互いに平行となる部分を有することが好ましい。特に、貫通穴33の内面330と軸受穴37の内面370とは、少なくとも一番薄い部分が互いに平行になっていることが好ましい。したがって、当該部分において、本体部34の厚みを確保でき、本体部34の強度を確保できる。 As shown in FIG. 15B, in a cross section orthogonal to the axis 34a of the main body 34 and intersecting the bearing hole 37 and the flange 30, the outer surface 340 of the main body 34 and the inner surface 370 of the bearing hole 37 are parallel to each other. It is preferable to have In other words, since the inner surface 330 of the through hole 33 corresponds to the outer surface 340 of the main body 34, it is preferable that the inner surface 330 of the through hole 33 and the inner surface 370 of the bearing hole 37 have portions that are parallel to each other. . In particular, at least the thinnest portions of the inner surface 330 of the through hole 33 and the inner surface 370 of the bearing hole 37 are preferably parallel to each other. Therefore, in this portion, the thickness of the main body 34 can be ensured, and the strength of the main body 34 can be ensured.
 具体的に述べると、本体部34の外面340(すなわち貫通穴33の内面330)の形状および軸受穴37の内面370の形状は、多角形である。この実施形態では、本体部34の外面340(すなわち貫通穴33の内面330)の形状は、5角形であり、軸受穴37の内面370の形状は、4角形であるが、多角形であれば如何なる形状であってもよい。軸受穴37の内面370の4辺のうちの3辺は、本体部34の外面340(すなわち貫通穴33の内面330)の5辺のうちの3辺に平行となる。したがって、平行となる3辺の部分において、本体部34の厚みを確保でき、本体部34の強度を一層確保できる。 Specifically, the shape of the outer surface 340 of the main body 34 (that is, the inner surface 330 of the through hole 33) and the shape of the inner surface 370 of the bearing hole 37 are polygonal. In this embodiment, the shape of the outer surface 340 of the main body 34 (that is, the inner surface 330 of the through hole 33) is a pentagon, and the shape of the inner surface 370 of the bearing hole 37 is a quadrangle. Any shape may be used. Three of the four sides of the inner surface 370 of the bearing hole 37 are parallel to three of the five sides of the outer surface 340 of the main body 34 (that is, the inner surface 330 of the through hole 33). Therefore, the thickness of the main body 34 can be ensured in the three parallel portions, and the strength of the main body 34 can be further ensured.
 図15Aに示すように、鍔部30の上面331の一部は、本体部34の頭部35に覆われている。貫通穴33の内面330の上面側は、第1面取り部330aを有することが好ましい。したがって、頭部35が貫通穴33の内面330の第1面取り部330aから受ける応力の集中を緩和できる。 As shown in FIG. 15A, a part of the upper surface 331 of the flange 30 is covered by the head 35 of the main body 34. The upper surface side of the inner surface 330 of the through hole 33 preferably has a first chamfered portion 330a. Therefore, the concentration of the stress that the head 35 receives from the first chamfered portion 330a of the inner surface 330 of the through hole 33 can be reduced.
 また、貫通穴33の内面330の下面側は、本体部34の頭部35に接触する第2面取り部330bを有することが好ましい。したがって、鍔部30の下面332の一部が、本体部34に覆われていなくても、本体部34が貫通穴33の内面330の第2面取り部330bに接触することで、鍔部30が本体部34から抜け難くなって、鍔部30と本体部34の接続信頼性を向上できる。なお、貫通穴33の内面330の下面側に、第2面取り部330bを設けないで、鍔部30の下面332の一部を、本体部34で覆ってもよく、鍔部30の本体部34からの抜けを防止できる。 Further, it is preferable that the lower surface side of the inner surface 330 of the through hole 33 has a second chamfered portion 330b that comes into contact with the head 35 of the main body portion. Therefore, even if a part of the lower surface 332 of the flange portion 30 is not covered with the main body portion 34, the main body portion 34 contacts the second chamfered portion 330b of the inner surface 330 of the through hole 33, so that the flange portion 30 is It becomes difficult to come off from the main body 34, and the connection reliability between the flange 30 and the main body 34 can be improved. Note that a part of the lower surface 332 of the flange portion 30 may be covered by the main body portion 34 without providing the second chamfered portion 330 b on the lower surface side of the inner surface 330 of the through hole 33. Can be prevented.
 次に、シャフト3を製造する方法について説明する。 Next, a method of manufacturing the shaft 3 will be described.
 図16Aに示すように、貫通穴33が形成された金属板300を準備し、インサート成型用型100を準備する。インサート成型用型100は、軸受穴形成用凸部102が形成された内部空間101と、内部空間101に連通するゲート103とを有する。具体的に述べると、インサート成型用型100は、上型100aと下型100bを有する。上型100aは、本体部34の頭部35を形成するための空間を有する。下型100bは、本体部34の脚部36を形成するための空間を有する。凸部102およびゲート103は、上型100aに設けられている。凸部102は、軸受穴37を形成するための中子となる。ゲート103は、内部空間101に樹脂を注入するための注入口となる。 金属 As shown in FIG. 16A, a metal plate 300 having a through hole 33 formed therein is prepared, and an insert mold 100 is prepared. The insert molding die 100 has an internal space 101 in which a projection 102 for forming a bearing hole is formed, and a gate 103 communicating with the internal space 101. Specifically, the insert mold 100 has an upper mold 100a and a lower mold 100b. The upper mold 100a has a space for forming the head 35 of the main body 34. The lower mold 100b has a space for forming the leg 36 of the main body 34. The protrusion 102 and the gate 103 are provided on the upper mold 100a. The projection 102 serves as a core for forming the bearing hole 37. Gate 103 serves as an injection port for injecting resin into internal space 101.
 その後、金属板300に直交する方向から見て(上方から見て)貫通穴33がゲート103の少なくとも一部および凸部102に重なるように金属板300をインサート成型用型100の内部空間101にセットする。つまり、金属板300を上型100aと下型100bの間に挟む。上型100aの空間と下型100bの空間は、貫通穴33を介して連通する。 Then, the metal plate 300 is placed in the internal space 101 of the insert molding die 100 such that the through hole 33 overlaps at least a part of the gate 103 and the projection 102 when viewed from a direction orthogonal to the metal plate 300 (when viewed from above). set. That is, the metal plate 300 is sandwiched between the upper mold 100a and the lower mold 100b. The space of the upper mold 100a and the space of the lower mold 100b communicate with each other through the through hole 33.
 その後、ゲート103から内部空間101内に樹脂を注入する。このとき、貫通穴33がゲート103に重なっているので、樹脂の流動抵抗の低減に効果があり、点線の矢印に示すように、樹脂は金属板300の貫通穴33を円滑に通過でき、樹脂は上型100aの空間と下型100bの空間を十分に満たすことができる。このように、樹脂と金属板300を良好にインサート成型できる。好ましくは、セットする工程において、ゲート103の中心と貫通穴33が重なり、樹脂は貫通穴33を一層円滑に通過できる。 Thereafter, a resin is injected into the internal space 101 from the gate 103. At this time, since the through-hole 33 overlaps the gate 103, it is effective in reducing the flow resistance of the resin, and the resin can pass through the through-hole 33 of the metal plate 300 smoothly, as shown by the dotted arrow. Can sufficiently fill the space of the upper mold 100a and the space of the lower mold 100b. Thus, the resin and the metal plate 300 can be favorably insert-molded. Preferably, in the setting step, the center of the gate 103 and the through hole 33 overlap, and the resin can pass through the through hole 33 more smoothly.
 その後、樹脂を硬化して樹脂と金属板300のインサート成型体110を形成し、上型100aと下型100bを分離して、図16Bに示すように、インサート成型用型100からインサート成型体110を取り外す。インサート成型体110は、本体部34と金属板300を有する。本体部34は、頭部35と脚部36を有する。頭部35のゲート痕38は、インサート成型用型100からインサート成型体110を取り外す際にゲート103内に注入された樹脂が切断されることにより、形成される。 Thereafter, the resin is cured to form an insert molded body 110 of the resin and the metal plate 300. The upper mold 100a and the lower mold 100b are separated from each other, and as shown in FIG. Remove. The insert molded body 110 has a main body 34 and a metal plate 300. The main body 34 has a head 35 and legs 36. The gate mark 38 on the head 35 is formed by cutting the resin injected into the gate 103 when removing the insert molded body 110 from the insert mold 100.
 その後、インサート成型体110の金属板30を鍔形状に打ち抜き、図16Cに示すように、本体部34と鍔部30を有する複数のシャフト3を同時に製造する。このようにして、本体部34と鍔部30を良好にインサート成型でき、軸受穴37を有する品質のよいシャフト3を量産性良く製造できる。 Thereafter, the metal plate 30 of the insert molded body 110 is punched into a flange shape, and a plurality of shafts 3 having the main body 34 and the flange 30 are simultaneously manufactured as shown in FIG. 16C. In this manner, the main body portion 34 and the flange portion 30 can be favorably insert-molded, and the high quality shaft 3 having the bearing hole 37 can be manufactured with high mass productivity.
 なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で設計変更可能である。 The present invention is not limited to the above-described embodiment, and the design can be changed without departing from the gist of the present invention.
 前記実施形態では、回転式電子部品の一例として回転エンコーダについて説明したが、この発明の回転式電子部品は、回転エンコーダに限らず、ポテンションメータやトリマコンデンサなどの他の回転式電子部品に適用することができる。つまり、回転エンコーダ用のシャフト以外に、回転式電子部品用回転シャフトを適用することができる。 In the above-described embodiment, the rotary encoder is described as an example of the rotary electronic component. However, the rotary electronic component of the present invention is not limited to the rotary encoder, and is applicable to other rotary electronic components such as a potentiometer and a trimmer capacitor. can do. That is, in addition to the shaft for the rotary encoder, a rotary shaft for rotary electronic components can be applied.
 前記実施形態では、クリックバネ55(付勢部材)と振り子56,57(接触部材)とを有する規制部材を備えた回転エンコーダについて説明したが、規制部材は、シャフトの鍔部の凸部および凹部に接触する1つの接触部材と、接触部材をシャフトの径方向外側からシャフト側に向かって付勢する1つの付勢部材で構成された回転式電子部品にこの発明を適用してもよい。 In the above-described embodiment, the rotary encoder including the restricting member having the click spring 55 (biasing member) and the pendulums 56 and 57 (contact member) has been described. However, the restricting member includes the convex portion and the concave portion of the shaft flange. The present invention may be applied to a rotary electronic component including one contact member that contacts the shaft and one urging member that urges the contact member from the radial outside of the shaft toward the shaft.
 前記実施形態では、規制部材とエンコーダ機構とスイッチ機構とは、シャフトの軸に沿って、上側から下側に順に配置されているが、規制部材、エンコーダ機構およびスイッチ機構のシャフトの軸に沿った順番を変更してもよい。 In the embodiment, the regulating member, the encoder mechanism, and the switch mechanism are arranged in order from the upper side to the lower side along the axis of the shaft. However, the regulating member, the encoder mechanism, and the switch mechanism are arranged along the axis of the shaft. The order may be changed.
 1 回転エンコーダ(回転式電子部品)
 2 ケーシング
 3 シャフト(回転式電子部品用回転シャフト)
 3a 軸
 30 鍔部
 300 金属板
 33 貫通穴
 330 内面
 330a 第1面取り部
 330b 第2面取り部
 331 上面
 332 下面
 34 本体部
 34a 軸
 340 外面
 35 頭部
 36 脚部
 37 軸受穴
 370 内面
 371 底部
 38 ゲート痕
 38a 中心
 55 クリックバネ(付勢部材)
 56,57 振り子(接触部材)
 6 エンコーダ機構
 60 エンコーダ基板(ベース部材)
 61,62,63 抵抗体パターン
 65 ロータ
 66 摺動子
 7 スイッチ機構
 70 スイッチ基板
 71 導電体
 100 インサート成型用型
 101 内部空間
 102 軸受穴形成用凸部
 103 ゲート
 110 インサート成型体
1 Rotary encoder (rotary electronic components)
2 Casing 3 Shaft (rotary shaft for rotary electronic components)
3a shaft 30 flange portion 300 metal plate 33 through hole 330 inner surface 330a first chamfered portion 330b second chamfered portion 331 upper surface 332 lower surface 34 body portion 34a shaft 340 outer surface 35 head 36 leg portion 37 bearing hole 370 inner surface 371 bottom portion 38 gate mark 38a center 55 click spring (biasing member)
56,57 pendulum (contact member)
6 Encoder mechanism 60 Encoder board (base member)
61, 62, 63 Resistor pattern 65 Rotor 66 Slider 7 Switch mechanism 70 Switch board 71 Conductor 100 Insert molding die 101 Internal space 102 Bearing hole forming projection 103 Gate 110 Insert molded body

Claims (16)

  1.  樹脂からなる頭部および脚部を有し、前記頭部および前記脚部を貫く方向に延びる軸を含む本体部と、
     前記本体部の軸に同軸に取り付けられ金属からなる鍔部と
    を備え、
     前記鍔部は、前記本体部が貫通し前記本体部の軸と重なる貫通穴を有し、
     前記頭部の上面には、軸受穴とゲート痕が設けられ、
     前記軸受穴は、前記本体部の軸と重なるように前記本体部の軸に沿って延在し、
     前記本体部の軸方向から見て、前記ゲート痕の少なくとも一部は、前記貫通穴と重なる、回転式電子部品用回転シャフト。
    A body having a head and legs made of resin, and including a shaft extending in a direction penetrating the head and legs.
    A flange made of metal attached coaxially to the axis of the main body,
    The flange has a through hole through which the main body penetrates and overlaps the axis of the main body,
    A bearing hole and a gate mark are provided on the upper surface of the head,
    The bearing hole extends along the axis of the main body so as to overlap the axis of the main body,
    A rotary shaft for a rotary electronic component, wherein at least a part of the gate mark overlaps with the through hole when viewed from an axial direction of the main body.
  2.  前記貫通穴の形状は、前記本体部の軸方向から見て、多角形である、請求項1に記載の回転式電子部品用回転シャフト。 The rotary shaft for a rotary electronic component according to claim 1, wherein the through hole has a polygonal shape when viewed from an axial direction of the main body.
  3.  前記本体部と前記鍔部は、一体化されたインサート成型体である、請求項1または2に記載の回転式電子部品用回転シャフト。 The rotary shaft for a rotary electronic component according to claim 1 or 2, wherein the main body and the flange are integrated insert moldings.
  4.  前記本体部の軸方向から見て、前記ゲート痕の中心は、前記貫通穴と重なる、請求項1から3の何れか一つに記載の回転式電子部品用回転シャフト。 4. The rotary shaft for a rotary electronic component according to claim 1, wherein a center of the gate mark overlaps with the through hole when viewed from an axial direction of the main body. 5.
  5.  前記本体部の軸方向から見て、前記ゲート痕の面積の半分以上は、前記貫通穴と重なる、請求項1から4の何れか一つに記載の回転式電子部品用回転シャフト。 The rotary shaft for a rotary electronic component according to any one of claims 1 to 4, wherein, when viewed from the axial direction of the main body, at least half of the area of the gate mark overlaps the through hole.
  6.  前記本体部の軸方向から見て、前記軸受穴の内面は、前記貫通穴の内面の内側に位置する、請求項1から5の何れか一つに記載の回転式電子部品用回転シャフト。 6. The rotary shaft for a rotary electronic component according to claim 1, wherein an inner surface of the bearing hole is located inside an inner surface of the through hole when viewed from an axial direction of the main body. 7.
  7.  前記軸受穴の底部は、前記鍔部の上面より下側に位置する、請求項1から6の何れか一つに記載の回転式電子部品用回転シャフト。 The rotary shaft for a rotary electronic component according to any one of claims 1 to 6, wherein the bottom of the bearing hole is located below the upper surface of the flange.
  8.  前記本体部の軸に直交し前記軸受穴および前記鍔部に交差する断面において、前記本体部の外面と前記軸受穴の内面とは、互いに平行となる部分を有する、請求項7に記載の回転式電子部品用回転シャフト。 The rotation according to claim 7, wherein, in a cross section orthogonal to the axis of the main body and intersecting the bearing hole and the flange, an outer surface of the main body and an inner surface of the bearing hole have portions that are parallel to each other. Rotary shaft for electronic parts.
  9.  前記本体部の外面形状および前記軸受穴の内面形状は、多角形であって、前記軸受穴の内面の3辺は、前記本体部の外面の3辺に平行となる、請求項8に記載の回転式電子部品用回転シャフト。 9. The outer surface of the main body and the inner surface of the bearing hole are polygonal, and three sides of the inner surface of the bearing hole are parallel to three sides of the outer surface of the main body. Rotary shaft for rotary electronic components.
  10.  前記本体部の軸に直交し前記軸受穴および前記鍔部に交差する断面において、前記貫通穴の内面と前記軸受穴の内面とは、互いに平行となる部分を有する、請求項7に記載の回転式電子部品用回転シャフト。 The rotation according to claim 7, wherein in a cross section orthogonal to the axis of the main body and intersecting the bearing hole and the flange, the inner surface of the through hole and the inner surface of the bearing hole have portions that are parallel to each other. Rotary shaft for electronic parts.
  11.  前記貫通穴の内面形状および前記軸受穴の内面形状は、多角形であって、前記軸受穴の内面の3辺は、前記貫通穴の内面の3辺に平行となる、請求項10に記載の回転式電子部品用回転シャフト。 The inner surface shape of the through hole and the inner surface shape of the bearing hole are polygons, and three sides of the inner surface of the bearing hole are parallel to three sides of the inner surface of the through hole. Rotary shaft for rotary electronic components.
  12.  前記鍔部の上面の一部は、前記本体部に覆われ、
     前記貫通穴の内面の上面側は、面取り部を有する、請求項1から11の何れか一つに記載の回転式電子部品用回転シャフト。
    A part of the upper surface of the flange is covered by the main body,
    The rotary shaft for a rotary electronic component according to claim 1, wherein an upper surface side of an inner surface of the through hole has a chamfer.
  13.  前記貫通穴の内面の下面側は、前記本体部が接触する面取り部を有する、請求項12に記載の回転式電子部品用回転シャフト。 The rotary shaft for a rotary electronic component according to claim 12, wherein the lower surface side of the inner surface of the through hole has a chamfered portion with which the main body contacts.
  14.  請求項1から13の何れか一つに記載の回転式電子部品用回転シャフトと、
     前記回転シャフトの前記鍔部に接触して前記回転シャフトの回転角度を規制する規制部材と
    を備える、回転式電子部品。
    A rotary shaft for a rotary electronic component according to any one of claims 1 to 13,
    A regulating member that regulates a rotation angle of the rotating shaft by contacting the flange of the rotating shaft.
  15.  貫通穴が形成された金属板を準備し、軸受穴形成用凸部が形成された内部空間と前記内部空間に連通するゲートを有するインサート成型用型を準備する工程と、
     前記金属板に直交する方向から見て前記貫通穴が前記ゲートの少なくとも一部および前記凸部に重なるように前記金属板を前記インサート成型用型の前記内部空間にセットする工程と、
     前記ゲートから前記内部空間内に樹脂を注入する工程と、
     樹脂を硬化して樹脂と金属板のインサート成型体を形成する工程と、
     前記インサート成型用型から前記インサート成型体を取り外す工程と、
     前記インサート成型体の前記金属板を鍔形状に打ち抜く工程と
    を備える、回転式電子部品用回転シャフトの製造方法。
    Preparing a metal plate having a through-hole formed therein, a step of preparing an insert molding die having a gate communicating with the internal space and the internal space in which the projection for forming a bearing hole is formed,
    Setting the metal plate in the internal space of the insert molding die so that the through hole overlaps at least a part of the gate and the projection as viewed from a direction orthogonal to the metal plate;
    Injecting a resin into the internal space from the gate,
    A step of curing the resin to form an insert molded body of the resin and the metal plate,
    Removing the insert molded body from the insert mold,
    Punching the metal plate of the insert molded body into a flange shape.
  16.  前記セットする工程において、前記金属板に直交する方向から見て前記ゲートの中心と前記貫通穴が重なる、請求項15に記載の製造方法。 16. The manufacturing method according to claim 15, wherein in the setting step, a center of the gate and the through hole overlap with each other when viewed from a direction orthogonal to the metal plate.
PCT/JP2019/024106 2018-06-25 2019-06-18 Rotary shaft for rotary electronic component, method for manufacturing rotary shaft, and rotary electronic component WO2020004147A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018120127 2018-06-25
JP2018-120127 2018-06-25

Publications (1)

Publication Number Publication Date
WO2020004147A1 true WO2020004147A1 (en) 2020-01-02

Family

ID=68984870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024106 WO2020004147A1 (en) 2018-06-25 2019-06-18 Rotary shaft for rotary electronic component, method for manufacturing rotary shaft, and rotary electronic component

Country Status (1)

Country Link
WO (1) WO2020004147A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108495U (en) * 1976-02-13 1977-08-18
JP2003092047A (en) * 2001-09-17 2003-03-28 Alps Electric Co Ltd Combined operating type electronic part
WO2017169625A1 (en) * 2016-03-30 2017-10-05 株式会社村田製作所 Rotary electronic component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108495U (en) * 1976-02-13 1977-08-18
JP2003092047A (en) * 2001-09-17 2003-03-28 Alps Electric Co Ltd Combined operating type electronic part
WO2017169625A1 (en) * 2016-03-30 2017-10-05 株式会社村田製作所 Rotary electronic component

Similar Documents

Publication Publication Date Title
WO2020004147A1 (en) Rotary shaft for rotary electronic component, method for manufacturing rotary shaft, and rotary electronic component
JP6447715B2 (en) Rotary electronic components and rotary encoders
JP5067173B2 (en) Manufacturing method of rotary operation type encoder
JP6406435B2 (en) Rotary electronic components and rotary encoders
JP6485592B2 (en) Rotating electronic components
JP2007201415A (en) Rotary type electrical component
JP2006049612A (en) Rotary electronic component
JP6406434B2 (en) Rotary encoder
JP4036164B2 (en) Digital camera and switch device
JP2017091603A (en) Rotary encoder
JP2653898B2 (en) Yoke for stepping motor and insert molding method of the yoke
JP4283159B2 (en) Rotary variable resistor
CN113345752B (en) Operating device and method for manufacturing operating device
JP6522468B2 (en) Electronic parts
JP6376837B2 (en) Rotating electronic components
JP2012208013A (en) Rotation type sensor and detection device comprising rotation type sensor
JP4297764B2 (en) Switch device
JP3380680B2 (en) Electrical component
JP2007179882A (en) Rotary type electric parts
JP2553973Y2 (en) Rotary switch with click feeling
JP2020071059A (en) Rotation operation component, operation detection mechanism and portable device
JPS61216407A (en) Rotation lock for variable resistor rotor
JP2004349679A (en) Rotary electrical component
JP2004055949A (en) Rotary electrical part
JP2005252179A (en) Rotary operation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP