WO2020003901A1 - Composition for 3d printer - Google Patents

Composition for 3d printer Download PDF

Info

Publication number
WO2020003901A1
WO2020003901A1 PCT/JP2019/021893 JP2019021893W WO2020003901A1 WO 2020003901 A1 WO2020003901 A1 WO 2020003901A1 JP 2019021893 W JP2019021893 W JP 2019021893W WO 2020003901 A1 WO2020003901 A1 WO 2020003901A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional printer
composition
organic binder
eva
thermoplastic resin
Prior art date
Application number
PCT/JP2019/021893
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 井上
和田 誠
詠大 小笠原
望 林田
和幸 加藤
川北 晃司
Original Assignee
第一セラモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一セラモ株式会社 filed Critical 第一セラモ株式会社
Priority to JP2020527317A priority Critical patent/JP6849286B2/en
Publication of WO2020003901A1 publication Critical patent/WO2020003901A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene

Definitions

  • the present invention relates to a composition suitable for use in a three-dimensional printer.
  • thermoplastic resin such as PLA (polylactic acid) or ABS (acrylonitrile-butadiene-styrene) are used as raw materials, and the molten resins are laminated one by one. It is general to obtain a three-dimensional structure made of a thermoplastic resin by cooling and solidifying.
  • Patent Document 1 a compound made by adding ceramics or metal powder to a thermoplastic resin
  • Patent Document 2 a three-dimensional printer having an extrusion device
  • Patent Document 1 After a molded article is manufactured using a compound containing inorganic powder as a raw material by using a three-dimensional printer of a hot-melt lamination method (FDM method), powder injection molding (PIM: Powder Injection Molding) is performed.
  • PIM Powder Injection Molding
  • Metal or ceramic products can be obtained by performing degreasing and sintering (sintering), which are generally performed in, so it is possible to solve the problem of expensive equipment and the problem of low laminating speed. It is.
  • the present invention provides a three-dimensional structure without causing cracks or stringing when using a three-dimensional printer of the FDM printer method to laminate-mold a composition containing an inorganic powder and an organic binder as a raw material.
  • An object of the present invention is to provide a composition for a three-dimensional printer that can be formed.
  • the present inventor has repeatedly studied to solve the above-described problems, and as a result, by mixing a specific organic binder with the inorganic powder in a specific ratio, the adhesiveness is high, and the stringiness (stringiness) is improved.
  • the present inventors have succeeded in developing a composition having a small composition and capable of forming a laminated structure excellent in strength and appearance even when used in a three-dimensional printer.
  • the composition (compound) for a three-dimensional printer of the present invention which can solve the above problems, (A) containing an inorganic powder and (B) an organic binder,
  • the organic binder (B) is (B1) a thermoplastic resin selected from an amorphous polymer and EVA, (B2) a thermoplastic resin selected from a crystalline polymer other than EVA, (B3) a wax, (B4) Being selected from the group consisting of lubricants, and (B5) other additives;
  • thermoplastic resin (B1) examples include acrylic resins such as polymethyl methacrylate (PMMA), polybutyl acrylate (Pn-BMA) and composite acrylic, atactic polystyrene (Atactic PS), polycarbonate (PC ), Amorphous polyolefins, and non-crystalline polymers selected from the group consisting of acrylonitrile-butadiene-styrene (ABS), and ethylene-vinyl acetate copolymer (EVA).
  • acrylic resins such as polymethyl methacrylate (PMMA), polybutyl acrylate (Pn-BMA) and composite acrylic, atactic polystyrene (Atactic PS), polycarbonate (PC ), Amorphous polyolefins, and non-crystalline polymers selected from the group consisting of acrylonitrile-butadiene-styrene (ABS), and ethylene-vinyl acetate copolymer (EVA).
  • PMMA polymethyl methacrylate
  • thermoplastic resin (B2) examples include polyethylene (PE), polypropylene (PP), polyacetal (POM), polyamide (PA), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), and polylactic acid (PLA). Is mentioned.
  • Preferred examples of the inorganic powder (A) include a metal oxide powder having an average particle diameter (D 50 ) of 0.1 to 1.0 ⁇ m.
  • Another preferred example of the inorganic powder (A) is a metal powder having an average particle diameter (D 50 ) of 1.0 to 10 ⁇ m.
  • the present invention is a method of manufacturing a product made of ceramics, cermet, or metal, and using the composition for a three-dimensional printer, forming a laminated structure by an FDM type three-dimensional printer, It is characterized by including a step of degreasing the laminated structure and a step of sintering.
  • the present invention is a method of manufacturing a product in which two or more selected from ceramics, cermets, and metals are joined, A laminated composite structure is formed by simultaneously laminating two or more types of the composition for a three-dimensional printer according to any one of claims 1 to 5 with a three-dimensional printer of a hot-melt lamination system including two or more extrusion devices. Performing a step of degreasing and sintering the laminated structure.
  • the composition for a three-dimensional printer of the present invention has high adhesion, when a laminated structure is formed by an FDM type three-dimensional printer, peeling between the laminated layers hardly occurs, and a laminated structure without cracks can be obtained. .
  • the stringiness is low, whisker-like burrs are not easily generated, and a laminated structure excellent in appearance can be obtained.
  • Examples of the inorganic powder (A) that can be used in the composition for a three-dimensional printer of the present invention include sinterable powders such as metal powder, ceramic powder, and cermet powder.
  • the metal powder include iron-based alloys such as pure iron, iron-nickel, iron-cobalt, iron-silicon, and stainless steel, tungsten, tungsten carbide, and cemented carbides (such as WC-Co-based alloys). , Aluminum alloy, copper, copper alloy, and the like.
  • the ceramic powder examples include oxides such as Al 2 O 3 , BeO, and ZrO 2 , carbides such as TiC, ZrC, and B 4 C, borides such as CrB and ZrB 2, and nitrides such as TiN and ZrN.
  • the cermet powder examples include Al 2 O 3 —Fe, TiC—Ni, TiC—Co, and B 4 C—Fe.
  • Particularly preferred examples of the inorganic powder (A) used in the present invention include metal oxide powders such as alumina (Al 2 O 3 ) and zirconia (ZrO 2 ), metal powders such as stainless steel, and carbide such as WC-Co. Alloy powder and the like.
  • the zirconia may be yttria partially stabilized zirconia.
  • metal oxide powder having an average particle diameter (D 50 ) of 0.1 to 1.0 ⁇ m, more preferably 0.1 to 0.8 ⁇ m is preferable.
  • the stainless steel powder preferably has an average particle diameter (D 50 ) of 1 to 15 ⁇ m, more preferably 5 to 10 ⁇ m.
  • the cemented carbide (WC-Co) powder preferably has an average particle diameter (D 50 ) of 0.1 to 50 ⁇ m, more preferably 1 to 3 ⁇ m.
  • the mass of (B) is less than 5 with respect to the mass of (A) of 100, the flow value is low and molding becomes difficult.
  • the mass of (B) exceeds 30, stringiness becomes large, and problems such as deformation during degreasing tend to occur.
  • the inorganic powder (A) is a metal powder (for example, stainless steel, cemented carbide, or the like)
  • the organic binder (B) used in the present invention includes a non-crystalline polymer and a thermoplastic resin (B1) selected from EVA.
  • a non-crystalline polymer and / or EVA as the thermoplastic resin, the adhesiveness can be improved.
  • thermoplastic resin (B1) examples include acrylic resins (for example, polymethyl methacrylate (PMMA), polybutyl acrylate (P-n-BMA) and composite acrylic), atactic polystyrene (Atactic PS), and polycarbonate. (PC), amorphous polyolefin, and an amorphous polymer selected from the group consisting of acrylonitrile-butadiene-styrene (ABS), and an ethylene-vinyl acetate copolymer (EVA).
  • acrylic resins for example, polymethyl methacrylate (PMMA), polybutyl acrylate (P-n-BMA) and composite acrylic
  • atactic polystyrene Atactic PS
  • PC polycarbonate.
  • ABS acrylonitrile-butadiene-styrene
  • EVA ethylene-vinyl acetate copolymer
  • thermoplastic resin (B1) it is basically preferable to use a thermoplastic resin having a weight average molecular weight of 10,000 or more, preferably 20,000 or more, and particularly preferably 40,000 or more.
  • An amorphous polyolefin having a weight average molecular weight of 8000 or less (especially 5000 or less, for example, 2000 to 4000) may be used in combination.
  • the weight average molecular weight can be determined using gel permeation chromatography (GPC).
  • thermoplastic resins (B1) when the inorganic powder is a metal oxide powder, a combination of an acrylic resin and PS is used, and EVA and / or amorphous polyolefin are used in combination. It is particularly preferable to use acrylic resin, PS and EVA in combination.
  • the mass ratio of the acrylic resin to PS is preferably 20 to 100, more preferably 25 to 70, and particularly preferably 28 to 50, based on 100 of the acrylic resin.
  • EVA is used in addition to the acrylic resin and the PS
  • the mass ratio of the acrylic resin to the EVA is preferably 5 to 30, and more preferably 7 to 25 with respect to the acrylic resin 100. More preferred.
  • the inorganic powder is a metal powder
  • an acrylic resin and EVA in combination as the thermoplastic resin (B1)
  • PS and / or amorphous polyolefin in combination are preferable.
  • EVA is preferably used in an amount of 30 to 150, more preferably 50 to 120
  • an amorphous polyolefin is preferably used in an amount of 30 to 150, more preferably 50 to 120, and further optionally.
  • PS is used in an amount of 50 to 150, more preferably 70 to 120 (the numerical values are all parts by mass).
  • the acrylic resin As particularly preferred examples of the acrylic resin, as described in JP-A-2000-303103, An ethylene-vinyl acetate copolymer or an ethylene-ethyl acrylate copolymer; Dispersing a solution comprising a (meth) acrylate monomer alone or a mixture of a (meth) acrylate monomer and a styrene monomer and a polymerization initiator in an aqueous medium containing a dispersant.
  • a composite acrylic resin obtained by suspension polymerization is exemplified.
  • the acrylic resin a polymer of (meth) acrylic acid ester, which is an ester of (meth) acrylic acid having 1 to 8 carbon atoms, can be used.
  • a (meth) acrylate monomer examples include, for example, n-alkyl (meth) acrylate having 1 to 8 carbon atoms in the alkyl group, isopropyl (meth) acrylate, isobutyl (meth) acrylate, Examples include t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, and 2-ethoxyethyl (meth) acrylate.
  • n-alkyl (meth) acrylates having 1 to 4 carbon atoms in the alkyl group such as n-butyl (meth) acrylate, isopropyl (meth) acrylate, and isobutyl (meth) acrylate are particularly preferable. Or two or more of them may be used in combination.
  • ⁇ PS having a weight average molecular weight of about 100,000 to 300,000, and more preferably about 150,000 to 250,000.
  • EVA it is more preferable to use one having a low crystallinity (for example, one having a crystallinity of 25% or less). Since the crystallinity of EVA correlates with vinyl acetate (VA) content, preferred EVA is, for example, a vinyl acetate content (mass percentage: JIS K 7192: 1999) of 20% to 50%, more preferably 25% to 40%. EVA. Further, those having a weight average molecular weight of about 30,000 to 120,000 are preferably used, and those having a weight average molecular weight of about 50,000 to 100,000 are more preferably used.
  • amorphous polyolefin those having a weight average molecular weight of about 1,000 to 8,000, more preferably about 2,000 to 4,000 can be used.
  • the organic binder (B) used in the present invention may optionally contain a thermoplastic resin (B2) selected from crystalline polymers (excluding EVA; the same applies hereinafter).
  • a thermoplastic resin selected from crystalline polymers (excluding EVA; the same applies hereinafter).
  • crystalline polymer for example, a crystalline polymer having a weight average molecular weight of 10,000 or more, preferably 20,000 or more, particularly preferably 40,000 or more can be used.
  • thermoplastic resin (B2) examples include polyethylene (PE), polypropylene (PP), polyacetal (POM), polyamide (PA), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), and polylactic acid (PLA). Is mentioned. In particular, PP and POM are preferred.
  • those having a weight average molecular weight of about 10,000 to 70,000 are preferably used, and those having a weight average molecular weight of about 20,000 to 50,000 are more preferable.
  • those having a weight average molecular weight of about 100,000 to 400,000 are preferably used, and those having a weight average molecular weight of about 200,000 to 300,000 are more preferably used.
  • the use of the crystalline polymer makes it easier to suppress the problem at the time of degreasing, but when the proportion of the crystalline polymer (B2) is larger than that of the thermoplastic resin (B1) selected from the non-crystalline polymer and EVA.
  • (B2) is preferably smaller than (B1).
  • the inorganic powder (A) is a metal powder (for example, stainless steel, cemented carbide, or the like)
  • the thermoplastic resin (B1 and B2) preferably has a softening point of 65 ° C. or higher, more preferably 70 ° C. or higher.
  • the softening point (Vicat softening temperature) can be measured by JIS K7206 B50 method. Further, the melting point of the thermoplastic resin (B1 and B2) is preferably 170 ° C. or less.
  • thermoplastic resins (B1 and B2) it is more preferable to use a plurality of resins having different rheological properties in combination as the thermoplastic resins (B1 and B2).
  • a thermoplastic resin eg, PP, PS, POM, etc.
  • a flow value at 180 ° C. 0.002 to 0.08 ml / sec, more preferably 0.003 to 0.07 ml / sec
  • Thermoplastic resin having a flow value at 180 ° C.
  • a resin having too high a fluidity can be determined using a flow tester (for example, a constant-test-force extruded capillary rheometer sold by Shimadzu Corporation) as shown in the Examples section.
  • the organic binder (B) used in the present invention contains a wax (B3).
  • a wax either a synthetic wax or a natural wax can be used, and specific examples thereof include paraffin wax, microcrystalline wax, polyethylene wax, beeswax, carnauba wax, montan wax, and polyalkylene glycol. Particularly preferred waxes include paraffin wax and microcrystalline wax.
  • the organic binder (B) used in the present invention may optionally contain a lubricant (B4).
  • a lubricant include fatty acids and derivatives of fatty acids such as esters, amides, and metal salts.
  • Preferred lubricants include higher fatty acids and derivatives thereof.
  • Particularly preferred lubricants include stearic acid and esters thereof (for example, Sorbitan monostearate).
  • (B4) / (B) is preferably 0.01 to 0.18, more preferably 0.02 to 0.16, and more preferably 0.03 to 0.16. It is particularly preferred that it is 0.10.15.
  • the organic binder (B) used in the present invention may optionally contain other additives (B5) which do not correspond to (B1) to (B4).
  • additives include, for example, plasticizers and antioxidants.
  • the plasticizer include, for example, phthalic acid esters (eg, dibutyl phthalate, dioctyl phthalate, di-2-ethylhexyl terephthalate), adipic acid esters (eg, di-2-ethylhexyl adipate, diisononyl adipate, diisodecyl adipate) ), Trimellitates (tri-2-ethylhexyl trimellitate, triisodecyl trimellitate, etc.), citrates (tributyl acetyl citrate), diisononyl 1,2-cyclohexanedicarboxylate, 4-cyclohexene-1, Examples thereof include bis (2-ethylhexyl) 2-
  • antioxidants include, for example, a phenolic antioxidant.
  • additives other than the plasticizer and the antioxidant that correspond to (B5) include additives such
  • (B5) / (B) is preferably 0.03 to 0.30, more preferably 0.05 to 0.25, and more preferably 0.07 to 0.25. It is particularly preferable that it is 0.15.
  • (B5) / (B) is preferably 0.01 to 0.20, and more preferably 0.02 to 0.15.
  • the molecular weight (or weight average molecular weight) is preferably 2,000 or less, more preferably 1,000 or less.
  • (B3) to (B5) having a heating loss starting point of 150 ° C. or less.
  • the starting point of the heating loss can be determined by a thermogravimetric method defined in JIS K7120.
  • the method for producing a composition for a three-dimensional printer of the present invention is prepared by melt-kneading an inorganic powder (A) and an organic binder (B).
  • a pressurized kneader is an example of a preferred embodiment.
  • Various types of kneaders such as a batch type such as a double-arm kneader type kneader and a Banbury type kneader, and a continuous type such as a single-screw or twin-screw extruder can be used.
  • the shape of the composition for a three-dimensional printer of the present invention is not particularly limited, but an example of a preferable form includes a pellet-like form used in PIM. Although it is not particularly limited, an example of a preferable embodiment is one in which the extruded melt after kneading is pelletized by a hot-cut type pelletizer in which the melt is cut into pellets in the air by a rotary cutter.
  • the present invention provides a three-dimensional printer using an FDM type three-dimensional printer to form a laminated structure using the composition for a three-dimensional printer (composition highly filled with inorganic powder), and performs degreasing and sintering.
  • a method for manufacturing a product made of ceramics, cermet, or metal is provided.
  • Examples of the FDM three-dimensional printer include a cylinder, a screw, a gear pump, an extrusion device having a nozzle, and a nozzle of the extrusion device as disclosed in Patent Document 2 (WO2015 / 129733). Controlling the discharge of resin from the nozzle in the extruding device and the table device located opposite to the extruding device and / or the extruding device and / or the table device in the X-axis, Y-axis, and Z-axis directions with respect to a reference plane; A three-dimensional printer equipped with a control device for controlling the movement of the camera can be used.
  • a three-dimensional printer including a plurality of the extrusion devices can be used to form a structure in which two or more of the three-dimensional printer compositions are laminated and combined.
  • the laminated structure is formed, for example, by forming two or more types of three-dimensional printer compositions containing the different metal powders into a laminated structure having a predetermined structure, degreased, and sintered, thereby forming two or more types.
  • a sintered body in which the inorganic materials are joined can be obtained.
  • the conditions for degreasing and sintering may be the same as those for degreasing and sintering of PIM, and can be set as appropriate according to the type of inorganic powder contained in the composition.
  • the inorganic powder is zirconia (such as yttria-stabilized zirconia) or alumina
  • the temperature is raised to about 450 to 550 ° C. at a rate of 5 to 20 ° C./h to perform degreasing, and then the rate of temperature rise is 40 to 60.
  • the sintering can be performed by increasing the temperature to 1300 to 1600 ° C. at a rate of ° C./h.
  • degreasing is performed by raising the temperature to about 450 to 550 ° C. at a rate of 5 to 20 ° C./h in an inert gas atmosphere, and then performing a temperature increase of 1300 to 40 ° C./h at a rate of 40 to 60 ° C./h.
  • the temperature can be raised to 1400 ° C. for sintering.
  • the following substances were used as other additives.
  • the flow value was measured by using a flow tester "CFD-500D” manufactured by Shimadzu Corporation, setting a 1 mm diameter x 1 mm length die, applying a load of 0.98 MPa, and flowing at 180 ° C per unit time. It was determined by measuring the amount (ml / sec). In the case where the fluidity was too high at 180 ° C. to measure an accurate value, the set temperature was changed to 140 ° C. and the flow value was obtained.
  • thermoplastic resin / acrylic resin selected from an amorphous polymer and EVA (copolymer of n-butyl methacrylate and methyl methacrylate, weight average molecular weight 50,000, flow rate at 180 ° C.
  • Thermoplastic resin / PP selected from crystalline polymers excluding EVA (weight average molecular weight 240,000, flow rate at 180 ° C 0.051 ml / sec, melting point 163 ° C) -POM (weight average molecular weight 50,000, flow rate at 180 ° C 0.003 ml / sec, melting point 165 ° C)
  • DOP dioctyl phthalate
  • Mw 394 Bis (2-ethylhexyl) 4-cyclohexene-1,2-dicarboxylate
  • Mw 394 1,2-cyclohexanedicarboxylic acid diisononyl ester
  • Phenolic antioxidant (1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane) (molecular weight: 545, melting point: 183 to 185 ° C.)
  • composition for three-dimensional printer The above (A) and (B1) to (B5) were blended in the proportions shown in the table, and were melt-kneaded at 170 ° C. using a pressurized kneader manufactured by Nippon Spindle Manufacturing Co., Ltd. (former Moriyama Seisakusho). .
  • the pellets having a diameter of 3 mm and a length of 3 mm were produced from the obtained melt using a pelletizer type plunger extruder manufactured by Toshin Co., Ltd.
  • the presence or absence of a gap between the layers of the obtained molded article was visually confirmed, and the laminated structure was placed sideways on two fulcrums arranged at an interval of 10 mm (that is, the width). 20 mm x 5 mm deep x 5 mm high) was placed and judged by the easiness of cracking when a load of 5 N was applied.
  • the molded object was manufactured by laminating molten raw materials in the height direction. When a load is applied with the object placed sideways, breakage is likely to occur between layers if the adhesion between the layers is poor.
  • the criteria are as follows.
  • sintering was performed in the atmosphere at a heating rate of 50 ° C./h at a temperature of 1450 ° C. for zirconia and 1600 ° C. for alumina to obtain a sintered body.
  • the stainless steel was degreased by raising the temperature to about 500 ° C. at a rate of 10 ° C./h in a nitrogen gas atmosphere, and deformation or cracks and blisters were confirmed in the same manner as described above. Thereafter, the temperature was raised to 1350 ° C. at a rate of 50 ° C./h to obtain a sintered body.
  • WC-Co was also degreased in a nitrogen gas atmosphere at a heating rate of about 10 ° C./h to about 500 ° C.
  • Tables 1 and 2 summarize the compositions and test results of the composition (pellet) for the three-dimensional printer.
  • the mass of (B) is in the range of 5 to 30 with respect to the mass 100 of (A), and (B1) / (B1 + B2) is in the range of 0.5 to 1.0, Examples 1 to 5 (inorganic powders) in which (B3) / (B) is in the range of 0.07 to 0.4 and (B4) / (B) is in the range of 0 to 0.18.
  • Example 6 using alumina powder as inorganic powder
  • Example 7 using stainless steel powder as inorganic powder
  • Example 8 using cemented carbide powder as inorganic powder
  • a molded article having high adhesion, low stringiness, and excellent appearance was able to be produced.
  • pellets of the first component and the second component having a diameter of 3 mm and a length of 3 mm were manufactured from the obtained melt using a pelletizer type plunger extruder manufactured by Toshin Co., Ltd.
  • pellets of the first component and the second component were produced in the same manner.
  • CERA # P3 manufactured by S. Lab Co., Ltd., molding range X150 mm ⁇ Y150 mm ⁇ Z150 mm, screw diameter ⁇ 20 mm
  • the two components were formed by lamination under the following conditions.
  • the molding speed was 100 to 2000 mm / min
  • the molding temperature was 150 to 190 ° C.
  • the nozzle diameter was 1.0 mm.
  • the distance between each laminated structure (modeled object) was 30 mm.
  • the laminated structure has no gap between the layers, and has the laminated structure laid sideways on two fulcrums arranged at an interval of 10 mm (that is, a width of 20 mm ⁇ a depth of 5 mm ⁇ a height of 5 mm). ) And no breakage occurred between the layers when a load of 5 N was applied.
  • the stainless steel was degreased by raising the temperature to about 500 ° C. at a rate of 10 ° C./h in a nitrogen gas atmosphere, and deformation or cracks and blisters were confirmed in the same manner as described above. Thereafter, the temperature was raised to 1350 ° C. at a rate of 50 ° C./h to obtain a sintered body.
  • WC-Co was also degreased in a nitrogen gas atmosphere at a heating rate of about 10 ° C./h to about 500 ° C. in the same manner as stainless steel, and deformation or cracks and blisters were confirmed in the same manner as described above. Thereafter, the temperature was raised to 1390 ° C. at a rate of 50 ° C./h to obtain a sintered body.
  • composition and the method of the present invention it is possible to efficiently produce a ceramic product, a metal product, and the like having excellent appearance and strength using an FDM three-dimensional printer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

The problem to be addressed is to provide a composition for a 3D printer such that when forming a model (layered structure body) with a hot melt lamination 3D printer using a composition containing an inorganic powder as a raw material, the model is obtained with minimal interlayer cracks and stringing. The invention is a composition for a 3D printer comprising (A) an inorganic powder and (B) an organic binder, the composition for a 3D printer being characterized in that: the organic binder (B) is selected from the group consisting of (B1) thermoplastic resins selected from among non-crystalline polymers and EVAs, (B2) thermoplastic resins selected from crystalline polymers excluding EVAs, (B3) waxes, (B4) lubricants, and (B5) other additives; (A)/(B) = 100/5 to 100/30; (B1)/(B1+B2) = 0.5 to 1.0; (B3)/(B) = 0.07 to 0.4; and (B4)/(B) = 0 to 0.18.

Description

3次元プリンタ用組成物Composition for three-dimensional printer
 本発明は、3次元プリンタでの使用に適した組成物に関する。 The present invention relates to a composition suitable for use in a three-dimensional printer.
 三次元のデジタルデータに基づいて、立体造形物を積層造形する3Dプリンタは、様々な分野において実用化が期待されている。3Dプリンタで立体造形物を製造する方式としては、主に、光造形方式、粉末焼結積層方式、熱溶融積層方式、インクジェット方式が知られている。 (3) Practical application is expected in various fields of a 3D printer that laminates a three-dimensional object based on three-dimensional digital data. As a method of manufacturing a three-dimensional object using a 3D printer, an optical molding method, a powder sintering lamination method, a hot-melt lamination method, and an ink jet method are mainly known.
 熱溶融積層法(FDM:Fused Deposition Modeling)では、原料として、PLA(ポリ乳酸)やABS(アクリロニトリル-ブタジエン-スチレン)等の熱可塑性樹脂からなるフィラメントを用いて、溶融した樹脂を一層ずつ積層し、冷却固化することにより、熱可塑性樹脂からなる立体造形物を得ることが一般的である。 In the Fused Deposition Modeling (FDM) method, filaments made of a thermoplastic resin such as PLA (polylactic acid) or ABS (acrylonitrile-butadiene-styrene) are used as raw materials, and the molten resins are laminated one by one. It is general to obtain a three-dimensional structure made of a thermoplastic resin by cooling and solidifying.
 熱可塑性樹脂からなる製品ではなく、金属あるいはセラミックス製品を3次元プリンタで製造したい場合は、高出力のレーザーで直接焼結する方式や、あるいは光硬化樹脂にフィラーを分散する方式が一般的に採用されている。しかしながら、これらの方式では、装置が高価になるという問題や、積層速度が遅いという問題がある。 When a metal or ceramic product is to be manufactured by a three-dimensional printer instead of a product made of a thermoplastic resin, a method of directly sintering with a high-power laser or a method of dispersing a filler in a photocurable resin is generally adopted. Have been. However, these methods have a problem that the apparatus becomes expensive and a problem that the lamination speed is low.
 これに対して、熱可塑性樹脂に、セラミックス又は金属粉末等を添加して作製したコンパウンドを使用して、3次元プリンタで造形物を製造し、その後、脱脂、焼結することによって金属あるいはセラミックス製品を製造する方法が提案されている(特許文献1)。
 また、このようなコンパウンド(ペレット)を使用して造形物を製造できる3次元プリンタとして、押出装置を有する3次元プリンタが考案されている(特許文献2)。
On the other hand, using a compound made by adding ceramics or metal powder to a thermoplastic resin, a molded article is manufactured with a three-dimensional printer, and then degreased and sintered to produce a metal or ceramic product. Has been proposed (Patent Document 1).
Further, as a three-dimensional printer capable of manufacturing a molded article using such a compound (pellet), a three-dimensional printer having an extrusion device has been devised (Patent Document 2).
特開2000-144205号公報JP 2000-144205 A WO2015/129733WO2015 / 129733
 特許文献1の方法によれば、無機粉末を含むコンパウンドを原料として、熱溶融積層方式(FDM方式)の3次元プリンタを用いて造形物を製造した後に、粉末射出成形(PIM:Powder Injection Molding)で一般的に行われている脱脂、焼結(焼成)を行うことによって金属あるいはセラミックス製品を得ることができるため、装置が高価であるという問題や積層速度が遅いという問題を解決することが可能である。 According to the method of Patent Document 1, after a molded article is manufactured using a compound containing inorganic powder as a raw material by using a three-dimensional printer of a hot-melt lamination method (FDM method), powder injection molding (PIM: Powder Injection Molding) is performed. Metal or ceramic products can be obtained by performing degreasing and sintering (sintering), which are generally performed in, so it is possible to solve the problem of expensive equipment and the problem of low laminating speed. It is.
 しかしながら、3次元プリンタを用いて、立体造形物を製造し、その後、脱脂、焼結を行って金属あるいはセラミックス製品を得る方法において、従来のPIMと同様のコンパウンドを使用すると、造形物に亀裂が生じやすいという問題や、糸曳きが発生しやすいという問題があった。より具体的に説明すると、FDM方式の3次元プリンタでは、無機粉末と有機バインダーを含む成形材料を加熱して流動化させ、ノズルから吐出して積層しながら3次元構造体を造形する。造形を進めるにあたり、下の層の上に次の層を積層していく際、冷却収縮が発生するため、層と層の密着性が不足していると、3次元構造体に亀裂が入る(層間に隙間が生じる)ことがある。この密着性を確保しようとすると、造形速度を落として造形する必要があるため、造形に時間がかかるという問題があった。また、FDM方式の3次元プリンタによって、ノズルから溶融樹脂を吐出しながら所望の3次元構造体を積層造形した後、次の積層位置にノズルを移動させる際、造形後の3次元構造体と、移動中のノズル先端部の間に糸曳きが発生し、3次元構造体にヒゲ状のバリが付着して外観が悪くなるという問題があった。 However, when a three-dimensional printer is used to manufacture a three-dimensional molded article, and then to perform degreasing and sintering to obtain a metal or ceramic product, when a compound similar to the conventional PIM is used, cracks are formed in the molded article. There is a problem that it is easy to occur and a problem that stringing tends to occur. More specifically, in a three-dimensional printer of the FDM system, a molding material containing an inorganic powder and an organic binder is heated and fluidized, and is discharged from a nozzle and stacked to form a three-dimensional structure. In proceeding with the modeling, when the next layer is laminated on the lower layer, cooling shrinkage occurs. If the adhesion between the layers is insufficient, a crack is formed in the three-dimensional structure ( There may be a gap between the layers). In order to secure this adhesiveness, it is necessary to reduce the molding speed to perform the molding, and there is a problem that the molding takes time. In addition, when a desired three-dimensional structure is stacked and formed by discharging a molten resin from a nozzle by an FDM type three-dimensional printer, when the nozzle is moved to the next stacking position, There has been a problem that stringing occurs between the tip portions of the nozzle during movement, and whisker-like burrs adhere to the three-dimensional structure, resulting in poor appearance.
 それゆえ、本発明は、FDMプリンタ方式の3次元プリンタを用いて、無機粉末と有機バインダーを含む組成物を原料として積層造形する際に、亀裂や糸曳きを生じさせることなく3次元構造体を造形することができる、3次元プリンタ用組成物を提供することを課題とする。 Therefore, the present invention provides a three-dimensional structure without causing cracks or stringing when using a three-dimensional printer of the FDM printer method to laminate-mold a composition containing an inorganic powder and an organic binder as a raw material. An object of the present invention is to provide a composition for a three-dimensional printer that can be formed.
 本発明者は、前記課題を解決するために検討を繰り返した結果、無機粉末に、特定の有機バインダーを特定の割合で混合することによって、密着性が高く、糸曳き性(曳糸性)が少ない組成物であって、3次元プリンタで使用した際にも強度と外観に優れた積層構造体を造形することができる組成物を開発することに成功した。 The present inventor has repeatedly studied to solve the above-described problems, and as a result, by mixing a specific organic binder with the inorganic powder in a specific ratio, the adhesiveness is high, and the stringiness (stringiness) is improved. The present inventors have succeeded in developing a composition having a small composition and capable of forming a laminated structure excellent in strength and appearance even when used in a three-dimensional printer.
 前記課題を解決可能な、本発明の3次元プリンタ用組成物(コンパウンド)は、
 (A)無機粉末及び(B)有機バインダーを含有すること、
 前記有機バインダー(B)が、(B1)非結晶性ポリマー及びEVAから選択される熱可塑性樹脂、(B2)EVAを除く結晶性ポリマーから選択される熱可塑性樹脂、(B3)ワックス、(B4)滑剤、及び(B5)その他の添加剤からなる群より選択されること、
 無機粉末と有機バインダーの質量比率が、(A)/(B)=100/5~100/30であること、
 熱可塑性樹脂の合計に対する非結晶性ポリマー及びEVAの質量比が、(B1)/(B1+B2)=0.5~1.0であること、
 有機バインダーの合計に対するワックスの質量比が、(B3)/(B)=0.07~0.4であること、及び
 有機バインダーの合計に対する滑剤の質量比が、(B4)/(B)=0~0.18であることを特徴とする。
The composition (compound) for a three-dimensional printer of the present invention, which can solve the above problems,
(A) containing an inorganic powder and (B) an organic binder,
The organic binder (B) is (B1) a thermoplastic resin selected from an amorphous polymer and EVA, (B2) a thermoplastic resin selected from a crystalline polymer other than EVA, (B3) a wax, (B4) Being selected from the group consisting of lubricants, and (B5) other additives;
Mass ratio of the inorganic powder and the organic binder is (A) / (B) = 100/5 to 100/30;
(B1) / (B1 + B2) = 0.5 to 1.0, the mass ratio of the non-crystalline polymer and EVA to the total of the thermoplastic resins;
The mass ratio of the wax to the total organic binder is (B3) / (B) = 0.07 to 0.4, and the mass ratio of the lubricant to the total organic binder is (B4) / (B) = It is characterized by being 0 to 0.18.
 前記熱可塑性樹脂(B1)の例として、ポリメタクリル酸メチル(PMMA)、ポリアクリル酸ブチル(P-n-BMA)及び複合アクリル等のアクリル系樹脂、アタクチックポリスチレン(アクタチックPS)、ポリカーボネート(PC)、アモルファスポリオレフィン、及びアクリロニトリル-ブタジエン-スチレン(ABS)からなる群より選択される非結晶性ポリマー、及びエチレン-酢酸ビニル共重合体(EVA)が挙げられる。 Examples of the thermoplastic resin (B1) include acrylic resins such as polymethyl methacrylate (PMMA), polybutyl acrylate (Pn-BMA) and composite acrylic, atactic polystyrene (Atactic PS), polycarbonate (PC ), Amorphous polyolefins, and non-crystalline polymers selected from the group consisting of acrylonitrile-butadiene-styrene (ABS), and ethylene-vinyl acetate copolymer (EVA).
 前記熱可塑性樹脂(B2)の例として、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアセタール(POM)、ポリアミド(PA)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、及びポリ乳酸(PLA)が挙げられる。 Examples of the thermoplastic resin (B2) include polyethylene (PE), polypropylene (PP), polyacetal (POM), polyamide (PA), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), and polylactic acid (PLA). Is mentioned.
 前記無機粉末(A)の好ましい例として、平均粒子径(D50)が0.1~1.0μmである金属酸化物粉末が挙げられる。 Preferred examples of the inorganic powder (A) include a metal oxide powder having an average particle diameter (D 50 ) of 0.1 to 1.0 μm.
 前記無機粉末(A)の好ましい別の例として、平均粒子径(D50)が1.0~10μmである金属粉末が挙げられる。 Another preferred example of the inorganic powder (A) is a metal powder having an average particle diameter (D 50 ) of 1.0 to 10 μm.
 また、本発明は、セラミックス、サーメット、あるいは金属からなる製品を製造する方法であって、前記3次元プリンタ用組成物を用いて、FDM方式の3次元プリンタによって積層構造体を造形する工程、前記積層構造体を脱脂する工程、及び焼結する工程を含むことを特徴とする。 Further, the present invention is a method of manufacturing a product made of ceramics, cermet, or metal, and using the composition for a three-dimensional printer, forming a laminated structure by an FDM type three-dimensional printer, It is characterized by including a step of degreasing the laminated structure and a step of sintering.
 また、本発明は、セラミックス、サーメット、および金属から選択された2種以上が接合した製品を製造する方法であって、
 2以上の押出装置を備える熱溶融積層方式の3次元プリンタによって、請求項1~5に記載の3次元プリンタ用組成物の2種以上を同時に積層することにより積層複合化された構造体を造形する行程、前記積層構造体を脱脂する工程、及び焼結する工程を含むことを特徴とする。
Further, the present invention is a method of manufacturing a product in which two or more selected from ceramics, cermets, and metals are joined,
A laminated composite structure is formed by simultaneously laminating two or more types of the composition for a three-dimensional printer according to any one of claims 1 to 5 with a three-dimensional printer of a hot-melt lamination system including two or more extrusion devices. Performing a step of degreasing and sintering the laminated structure.
 本発明の3次元プリンタ用組成物は密着性が高いため、FDM方式の3次元プリンタによって積層構造体を造形する際、積層間の剥離が生じにくく、亀裂のない積層構造体を得ることができる。また、糸曳き性が低いため、ヒゲ状のバリが発生しにくく、外観に優れた積層構造体を得ることができる。これにより、造形速度を確保した上で、不具合のない積層構造体を造形することが可能になり、その後は、PIMと同様の脱脂・焼結工程を使用して、セラミックス製品等を得ることができる。このため、3次元CADデータなどに基づいて、難加工材であるセラミックス等からなる複雑形状の製品を効率良く得ることが可能になる。
 なお、通常は、密着性を向上させると糸曳きが生じやすくなる傾向があり、糸曳きを抑制しようとすると密着性が低下する傾向があるため、高い密着性と低い糸曳き性を実現することは困難であるが、本発明の3次元プリンタ用組成物によれば、糸曳き性と密着性を両立することが可能となる。
Since the composition for a three-dimensional printer of the present invention has high adhesion, when a laminated structure is formed by an FDM type three-dimensional printer, peeling between the laminated layers hardly occurs, and a laminated structure without cracks can be obtained. . In addition, since the stringiness is low, whisker-like burrs are not easily generated, and a laminated structure excellent in appearance can be obtained. As a result, it is possible to form a laminated structure having no defect while securing the molding speed, and thereafter, it is possible to obtain a ceramic product or the like by using a degreasing and sintering process similar to that of the PIM. it can. Therefore, based on three-dimensional CAD data and the like, it is possible to efficiently obtain a product having a complicated shape made of a difficult material such as ceramics.
In general, stringing tends to easily occur when the adhesion is improved, and the adhesion tends to decrease when attempting to suppress the stringing, so that high adhesion and low stringiness are realized. However, according to the composition for a three-dimensional printer of the present invention, it is possible to achieve both stringiness and adhesion.
 本発明の3次元プリンタ用組成物で使用できる無機粉末(A)の例としては、金属粉末、セラミックス粉末、サーメット粉末等の焼結可能な粉末が挙げられる。
 具体的には、金属粉末としては、例えば純鉄、鉄-ニッケル、鉄-コバルト、鉄-シリコン、ステンレススチールなどの鉄系合金、タングステン、炭化タングステン、超硬合金(WC-Co系合金など)、アルミニウム合金、銅、銅合金、などの粉末が挙げられる。また、セラミックス粉末としては、Al23、BeO、ZrO2などの酸化物、TiC、ZrC、B4Cなどの炭化物、CrB、ZrB2などのホウ化物、TiN、ZrNなどの窒化物などが挙げられる。また、サーメット粉末としては、Al23-Fe系、TiC-Ni系、TiC-Co系、B4C-Fe系などが挙げられる。
 本発明で使用する無機粉末(A)の特に好ましい例として、アルミナ(Al23)、ジルコニア(ZrO2)などの金属酸化物粉末、ステンレススチールなどの金属粉末、WC-Coなどの超硬合金粉末などが挙げられる。前記ジルコニアは、イットリア部分安定化ジルコニアであってもよい。特に、平均粒子径(D50)が0.1~1.0μm、より好ましくは0.1~0.8μmである金属酸化物の粉末が好ましい。前記ステンレススチール粉末は、特に平均粒子径(D50)が1~15μm、より好ましくは5~10μmであることが好ましい。前記超硬合金(WC-Co)粉末は、特に平均粒子径(D50)が0.1~50μm、より好ましくは1~3μmであることが好ましい。
Examples of the inorganic powder (A) that can be used in the composition for a three-dimensional printer of the present invention include sinterable powders such as metal powder, ceramic powder, and cermet powder.
Specifically, examples of the metal powder include iron-based alloys such as pure iron, iron-nickel, iron-cobalt, iron-silicon, and stainless steel, tungsten, tungsten carbide, and cemented carbides (such as WC-Co-based alloys). , Aluminum alloy, copper, copper alloy, and the like. Examples of the ceramic powder include oxides such as Al 2 O 3 , BeO, and ZrO 2 , carbides such as TiC, ZrC, and B 4 C, borides such as CrB and ZrB 2, and nitrides such as TiN and ZrN. No. Examples of the cermet powder include Al 2 O 3 —Fe, TiC—Ni, TiC—Co, and B 4 C—Fe.
Particularly preferred examples of the inorganic powder (A) used in the present invention include metal oxide powders such as alumina (Al 2 O 3 ) and zirconia (ZrO 2 ), metal powders such as stainless steel, and carbide such as WC-Co. Alloy powder and the like. The zirconia may be yttria partially stabilized zirconia. In particular, metal oxide powder having an average particle diameter (D 50 ) of 0.1 to 1.0 μm, more preferably 0.1 to 0.8 μm is preferable. The stainless steel powder preferably has an average particle diameter (D 50 ) of 1 to 15 μm, more preferably 5 to 10 μm. The cemented carbide (WC-Co) powder preferably has an average particle diameter (D 50 ) of 0.1 to 50 μm, more preferably 1 to 3 μm.
 本発明の3次元プリンタ用組成物において、無機粉末(A)と有機バインダー(B)の質量比率は、(A)/(B)=100/5~100/30の範囲であることが適切である。(A)の質量100に対して、(B)の質量が5未満であると、流れ値が低く造形が困難になる。他方、(B)の質量が30を超えると、糸曳き性が大きくなり、且つ、脱脂時に変形などの不具合が生じやすくなる。
 無機粉末(A)がセラミックス粉末(例えば、アルミナやジルコニア等の金属酸化物粉
末)である場合、より好ましい質量比率は、(A)/(B)=100/10~100/25であり、特に100/15~100/20が好ましい。
 無機粉末(A)が金属粉末(例えば、ステンレススチール、超硬合金等)である場合、より好ましい質量比率は、(A)/(B)=100/5~100/13であり、特に100/5~100/10が好ましい。
In the composition for a three-dimensional printer of the present invention, the mass ratio between the inorganic powder (A) and the organic binder (B) is preferably in the range of (A) / (B) = 100/5 to 100/30. is there. When the mass of (B) is less than 5 with respect to the mass of (A) of 100, the flow value is low and molding becomes difficult. On the other hand, when the mass of (B) exceeds 30, stringiness becomes large, and problems such as deformation during degreasing tend to occur.
When the inorganic powder (A) is a ceramic powder (for example, a metal oxide powder such as alumina or zirconia), a more preferable mass ratio is (A) / (B) = 100/10 to 100/25, particularly 100/15 to 100/20 are preferred.
When the inorganic powder (A) is a metal powder (for example, stainless steel, cemented carbide, or the like), a more preferable mass ratio is (A) / (B) = 100/5 to 100/13, particularly 100/100. It is preferably from 5 to 100/10.
 本発明で使用される有機バインダー(B)は、非結晶性ポリマー及びEVAから選択される熱可塑性樹脂(B1)を含む。
 熱可塑性樹脂として、非結晶性ポリマー及び/又はEVAを用いることにより、密着性を向上させることができる。
The organic binder (B) used in the present invention includes a non-crystalline polymer and a thermoplastic resin (B1) selected from EVA.
By using a non-crystalline polymer and / or EVA as the thermoplastic resin, the adhesiveness can be improved.
 前記熱可塑性樹脂(B1)の例として、アクリル系樹脂(例えば、ポリメタクリル酸メチル(PMMA)、ポリアクリル酸ブチル(P-n-BMA)及び複合アクリル)、アタクチックポリスチレン(アクタチックPS)、ポリカーボネート(PC)、アモルファスポリオレフィン、及びアクリロニトリル-ブタジエン-スチレン(ABS)からなる群より選択される非結晶性ポリマー、及びエチレン-酢酸ビニル共重合体(EVA)が挙げられる。特に、アクリル系樹脂、PS、EVA、及びアモルファスポリオレフィンから選択される2種類以上を用いることが好ましい。糸曳き性を低減する観点からは、アクリル系樹脂を使用することが好ましい。 Examples of the thermoplastic resin (B1) include acrylic resins (for example, polymethyl methacrylate (PMMA), polybutyl acrylate (P-n-BMA) and composite acrylic), atactic polystyrene (Atactic PS), and polycarbonate. (PC), amorphous polyolefin, and an amorphous polymer selected from the group consisting of acrylonitrile-butadiene-styrene (ABS), and an ethylene-vinyl acetate copolymer (EVA). In particular, it is preferable to use two or more types selected from acrylic resins, PS, EVA, and amorphous polyolefin. From the viewpoint of reducing stringiness, it is preferable to use an acrylic resin.
 熱可塑性樹脂(B1)としては、基本的に、重量平均分子量が10,000以上、好ましくは20,000以上、特に好ましくは40,000以上の熱可塑性樹脂を用いることが好ましいが、任意で、重量平均分子量が8000以下(特に5000以下、例えば2000~4000)のアモルファスポリオレフィンを併用してもよい。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて求めることができる。 As the thermoplastic resin (B1), it is basically preferable to use a thermoplastic resin having a weight average molecular weight of 10,000 or more, preferably 20,000 or more, and particularly preferably 40,000 or more. An amorphous polyolefin having a weight average molecular weight of 8000 or less (especially 5000 or less, for example, 2000 to 4000) may be used in combination. The weight average molecular weight can be determined using gel permeation chromatography (GPC).
 複数の熱可塑性樹脂(B1)を使用する場合の特に好ましい例として、無機粉末が金属酸化物粉末の場合は、アクリル系樹脂とPSの組み合わせが挙げられ、さらに、EVA及び/又はアモルファスポリオレフィンを併用することが好ましく、特にアクリル系樹脂、PS及びEVAの3種類を併用することが好ましい。アクリル系樹脂とPSの質量比率は、アクリル系樹脂100に対して、PSが20~100であることが好ましく、25~70であることがより好ましく、28~50であることが特に好ましい。また、アクリル系樹脂とPSに加えて、EVAを使用する場合、アクリル系樹脂とEVAの質量比率は、アクリル系樹脂100に対して、5~30であること好ましく、7~25であることがより好ましい。 As a particularly preferred example of using a plurality of thermoplastic resins (B1), when the inorganic powder is a metal oxide powder, a combination of an acrylic resin and PS is used, and EVA and / or amorphous polyolefin are used in combination. It is particularly preferable to use acrylic resin, PS and EVA in combination. The mass ratio of the acrylic resin to PS is preferably 20 to 100, more preferably 25 to 70, and particularly preferably 28 to 50, based on 100 of the acrylic resin. When EVA is used in addition to the acrylic resin and the PS, the mass ratio of the acrylic resin to the EVA is preferably 5 to 30, and more preferably 7 to 25 with respect to the acrylic resin 100. More preferred.
 無機粉末が金属粉末の場合は、熱可塑性樹脂(B1)として、アクリル系樹脂とEVAを併用することが好ましく、さらに、PS及び/又はアモルファスポリオレフィンを併用することが好ましい。特に、アクリル系樹脂100に対して、EVAを30~150、より好ましくは50~120使用することが好ましく、アモルファスポリオレフィンを30~150、より好ましくは50~120使用することが好ましく、さらに任意でPSを50~150、より好ましくは70~120使用することが好ましい(数値はいずれも質量部)。 場合 When the inorganic powder is a metal powder, it is preferable to use an acrylic resin and EVA in combination as the thermoplastic resin (B1), and it is further preferable to use PS and / or amorphous polyolefin in combination. In particular, EVA is preferably used in an amount of 30 to 150, more preferably 50 to 120, and an amorphous polyolefin is preferably used in an amount of 30 to 150, more preferably 50 to 120, and further optionally. It is preferable that PS is used in an amount of 50 to 150, more preferably 70 to 120 (the numerical values are all parts by mass).
 前記アクリル系樹脂の特に好ましい例として、特開2000-303103号公報に記載されているような、
エチレン-酢酸ビニル共重合体またはエチレン-エチルアクリレート共重合体と、
(メタ)アクリル酸エステル単量体単独、または(メタ)アクリル酸エステル単量体及びスチレン系単量体の混合物と、重合開始剤からなる溶液を、分散剤を含む水系媒体中に分散させて懸濁重合させてなる複合アクリル系樹脂が挙げられる。
 また、アクリル系樹脂としては、(メタ)アクリル酸の炭素数1~8のアルコールのエステルである、(メタ)アクリル酸エステルの重合体を使用することができる。このような(メタ)アクリル酸エステル単量体の具体例としては、たとえば、アルキル基の炭素数が1~8のn-アルキル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレートなどが挙げられる。これらのうちでは特にn-ブチル(メタ)アクリレートのようなアルキル基の炭素数が1~4のn-アルキル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレートが好ましく、これらは単独で用いても、2種以上を併用してもよい。
As particularly preferred examples of the acrylic resin, as described in JP-A-2000-303103,
An ethylene-vinyl acetate copolymer or an ethylene-ethyl acrylate copolymer;
Dispersing a solution comprising a (meth) acrylate monomer alone or a mixture of a (meth) acrylate monomer and a styrene monomer and a polymerization initiator in an aqueous medium containing a dispersant. A composite acrylic resin obtained by suspension polymerization is exemplified.
Further, as the acrylic resin, a polymer of (meth) acrylic acid ester, which is an ester of (meth) acrylic acid having 1 to 8 carbon atoms, can be used. Specific examples of such a (meth) acrylate monomer include, for example, n-alkyl (meth) acrylate having 1 to 8 carbon atoms in the alkyl group, isopropyl (meth) acrylate, isobutyl (meth) acrylate, Examples include t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, and 2-ethoxyethyl (meth) acrylate. Of these, n-alkyl (meth) acrylates having 1 to 4 carbon atoms in the alkyl group, such as n-butyl (meth) acrylate, isopropyl (meth) acrylate, and isobutyl (meth) acrylate are particularly preferable. Or two or more of them may be used in combination.
 PSとしては、重量平均分子量が10~30万程度のものを用いることが好ましく、15~25万程度のものを用いることがより好ましい。 It is preferable to use ΔPS having a weight average molecular weight of about 100,000 to 300,000, and more preferably about 150,000 to 250,000.
 EVAとしては、結晶化度の低いもの(例えば、結晶化度が25%以下のもの)を使用することがより好ましい。EVAの結晶化度は、酢酸ビニル(VA)含量と相関するため、好ましいEVAとして、例えば、酢酸ビニル含量(質量百分率:JISK7192:1999)が20%~50%、より好ましくは25%~40%のEVAが挙げられる。また、重量平均分子量が3~12万程度のものを用いることが好ましく、5~10万程度のものを用いることがより好ましい。 As EVA, it is more preferable to use one having a low crystallinity (for example, one having a crystallinity of 25% or less). Since the crystallinity of EVA correlates with vinyl acetate (VA) content, preferred EVA is, for example, a vinyl acetate content (mass percentage: JIS K 7192: 1999) of 20% to 50%, more preferably 25% to 40%. EVA. Further, those having a weight average molecular weight of about 30,000 to 120,000 are preferably used, and those having a weight average molecular weight of about 50,000 to 100,000 are more preferably used.
 アモルファスポリオレフィンとしては、重量平均分子量が1000~8000、より好ましくは2000~4000程度のものを使用することができる。 As the amorphous polyolefin, those having a weight average molecular weight of about 1,000 to 8,000, more preferably about 2,000 to 4,000 can be used.
 本発明で使用される有機バインダー(B)は、任意で、結晶性ポリマー(ただし、EVAを除く。以下同じ)から選択される熱可塑性樹脂(B2)を含んでもよい。前記結晶性ポリマーとしては、例えば、重量平均分子量が10,000以上、好ましくは20,000以上、特に好ましくは40,000以上の結晶性ポリマーを用いることができる。熱可塑性樹脂として、結晶性ポリマーを用いることにより、成形体の保形性が向上し、脱脂時の不具合が生じにくくなる。 有機 The organic binder (B) used in the present invention may optionally contain a thermoplastic resin (B2) selected from crystalline polymers (excluding EVA; the same applies hereinafter). As the crystalline polymer, for example, a crystalline polymer having a weight average molecular weight of 10,000 or more, preferably 20,000 or more, particularly preferably 40,000 or more can be used. By using a crystalline polymer as the thermoplastic resin, the shape-retaining property of the molded article is improved, and a problem at the time of degreasing is less likely to occur.
 前記熱可塑性樹脂(B2)の例として、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアセタール(POM)、ポリアミド(PA)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、及びポリ乳酸(PLA)が挙げられる。特に、PP及びPOMが好ましい。 Examples of the thermoplastic resin (B2) include polyethylene (PE), polypropylene (PP), polyacetal (POM), polyamide (PA), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), and polylactic acid (PLA). Is mentioned. In particular, PP and POM are preferred.
 POMとしては、重量平均分子量が1~7万程度のものを用いることが好ましく、2~5万程度のものを用いることがより好ましい。 As POM, those having a weight average molecular weight of about 10,000 to 70,000 are preferably used, and those having a weight average molecular weight of about 20,000 to 50,000 are more preferable.
 PPとしては、重量平均分子量が10~40万程度のものを用いることが好ましく、20~30万程度のものを用いることがより好ましい。 As PP, those having a weight average molecular weight of about 100,000 to 400,000 are preferably used, and those having a weight average molecular weight of about 200,000 to 300,000 are more preferably used.
 本発明において、熱可塑性樹脂(B1+B2)に対する非結晶性ポリマー及びEVA(B1)の質量比は、(B1)/(B1+B2)=0.5~1.0であることが好ましく、0.7~1.0であることがより好ましく、0.9~1.0であることが特に好ましく、0.95~1.0であることがさらに好ましい。
 結晶性ポリマーを使用することにより、脱脂時の不具合を抑制しやすくなるが、非結晶性ポリマー及びEVAから選択される熱可塑性樹脂(B1)よりも、結晶性ポリマー(B2)の割合が多くなると、造形物の層間の密着性が低下し、造形物に亀裂が入りやすくなる。よって(B2)は(B1)よりも少量であることが好ましい。
In the present invention, the mass ratio of the non-crystalline polymer and the EVA (B1) to the thermoplastic resin (B1 + B2) is preferably (B1) / (B1 + B2) = 0.5 to 1.0, and 0.7 to 0.7. It is more preferably 1.0, particularly preferably 0.9 to 1.0, and further preferably 0.95 to 1.0.
The use of the crystalline polymer makes it easier to suppress the problem at the time of degreasing, but when the proportion of the crystalline polymer (B2) is larger than that of the thermoplastic resin (B1) selected from the non-crystalline polymer and EVA. In addition, the adhesion between the layers of the molded article is reduced, and the molded article is easily cracked. Therefore, (B2) is preferably smaller than (B1).
 本発明において、有機バインダー(B)の全量(すなわち、B1~B5の合計)に対する、熱可塑性樹脂(B1+B2)の質量比は、(B1+B2)/(B)=0.35~0.85であることが好ましく、0.40~0.80であることがより好ましい。
 熱可塑性樹脂が少なすぎると、糸曳き性は低いものの、脱脂時に不具合が生じやすくなる。他方、熱可塑性樹脂が多すぎると、脱脂時の変形やクラック等は抑制できるが、糸曳き性が高くなる。
 無機粉末(A)がセラミックス粉末(例えば、アルミナやジルコニア等の金属酸化物粉末)である場合、より好ましい質量比は、(B1+B2)/(B)=0.40~0.70であり、特に0.50~0.65が好ましい。
 無機粉末(A)が金属粉末(例えば、ステンレススチール、超硬合金等)である場合、より好ましい質量比は、(B1+B2)/(B)=0.50~0.80であり、特に0.60~0.75が好ましい。
In the present invention, the mass ratio of the thermoplastic resin (B1 + B2) to the total amount of the organic binder (B) (that is, the sum of B1 to B5) is (B1 + B2) / (B) = 0.35 to 0.85. And more preferably 0.40 to 0.80.
If the amount of the thermoplastic resin is too small, the stringiness is low, but a problem easily occurs during degreasing. On the other hand, if the amount of the thermoplastic resin is too large, deformation, cracks, and the like during degreasing can be suppressed, but stringiness increases.
When the inorganic powder (A) is a ceramic powder (for example, a metal oxide powder such as alumina or zirconia), a more preferable mass ratio is (B1 + B2) / (B) = 0.40 to 0.70, particularly 0.50 to 0.65 is preferred.
When the inorganic powder (A) is a metal powder (for example, stainless steel, cemented carbide, or the like), a more preferable mass ratio is (B1 + B2) / (B) = 0.50 to 0.80, and particularly preferably 0.1 to 0.80. It is preferably from 60 to 0.75.
 また、前記熱可塑性樹脂(B1及びB2)は、軟化点が65℃以上であることが好ましく、70℃以上であることがより好ましい。軟化点(ビカット軟化温度)は、JIS K7206 B50法によって測定することができる。
 また、熱可塑性樹脂(B1及びB2)の融点は、170℃以下であることが好ましい。
The thermoplastic resin (B1 and B2) preferably has a softening point of 65 ° C. or higher, more preferably 70 ° C. or higher. The softening point (Vicat softening temperature) can be measured by JIS K7206 B50 method.
Further, the melting point of the thermoplastic resin (B1 and B2) is preferably 170 ° C. or less.
 また、熱可塑性樹脂(B1及びB2)として、レオロジー特性が異なる複数の樹脂を併用することがより好ましい。レオロジー特性の異なる2種類以上の熱可塑性樹脂を併用することにより、脱脂時の不具合(特にクラック・フクレ)を十分に抑制することができる。
 具体的には、180℃における流れ値が、0.002~0.08ml/sec、より好ましくは0.003~0.07ml/secの熱可塑性樹脂(例えば、PP、PS、POMなど)と、180℃における流れ値が0.09ml/sec以上、より好ましくは0.10ml/sec以上の熱可塑性樹脂(例えば、180℃における流れ値が0.10~0.20ml/secのアクリル系樹脂、及び、180℃では流動性が高くなりすぎて正確な値が測定できない樹脂、例えば、EVA、アモルファスポリオレフィンなど)を併用することが好ましい。
 前記流れ値は、実施例の項に示すように、フローテスタ(例えば、株式会社島津製作所から販売されている定試験力押出形細管式レオメータ)を用いて、求めることができる。
It is more preferable to use a plurality of resins having different rheological properties in combination as the thermoplastic resins (B1 and B2). By using two or more kinds of thermoplastic resins having different rheological properties in combination, it is possible to sufficiently suppress the problems (particularly, cracks and blisters) during degreasing.
Specifically, a thermoplastic resin (eg, PP, PS, POM, etc.) having a flow value at 180 ° C. of 0.002 to 0.08 ml / sec, more preferably 0.003 to 0.07 ml / sec, Thermoplastic resin having a flow value at 180 ° C. of 0.09 ml / sec or more, more preferably 0.10 ml / sec or more (for example, an acrylic resin having a flow value of 0.10 to 0.20 ml / sec at 180 ° C., and At 180 ° C., it is preferable to use a resin having too high a fluidity to measure an accurate value, such as EVA and amorphous polyolefin.
The flow value can be determined using a flow tester (for example, a constant-test-force extruded capillary rheometer sold by Shimadzu Corporation) as shown in the Examples section.
 本発明で使用される有機バインダー(B)は、ワックス(B3)を含む。ワックスとしては、合成系、天然系のいずれも使用でき、その具体例としては、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、ミツロウ、カルナバワックス、モンタンワックス、ポリアルキレングリコール等が挙げられる。特に、好ましいワックスるとして、パラフィンワックス及びマイクロクリスタリンワックスが挙げられる。 有機 The organic binder (B) used in the present invention contains a wax (B3). As the wax, either a synthetic wax or a natural wax can be used, and specific examples thereof include paraffin wax, microcrystalline wax, polyethylene wax, beeswax, carnauba wax, montan wax, and polyalkylene glycol. Particularly preferred waxes include paraffin wax and microcrystalline wax.
 本発明において、有機バインダー(B)の全量(すなわち、B1~B5の合計)に対する、前記ワックス(B3)の質量比は、(B3)/(B)=0.07~0.4であることが好ましく、0.07~0.35であることがより好ましく、0.10~0.30であることが特に好ましく、0.15~0.25であることがさらに好ましい。
 ワックスを使用することにより、3次元プリンタ用組成物の流動性を向上させることができるが、ワックスの量が多すぎると密着性が悪くなる。
In the present invention, the mass ratio of the wax (B3) to the total amount of the organic binder (B) (that is, the sum of B1 to B5) is (B3) / (B) = 0.07 to 0.4. Is preferably 0.07 to 0.35, more preferably 0.10 to 0.30, and even more preferably 0.15 to 0.25.
By using wax, the fluidity of the composition for a three-dimensional printer can be improved, but if the amount of wax is too large, the adhesion becomes poor.
 また、本発明で使用される有機バインダー(B)は、任意で滑剤(B4)を含んでもよい。滑剤としては、例えば脂肪酸、並びにエステル、アミド、金属塩等の脂肪酸の誘導体などが挙げられ、好ましい滑剤として、高級脂肪酸及びその誘導体が挙げられ、特に好ましい滑剤として、ステアリン酸及びそのエステル(例えば、モノステアリン酸ソルビタン
)が挙げられる。
Further, the organic binder (B) used in the present invention may optionally contain a lubricant (B4). Examples of the lubricant include fatty acids and derivatives of fatty acids such as esters, amides, and metal salts. Preferred lubricants include higher fatty acids and derivatives thereof. Particularly preferred lubricants include stearic acid and esters thereof (for example, Sorbitan monostearate).
 本発明において、有機バインダー(B)の全量(すなわち、B1~B5の合計)に対する、前記滑剤(B4)の質量比は、(B4)/(B)=0~0.18であることが好ましい。
 特に、無機粉末がセラミックス粉末である場合は、(B4)/(B)=0.01~0.18であることが好ましく、0.02~0.16であることがより好ましく、0.03~0.15であることが特に好ましい。
 滑剤を使用することにより、3次元プリンタ用組成物の流動性を向上させることができるが、滑剤の量が多すぎると密着性が悪くなる。
In the present invention, the mass ratio of the lubricant (B4) to the total amount of the organic binder (B) (that is, the sum of B1 to B5) is preferably (B4) / (B) = 0 to 0.18. .
In particular, when the inorganic powder is a ceramic powder, (B4) / (B) is preferably 0.01 to 0.18, more preferably 0.02 to 0.16, and more preferably 0.03 to 0.16. It is particularly preferred that it is 0.10.15.
By using a lubricant, the fluidity of the composition for a three-dimensional printer can be improved, but if the amount of the lubricant is too large, the adhesion becomes poor.
 また、本発明で使用される有機バインダー(B)は、任意で、(B1)~(B4)に該当しない、その他の添加剤(B5)を含んでもよい。その他の添加剤として、例えば可塑剤及び酸化防止剤が挙げられる。
 可塑剤の具体例としては、例えば、フタル酸エステル(ジブチルフタレート、ジオクチルフタレート、テレフタル酸ジ-2-エチルヘキシル等)、アジピン酸エステル(アジピン酸ジ-2-エチルヘキシル、アジピン酸ジイソノニル、アジピン酸ジイソデシル等)、トリメリット酸エステル類(トリメリット酸トリ-2-エチルヘキシル、トリメリット酸トリイソデシル等)、クエン酸エステル(アセチルクエン酸トリブチル)、1,2-シクロヘキサンジカルボン酸ジイソノニルエステル、4-シクロヘキセン-1,2-ジカルボン酸ビス(2-エチルヘキシル)、安息香酸グリコールエステル、リン酸エステル等が挙げられる。
 また、酸化防止剤の具体例としては、例えばフェノール系酸化防止剤が挙げられる。その具体例としては、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、4,4'-ブチリデンビス(6-tert-ブチル-m-クレゾール)、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸][エチレンビス(オキシエチレン)]、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニルプロピオン酸](2,4,8,10-テトラオキサスピロ[5,5]ウンデカン-3,9-ジイル)ビス(2,2-ジメチル-2,1-エタンジイル)、ペンタエリトリトール=テトラキス[3-(3',5'-ジ-tert-ブチル-4'-ヒドロキシフェニル)プロピオナート]などが挙げられる。
 また、可塑剤、酸化防止剤以外の、(B5)に該当する添加剤の例として、金属不活性化剤、紫外線吸収剤、造核剤等の添加剤が挙げられる。
Further, the organic binder (B) used in the present invention may optionally contain other additives (B5) which do not correspond to (B1) to (B4). Other additives include, for example, plasticizers and antioxidants.
Specific examples of the plasticizer include, for example, phthalic acid esters (eg, dibutyl phthalate, dioctyl phthalate, di-2-ethylhexyl terephthalate), adipic acid esters (eg, di-2-ethylhexyl adipate, diisononyl adipate, diisodecyl adipate) ), Trimellitates (tri-2-ethylhexyl trimellitate, triisodecyl trimellitate, etc.), citrates (tributyl acetyl citrate), diisononyl 1,2-cyclohexanedicarboxylate, 4-cyclohexene-1, Examples thereof include bis (2-ethylhexyl) 2-dicarboxylate, glycol benzoate, and phosphate ester.
Further, specific examples of the antioxidant include, for example, a phenolic antioxidant. Specific examples thereof include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 4,4′-butylidenebis (6-tert-butyl-m-cresol), [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] [ethylenebis (oxyethylene)], bis [3- (3-tert-butyl-4-hydroxy-5-methylphenylpropionate) Acid] (2,4,8,10-tetraoxaspiro [5,5] undecane-3,9-diyl) bis (2,2-dimethyl-2,1-ethanediyl), pentaerythritol = tetrakis [3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate].
Examples of additives other than the plasticizer and the antioxidant that correspond to (B5) include additives such as a metal deactivator, an ultraviolet absorber, and a nucleating agent.
 本発明において、有機バインダー(B)の全量(すなわち、B1~B5の合計)に対する、その他の添加剤(B5)の質量比は、(B5)/(B)=0~0.30であることが好ましい。
 特に、無機粉末がセラミックス粉末である場合は、(B5)/(B)=0.03~0.30であることが好ましく、0.05~0.25であることがより好ましく、0.07~0.15であることが特に好ましい。
 無機粉末が金属粉末である場合は、(B5)/(B)=0.01~0.20であることが好ましく、0.02~0.15であることがより好ましい。
In the present invention, the mass ratio of the other additive (B5) to the total amount of the organic binder (B) (that is, the sum of B1 to B5) is (B5) / (B) = 0 to 0.30. Is preferred.
In particular, when the inorganic powder is a ceramic powder, (B5) / (B) is preferably 0.03 to 0.30, more preferably 0.05 to 0.25, and more preferably 0.07 to 0.25. It is particularly preferable that it is 0.15.
When the inorganic powder is a metal powder, (B5) / (B) is preferably 0.01 to 0.20, and more preferably 0.02 to 0.15.
 前記(B3)~(B5)はいずれも、分子量(又は重量平均分子量)が、2,000以下であることが好ましく、1000以下であることがより好ましい。分子量の高い熱可塑性樹脂(B1及びB2)と、分子量の低い有機化合物(B3~B5)を併用することによって、脱脂が一度に進行せず、有機バインダーの除去が段階的に進行するため、脱脂時の変形を抑制することができる。 分子 In all of the above (B3) to (B5), the molecular weight (or weight average molecular weight) is preferably 2,000 or less, more preferably 1,000 or less. By using a combination of a high molecular weight thermoplastic resin (B1 and B2) and a low molecular weight organic compound (B3 to B5), the degreasing does not proceed at once and the removal of the organic binder proceeds in a stepwise manner. The deformation at the time can be suppressed.
 また、前記(B3)~(B5)として、加熱減量の開始点が150℃以下のものを用いることが好ましい。加熱減量の開始点は、JIS K7120に規定されている熱重量測
定法によって求めることができる。150℃以下で加熱減量が始まる有機化合物(B3)~(B5)を配合することによって、150℃以上でのバインダー含有量を減少させ、成形体の可塑性を小さくして変形を防止することができる。
Further, it is preferable to use (B3) to (B5) having a heating loss starting point of 150 ° C. or less. The starting point of the heating loss can be determined by a thermogravimetric method defined in JIS K7120. By blending the organic compounds (B3) to (B5) which begin to lose weight at 150 ° C. or lower, the binder content at 150 ° C. or higher can be reduced, and the plasticity of the molded product can be reduced to prevent deformation. .
 本発明の3次元プリンタ用組成物の製造方法は、無機粉末(A)と有機バインダー(B)を溶融混練して調製される。特に限定されないが、好ましい形態の一例として、加圧型ニーダーが挙げられる。双腕ニーダー式混練機、バンバリー型混練機などのバッチ式や、1軸または2軸混練押出機などの連続式などの各種混練機を用いることが出来る。 製造 The method for producing a composition for a three-dimensional printer of the present invention is prepared by melt-kneading an inorganic powder (A) and an organic binder (B). Although not particularly limited, a pressurized kneader is an example of a preferred embodiment. Various types of kneaders such as a batch type such as a double-arm kneader type kneader and a Banbury type kneader, and a continuous type such as a single-screw or twin-screw extruder can be used.
 本発明の3次元プリンタ用組成物の形状は特に限定されないが、好ましい形態の一例として、PIMで使用されているようなペレット状の形態を挙げることができる。特に限定されないが、好ましい形態の一例として、混練後の押し出されてきた溶融物をロータリーカッターで空気中でペレット状にカットするホットカット式ペレタイザーでペレット化されたものが挙げられる。 形状 The shape of the composition for a three-dimensional printer of the present invention is not particularly limited, but an example of a preferable form includes a pellet-like form used in PIM. Although it is not particularly limited, an example of a preferable embodiment is one in which the extruded melt after kneading is pelletized by a hot-cut type pelletizer in which the melt is cut into pellets in the air by a rotary cutter.
 また、本発明は、前記3次元プリンタ用組成物(無機粉末を高充填した組成物)を用いて、FDM方式の3次元プリンタにより積層構造体を造形し、脱脂、焼結を行うことにより、セラミックス、サーメット、あるいは金属からなる製品を製造する方法を提供する。 In addition, the present invention provides a three-dimensional printer using an FDM type three-dimensional printer to form a laminated structure using the composition for a three-dimensional printer (composition highly filled with inorganic powder), and performs degreasing and sintering. Provided is a method for manufacturing a product made of ceramics, cermet, or metal.
 前記FDM方式の3次元プリンタとしては、例えば、特許文献2(WO2015/129733)に開示されているような、シリンダーと、スクリューと、ギヤポンプと、ノズルを有する押出装置と、前記押出装置のノズルに対向して位置するテーブル装置と、前記押出装置における前記ノズルからの樹脂の吐出を制御し、かつ、前記押出装置及び/又は前記テーブル装置の、基準面に対するX軸,Y軸,Z軸方向への移動を制御する制御装置を備えた3次元プリンタを使用することができる。 Examples of the FDM three-dimensional printer include a cylinder, a screw, a gear pump, an extrusion device having a nozzle, and a nozzle of the extrusion device as disclosed in Patent Document 2 (WO2015 / 129733). Controlling the discharge of resin from the nozzle in the extruding device and the table device located opposite to the extruding device and / or the extruding device and / or the table device in the X-axis, Y-axis, and Z-axis directions with respect to a reference plane; A three-dimensional printer equipped with a control device for controlling the movement of the camera can be used.
 前記FDM方式の3次元プリンタとして、複数の前記押出装置を備える3次元プリンタを用いて、前記3次元プリンタ用組成物の2種以上を積層複合化された構造体を造形することができる。前記積層構造体は、たとえば、前記異なる金属粉末を含有する2種以上の3次元プリンタ用組成物を所定の構造を有する積層構造体に造形し、脱脂および焼結することにより、2種以上の無機材料が接合した焼結体を得ることが出来る。 (4) As the three-dimensional printer of the FDM system, a three-dimensional printer including a plurality of the extrusion devices can be used to form a structure in which two or more of the three-dimensional printer compositions are laminated and combined. The laminated structure is formed, for example, by forming two or more types of three-dimensional printer compositions containing the different metal powders into a laminated structure having a predetermined structure, degreased, and sintered, thereby forming two or more types. A sintered body in which the inorganic materials are joined can be obtained.
 脱脂・焼結の条件は、PIMの脱脂・焼結と同様でよく、組成物に含まれている無機粉末の種類等に応じて、適宜設定することができる。例えば、無機粉末がジルコニア(イットリア安定化ジルコニア等)やアルミナの場合は、昇温速度5~20℃/hで450~550℃前後まで昇温して脱脂を行い、その後昇温速度40~60℃/hで1300~1600℃まで昇温して焼結を行うことができる。無機粉末が金属の場合、不活性ガス雰囲気で昇温速度5~20℃/hで450~550℃前後まで昇温して脱脂を行い、その後昇温速度40~60℃/hで温度1300~1400℃まで昇温して焼結を行うことができる。 (4) The conditions for degreasing and sintering may be the same as those for degreasing and sintering of PIM, and can be set as appropriate according to the type of inorganic powder contained in the composition. For example, when the inorganic powder is zirconia (such as yttria-stabilized zirconia) or alumina, the temperature is raised to about 450 to 550 ° C. at a rate of 5 to 20 ° C./h to perform degreasing, and then the rate of temperature rise is 40 to 60. The sintering can be performed by increasing the temperature to 1300 to 1600 ° C. at a rate of ° C./h. When the inorganic powder is a metal, degreasing is performed by raising the temperature to about 450 to 550 ° C. at a rate of 5 to 20 ° C./h in an inert gas atmosphere, and then performing a temperature increase of 1300 to 40 ° C./h at a rate of 40 to 60 ° C./h. The temperature can be raised to 1400 ° C. for sintering.
 以下、実施例により本発明をより詳細に説明するが、本発明は、実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.
[原料]
 (A)無機粉末、(B1)非結晶性ポリマー及びEVAから選択される熱可塑性樹脂、(B2)EVAを除く結晶性ポリマーから選択される熱可塑性樹脂、(B3)ワックス、(B4)滑剤及び(B5)その他の添加剤として、以下の物質を使用した。なお、流れ値は、株式会社島津製作所製のフローテスター「CFD-500D」を用いて、直径1mm×長さ1mmのダイスをセットし、0.98MPa荷重をかけ、180℃の単位時間当たりの流れ量(ml/sec)を測定することによって求めた。なお、180℃では流動性が高すぎて正確な値を測定できないものについては、設定温度を140℃に変更して、流れ値を求めた。
[material]
(A) an inorganic powder, (B1) a thermoplastic resin selected from an amorphous polymer and EVA, (B2) a thermoplastic resin selected from a crystalline polymer other than EVA, (B3) a wax, (B4) a lubricant and (B5) The following substances were used as other additives. The flow value was measured by using a flow tester "CFD-500D" manufactured by Shimadzu Corporation, setting a 1 mm diameter x 1 mm length die, applying a load of 0.98 MPa, and flowing at 180 ° C per unit time. It was determined by measuring the amount (ml / sec). In the case where the fluidity was too high at 180 ° C. to measure an accurate value, the set temperature was changed to 140 ° C. and the flow value was obtained.
(A)無機粉末
 ・Y23を3モル%含むイットリア部分安定化ジルコニア粉末(BET比表面積は15m2/g;平均粒子径D50は0.15μm)
 ・アルミナ粉末(BET比表面積は6m2/g;平均粒子径D50は0.52μm)
 ・ステンレス粉末(SUS316L)(平均粒子径D50は7.1μm、タップ密度4.6g/cm3
 ・WC-Co粉末(平均粒子径D50は1.4μm)
(A) Yttria partially stabilized zirconia powder containing 3 mol% of inorganic powder and Y 2 O 3 (BET specific surface area is 15 m 2 / g; average particle diameter D 50 is 0.15 μm)
Alumina powder (BET specific surface area is 6 m 2 / g; average particle diameter D 50 is 0.52 μm)
・ Stainless steel powder (SUS316L) (average particle diameter D 50 is 7.1 μm, tap density 4.6 g / cm 3 )
・ WC-Co powder (average particle diameter D 50 is 1.4 μm)
(B1)非結晶性ポリマー及びEVAから選択される熱可塑性樹脂
 ・アクリル系樹脂(メタクリル酸n-ブチルとメタクリル酸メチルの共重合物、重量平均分子量5万、180℃流れ値0.110ml/sec)
 ・PS(重量平均分子量19万、180℃流れ値0.064ml/sec、荷重たわみ温度70℃)
 ・EVA(重量平均分子量7万、140℃流れ値0.30ml/sec、荷重たわみ温度68℃)
 ・アモルファスポリオレフィン(重量平均分子量3000、140℃流れ値0.32ml/sec、軟化点145℃)
(B1) a thermoplastic resin / acrylic resin selected from an amorphous polymer and EVA (copolymer of n-butyl methacrylate and methyl methacrylate, weight average molecular weight 50,000, flow rate at 180 ° C. 0.110 ml / sec) )
・ PS (weight average molecular weight 190,000, 180 ° C flow value 0.064ml / sec, deflection temperature under load 70 ° C)
EVA (weight average molecular weight 70,000, flow rate at 140 ° C 0.30 ml / sec, deflection temperature under load 68 ° C)
・ Amorphous polyolefin (weight average molecular weight 3000, flow rate at 140 ° C 0.32 ml / sec, softening point 145 ° C)
(B2)EVAを除く結晶性ポリマーから選択される熱可塑性樹脂
 ・PP(重量平均分子量24万、180℃流れ値0.051ml/sec、融点163℃)
 ・POM(重量平均分子量5万、180℃流れ値0.003ml/sec、融点165℃)
(B2) Thermoplastic resin / PP selected from crystalline polymers excluding EVA (weight average molecular weight 240,000, flow rate at 180 ° C 0.051 ml / sec, melting point 163 ° C)
-POM (weight average molecular weight 50,000, flow rate at 180 ° C 0.003 ml / sec, melting point 165 ° C)
(B3)ワックス
 ・パラフィンワックス(分子量472、融点70℃)
 ・マイクロクリスタリンワックス(分子量500~800、融点52℃)
(B3) Wax / paraffin wax (molecular weight 472, melting point 70 ° C.)
・ Microcrystalline wax (molecular weight 500-800, melting point 52 ° C)
(B4)滑剤
 ・ステアリン酸(分子量284)
 ・モノステアリン酸ソルビタンエステル(分子量430.融点55℃)
(B4) Lubricant / stearic acid (molecular weight 284)
・ Sorbitan monostearate (molecular weight: 430; melting point: 55 ° C)
(B5)その他の添加剤
 ・フタル酸ジオクチル(DOP)(分子量391)
 ・4-シクロヘキセン-1,2-ジカルボン酸ビス(2-エチルヘキシル)(分子量394)
 ・1,2-シクロヘキサンジカルボン酸ジイソノニルエステル(分子量428)
 ・フェノール系酸化防止剤(1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン)(分子量545、融点183~185℃)
(B5) Other additives: dioctyl phthalate (DOP) (molecular weight: 391)
・ Bis (2-ethylhexyl) 4-cyclohexene-1,2-dicarboxylate (Mw 394)
・ 1,2-cyclohexanedicarboxylic acid diisononyl ester (molecular weight: 428)
・ Phenolic antioxidant (1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane) (molecular weight: 545, melting point: 183 to 185 ° C.)
[3次元プリンタ用組成物の製造]
   上記(A)と、(B1)~(B5)を、表に示す割合で配合し、日本スピンドル製造株式会社(旧株式会社森山製作所)製加圧型ニーダーを用いて170℃で溶融混練を行った。得られた溶融物は株式会社トーシン製ペレタイザー型プランジャー押出機を使用して、直径3mm×長さ3mmのペレットを製造した。
[Production of composition for three-dimensional printer]
The above (A) and (B1) to (B5) were blended in the proportions shown in the table, and were melt-kneaded at 170 ° C. using a pressurized kneader manufactured by Nippon Spindle Manufacturing Co., Ltd. (former Moriyama Seisakusho). . The pellets having a diameter of 3 mm and a length of 3 mm were produced from the obtained melt using a pelletizer type plunger extruder manufactured by Toshin Co., Ltd.
[密着性及び糸曳き性の評価]
 製造した各ペレットを原料にして、ペレット投入口を有する押出装置を備えたFDM方式の3次元プリンタ(エス.ラボ株式会社製CERA#P3 造形範囲 X150mm×Y150mm×Z150mm、スクリュー径φ20mm)を使用し、幅5mm×奥行5mm×高さ20mmの縦長の直方体(積層構造体)を各5個製造した。造形速度は100~2000mm/minとし、成形温度は150~190℃とし、ノズル径は1.0mmとした。各積層構造体(造形物)間の距離は30mmとした。
[Evaluation of adhesion and stringiness]
Using each of the produced pellets as a raw material, an FDM type three-dimensional printer (CERA # P3 manufactured by S. Lab. Co., Ltd., modeling range X150 mm × Y150 mm × Z150 mm, screw diameter φ20 mm) equipped with an extruder having a pellet inlet is used. Five rectangular parallelepipeds (laminated structures) each having a width of 5 mm, a depth of 5 mm, and a height of 20 mm were manufactured. The molding speed was 100 to 2000 mm / min, the molding temperature was 150 to 190 ° C., and the nozzle diameter was 1.0 mm. The distance between each laminated structure (modeled object) was 30 mm.
 密着性については、得られた造形物の層間の隙間の有無を目視にて確認し、さらに、10mmの間隔で配置した2つの支点の上に、前記積層構造体を横にして(すなわち、幅20mm×奥行5mm×高さ5mmとなるようにして)置き、5Nの荷重をかけたときの割れやすさで判定した(造形物は、溶融原料を高さ方向に積層して製造するため、造形物を横にして荷重をかけた場合、層と層の密着性が悪いと層間で破断が生じやすい)。判定基準は以下の通りである。
密着性判定
 〇:外観上、層間の割れ目がなく、荷重をかけても層間で破断しない
 △:外観上、層間の割れ目はないが、荷重をかけると層間で破断する
 ×:外観上、層間に割れ目が観察される、もしくは造形時に密着不良で傾くなどの不具合が発生する
Regarding the adhesion, the presence or absence of a gap between the layers of the obtained molded article was visually confirmed, and the laminated structure was placed sideways on two fulcrums arranged at an interval of 10 mm (that is, the width). 20 mm x 5 mm deep x 5 mm high) was placed and judged by the easiness of cracking when a load of 5 N was applied. (The molded object was manufactured by laminating molten raw materials in the height direction. When a load is applied with the object placed sideways, breakage is likely to occur between layers if the adhesion between the layers is poor.) The criteria are as follows.
Adhesion judgment密 着: There is no crack between layers in appearance, and there is no break between layers even when a load is applied. △: There is no crack between layers in appearance, but it breaks between layers when load is applied. ×: Between layers in appearance. Problems such as cracks being observed or tilting due to poor adhesion during modeling occur
 また、上記造形方法において、一つの造形物を造形した後、次の造形位置にノズルを移動した際に糸曳きが見られる場合は、造形物の縁から糸先端までの長さを測定し、糸曳き長さとした。判定基準は以下の通りである。
糸曳き判定
 〇:糸曳き長さ5mm未満
 △:糸曳き長さ5mm以上10mm未満
 ×:糸曳き長さ10mm以上
In addition, in the above-described molding method, after molding one molded object, if stringing is observed when the nozzle is moved to the next molding position, measure the length from the edge of the molded object to the tip of the thread, The stringing length was used. The criteria are as follows.
Stringing judgment Δ: Stringing length less than 5 mm △: Stringing length 5 mm or more and less than 10 mm ×: Stringing length 10 mm or more
[脱脂・焼結性の判定]
 上記と同じ積層構造体を試験片とした。
 得られた試験片をアルミナセッターに載せ、ジルコニア、アルミナは、大気中で昇温速度10℃/hで500℃まで脱脂したときの変形度合い(変形、クラック、フクレ)を確認した。試験片各5個のうち、脱脂後に変形、又はクラック・フクレが確認されたものが1個以下の場合は〇とし、2~3個の場合は△とし、4個以上の場合は×と評価した。脱脂後、大気中で昇温速度50℃/hで、ジルコニアは1450℃まで、アルミナは1600℃まで昇温して焼結を行い、焼結体を得た。
 ステンレスは窒素ガス雰囲気で昇温速度10℃/hで500℃前後まで昇温して脱脂を行い、上記と同様に変形、又はクラック・フクレを確認した。その後昇温速度50℃/hで温度1350℃まで昇温して焼結体を得た。
 WC-Coもステンレスと同様に窒素ガス雰囲気で昇温速度10℃/hで500℃前後まで昇温して脱脂を行い、上記と同様に変形、又はクラック・フクレを確認した。その後昇温速度50℃/hで温度1390℃まで昇温して焼結体を得た。
 焼結体の相対密度はアルキメデス法で測定した。
[Determination of degreasing / sintering properties]
The same laminated structure as above was used as a test piece.
The obtained test piece was placed on an alumina setter, and the degree of deformation (deformation, crack, blister) of zirconia and alumina when degreased to 500 ° C. at a heating rate of 10 ° C./h in the atmosphere was confirmed. Out of 5 test pieces, if no deformation or cracks or blisters were observed after degreasing, 1 or less was evaluated as 〇, 2 to 3 pieces as △, and 4 or more as X. did. After degreasing, sintering was performed in the atmosphere at a heating rate of 50 ° C./h at a temperature of 1450 ° C. for zirconia and 1600 ° C. for alumina to obtain a sintered body.
The stainless steel was degreased by raising the temperature to about 500 ° C. at a rate of 10 ° C./h in a nitrogen gas atmosphere, and deformation or cracks and blisters were confirmed in the same manner as described above. Thereafter, the temperature was raised to 1350 ° C. at a rate of 50 ° C./h to obtain a sintered body.
WC-Co was also degreased in a nitrogen gas atmosphere at a heating rate of about 10 ° C./h to about 500 ° C. in the same manner as stainless steel, and deformation or cracks and blisters were confirmed in the same manner as described above. Thereafter, the temperature was raised to 1390 ° C. at a rate of 50 ° C./h to obtain a sintered body.
The relative density of the sintered body was measured by the Archimedes method.
 3次元プリンタ用組成物(ペレット)の組成と試験結果を、表1及び表2にまとめる。

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Tables 1 and 2 summarize the compositions and test results of the composition (pellet) for the three-dimensional printer.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2に示されるように、無機粉末(A)の質量を100とした場合の、有機バインダー(B)の質量が5未満である場合(比較例1)は、流動性が悪く造形不可能となり、30を超える場合(比較例2)は、脱脂時に変形等の不具合が生じやすかった。
 また、熱可塑性樹脂の全量(B1+B2)に対する、非結晶性ポリマー及びEVAから選択される熱可塑性樹脂(B1)の質量比:(B1)/(B1+B2)が0.5未満となる場合(比較例3)は、糸曳き性及び脱脂性は良いものの、層と層の密着性が悪化した。
 また、有機バインダーBの全量に対する、ワックス(B3)の質量比:(B3)/(B)が0.07を下回る場合(比較例4)は、流動性が悪く、造形が不可能となる一方、0.4を超える場合(比較例5)は、密着性が悪くなった。
 また、有機バインダーBの全量に対する、滑剤(B4)の質量比:(B4)/(B)が0.18を上回る場合も(比較例6)、密着性が悪くなった。
As shown in Tables 1 and 2, when the mass of the organic binder (B) was less than 5 when the mass of the inorganic powder (A) was set to 100 (Comparative Example 1), the fluidity was poor and the molding was unsatisfactory. It became possible, and when it exceeded 30 (Comparative Example 2), defects such as deformation during degreasing were likely to occur.
In addition, when the mass ratio of the thermoplastic resin (B1) selected from the non-crystalline polymer and EVA to the total amount (B1 + B2) of the thermoplastic resin: (B1) / (B1 + B2) is less than 0.5 (Comparative Example) In 3), although the stringing property and the degreasing property were good, the adhesion between the layers was deteriorated.
When the mass ratio of the wax (B3) to the total amount of the organic binder B: (B3) / (B) is less than 0.07 (Comparative Example 4), the fluidity is poor, and molding is impossible. , 0.4 (Comparative Example 5), the adhesion was poor.
Also, when the mass ratio of the lubricant (B4) to the total amount of the organic binder B: (B4) / (B) was more than 0.18 (Comparative Example 6), the adhesion was poor.
 これに対して、(A)の質量100に対して(B)の質量が5以上30以下の範囲にあり、(B1)/(B1+B2)が0.5以上1.0以下の範囲にあり、(B3)/(B)が0.07以上0.4以下の範囲にあり、且つ、(B4)/(B)が0以上0.18以下の範囲にある、実施例1~5(無機粉末としてジルコニア粉末使用)、実施例6(無機粉末としてアルミナ粉末使用)、実施例7(無機粉末としてステンレス粉末使用)、及び実施例8(無機粉末として超硬合金粉末使用)のペレットを用いた場合、密着性が高く且つ糸曳き性が少なく、外観に優れた造形物を製造することができた。また、造形物を脱脂した際の保形性が高く、相対密度の高い焼結体を得ることができた。 On the other hand, the mass of (B) is in the range of 5 to 30 with respect to the mass 100 of (A), and (B1) / (B1 + B2) is in the range of 0.5 to 1.0, Examples 1 to 5 (inorganic powders) in which (B3) / (B) is in the range of 0.07 to 0.4 and (B4) / (B) is in the range of 0 to 0.18. When the pellets of Example 6 (using alumina powder as inorganic powder), Example 7 (using stainless steel powder as inorganic powder), and Example 8 (using cemented carbide powder as inorganic powder) are used. Thus, a molded article having high adhesion, low stringiness, and excellent appearance was able to be produced. In addition, it was possible to obtain a sintered body having high shape retention and high relative density when the shaped article was degreased.
[2種以上の無機材料が接合した焼結体の製造]
[3次元プリンタ用組成物の製造]
 下記表3に示す成分および割合で、日本スピンドル製造株式会社(旧株式会社森山製作所)製加圧型ニーダーを用いて170℃で溶融混練を行った。実施例9では第1成分として3.2mol%Y2O3-ZrO2粉末と(B)の有機バインダー、および、第2成分として2.8mol%Y2O3-ZrO2粉末と(B)の有機バインダーを、それぞれ溶融混練し、得られた溶融物は株式会社トーシン製ペレタイザー型プランジャー押出機を使用して、直径3mm×長さ3mmの第1成分および第2成分のペレットを製造した。実施例10、および実施例11も同様に第1成分および第2成分のそれぞれのペレットを製造した。
Figure JPOXMLDOC01-appb-T000003
[Manufacture of sintered body in which two or more inorganic materials are joined]
[Production of composition for three-dimensional printer]
The components and ratios shown in Table 3 below were used to perform melt-kneading at 170 ° C. using a pressurized kneader manufactured by Nippon Spindle Manufacturing Co., Ltd. (formerly Moriyama Seisakusho). In Example 9, 3.2 mol% Y2O3-ZrO2 powder and an organic binder of (B) as a first component, and 2.8 mol% Y2O3-ZrO2 powder and an organic binder of (B) as a second component were melt-kneaded, respectively. The pellets of the first component and the second component having a diameter of 3 mm and a length of 3 mm were manufactured from the obtained melt using a pelletizer type plunger extruder manufactured by Toshin Co., Ltd. In Examples 10 and 11, pellets of the first component and the second component were produced in the same manner.
Figure JPOXMLDOC01-appb-T000003
[積層構造体の製造]
 上記表3に記載の実施例9、10、11の第1成分、第2成分のペレットを用いて以下の通り積層構造体を製造した。すなわち、3つのペレット投入口を有する押出装置を備えたFDM方式の3次元プリンタ(エス.ラボ株式会社製CERA#P3 造形範囲 X150mm×Y150mm×Z150mm、スクリュー径φ20mm)を使用し、第1投入口には第1成分、第2投入口には第1成分/第2成分=5/5の混合ペレット、第3投入口には第3成分を投入した。幅5mm×奥行5mm×高さ20mmの縦長の直方体(積層構造体)で外周を第1投入口の第1成分、中間部を第2投入口の混合ペレット、中心部を第3投入口の第2成分を以下の条件で積層造形した。造形速度は100~2000mm/minとし、成形温度は150~190℃とし、ノズル径は1.0mmとした。各積層構造体(造形物)間の距離は30mmとした。
[Manufacture of laminated structure]
Using the pellets of the first and second components of Examples 9, 10, and 11 described in Table 3 above, a laminated structure was manufactured as follows. That is, using a three-dimensional printer of the FDM type provided with an extruder having three pellet inlets (CERA # P3 manufactured by S. Lab Co., Ltd., molding range X150 mm × Y150 mm × Z150 mm, screw diameter φ20 mm), the first inlet , A first component / second component = 5/5 mixed pellets were charged into the second charging port, and a third component was charged into the third charging port. A vertically elongated rectangular parallelepiped (laminated structure) having a width of 5 mm x a depth of 5 mm x a height of 20 mm, the outer periphery of which is the first component of the first inlet, the middle part is the mixed pellet of the second inlet, and the center is the third inlet of the third inlet. The two components were formed by lamination under the following conditions. The molding speed was 100 to 2000 mm / min, the molding temperature was 150 to 190 ° C., and the nozzle diameter was 1.0 mm. The distance between each laminated structure (modeled object) was 30 mm.
[密着性の評価]
 上記積層構造体は、層間に隙間が無く、さらに、10mmの間隔で配置した2つの支点の上に、前記積層構造体を横にして(すなわち、幅20mm×奥行5mm×高さ5mmとなるようにして)置き、5Nの荷重をかけたときも層間で破断が生じなかった。
[Evaluation of adhesion]
The laminated structure has no gap between the layers, and has the laminated structure laid sideways on two fulcrums arranged at an interval of 10 mm (that is, a width of 20 mm × a depth of 5 mm × a height of 5 mm). ) And no breakage occurred between the layers when a load of 5 N was applied.
[脱脂・焼結性の判定]
 上記積層構造体を、ジルコニアは、大気中で昇温速度10℃/hで500℃まで脱脂したときの変形度合い(変形、クラック、フクレ)を確認した。試験片各5個のうち、脱脂後に変形、又はクラック・フクレが確認されたものが1個以下の場合は〇とし、2~3個の場合は△とし、4個以上の場合は×と評価した。脱脂後、大気中で昇温速度50℃/hで、ジルコニアは1450℃まで、アルミナは1600℃まで昇温して焼結を行い、焼結体を得た。
 ステンレスは窒素ガス雰囲気で昇温速度10℃/hで500℃前後まで昇温して脱脂を行い、上記と同様に変形、又はクラック・フクレを確認した。その後昇温速度50℃/hで温度1350℃まで昇温して焼結体を得た。
 WC-Coもステンレスと同様に窒素ガス雰囲気で昇温速度10℃/hで500℃前後まで昇温して脱脂を行い、上記と同様に変形、又はクラック・フクレを確認した。その後昇温速度50℃/hで温度1390℃まで昇温して焼結体を得た。
[Determination of degreasing / sintering properties]
The degree of deformation (deformation, cracking, blistering) of the zirconia in the above-described laminated structure when degreased to 500 ° C. at a heating rate of 10 ° C./h in the atmosphere was confirmed. Out of 5 test pieces, if no deformation or cracks or blisters were observed after degreasing, 1 or less was evaluated as 〇, 2 to 3 pieces as △, and 4 or more as X. did. After degreasing, sintering was performed in the atmosphere at a heating rate of 50 ° C./h at a temperature of 1450 ° C. for zirconia and 1600 ° C. for alumina to obtain a sintered body.
The stainless steel was degreased by raising the temperature to about 500 ° C. at a rate of 10 ° C./h in a nitrogen gas atmosphere, and deformation or cracks and blisters were confirmed in the same manner as described above. Thereafter, the temperature was raised to 1350 ° C. at a rate of 50 ° C./h to obtain a sintered body.
WC-Co was also degreased in a nitrogen gas atmosphere at a heating rate of about 10 ° C./h to about 500 ° C. in the same manner as stainless steel, and deformation or cracks and blisters were confirmed in the same manner as described above. Thereafter, the temperature was raised to 1390 ° C. at a rate of 50 ° C./h to obtain a sintered body.
 脱脂、焼結試験の結果、層間密着に優れ、脱脂時に変形、クラック・フクレが生じない2種以上の無機材料が接合した焼結体を得ることができた。 (5) As a result of the degreasing and sintering tests, a sintered body in which two or more inorganic materials which are excellent in interlayer adhesion and which do not deform, crack and blister during degreasing do not occur, could be obtained.
 本発明の組成物及び方法によれば、FDM方式の3次元プリンタを用いて、外観及び強度に優れたセラミックス製品や金属製品等を効率よく製造することが可能になる。 According to the composition and the method of the present invention, it is possible to efficiently produce a ceramic product, a metal product, and the like having excellent appearance and strength using an FDM three-dimensional printer.

Claims (7)

  1. (A)無機粉末及び(B)有機バインダーを含有する3次元プリンタ用組成物であって、
     前記有機バインダー(B)が、(B1)非結晶性ポリマー及びEVAから選択される熱可塑性樹脂、(B2)EVAを除く結晶性ポリマーから選択される熱可塑性樹脂、(B3)ワックス、(B4)滑剤、及び(B5)その他の添加剤からなる群より選択されること、
     無機粉末と有機バインダーの質量比率が、(A)/(B)=100/5~100/30であること、
     熱可塑性樹脂の合計に対する非結晶性ポリマー及びEVAの質量比が、(B1)/(B1+B2)=0.5~1.0であること、
     有機バインダーの合計に対するワックスの質量比が、(B3)/(B)=0.07~0.4であること、及び
     有機バインダーの合計に対する滑剤の質量比が、(B4)/(B)=0~0.18であることを特徴とする、3次元プリンタ用組成物。
    A three-dimensional printer composition comprising (A) an inorganic powder and (B) an organic binder,
    The organic binder (B) is (B1) a thermoplastic resin selected from an amorphous polymer and EVA, (B2) a thermoplastic resin selected from a crystalline polymer other than EVA, (B3) a wax, (B4) Being selected from the group consisting of lubricants, and (B5) other additives;
    Mass ratio of the inorganic powder and the organic binder is (A) / (B) = 100/5 to 100/30;
    (B1) / (B1 + B2) = 0.5 to 1.0, the mass ratio of the non-crystalline polymer and EVA to the total of the thermoplastic resins;
    The mass ratio of the wax to the total organic binder is (B3) / (B) = 0.07 to 0.4, and the mass ratio of the lubricant to the total organic binder is (B4) / (B) = A composition for a three-dimensional printer, which is 0 to 0.18.
  2.  前記熱可塑性樹脂(B1)が、アクリル系樹脂、アタクチックポリスチレン(アクタチックPS)、ポリカーボネート(PC)、アモルファスポリオレフィン、アクリロニトリル-ブタジエン-スチレン(ABS)、及びエチレン-酢酸ビニル共重合体(EVA)からなる群より選択される、請求項1に記載の3次元プリンタ用組成物。 The thermoplastic resin (B1) is formed from an acrylic resin, atactic polystyrene (Atactic PS), polycarbonate (PC), amorphous polyolefin, acrylonitrile-butadiene-styrene (ABS), and ethylene-vinyl acetate copolymer (EVA). The composition for a three-dimensional printer according to claim 1, which is selected from the group consisting of:
  3.  前記熱可塑性樹脂(B2)が、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアセタール(POM)、ポリアミド(PA)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、及びポリ乳酸(PLA)からなる群より選択される、請求項1又は2に記載の3次元プリンタ用組成物。 The thermoplastic resin (B2) comprises polyethylene (PE), polypropylene (PP), polyacetal (POM), polyamide (PA), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), and polylactic acid (PLA). The composition for a three-dimensional printer according to claim 1, which is selected from a group.
  4.  前記無機粉末(A)が、平均粒子径(D50)が0.1~1.0μmである金属酸化物粉末である、請求項1~3のいずれか1項に記載の3次元プリンタ用組成物。 The composition for a three-dimensional printer according to any one of claims 1 to 3, wherein the inorganic powder (A) is a metal oxide powder having an average particle diameter (D 50 ) of 0.1 to 1.0 μm. object.
  5.  前記無機粉末(A)が、平均粒子径(D50)が1.0~10μmである金属粉末である、請求項1~3のいずれか1項に記載の3次元プリンタ用組成物。 The composition for a three-dimensional printer according to any one of claims 1 to 3, wherein the inorganic powder (A) is a metal powder having an average particle diameter (D 50 ) of 1.0 to 10 μm.
  6.  セラミックス、サーメット、あるいは金属からなる製品を製造する方法であって、
     請求項1~5のいずれか1項に記載の3次元プリンタ用組成物を用いて、熱溶融積層方式の3次元プリンタによって積層構造体を造形する工程、前記積層構造体を脱脂する工程、及び焼結する工程を含むことを特徴とする方法。
    A method of manufacturing a product made of ceramics, cermet, or metal,
    A step of shaping a laminated structure by a hot-melt laminating three-dimensional printer using the composition for a three-dimensional printer according to any one of claims 1 to 5, a step of degreasing the laminated structure, and A method comprising sintering.
  7.  セラミックス、サーメット、および金属から選択された2種以上が接合した製品を製造する方法であって、
     2以上の押出装置を備える熱溶融積層方式の3次元プリンタによって、請求項1~5に記載の3次元プリンタ用組成物の2種以上を同時に積層することにより積層複合化された構造体を造形する行程、前記積層構造体を脱脂する工程、及び焼結する工程を含むことを特徴とする方法。
    A method of manufacturing a product in which two or more types selected from ceramics, cermets, and metals are joined,
    A laminated composite structure is formed by simultaneously laminating two or more types of the composition for a three-dimensional printer according to any one of claims 1 to 5 with a three-dimensional printer of a hot-melt lamination system including two or more extrusion devices. Performing the steps of: degreasing the laminated structure; and sintering the laminated structure.
PCT/JP2019/021893 2018-06-29 2019-06-01 Composition for 3d printer WO2020003901A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020527317A JP6849286B2 (en) 2018-06-29 2019-06-01 Composition for 3D printer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-124994 2018-06-29
JP2018124994 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020003901A1 true WO2020003901A1 (en) 2020-01-02

Family

ID=68985007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021893 WO2020003901A1 (en) 2018-06-29 2019-06-01 Composition for 3d printer

Country Status (2)

Country Link
JP (1) JP6849286B2 (en)
WO (1) WO2020003901A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015848A (en) * 2018-07-26 2020-01-30 第一セラモ株式会社 Composition for three-dimensional printer, and method for manufacturing large-sized laminate molded article using the composition
CN111906308A (en) * 2020-08-10 2020-11-10 广东中发摩丹科技有限公司 Powder plasticizing additive manufacturing sintering forming method for beryllium-aluminum alloy aerospace component
US20220033664A1 (en) * 2020-07-31 2022-02-03 Seiko Epson Corporation Molding composition and method for manufacturing three-dimensional shaped object
WO2022092780A1 (en) * 2020-10-27 2022-05-05 코오롱플라스틱 주식회사 3d printer filament composition containing metal powder, and filament using same
CN115043654A (en) * 2021-03-08 2022-09-13 比亚迪股份有限公司 Porous ceramic matrix composition for electronic cigarette atomization core, porous ceramic matrix and preparation method thereof, and electronic cigarette atomization core
JP7376736B1 (en) 2023-02-01 2023-11-08 第一セラモ株式会社 Composition for filament for 3D printer, filament for 3D printer, sintered body, porous sintered body, method for manufacturing sintered body, and method for manufacturing porous sintered body
JP7399340B1 (en) 2023-06-16 2023-12-15 第一セラモ株式会社 Composition for filament for 3D printer, filament for 3D printer, sintered body, and method for producing sintered body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113878113B (en) * 2021-08-30 2023-05-02 广东省科学院新材料研究所 Ceramic-stainless steel composite material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036302A (en) * 1989-06-02 1991-01-11 Japan Steel Works Ltd:The Manufacture of sintered product composed of binder for forming powder and metal powder or ceramic powder
JP2000303103A (en) * 1999-04-19 2000-10-31 Dai Ichi Kogyo Seiyaku Co Ltd Composition for injection molding of metal powder
JP2005205805A (en) * 2004-01-23 2005-08-04 Daiichi Seramo Kk Powder injection-molding composition and its sintered body
JP2005255802A (en) * 2004-03-10 2005-09-22 Daiichi Seramo Kk Composition for powder injection molding
JP2006213585A (en) * 2005-02-07 2006-08-17 Daiichi Seramo Kk Composition for powder injection molding
WO2015129733A1 (en) * 2014-02-25 2015-09-03 精一 柚山 3d printer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036302A (en) * 1989-06-02 1991-01-11 Japan Steel Works Ltd:The Manufacture of sintered product composed of binder for forming powder and metal powder or ceramic powder
JP2000303103A (en) * 1999-04-19 2000-10-31 Dai Ichi Kogyo Seiyaku Co Ltd Composition for injection molding of metal powder
JP2005205805A (en) * 2004-01-23 2005-08-04 Daiichi Seramo Kk Powder injection-molding composition and its sintered body
JP2005255802A (en) * 2004-03-10 2005-09-22 Daiichi Seramo Kk Composition for powder injection molding
JP2006213585A (en) * 2005-02-07 2006-08-17 Daiichi Seramo Kk Composition for powder injection molding
WO2015129733A1 (en) * 2014-02-25 2015-09-03 精一 柚山 3d printer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015848A (en) * 2018-07-26 2020-01-30 第一セラモ株式会社 Composition for three-dimensional printer, and method for manufacturing large-sized laminate molded article using the composition
JP7123682B2 (en) 2018-07-26 2022-08-23 第一セラモ株式会社 COMPOSITION FOR THREE-DIMENSIONAL PRINTER AND METHOD FOR MANUFACTURING LARGE LAMINATED PRODUCT USING SAME COMPOSITION
US20220033664A1 (en) * 2020-07-31 2022-02-03 Seiko Epson Corporation Molding composition and method for manufacturing three-dimensional shaped object
CN114082940A (en) * 2020-07-31 2022-02-25 精工爱普生株式会社 Molding composition and method for producing three-dimensional shaped article
CN114082940B (en) * 2020-07-31 2024-05-03 精工爱普生株式会社 Molding composition and method for producing three-dimensional molded article
CN111906308A (en) * 2020-08-10 2020-11-10 广东中发摩丹科技有限公司 Powder plasticizing additive manufacturing sintering forming method for beryllium-aluminum alloy aerospace component
WO2022092780A1 (en) * 2020-10-27 2022-05-05 코오롱플라스틱 주식회사 3d printer filament composition containing metal powder, and filament using same
KR20220056292A (en) * 2020-10-27 2022-05-06 코오롱플라스틱 주식회사 Metal Powder-Containing Composition for 3D Printer and Filament for 3D Printer
KR102415965B1 (en) * 2020-10-27 2022-07-01 코오롱플라스틱 주식회사 Metal Powder-Containing Composition for 3D Printer and Filament for 3D Printer
CN115043654A (en) * 2021-03-08 2022-09-13 比亚迪股份有限公司 Porous ceramic matrix composition for electronic cigarette atomization core, porous ceramic matrix and preparation method thereof, and electronic cigarette atomization core
JP7376736B1 (en) 2023-02-01 2023-11-08 第一セラモ株式会社 Composition for filament for 3D printer, filament for 3D printer, sintered body, porous sintered body, method for manufacturing sintered body, and method for manufacturing porous sintered body
JP7399340B1 (en) 2023-06-16 2023-12-15 第一セラモ株式会社 Composition for filament for 3D printer, filament for 3D printer, sintered body, and method for producing sintered body

Also Published As

Publication number Publication date
JPWO2020003901A1 (en) 2021-03-11
JP6849286B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
JP6849286B2 (en) Composition for 3D printer
JP7123682B2 (en) COMPOSITION FOR THREE-DIMENSIONAL PRINTER AND METHOD FOR MANUFACTURING LARGE LAMINATED PRODUCT USING SAME COMPOSITION
US11135830B2 (en) Sinterable feedstock for use in 3D printing devices
JP2019188744A (en) Composition for three-dimensional printer
US11633786B2 (en) Feedstock for an additive manufacturing method, additive manufacturing method using the same, and article obtained therefrom
JP5439194B2 (en) Organic binder manufacturing method and organic binder
JP2022153896A (en) Core resin composition and method for producing sintered body
JP2022153895A (en) Resin composition for support material and method for producing sintered body
KR101875703B1 (en) Composition of filament for 3D printer
CN114082940B (en) Molding composition and method for producing three-dimensional molded article
JP2014129573A (en) Injection-molding composition
JP7376736B1 (en) Composition for filament for 3D printer, filament for 3D printer, sintered body, porous sintered body, method for manufacturing sintered body, and method for manufacturing porous sintered body
JP3911596B2 (en) Powder injection molding composition
KR101626878B1 (en) Binder composition for metal injection molding
JP7399340B1 (en) Composition for filament for 3D printer, filament for 3D printer, sintered body, and method for producing sintered body
JP7496927B1 (en) Composition for 3D printer filament, filament for 3D printer, sintered body, and method for manufacturing sintered body
TWI580746B (en) Binder for injection molding
JP2006328099A (en) Injection molding composition
JPH02204355A (en) Production of sinterable mixture
JP2003095728A (en) Composition for injection molding
JP2517762B2 (en) Composition for metal powder injection molding
JP2006328435A (en) Composition to be injection-molded
JP2006257485A (en) Composition to be injection-molded
JPH11278915A (en) Composition for injection molding of ceramic
JP2004216663A (en) Method for preparing injection molding composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527317

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824607

Country of ref document: EP

Kind code of ref document: A1