WO2020003542A1 - User equipment and base station - Google Patents

User equipment and base station Download PDF

Info

Publication number
WO2020003542A1
WO2020003542A1 PCT/JP2018/024974 JP2018024974W WO2020003542A1 WO 2020003542 A1 WO2020003542 A1 WO 2020003542A1 JP 2018024974 W JP2018024974 W JP 2018024974W WO 2020003542 A1 WO2020003542 A1 WO 2020003542A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs
downlink control
control information
mcs table
dci
Prior art date
Application number
PCT/JP2018/024974
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 吉岡
一樹 武田
聡 永田
リフェ ワン
シャオツェン グオ
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/024974 priority Critical patent/WO2020003542A1/en
Publication of WO2020003542A1 publication Critical patent/WO2020003542A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to a user terminal and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A LTE Advanced, LTE @ Rel. 10, 11, 12, 13
  • LTE @ Rel. 8, 9 LTE @ Rel. 8, 9
  • a user terminal In an existing LTE system (for example, 3GPP@Rel.8-14), a user terminal (UE: User @ Equipment) is based on downlink control information (DCI: Downlink @ Control @ Information, also referred to as DL assignment, etc.) from a base station. , And control the reception of a physical downlink shared channel (for example, PDSCH: Physical Downlink Shared Channel). Also, the user terminal controls transmission of a physical uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
  • DCI Downlink @ Control @ Information
  • DL assignment Downlink assignment
  • a physical downlink shared channel for example, PDSCH: Physical Downlink Shared Channel
  • the user terminal controls transmission of a physical uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Universal Terrestrial Radio Access Network
  • PUSCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • UL-SCH Uplink ⁇ Shared ⁇ Channel, uplink transport channel, uplink data
  • the user terminal performs a PUSCH scheduled by the DCI based on a value of a predetermined field (for example, a modulation and coding scheme (MCS) field) in the downlink control information (DCI). It has been studied to determine at least one of the modulation order and the coding rate of.
  • MCS modulation and coding scheme
  • the transmitted contents are different between the PUSCH without the UL-SCH and the PUSCH without the UL-SCH. For this reason, when determining at least one of the coding rate and the modulation order of the PUSCH without the UL-SCH in the same manner as the PUSCH with the UL-SCH, the PUSCH without the UL-SCH may not be appropriately transmitted. is there.
  • the present disclosure has been made in view of such a point, and has disclosed a user terminal and a base station that can appropriately transmit a physical uplink shared channel (eg, PUSCH) without a corresponding uplink transport channel (eg, UL-SCH).
  • PUSCH physical uplink shared channel
  • UL-SCH uplink transport channel
  • a receiving unit that receives an upper layer parameter indicating a first modulation and coding scheme (MCS) table and receives downlink control information for scheduling of a physical uplink shared channel, a user terminal according to an aspect of the present disclosure, When the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, based on at least one of the higher layer parameters and the downlink control information, , An MCS table and a control unit for determining at least one of the MCS indexes.
  • MCS modulation and coding scheme
  • FIG. 1 is a diagram illustrating an example of the MCS table.
  • FIG. 2 is a diagram illustrating an example of the MCS table.
  • FIG. 3 is a diagram illustrating an example of the MCS table.
  • FIG. 4 is a diagram illustrating a first example of a method of determining an MCS table and an entry according to the first example.
  • FIG. 5 is a diagram illustrating a second example of the MCS table and entry determination method according to the first example.
  • FIG. 6 is a diagram illustrating a third example of the MCS table and entry determination method according to the first example.
  • FIG. 7 is a diagram illustrating an example of an MCS table and entry determination method according to the second example.
  • FIG. 1 is a diagram illustrating an example of the MCS table.
  • FIG. 2 is a diagram illustrating an example of the MCS table.
  • FIG. 3 is a diagram illustrating an example of the MCS table.
  • FIG. 4 is a diagram illustrating a first example of a method
  • FIG. 8 is a diagram illustrating an example of an MCS table and an entry determination method according to the third embodiment.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 10 is a diagram illustrating an example of an overall configuration of a base station according to one embodiment.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of the base station according to the embodiment.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of a base station and a user terminal according to an embodiment.
  • a predetermined field for example, a modulation and coding scheme (MCS) field (for example, 5) included in downlink control information (DCI: Downlink Control Information) (UL grant, for example, DCI format 0_0, 0_1) ), MCS index ( IMCS )), and at least one of a modulation scheme (or modulation order) and a coding rate of a physical uplink shared channel (eg, PUSCH: Physical Uplink Shared Channel) scheduled by the DCI. Control of (modulation order / coding rate) is being studied.
  • DCI Downlink Control Information
  • UL grant for example, DCI format 0_0, 0_1
  • IMCS MCS index
  • PUSCH Physical Uplink Shared Channel
  • the user terminal (UE: User @ Equipment) indicates the MCS field in the DCI using a table (MCS table) that associates the MCS index, the modulation order (Modulation @ order), and the TBS index. Determining the modulation order / coding rate corresponding to the MCS index for PUSCH is under study.
  • MCS table a table that associates the MCS index, the modulation order (Modulation @ order), and the TBS index. Determining the modulation order / coding rate corresponding to the MCS index for PUSCH is under study.
  • each modulation order is a value corresponding to each modulation method.
  • the modulation orders of QPSK (Quadrature Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation), 64 QAM, and 256 QAM are 2, 4, 6, and 8, respectively.
  • FIG. 1-3 is a diagram showing an example of the MCS table. It should be noted that the values of the MCS table shown in FIG. 1-3 are merely examples, and the present invention is not limited to these values. Some items (for example, spectrum efficiency) associated with the MCS index ( IMCS ) may be omitted, or other items may be added.
  • IMCS spectrum efficiency
  • the user terminal may determine which MCS table to use to determine the modulation order / coding rate of the PUSCH according to at least one of the following conditions (1) to (3): (1) Whether or not transform precoding is enabled (either a DFT-s-OFDM (Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing) waveform or an OFDM waveform is applied) Or) (2) whether information indicating an MCS table used by the user terminal (MCS table information) indicates a specific modulation scheme (for example, 256QAM), (3) Which RNTI (Radio Network Temporary Identifier, identifier) is a DCI having a CRC scrambled (CRC scrambled).
  • MCS table information for example, 256QAM
  • RNTI Radio Network Temporary Identifier, identifier
  • DCI eg, DCI format 0_0 or 0_1
  • a specific RNTI eg, C-RNTI, TC-RNTI, CS-RNTI
  • transform precoding is disabled ( disabled) and the MCS table information does not indicate 256QAM
  • the modulation order / coding rate corresponding to the MCS index ( IMCS ) in the DCI is determined using the table shown in FIG. Is also good.
  • the user terminal uses the table shown in FIG. 2 to correspond to the MCS index ( IMCS ) in the DCI.
  • the modulation order / coding rate may be determined.
  • the user terminal uses the table shown in FIG. 3 to correspond to the MCS index ( IMCS ) in the DCI. May be determined.
  • the modulation order q corresponding to a specific MCS index (for example, 0, 1) is 1 (BPSK). You may. If the above specific condition is not satisfied, the modulation order q may be 2 (QPSK).
  • the user terminal uses the table shown in FIG. 2 to correspond to the MCS index ( IMCS ) in the DCI.
  • the modulation order / coding rate may be determined.
  • the NR supports a CSI report in which a result measured by a user terminal based on a reference signal for measuring a channel state is fed back to a base station at predetermined timing as channel state information (CSI).
  • CSI channel state information
  • the reference signal for measuring the channel state is also called, for example, CSI-RS (Channel State-Information-Reference Signal), but is not limited to this.
  • the CSI may include at least one of CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), and RI (Rank Indicator). Further, the CSI may include at least one of a first CSI (CSI part 1) and a second CSI (CSI part 2).
  • the CSI report includes a periodic CSI report (P-CSI report), a CSI report using resources designated as semi-persistent (Semi-Persistent) (SP-CSI report), Periodic CSI reporting (A-CSI reporting) is supported.
  • P-CSI report periodic CSI report
  • SP-CSI report CSI report using resources designated as semi-persistent
  • SP-CSI report Periodic CSI reporting
  • the UE When the UE reports the A-CSI, the UE transmits the A-CSI in response to a CSI trigger (CSI request) from the base station. For example, the UE performs an A-CSI report at a predetermined timing (for example, four subframes) after receiving the CSI trigger.
  • CSI trigger CSI request
  • the A-CSI trigger is included in downlink control information (DCI: Downlink Control Information) transmitted using a downlink control channel (PDCCH: Physical Downlink Control Channel).
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the DCI including the A-CSI trigger is a UL grant and is, for example, at least one of DCI formats 0_0 and 0_1.
  • the user terminal transmits the CSI using the PUSCH specified by the UL grant including the A-CSI trigger.
  • UL-SCH Uplink Shared Channel
  • the PUSCH is also referred to as a PUSCH without a UL-SCH (PUSCH without UL-SCH).
  • Whether or not a PUSCH without the UL-SCH may be indicated by a predetermined field in the UL grant (eg, a UL-SCH indicator (UL-SCH indicator) field).
  • a predetermined field in the UL grant e.g, a UL-SCH indicator (UL-SCH indicator) field.
  • the UL-SCH indicator field may be 1 bit. If the PUSCH without UL-SCH is triggered, the UL-SCH indicator field may be set to 0, and if the PUSCH with UL-SCH is triggered, the UL-SCH indicator field may be set to 1.
  • the PUSCH without the UL-SCH is used for transmission of uplink control information (for example, A-CSI), and data transmitted on the PUSCH with the UL-SCH (for example, uplink user data and upper layer control information).
  • uplink control information for example, A-CSI
  • data transmitted on the PUSCH with the UL-SCH for example, uplink user data and upper layer control information.
  • the content of data to be transmitted is different from at least one.
  • the PUSCH modulation order / coding rate determination method is set differently for the PUSCH with the UL-SCH and the PUSCH without the UL-SCH.
  • a combination of a plurality of fields in DCI indicates A-CSI on PUSCH without UL-SCH.
  • a 1-bit field in DCI indicates A-CSI on PUSCH without UL-SCH.
  • DCI format 0_1 includes a 1-bit UL-SCH indicator field, and that the modulation and coding rate (MCS) is determined by I_MCS in DCI.
  • MCS modulation and coding rate
  • the UL-SCH indicator may indicate the presence or absence of the UL-SCH on the PUSCH scheduled by the DCI. For example, if the UL-SCH indicator field is set to 1, the DCI may indicate a PUSCH transmission with UL-SCH.
  • high-speed and large-capacity for example, enhanced MBB: Broadband
  • a very large number of terminals for example, mMTC: massive Machine Type Communication, IoT: Internet of Things
  • ultra-high reliability and low delay for example, URLLCL
  • a plurality of services also called use cases, communication types, communication, etc.
  • the communication requirement may be, for example, at least one of delay, reliability, capacity (capacity), speed, and performance.
  • the difference between the communication requirement of URLLC and the communication requirement of eMBB may be that the latency of URLLC is smaller than the latency of eMBB, or that the communication requirement of URLLC includes the communication requirement of reliability.
  • the U-plane latency requirement of the eMBB may include that the downlink U-plane latency is 4 ms and the uplink U-plane latency is 4 ms.
  • the U-plane latency requirement of the URLLC may include that the downlink U-plane latency is 0.5 ms and the uplink U-plane latency is 0.5 ms.
  • URLLC reliability requirements may also include a 32-byte error rate of 10 ⁇ 5 at 1 ms U-plane latency.
  • the setting information may be at least one of an MCS table and a CQI table.
  • the setting information for eMBB and the setting information for URLLC may be defined in the specification.
  • RRC upper layer
  • the existing upper layer parameter mcs-table indicates one MCS table selected from three MCS tables (the existing 64QAM @ MCS table, the existing 256QAM @ MCS table, and the new 64QAM @ MCS table). May be extended.
  • the existing 64QAM @ MCS table is used for the DCI formats 0_0 and 0_1 in the common search space (CSS), and the DCI format 0_0 in the UE individual search space (USS) is used.
  • a new 64QAM @ MCS table may be used for 0_1, 1_0, 1_1. Otherwise, existing actions may be followed.
  • the configuration for DL and UL may be different.
  • the UE may select the MCS table based on the RNTI used for DCI CRC scrambling.
  • the UE may apply the MCS table associated with the RNTI used for the DCI CRC scrambling for PUSCH scheduling to the PUSCH.
  • Each of the plurality of types of RNTIs may be associated with a communication requirement (eMBB, URLLC, etc.) or an MCS table (MCS table for eMBB, MCS table for URLLC, etc.).
  • the RNTI eg, the new RNTI
  • MCS table for eMBB MCS table for URLLC, etc.
  • the RNTI eg, the new RNTI
  • the MCS table for the URLLC may be different from the RNTI (eg, the C-RNTI) associated with the eMBB or the MCS table for the eMBB.
  • the new RNTI may be referred to as a URLLC RNTI, a URLLC-RNTI, a Y-RNTI, or the like.
  • the UE may use a new MCS table (new 64QAM @ MCS table, MCS table for URLLC). Otherwise, the UE may follow the existing operation. For example, if the CRC of the DCI is scrambled using an RNTI (eg, C-RNTI) different from the new RNTI, the UE uses the existing MCS table (64QAM @ MCS table or 256QAM @ MCS table, MCS table for eMBB). Is also good.
  • an RNTI eg, C-RNTI
  • the MCS indication in the DCI is an MCS index (MCS index smaller than a predetermined value, non-reserved MCS index, non-reserved @ I_MCS) in a first range (a range different from the predetermined range) in the MCS table specified by mcs-table. ) May be indicated.
  • the predetermined value is, for example, 28 or 29.
  • the non-reserved MCS index is, for example, 0 to 27 or 0 to 28.
  • the MCS index in a second range (predetermined range) different from the first range (MCS index of a predetermined value or more, reserved MCS index, reserved) I_MCS) may not be excluded. That is, the reserved MCS index may be used for additional purposes.
  • the reserved MCS index is, for example, 28-31 or 29-31.
  • the MCS table applied to uplink transmission be dynamically changed.
  • the present inventors have conceived a method of determining an MCS (for example, at least one of a modulation order and a coding rate) for UCI transmission on the PUSCH without the UL-SCH.
  • an MCS for example, at least one of a modulation order and a coding rate
  • the use of PUSCH without UL-SCH is not limited to A-CSI reporting.
  • the use of PUSCH without UL-SCH may be used for transmission of uplink control information (UCI) including at least one of HARQ-ACK, CSI, and scheduling request.
  • UCI uplink control information
  • the configuration shown below may be applied not only to the PUSCH without the UL-SCH but also to the PUSCH with the UL-SCH. Further, the configuration described below may be applied to CP-OFDM, or may be applied to DFT-S-OFDM. Further, the present invention may be applied to DL transmission.
  • the existing upper layer parameter mcs-table is composed of three MCS tables (64QAM @ MCS table (qam64, 64QAM @ MCS table for eMBB), 256QAM @ MCS table (qam256, 256QAM @ MCS table for eMBB), and new 64QAM. It may be extended to show one MCS table selected from the MCS table (qam64LowSE, 64QAM @ MCS table for low spectral efficiency, 64QAM @ MCS table for URLLC).
  • the UE may use one of the following options 1-1, 1-2, 1-3 to use the new MCS table.
  • the entry having the reserved MCS index (for example, 28 to 31 or 29 to 32) in the MCS table indicates the modulation order, and the coding rate is flexibly set by another means.
  • a reserved MCS index may be associated with a non-reserved MCS index in a specific MCS table.
  • the UE may refer to an entry having a non-reserved MCS index in the MCS table associated with the reserved MCS index.
  • the new RNTI is set and the UL-SCH indicator field is set to 0 (if UCI on PUSCH without UL-SCH is triggered), the DCI with DCI format 0_1 to select the MCS table is selected.
  • a new RNTI may be used for CRC scrambling. If the CRC of the DCI having DCI format 0_1 is scrambled using the new RNTI, the UE may apply the MLC table for URLLC to the PUSCH. Otherwise, the UE may use one of the following options 2-1, 2-2, 2-3.
  • ⁇ Option 2-2> The entry having the reserved MCS index in the eMBB MCS table indicates the modulation order, and the coding rate is flexibly set by another means.
  • a reserved MCS index in the eMBB MCS table may be associated with a non-reserved MCS index in the URLLC MCS table.
  • the UE may expect (may assume) that the UL-SCH indicator field in the DCI is set to 1 for a specific RNTI that scrambles the CRC of the DCI having the DCI format 0_1.
  • the DCI can specify a reserved MCS index (for example, 28 to 31 or 29 to 32).
  • the UE shall
  • the MCS table and the MCS index (entry) applied to the PUSCH may be determined based on at least one of the mcs-table and the MCS index indicated by the DCI.
  • the upper layer parameter mcs-table includes an existing 64QAM @ MCS table (64QAM @ MCS table for eMBB, qam64), an existing 256QAM @ MCS table (256QAM @ MCS table for eMBB, qam256), and a new 64QAM @ MCS table (64QAM @ MCS table for URLLC, qam64LowSE). ) May be indicated.
  • the new RNTI When the new RNTI is not used for DCI CRC scrambling, the new RNTI may not be set (when the MCS table is determined by the upper layer parameter mcs-table), or the new RNTI is set and the DCI format is used. It may be the case that the CRC of 0_1 is not scrambled using the new RNTI.
  • the UL-SCH indicator field in the DCI is set to 0, the new RNTI is not used for scrambling the DCI CRC, and the upper layer parameter mcs-table is set in the first MCS table (MCS table for eMBB, qam64 or qam256). If there is and the DCI indicates a reserved MCS index, the UE determines a specific MCS index associated with the MCS index indicated by the DCI as shown in FIG. 4, and determines the second MCS table (URLCS MCS table). , Qam64LowSE) in the specific MCS index (at least one of the modulation order and the coding rate) may be applied to the PUSCH.
  • the specific MCS index may be a non-reserved MCS index (for example, 0 to 27 or 0 to 28).
  • the reserved MCS index of the first MCS table may be associated with a specific MCS index (entry) of the second MCS table.
  • the association between the reserved MCS index and the specific MCS index, the second MCS table, etc., may be fixed according to the specification, may be set by upper layer parameters, may be indicated by DCI, or may be assigned to the PUSCH. May be determined by the UE based on the number of resources allocated.
  • the UL-SCH indicator field in the DCI is set to 0, the new RNTI is not used for scrambling the DCI CRC, and the upper layer parameter mcs-table is a second MCS table (URLCS MCS table, qam64LowSE);
  • the UE determines the specific MCS index associated with the MCS index indicated by the DCI as shown in FIG. 5, and the first MCS table (eMBB MCS table, qam64).
  • an entry at least one of the modulation order and the coding rate of the specific MCS index in qam256 may be used.
  • the specific MCS index may be a non-reserved MCS index (for example, 0 to 27 or 0 to 28).
  • the reserved MCS index of the second MCS table may be associated with a specific MCS index (entry) of the first MCS table.
  • the association between the reserved MCS index and the specific MCS index, the first MCS table, etc., may be fixed according to the specification, may be set by upper layer parameters, may be indicated by DCI, or may be assigned to PUSCH. May be determined by the UE based on the number of resources allocated.
  • the UE If the UL-SCH indicator field in the DCI is set to 0 and the DCI indicates a non-reserved MCS index, the UE, as shown in FIG. , DCI, the entry of the MCS index (at least one of the modulation order and the coding rate) may be applied to the PUSCH.
  • the UE can dynamically use an entry in the MCS table different from the MCS table set by the upper layer. For example, even when the UE sets the eMBB MCS table by the upper layer, the UE uses the entry of the URLLC MCS table associated with the reserved MCS index in the DCI for the UCI transmission on the PUSCH without the UL-SCH. be able to.
  • the UE may indicate that the DCI indicates a non-reserved MCS index. expect. In other words, if the UL-SCH indicator field in the DCI is set to 0, the UE does not expect the DCI to indicate a reserved MCS index.
  • the UE since the UE uses only the MCS table set by the upper layer parameter and does not use the reserved MCS index, the UE can reduce the processing load.
  • the UE uses the specific MCS table for UCI transmission on the PUSCH without the UL-SCH regardless of the upper layer parameter (mcs-table) indicating the MCS table.
  • the UE shall send a specific MCS regardless of the value of the upper layer parameter mcs-table.
  • a table may be used.
  • the specific MCS table may be an MCS table for URLLC or an MCS table for eMBB.
  • the UE sets the URL-LCS MCS table on the PUSCH without the UL-SCH even if the MCS table for eMBB is set by higher layer parameters. May be applied. For example, if the UL-SCH indicator field in DCI is set to 1 (when UCI transmission on PUSCH with UL-SCH is triggered), the MCS table for URLLC is set by higher layers. Alternatively, the MCS table for eMBB may be applied to the PUSCH with the UL-SCH.
  • the UE If the UL-SCH indicator field in the DCI is set to 0 (the UCI on the PUSCH without the UL-SCH is triggered) and the DCI indicates a non-reserved MCS index, then the UE, as shown in FIG.
  • the entry of the MCS index indicated by DCI in a specific MCS table may be used.
  • the UE may use the specific MCS table irrespective of the set upper layer parameter mcs-table, or may use the specific MCS table regardless of whether the new RNTI is set.
  • the specific MCS table may be used regardless of whether the CRC of the DCI is scrambled by the new RNTI.
  • the UE may use the reserved MCS index in the same manner as in the first example.
  • the UE sets the specific MCS index associated with the DCI-indicated MCS index as shown in FIG.
  • the entry of the specific MCS index of another MCS table may be applied to the PUSCH.
  • the UE may use the reference MCS table irrespective of the set upper layer parameter mcs-table, or may use the reference MCS table irrespective of whether the new RNTI is set.
  • the reference MCS table may be used regardless of whether the CRC of the DCI is scrambled by the new RNTI.
  • the specific MCS table may be a URLLC MCS table, and the reference MCS table may be an eMBB MCS table.
  • the specific MCS table may be an eMBB MCS table, and the reference MCS table may be a URLLC MCS table.
  • the eMBB MCS table may be applied to the PUSCH without the UL-SCH.
  • the MLC table for URLLC is set in the UE by the upper layer parameter mcs-table
  • the UE applies the MCS table for URLLC to the PUSCH with UL-SCH and applies the MCS table for eMBB to the PUSCH without UL-SCH. May be.
  • the association between the reserved MCS index and the specific MCS index, the specific MCS table, the reference MCS table, etc., may be fixed according to specifications, may be set by upper layer parameters, may be indicated by DCI, It may be determined by the UE based on the number of resources allocated to PUSCH.
  • the UE can use a table not set by the upper layer for UCI transmission on the PUSCH without the UL-SCH. For example, even when the MLC table for URLLC is not set by the upper layer, the UE sets the entry of the non-reserved MCS index in the MCS table for URLLC by setting the UL-SCH indicator field in DCI to 0. Can be used. For example, the UE sets the entry of the non-reserved MCS index in the eMBB MCS table by setting the UL-SCH indicator field in the DCI to 0 even if the eMBB MCS table is not set by the upper layer. Can be used.
  • the UE sets the UL-SCH indicator field in the DCI to 1 (PUSCH without UL-SCH) UCI transmission above is not triggered).
  • the first RNTI is used for DCI for scheduling PUSCH with UL-SCH.
  • the UE may check that the CRC of the DCI is a different second RNTI ( For example, it may be expected to be scrambled using C-RNTI).
  • a first RNTI eg, a new RNTI
  • the UE sets the UL-SCH indicator field in the DCI to one. (UCI transmission on PUSCH without UL-SCH is not triggered).
  • the UE checks that the CRC of the DCI is the first RNTI May be expected to be scrambled using
  • a first RNTI eg, a new RNTI
  • the UE may not monitor (monitor) a DCI having a CRC scrambled with another second RNTI (eg, a C-RNTI). You don't have to expect that).
  • the UE may monitor the DCI with the CRC scrambled using another second RNTI.
  • the DCI that schedules the initial transmission of the PUSCH with the UL-SCH may specify a non-reserved MCS index, and the DCI that schedules the retransmission of the PUSCH with the UL-SCH may specify a reserved MCS index.
  • the DCI that schedules the retransmission of the PUSCH with the UL-SCH may specify the non-reserved MCS index.
  • each aspect may be applied to PUSCH with UL-SCH. That is, the case where the UL-SCH indicator field of each aspect is set to 0 may be read as the case where the UL-SCH indicator field is set to 1. Further, each aspect may not depend on the value of the UL-SCH indicator field.
  • wireless communication system (Wireless communication system)
  • communication is performed using at least one of the wireless communication methods described in the above embodiments or a combination thereof.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • NR New Radio
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • the wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
  • a base station 11 forming a macro cell C1 having relatively wide coverage
  • a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
  • user terminals 20 are arranged in the macro cell C1 and each small cell C2.
  • the arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
  • the user terminal 20 can be connected to both the base station 11 and the base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. In addition, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, five or less CCs, six or more CCs).
  • CCs cells
  • a communication between the user terminal 20 and the base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz or the like
  • a wide bandwidth may be used, or between the user terminal 20 and the base station 11.
  • the same carrier as described above may be used.
  • the configuration of the frequency band used by each base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a single numerology may be applied, or a plurality of different numerologies may be applied.
  • Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like.
  • the numerology may be referred to as different.
  • the base station 11 and the base station 12 may be connected by a wire (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like) or wirelessly. Good.
  • a wire for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like
  • CPRI Common Public Radio Interface
  • X2 interface or the like
  • the base station 11 and each base station 12 are connected to the upper station device 30 and are connected to the core network 40 via the upper station device 30.
  • the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), and a mobility management entity (MME), but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • each base station 12 may be connected to the upper station device 30 via the base station 11.
  • the base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), a RRH (Remote Radio Head), a transmission / reception point, and the like. May be called.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
  • Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • Orthogonal Frequency Division Multiple Access (OFDMA) is applied to the downlink as a wireless access scheme, and Single-Carrier Frequency Division Multiple Access (SC-FDMA: Single Carrier) is applied to the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier to perform communication.
  • SC-FDMA divides a system bandwidth into bands each composed of one or a continuous resource block for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a physical downlink shared channel (PDSCH: Physical Downlink Shared Channel), a physical broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel shared by each user terminal 20 are used.
  • the PDSCH transmits user data, upper layer control information, SIB (System Information Block), and the like.
  • SIB System Information Block
  • MIB Master ⁇ Information ⁇ Block
  • Downlink L1 / L2 control channels include physical downlink control channels (Physical Downlink Control Channel (PDCCH) and / or EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), and PHICH (Physical Hybrid-ARQ Indicator Channel). ).
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
  • the scheduling information may be notified by DCI.
  • a DCI that schedules DL data reception may be called a DL assignment
  • a DCI that schedules UL data transmission may be called an UL grant.
  • PCFICH transmits the number of OFDM symbols used for PDCCH.
  • the PHICH transmits acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) of HARQ (Hybrid Automatic Repeat Repeat request) for the PUSCH.
  • the EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
  • PDSCH Downlink Shared Data Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • a cell-specific reference signal CRS: Cell-specific Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • DMRS Demodulation Reference Signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • the transmitted reference signal is not limited to these.
  • FIG. 10 is a diagram illustrating an example of an overall configuration of a base station according to one embodiment.
  • the base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
  • the baseband signal processing unit 104 regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control)
  • the transmission / reception unit performs retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, and so on.
  • HARQ transmission processing for example, HARQ transmission processing
  • IFFT inverse fast Fourier transform
  • precoding processing precoding processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to the transmission / reception unit 103.
  • the transmission / reception section 103 converts the baseband signal precoded and output from the baseband signal processing section 104 for each antenna into a radio frequency band, and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101.
  • the transmission / reception unit 103 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102.
  • Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface.
  • the transmission line interface 106 transmits and receives signals (backhaul signaling) to and from another base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). Is also good.
  • CPRI Common Public Radio Interface
  • X2 interface X2 interface
  • the transmission / reception unit 103 transmits a downlink (DL) signal to the user terminal 20 (for example, includes at least one of a physical downlink shared channel (PDSCH), a physical downlink control channel (PDCCH) (DCI), and a DL reference signal). And receives an uplink (UL) signal (including at least one of a physical uplink shared channel (PUSCH), a physical uplink control channel (PUSCH), and a UL reference signal) from the user terminal 20.
  • a downlink (DL) signal for example, includes at least one of a physical downlink shared channel (PDSCH), a physical downlink control channel (PDCCH) (DCI), and a DL reference signal.
  • UL uplink
  • transmitting / receiving section 103 may transmit upper layer parameters indicating a first modulation and coding scheme (MCS) table, and may transmit downlink control information for scheduling of a physical uplink shared channel.
  • MCS modulation and coding scheme
  • FIG. 11 is a diagram illustrating an example of a functional configuration of the base station according to the embodiment.
  • functional blocks of characteristic portions in the present embodiment are mainly shown, and base station 10 may be assumed to have other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations need only be included in base station 10, and some or all of the configurations need not be included in baseband signal processing section 104.
  • the control unit (scheduler) 301 controls the entire base station 10.
  • the control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
  • the control unit 301 performs scheduling (for example, resources) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like). Allocation). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • scheduling for example, resources
  • a downlink data signal for example, a signal transmitted on the PDSCH
  • a downlink control signal for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like. Allocation.
  • control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • the control unit 301 controls scheduling of a synchronization signal (for example, PSS / SSS) and a downlink reference signal (for example, CRS, CSI-RS, DMRS).
  • a synchronization signal for example, PSS / SSS
  • a downlink reference signal for example, CRS, CSI-RS, DMRS
  • the control unit 301 may control at least one of the modulation scheme and the coding rate of the physical uplink shared channel. Specifically, the control unit 301 may control generation and transmission of downlink control information including an index value indicating at least one of the modulation scheme and the coding rate of the physical uplink shared channel.
  • Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated downlink signal to mapping section 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example.
  • the DL assignment and the UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to an encoding process, a modulation process, and the like according to an encoding rate, a modulation method, and the like determined based on channel state information (CSI: Channel ⁇ State ⁇ Information) from each user terminal 20 or the like.
  • CSI Channel ⁇ State ⁇ Information
  • Mapping section 303 maps the downlink signal generated by transmission signal generating section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs it to transmitting / receiving section 103.
  • the mapping unit 303 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal.
  • the measurement unit 305 is configured to receive power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio, SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received @ Signal @ Strength @ Indicator)), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 301.
  • control unit 301 when the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, based on at least one of the upper layer parameters and the downlink control information, At least one of an MCS table and an MCS index for a physical uplink shared channel may be determined.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
  • the radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception section 203 converts the frequency of the received signal into a baseband signal, and outputs the baseband signal to the baseband signal processing section 204.
  • the transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
  • the transmission / reception unit 203 receives a downlink (DL) signal (for example, including at least one of a physical downlink shared channel (PDSCH), a physical downlink control channel (PDCCH) (DCI), and a DL reference signal) from the base station 10. It receives and transmits an uplink (UL) signal (including at least one of a physical uplink shared channel (PUSCH), a physical uplink control channel (PUSCH), and a UL reference signal) to the base station 10.
  • DL downlink
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • UL uplink
  • the transmission / reception unit 203 may receive higher layer parameters indicating the first modulation and coding scheme (MCS) table, and may receive downlink control information for scheduling the physical uplink shared channel.
  • MCS modulation and coding scheme
  • FIG. 13 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
  • control unit 401 When the control unit 401 acquires various information notified from the base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
  • Transmission signal generating section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203.
  • the mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10.
  • the reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • the control unit 401 determines the upper layer parameter (for example, mcs-table) and the At least one of an MCS table and an MCS index for the physical uplink shared channel based on at least one of downlink control information (eg, UL-SCH indicator, RNTI used for scrambling CRC of the downlink control information). One may be determined.
  • the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, and a predetermined identifier (eg, a new RNTI) for scrambling a CRC of the downlink control information is not used.
  • a predetermined identifier eg, a new RNTI
  • the control unit 401 transmits a predetermined MCS table (for example, a URLLC MCS table or an eMBB MCS table).
  • the second MCS index associated with the first index may be applied to the physical uplink shared channel (first mode).
  • the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, and the third MCS index indicated in the downlink control information is within a range different from a predetermined range (for example, unreserved). If it is (MCS index), the control unit 401 may apply the third MCS index to the physical uplink shared channel in the MCS table set by the upper layer parameters (first mode).
  • the control unit 401 May apply the fourth MCS index to the physical uplink shared channel in a predetermined MCS table (for example, an MCS table for URLLC or an MCS table for eMBB) (third aspect).
  • a predetermined MCS table for example, an MCS table for URLLC or an MCS table for eMBB
  • the control unit 401 when the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, the control unit 401 expects that the downlink control information indicates an index within a first range. (Second embodiment).
  • each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated from each other). , Wired, wireless, etc.) and using these multiple devices.
  • the functional block may be realized by combining one device or the plurality of devices with software.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block that makes transmission function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • a base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method according to the present disclosure.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of a base station and a user terminal according to an embodiment.
  • the above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more devices illustrated in the drawing, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 performs an arithmetic operation and communicates via the communication device 1004.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operation described in the above embodiment is used.
  • the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.)), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured.
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission line interface 106, and the like may be realized by the communication device 1004.
  • the transmission / reception unit 103 may be mounted physically or logically separated between the transmission unit 103a and the reception unit 103b.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input.
  • the output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware.
  • the processor 1001 may be implemented using at least one of these hardware.
  • the channel and the symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard.
  • a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
  • the one or more respective periods (frames) forming the radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
  • the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception.
  • SCS SubCarrier @ Spacing
  • TTI Transmission @ Time @ Interval
  • TTI Transmission @ Time @ Interval
  • radio frame configuration transmission and reception.
  • At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • the slot may be configured by one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be constituted by one or more symbols in the time domain.
  • minislots may be called subslots.
  • a minislot may be made up of a smaller number of symbols than slots.
  • a PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals.
  • the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding thereto. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
  • one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval)
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot is called a TTI.
  • You may. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units.
  • radio resources frequency bandwidth, transmission power, and the like that can be used in each user terminal
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, a code word, or a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms.
  • the TTI having the TTI length described above may be replaced with the TTI.
  • the resource block (RB: Resource Block) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
  • one or a plurality of RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical @ RB
  • SCG Sub-Carrier @ Group
  • REG Resource @ Element @ Group
  • PRB pair an RB pair, and the like. May be called.
  • a resource block may be composed of one or more resource elements (RE: Resource @ Element).
  • RE Resource @ Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (which may also be referred to as a partial bandwidth or the like) may represent a subset of contiguous common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good.
  • the common RB may be specified by an index of the RB based on the common reference point of the carrier.
  • a PRB may be defined in a BWP and numbered within the BWP.
  • $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP).
  • BWP for a UE, one or more BWPs may be configured in one carrier.
  • At least one of the configured BWPs may be active, and the UE may not have to assume transmitting and receiving a given signal / channel outside the active BWP.
  • “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
  • the structures of the above-described radio frame, subframe, slot, minislot, and symbol are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The number of subcarriers, the number of symbols in a TTI, the symbol length, the configuration such as the cyclic prefix (CP) length can be variously changed.
  • the information, parameters, and the like described in the present disclosure may be represented using an absolute value, may be represented using a relative value from a predetermined value, or may be represented using another corresponding information. May be represented.
  • a radio resource may be indicated by a predetermined index.
  • Names used for parameters and the like in the present disclosure are not limited in any way. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure.
  • the various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
  • information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to at least one of the upper layer.
  • Information, signals, and the like may be input and output via a plurality of network nodes.
  • Information and signals input and output may be stored in a specific location (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
  • Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method.
  • the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
  • the notification of the predetermined information is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
  • the determination may be made by a value represented by 1 bit (0 or 1) or by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
  • software, instructions, information, and the like may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
  • system and “network” may be used interchangeably.
  • precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “pseudo collocation (QCL: Quasi-Co-Location)”, “transmission power”, “phase rotation”, “antenna port” , “Antenna port group”, “layer”, “number of layers”, “rank”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel”, etc. The terms may be used interchangeably.
  • base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “ “Access point (access @ point)”, “transmission point (TP: Transmission @ Point)”, “reception point (RP: Reception @ Point)”, “transmission / reception point (TRP: Transmission / Reception @ Point)", “panel”, “cell” Terms such as, “sector”, “cell group”, “carrier”, “component carrier” may be used interchangeably.
  • a base station may be referred to by a term such as a macro cell, a small cell, a femto cell, a pico cell, and the like.
  • a base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio ⁇ Head)).
  • a base station subsystem eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio ⁇ Head).
  • RRH Small indoor base station
  • the term “cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , A handset, a user agent, a mobile client, a client or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (maned or unmanned). ).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced with a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the configuration may be such that the user terminal 20 has the function of the base station 10 described above.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • an uplink channel, a downlink channel, and the like may be replaced with a side channel.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the function of the user terminal 20 described above.
  • an operation performed by the base station may be performed by an upper node (upper node) in some cases.
  • various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility @ Management @ Entity), S-GW (Serving-Gateway), etc., but not limited thereto, or a combination thereof.
  • Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched and used in execution. Further, the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be interchanged as long as there is no inconsistency. For example, the methods described in this disclosure use various exemplary steps to present elements of the various steps, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-B Long Term Evolution-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication
  • system 5G (5th generation mobile communication system)
  • FRA Fluture Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Fluture generation radio access
  • GSM Registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • UWB Ultra-WideBand
  • Bluetooth registered trademark
  • a system using other suitable wireless communication methods and a next-generation system extended based on these methods.
  • a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
  • any reference to elements using designations such as "first,” “second,” etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining means judging, calculating, computing, processing, deriving, investigating, searching (up, search, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
  • determination includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
  • judgment (decision) is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, and the like. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
  • “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
  • the “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
  • connection refers to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, the light (both visible and invisible) regions, and the like.
  • the term “A and B are different” may mean that “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • Terms such as “separate” and “coupled” may be construed similarly to “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user equipment in an embodiment of the present disclosure has: a reception unit for receiving a higher layer parameter indicating a first modulation and coding scheme (MCS) table and receiving downlink control information for scheduling a physical uplink shared channel; and a control unit for, when the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, determining an MCS table and/or an MCS index for the physical uplink shared channel on the basis of the higher layer parameter and/or the downlink control information. According to this embodiment of the present disclosure, a physical uplink shared channel having no corresponding uplink transport channel can be properly transmitted.

Description

ユーザ端末及び基地局User terminal and base station
 本開示は、次世代移動通信システムにおけるユーザ端末及び基地局に関する。 The present disclosure relates to a user terminal and a base station in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。 In a UMTS (Universal Mobile Telecommunications System) network, long term evolution (LTE: Long Term Evolution) has been specified for the purpose of higher data rates and lower delays (Non-Patent Document 1). Also, LTE-A (LTE Advanced, LTE @ Rel. 10, 11, 12, 13) has been specified for the purpose of further increasing the capacity and sophistication of LTE (LTE @ Rel. 8, 9).
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。 Succession system of LTE (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Rel. 14 or 15).
 既存のLTEシステム(例えば、3GPP Rel.8-14)では、ユーザ端末(UE:User Equipment)は、基地局からの下り制御情報(DCI:Downlink Control Information、DLアサインメント等ともいう)に基づいて、物理下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信を制御する。また、ユーザ端末は、DCI(ULグラント等ともいう)に基づいて、物理上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信を制御する。 In an existing LTE system (for example, 3GPP@Rel.8-14), a user terminal (UE: User @ Equipment) is based on downlink control information (DCI: Downlink @ Control @ Information, also referred to as DL assignment, etc.) from a base station. , And control the reception of a physical downlink shared channel (for example, PDSCH: Physical Downlink Shared Channel). Also, the user terminal controls transmission of a physical uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
 NRでは、対応するトランスポートチャネル(データ等ともいう)が存在する物理上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)だけでなく、当該対応するトランスポートチャネルが存在しない物理上り共有チャネルを送信することが想定される。例えば、PUSCHに対応するトランスポートチャネルは、UL-SCH(Uplink Shared Channel、上りトランスポートチャネル、上りデータ)等とも呼ばれる。 In the NR, not only a physical uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) in which a corresponding transport channel (also referred to as data) exists, but also a physical uplink shared channel in which the corresponding transport channel does not exist. It is assumed that For example, the transport channel corresponding to PUSCH is also called UL-SCH (Uplink \ Shared \ Channel, uplink transport channel, uplink data) and the like.
 また、NRでは、ユーザ端末は、下り制御情報(DCI)内の所定フィールド(例えば、変調及び符号化方式(MCS:Modulation and Coding Scheme)フィールド)の値に基づいて、当該DCIによりスケジューリングされるPUSCHの変調次数及び符号化率の少なくとも一つを決定することが検討されている。 In the NR, the user terminal performs a PUSCH scheduled by the DCI based on a value of a predetermined field (for example, a modulation and coding scheme (MCS) field) in the downlink control information (DCI). It has been studied to determine at least one of the modulation order and the coding rate of.
 しかしながら、UL-SCHなしのPUSCHと、UL-SCHなしのPUSCHとでは伝送される内容が異なることが想定される。このため、UL-SCHなしのPUSCHの符号化率及び変調次数の少なくとも一つをUL-SCHありのPUSCHと同様の方法で決定する場合、当該UL-SCHなしのPUSCHを適切に送信できないおそれがある。 However, it is assumed that the transmitted contents are different between the PUSCH without the UL-SCH and the PUSCH without the UL-SCH. For this reason, when determining at least one of the coding rate and the modulation order of the PUSCH without the UL-SCH in the same manner as the PUSCH with the UL-SCH, the PUSCH without the UL-SCH may not be appropriately transmitted. is there.
 本開示はかかる点に鑑みてなされたものであり、対応する上りトランスポートチャネル(例えば、UL-SCH)なしの物理上り共有チャネル(例えば、PUSCH)を適切に送信可能なユーザ端末及び基地局を提供することを目的の一つとする。 The present disclosure has been made in view of such a point, and has disclosed a user terminal and a base station that can appropriately transmit a physical uplink shared channel (eg, PUSCH) without a corresponding uplink transport channel (eg, UL-SCH). One of the purposes is to provide.
 本開示の一態様に係るユーザ端末は、第1変調及び符号化方式(MCS)テーブルを示す上位レイヤパラメータを受信し、物理上り共有チャネルのスケジューリングのための下り制御情報を受信する受信部と、前記下り制御情報が、前記物理上り共有チャネルに対応する上りトランスポートチャネルが無いことを示す場合、前記上位レイヤパラメータ及び前記下り制御情報の少なくとも1つに基づいて、前記物理上り共有チャネルのための、MCSテーブル及びMCSインデックスの少なくとも1つを決定する制御部と、を有することを特徴とする。 A receiving unit that receives an upper layer parameter indicating a first modulation and coding scheme (MCS) table and receives downlink control information for scheduling of a physical uplink shared channel, a user terminal according to an aspect of the present disclosure, When the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, based on at least one of the higher layer parameters and the downlink control information, , An MCS table and a control unit for determining at least one of the MCS indexes.
 本開示の一態様によれば、対応する上りトランスポートチャネルなしの物理上り共有チャネルを適切に送信できる。 According to an aspect of the present disclosure, it is possible to appropriately transmit a physical uplink shared channel without a corresponding uplink transport channel.
図1は、MCSテーブルの一例を示す図である。FIG. 1 is a diagram illustrating an example of the MCS table. 図2は、MCSテーブルの一例を示す図である。FIG. 2 is a diagram illustrating an example of the MCS table. 図3は、MCSテーブルの一例を示す図である。FIG. 3 is a diagram illustrating an example of the MCS table. 図4は、第1の態様に係るMCSテーブル及びエントリの決定方法の第1の例を示す図である。FIG. 4 is a diagram illustrating a first example of a method of determining an MCS table and an entry according to the first example. 図5は、第1の態様に係るMCSテーブル及びエントリの決定方法の第2の例を示す図である。FIG. 5 is a diagram illustrating a second example of the MCS table and entry determination method according to the first example. 図6は、第1の態様に係るMCSテーブル及びエントリの決定方法の第3の例を示す図である。FIG. 6 is a diagram illustrating a third example of the MCS table and entry determination method according to the first example. 図7は、第2の態様に係るMCSテーブル及びエントリの決定方法の一例を示す図である。FIG. 7 is a diagram illustrating an example of an MCS table and entry determination method according to the second example. 図8は、第3の態様に係るMCSテーブル及びエントリの決定方法の一例を示す図である。FIG. 8 is a diagram illustrating an example of an MCS table and an entry determination method according to the third embodiment. 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図10は、一実施形態に係る基地局の全体構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of an overall configuration of a base station according to one embodiment. 図11は、一実施形態に係る基地局の機能構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of a functional configuration of the base station according to the embodiment. 図12は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment. 図13は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment. 図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 14 is a diagram illustrating an example of a hardware configuration of a base station and a user terminal according to an embodiment.
 NRでは、下り制御情報(DCI:Downlink Control Information)(ULグラント、例えば、DCIフォーマット0_0、0_1)に含まれる所定フィールド(例えば、変調及び符号化方式(MCS:Modulation and Coding Scheme)フィールド(例えば5ビット)、MCSインデックス(IMCS))に基づいて、当該DCIによりスケジューリングされる物理上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)の変調方式(又は変調次数)及び符号化率の少なくとも一つ(変調次数/符号化率)を制御することが検討されている。 In the NR, a predetermined field (for example, a modulation and coding scheme (MCS) field (for example, 5) included in downlink control information (DCI: Downlink Control Information) (UL grant, for example, DCI format 0_0, 0_1) ), MCS index ( IMCS )), and at least one of a modulation scheme (or modulation order) and a coding rate of a physical uplink shared channel (eg, PUSCH: Physical Uplink Shared Channel) scheduled by the DCI. Control of (modulation order / coding rate) is being studied.
 具体的には、ユーザ端末(UE:User Equipment)は、MCSインデックスと、変調次数(Modulation order)と、TBSインデックスとを関連付けるテーブル(MCSテーブル)を用いて、上記DCI内の上記MCSフィールドが示すMCSインデックスに対応する変調次数/符号化率をPUSCH用に決定することが検討されている。 Specifically, the user terminal (UE: User @ Equipment) indicates the MCS field in the DCI using a table (MCS table) that associates the MCS index, the modulation order (Modulation @ order), and the TBS index. Determining the modulation order / coding rate corresponding to the MCS index for PUSCH is under study.
 ここで、各変調次数は、各変調方式に対応する値である。例えば、QPSK(Quadrature Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)、64QAM、256QAMの変調次数は、それぞれ、2、4、6、8である。 Here, each modulation order is a value corresponding to each modulation method. For example, the modulation orders of QPSK (Quadrature Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation), 64 QAM, and 256 QAM are 2, 4, 6, and 8, respectively.
 図1-3は、MCSテーブルの一例を示す図である。なお、図1-3に示されるMCSテーブルの値は、例示にすぎず、これに限られない。また、MCSインデックス(IMCS)に関連付けられる一部の項目(例えば、スペクトル効率)は省略されてもよいし、他の項目が追加されてもよい。 FIG. 1-3 is a diagram showing an example of the MCS table. It should be noted that the values of the MCS table shown in FIG. 1-3 are merely examples, and the present invention is not limited to these values. Some items (for example, spectrum efficiency) associated with the MCS index ( IMCS ) may be omitted, or other items may be added.
 ユーザ端末は、以下の条件(1)-(3)の少なくとも一つによって、どのMCSテーブルを用いてPUSCHの変調次数/符号化率を決定するかを決定してもよい:
(1)トランスフォームプリコーディングが有効化(enable)されるか否か(DFT拡散OFDM(DFT-s-OFDM:Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing)波形又はOFDM波形のいずれが適用されるか)、
(2)ユーザ端末によって利用されるMCSテーブルを示す情報(MCSテーブル情報)が特定の変調方式(例えば、256QAM)を示すか否か、
(3)どのRNTI(Radio Network Temporary Identifier、識別子)でスクランブルされるCRCを有する(CRCスクランブルされる)DCIであるか。
The user terminal may determine which MCS table to use to determine the modulation order / coding rate of the PUSCH according to at least one of the following conditions (1) to (3):
(1) Whether or not transform precoding is enabled (either a DFT-s-OFDM (Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing) waveform or an OFDM waveform is applied) Or)
(2) whether information indicating an MCS table used by the user terminal (MCS table information) indicates a specific modulation scheme (for example, 256QAM),
(3) Which RNTI (Radio Network Temporary Identifier, identifier) is a DCI having a CRC scrambled (CRC scrambled).
 例えば、ユーザ端末は、DCI(例えば、DCIフォーマット0_0又は0_1)が特定のRNTI(例えば、C-RNTI、TC-RNTI、CS-RNTI)でCRCスクランブルされ、かつ、トランスフォームプリコーディングが無効化(disable)され、かつ、上記MCSテーブル情報が256QAMを示さない場合、図1に示されるテーブルを用いて、当該DCI内のMCSインデックス(IMCS)に対応する変調次数/符号化率を決定してもよい。 For example, in the user terminal, DCI (eg, DCI format 0_0 or 0_1) is CRC-scrambled with a specific RNTI (eg, C-RNTI, TC-RNTI, CS-RNTI), and transform precoding is disabled ( disabled) and the MCS table information does not indicate 256QAM, the modulation order / coding rate corresponding to the MCS index ( IMCS ) in the DCI is determined using the table shown in FIG. Is also good.
 また、ユーザ端末は、トランスフォームプリコーディングが無効化され、かつ、上記MCSテーブル情報が256QAMを示す場合、図2に示されるテーブルを用いて、当該DCI内のMCSインデックス(IMCS)に対応する変調次数/符号化率を決定してもよい。 Also, when transform precoding is disabled and the MCS table information indicates 256 QAM, the user terminal uses the table shown in FIG. 2 to correspond to the MCS index ( IMCS ) in the DCI. The modulation order / coding rate may be determined.
 また、ユーザ端末は、トランスフォームプリコーディングが有効化され、かつ、上記MCSテーブル情報が256QAMを示さない場合、図3に示されるテーブルを用いて、当該DCI内のMCSインデックス(IMCS)に対応する変調次数/符号化率を決定してもよい。 Further, when the transform precoding is enabled and the MCS table information does not indicate 256QAM, the user terminal uses the table shown in FIG. 3 to correspond to the MCS index ( IMCS ) in the DCI. May be determined.
 例えば、図3において、なお、ユーザ端末が特定の条件を満たす場合(例えば、BPSKのサポート)、特定のMCSインデックス(例えば、0、1)に対応する変調次数qは、1(BPSK)であってもよい。上記特定の条件を満たさない場合、当該変調次数qは、2(QPSK)であってもよい。 For example, in FIG. 3, when the user terminal satisfies a specific condition (for example, BPSK support), the modulation order q corresponding to a specific MCS index (for example, 0, 1) is 1 (BPSK). You may. If the above specific condition is not satisfied, the modulation order q may be 2 (QPSK).
 また、ユーザ端末は、トランスフォームプリコーディングが有効化され、かつ、上記MCSテーブル情報が256QAMを示す場合、図2に示されるテーブルを用いて、当該DCI内のMCSインデックス(IMCS)に対応する変調次数/符号化率を決定してもよい。 Further, when transform precoding is enabled and the MCS table information indicates 256 QAM, the user terminal uses the table shown in FIG. 2 to correspond to the MCS index ( IMCS ) in the DCI. The modulation order / coding rate may be determined.
 なお、図1-3に示されるテーブルを用いる条件は、上記の条件に限られない。 条件 The conditions for using the table shown in FIG. 1-3 are not limited to the above conditions.
 ところで、NRでは、ユーザ端末がチャネル状態の測定用の参照信号に基づいて測定した結果をチャネル状態情報(CSI)として基地局に所定タイミングでフィードバックするCSI報告がサポートされている。 NR By the way, the NR supports a CSI report in which a result measured by a user terminal based on a reference signal for measuring a channel state is fed back to a base station at predetermined timing as channel state information (CSI).
 チャネル状態の測定用の参照信号は、例えば、CSI-RS(Channel State Information-Reference Signal)とも呼ばれるが、これに限られない。CSIは、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、RI(Rank Indicator)の少なくとも一つを含んでもよい。また、CSIは、第1のCSI(CSIパート1)及び第2のCSI(CSIパート2)の少なくとも一つを含んでもよい。 The reference signal for measuring the channel state is also called, for example, CSI-RS (Channel State-Information-Reference Signal), but is not limited to this. The CSI may include at least one of CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), and RI (Rank Indicator). Further, the CSI may include at least one of a first CSI (CSI part 1) and a second CSI (CSI part 2).
 CSI報告には、周期的なCSIの報告(P-CSI報告)、半永続的(セミパーシステント(Semi-Persistent))に指定されるリソースを用いたCSIの報告(SP-CSI報告)、非周期的なCSIの報告(A-CSI報告)がサポートされる。 The CSI report includes a periodic CSI report (P-CSI report), a CSI report using resources designated as semi-persistent (Semi-Persistent) (SP-CSI report), Periodic CSI reporting (A-CSI reporting) is supported.
 UEは、A-CSI報告を行う場合、基地局からのCSIトリガ(CSI要求)に応じてA-CSIの送信を行う。例えば、UEは、CSIトリガを受信してから所定タイミング(例えば、4サブフレーム)後にA-CSI報告を行う。 When the UE reports the A-CSI, the UE transmits the A-CSI in response to a CSI trigger (CSI request) from the base station. For example, the UE performs an A-CSI report at a predetermined timing (for example, four subframes) after receiving the CSI trigger.
 A-CSIトリガは、下り制御チャネル(PDCCH:Physical Downlink Control Channel)を用いて送信される下り制御情報(DCI:Downlink Control Information)に含まれる。A-CSIトリガが含まれるDCIは、ULグラントであり、例えば、DCIフォーマット0_0及び0_1の少なくとも一つである。 The A-CSI trigger is included in downlink control information (DCI: Downlink Control Information) transmitted using a downlink control channel (PDCCH: Physical Downlink Control Channel). The DCI including the A-CSI trigger is a UL grant and is, for example, at least one of DCI formats 0_0 and 0_1.
 A-CSI報告では、ユーザ端末は、A-CSIトリガを含むULグラントで指定されたPUSCHを用いて、CSIを送信する。当該PUSCHは、対応するトランスポートチャネル(UL-SCH:Uplink Shared Channel、上りデータ、上りユーザデータ等ともいう)が存在しない場合、UL-SCHなしのPUSCH(PUSCH without UL-SCH)等とも呼ばれる。 In the A-CSI report, the user terminal transmits the CSI using the PUSCH specified by the UL grant including the A-CSI trigger. When there is no corresponding transport channel (UL-SCH: Uplink Shared Channel, also referred to as uplink data, uplink user data, and the like), the PUSCH is also referred to as a PUSCH without a UL-SCH (PUSCH without UL-SCH).
 UL-SCHなしのPUSCHであるか否かは、ULグラント内の所定フィールド(例えば、UL-SCHインジケータ(UL-SCH indicator)フィールド)によって示されてもよい。 Whether or not a PUSCH without the UL-SCH may be indicated by a predetermined field in the UL grant (eg, a UL-SCH indicator (UL-SCH indicator) field).
 例えば、UL-SCHインジケータフィールドは、1ビットであってもよい。UL-SCHなしのPUSCHがトリガされる場合、UL-SCHインジケータフィールドは0にセットされ、UL-SCHありのPUSCHがトリガされる場合、UL-SCHインジケータフィールドは1にセットされてもよい。 For example, the UL-SCH indicator field may be 1 bit. If the PUSCH without UL-SCH is triggered, the UL-SCH indicator field may be set to 0, and if the PUSCH with UL-SCH is triggered, the UL-SCH indicator field may be set to 1.
 このように、UL-SCHなしのPUSCHは上りの制御情報(例えば、A-CSI)の伝送に用いられ、UL-SCHありのPUSCHで伝送されるデータ(例えば上りユーザデータ及び上位レイヤ制御情報の少なくとも一つ、)とは、伝送されるデータの内容が異なるおそれがある。 As described above, the PUSCH without the UL-SCH is used for transmission of uplink control information (for example, A-CSI), and data transmitted on the PUSCH with the UL-SCH (for example, uplink user data and upper layer control information). There is a possibility that the content of data to be transmitted is different from at least one.
 このため、UL-SCHありのPUSCHと、UL-SCHなしのPUSCHについて、PUSCHの変調次数/符号化率の決定方法が異なって設定される可能性も考えられる。 た め Therefore, it is conceivable that the PUSCH modulation order / coding rate determination method is set differently for the PUSCH with the UL-SCH and the PUSCH without the UL-SCH.
 LTEにおいては、DCI内の複数のフィールドの組み合わせが、UL-SCHなしのPUSCH上のA-CSIを示す。 In LTE, a combination of a plurality of fields in DCI indicates A-CSI on PUSCH without UL-SCH.
 NRにおいては、DCI内の1ビットフィールドが、UL-SCHなしのPUSCH上のA-CSIを示すことが検討されている。例えば、DCIフォーマット0_1が、1ビットのUL-SCHインジケータフィールドを含み、変調及び符号化率(MCS)がDCI内のI_MCSによって決定されることが検討されている。UL-SCHインジケータは、そのDCIによってスケジュールされるPUSCHにおけるUL-SCHの有無を示してもよい。例えば、UL-SCHインジケータフィールドが1にセットされた場合、そのDCIは、UL-SCHありのPUSCH送信を示してもよい。 In NR, it is considered that a 1-bit field in DCI indicates A-CSI on PUSCH without UL-SCH. For example, it has been considered that DCI format 0_1 includes a 1-bit UL-SCH indicator field, and that the modulation and coding rate (MCS) is determined by I_MCS in DCI. The UL-SCH indicator may indicate the presence or absence of the UL-SCH on the PUSCH scheduled by the DCI. For example, if the UL-SCH indicator field is set to 1, the DCI may indicate a PUSCH transmission with UL-SCH.
 NRでは、例えば、高速及び大容量(例えば、eMBB:enhanced Mobile Broad Band)、超多数端末(例えば、mMTC:massive Machine Type Communication、IoT:Internet of Things)、超高信頼及び低遅延(例えば、URLLC:Ultra Reliable and Low Latency Communications)など、通信要件(要件、requirement)が異なる複数のサービス(ユースケース、通信タイプ、通信等ともいう)が想定される。なお、通信要件は、例えば、遅延、信頼性、容量(キャパシティ)、速度、性能(performance)の少なくとも一つに関するものであればよい。 In NR, for example, high-speed and large-capacity (for example, enhanced MBB: Broadband), a very large number of terminals (for example, mMTC: massive Machine Type Communication, IoT: Internet of Things), ultra-high reliability and low delay (for example, URLLCL) A plurality of services (also called use cases, communication types, communication, etc.) having different communication requirements (requirements, requirements), such as Ultra / Reliable / Low / Latency / Communications, are assumed. The communication requirement may be, for example, at least one of delay, reliability, capacity (capacity), speed, and performance.
 例えば、URLLCの通信要件とeMBBの通信要件の違いは、URLLCのレイテンシがeMBBのレイテンシよりも小さいことであってもよいし、URLLCの通信要件が信頼性の通信要件を含むことであってもよい。例えば、eMBBのUプレーンレイテンシの要件は、下りリンクのUプレーンレイテンシが4msであり、上りリンクのUプレーンレイテンシが4msであること、を含んでもよい。一方、URLLCのUプレーンレイテンシの要件は、下りリンクのUプレーンレイテンシが0.5msであり、上りリンクのUプレーンレイテンシが0.5msであること、を含んでもよい。また、URLLCの信頼性の要件は、1msのUプレーンレイテンシにおいて、32バイトの誤り率が10-5であることを含んでもよい。 For example, the difference between the communication requirement of URLLC and the communication requirement of eMBB may be that the latency of URLLC is smaller than the latency of eMBB, or that the communication requirement of URLLC includes the communication requirement of reliability. Good. For example, the U-plane latency requirement of the eMBB may include that the downlink U-plane latency is 4 ms and the uplink U-plane latency is 4 ms. On the other hand, the U-plane latency requirement of the URLLC may include that the downlink U-plane latency is 0.5 ms and the uplink U-plane latency is 0.5 ms. URLLC reliability requirements may also include a 32-byte error rate of 10 −5 at 1 ms U-plane latency.
 URLLCとeMBBの間において、設定情報の少なくとも一部が異なってもよい。設定情報は、MCSテーブル及びCQIテーブルの少なくとも1つであってもよい。eMBB用の設定情報とURLCC用の設定情報とが仕様に規定されてもよい。 @ At least a part of the setting information may be different between the URLLC and the eMBB. The setting information may be at least one of an MCS table and a CQI table. The setting information for eMBB and the setting information for URLLC may be defined in the specification.
 URLLCのための新MCSテーブルが導入されること、新MCSテーブルが上位レイヤ(RRC)パラメータ(例えば、mcs-table、MCSテーブル情報)又は新RNTIによって指示されること、が検討されている。 It is being considered that a new MCS table for URLLC is introduced and that the new MCS table is indicated by upper layer (RRC) parameters (eg, mcs-table, MCS table information) or new RNTI.
 URLLCのグラントベース送信に対し、新RNTIを設定するための1つの上位レイヤパラメータを導入することが検討されている。 It has been considered to introduce one upper layer parameter for setting a new RNTI for grant-based transmission of @URLLC.
 新RNTIが設定されない場合、既存の上位レイヤパラメータmcs-tableが、3つのMCSテーブル(既存の64QAM MCSテーブル、既存の256QAM MCSテーブル、新64QAM MCSテーブル)から選択された1つのMCSテーブルを示すように、拡張されてもよい。mcs-tableが新64QAM MCSテーブルを示す場合、共通サーチスペース(CSS)内のDCIフォーマット0_0、0_1に対し、既存の64QAM MCSテーブルが用いられ、UE個別サーチスペース(USS)内のDCIフォーマット0_0、0_1、1_0、1_1に対し、新64QAM MCSテーブルが用いられてもよい。そうでない場合、既存の動作に従ってもよい。DL及びULのための設定(configuration)が別々であってもよい。 If the new RNTI is not set, the existing upper layer parameter mcs-table indicates one MCS table selected from three MCS tables (the existing 64QAM @ MCS table, the existing 256QAM @ MCS table, and the new 64QAM @ MCS table). May be extended. When the mcs-table indicates the new 64QAM @ MCS table, the existing 64QAM @ MCS table is used for the DCI formats 0_0 and 0_1 in the common search space (CSS), and the DCI format 0_0 in the UE individual search space (USS) is used. A new 64QAM @ MCS table may be used for 0_1, 1_0, 1_1. Otherwise, existing actions may be followed. The configuration for DL and UL may be different.
 新RNTIが設定された場合、UEは、DCIのCRCのスクランブリングに用いられたRNTIに基づいて、MCSテーブルを選択してもよい。新RNTIが設定された場合、UEは、PUSCHのスケジューリングのためのDCIのCRCのスクランブリングに用いられたRNTIに関連付けられたMCSテーブルを、当該PUSCHに適用してもよい。 If the new RNTI is configured, the UE may select the MCS table based on the RNTI used for DCI CRC scrambling. When the new RNTI is set, the UE may apply the MCS table associated with the RNTI used for the DCI CRC scrambling for PUSCH scheduling to the PUSCH.
 複数の種類のRNTIのそれぞれが、通信要件(eMBB、URLLC等)又はMCSテーブル(eMBB用MCSテーブル、URLLC用MCSテーブル等)に関連付けられてもよい。URLLC又はURLLC用MCSテーブルに関連付けられたRNTI(例えば、新RNTI)が、eMBB又はeMBB用MCSテーブルに関連付けられたRNTI(例えば、C-RNTI)と異なってもよい。 Each of the plurality of types of RNTIs may be associated with a communication requirement (eMBB, URLLC, etc.) or an MCS table (MCS table for eMBB, MCS table for URLLC, etc.). The RNTI (eg, the new RNTI) associated with the URLLC or the MCS table for the URLLC may be different from the RNTI (eg, the C-RNTI) associated with the eMBB or the MCS table for the eMBB.
 新RNTIは、URLLC用RNTI、URLLC-RNTI、Y-RNTIなどと呼ばれてもよい。 The new RNTI may be referred to as a URLLC RNTI, a URLLC-RNTI, a Y-RNTI, or the like.
 DCIのCRCが新RNTIを用いてスクランブルされる場合、UEは、新MCSテーブル(新64QAM MCSテーブル、URLLC用MCSテーブル)を用いてもよい。そうでない場合、UEは、既存の動作に従ってもよい。例えば、DCIのCRCが新RNTIと異なるRNTI(例えば、C-RNTI)を用いてスクランブルされた場合、UEは、既存のMCSテーブル(64QAM MCSテーブル又は256QAM MCSテーブル、eMBB用MCSテーブル)を用いてもよい。 If the CRC of DCI is scrambled using the new RNTI, the UE may use a new MCS table (new 64QAM @ MCS table, MCS table for URLLC). Otherwise, the UE may follow the existing operation. For example, if the CRC of the DCI is scrambled using an RNTI (eg, C-RNTI) different from the new RNTI, the UE uses the existing MCS table (64QAM @ MCS table or 256QAM @ MCS table, MCS table for eMBB). Is also good.
 DCI内のMCS指示が、mcs-tableによって指定されたMCSテーブル内の第1範囲(所定範囲と異なる範囲)内のMCSインデックス(所定値よりも小さいMCSインデックス、非予約MCSインデックス、non-reserved I_MCS)を示してもよい。所定値は、例えば、28又は29である。非予約MCSインデックスは、例えば、0~27又は0~28である。 The MCS indication in the DCI is an MCS index (MCS index smaller than a predetermined value, non-reserved MCS index, non-reserved @ I_MCS) in a first range (a range different from the predetermined range) in the MCS table specified by mcs-table. ) May be indicated. The predetermined value is, for example, 28 or 29. The non-reserved MCS index is, for example, 0 to 27 or 0 to 28.
 UL-SCHなしのPUSCH上のUCI(Uplink Control Information)送信用のMCS指示において、第1範囲と異なる第2範囲(所定範囲)内のMCSインデックス(所定値以上のMCSインデックス、予約MCSインデックス、reserved I_MCS)が除外されなくてもよい。すなわち、予約MCSインデックスが追加の目的に用いられてもよい。予約MCSインデックスは、例えば、28-31又は29-31である。 In the MCS instruction for UCI (Uplink Control Information) transmission on the PUSCH without the UL-SCH, the MCS index in a second range (predetermined range) different from the first range (MCS index of a predetermined value or more, reserved MCS index, reserved) I_MCS) may not be excluded. That is, the reserved MCS index may be used for additional purposes. The reserved MCS index is, for example, 28-31 or 29-31.
 URLLC用のMCSテーブルを用いるための動作において、上位レイヤによって新RNTIが設定されない場合、MCSテーブルを変更するために、RRC再設定(reconfiguration)が必要になることが考えられる。しかしながら、上り送信に適用されるMCSテーブルは、動的に変更されることが好ましい。 In the operation for using the MCS table for URLLC, if a new RNTI is not set by the upper layer, it may be necessary to perform RRC reconfiguration to change the MCS table. However, it is preferable that the MCS table applied to uplink transmission be dynamically changed.
 そこで、本発明者らは、UL-SCHなしのPUSCH上のUCI送信のための、MCS(例えば、変調次数及び符号化率の少なくとも1つ)の決定方法を着想した。 Therefore, the present inventors have conceived a method of determining an MCS (for example, at least one of a modulation order and a coding rate) for UCI transmission on the PUSCH without the UL-SCH.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。本実施形態に係る態様は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The aspects according to the present embodiment may be applied alone or in combination.
 また、UL-SCHなしのPUSCHの用途は、A-CSI報告に限られない。例えば、UL-SCHなしのPUSCHの用途は、HARQ-ACK、CSI、スケジューリング要求の少なくとも一つを含む上り制御情報(UCI)の送信等に用いられてもよい。 Also, the use of PUSCH without UL-SCH is not limited to A-CSI reporting. For example, the use of PUSCH without UL-SCH may be used for transmission of uplink control information (UCI) including at least one of HARQ-ACK, CSI, and scheduling request.
 また、以下に示す構成は、UL-SCHなしのPUSCHだけでなく、UL-SCHありのPUSCHに適用されてもよい。また、以下に示す構成は、CP-OFDMに適用してもよいし、DFT-S-OFDMに適用してもよい。また、DL伝送について適用してもよい。 The configuration shown below may be applied not only to the PUSCH without the UL-SCH but also to the PUSCH with the UL-SCH. Further, the configuration described below may be applied to CP-OFDM, or may be applied to DFT-S-OFDM. Further, the present invention may be applied to DL transmission.
 新RNTIが設定されない場合、既存の上位レイヤパラメータmcs-tableが、3つのMCSテーブル(64QAM MCSテーブル(qam64、eMBB用64QAM MCSテーブル)、256QAM MCSテーブル(qam256、eMBB用256QAM MCSテーブル)、新64QAM MCSテーブル(qam64LowSE、低スペクトル効率用64QAM MCSテーブル、URLLC用64QAM MCSテーブル))から選択された1つのMCSテーブルを示すように、拡張されてもよい。 If the new RNTI is not set, the existing upper layer parameter mcs-table is composed of three MCS tables (64QAM @ MCS table (qam64, 64QAM @ MCS table for eMBB), 256QAM @ MCS table (qam256, 256QAM @ MCS table for eMBB), and new 64QAM. It may be extended to show one MCS table selected from the MCS table (qam64LowSE, 64QAM @ MCS table for low spectral efficiency, 64QAM @ MCS table for URLLC).
 UEは、新MCSテーブルを用いるために、次のオプション1-1、1-2、1-3の1つを用いてもよい。 The UE may use one of the following options 1-1, 1-2, 1-3 to use the new MCS table.
<オプション1-1>
 MCSテーブルにおける非予約MCSインデックス(例えば、0~27又は0~28)を有するエントリが用いられる。
<Option 1-1>
An entry having an unreserved MCS index (eg, 0-27 or 0-28) in the MCS table is used.
<オプション1-2>
 MCSテーブルにおける予約MCSインデックス(例えば、28~31又は29~32)を有するエントリが変調次数を示し、別の手段によって符号化率が柔軟に設定される。
<Option 1-2>
The entry having the reserved MCS index (for example, 28 to 31 or 29 to 32) in the MCS table indicates the modulation order, and the coding rate is flexibly set by another means.
<オプション1-3>
 予約MCSインデックスの解釈が変更される。予約MCSインデックスと、特定のMCSテーブルにおける非予約MCSインデックスとが紐付けられてもよい。UEは、予約MCSインデックスに紐付けられたMCSテーブルの非予約MCSインデックスを有するエントリを参照してもよい。
<Option 1-3>
The interpretation of the reserved MCS index is changed. A reserved MCS index may be associated with a non-reserved MCS index in a specific MCS table. The UE may refer to an entry having a non-reserved MCS index in the MCS table associated with the reserved MCS index.
 新RNTIが設定され、UL-SCHインジケータフィールドが0にセットされた場合(UL-SCHなしのPUSCH上のUCIがトリガされた場合)、MCSテーブルを選択するために、DCIフォーマット0_1を有するDCIのCRCのスクランブルに、新RNTIが用いられてもよい。DCIフォーマット0_1を有するDCIのCRCが新RNTIを用いてスクランブルされる場合、UEは、URLLC用MCSテーブルをPUSCHに適用してもよい。そうでない場合、UEは、次のオプション2-1、2-2、2-3の1つを用いてもよい。 If the new RNTI is set and the UL-SCH indicator field is set to 0 (if UCI on PUSCH without UL-SCH is triggered), the DCI with DCI format 0_1 to select the MCS table is selected. A new RNTI may be used for CRC scrambling. If the CRC of the DCI having DCI format 0_1 is scrambled using the new RNTI, the UE may apply the MLC table for URLLC to the PUSCH. Otherwise, the UE may use one of the following options 2-1, 2-2, 2-3.
<オプション2-1>
 eMBB用MCSテーブルにおける非予約MCSインデックスを有するエントリが用いられる。
<Option 2-1>
An entry having an unreserved MCS index in the eMBB MCS table is used.
<オプション2-2>
 eMBB用MCSテーブルにおける予約MCSインデックスを有するエントリが変調次数を示し、別の手段によって符号化率が柔軟に設定される。
<Option 2-2>
The entry having the reserved MCS index in the eMBB MCS table indicates the modulation order, and the coding rate is flexibly set by another means.
<オプション2-3>
 eMBB用MCSテーブルの予約MCSインデックスの解釈が変更される。eMBB用MCSテーブルにおける予約MCSインデックスと、URLLC用MCSテーブルにおける非予約MCSインデックスとが紐付けられてもよい。
<Option 2-3>
The interpretation of the reserved MCS index in the eMBB MCS table is changed. A reserved MCS index in the eMBB MCS table may be associated with a non-reserved MCS index in the URLLC MCS table.
 UEは、DCIフォーマット0_1を有するDCIのCRCをスクランブルする特定RNTIに対し、当該DCI内のUL-SCHインジケータフィールドが1にセットされることを期待してもよい(想定してもよい)。 The UE may expect (may assume) that the UL-SCH indicator field in the DCI is set to 1 for a specific RNTI that scrambles the CRC of the DCI having the DCI format 0_1.
(第1の態様)
 第1の態様では、DCIが予約MCSインデックス(例えば、28~31又は29~32)を指定可能である場合について説明する。
(First aspect)
In the first aspect, a case will be described in which the DCI can specify a reserved MCS index (for example, 28 to 31 or 29 to 32).
 DCI内のUL-SCHインジケータフィールドが0にセットされ(UL-SCHなしのPUSCH上のUCI送信がトリガされ)、且つ当該DCI CRCのスクランブルに新RNTIが用いられない場合、UEは、上位レイヤパラメータmcs-tableと、当該DCIによって指示されるMCSインデックスと、の少なくとも1つに基づいて、当該PUSCHに適用されるMCSテーブル及びMCSインデックス(エントリ)を決定してもよい。 If the UL-SCH indicator field in DCI is set to 0 (triggering UCI transmission on PUSCH without UL-SCH) and the new RNTI is not used to scramble the DCI CRC, the UE shall The MCS table and the MCS index (entry) applied to the PUSCH may be determined based on at least one of the mcs-table and the MCS index indicated by the DCI.
 上位レイヤパラメータmcs-tableは、既存の64QAM MCSテーブル(eMBB用64QAM MCSテーブル、qam64)、既存の256QAM MCSテーブル(eMBB用256QAM MCSテーブル、qam256)、新64QAM MCSテーブル(URLLC用64QAM MCSテーブル、qam64LowSE)の1つを示してもよい。 The upper layer parameter mcs-table includes an existing 64QAM @ MCS table (64QAM @ MCS table for eMBB, qam64), an existing 256QAM @ MCS table (256QAM @ MCS table for eMBB, qam256), and a new 64QAM @ MCS table (64QAM @ MCS table for URLLC, qam64LowSE). ) May be indicated.
 DCI CRCのスクランブルに新RNTIが用いられない場合は、新RNTIが設定されない場合(上位レイヤパラメータmcs-tableによってMCSテーブルを決定する場合)であってもよいし、新RNTIが設定され且つDCIフォーマット0_1のCRCが新RNTIを用いてスクランブルされない場合であってもよい。 When the new RNTI is not used for DCI CRC scrambling, the new RNTI may not be set (when the MCS table is determined by the upper layer parameter mcs-table), or the new RNTI is set and the DCI format is used. It may be the case that the CRC of 0_1 is not scrambled using the new RNTI.
 DCI内のUL-SCHインジケータフィールドが0にセットされ、且つ当該DCI CRCのスクランブルに新RNTIが用いられず、且つ上位レイヤパラメータmcs-tableが第1MCSテーブル(eMBB用MCSテーブル、qam64又はqam256)であり、且つ当該DCIが予約MCSインデックスを示す場合、UEは、図4に示すように、当該DCIに指示されたMCSインデックスに関連付けられた特定MCSインデックスを決定し、第2MCSテーブル(URLLC用MCSテーブル、qam64LowSE)内の、特定MCSインデックスのエントリ(変調次数及び符号化率の少なくとも1つ)を、PUSCHに適用してもよい。 The UL-SCH indicator field in the DCI is set to 0, the new RNTI is not used for scrambling the DCI CRC, and the upper layer parameter mcs-table is set in the first MCS table (MCS table for eMBB, qam64 or qam256). If there is and the DCI indicates a reserved MCS index, the UE determines a specific MCS index associated with the MCS index indicated by the DCI as shown in FIG. 4, and determines the second MCS table (URLCS MCS table). , Qam64LowSE) in the specific MCS index (at least one of the modulation order and the coding rate) may be applied to the PUSCH.
 特定MCSインデックスは、非予約MCSインデックス(例えば、0~27又は0~28)であってもよい。 The specific MCS index may be a non-reserved MCS index (for example, 0 to 27 or 0 to 28).
 第1MCSテーブル(設定MCSテーブル)の予約MCSインデックスが、第2MCSテーブルの特定MCSインデックス(エントリ)に関連付けられてもよい。 The reserved MCS index of the first MCS table (set MCS table) may be associated with a specific MCS index (entry) of the second MCS table.
 予約MCSインデックスと特定MCSインデックスの関連付け、第2MCSテーブル、などは、仕様によって固定されてもよいし、上位レイヤパラメータによって設定されてもよいし、DCIによって指示されてもよいし、PUSCHに割り当てられたリソースの数に基づきUEによって決定されてもよい。 The association between the reserved MCS index and the specific MCS index, the second MCS table, etc., may be fixed according to the specification, may be set by upper layer parameters, may be indicated by DCI, or may be assigned to the PUSCH. May be determined by the UE based on the number of resources allocated.
 DCI内のUL-SCHインジケータフィールドが0にセットされ、且つ当該DCI CRCのスクランブルに新RNTIが用いられず、且つ上位レイヤパラメータmcs-tableが第2MCSテーブル(URLLC用MCSテーブル、qam64LowSE)であり、且つ当該DCIが予約MCSインデックスを示す場合、UEは、図5に示すように、当該DCIに指示されたMCSインデックスに関連付けられた特定MCSインデックスを決定し、第1MCSテーブル(eMBB用MCSテーブル、qam64又はqam256)内の特定MCSインデックスのエントリ(変調次数及び符号化率の少なくとも1つ)を用いてもよい。 The UL-SCH indicator field in the DCI is set to 0, the new RNTI is not used for scrambling the DCI CRC, and the upper layer parameter mcs-table is a second MCS table (URLCS MCS table, qam64LowSE); When the DCI indicates the reserved MCS index, the UE determines the specific MCS index associated with the MCS index indicated by the DCI as shown in FIG. 5, and the first MCS table (eMBB MCS table, qam64). Alternatively, an entry (at least one of the modulation order and the coding rate) of the specific MCS index in qam256) may be used.
 特定MCSインデックスは、非予約MCSインデックス(例えば、0~27又は0~28)であってもよい。 The specific MCS index may be a non-reserved MCS index (for example, 0 to 27 or 0 to 28).
 第2MCSテーブル(設定MCSテーブル)の予約MCSインデックスが、第1MCSテーブルの特定MCSインデックス(エントリ)に関連付けられてもよい。 The reserved MCS index of the second MCS table (set MCS table) may be associated with a specific MCS index (entry) of the first MCS table.
 予約MCSインデックスと特定MCSインデックスの関連付け、第1MCSテーブル、などは、仕様によって固定されてもよいし、上位レイヤパラメータによって設定されてもよいし、DCIによって指示されてもよいし、PUSCHに割り当てられたリソースの数に基づきUEによって決定されてもよい。 The association between the reserved MCS index and the specific MCS index, the first MCS table, etc., may be fixed according to the specification, may be set by upper layer parameters, may be indicated by DCI, or may be assigned to PUSCH. May be determined by the UE based on the number of resources allocated.
 DCI内のUL-SCHインジケータフィールドが0にセットされ、且つ当該DCIが非予約MCSインデックスを示す場合、UEは、図6に示すように、上位レイヤパラメータmcs-tableによって設定されたMCSテーブル内の、DCIに指示されたMCSインデックスのエントリ(変調次数及び符号化率の少なくとも1つ)を、PUSCHに適用してもよい。 If the UL-SCH indicator field in the DCI is set to 0 and the DCI indicates a non-reserved MCS index, the UE, as shown in FIG. , DCI, the entry of the MCS index (at least one of the modulation order and the coding rate) may be applied to the PUSCH.
 この第1の態様によれば、UEは、上位レイヤによって設定されたMCSテーブルと異なるMCSテーブル内のエントリを動的に用いることができる。例えば、UEは、上位レイヤによってeMBB用MCSテーブルを設定された場合でも、DCI内の予約MCSインデックスに関連付けられた、URLLC用MCSテーブルのエントリを、UL-SCHなしのPUSCH上のUCI送信に用いることができる。 According to the first aspect, the UE can dynamically use an entry in the MCS table different from the MCS table set by the upper layer. For example, even when the UE sets the eMBB MCS table by the upper layer, the UE uses the entry of the URLLC MCS table associated with the reserved MCS index in the DCI for the UCI transmission on the PUSCH without the UL-SCH. be able to.
(第2の態様)
 第2の態様では、DCIが予約MCSインデックスを指定可能でない場合について説明する。
(Second aspect)
In the second mode, a case will be described in which the DCI cannot specify a reserved MCS index.
 DCI内のUL-SCHインジケータフィールドが0にセットされ(UL-SCHなしのPUSCH上のUCI送信がトリガされ)た場合、図7に示すように、UEは、DCIが非予約MCSインデックスを示すと期待する。言い換えれば、DCI内のUL-SCHインジケータフィールドが0にセットされた場合、UEは、DCIが予約MCSインデックスを示すと期待しない。 If the UL-SCH indicator field in the DCI is set to 0 (triggered UCI transmission on the PUSCH without the UL-SCH), then as shown in FIG. 7, the UE may indicate that the DCI indicates a non-reserved MCS index. expect. In other words, if the UL-SCH indicator field in the DCI is set to 0, the UE does not expect the DCI to indicate a reserved MCS index.
 この第2の態様によれば、UEは、上位レイヤパラメータによって設定されたMCSテーブルだけを用い、予約MCSインデックスを用いないため、処理の負荷を抑えることができる。 According to the second aspect, since the UE uses only the MCS table set by the upper layer parameter and does not use the reserved MCS index, the UE can reduce the processing load.
(第3の態様)
 第3の態様では、UEは、UL-SCHなしのPUSCH上のUCI送信に対し、MCSテーブルを示す上位レイヤパラメータ(mcs-table)に関わらず、特定MCSテーブルを用いる。
(Third aspect)
In the third example, the UE uses the specific MCS table for UCI transmission on the PUSCH without the UL-SCH regardless of the upper layer parameter (mcs-table) indicating the MCS table.
 DCI内のUL-SCHインジケータフィールドが0にセットされた場合(UL-SCHなしのPUSCH上のUCI送信がトリガされた場合)、UEは、上位レイヤパラメータmcs-tableの値に関わらず、特定MCSテーブルを用いてもよい。特定MCSテーブルは、URLLC用MCSテーブルであってもよいし、eMBB用MCSテーブルであってもよい。 If the UL-SCH indicator field in DCI is set to 0 (if UCI transmission on PUSCH without UL-SCH is triggered), the UE shall send a specific MCS regardless of the value of the upper layer parameter mcs-table. A table may be used. The specific MCS table may be an MCS table for URLLC or an MCS table for eMBB.
 例えば、UEは、DCI内のUL-SCHインジケータフィールドが0にセットされた場合、たとえ上位レイヤパラメータによってeMBB用MCSテーブルが設定されていたとしても、UL-SCHなしのPUSCHにURLLC用MCSテーブルを適用してもよい。例えば、UEは、DCI内のUL-SCHインジケータフィールドが1にセットされた場合(UL-SCHありのPUSCH上のUCI送信がトリガされた場合)、たとえ上位レイヤによってURLLC用MCSテーブルが設定されたとしても、UL-SCHありのPUSCHにeMBB用MCSテーブルを適用してもよい。 For example, when the UL-SCH indicator field in the DCI is set to 0, the UE sets the URL-LCS MCS table on the PUSCH without the UL-SCH even if the MCS table for eMBB is set by higher layer parameters. May be applied. For example, if the UL-SCH indicator field in DCI is set to 1 (when UCI transmission on PUSCH with UL-SCH is triggered), the MCS table for URLLC is set by higher layers. Alternatively, the MCS table for eMBB may be applied to the PUSCH with the UL-SCH.
 DCI内のUL-SCHインジケータフィールドが0にセットされ(UL-SCHなしのPUSCH上のUCIがトリガされ)、且つ当該DCIが非予約MCSインデックスを示す場合、UEは、図8に示すように、特定MCSテーブル(例えば、URLLC用テーブル)内の、DCIに指示されたMCSインデックスのエントリを用いてもよい。この場合、UEは、設定された上位レイヤパラメータmcs-tableに関わらず、特定MCSテーブルを用いてもよいし、新RNTIが設定されたか否かに関わらず、特定MCSテーブルを用いてもよいし、当該DCIのCRCが新RNTIによってスクランブルされたか否かに関わらず、特定MCSテーブルを用いてもよい。 If the UL-SCH indicator field in the DCI is set to 0 (the UCI on the PUSCH without the UL-SCH is triggered) and the DCI indicates a non-reserved MCS index, then the UE, as shown in FIG. The entry of the MCS index indicated by DCI in a specific MCS table (for example, a URLLC table) may be used. In this case, the UE may use the specific MCS table irrespective of the set upper layer parameter mcs-table, or may use the specific MCS table regardless of whether the new RNTI is set. The specific MCS table may be used regardless of whether the CRC of the DCI is scrambled by the new RNTI.
 UEは、第1の態様と同様にして予約MCSインデックスを用いてもよい。 The UE may use the reserved MCS index in the same manner as in the first example.
 DCI内のUL-SCHインジケータフィールドが0にセットされ、且つ当該DCIが予約MCSインデックスを示す場合、UEは、図8に示すように、DCIに指示されたMCSインデックスに関連付けられた特定MCSインデックスを決定し、別のMCSテーブル(参照MCSテーブル)の特定MCSインデックスのエントリを、PUSCHに適用してもよい。この場合、UEは、設定された上位レイヤパラメータmcs-tableに関わらず、参照MCSテーブルを用いてもよいし、新RNTIが設定されたか否かに関わらず、参照MCSテーブルを用いてもよいし、当該DCIのCRCが新RNTIによってスクランブルされたか否かに関わらず、参照MCSテーブルを用いてもよい。 If the UL-SCH indicator field in the DCI is set to 0 and the DCI indicates a reserved MCS index, the UE sets the specific MCS index associated with the DCI-indicated MCS index as shown in FIG. Once determined, the entry of the specific MCS index of another MCS table (reference MCS table) may be applied to the PUSCH. In this case, the UE may use the reference MCS table irrespective of the set upper layer parameter mcs-table, or may use the reference MCS table irrespective of whether the new RNTI is set. Alternatively, the reference MCS table may be used regardless of whether the CRC of the DCI is scrambled by the new RNTI.
 特定MCSテーブルがURLLC用MCSテーブルであり、参照MCSテーブルがeMBB用MCSテーブルであってもよい。特定MCSテーブルがeMBB用MCSテーブルであり、参照MCSテーブルがURLLC用MCSテーブルであってもよい。 The specific MCS table may be a URLLC MCS table, and the reference MCS table may be an eMBB MCS table. The specific MCS table may be an eMBB MCS table, and the reference MCS table may be a URLLC MCS table.
 図8とは逆に、UL-SCHなしのPUSCHに、eMBB用MCSテーブルが適用されてもよい。UEは、上位レイヤパラメータmcs-tableによってURLLC用MCSテーブルがUEに設定された場合、UL-SCHありのPUSCHにURLLC用MCSテーブルを適用し、UL-SCHなしのPUSCHにeMBB用MCSテーブルを適用してもよい。 逆 Contrary to FIG. 8, the eMBB MCS table may be applied to the PUSCH without the UL-SCH. When the MLC table for URLLC is set in the UE by the upper layer parameter mcs-table, the UE applies the MCS table for URLLC to the PUSCH with UL-SCH and applies the MCS table for eMBB to the PUSCH without UL-SCH. May be.
 予約MCSインデックスと特定MCSインデックスの関連付け、特定MCSテーブル、参照MCSテーブル、などは、仕様によって固定されてもよいし、上位レイヤパラメータによって設定されてもよいし、DCIによって指示されてもよいし、PUSCHに割り当てられたリソースの数に基づきUEによって決定されてもよい。 The association between the reserved MCS index and the specific MCS index, the specific MCS table, the reference MCS table, etc., may be fixed according to specifications, may be set by upper layer parameters, may be indicated by DCI, It may be determined by the UE based on the number of resources allocated to PUSCH.
 この第3の態様によれば、UEは、上位レイヤによって設定されていないテーブルを、UL-SCHなしのPUSCH上のUCI送信に用いることができる。例えば、UEは、上位レイヤによってURLLC用MCSテーブルを設定されていなくても、DCI内のUL-SCHインジケータフィールドが0にセットされることによって、URLLC用MCSテーブル内の非予約MCSインデックスのエントリを用いることができる。例えば、UEは、上位レイヤによってeMBB用MCSテーブルを設定されていなくても、DCI内のUL-SCHインジケータフィールドが0にセットされることによって、eMBB用MCSテーブル内の非予約MCSインデックスのエントリを用いることができる。 According to the third aspect, the UE can use a table not set by the upper layer for UCI transmission on the PUSCH without the UL-SCH. For example, even when the MLC table for URLLC is not set by the upper layer, the UE sets the entry of the non-reserved MCS index in the MCS table for URLLC by setting the UL-SCH indicator field in DCI to 0. Can be used. For example, the UE sets the entry of the non-reserved MCS index in the eMBB MCS table by setting the UL-SCH indicator field in the DCI to 0 even if the eMBB MCS table is not set by the upper layer. Can be used.
(その他の態様)
 DCIフォーマット0_1を有するDCIのCRCが第1RNTI(例えば、新RNTI)を用いてスクランブルされた場合、UEは、当該DCI内のUL-SCHインジケータフィールドが1にセットされる(UL-SCHなしのPUSCH上のUCI送信がトリガされない)と期待してもよい。この場合、第1RNTIは、UL-SCHありのPUSCHのスケジューリングのためのDCIに用いられる。DCIフォーマット0_1を有するDCI内のUL-SCHインジケータフィールドが0にセットされる(UL-SCHなしのPUSCH上のUCI送信がトリガされる)場合、UEは、当該DCIのCRCが別の第2RNTI(例えば、C-RNTI)を用いてスクランブルされると期待してもよい。
(Other aspects)
If the CRC of the DCI having DCI format 0_1 is scrambled using the first RNTI (eg, the new RNTI), the UE sets the UL-SCH indicator field in the DCI to 1 (PUSCH without UL-SCH) UCI transmission above is not triggered). In this case, the first RNTI is used for DCI for scheduling PUSCH with UL-SCH. If the UL-SCH indicator field in the DCI with the DCI format 0_1 is set to 0 (triggering UCI transmission on the PUSCH without the UL-SCH), the UE may check that the CRC of the DCI is a different second RNTI ( For example, it may be expected to be scrambled using C-RNTI).
 第1RNTI(例えば、新RNTI)がUEに設定され、且つDCIフォーマット0_1を有するDCIのCRCが第1RNTIを用いてスクランブルされない場合、UEは、当該DCI内のUL-SCHインジケータフィールドが1にセットされる(UL-SCHなしのPUSCH上のUCI送信がトリガされない)と期待してもよい。言い換えれば、DCIフォーマット0_1を有するDCI内のUL-SCHインジケータフィールドが0にセットされる(UL-SCHなしのPUSCH上のUCI送信がトリガされる)場合、UEは、当該DCIのCRCが第1RNTIを用いてスクランブルされると期待してもよい。 If a first RNTI (eg, a new RNTI) is set for the UE and the CRC of the DCI with DCI format 0_1 is not scrambled using the first RNTI, the UE sets the UL-SCH indicator field in the DCI to one. (UCI transmission on PUSCH without UL-SCH is not triggered). In other words, if the UL-SCH indicator field in the DCI with the DCI format 0_1 is set to 0 (triggering UCI transmission on the PUSCH without the UL-SCH), the UE checks that the CRC of the DCI is the first RNTI May be expected to be scrambled using
 第1RNTI(例えば、新RNTI)がUEに設定された場合、UEは、別の第2RNTI(例えば、C-RNTI)を用いてスクランブルされたCRCを有するDCIをモニタしなくてもよい(モニタすることを期待しなくてもよい)。 If a first RNTI (eg, a new RNTI) is configured for the UE, the UE may not monitor (monitor) a DCI having a CRC scrambled with another second RNTI (eg, a C-RNTI). You don't have to expect that).
 第1RNTIがUEに設定された場合、UEは、別の第2RNTIを用いてスクランブルされたCRCを有するDCIをモニタしてもよい。 場合 If the first RNTI is set to the UE, the UE may monitor the DCI with the CRC scrambled using another second RNTI.
 UL-SCHありのPUSCHの初送をスケジュールするDCIは、非予約MCSインデックスを指定し、UL-SCHありのPUSCHの再送をスケジュールするDCIは、予約MCSインデックスを指定してもよい。 The DCI that schedules the initial transmission of the PUSCH with the UL-SCH may specify a non-reserved MCS index, and the DCI that schedules the retransmission of the PUSCH with the UL-SCH may specify a reserved MCS index.
 UL-SCHありのPUSCHの再送をスケジュールするDCIが、非予約MCSインデックスを指定してもよい。この場合、UL-SCHありのPUSCHに対し、各態様が適用されてもよい。すなわち、各態様のUL-SCHインジケータフィールドが0にセットされた場合を、UL-SCHインジケータフィールドが1にセットされた場合と読み替えてもよい。また、各態様が、UL-SCHインジケータフィールドの値に依らなくてもよい。 The DCI that schedules the retransmission of the PUSCH with the UL-SCH may specify the non-reserved MCS index. In this case, each aspect may be applied to PUSCH with UL-SCH. That is, the case where the UL-SCH indicator field of each aspect is set to 0 may be read as the case where the UL-SCH indicator field is set to 1. Further, each aspect may not depend on the value of the UL-SCH indicator field.
(無線通信システム)
 以下、本開示の実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記実施形態に示す無線通信方法の少なくとも一つ又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using at least one of the wireless communication methods described in the above embodiments or a combination thereof.
 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。 FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. In the wireless communication system 1, carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。 The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。 The wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1. Have. Further, user terminals 20 are arranged in the macro cell C1 and each small cell C2. The arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
 ユーザ端末20は、基地局11及び基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。 The user terminal 20 can be connected to both the base station 11 and the base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. In addition, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, five or less CCs, six or more CCs).
 ユーザ端末20と基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、基地局11との間と同じキャリアが用いられてもよい。なお、各基地局が利用する周波数帯域の構成はこれに限られない。 A communication between the user terminal 20 and the base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier). On the other hand, between the user terminal 20 and the base station 12, a carrier having a relatively high frequency band (for example, 3.5 GHz, 5 GHz or the like) and a wide bandwidth may be used, or between the user terminal 20 and the base station 11. The same carrier as described above may be used. The configuration of the frequency band used by each base station is not limited to this.
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。 The user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell. In each cell (carrier), a single numerology may be applied, or a plurality of different numerologies may be applied.
 ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like.
 例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。 For example, when the subcarrier intervals of the constituent OFDM symbols are different and / or the number of OFDM symbols is different for a certain physical channel, the numerology may be referred to as different.
 基地局11と基地局12との間(又は、2つの基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。 The base station 11 and the base station 12 (or between the two base stations 12) may be connected by a wire (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like) or wirelessly. Good.
 基地局11及び各基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各基地局12は、基地局11を介して上位局装置30に接続されてもよい。 The base station 11 and each base station 12 are connected to the upper station device 30 and are connected to the core network 40 via the upper station device 30. Note that the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), and a mobility management entity (MME), but is not limited thereto. Further, each base station 12 may be connected to the upper station device 30 via the base station 11.
 なお、基地局11は、相対的に広いカバレッジを有する基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、基地局12は、局所的なカバレッジを有する基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 Note that the base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), a RRH (Remote Radio Head), a transmission / reception point, and the like. May be called. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。 Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。 In the wireless communication system 1, Orthogonal Frequency Division Multiple Access (OFDMA) is applied to the downlink as a wireless access scheme, and Single-Carrier Frequency Division Multiple Access (SC-FDMA: Single Carrier) is applied to the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。 OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier to perform communication. SC-FDMA divides a system bandwidth into bands each composed of one or a continuous resource block for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される物理下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、物理ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。 In the wireless communication system 1, as a downlink channel, a physical downlink shared channel (PDSCH: Physical Downlink Shared Channel), a physical broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel shared by each user terminal 20 Are used. The PDSCH transmits user data, upper layer control information, SIB (System Information Block), and the like. Also, MIB (Master \ Information \ Block) is transmitted by PBCH.
 下りL1/L2制御チャネルは、物理下り制御チャネル(PDCCH(Physical Downlink Control Channel)及び/又はEPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)の少なくとも一つを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。 Downlink L1 / L2 control channels include physical downlink control channels (Physical Downlink Control Channel (PDCCH) and / or EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), and PHICH (Physical Hybrid-ARQ Indicator Channel). ). Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。 ス ケ ジ ュ ー リ ン グ The scheduling information may be notified by DCI. For example, a DCI that schedules DL data reception may be called a DL assignment, and a DCI that schedules UL data transmission may be called an UL grant.
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。 PCFICH transmits the number of OFDM symbols used for PDCCH. The PHICH transmits acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) of HARQ (Hybrid Automatic Repeat Repeat request) for the PUSCH. The EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される物理上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、物理上り制御チャネル(PUCCH:Physical Uplink Control Channel)、物理ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線リンク品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。 In the radio communication system 1, as uplink channels, a physical uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, a physical uplink control channel (PUCCH: Physical Uplink Control Channel), a physical random access channel (PRACH: Physical Random Access Channel) or the like is used. By PUSCH, user data, higher layer control information, etc. are transmitted. In addition, downlink radio link quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH. The PRACH transmits a random access preamble for establishing a connection with a cell.
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。 In the wireless communication system 1, as a downlink reference signal, a cell-specific reference signal (CRS: Cell-specific Reference Signal), a channel state information reference signal (CSI-RS: Channel State Information-Reference Signal), and a demodulation reference signal (DMRS: DeModulation Reference Signal, a position determination reference signal (PRS: Positioning Reference Signal), and the like are transmitted. In the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like are transmitted as uplink reference signals. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). The transmitted reference signal is not limited to these.
<基地局>
 図10は、一実施形態に係る基地局の全体構成の一例を示す図である。基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
<Base station>
FIG. 10 is a diagram illustrating an example of an overall configuration of a base station according to one embodiment. The base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. The transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
 下りリンクによって基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 ユ ー ザ User data transmitted from the base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 In the baseband signal processing unit 104, regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control) The transmission / reception unit performs retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, and so on. 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception section 103 converts the baseband signal precoded and output from the baseband signal processing section 104 for each antenna into a radio frequency band, and transmits the radio frequency band. The radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101. The transmission / reception unit 103 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, as for an uplink signal, a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102. Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行う。 The baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106. The call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the base station 10, management of radio resources, and the like.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface. The transmission line interface 106 transmits and receives signals (backhaul signaling) to and from another base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). Is also good.
 また、送受信部103は、ユーザ端末20に対して下り(DL)信号(例えば、物理下り共有チャネル(PDSCH)、物理下り制御チャネル(PDCCH)(DCI)、DL参照信号の少なくとも一つを含む)を送信し、当該ユーザ端末20からの上り(UL)信号(物理上り共有チャネル(PUSCH)、物理上り制御チャネル(PUSCH)、UL参照信号の少なくとも一つを含む)を受信する。 In addition, the transmission / reception unit 103 transmits a downlink (DL) signal to the user terminal 20 (for example, includes at least one of a physical downlink shared channel (PDSCH), a physical downlink control channel (PDCCH) (DCI), and a DL reference signal). And receives an uplink (UL) signal (including at least one of a physical uplink shared channel (PUSCH), a physical uplink control channel (PUSCH), and a UL reference signal) from the user terminal 20.
 また、送受信部103は、第1変調及び符号化方式(MCS)テーブルを示す上位レイヤパラメータを送信し、物理上り共有チャネルのスケジューリングのための下り制御情報を送信してもよい。 {Also, transmitting / receiving section 103 may transmit upper layer parameters indicating a first modulation and coding scheme (MCS) table, and may transmit downlink control information for scheduling of a physical uplink shared channel.
 図11は、一実施形態に係る基地局の機能構成の一例を示す図である。なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 11 is a diagram illustrating an example of a functional configuration of the base station according to the embodiment. In this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and base station 10 may be assumed to have other functional blocks necessary for wireless communication.
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。 The baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations need only be included in base station 10, and some or all of the configurations need not be included in baseband signal processing section 104.
 制御部(スケジューラ)301は、基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit (scheduler) 301 controls the entire base station 10. The control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。 The control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。 The control unit 301 performs scheduling (for example, resources) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like). Allocation). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
 制御部301は、同期信号(例えば、PSS/SSS)、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。 The control unit 301 controls scheduling of a synchronization signal (for example, PSS / SSS) and a downlink reference signal (for example, CRS, CSI-RS, DMRS).
 また、制御部301は、物理上り共有チャネルの変調方式、符号化率の少なくとも一つを制御してもよい。具体的には、制御部301は、物理上り共有チャネルの変調方式、符号化率の少なくとも一つを示すインデックス値を含む下り制御情報の生成及び送信を制御してもよい。 {Also, the control unit 301 may control at least one of the modulation scheme and the coding rate of the physical uplink shared channel. Specifically, the control unit 301 may control generation and transmission of downlink control information including an index value indicating at least one of the modulation scheme and the coding rate of the physical uplink shared channel.
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated downlink signal to mapping section 303. The transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理などが行われる。 The transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example. The DL assignment and the UL grant are both DCI and follow the DCI format. In addition, the downlink data signal is subjected to an encoding process, a modulation process, and the like according to an encoding rate, a modulation method, and the like determined based on channel state information (CSI: Channel \ State \ Information) from each user terminal 20 or the like.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 Mapping section 303 maps the downlink signal generated by transmission signal generating section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs it to transmitting / receiving section 103. The mapping unit 303 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 (4) The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。 (4) The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 (4) The measurement unit 305 performs measurement on the received signal. The measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。 For example, the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal. The measurement unit 305 is configured to receive power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio, SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received @ Signal @ Strength @ Indicator)), channel information (for example, CSI), and the like. The measurement result may be output to the control unit 301.
 また、制御部301は、前記下り制御情報が、前記物理上り共有チャネルに対応する上りトランスポートチャネルが無いことを示す場合、前記上位レイヤパラメータ及び前記下り制御情報の少なくとも1つに基づいて、前記物理上り共有チャネルのための、MCSテーブル及びMCSインデックスの少なくとも1つを決定してもよい。 Further, the control unit 301, when the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, based on at least one of the upper layer parameters and the downlink control information, At least one of an MCS table and an MCS index for a physical uplink shared channel may be determined.
<ユーザ端末>
 図12は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
<User terminal>
FIG. 12 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment. The user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205. Note that the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 (4) The radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmission / reception section 203 converts the frequency of the received signal into a baseband signal, and outputs the baseband signal to the baseband signal processing section 204. The transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。 The baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。 On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。 (4) The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band. The radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
 また、送受信部203は、基地局10からの下り(DL)信号(例えば、物理下り共有チャネル(PDSCH)、物理下り制御チャネル(PDCCH)(DCI)、DL参照信号の少なくとも一つを含む)を受信し、当該基地局10に対する上り(UL)信号(物理上り共有チャネル(PUSCH)、物理上り制御チャネル(PUSCH)、UL参照信号の少なくとも一つを含む)を送信する。 Further, the transmission / reception unit 203 receives a downlink (DL) signal (for example, including at least one of a physical downlink shared channel (PDSCH), a physical downlink control channel (PDCCH) (DCI), and a DL reference signal) from the base station 10. It receives and transmits an uplink (UL) signal (including at least one of a physical uplink shared channel (PUSCH), a physical uplink control channel (PUSCH), and a UL reference signal) to the base station 10.
 また、送受信部203は、第1変調及び符号化方式(MCS)テーブルを示す上位レイヤパラメータを受信し、物理上り共有チャネルのスケジューリングのための下り制御情報を受信してもよい。 {Also, the transmission / reception unit 203 may receive higher layer parameters indicating the first modulation and coding scheme (MCS) table, and may receive downlink control information for scheduling the physical uplink shared channel.
 図13は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 13 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。 The baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 controls the entire user terminal 20. The control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。 The control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
 制御部401は、基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。 The control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404. The control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
 また、制御部401は、基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。 When the control unit 401 acquires various information notified from the base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 Transmission signal generating section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403. The transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。 (4) The transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203. The mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。 (4) The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10. The reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. In addition, the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。 (4) The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 405 performs measurement on the received signal. The measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。 For example, the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like. The measurement result may be output to the control unit 401.
 また、制御部401は、前記下り制御情報が、前記物理上り共有チャネルに対応する上りトランスポートチャネル(UL-SCH)が無いことを示す場合、前記上位レイヤパラメータ(例えば、mcs-table)及び前記下り制御情報(例えば、UL-SCHインジケータ、当該下り制御情報のCRCのスクランブリングに用いられたRNTI)の少なくとも1つに基づいて、前記物理上り共有チャネルのための、MCSテーブル及びMCSインデックスの少なくとも1つを決定してもよい。 In addition, when the downlink control information indicates that there is no uplink transport channel (UL-SCH) corresponding to the physical uplink shared channel, the control unit 401 determines the upper layer parameter (for example, mcs-table) and the At least one of an MCS table and an MCS index for the physical uplink shared channel based on at least one of downlink control information (eg, UL-SCH indicator, RNTI used for scrambling CRC of the downlink control information). One may be determined.
 また、前記下り制御情報が、前記物理上り共有チャネルに対応する上りトランスポートチャネルが無いことを示し、且つ前記下り制御情報のCRCをスクランブルするための所定識別子(例えば、新RNTI)が用いられず、且つ前記下り制御情報に示された第1MCSインデックスが所定範囲内(例えば、予約MCSインデックス)である場合、前記制御部401は、所定MCSテーブル(例えば、URLLC用MCSテーブル又はeMBB用MCSテーブル)において、前記第1インデックスに関連付けられた第2MCSインデックスを、前記物理上り共有チャネルへ適用してもよい(第1の態様)。 Also, the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, and a predetermined identifier (eg, a new RNTI) for scrambling a CRC of the downlink control information is not used. If the first MCS index indicated in the downlink control information is within a predetermined range (for example, a reserved MCS index), the control unit 401 transmits a predetermined MCS table (for example, a URLLC MCS table or an eMBB MCS table). , The second MCS index associated with the first index may be applied to the physical uplink shared channel (first mode).
 また、前記下り制御情報が、前記物理上り共有チャネルに対応する上りトランスポートチャネルが無いことを示し、且つ前記下り制御情報に示された第3MCSインデックスが所定範囲と異なる範囲内(例えば、非予約MCSインデックス)である場合、前記制御部401は、前記上位レイヤパラメータによって設定されたMCSテーブルにおいて、前記第3MCSインデックスを、前記物理上り共有チャネルへ適用してもよい(第1の態様)。 Also, the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, and the third MCS index indicated in the downlink control information is within a range different from a predetermined range (for example, unreserved). If it is (MCS index), the control unit 401 may apply the third MCS index to the physical uplink shared channel in the MCS table set by the upper layer parameters (first mode).
 また、前記下り制御情報が、前記物理上り共有チャネルに対応する上りトランスポートチャネルが無いことを示し、且つ前記下り制御情報に示された第4MCSインデックスが所定範囲内である場合、前記制御部401は、所定MCSテーブル(例えば、URLLC用MCSテーブル又はeMBB用MCSテーブル)において、前記第4MCSインデックスを前記物理上り共有チャネルへ適用してもよい(第3の態様)。 If the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, and the fourth MCS index indicated in the downlink control information is within a predetermined range, the control unit 401 May apply the fourth MCS index to the physical uplink shared channel in a predetermined MCS table (for example, an MCS table for URLLC or an MCS table for eMBB) (third aspect).
 また、前記下り制御情報が、前記物理上り共有チャネルに対応する上りトランスポートチャネルが無いことを示す場合、前記制御部401は、前記下り制御情報が第1範囲内のインデックスを示すと期待してもよい(第2の態様)。 Also, when the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, the control unit 401 expects that the downlink control information indicates an index within a first range. (Second embodiment).
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
Note that the block diagram used in the description of the above-described embodiment shows blocks in functional units. These functional blocks (components) are realized by an arbitrary combination of at least one of hardware and software. In addition, a method for implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated from each other). , Wired, wireless, etc.) and using these multiple devices. The functional block may be realized by combining one device or the plurality of devices with software.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (constituent unit) that makes transmission function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. In any case, as described above, the realization method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, and the like according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method according to the present disclosure. FIG. 14 is a diagram illustrating an example of a hardware configuration of a base station and a user terminal according to an embodiment. The above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more devices illustrated in the drawing, or may be configured without including some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Further, the processing may be executed by one processor, or the processing may be executed by two or more processors simultaneously, sequentially, or by using another method. Note that the processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 The functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 The processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operation described in the above embodiment is used. For example, the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be similarly implemented.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.)), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured. The storage 1003 may be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。送受信部103は、送信部103aと受信部103bとで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission line interface 106, and the like may be realized by the communication device 1004. The transmission / reception unit 103 may be mounted physically or logically separated between the transmission unit 103a and the reception unit 103b.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input. The output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 The devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
Note that terms described in the present disclosure and terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, at least one of the channel and the symbol may be a signal (signaling). Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard. A component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The radio frame may be configured by one or a plurality of periods (frames) in the time domain. The one or more respective periods (frames) forming the radio frame may be referred to as a subframe. Furthermore, a subframe may be configured by one or more slots in the time domain. The subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception. At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be configured by one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be constituted by one or more symbols in the time domain. Also, minislots may be called subslots. A minislot may be made up of a smaller number of symbols than slots. A PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. The radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding thereto. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot is called a TTI. You may. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be. Note that the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI means, for example, a minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, a code word, or a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like. A TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms. The TTI having the TTI length described above may be replaced with the TTI.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB: Resource Block) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12. The number of subcarriers included in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 R Also, the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or a plurality of RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 {Also, a resource block may be composed of one or more resource elements (RE: Resource @ Element). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP: Bandwidth @ Part) (which may also be referred to as a partial bandwidth or the like) may represent a subset of contiguous common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good. Here, the common RB may be specified by an index of the RB based on the common reference point of the carrier. A PRB may be defined in a BWP and numbered within the BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP). For a UE, one or more BWPs may be configured in one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 少 な く と も At least one of the configured BWPs may be active, and the UE may not have to assume transmitting and receiving a given signal / channel outside the active BWP. Note that “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of the above-described radio frame, subframe, slot, minislot, and symbol are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The number of subcarriers, the number of symbols in a TTI, the symbol length, the configuration such as the cyclic prefix (CP) length can be variously changed.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, the information, parameters, and the like described in the present disclosure may be represented using an absolute value, may be represented using a relative value from a predetermined value, or may be represented using another corresponding information. May be represented. For example, a radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 名称 Names used for parameters and the like in the present disclosure are not limited in any way. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure. The various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 情報 In addition, information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to at least one of the upper layer. Information, signals, and the like may be input and output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 (4) Information and signals input and output may be stored in a specific location (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method. For example, the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 {Note that the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. The RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like. Also, the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, the notification of the predetermined information (for example, the notification of “X”) is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1) or by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, regardless of whether it is called software, firmware, middleware, microcode, a hardware description language, or any other name, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 ソ フ ト ウ ェ ア In addition, software, instructions, information, and the like may be transmitted and received via a transmission medium. For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。 用語 As used in this disclosure, the terms “system” and “network” may be used interchangeably.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(QCL:Quasi-Co-Location)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “pseudo collocation (QCL: Quasi-Co-Location)”, “transmission power”, “phase rotation”, “antenna port” , "Antenna port group", "layer", "number of layers", "rank", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel", etc. The terms may be used interchangeably.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, “base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “ "Access point (access @ point)", "transmission point (TP: Transmission @ Point)", "reception point (RP: Reception @ Point)", "transmission / reception point (TRP: Transmission / Reception @ Point)", "panel", "cell" Terms such as, "sector", "cell group", "carrier", "component carrier" may be used interchangeably. A base station may be referred to by a term such as a macro cell, a small cell, a femto cell, a pico cell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio 通信 Head)). The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as “mobile station (MS)”, “user terminal”, “user equipment” (UE), and “terminal” may be used interchangeably. .
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , A handset, a user agent, a mobile client, a client or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 少 な く と も At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like. The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (maned or unmanned). ). Note that at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 基地 In addition, the base station in the present disclosure may be replaced with a user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the configuration may be such that the user terminal 20 has the function of the base station 10 described above. Further, words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”). For example, an uplink channel, a downlink channel, and the like may be replaced with a side channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station 10 may have the function of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, an operation performed by the base station may be performed by an upper node (upper node) in some cases. In a network including one or more network nodes having a base station (network @ nodes), various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility @ Management @ Entity), S-GW (Serving-Gateway), etc., but not limited thereto, or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 各 Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched and used in execution. Further, the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be interchanged as long as there is no inconsistency. For example, the methods described in this disclosure use various exemplary steps to present elements of the various steps, and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure is applicable to LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile Communications), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, UWB (Ultra-WideBand), Bluetooth (registered trademark) , A system using other suitable wireless communication methods, and a next-generation system extended based on these methods. A plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 記載 The term "based on" as used in the present disclosure does not mean "based solely on" unless stated otherwise. In other words, the description "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 い か な る Any reference to elements using designations such as "first," "second," etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in some way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 用語 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "judgment (decision)" means judging, calculating, computing, processing, deriving, investigating, searching (up, search, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, “determination” includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, “judgment (decision)” is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, and the like. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 判断 Also, “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, where two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, the radio frequency domain, microwave It can be considered to be "connected" or "coupled" to each other using electromagnetic energy having a wavelength in the region, the light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 に お い て In the present disclosure, the term “A and B are different” may mean that “A and B are different from each other”. The term may mean that “A and B are different from C”. Terms such as "separate" and "coupled" may be construed similarly to "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where the terms “include”, “including” and variations thereof are used in the present disclosure, these terms are as inclusive as the term “comprising” Is intended. Further, the term "or" as used in the present disclosure is not intended to be an exclusive or.
 本開示において、例えば、英語でのa、an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be embodied as modifications and changes without departing from the spirit and scope of the invention determined based on the description in the claims. Therefore, the description of the present disclosure is intended to be illustrative and does not bring any restrictive meaning to the invention according to the present disclosure.

Claims (6)

  1.  第1変調及び符号化方式(MCS)テーブルを示す上位レイヤパラメータを受信し、物理上り共有チャネルのスケジューリングのための下り制御情報を受信する受信部と、
     前記下り制御情報が、前記物理上り共有チャネルに対応する上りトランスポートチャネルが無いことを示す場合、前記上位レイヤパラメータ及び前記下り制御情報の少なくとも1つに基づいて、前記物理上り共有チャネルのための、MCSテーブル及びMCSインデックスの少なくとも1つを決定する制御部と、を有することを特徴とするユーザ端末。
    A receiving unit that receives upper layer parameters indicating a first modulation and coding scheme (MCS) table and receives downlink control information for scheduling a physical uplink shared channel;
    When the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, based on at least one of the higher layer parameters and the downlink control information, , A control unit that determines at least one of an MCS table and an MCS index.
  2.  前記下り制御情報が、前記物理上り共有チャネルに対応する上りトランスポートチャネルが無いことを示し、且つ前記下り制御情報のCRCをスクランブルするための所定識別子が用いられず、且つ前記下り制御情報に示された第1MCSインデックスが所定範囲内である場合、前記制御部は、第1MCSテーブルにおいて、前記第1MCSインデックスに関連付けられた第2MCSインデックスを前記物理上り共有チャネルへ適用することを特徴とする請求項1に記載のユーザ端末。 The downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, a predetermined identifier for scrambling a CRC of the downlink control information is not used, and the downlink control information indicates The control unit, when the obtained first MCS index is within a predetermined range, applies the second MCS index associated with the first MCS index to the physical uplink shared channel in the first MCS table. 2. The user terminal according to 1.
  3.  前記下り制御情報が、前記物理上り共有チャネルに対応する上りトランスポートチャネルが無いことを示し、且つ前記下り制御情報に示された第3MCSインデックスが前記所定範囲と異なる範囲内である場合、前記制御部は、前記上位レイヤパラメータによって設定されたMCSテーブルにおいて、前記第3MCSインデックスを前記物理上り共有チャネルへ適用することを特徴とする請求項2に記載のユーザ端末。 When the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, and the third MCS index indicated in the downlink control information is within a range different from the predetermined range, The user terminal according to claim 2, wherein the unit applies the third MCS index to the physical uplink shared channel in an MCS table set by the upper layer parameters.
  4.  前記下り制御情報が、前記物理上り共有チャネルに対応する上りトランスポートチャネルが無いことを示し、且つ前記下り制御情報に示された第4MCSインデックスが所定範囲内である場合、前記制御部は、所定MCSテーブルにおいて、前記第4MCSインデックスを前記物理上り共有チャネルへ適用することを特徴とする請求項1に記載のユーザ端末。 If the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, and the fourth MCS index indicated in the downlink control information is within a predetermined range, the control unit performs The user terminal according to claim 1, wherein in the MCS table, the fourth MCS index is applied to the physical uplink shared channel.
  5.  前記下り制御情報が、前記物理上り共有チャネルに対応する上りトランスポートチャネルが無いことを示す場合、前記制御部は、前記下り制御情報が第1範囲内のインデックスを示すと期待することを特徴とする請求項1に記載のユーザ端末。 When the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, the control unit expects the downlink control information to indicate an index within a first range, The user terminal according to claim 1, wherein
  6.  第1変調及び符号化方式(MCS)テーブルを示す上位レイヤパラメータを送信し、物理上り共有チャネルのスケジューリングのための下り制御情報を送信する送信部と、
     前記下り制御情報が、前記物理上り共有チャネルに対応する上りトランスポートチャネルが無いことを示す場合、前記上位レイヤパラメータ及び前記下り制御情報の少なくとも1つに基づいて、前記物理上り共有チャネルのための、MCSテーブル及びMCSインデックスの少なくとも1つを決定する制御部と、を有することを特徴とする基地局。
     
    A transmitting unit that transmits upper layer parameters indicating a first modulation and coding scheme (MCS) table and transmits downlink control information for scheduling of a physical uplink shared channel;
    When the downlink control information indicates that there is no uplink transport channel corresponding to the physical uplink shared channel, based on at least one of the higher layer parameters and the downlink control information, And a control unit that determines at least one of an MCS table and an MCS index.
PCT/JP2018/024974 2018-06-29 2018-06-29 User equipment and base station WO2020003542A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024974 WO2020003542A1 (en) 2018-06-29 2018-06-29 User equipment and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024974 WO2020003542A1 (en) 2018-06-29 2018-06-29 User equipment and base station

Publications (1)

Publication Number Publication Date
WO2020003542A1 true WO2020003542A1 (en) 2020-01-02

Family

ID=68986361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024974 WO2020003542A1 (en) 2018-06-29 2018-06-29 User equipment and base station

Country Status (1)

Country Link
WO (1) WO2020003542A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017514397A (en) * 2014-04-25 2017-06-01 クゥアルコム・インコーポレイテッドQualcomm Incorporated Indication of modulation coding scheme (MCS) table in LTE uplink

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017514397A (en) * 2014-04-25 2017-06-01 クゥアルコム・インコーポレイテッドQualcomm Incorporated Indication of modulation coding scheme (MCS) table in LTE uplink

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Offline Discussion on Support of Separate CQI and MCS table(s) for URLLC", 3GPP TSG RAN WG1 MEETING #93 RL-1807748, 24 May 2018 (2018-05-24), XP051442858 *
QUALCOMM INCORPORATED: "Summary of remaining issues for overlapping UL transmissions", 3GPP TSG RAN WG1 MEETING #93 RL-1807773, 21 May 2018 (2018-05-21), XP051442870 *

Similar Documents

Publication Publication Date Title
WO2019244218A1 (en) User terminal
US11496344B2 (en) Terminal, radio communication method, base station, and system to communicate using hybrid automatic repeat request acknowledgement
WO2020053978A1 (en) User equipment and wireless communication method
WO2020026296A1 (en) User terminal and wireless communication method
JP7100134B2 (en) Terminals, wireless communication methods, base stations and systems
WO2020026292A1 (en) Base station
WO2020026297A1 (en) Base station and wireless communication method
WO2020039484A1 (en) User equipment
WO2020035956A1 (en) User terminal and wireless communication method
WO2020003443A1 (en) User equipment and radio base station
WO2020053940A1 (en) User terminal
WO2020016934A1 (en) User equipment
WO2020008644A1 (en) User terminal and base station
JPWO2018198295A1 (en) User terminal and wireless communication method
WO2020053942A1 (en) User terminal and wireless communication method
WO2020026291A1 (en) User terminal
JPWO2018203409A1 (en) User terminal and wireless communication method
WO2020031382A1 (en) User equipment
WO2020017055A1 (en) User equipment and wireless communication method
JPWO2019016953A1 (en) User terminal and wireless communication method
WO2020031357A1 (en) User equipment
WO2020039482A1 (en) User equipment and radio communication method
WO2019234929A1 (en) User terminal and wireless communication method
WO2020039483A1 (en) User terminal
WO2020003541A1 (en) User equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP