WO2020003398A1 - Endoscope and endoscopic imaging device - Google Patents
Endoscope and endoscopic imaging device Download PDFInfo
- Publication number
- WO2020003398A1 WO2020003398A1 PCT/JP2018/024336 JP2018024336W WO2020003398A1 WO 2020003398 A1 WO2020003398 A1 WO 2020003398A1 JP 2018024336 W JP2018024336 W JP 2018024336W WO 2020003398 A1 WO2020003398 A1 WO 2020003398A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- imaging device
- front surface
- light receiving
- imaging
- endoscope
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
Definitions
- the present invention relates to an endoscope having an imaging device for an endoscope including a laminated optical unit, and an imaging device for an endoscope including a laminated optical unit.
- the endoscope has been reduced in diameter to make it less invasive.
- an ultra-small diameter endoscope is required for insertion into a very small-diameter lumen, for example, a blood vessel or a bronchiole.
- JP-A-2012-18993 discloses an imaging device including a wafer-level laminate. This imaging device is manufactured by cutting a plurality of optical element wafers and an imaging element wafer after joining them.
- the manufactured imaging device includes the defective product. For this reason, it is preferable to perform an inspection and manufacture an imaging device using only good quality imaging elements.
- the imaging device for an endoscope since the endoscope is of a small variety and a large variety, it is preferable that a plurality of imaging devices having imaging devices of different specifications can be manufactured at the same time.
- An object of the embodiments of the present invention is to provide a highly reliable and minimally invasive endoscope and a highly reliable small-diameter endoscope imaging apparatus.
- the endoscope of the embodiment has an endoscope imaging device, the endoscope imaging device has a front surface and a rear surface facing the front surface, a light receiving surface and a back surface facing the light receiving surface. And an image sensor having a light receiving unit disposed on the light receiving surface, and an external electrode connected to the light receiving unit disposed on the light receiving surface or the back surface.
- An imaging unit having an incident surface on which light is incident and an exit surface facing the incident surface, the exit surface is adhered to the front surface, and a laminated optical unit to which a plurality of optical members are adhered;
- a signal cable including a core wire and an outer sheath, wherein the core wire is electrically connected to the external electrode, wherein the emission surface and the front surface are rectangular, and the emission surface is larger than the front surface.
- the imaging device for an endoscope of an embodiment includes an imaging device having a front surface and a rear surface facing the front surface, and an imaging device having a light receiving surface and a back surface facing the light receiving surface, wherein the imaging device has the light receiving surface.
- a light receiving unit is disposed, and an external electrode connected to the light receiving unit is disposed on the light receiving surface or the back surface.
- the imaging unit has a light incident surface and a light incident surface facing the light incident surface.
- An emission surface wherein the emission surface is adhered to the front surface, a laminated optical part to which a plurality of optical members are adhered, and a core wire and an outer cover, wherein the core wire is electrically connected to the external electrode.
- a signal cable connected to the output surface, the output surface and the front surface are rectangular, the output surface is larger than the front surface, and the output surface has an outer peripheral area where the front surface is not bonded, The front side is inclined with respect to the side of the emission surface. That.
- FIG. 3 is a cross-sectional view of the imaging device according to the first embodiment, taken along line III-III of FIG. 2.
- FIG. 13 is an exploded cross-sectional view of an imaging device according to a second modification of the third embodiment.
- FIG. 13 is an exploded perspective view of an imaging device according to a modification 2 of the third embodiment. It is sectional drawing of the imaging device of 4th Embodiment.
- the endoscope system 3 including the endoscope 9 of the present embodiment includes the endoscope 9, a processor 80, a light source device 81, and a monitor 82.
- the flexible insertion section 90 is inserted into the body cavity of the subject, captures an in-vivo image of the subject, and outputs an imaging signal.
- an operation section (intermediate section) 91 provided with various buttons for operating the endoscope 9 is provided.
- the operation unit 91 has a treatment tool insertion port of a channel 94 into which a living body forceps, an electric scalpel, an inspection probe, or the like is inserted into a body cavity of the subject.
- the insertion section 90 includes a rigid distal end portion 90A in which an imaging device for an endoscope (hereinafter, referred to as an “imaging device”) 1 is disposed, and a freely bendable connected to a base end portion of the distal end portion 90A. It is composed of a curved portion 90B and a flexible flexible portion 90C connected to the base end of the curved portion 90B.
- the bending section 90 ⁇ / b> B is bent by the operation of the operation section 91.
- the imaging device 1 transmits an imaging signal to the processor 80 via the signal cable 30.
- the universal cord 92 extending from the operation unit 91 is connected to the processor 80 and the light source device 81 via the connector 93.
- the processor 80 controls the entire endoscope system 3 and performs signal processing on the imaging signal to output the image signal as an image signal.
- the monitor 82 displays an image signal output by the processor 80.
- the light source device 81 has, for example, a white LED.
- the illumination light emitted from the light source device 81 is guided to an illumination optical system (not shown) at the distal end portion 90A by passing through a universal cord 92 and a light guide (not shown) passing through the insertion portion 90, and illuminates the subject. I do.
- the endoscope 9 having the small-diameter distal end portion 90A has high reliability and is minimally invasive.
- the endoscope 9 may be a rigid endoscope, and may be used for medical or industrial purposes.
- the imaging device 1 of the present embodiment includes a laminated optical unit 10, an imaging unit 20, and a signal cable 30.
- the imaging unit 20 includes a cover glass 21 and an imaging element 22.
- the cover glass 21 has a front surface 21SA and an adhesive surface 21SB facing the front surface 21SA.
- the imaging unit 20 has a front surface 20SA (the front surface 21SA of the cover glass 21) and a rear surface 20SB (the back surface 22SB of the image sensor 22) opposed to the front surface 20SA, and a plurality of external electrodes 24 are provided on the rear surface 20SB.
- the image sensor 22 has the light receiving surface 22SA and the back surface 22SB facing the light receiving surface 22SA, and the bonding surface 21SB of the cover glass 21 is bonded to the light receiving surface 22SA.
- the image sensor 22 has a light receiving part 23 as a light receiving circuit composed of a CCD or a CMOS image pickup circuit on the light receiving surface 22SA, and the light receiving part 23 is connected to a plurality of through wirings (not shown).
- the image sensor 22 may be either a front-side illuminated image sensor or a back-side illuminated image sensor.
- the light receiving unit 23 is connected to the plurality of external electrodes 24 on the back surface 22SB via respective through wirings.
- the plurality of external electrodes 24 are connected to a plurality of signal cables 30 that transmit image signals.
- the imaging unit 20 is manufactured by cutting an imaging wafer having an imaging element wafer including a plurality of imaging elements 22 and a cover glass wafer bonded thereto. That is, an imaging element wafer provided with a plurality of light receiving sections 23 and the like is manufactured using a known semiconductor manufacturing technique on a silicon wafer or the like. Peripheral circuits for performing primary processing of output signals of the light receiving unit 23 and processing of drive control signals may be formed on the imaging element wafer.
- a cover glass wafer made of, for example, 250 ⁇ m-thick flat glass is bonded to the imaging device wafer, and the imaging wafer is manufactured.
- the imaging wafer is subjected to, for example, grinding / polishing of the imaging element wafer so as to have a thickness of 300 ⁇ m, and then the through wiring connected to the light receiving unit 23 and the external electrode 24 on the rear surface 20SB are formed.
- the cover glass wafer seals the entire surface of the light receiving unit 23 to protect the light receiving unit 23, but seals only the periphery of the light receiving unit 23 and forms an air gap (space) facing the light receiving unit 23. May be.
- the imaging unit 20 is manufactured by cutting the imaging wafer.
- an operation test of the imaging device 22 is performed on the imaging device wafer or the imaging wafer, and only the imaging unit 20 determined to be non-defective is used in subsequent steps.
- the signal cable 30 includes a core wire 31 and an outer sheath 32, and the core wire 31 is electrically connected to the external electrodes 24 via the relay wiring board 35. Note that the core wire 31 may be joined to the external electrode 24.
- the distal end portions of the relay wiring board 35 and the signal cable 30 are arranged in a space in which the emission surface 10SB (incident surface 10SA) is extended in the optical axis direction. It is preferred that
- the laminated optical unit 10 to which the plurality of optical members 11 to 16 are adhered has an incident surface 10SA on which light is incident and an exit surface 10SB facing the incident surface 10SA.
- the emission surface 10SB of the multilayer optical unit 10 is bonded to the front surface 20SA of the imaging unit 20 by a bonding unit (bonding layer) 19.
- the bonding portion 19 made of an ultraviolet curable resin forms a fillet having a flared shape in the outer peripheral region A of the emission surface 10SB.
- the optical members 11 and 14 are resin lenses formed by molding resin. Each of the optical members 11 and 14 may be a hybrid lens made of transparent glass having a parallel flat plate on which a resin lens is provided, or a glass lens formed by molding or injection molding.
- the optical member 12 is provided with a stop.
- the optical member 16 is a parallel plate filter made of an infrared ray cut material for removing infrared rays.
- the optical members 13 and 15 are spacers.
- the laminated optical unit 10 is a wafer-level structure manufactured by dicing a laminated wafer to which a plurality of optical wafers each having a plurality of optical members formed are adhered.
- the type, thickness, number of layers, and stacking order of the plurality of optical wafers can be appropriately changed.
- the side surface 10SS of the laminated optical unit 10 which is a wafer level laminated body is a cut surface, there is a cut mark in the optical axis direction.
- the cutting marks are minute linear irregularities on the cut surface generated by dicing.
- the laminated wafer may be singulated into the laminated optical unit 10 by, for example, a cutting process by laser dicing, or a process of forming a cutting groove by sandblasting or etching.
- ⁇ ⁇ Emission surface 10SB (incident surface 10SA) of laminated optical unit 10 and front surface 20SA (rear surface 20SB) of imaging unit 20 are rectangular.
- the output surface 10SB is larger than the front surface 20SA. That is, the length of the diagonal line of the rectangular emission surface 10SB is longer than the length of the diagonal line of the rectangular front surface 20SA.
- the size of the circle circumscribing the square front surface 20SA is substantially the same as the size of the circle circumscribing the square output surface 10SB.
- the side of the front surface 20SA is not parallel to the side of the emission surface 10SB, but is inclined. That is, as shown in FIG. 4, the angle ⁇ between the side 20S of the front surface 20SA and the side 10S of the emission surface 10SB is 45 degrees.
- the front surface 20SA (the imaging unit 20) is rotated about the optical axis O with respect to the emission surface 10SB (the laminated optical unit 10).
- the rotation angle ⁇ is 45 degrees.
- the total area of the outer peripheral region A of the emission surface 10SB to which the front surface 20SA is not bonded is the same for both the imaging device 1 and the imaging device 101 of the comparative example.
- the area C1S of the largest circle C1 inscribed in the outer peripheral area A of the imaging device 1 is five times the area C2S of the largest circle C2 inscribed in the outer peripheral area A of the comparative imaging apparatus 101. That is, the outer peripheral area A of the imaging device 1 has a large area.
- the front surface 20SA of the imaging unit 20 is bonded to the emission surface 10SB of the laminated optical unit 10 by the bonding unit 19. Since the circle C1 is large, the maximum length S of the fillet of the bonding portion 19 is longer in the imaging device 1 than in the imaging device 101.
- the bonding portion 19 having a long fillet has a high bonding strength.
- the imaging device 1 has higher bonding strength between the imaging unit 20 and the laminated optical unit 10, and therefore has higher reliability than the imaging device 101.
- the effect of the present invention is remarkable when the area C1S of the circle C1 of the imaging device 1 is at least twice the area C2S of the circle C2 of the imaging device 101 of the comparative example.
- the upper limit of the area C1S is not particularly limited, but is, for example, eight times the area C2S.
- the size of the circumscribed circle of the square front surface 20SA was substantially the same as the size of the inscribed circle of the square exit surface 10SB.
- the shapes and relative sizes of the front surface 20SA and the emission surface 10SB can be changed.
- the inscribed circle of the emission surface 10SB is larger than the circumscribed circle of the front surface 20SA.
- the exit surface 10SB is a substantially rectangular shape in which a corner is curved and chamfered.
- the emission surface 10SB is a substantially square hexagon whose corners are chamfered by straight lines, and the front surface 20SA is rectangular.
- the angle (rotation angle) ⁇ between the side 20S of the front surface 20SA and the side 10S of the emission surface 10SB is 35 degrees.
- the imaging device in which the emission surface 10SB is larger than the front surface 20SA there is an outer peripheral area A of the emission surface 10SB to which the front surface 20SA is not bonded, and the side of the front surface 20SA is inclined with respect to the side of the emission surface 10SB, It has the same effect as the imaging device 1.
- the exit surface 10SB and the front surface 20SA may be rectangles (substantially rectangles) whose corners are chamfered.
- the emission surface 10SB may not be a square.
- the front surface 20SA may be a rectangle or a substantially rectangle in which a corner is chamfered. That is, the “rectangle” in the present invention includes “substantially rectangular”.
- the rotation angle of the front surface 20SA with respect to the emission surface 10SB about the optical axis O is 30 degrees.
- the effect of the present invention is remarkable for an imaging device having a temperature of 60 degrees or more and 60 degrees or less.
- the imaging device 1 can use only the imaging unit 20 determined to be non-defective, the production yield is high.
- the imaging device 1C of the second embodiment has a relay wiring board 35C connected to the external electrode 24, and the core 31 of the signal cable 30C passes through the relay wiring board 35C. Connected to the external electrode 24.
- the signal cable 30C is thicker than the signal cable 30.
- the imaging device 1C includes the thick signal cable 30C
- the signal cable 30C is disposed in a space extending in the optical axis direction from the outer peripheral area A of the emission surface 10SB to which the front surface 20SA is not bonded.
- the dimensions of the orthogonal axis method are small.
- the core 31 of the signal cable 30D is arranged in a space extending from the outer peripheral area A in the optical axis direction. Not placed. However, since only a part of the signal cable 30D of the imaging device 1D protrudes from the space in which the outer peripheral area A extends in the optical axis direction, the dimension of the optical axis orthogonal method is small.
- the largest circle inscribed in the outer peripheral area A is large (the area is large), so that a thick signal cable can be arranged in the outer peripheral area A.
- the imaging device in which at least the core wire 31 is arranged in a space extending from the outer peripheral area A in the optical axis direction has a small dimension in the optical axis orthogonal direction.
- the fillet of the bonding portion 19 that bonds the emission surface 10SB and the light receiving surface 20SA spreads in the outer peripheral region.
- the imaging element 22E of the imaging unit 20E has the external electrode 24 on the light receiving surface 22SA.
- a wiring pattern 10P is present in the outer peripheral area A of the emission surface 10SB of the laminated optical unit 10E.
- One end of the wiring pattern 10P is covered by the imaging unit 20, but the other end is extended to the bonding electrode in the outer peripheral area A.
- the cover glass 21E has the through wiring 21H connected to the external electrode 24, and the through wiring 21H is exposed on the front surface 20SA.
- the through wiring 21H on the front surface 20SA is connected to one end of the wiring pattern 10P.
- a joining member 36E is joined to the joining electrode at the other end of the wiring pattern 10P, and the core wire 31 is joined to the joining member 36E.
- the imaging unit 20F does not include a cover glass, and includes an imaging element 22A.
- the external electrode 24 on the light receiving surface 22SA of the imaging element 22A is joined to the wiring pattern 10P.
- the cover glass is not an essential component of the imaging device.
- a frame portion (frame) 36G having a first main surface 36SA and a second main surface 36SB opposed to the first main surface 36SA is provided. It also has As shown in FIG. 15, the frame portion 36G houses the imaging unit 20E inside, the first main surface 36SA is adhered to the emission surface 10SB, and the frame of the concave portion H36 of the second main surface 36SB. The core wire 31 is joined to the electrode.
- the core 31 may be joined to the frame electrode on the second main surface 36SB or the side surface 36SS.
- the imaging device 1G includes the frame 36G for connecting the imaging unit 20E and the signal cable 30, the manufacturing is easy.
- the imaging unit 20H includes the stacked element 60 that is joined to the imaging element 22.
- the stacked element 60 has a plurality of semiconductor elements 61 to 64 stacked.
- the semiconductor elements 61 to 64 perform primary processing on an image signal output from the image sensor 22 or process a control signal for controlling the image sensor 22.
- the semiconductor elements 61 to 64 include an AD conversion circuit, a memory, a transmission output circuit, a filter circuit, a thin film capacitor, a thin film inductor, and the like.
- the number of elements included in the stacked element 60 is, for example, 3 or more and 10 or less.
- the plurality of semiconductor elements 61 to 64 are electrically connected to each other via the through wiring 69.
- the element wafer includes a plurality of semiconductor elements 61 to 64 such as an AD conversion circuit, a memory, a transmission output circuit, a filter circuit, a thin film capacitor, and a thin film inductor.
- the imaging unit 20H including the stacked element 60 is manufactured by cutting the cover glass wafer, the imaging element wafer, and the stacked element wafer to which the plurality of element wafers are bonded.
- the imaging device 1H includes the small stacked element 60 that performs primary processing of the imaging signal, the imaging device 1H has substantially the same size as the imaging device 1, but has higher performance than the imaging device 1.
- the endoscope having the imaging devices 1 to 1H has the effect of the endoscope 9 and further has the effect of the imaging devices 1 to 1H.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Endoscopes (AREA)
Abstract
An endoscope 9 that has an endoscopic imaging device 1. The endoscopic imaging device 1 comprises: an imaging unit 20 that has a front surface 20SA and a rear surface 20SB and includes an imaging element 22 that has a light reception surface 22SA and a back surface 22SB, a light reception unit 23 being arranged at the light reception surface 22SA of the imaging element 22, and an external electrode 24 being arranged at the back surface 22SB; a laminate optical unit 10 that has an incidence surface 10SA and an emission surface 10SB and has a plurality of optical members 11–16 adhered thereto, the emission surface 10SB being adhered to the front surface 20SA; and a signal cable 30 that has a core wire 31 that is electrically connected to the external electrode 24. The emission surface 10SB and the front surface 20SA are rectangular, the emission surface 10SB is larger than the front surface 20SA, there is an outer peripheral area A in which the front surface 20SA is not adhered to the emission surface 10SB, and the sides of the front surface 20SA are inclined relative to the sides of the emission surface 10SB.
Description
本発明は、積層光学部を具備する内視鏡用撮像装置を有する内視鏡、および積層光学部を具備する内視鏡用撮像装置に関する。
The present invention relates to an endoscope having an imaging device for an endoscope including a laminated optical unit, and an imaging device for an endoscope including a laminated optical unit.
低侵襲化のため内視鏡の細径化が図られている。一方、超細径の管腔、例えば、血管または細気管支に挿入するためには、超細径の内視鏡が必要となる。しかし、低侵襲化のための細径化技術の延長では、例えば直径1.5mm未満という超細径の内視鏡を得ることは容易ではない。
内 The endoscope has been reduced in diameter to make it less invasive. On the other hand, an ultra-small diameter endoscope is required for insertion into a very small-diameter lumen, for example, a blood vessel or a bronchiole. However, it is not easy to obtain an ultra-small endoscope having a diameter of, for example, less than 1.5 mm by extending the diameter-reducing technique for less invasiveness.
特開2012-18993号公報(米国特許出願公開第2012/0008934号明細書)には、ウエハレベル積層体からなる撮像装置が開示されている。この撮像装置は、複数の光学素子ウエハと撮像素子ウエハとを接合後に、切断することによって作製されている。
JP-A-2012-18993 (US Patent Application Publication No. 2012/0008934) discloses an imaging device including a wafer-level laminate. This imaging device is manufactured by cutting a plurality of optical element wafers and an imaging element wafer after joining them.
上記製造方法では、撮像素子ウエハに不良品の撮像素子が含まれていると、製造された撮像装置には不良品が含まれてしまう。このため、検査を行って、良品の撮像素子だけを用いて撮像装置を作製することが好ましい。
In the above manufacturing method, if a defective imaging device is included in the imaging device wafer, the manufactured imaging device includes the defective product. For this reason, it is preferable to perform an inspection and manufacture an imaging device using only good quality imaging elements.
また、内視鏡用撮像装置では、内視鏡が少量多品種であるため、異なる仕様の撮像素子を具備する複数の撮像装置を同時に製造できることが好ましい。
撮 像 In addition, in the imaging device for an endoscope, since the endoscope is of a small variety and a large variety, it is preferable that a plurality of imaging devices having imaging devices of different specifications can be manufactured at the same time.
本発明の実施形態は、信頼性の高い低侵襲な内視鏡、および、信頼性の高い細径の内視鏡用撮像装置、を提供することを目的とする。
An object of the embodiments of the present invention is to provide a highly reliable and minimally invasive endoscope and a highly reliable small-diameter endoscope imaging apparatus.
実施形態の内視鏡は、内視鏡用撮像装置を有し、前記内視鏡用撮像装置は、前面と前記前面と対向する後面とを有し、受光面と前記受光面と対向する裏面とを有する撮像素子を含み、前記撮像素子は、前記受光面に受光部が配設されており、前記受光部と接続されている外部電極が前記受光面または前記裏面に配設されている、撮像部と、光が入射する入射面と前記入射面と対向する出射面とを有し、前記出射面が前記前面に接着されており、複数の光学部材が接着されている積層光学部と、芯線と外皮とを含み、前記芯線が前記外部電極と電気的に接続されている信号ケーブルと、を具備し、前記出射面および前記前面が矩形であり、前記出射面が前記前面よりも大きく前記出射面に前記前面が接着されていない外周領域があり、前記前面の辺が前記出射面の辺に対して傾斜している。
The endoscope of the embodiment has an endoscope imaging device, the endoscope imaging device has a front surface and a rear surface facing the front surface, a light receiving surface and a back surface facing the light receiving surface. And an image sensor having a light receiving unit disposed on the light receiving surface, and an external electrode connected to the light receiving unit disposed on the light receiving surface or the back surface. An imaging unit, having an incident surface on which light is incident and an exit surface facing the incident surface, the exit surface is adhered to the front surface, and a laminated optical unit to which a plurality of optical members are adhered; A signal cable including a core wire and an outer sheath, wherein the core wire is electrically connected to the external electrode, wherein the emission surface and the front surface are rectangular, and the emission surface is larger than the front surface. There is an outer peripheral area where the front surface is not bonded to the exit surface, Edges are inclined to the sides of the exit surface.
実施形態の内視鏡用撮像装置は、前面と前記前面と対向する後面とを有し、受光面と前記受光面と対向する裏面とを有する撮像素子を含み、前記撮像素子は、前記受光面に受光部が配設されており、前記受光部と接続されている外部電極が前記受光面または前記裏面に配設されている、撮像部と、光が入射する入射面と前記入射面と対向する出射面とを有し、前記出射面が前記前面に接着されており、複数の光学部材が接着されている積層光学部と、芯線と外皮とを含み、前記芯線が前記外部電極と電気的に接続されている信号ケーブルと、を具備し、前記出射面および前記前面が矩形であり、前記出射面が前記前面よりも大きく前記出射面に前記前面が接着されていない外周領域があり、前記前面の辺が前記出射面の辺に対して傾斜している。
The imaging device for an endoscope of an embodiment includes an imaging device having a front surface and a rear surface facing the front surface, and an imaging device having a light receiving surface and a back surface facing the light receiving surface, wherein the imaging device has the light receiving surface. A light receiving unit is disposed, and an external electrode connected to the light receiving unit is disposed on the light receiving surface or the back surface. The imaging unit has a light incident surface and a light incident surface facing the light incident surface. An emission surface, wherein the emission surface is adhered to the front surface, a laminated optical part to which a plurality of optical members are adhered, and a core wire and an outer cover, wherein the core wire is electrically connected to the external electrode. A signal cable connected to the output surface, the output surface and the front surface are rectangular, the output surface is larger than the front surface, and the output surface has an outer peripheral area where the front surface is not bonded, The front side is inclined with respect to the side of the emission surface. That.
本発明の実施形態によれば、信頼性の高い低侵襲な内視鏡、および、信頼性の高い細径の内視鏡用撮像装置を提供できる。
According to the embodiment of the present invention, it is possible to provide a highly reliable and minimally invasive endoscope and a highly reliable small-diameter endoscope imaging apparatus.
<第1実施形態>
<内視鏡の構成>
図1に示すように、本実施形態の内視鏡9を含む内視鏡システム3は、内視鏡9と、プロセッサ80と、光源装置81と、モニタ82と、を具備する。例えば、内視鏡9は、可撓性の挿入部90が被検体の体腔内に挿入され、被検体の体内画像を撮影し撮像信号を出力する。 <First embodiment>
<Configuration of endoscope>
As shown in FIG. 1, the endoscope system 3 including theendoscope 9 of the present embodiment includes the endoscope 9, a processor 80, a light source device 81, and a monitor 82. For example, in the endoscope 9, the flexible insertion section 90 is inserted into the body cavity of the subject, captures an in-vivo image of the subject, and outputs an imaging signal.
<内視鏡の構成>
図1に示すように、本実施形態の内視鏡9を含む内視鏡システム3は、内視鏡9と、プロセッサ80と、光源装置81と、モニタ82と、を具備する。例えば、内視鏡9は、可撓性の挿入部90が被検体の体腔内に挿入され、被検体の体内画像を撮影し撮像信号を出力する。 <First embodiment>
<Configuration of endoscope>
As shown in FIG. 1, the endoscope system 3 including the
内視鏡9の挿入部90の基端部には、内視鏡9を操作する各種ボタン類が設けられた操作部(中間部)91が配設されている。操作部91には、被検体の体腔内に、生体鉗子、電気メスまたは検査プローブ等を挿入するチャンネル94の処置具挿入口がある。
操作 At the base end of the insertion section 90 of the endoscope 9, an operation section (intermediate section) 91 provided with various buttons for operating the endoscope 9 is provided. The operation unit 91 has a treatment tool insertion port of a channel 94 into which a living body forceps, an electric scalpel, an inspection probe, or the like is inserted into a body cavity of the subject.
挿入部90は、内視鏡用撮像装置(以下、「撮像装置」という。)1が配設されている硬性の先端部90Aと、先端部90Aの基端部に連設された湾曲自在な湾曲部90Bと、湾曲部90Bの基端部に連設された可撓性の軟性部90Cとによって構成される。湾曲部90Bは、操作部91の操作によって湾曲する。撮像装置1は信号ケーブル30を経由することによってプロセッサ80に撮像信号を伝送する。
The insertion section 90 includes a rigid distal end portion 90A in which an imaging device for an endoscope (hereinafter, referred to as an “imaging device”) 1 is disposed, and a freely bendable connected to a base end portion of the distal end portion 90A. It is composed of a curved portion 90B and a flexible flexible portion 90C connected to the base end of the curved portion 90B. The bending section 90 </ b> B is bent by the operation of the operation section 91. The imaging device 1 transmits an imaging signal to the processor 80 via the signal cable 30.
操作部91から延設されているユニバーサルコード92は、コネクタ93を経由することによってプロセッサ80および光源装置81に接続されている。
The universal cord 92 extending from the operation unit 91 is connected to the processor 80 and the light source device 81 via the connector 93.
プロセッサ80は内視鏡システム3の全体を制御するとともに、撮像信号に信号処理を行い画像信号として出力する。モニタ82は、プロセッサ80が出力する画像信号を表示する。
The processor 80 controls the entire endoscope system 3 and performs signal processing on the imaging signal to output the image signal as an image signal. The monitor 82 displays an image signal output by the processor 80.
光源装置81は、例えば、白色LEDを有する。光源装置81が出射する照明光は、ユニバーサルコード92および挿入部90を挿通するライトガイド(不図示)を経由することによって先端部90Aの照明光学系(不図示)に導光され、被写体を照明する。
The light source device 81 has, for example, a white LED. The illumination light emitted from the light source device 81 is guided to an illumination optical system (not shown) at the distal end portion 90A by passing through a universal cord 92 and a light guide (not shown) passing through the insertion portion 90, and illuminates the subject. I do.
後述するように、撮像装置1は、信頼性が高く、光軸直交方向の寸法が小さいため、先端部90Aが細径の内視鏡9は、信頼性が高く低侵襲である。
As described later, since the imaging device 1 has high reliability and a small dimension in the direction orthogonal to the optical axis, the endoscope 9 having the small-diameter distal end portion 90A has high reliability and is minimally invasive.
なお、内視鏡9は、硬性鏡であってもよいし、その用途は医療用でも工業用でもよい。
The endoscope 9 may be a rigid endoscope, and may be used for medical or industrial purposes.
<撮像装置の構成>
図2および図3に示すように本実施形態の撮像装置1は、積層光学部10と撮像部20と信号ケーブル30と、を具備する。 <Configuration of imaging device>
As shown in FIGS. 2 and 3, theimaging device 1 of the present embodiment includes a laminated optical unit 10, an imaging unit 20, and a signal cable 30.
図2および図3に示すように本実施形態の撮像装置1は、積層光学部10と撮像部20と信号ケーブル30と、を具備する。 <Configuration of imaging device>
As shown in FIGS. 2 and 3, the
なお、以下の説明において、各実施の形態に基づく図面は、模式的なものであり、各部分の厚さと幅との関係、夫々の部分の厚さの比率および相対角度などは現実のものとは異なることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、一部の構成要素の図示および符号の付与を省略する場合がある。また、被写体の方向を、「前」という。
In the following description, the drawings based on the embodiments are schematic, and the relationship between the thickness and the width of each part, the ratio of the thickness of each part, the relative angle, and the like are actual. It should be noted that the drawings may include portions having different dimensional relationships and ratios between the drawings. In some cases, illustration of some components and addition of reference numerals may be omitted. The direction of the subject is referred to as “front”.
撮像部20は、カバーガラス21と撮像素子22とを含む。カバーガラス21は前面21SAと前面21SAと対向する接着面21SBとを有する。
撮像部20は前面20SA(カバーガラス21の前面21SA)と前面20SAと対向する後面20SB(撮像素子22の裏面22SB)とを有し、後面20SBには、複数の外部電極24が配設されている。すなわち、撮像素子22は、受光面22SAと受光面22SAと対向する裏面22SBとを有し、受光面22SAにカバーガラス21の接着面21SBが接着されている。 Theimaging unit 20 includes a cover glass 21 and an imaging element 22. The cover glass 21 has a front surface 21SA and an adhesive surface 21SB facing the front surface 21SA.
Theimaging unit 20 has a front surface 20SA (the front surface 21SA of the cover glass 21) and a rear surface 20SB (the back surface 22SB of the image sensor 22) opposed to the front surface 20SA, and a plurality of external electrodes 24 are provided on the rear surface 20SB. I have. That is, the image sensor 22 has the light receiving surface 22SA and the back surface 22SB facing the light receiving surface 22SA, and the bonding surface 21SB of the cover glass 21 is bonded to the light receiving surface 22SA.
撮像部20は前面20SA(カバーガラス21の前面21SA)と前面20SAと対向する後面20SB(撮像素子22の裏面22SB)とを有し、後面20SBには、複数の外部電極24が配設されている。すなわち、撮像素子22は、受光面22SAと受光面22SAと対向する裏面22SBとを有し、受光面22SAにカバーガラス21の接着面21SBが接着されている。 The
The
撮像素子22は、CCDまたはCMOS撮像回路からなる受光回路である受光部23を受光面22SAに有し、受光部23は、複数の貫通配線(不図示)と接続されている。撮像素子22は、表面照射型イメージセンサまたは裏面照射型イメージセンサのいずれでもよい。受光部23は、裏面22SBの複数の外部電極24と、それぞれの貫通配線を経由することによって接続されている。複数の外部電極24は撮像信号を伝送する複数の信号ケーブル30と接続されている。
(4) The image sensor 22 has a light receiving part 23 as a light receiving circuit composed of a CCD or a CMOS image pickup circuit on the light receiving surface 22SA, and the light receiving part 23 is connected to a plurality of through wirings (not shown). The image sensor 22 may be either a front-side illuminated image sensor or a back-side illuminated image sensor. The light receiving unit 23 is connected to the plurality of external electrodes 24 on the back surface 22SB via respective through wirings. The plurality of external electrodes 24 are connected to a plurality of signal cables 30 that transmit image signals.
図示いないが、撮像部20は複数の撮像素子22を含む撮像素子ウエハとカバーガラスウエハとが接着された撮像ウエハの切断によって作製される。すなわち、シリコンウエハ等に公知の半導体製造技術を用いて、複数の受光部23等が配設された撮像素子ウエハが作製される。撮像素子ウエハには、受光部23の出力信号を1次処理したり、駆動制御信号を処理したりする周辺回路が形成されていてもよい。
Although not shown, the imaging unit 20 is manufactured by cutting an imaging wafer having an imaging element wafer including a plurality of imaging elements 22 and a cover glass wafer bonded thereto. That is, an imaging element wafer provided with a plurality of light receiving sections 23 and the like is manufactured using a known semiconductor manufacturing technique on a silicon wafer or the like. Peripheral circuits for performing primary processing of output signals of the light receiving unit 23 and processing of drive control signals may be formed on the imaging element wafer.
撮像素子ウエハの受光部23を保護するために、例えば厚さ250μmの平板ガラスからなるカバーガラスウエハが撮像素子ウエハに接着され、撮像ウエハが作製される。撮像ウエハは、例えば、厚さが300μmになるように撮像素子ウエハの研削加工/研磨加工が行われてから、受光部23と接続されている貫通配線および後面20SBの外部電極24が形成される。カバーガラスウエハは受光部23の全面を接合封止し、受光部23を保護しているが、受光部23の周囲だけを封止し、受光部23に対向してエアギャップ(空間)を形成してもよい。そして、撮像ウエハの切断によって、撮像部20が作製される。
(4) In order to protect the light receiving portion 23 of the imaging device wafer, a cover glass wafer made of, for example, 250 μm-thick flat glass is bonded to the imaging device wafer, and the imaging wafer is manufactured. The imaging wafer is subjected to, for example, grinding / polishing of the imaging element wafer so as to have a thickness of 300 μm, and then the through wiring connected to the light receiving unit 23 and the external electrode 24 on the rear surface 20SB are formed. . The cover glass wafer seals the entire surface of the light receiving unit 23 to protect the light receiving unit 23, but seals only the periphery of the light receiving unit 23 and forms an air gap (space) facing the light receiving unit 23. May be. Then, the imaging unit 20 is manufactured by cutting the imaging wafer.
なお、撮像素子ウエハまたは撮像ウエハにおいて撮像素子22の動作試験が行われ、良品と判定された撮像部20だけが、以降の工程において使用されることが好ましい。
It is preferable that an operation test of the imaging device 22 is performed on the imaging device wafer or the imaging wafer, and only the imaging unit 20 determined to be non-defective is used in subsequent steps.
信号ケーブル30は、芯線31と外皮32とを含み、芯線31が中継配線板35を経由することによって外部電極24と電気的に接続されている。なお、芯線31が外部電極24に接合されていてもよい。なお、撮像装置1は光軸直交方向の寸法を小さくするために、中継配線板35および信号ケーブル30の先端部は、出射面10SB(入射面10SA)を光軸方向に延長した空間内に配置されていることが好ましい。
The signal cable 30 includes a core wire 31 and an outer sheath 32, and the core wire 31 is electrically connected to the external electrodes 24 via the relay wiring board 35. Note that the core wire 31 may be joined to the external electrode 24. In order to reduce the dimension of the imaging device 1 in the direction orthogonal to the optical axis, the distal end portions of the relay wiring board 35 and the signal cable 30 are arranged in a space in which the emission surface 10SB (incident surface 10SA) is extended in the optical axis direction. It is preferred that
複数の光学部材11~16が接着された積層光学部10は、光が入射する入射面10SAと入射面10SAと対向する出射面10SBとを有する。積層光学部10の出射面10SBは、撮像部20の前面20SAに接着部(接着層)19によって接着されている。例えば、紫外線硬化型樹脂からなる接着部19は、出射面10SBの外周領域Aに、裾広がりの形状であるフィレットを形成している。
(4) The laminated optical unit 10 to which the plurality of optical members 11 to 16 are adhered has an incident surface 10SA on which light is incident and an exit surface 10SB facing the incident surface 10SA. The emission surface 10SB of the multilayer optical unit 10 is bonded to the front surface 20SA of the imaging unit 20 by a bonding unit (bonding layer) 19. For example, the bonding portion 19 made of an ultraviolet curable resin forms a fillet having a flared shape in the outer peripheral region A of the emission surface 10SB.
光学部材11、14は、樹脂がモールド成型された樹脂レンズである。光学部材11、14は、樹脂レンズが配設された平行平板の透明ガラスからなるハイブリッドレンズ、または、モールド成型または射出成型されたガラスレンズでもよい。光学部材12には絞りが配設されている。光学部材16は赤外線を除去する赤外線カット材料からなる平行平板のフィルタである。光学部材13,15は、スペーサである。
The optical members 11 and 14 are resin lenses formed by molding resin. Each of the optical members 11 and 14 may be a hybrid lens made of transparent glass having a parallel flat plate on which a resin lens is provided, or a glass lens formed by molding or injection molding. The optical member 12 is provided with a stop. The optical member 16 is a parallel plate filter made of an infrared ray cut material for removing infrared rays. The optical members 13 and 15 are spacers.
図示しないが、積層光学部10は、それぞれに複数の光学部材が形成された複数の光学ウエハが接着されている積層ウエハのダイシング加工によって作製されるウエハレベル構造体である。複数の光学ウエハの種類、厚さ、積層枚数および積層順序は適宜、変更可能である。
し な い Although not shown, the laminated optical unit 10 is a wafer-level structure manufactured by dicing a laminated wafer to which a plurality of optical wafers each having a plurality of optical members formed are adhered. The type, thickness, number of layers, and stacking order of the plurality of optical wafers can be appropriately changed.
ウエハレベル積層体である積層光学部10の側面10SSは、切断面であるため、光軸方向の切断痕がある。切断痕は、ダイシング加工によって生じる切断面の微小な線状の凹凸である。
側面 Since the side surface 10SS of the laminated optical unit 10 which is a wafer level laminated body is a cut surface, there is a cut mark in the optical axis direction. The cutting marks are minute linear irregularities on the cut surface generated by dicing.
積層ウエハは、例えば、レーザダイシングによる切断工程、サンドブラストまたはエッチングによる切断溝を形成する工程によって積層光学部10に個片化されてもよい。
The laminated wafer may be singulated into the laminated optical unit 10 by, for example, a cutting process by laser dicing, or a process of forming a cutting groove by sandblasting or etching.
積層光学部10の出射面10SB(入射面10SA)および撮像部20の前面20SA(後面20SB)は矩形である。そして、出射面10SBは前面20SAよりも大きい。すなわち、矩形の出射面10SBの対角線の長さは、矩形の前面20SAの対角線の長さよりも長い。特に、撮像装置1では、正方形の前面20SAに外接する円の大きさと、正方形の出射面10SBに内接する円の大きさが略同じである。
出 射 Emission surface 10SB (incident surface 10SA) of laminated optical unit 10 and front surface 20SA (rear surface 20SB) of imaging unit 20 are rectangular. And the output surface 10SB is larger than the front surface 20SA. That is, the length of the diagonal line of the rectangular emission surface 10SB is longer than the length of the diagonal line of the rectangular front surface 20SA. In particular, in the imaging device 1, the size of the circle circumscribing the square front surface 20SA is substantially the same as the size of the circle circumscribing the square output surface 10SB.
撮像装置1では、前面20SAの辺が出射面10SBの辺に対して、平行ではなく、傾斜している。すなわち、図4に示すように、前面20SAの辺20Sが出射面10SBの辺10Sに対する角度θが45度である。これに対して、図5に示す比較例の撮像装置101では、前面20SAの辺20Sと出射面10SBの辺10Sとは平行(θ=0)である。
In the imaging device 1, the side of the front surface 20SA is not parallel to the side of the emission surface 10SB, but is inclined. That is, as shown in FIG. 4, the angle θ between the side 20S of the front surface 20SA and the side 10S of the emission surface 10SB is 45 degrees. On the other hand, in the imaging device 101 of the comparative example shown in FIG. 5, the side 20S of the front surface 20SA and the side 10S of the emission surface 10SB are parallel (θ = 0).
言い替えれば、比較例の撮像装置101に対して、撮像装置1は、前面20SA(撮像部20)が、光軸Oを中心に出射面10SB(積層光学部10)に対して回転している。回転角度θは45度である。
In other words, with respect to the imaging device 101 of the comparative example, in the imaging device 1, the front surface 20SA (the imaging unit 20) is rotated about the optical axis O with respect to the emission surface 10SB (the laminated optical unit 10). The rotation angle θ is 45 degrees.
前面20SAが接着されていない出射面10SBの外周領域Aの総面積は、撮像装置1も比較例の撮像装置101も同じである。しかし、撮像装置1の外周領域Aに内接する最大の円C1の面積C1Sは、比較例の撮像装置101の外周領域Aに内接する最大の円C2の面積C2Sの5倍である。すなわち、撮像装置1の外周領域Aには面積の大きな領域がある。
総 The total area of the outer peripheral region A of the emission surface 10SB to which the front surface 20SA is not bonded is the same for both the imaging device 1 and the imaging device 101 of the comparative example. However, the area C1S of the largest circle C1 inscribed in the outer peripheral area A of the imaging device 1 is five times the area C2S of the largest circle C2 inscribed in the outer peripheral area A of the comparative imaging apparatus 101. That is, the outer peripheral area A of the imaging device 1 has a large area.
撮像部20の前面20SAは、接着部19によって積層光学部10の出射面10SBに接着されている。円C1が大きいため、接着部19のフィレットの最大長Sが、撮像装置1は、撮像装置101よりも長い。フィレットが長い接着部19は、接着強度が高い。撮像装置1は、撮像部20と積層光学部10との接着強度が高いため、撮像装置101よりも、信頼性が高い。
前面 The front surface 20SA of the imaging unit 20 is bonded to the emission surface 10SB of the laminated optical unit 10 by the bonding unit 19. Since the circle C1 is large, the maximum length S of the fillet of the bonding portion 19 is longer in the imaging device 1 than in the imaging device 101. The bonding portion 19 having a long fillet has a high bonding strength. The imaging device 1 has higher bonding strength between the imaging unit 20 and the laminated optical unit 10, and therefore has higher reliability than the imaging device 101.
なお、撮像装置1の円C1の面積C1Sが、比較例の撮像装置101の円C2の面積C2Sの2倍以上であれば、本発明の効果が顕著である。面積C1Sの上限は、特に定められるものではないが、例えば面積C2Sの8倍である。
The effect of the present invention is remarkable when the area C1S of the circle C1 of the imaging device 1 is at least twice the area C2S of the circle C2 of the imaging device 101 of the comparative example. The upper limit of the area C1S is not particularly limited, but is, for example, eight times the area C2S.
<第1実施形態の変形例>
撮像装置1では、正方形の前面20SAの外接円の大きさと、正方形の出射面10SBの内接円の大きさが略同じであった。しかし、前面20SAおよび出射面10SBの、それぞれの形状および相対的な大きさは、変形が可能である。 <Modification of First Embodiment>
In theimaging device 1, the size of the circumscribed circle of the square front surface 20SA was substantially the same as the size of the inscribed circle of the square exit surface 10SB. However, the shapes and relative sizes of the front surface 20SA and the emission surface 10SB can be changed.
撮像装置1では、正方形の前面20SAの外接円の大きさと、正方形の出射面10SBの内接円の大きさが略同じであった。しかし、前面20SAおよび出射面10SBの、それぞれの形状および相対的な大きさは、変形が可能である。 <Modification of First Embodiment>
In the
図6に示す第1実施形態の変形例1の撮像装置1Aでは、出射面10SBの内接円が、前面20SAの外接円よりも大きい。また、出射面10SBは角部が曲線で面取り加工されている略矩形である。
で は In the imaging device 1A of the first modification of the first embodiment shown in FIG. 6, the inscribed circle of the emission surface 10SB is larger than the circumscribed circle of the front surface 20SA. The exit surface 10SB is a substantially rectangular shape in which a corner is curved and chamfered.
図7に示す第1実施形態の変形例2の撮像装置1Bでは、出射面10SBは、角部が直線によって面取り加工されている略正方形の六角形であり、前面20SAは長方形である。また、前面20SAの辺20Sが出射面10SBの辺10Sに対する角度(回転角度)θは、35度である。
で は In the imaging device 1B of the modification 2 of the first embodiment shown in FIG. 7, the emission surface 10SB is a substantially square hexagon whose corners are chamfered by straight lines, and the front surface 20SA is rectangular. The angle (rotation angle) θ between the side 20S of the front surface 20SA and the side 10S of the emission surface 10SB is 35 degrees.
すなわち、出射面10SBが前面20SAよりも大きく、前面20SAが接着されていない出射面10SBの外周領域Aがあり、前面20SAの辺が出射面10SBの辺に対して傾斜している撮像装置は、撮像装置1と同じ効果を有する。また、出射面10SBおよび前面20SAは、角部が面取り加工されている矩形(略矩形)でもよい。さらに、出射面10SBは、正方形でなくともよい。また、前面20SAも、長方形または角部が面取り加工されている略矩形でもよい。すなわち、本発明における「矩形」には、「略矩形」も含まれる。
That is, the imaging device in which the emission surface 10SB is larger than the front surface 20SA, there is an outer peripheral area A of the emission surface 10SB to which the front surface 20SA is not bonded, and the side of the front surface 20SA is inclined with respect to the side of the emission surface 10SB, It has the same effect as the imaging device 1. Further, the exit surface 10SB and the front surface 20SA may be rectangles (substantially rectangles) whose corners are chamfered. Further, the emission surface 10SB may not be a square. Also, the front surface 20SA may be a rectangle or a substantially rectangle in which a corner is chamfered. That is, the “rectangle” in the present invention includes “substantially rectangular”.
なお、前面20SAの辺20Sと出射面10SBの辺10Sとが平行な比較例の撮像装置101に対して、前面20SAが、光軸Oを中心に出射面10SBに対しての回転角度が30度以上60度以下である撮像装置は、本発明の効果が顕著である。
In addition, with respect to the imaging device 101 of the comparative example in which the side 20S of the front surface 20SA and the side 10S of the emission surface 10SB are parallel, the rotation angle of the front surface 20SA with respect to the emission surface 10SB about the optical axis O is 30 degrees. The effect of the present invention is remarkable for an imaging device having a temperature of 60 degrees or more and 60 degrees or less.
また、撮像装置1は、良品と判定された撮像部20だけを用いることができるため、製造歩留まりが高い。
製造 Further, since the imaging device 1 can use only the imaging unit 20 determined to be non-defective, the production yield is high.
<第2実施形態>
以下の実施形態および変形例の撮像装置は、撮像装置1等と類似し、同じ効果を有するため、同じ機能の構成要素には同じ符号を付し、説明は省略する。 <Second embodiment>
The imaging devices of the following embodiments and modified examples are similar to theimaging device 1 and the like, and have the same effects. Therefore, the same reference numerals are given to components having the same functions, and descriptions thereof will be omitted.
以下の実施形態および変形例の撮像装置は、撮像装置1等と類似し、同じ効果を有するため、同じ機能の構成要素には同じ符号を付し、説明は省略する。 <Second embodiment>
The imaging devices of the following embodiments and modified examples are similar to the
図8および図9に示すように、第2実施形態の撮像装置1Cは、外部電極24と接続された中継配線板35Cを有し、信号ケーブル30Cの芯線31は、中継配線板35Cを経由して外部電極24と接続されている。なお、信号ケーブル30Cは、信号ケーブル30よりも太い。
As shown in FIGS. 8 and 9, the imaging device 1C of the second embodiment has a relay wiring board 35C connected to the external electrode 24, and the core 31 of the signal cable 30C passes through the relay wiring board 35C. Connected to the external electrode 24. The signal cable 30C is thicker than the signal cable 30.
撮像装置1Cは、太い信号ケーブル30Cを具備するが、前面20SAが接着されていない出射面10SBの外周領域Aを光軸方向に延長した空間内に、信号ケーブル30Cが配置されているため、光軸直交法の寸法が小さい。
Although the imaging device 1C includes the thick signal cable 30C, the signal cable 30C is disposed in a space extending in the optical axis direction from the outer peripheral area A of the emission surface 10SB to which the front surface 20SA is not bonded. The dimensions of the orthogonal axis method are small.
なお、図10に示す第2実施形態の変形例1の撮像装置1Dでは、外周領域Aを光軸方向に延長した空間内に、信号ケーブル30Dの芯線31が配置されているが、外皮32は配置されていない。しかし、撮像装置1Dも信号ケーブル30Dの一部しか、外周領域Aを光軸方向に延長した空間から突出していないため、光軸直交法の寸法が小さい。
In the imaging device 1D of the first modification of the second embodiment shown in FIG. 10, the core 31 of the signal cable 30D is arranged in a space extending from the outer peripheral area A in the optical axis direction. Not placed. However, since only a part of the signal cable 30D of the imaging device 1D protrudes from the space in which the outer peripheral area A extends in the optical axis direction, the dimension of the optical axis orthogonal method is small.
すなわち、撮像装置1C、1Dは、外周領域Aに内接する最大の円が大きい(面積が広い)ため、外周領域Aに太い信号ケーブルを配置できる。外周領域Aを光軸方向に延長した空間に少なくとも芯線31が配置されている撮像装置は光軸直交方向の寸法が小さい。
That is, in the imaging devices 1C and 1D, the largest circle inscribed in the outer peripheral area A is large (the area is large), so that a thick signal cable can be arranged in the outer peripheral area A. The imaging device in which at least the core wire 31 is arranged in a space extending from the outer peripheral area A in the optical axis direction has a small dimension in the optical axis orthogonal direction.
なお、図示しないが、撮像装置1C、1Dにおいても、出射面10SBと受光面20SAとを接着している接着部19のフィレットが外周領域に広がっていることが好ましいことは言うまでも無い。
Although not shown, it is needless to say that in the imaging devices 1C and 1D, it is preferable that the fillet of the bonding portion 19 that bonds the emission surface 10SB and the light receiving surface 20SA spreads in the outer peripheral region.
<第3実施形態>
図11に示す第3実施形態の撮像装置1Eでは、撮像部20Eの撮像素子22Eは受光面22SAに外部電極24がある。 <Third embodiment>
In theimaging device 1E according to the third embodiment shown in FIG. 11, the imaging element 22E of the imaging unit 20E has the external electrode 24 on the light receiving surface 22SA.
図11に示す第3実施形態の撮像装置1Eでは、撮像部20Eの撮像素子22Eは受光面22SAに外部電極24がある。 <Third embodiment>
In the
図12Aに示すように、積層光学部10Eの出射面10SBの外周領域Aには、配線パターン10Pがある。配線パターン10Pの一端は、撮像部20に覆われているが、他端は外周領域Aの接合電極まで延設されている。
AAs shown in FIG. 12A, a wiring pattern 10P is present in the outer peripheral area A of the emission surface 10SB of the laminated optical unit 10E. One end of the wiring pattern 10P is covered by the imaging unit 20, but the other end is extended to the bonding electrode in the outer peripheral area A.
一方、図12Bに示すように、カバーガラス21Eは、外部電極24と接続されている貫通配線21Hを有し、前面20SAに貫通配線21Hが露出している。
On the other hand, as shown in FIG. 12B, the cover glass 21E has the through wiring 21H connected to the external electrode 24, and the through wiring 21H is exposed on the front surface 20SA.
前面20SAの貫通配線21Hは配線パターン10Pの一端と接続されている。配線パターン10Pの他端の接合電極には接合部材36Eが接合されており、芯線31は接合部材36Eと接合されている。
貫通 The through wiring 21H on the front surface 20SA is connected to one end of the wiring pattern 10P. A joining member 36E is joined to the joining electrode at the other end of the wiring pattern 10P, and the core wire 31 is joined to the joining member 36E.
<第3実施形態の変形例1>
図13に示す第3実施形態の変形例1の撮像装置1Fでは、撮像部20Fは、カバーガラスを具備しておらず、撮像素子22Aによって構成されている。撮像素子22Aの受光面22SAの外部電極24が配線パターン10Pと接合されている。 <Modification 1 of Third Embodiment>
In theimaging device 1F according to the first modification of the third embodiment illustrated in FIG. 13, the imaging unit 20F does not include a cover glass, and includes an imaging element 22A. The external electrode 24 on the light receiving surface 22SA of the imaging element 22A is joined to the wiring pattern 10P.
図13に示す第3実施形態の変形例1の撮像装置1Fでは、撮像部20Fは、カバーガラスを具備しておらず、撮像素子22Aによって構成されている。撮像素子22Aの受光面22SAの外部電極24が配線パターン10Pと接合されている。 <
In the
すなわち、カバーガラスは撮像装置の必須構成要素ではない。
That is, the cover glass is not an essential component of the imaging device.
<第3実施形態の変形例2>
図14に示す第3実施形態の変形例2の撮像装置1Gでは、第1の主面36SAと第1の主面36SAと対向する第2の主面36SBとを有する枠部(フレーム)36Gを更に具備する。図15に示すように、枠部36Gは、撮像部20Eを内部に収容しており、第1の主面36SAが出射面10SBに接着されており、第2の主面36SBの凹部H36の枠電極に芯線31が接合されている。 <Modification 2 of Third Embodiment>
In animaging device 1G according to a modification 2 of the third embodiment shown in FIG. 14, a frame portion (frame) 36G having a first main surface 36SA and a second main surface 36SB opposed to the first main surface 36SA is provided. It also has As shown in FIG. 15, the frame portion 36G houses the imaging unit 20E inside, the first main surface 36SA is adhered to the emission surface 10SB, and the frame of the concave portion H36 of the second main surface 36SB. The core wire 31 is joined to the electrode.
図14に示す第3実施形態の変形例2の撮像装置1Gでは、第1の主面36SAと第1の主面36SAと対向する第2の主面36SBとを有する枠部(フレーム)36Gを更に具備する。図15に示すように、枠部36Gは、撮像部20Eを内部に収容しており、第1の主面36SAが出射面10SBに接着されており、第2の主面36SBの凹部H36の枠電極に芯線31が接合されている。 <Modification 2 of Third Embodiment>
In an
なお、芯線31は、第2の主面36SBまたは側面36SSの枠電極と接合されていてもよい。
The core 31 may be joined to the frame electrode on the second main surface 36SB or the side surface 36SS.
撮像装置1Gは、撮像部20Eと信号ケーブル30とを接続するための枠部36Gを具備するため、製造が容易である。
(4) Since the imaging device 1G includes the frame 36G for connecting the imaging unit 20E and the signal cable 30, the manufacturing is easy.
<第4実施形態>
図16に示す第4実施形態の撮像装置1Hでは、撮像部20Hが、撮像素子22に接合されている積層素子60を具備する。積層素子60は、複数の半導体素子61~64が積層されている。 <Fourth embodiment>
In theimaging device 1H according to the fourth embodiment shown in FIG. 16, the imaging unit 20H includes the stacked element 60 that is joined to the imaging element 22. The stacked element 60 has a plurality of semiconductor elements 61 to 64 stacked.
図16に示す第4実施形態の撮像装置1Hでは、撮像部20Hが、撮像素子22に接合されている積層素子60を具備する。積層素子60は、複数の半導体素子61~64が積層されている。 <Fourth embodiment>
In the
半導体素子61~64は、撮像素子22が出力する撮像信号を1次処理したり、撮像素子22を制御する制御信号を処理したりする。例えば、半導体素子61~64は、AD変換回路、メモリ、伝送出力回路、フィルタ回路、薄膜コンデンサ、および、薄膜インダクタ等を含んでいる。積層素子60が含む素子の数は例えば、3以上10以下である。複数の半導体素子61~64は、それぞれが貫通配線69を経由することによって電気的に接続されている。
(4) The semiconductor elements 61 to 64 perform primary processing on an image signal output from the image sensor 22 or process a control signal for controlling the image sensor 22. For example, the semiconductor elements 61 to 64 include an AD conversion circuit, a memory, a transmission output circuit, a filter circuit, a thin film capacitor, a thin film inductor, and the like. The number of elements included in the stacked element 60 is, for example, 3 or more and 10 or less. The plurality of semiconductor elements 61 to 64 are electrically connected to each other via the through wiring 69.
撮像装置1Hの製造方法では、撮像部20Hの作製工程において、カバーガラスウエハおよび撮像素子ウエハに加えて、それぞれに半導体素子が形成された複数の素子ウエハが作製される。素子ウエハは、それぞれがAD変換回路、メモリ、伝送出力回路、フィルタ回路、薄膜コンデンサ、および、薄膜インダクタ等の複数の半導体素子61~64を含んでいる。
In the manufacturing method of the imaging device 1H, in the manufacturing process of the imaging unit 20H, a plurality of element wafers each having a semiconductor element formed thereon are manufactured in addition to the cover glass wafer and the imaging element wafer. The element wafer includes a plurality of semiconductor elements 61 to 64 such as an AD conversion circuit, a memory, a transmission output circuit, a filter circuit, a thin film capacitor, and a thin film inductor.
カバーガラスウエハ、撮像素子ウエハおよび複数の素子ウエハが接着された積層素子ウエハの切断によって、積層素子60を含む撮像部20Hが作製される。
(4) The imaging unit 20H including the stacked element 60 is manufactured by cutting the cover glass wafer, the imaging element wafer, and the stacked element wafer to which the plurality of element wafers are bonded.
撮像装置1Hは、撮像信号を1次処理する小型の積層素子60を具備するため、撮像装置1と略同一の大きさであるが、撮像装置1よりも高性能である。
(4) Since the imaging device 1H includes the small stacked element 60 that performs primary processing of the imaging signal, the imaging device 1H has substantially the same size as the imaging device 1, but has higher performance than the imaging device 1.
なお、撮像装置1~1Hを有する内視鏡が、内視鏡9の効果を有し、さらに、撮像装置1~1Hの効果を有することは言うまでも無い。
Needless to say, the endoscope having the imaging devices 1 to 1H has the effect of the endoscope 9 and further has the effect of the imaging devices 1 to 1H.
本発明は、上述した実施形態および変形例等に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更、組み合わせおよび応用が可能である。
The present invention is not limited to the above-described embodiments and modified examples, and various changes, combinations, and applications are possible without departing from the spirit of the invention.
1、1A~1H・・・内視鏡用撮像装置
3・・・内視鏡システム
9・・・内視鏡
10・・・積層光学部
10SA・・・入射面
10SB・・・出射面
10SS・・・側面
19・・・接着部
20・・・撮像部
20SA・・・前面
20SB・・・後面
21・・・カバーガラス
22・・・撮像素子
22SA・・・受光面
22SB・・・裏面
23・・・受光部
24・・・外部電極
30・・・信号ケーブル
35・・・中継配線板
36E・・・接合部材
36G・・・枠部
36SA・・・第1の主面
36SB・・・第2の主面
60・・・積層素子 1, 1A to 1H ... Endoscope imaging device 3 ...Endoscope system 9 ... Endoscope 10 ... Laminated optical unit 10SA ... Incident surface 10SB ... Exit surface 10SS Side surface 19 Adhesive unit 20 Image pickup unit 20SA Front surface 20SB Rear surface 21 Cover glass 22 Image sensor 22SA Light receiving surface 22SB Back surface 23 ..Light receiving section 24 ... External electrode 30 ... Signal cable 35 ... Relay wiring board 36E ... Joining member 36G ... Frame 36SA ... First main surface 36SB ... Second Main surface 60 of the laminated element
3・・・内視鏡システム
9・・・内視鏡
10・・・積層光学部
10SA・・・入射面
10SB・・・出射面
10SS・・・側面
19・・・接着部
20・・・撮像部
20SA・・・前面
20SB・・・後面
21・・・カバーガラス
22・・・撮像素子
22SA・・・受光面
22SB・・・裏面
23・・・受光部
24・・・外部電極
30・・・信号ケーブル
35・・・中継配線板
36E・・・接合部材
36G・・・枠部
36SA・・・第1の主面
36SB・・・第2の主面
60・・・積層素子 1, 1A to 1H ... Endoscope imaging device 3 ...
Claims (12)
- 内視鏡用撮像装置を有し、前記内視鏡用撮像装置は、
前面と前記前面と対向する後面とを有し、受光面と前記受光面と対向する裏面とを有する撮像素子を含み、前記撮像素子は、前記受光面に受光部が配設されており、前記受光部と接続されている外部電極が前記受光面または前記裏面に配設されている、撮像部と、
光が入射する入射面と前記入射面と対向する出射面とを有し、前記出射面が前記前面に接着されており、複数の光学部材が接着されている積層光学部と、
芯線と外皮とを含み、前記芯線が前記外部電極と電気的に接続されている信号ケーブルと、を具備し、
前記出射面および前記前面が矩形であり、前記出射面が前記前面よりも大きく前記出射面に前記前面が接着されていない外周領域があり、前記前面の辺が前記出射面の辺に対して傾斜していることを特徴とする内視鏡。 Having an endoscope imaging device, the endoscope imaging device,
An image sensor having a front surface and a rear surface facing the front surface, including an image sensor having a light receiving surface and a rear surface facing the light receiving surface, wherein the image sensor has a light receiving unit disposed on the light receiving surface, An external electrode connected to a light receiving unit is disposed on the light receiving surface or the back surface, an imaging unit,
A laminated optical unit having an incident surface on which light is incident and an exit surface facing the incident surface, wherein the exit surface is adhered to the front surface, and a plurality of optical members are adhered;
A signal cable comprising a core wire and an outer sheath, wherein the core wire is electrically connected to the external electrode,
The output surface and the front surface are rectangular, the output surface is larger than the front surface, and the output surface has an outer peripheral area where the front surface is not bonded, and the side of the front surface is inclined with respect to the side of the output surface. An endoscope characterized by doing. - 前面と前記前面と対向する後面とを有し、受光面と前記受光面と対向する裏面とを有する撮像素子を含み、前記撮像素子は、前記受光面に受光部が配設されており、前記受光部と接続されている外部電極が前記受光面または前記裏面に配設されている、撮像部と、
光が入射する入射面と前記入射面と対向する出射面とを有し、前記出射面が前記前面に接着されており、複数の光学部材が接着されている積層光学部と、
芯線と外皮とを含み、前記芯線が前記外部電極と電気的に接続されている信号ケーブルと、を具備し、
前記出射面および前記前面が矩形で、前記出射面が前記前面よりも大きく前記出射面に前記前面が接着されていない外周領域があり、前記前面の辺が前記出射面の辺に対して傾斜していることを特徴とする内視鏡用撮像装置。 An image sensor having a front surface and a rear surface facing the front surface, including an image sensor having a light receiving surface and a rear surface facing the light receiving surface, wherein the image sensor has a light receiving unit disposed on the light receiving surface, An external electrode connected to a light receiving unit is disposed on the light receiving surface or the back surface, an imaging unit,
A laminated optical unit having an incident surface on which light is incident and an exit surface facing the incident surface, wherein the exit surface is adhered to the front surface, and a plurality of optical members are adhered;
A signal cable comprising a core wire and an outer sheath, wherein the core wire is electrically connected to the external electrode,
The output surface and the front surface are rectangular, the output surface is larger than the front surface, and the output surface has an outer peripheral area where the front surface is not bonded, and the side of the front surface is inclined with respect to the side of the output surface. An imaging device for an endoscope. - 前記外周領域に内接する最大の円の面積が、前記前面の辺と前記出射面の辺と平行な場合の面積よりも、2倍以上大きいことを特徴とする請求項2に記載の内視鏡用撮像装置。 3. The endoscope according to claim 2, wherein the area of the largest circle inscribed in the outer peripheral region is at least twice as large as the area parallel to the side of the front surface and the side of the emission surface. 4. Imaging device.
- 前記前面の辺と前記出射面の辺と平行な場合に対して、前記前面が、光軸を中心に前記出射面に対して回転しており、回転角度が30度以上60度以下であることを特徴とする請求項2または請求項3に記載の内視鏡用撮像装置。 The front surface is rotated around the optical axis with respect to the light exit surface with respect to the case where the front surface side is parallel to the light exit surface side, and the rotation angle is 30 degrees or more and 60 degrees or less. The imaging device for an endoscope according to claim 2 or 3, wherein:
- 前記出射面と前記受光面とを接着している接着部のフィレットが前記外周領域に広がっていることを特徴とする請求項2から請求項4のいずれか1項に記載の内視鏡用撮像装置。 5. The endoscope imaging apparatus according to claim 2, wherein a fillet of a bonding portion that bonds the light-emitting surface and the light-receiving surface extends to the outer peripheral region. 6. apparatus.
- 前記撮像素子の前記外部電極が、前記裏面に配設されていることを特徴とする請求項2から請求項5のいずれか1項に記載の内視鏡用撮像装置。 The imaging device for an endoscope according to any one of claims 2 to 5, wherein the external electrodes of the imaging device are disposed on the back surface.
- 前記撮像部が、前記前面と前記前面と対向する接着面を有するカバーガラスを有し、前記接着面が、前記受光面に接着されていることを特徴とする請求項2から請求項6のいずれか1項に記載の内視鏡用撮像装置。 7. The imaging device according to claim 2, wherein the imaging unit has a cover glass having the front surface and an adhesive surface facing the front surface, and the adhesive surface is adhered to the light receiving surface. The imaging device for an endoscope according to claim 1.
- 前記撮像素子の前記外部電極が、前記受光面に配設されており、
前記カバーガラスは、前記外部電極と接続されている貫通配線を有することを特徴とする請求項7に記載の内視鏡用撮像装置。 The external electrode of the imaging element is disposed on the light receiving surface,
The imaging device for an endoscope according to claim 7, wherein the cover glass has a through wiring connected to the external electrode. - 前記外周領域を光軸方向に延長した空間内に、前記信号ケーブルの少なくとも前記芯線が配置されていることを特徴とする請求項2から請求項8のいずれか1項に記載の内視鏡用撮像装置。 The endoscope according to any one of claims 2 to 8, wherein at least the core wire of the signal cable is disposed in a space in which the outer peripheral area extends in the optical axis direction. Imaging device.
- 前記外周領域に、前記外部電極と電気的に接続されている接合電極が配設されており、
前記芯線が前記接合電極と接続されていることを特徴とする請求項2から請求項9のいずれか1項に記載の内視鏡用撮像装置。 A bonding electrode electrically connected to the external electrode is provided in the outer peripheral region,
The imaging device for an endoscope according to any one of claims 2 to 9, wherein the core wire is connected to the bonding electrode. - 第1の主面と前記第1の主面と対向する第2の主面とを有する枠部を更に具備し、
前記枠部は、前記撮像部を内部に収容しており、前記第1の主面が前記出射面に接着されており、
前記芯線が、前記第2の主面、前記第2の主面の凹部または側面の枠電極に接合されていることを特徴とする請求項2から請求項10のいずれか1項に記載の内視鏡用撮像装置。 A frame having a first main surface and a second main surface facing the first main surface;
The frame unit accommodates the imaging unit therein, the first main surface is adhered to the emission surface,
The inner core according to any one of claims 2 to 10, wherein the core wire is joined to the second main surface, a concave portion of the second main surface, or a frame electrode on a side surface. Endoscope imaging device. - 前記撮像部が、複数の半導体素子を含む積層素子を含み、
前記積層半導体が前記撮像素子に接合されている、ことを特徴とする請求項2から請求項11のいずれか1項に記載の内視鏡用撮像装置。 The imaging unit includes a stacked element including a plurality of semiconductor elements,
The imaging device for an endoscope according to any one of claims 2 to 11, wherein the stacked semiconductor is joined to the imaging element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/024336 WO2020003398A1 (en) | 2018-06-27 | 2018-06-27 | Endoscope and endoscopic imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/024336 WO2020003398A1 (en) | 2018-06-27 | 2018-06-27 | Endoscope and endoscopic imaging device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020003398A1 true WO2020003398A1 (en) | 2020-01-02 |
Family
ID=68984550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/024336 WO2020003398A1 (en) | 2018-06-27 | 2018-06-27 | Endoscope and endoscopic imaging device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020003398A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023218633A1 (en) * | 2022-05-13 | 2023-11-16 | オリンパスメディカルシステムズ株式会社 | Imaging unit, endoscope, and method for manufacturing imaging unit |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011027594A1 (en) * | 2009-09-03 | 2011-03-10 | オリンパスメディカルシステムズ株式会社 | Image pickup unit |
WO2016111075A1 (en) * | 2015-01-05 | 2016-07-14 | オリンパス株式会社 | Imaging unit, imaging module and endoscopic system |
WO2017073440A1 (en) * | 2015-10-27 | 2017-05-04 | オリンパス株式会社 | Endoscope |
JP2017185024A (en) * | 2016-04-05 | 2017-10-12 | パナソニック株式会社 | Endoscope |
WO2018078767A1 (en) * | 2016-10-27 | 2018-05-03 | オリンパス株式会社 | Endoscope |
-
2018
- 2018-06-27 WO PCT/JP2018/024336 patent/WO2020003398A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011027594A1 (en) * | 2009-09-03 | 2011-03-10 | オリンパスメディカルシステムズ株式会社 | Image pickup unit |
WO2016111075A1 (en) * | 2015-01-05 | 2016-07-14 | オリンパス株式会社 | Imaging unit, imaging module and endoscopic system |
WO2017073440A1 (en) * | 2015-10-27 | 2017-05-04 | オリンパス株式会社 | Endoscope |
JP2017185024A (en) * | 2016-04-05 | 2017-10-12 | パナソニック株式会社 | Endoscope |
WO2018078767A1 (en) * | 2016-10-27 | 2018-05-03 | オリンパス株式会社 | Endoscope |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023218633A1 (en) * | 2022-05-13 | 2023-11-16 | オリンパスメディカルシステムズ株式会社 | Imaging unit, endoscope, and method for manufacturing imaging unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190079280A1 (en) | Manufacturing method of optical unit for endoscope, optical unit for endoscope, and endoscope | |
WO2015045616A1 (en) | Imaging unit, and endoscope device | |
US10924640B2 (en) | Image pickup module and endoscope including image pickup module in which bonding junction between image pickup portion and signal cable is resin-sealed by curable resin | |
WO2018198266A1 (en) | Endoscope, imaging module, and method for manufacturing imaging module | |
US11096567B2 (en) | Endoscope system and method of manufacturing an image capturing module used in the endoscope system | |
WO2020152782A1 (en) | Method for manufacturing endoscope imaging device, endoscope imaging device, and endoscope | |
JP6043032B2 (en) | Endoscope | |
WO2018078767A1 (en) | Endoscope | |
WO2017179144A1 (en) | Method for manufacturing endoscope optical unit, and endoscope | |
WO2019207650A1 (en) | Endoscope imaging device, endoscope, and manufacturing method for endoscope imaging device | |
WO2020003398A1 (en) | Endoscope and endoscopic imaging device | |
US10426324B2 (en) | Imaging apparatus including an image sensor chip mount assembly | |
US10734355B2 (en) | Electronic circuit board, laminated board, and method of manufacturing electronic circuit board | |
JP5750642B1 (en) | Endoscope imaging unit | |
US10542874B2 (en) | Imaging device and endoscope device | |
CN112136213B (en) | Imaging device, endoscope, and method for manufacturing imaging device | |
JP6307227B2 (en) | Imaging unit and endoscope apparatus | |
US11412113B2 (en) | Image pickup apparatus, endoscope, and manufacturing method of image pickup apparatus | |
WO2019171460A1 (en) | Endoscope imaging device, endoscope, and method of manufacturing endoscope imaging device | |
WO2016207940A1 (en) | Imaging device for endoscope | |
US11876107B2 (en) | Image pickup apparatus for endoscope and endoscope | |
JP6209288B2 (en) | Miniaturization of imaging device | |
US20210250473A1 (en) | Image pickup apparatus, endoscope and method for manufacturing image pickup apparatus | |
WO2017056226A1 (en) | Endoscope, imaging module, and method for producing imaging module | |
WO2020115813A1 (en) | Semiconductor device, endoscope, and method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18924676 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18924676 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |