WO2020003380A1 - Brake control device and brake control method - Google Patents
Brake control device and brake control method Download PDFInfo
- Publication number
- WO2020003380A1 WO2020003380A1 PCT/JP2018/024202 JP2018024202W WO2020003380A1 WO 2020003380 A1 WO2020003380 A1 WO 2020003380A1 JP 2018024202 W JP2018024202 W JP 2018024202W WO 2020003380 A1 WO2020003380 A1 WO 2020003380A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brake
- control device
- work
- brake control
- motor
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
Definitions
- the present invention relates to a brake control device and a brake control method for controlling a brake provided in a drive unit that drives a rotation mechanism of a work device to which a work site for performing a predetermined work is attached.
- Patent Document 1 discloses a C-type welding gun attached to an industrial robot.
- an equalizing unit is interposed between a manipulator arm and a pressurizing device, and a biasing force of a spring of the equalizing unit is balanced with a weight of the welding gun to perform a pressing operation. The deformation of the work at the time was prevented.
- the electromagnetic brake is always used when welding is performed, so the use of the electromagnetic brake has been increased. Therefore, there is a problem that the life of the device related to the electromagnetic brake is shortened and the power consumption is wasted.
- the present invention has been proposed in view of the above circumstances.
- By reducing the frequency of use of the electromagnetic brake it is possible to extend the life of devices related to the electromagnetic brake and to reduce power consumption. It is an object of the present invention to provide a brake control device and a method thereof that can be performed.
- a brake control device and a method thereof operate a brake before starting a series of operations in which a work site performs a plurality of operations on an operation target. Release the brake before the end of a series of operations.
- the frequency of use of the electromagnetic brake can be reduced, so that the life of the device related to the electromagnetic brake can be extended and the power consumption can be reduced.
- FIG. 1 is a block diagram showing the overall configuration of the robot control system according to the first embodiment of the present invention.
- FIG. 2 is a time chart illustrating a processing procedure of a brake control process by the brake control device according to the first embodiment of the present invention.
- FIG. 3 is a flowchart illustrating a processing procedure of a brake control process performed by the brake control device according to the first embodiment of the present invention.
- FIG. 4 is a time chart illustrating a procedure of a brake control process performed by the brake control device according to the second embodiment of the present invention.
- FIG. 5 is a flowchart illustrating a procedure of a brake control process performed by the brake control device according to the second embodiment of the present invention.
- FIG. 6 is a diagram for explaining the structure of the robot.
- FIG. 1 is a block diagram showing the overall configuration of the robot control system according to the first embodiment of the present invention.
- FIG. 2 is a time chart illustrating a processing procedure of a brake control process by the brake control device according to the
- FIG. 7 is a flowchart illustrating a procedure of a brake control process performed by the brake control device according to the third embodiment of the present invention.
- FIG. 8 is a diagram for explaining the load applied to the operation axis of the robot.
- FIG. 9 is a diagram illustrating a mechanical load estimation result and a brake operation determination result by the brake control device according to the third embodiment of the present invention.
- FIG. 10 is a diagram for explaining the posture of the robot arm.
- FIG. 11 is a diagram for explaining the posture of the robot arm.
- FIG. 12 is a diagram illustrating a result of determining the operation of the brake of the motor and the brake of the speed reducer by the brake control device according to the third embodiment of the present invention.
- FIG. 13 is a flowchart illustrating a procedure of a brake control process performed by the brake control device according to the fourth embodiment of the present invention.
- FIG. 1 is a block diagram illustrating a configuration of a robot control system including the brake control device according to the present embodiment.
- the robot control system 100 includes a robot 1, a robot control device 3, a motor control device 5, a brake control device 7, and a welding gun control device 9. .
- the robot 1 includes a motor 11, a speed reducer 13, an electromagnetic brake 15, and a welding gun 17.
- the robot 1 is described as an example of a working device to which a work part for performing a predetermined work is attached. In the present embodiment, a case where a welding gun 17 is attached as a work part will be described.
- FIG. 1 shows a rotation mechanism for one axis.
- Each of the motion axes is provided with a motor 11 and a speed reducer 13 as a drive unit for driving the motion axis, and by driving the motor 11, the motion axis is operated via the speed reducer 13 and the robot 1 Controls the posture of the arm.
- the motor 11 is a drive mechanism for driving the operation axis of the robot 1, and is, for example, a servomotor.
- the motor 11 is provided with a pulse coder (pulse generator or encoder) that is a detector of the rotational angle position and the speed.
- the speed reducer 13 is a drive mechanism that increases the rotational torque of the motor 11 so that the motor 11 can be driven even when the load is large.
- the speed reducer 13 operates the operation shaft by the driving force from the motor 11 to move the robot arm.
- the electromagnetic brake 15 is provided in a drive unit that drives an operating shaft, and is a device that uses an electromagnetic force generated by energizing a coil to brake or hold power or rotational motion.
- the electromagnetic brake 15 is attached to one or both of the motor 11 and the speed reducer 13, and brakes or holds the movement of the motor 11 or the speed reducer 13.
- the welding gun 17 is described as an example of a work part for work attached to the tip of the robot arm, and is, for example, a C-type welding gun. However, it is not necessary to limit to a welding gun, and a spot welding machine, a laser welding machine, a work hand, or the like may be used as long as the tool can be attached to the robot arm.
- the robot controller 3 provides information required by the motor controller 5, the brake controller 7, and the welding gun controller 9, and monitors the states of the motor 11, the electromagnetic brake 15, and the welding gun 17, The operation of the robot 1 is controlled.
- the robot control device 3 includes a work information acquisition unit 21 and a work control monitoring unit 23.
- the work information acquisition unit 21 acquires information necessary for the work of the robot 1 and provides the information to the work control monitoring unit 23. For example, information such as welding point coordinates, welding current, work pressure, pressurization time, etc., which are conditions for welding work, material and number of work, work switching information, pallet switching information, etc. are obtained from the manufacturing planning system. Then, it is provided to the work control monitoring unit 23.
- the work control monitoring unit 23 provides information to the motor control device 5, the brake control device 7, and the welding gun control device 9 based on the information provided from the work information acquisition unit 21, and The gun 17 is controlled. Further, the work control monitoring unit 23 acquires information from the motor control device 5, the brake control device 7, and the welding gun control device 9, and monitors the motor 11, the electromagnetic brake 15, and the welding gun 17.
- the motor control device 5 controls the driving of the motor 11 based on the instruction from the robot control device 3. Specifically, the motor control device 5 controls the start and stop of the operation of the motor 11, the increase and decrease of the rotation speed, and the like.
- the brake control device 7 controls the operation and release of the electromagnetic brake 15 and the increase / decrease of the braking force based on an instruction from the robot control device 3. Specifically, the brake control device 7 activates the electromagnetic brake 15 before starting a series of operations in which the welding gun 17 performs a plurality of operations on the workpiece, and releases the electromagnetic brake 15 before the end of the series of operations. I do. In particular, in the present embodiment, the electromagnetic brake 15 is released at least at the start of the last work in the series of works.
- the welding gun control device 9 controls the operation of the welding gun 17 based on an instruction from the robot control device 3. Specifically, the welding gun control device 9 controls the ball bearing and the like of the C-type welding gun to pressurize the work in addition to controlling the start and stop of welding by the welding gun 17 and the increase and decrease of the welding current. It also controls the start and stop of work, the pressing force, the pressurizing speed, and the like.
- the robot controller 3 can be realized using a microcomputer including a CPU (central processing unit), a memory, and an input / output unit.
- a computer program for causing the microcomputer to function as the robot control device 3 is installed in the microcomputer and executed.
- the microcomputer functions as a plurality of information processing units (21, 23) included in the robot control device 3.
- the robot control device 3 is realized by software.
- the robot control device 3 can be configured by preparing dedicated hardware for executing each information processing.
- Dedicated hardware includes application-specific integrated circuits (ASICs) arranged to perform the functions described in the embodiments, and devices such as conventional electrical circuits and circuit components.
- the plurality of information processing units (21, 23) included in the robot control device 3 may be configured by individual hardware.
- the motor control device 5, the brake control device 7, and the welding gun control device 9 can be realized using a microcomputer having a CPU, a memory, and an input / output unit, similarly to the robot control device 3. It can also be realized as software or dedicated hardware. Further, the robot control device 3, the motor control device 5, the brake control device 7, and the welding gun control device 9 may also be used as an electronic control unit (ECU) used for other control related to the vehicle.
- ECU electronice control unit
- the robot control device 3, the motor control device 5, the brake control device 7, and the welding gun control device 9 are described as separate devices.
- the motor control device 5, the brake control device 7, and the welding gun control device 9 may be configured as a part of the robot control device 3.
- the motor control device 5, the brake control device 7, and the welding gun control device 9 are configured as a plurality of information processing units included in the robot control device 3 as a motor control unit, a brake control unit, and a welding gun control unit, respectively. Is also good.
- robot control device 3 motor control device 5, brake control device 7, and welding gun control device 9 are configured by a general-purpose electronic circuit including a microcomputer, a microprocessor, a CPU, and a peripheral device such as a memory. Having a part.
- the present invention is not limited to an industrial robot.
- an automobile engine may be used instead of the motor 11, and a transmission may be used instead of the speed reducer 13.
- the present invention may be applied to a moving object in an amusement park or a machine tool such as a three-dimensional printer. Is also possible. Therefore, the present invention can be applied to any apparatus having a rotation mechanism and a mechanism for transmitting the rotation mechanism.
- FIG. 2 is a time chart showing a processing procedure of the brake control processing by the brake control device 7, and FIG. 3 is a flowchart thereof.
- a series of operation information executed by the robot 1 performing the welding operation is determined by the manufacturing plan, and the operation information is acquired, recorded, and stored by the operation information acquisition unit 21.
- the work control monitoring unit 23 communicates with the motor control device 5, the brake control device 7, and the welding gun control device 9 based on the work information, and issues a work instruction command according to the work plan while checking the current state. Send to each device. Thus, preparation for a series of operations is completed.
- step S101 the operation axis of the robot 1 starts operating (time t2 in FIG. 2), and the welding gun 17 moves.
- a motor 11 as a drive mechanism and a speed reducer 13 for transmitting the power of the motor 11 are attached to the operation shaft of the robot 1.
- the motor 11 operates according to a command such as ON / OFF of the rotation operation and a rotation speed transmitted from the motor control device 5, and drives an operation axis via the speed reducer 13. Accordingly, the robot arm moves, and the welding gun 17 moves toward a predetermined position.
- step S103 the brake control device 7 determines whether the welding gun 17 has moved to a predetermined position and stopped.
- the brake control device 7 continuously performs this determination, and proceeds to step S105 when determining that the welding gun 17 has moved to the predetermined position and stopped.
- step S105 the brake control device 7 operates the electromagnetic brake 15 before pressurizing the work with the welding gun 17 (time t3).
- the electromagnetic brake 15 to be operated an electromagnetic brake provided on all operation shafts may be operated, or only a part of the electromagnetic brakes may be operated. In this way, by pressing the electromagnetic shaft 15 to fix the operating shaft and then pressurizing, even if vibrations that become a mechanical load due to displacement or deformation of the work occur, a load is imposed on the motor 11 and the speed reducer 13. This can be prevented.
- step S107 the welding gun control device 9 controls the welding gun 17 to pressurize the work (A1 in FIG. 2), and when the pressurization is completed, energization is started to perform welding (B1).
- step S109 the brake control device 7 determines whether or not welding has been completed.
- the brake control device 7 determines that the welding is completed.
- the brake control device 7 continuously determines whether or not the welding has been completed, and proceeds to step S111 when determining that the welding has been completed.
- step S111 the brake control device 7 releases the electromagnetic brake 15 (time t4).
- step S113 the brake control device 7 determines whether or not a plurality of welding operations to be performed on the same work are before final welding. For example, when there are ten welding points as a series of operations for one workpiece, it is determined whether the ninth welding operation is completed and before the tenth welding which is the final welding. judge. In FIG. 2, it is determined whether or not the pressurization of A1 to A9 and the energization of B1 to B9 are completed and before the pressurization of A10.
- the brake control device 7 determines that it is not before the final welding, it returns to step S101 and continues welding at the remaining welding points. On the other hand, if it is determined that the current time is before the final welding, the brake control device 7 ends the brake control process according to the present embodiment before the final welding work at the tenth place. Therefore, the brake control device 7 releases the electromagnetic brake 15 at the start of the final work. Therefore, as shown in FIG. 2, the operations S1 to S9 of the electromagnetic brake at the time of welding from the first position to the ninth position are performed, but the electromagnetic brake 15 is released without being operated at the tenth position. The welding work is performed. However, since it is sufficient that the electromagnetic brake 15 is released at least at the start of the final work, the electromagnetic brake 15 may be released from the sixth or seventh welding work before the final work.
- the welding gun 17 which is a work part is electromagnetically operated before starting a series of works for performing a plurality of works on a work to be worked.
- the brake 15 is operated, and the electromagnetic brake 15 is released before the end of a series of operations.
- the electromagnetic brake 15 is not actuated from before the start of the series of operations until after the end thereof, and the electromagnetic brake 15 can be released at an early stage before the end of the series of operations. Frequency can be reduced. Therefore, the life of the devices related to the electromagnetic brake 15 can be extended, and the power consumption can be reduced.
- the life of the device may depend on the number of times of operation of the brake. In such a case, if the number of times of operation is doubled, the life is shortened to half. Become. Similarly, when the number of times of operation of the electromagnetic brake is doubled, the power consumption of the electromagnetic brake is also doubled. Therefore, if the use frequency of the electromagnetic brake 15 can be reduced by the brake control device 7 according to the present embodiment, the life of the device related to the electromagnetic brake 15 can be extended, and the power consumption can be reduced.
- the motor 11 and the deceleration can be performed even if vibrations that cause a mechanical load due to displacement or deformation of the workpiece occur.
- the load on the machine 13 can be prevented.
- the electromagnetic brake 15 is released at least at the start of the last work in the series of works.
- the operation of the electromagnetic brake 15 can be terminated before the final work is performed, so that the use frequency of the electromagnetic brake 15 can be reduced. Therefore, the life of the devices related to the electromagnetic brake 15 can be extended, and the power consumption can be reduced.
- FIG. 4 is a time chart showing a processing procedure of the brake control processing by the brake control device 7, and FIG. 5 is a flowchart thereof.
- the brake control process according to the present embodiment is different from the first embodiment in that the electromagnetic brake 15 is operated only during the first welding operation of a series of operations. Therefore, the flowchart of FIG. 5 differs from the flowchart of FIG. 3 of the first embodiment in that step S113 is deleted and step S201 is added. Therefore, steps S203 to S213 in FIG. 5 are the same as steps S101 to S111 in FIG. 3, respectively. Further, in the time chart of FIG. 4, only the signal S1 indicating the operation of the electromagnetic brake 15 in the first welding operation is described, and the signals S2 to S9 indicating the operation of the electromagnetic brake 15 in the second and subsequent welding operations are described. This is different from the first embodiment in FIG.
- step S201 the brake control device 7 determines whether or not the work has been switched, and upon detecting that the work has been switched, proceeds to step S203. Therefore, the brake control device 7 executes the brake control process only when switching of the work is detected. Work switching may be detected by acquiring work switching information from the work control monitoring unit 23.
- step S201 When the switching of the work is detected in step S201 and the processes in steps S203 to S213 shown in FIG. 5 are performed, the first welding operation of the plurality of welding operations performed on the same work is performed.
- step S211 when the brake control device 7 detects that the current supply to the welding gun 17 has been completed (B1 in FIG. 4), the brake control device 7 determines that the first welding has been completed, and proceeds to step S213 to perform electromagnetic braking. Release 15.
- the electromagnetic brake 15 is operated only during the first welding operation of the series of welding operations, and the electromagnetic brake 15 is operated during the second and subsequent welding operations.
- the welding work is performed in a state where the welding is released without being performed.
- the signal S1 indicating the operation of the electromagnetic brake 15 is described only during the first welding, and the signal indicating the operation of the electromagnetic brake 15 is not described during the second and subsequent weldings.
- the electromagnetic brake 15 is operated only during the first operation of a series of operations.
- the electromagnetic brake 15 can be operated only during the first work in which the positional displacement of the work is most likely to occur, and the work can be performed with the electromagnetic brake 15 released in the second and subsequent work. Therefore, the frequency of use of the electromagnetic brake 15 can be greatly reduced, so that the life of the devices related to the electromagnetic brake 15 can be further extended, and the power consumption can be greatly reduced.
- the electromagnetic brake 15 upon detecting that the power supply to the welding gun 17 has been completed in the first operation, the electromagnetic brake 15 is released.
- the electromagnetic brake 15 can be released at the same time when the first work is completed. Therefore, the electromagnetic brake 15 can be released at the earliest, and the electromagnetic brake 15 is not continuously operated unnecessarily. Therefore, the life of the devices related to the electromagnetic brake 15 can be extended, and the power consumption can be reduced.
- FIG. 7 is a flowchart illustrating a processing procedure of a brake control process performed by the brake control device 7.
- the electromagnetic brakes 15 are provided in a plurality of driving units that drive a plurality of operation axes, respectively, and different controls are performed on the electromagnetic brakes 15 provided in the plurality of driving units. This is different from the first embodiment.
- the brake control device 7 acquires posture information indicating the posture of the robot 1, estimates a mechanical load applied to the operation axis based on the acquired posture information, and, based on the estimated mechanical load, generates an electromagnetic brake. 15 are controlled differently.
- the electromagnetic brake 15 is provided on both the motor 11 for driving each operation axis and the speed reducer 13.
- the second embodiment is different from the first embodiment in that different controls are performed on the electromagnetic brake 15 provided on the motor 11 and the electromagnetic brake 15 provided on the speed reducer 13.
- the flowchart of FIG. 7 differs from the flowchart of FIG. 3 in that the processes of steps S305 to S311 are added. Therefore, the processes in steps S301, 303, 313 to 321 in FIG. 7 are the same as those in steps S101, 103, 105 to 113 in FIG. 3, respectively.
- step S301 when the operation axis of the robot 1 starts operating and the welding gun 17 starts moving in step S301, the brake control device 7 moves the welding gun 17 to a predetermined position in step S303. To determine whether or not it has stopped. When it is determined that the welding gun 17 has moved to the predetermined position and stopped, the process proceeds to step S305.
- step S305 the brake control device 7 acquires posture information indicating the posture of the robot 1 from the work control monitoring unit 23.
- the posture information is angle information of each operation axis of the robot arm, and is detected by an encoder or the like attached near the motor 11 of each operation axis.
- the work control monitoring unit 23 acquires this angle information from the motor control device 5 and stores it as posture information of the robot 1.
- the brake control device 7 estimates a mechanical load applied to each operation axis based on the posture information.
- the torque generated when the robot arm moves up and down, left and right, and back and forth is calculated by the following equation (1), and is estimated according to the calculated torque.
- Torque (mN) arm length L (m) x load F (N) x sin ⁇ (1) As shown in FIG. 8, ⁇ is the angle of the arm with respect to gravity, and the load F is the weight of the arm ⁇ acceleration.
- the brake control device 7 calculates the torque for each of the operation axes J1 to J6 shown in FIG. 6 according to the equation (1) and estimates the mechanical load by comparing the calculated torque with a preset threshold. For example, by setting thresholds T1 and T2 (T1> T2), if the calculated torque is larger than T1, the mechanical load is determined to be "large”, and if the calculated torque is equal to or more than T2 and equal to or less than T1, the mechanical load is determined. Is determined to be “medium”, and when it is less than T2, the mechanical load is determined to be “small”.
- FIG. 9 shows a result of estimating the mechanical load of each operation axis thus estimated.
- the mechanical load on the J3 axis is estimated to be “large”, the mechanical load on the J2 axis is estimated to be “medium”, and the other operation axes are mechanical.
- the target load is estimated to be "small”.
- Such a mechanical load occurs when the posture of the robot 1 is in a state as shown in FIG.
- the mechanical load is “large” not only on the J3 axis but also on the J2 axis.
- step S307 the brake control device 7 selects the electromagnetic brake 15 to be operated among the electromagnetic brakes provided on the plurality of operation axes according to the mechanical load estimated in step S305.
- the brake control device 7 selects only the electromagnetic brake provided on the operation axis whose mechanical load estimated in step S305 is “large”, and does not select the electromagnetic brakes provided on the other operation axes. I do.
- only the electromagnetic brake provided on the J3 axis is selected, and the electromagnetic brakes provided on other operation axes are not selected.
- the electromagnetic brakes of all the operating axes are selected if the absolute value of the mechanical load is equal to or greater than the threshold, and if the absolute value of the mechanical load is less than the threshold, all electromagnetic brakes are selected. The brake may not be selected.
- the operation time of the electromagnetic brake may be set to be longer as the mechanical load increases. Therefore, in the case of FIG. 9, the operation time of the electromagnetic brake of the J3 axis is set to be the longest, the operation time of the electromagnetic brake of the J2 axis is set to be shorter than the electromagnetic brake of the J3 axis, and other operations are performed.
- the operation time of the electromagnetic brake of the shaft may be set to be shorter.
- the operating strength of the electromagnetic brake may be set to increase as the mechanical load increases. This operation intensity can be controlled by adjusting the duty ratio when the electromagnetic brake is subjected to PWM control. Further, control may be performed such that the operating frequency of the electromagnetic brake increases as the mechanical load increases. As described above, the brake control device 7 performs different controls on the electromagnetic brakes provided on the plurality of operation axes.
- the brake control device 7 determines which of the mechanical loads of the motor and the speed reducer is larger. For example, if the speed reducer 13 is mounted closer to the welding gun 17 (the tip of the robot arm) than the motor 11, it is determined that the mechanical load of the speed reducer 13 is larger. Conversely, when the motor 11 is mounted closer to the welding gun 17 than the speed reducer 13, it is determined that the mechanical load of the motor 11 is larger. When the motor 11 and the speed reducer 13 are provided at the same distance from the welding gun 17, it is determined that the mechanical load of the motor 11 is equal to the mechanical load of the speed reducer 13. Further, the torque applied to the position of the motor and the torque applied to the position of the speed reducer are respectively calculated by using the above-described equation (1), and the burden ratio is determined by the calculated torque ratio. It may be determined which mechanical load of the reduction gear is larger.
- step S311 the brake control device 7 selects one or both of the electromagnetic brake of the motor and the electromagnetic brake of the speed reducer according to the determination result in step S309.
- the electromagnetic brake selected here is the electromagnetic brake of the operation axis selected in step S307.
- the electromagnetic brake of the J3 axis is selected in step S307, one or both of the electromagnetic brake of the motor and the electromagnetic brake of the speed reducer provided on the J3 axis are selected.
- both the electromagnetic brake for the reducer and the electromagnetic brake for the motor select both the electromagnetic brake for the reducer and the electromagnetic brake for the motor.
- the mechanical load on the operation axis is larger than the threshold value T0 larger than the threshold value T1 in step S305, both the electromagnetic brake of the reduction gear and the electromagnetic brake of the motor are selected.
- the mechanical load on the operating shaft is very small, neither the electromagnetic brake of the speed reducer nor the electromagnetic brake of the motor is selected.
- both the electromagnetic brake of the speed reducer and the electromagnetic brake of the motor are not selected.
- the brake control device 7 controls both the electromagnetic brake of the motor and the electromagnetic brake of the speed reducer, and performs different controls.
- the operation time of the electromagnetic brake of the motor may be set to 1 second, and the operation time of the electromagnetic brake of the speed reducer may be set to 0.5 second according to the magnitude of the mechanical load.
- the brake pressure of the electromagnetic brake of the motor may be set to 100% and the brake pressure of the electromagnetic brake of the speed reducer may be set to 50% according to the magnitude of the mechanical load.
- the setting method may be changed according to the difference between the price of the motor and the speed reducer and the degree of influence on the mechanical load.
- the processing of steps S313 to 321 is performed on the selected electromagnetic brake.
- the electromagnetic brake of the motor or the reduction gear selected in step S311 is operated among the electromagnetic brakes of the operation axis selected in step S307.
- the electromagnetic brake of the J3 axis motor is operated, and the electromagnetic brake of the reduction gear is not operated. .
- step S307 If it is determined in step S307 that the operation time of the electromagnetic brake is set to be longer as the mechanical load becomes larger, as shown in FIG. A brake is selected. Then, the operation time of the selected electromagnetic brake is set to be longer according to the “large”, “medium”, and “small” mechanical loads. The same applies to the case of the operation intensity and the operation frequency. Further, the operation time and brake pressure of the electromagnetic brake of the motor and the electromagnetic brake of the speed reducer may be set according to the magnitude of the mechanical load.
- steps S313 to 321 are performed, and if the brake control device 7 determines in step S321 that it is before the final welding work, the brake control process according to the present embodiment ends.
- steps S305 to S311 for selecting the electromagnetic brake are added to the brake control process of the first embodiment.
- steps S305 to S311 of the present embodiment may be added to the brake control processing of the second embodiment.
- the brake control device 7 performs different controls on the electromagnetic brakes provided on a plurality of operation axes.
- the control of the electromagnetic brake can be changed for each operation axis, so that the electromagnetic brake can be controlled according to the state of the operation axis. Therefore, the electromagnetic brakes of all the operation axes are not operated unnecessarily, so that the frequency of using the electromagnetic brakes can be reduced. Thereby, the life of the device related to the electromagnetic brake can be extended, and the power consumption can be reduced.
- the brake control device 7 acquires posture information indicating the posture of the robot 1 and estimates a mechanical load applied to the operation axis based on the acquired posture information. Then, according to the estimated mechanical load, different controls are performed on the electromagnetic brakes provided on the plurality of operation axes. Thereby, the electromagnetic brake of each operation axis can be individually controlled according to the mechanical load applied to the operation axis.
- the brake control device 7 controls both the electromagnetic brake provided on the motor and the electromagnetic brake provided on the speed reducer. Thereby, both the electromagnetic brake of the motor and the electromagnetic brake of the reduction gear are operated, and the mechanical load applied to both the motor and the reduction gear can be reduced.
- the brake control device 7 different controls are performed on the electromagnetic brake provided on the motor and the electromagnetic brake provided on the speed reducer.
- the electromagnetic brake of the motor and the electromagnetic brake of the speed reducer can be individually controlled, so that the electromagnetic brake can be controlled according to the respective situations of the motor and the speed reducer.
- FIG. 13 is a flowchart illustrating a procedure of a brake control process performed by the brake control device 7.
- the brake control process according to the present embodiment is different from the second embodiment in that the electromagnetic brake is operated only on the first work to be performed among a plurality of works placed on a pallet which is a transport device. are doing. Therefore, in the flowchart in FIG. 13, step S401 is different from step S201 in the flowchart in FIG. 5 only, and the other steps are the same as those in FIG. Therefore, steps S403 to 413 are the same as steps S203 to 213 in FIG. 5, respectively.
- step S401 the brake control device 7 determines whether or not the pallet has been switched, and upon detecting the pallet switching, proceeds to step S403. Therefore, the brake control device 7 executes the brake control process only when the pallet switching is detected.
- the pallet switching may be detected by acquiring pallet switching information from the work control monitoring unit 23.
- the electromagnetic brake 15 is operated only on the work that is to be performed first among the plurality of works placed on the pallet. Then, in the second and subsequent works, the welding work is performed in a state where the electromagnetic brake 15 is released without being operated.
- FIG. 13 illustrates the case where the brake control process of the present embodiment is applied to the second embodiment, it is also possible to apply the brake control process to the first and third embodiments.
- the electromagnetic brake is operated only on the work on which work is performed first among a plurality of works placed on the pallet. Since the work to be performed at the beginning of the pallet is likely to be deformed, the electromagnetic brake is activated only for the first work on the pallet, and the electromagnetic brake is released for the second and subsequent works to perform the work. To do. This can prevent the load on the motor 11 and the speed reducer 13 caused by the deformation of the work, and can operate the electromagnetic brake only when the work is highly likely to be deformed. Can be. Therefore, the life of the devices related to the electromagnetic brake 15 can be further extended, and the power consumption can be greatly reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
This brake control device: controls a brake provided to a drive unit for driving a rotation mechanism of an operation machine, to which there is attached an operation part that performs a prescribed operation; actuates the brake before the start of a series of operations, in which the operation part performs a plurality of operations on an operation workpiece; and releases the brake before the end of the series of operations.
Description
本発明は、所定の作業を行う作業部位が取り付けられた作業機器の回転機構を駆動する駆動部に設けられたブレーキを制御するブレーキ制御装置及びブレーキ制御方法に関する。
The present invention relates to a brake control device and a brake control method for controlling a brake provided in a drive unit that drives a rotation mechanism of a work device to which a work site for performing a predetermined work is attached.
従来では、産業用ロボットに取り付けられたC型溶接ガンについて記載した特許文献1が開示されている。特許文献1に開示されたC型溶接ガンでは、マニピュレータ腕と加圧装置との間にイコライジングユニットを介在させ、イコライジングユニットのスプリングの付勢力を溶接ガンの自重とバランスさせることで、加圧動作時におけるワークの変形を防止していた。
Conventionally, Patent Document 1 discloses a C-type welding gun attached to an industrial robot. In the C-type welding gun disclosed in Patent Literature 1, an equalizing unit is interposed between a manipulator arm and a pressurizing device, and a biasing force of a spring of the equalizing unit is balanced with a weight of the welding gun to perform a pressing operation. The deformation of the work at the time was prevented.
しかしながら、上述した従来のC型溶接ガンでは、溶接を行うときには必ず電磁ブレーキを作動させているので、電磁ブレーキの利用頻度が高くなっていた。そのため、電磁ブレーキに関連する機器の寿命が短くなり、また消費電力も無駄に多くなってしまうという問題点があった。
However, in the above-described conventional C-type welding gun, the electromagnetic brake is always used when welding is performed, so the use of the electromagnetic brake has been increased. Therefore, there is a problem that the life of the device related to the electromagnetic brake is shortened and the power consumption is wasted.
そこで、本発明は上記実情に鑑みて提案されたものであり、電磁ブレーキの利用頻度を低下させることで、電磁ブレーキに関連する機器の寿命を延ばすことができ、また消費電力を低減することのできるブレーキ制御装置及びその方法を提供することを目的とする。
In view of the above, the present invention has been proposed in view of the above circumstances. By reducing the frequency of use of the electromagnetic brake, it is possible to extend the life of devices related to the electromagnetic brake and to reduce power consumption. It is an object of the present invention to provide a brake control device and a method thereof that can be performed.
上述した課題を解決するために、本発明の一態様に係るブレーキ制御装置及びその方法は、作業部位が作業対象物に対して複数回の作業を行う一連の作業の開始前にブレーキを作動させ、一連の作業の終了前にブレーキを解除する。
In order to solve the above-described problem, a brake control device and a method thereof according to one embodiment of the present invention operate a brake before starting a series of operations in which a work site performs a plurality of operations on an operation target. Release the brake before the end of a series of operations.
本発明によれば、電磁ブレーキの利用頻度を低下させることができるので、電磁ブレーキに関連する機器の寿命を延ばすことができ、また消費電力を低減することも可能となる。
According to the present invention, the frequency of use of the electromagnetic brake can be reduced, so that the life of the device related to the electromagnetic brake can be extended and the power consumption can be reduced.
[第1実施形態]
以下、本発明を適用した第1実施形態について図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。 [First Embodiment]
Hereinafter, a first embodiment to which the present invention is applied will be described with reference to the drawings. In the description of the drawings, the same portions are denoted by the same reference numerals, and description thereof will be omitted.
以下、本発明を適用した第1実施形態について図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。 [First Embodiment]
Hereinafter, a first embodiment to which the present invention is applied will be described with reference to the drawings. In the description of the drawings, the same portions are denoted by the same reference numerals, and description thereof will be omitted.
[ロボット制御システムの構成]
図1は、本実施形態に係るブレーキ制御装置を備えたロボット制御システムの構成を示すブロック図である。図1に示すように、本実施形態に係るロボット制御システム100は、ロボット1と、ロボット制御装置3と、モータ制御装置5と、ブレーキ制御装置7と、溶接ガン制御装置9とから構成される。 [Robot control system configuration]
FIG. 1 is a block diagram illustrating a configuration of a robot control system including the brake control device according to the present embodiment. As shown in FIG. 1, therobot control system 100 according to the present embodiment includes a robot 1, a robot control device 3, a motor control device 5, a brake control device 7, and a welding gun control device 9. .
図1は、本実施形態に係るブレーキ制御装置を備えたロボット制御システムの構成を示すブロック図である。図1に示すように、本実施形態に係るロボット制御システム100は、ロボット1と、ロボット制御装置3と、モータ制御装置5と、ブレーキ制御装置7と、溶接ガン制御装置9とから構成される。 [Robot control system configuration]
FIG. 1 is a block diagram illustrating a configuration of a robot control system including the brake control device according to the present embodiment. As shown in FIG. 1, the
ロボット1は、モータ11と、減速機13と、電磁ブレーキ15と、溶接ガン17とを備えている。ロボット1は、所定の作業を行う作業部位が取り付けられた作業機器の一例として記載され、本実施形態では作業部位として溶接ガン17が取り付けられている場合を説明する。
The robot 1 includes a motor 11, a speed reducer 13, an electromagnetic brake 15, and a welding gun 17. The robot 1 is described as an example of a working device to which a work part for performing a predetermined work is attached. In the present embodiment, a case where a welding gun 17 is attached as a work part will be described.
ロボット1は、回転機構として複数の動作軸を備えているが、図1では一軸分の回転機構を示している。各動作軸には、動作軸を駆動する駆動部としてモータ11と減速機13がそれぞれ設けられており、モータ11を駆動することによって減速機13を介して動作軸を作動させ、ロボット1のロボットアームの姿勢を制御している。
Although the robot 1 has a plurality of operation axes as a rotation mechanism, FIG. 1 shows a rotation mechanism for one axis. Each of the motion axes is provided with a motor 11 and a speed reducer 13 as a drive unit for driving the motion axis, and by driving the motor 11, the motion axis is operated via the speed reducer 13 and the robot 1 Controls the posture of the arm.
モータ11は、ロボット1の動作軸を駆動する駆動機構であり、例えばサーボモータである。モータ11には、回転角位置および速度の検出器であるパルスコーダ(パルスジェネレータまたはエンコーダ)が付帯されている。
The motor 11 is a drive mechanism for driving the operation axis of the robot 1, and is, for example, a servomotor. The motor 11 is provided with a pulse coder (pulse generator or encoder) that is a detector of the rotational angle position and the speed.
減速機13は、モータ11の回転トルクを高めて荷重が大きくても駆動できるようにする駆動機構であり、モータ11からの駆動力によって動作軸を作動させてロボットアームを動かしている。
The speed reducer 13 is a drive mechanism that increases the rotational torque of the motor 11 so that the motor 11 can be driven even when the load is large. The speed reducer 13 operates the operation shaft by the driving force from the motor 11 to move the robot arm.
電磁ブレーキ15は、動作軸を駆動する駆動部に設けられており、コイルに通電することによって発生する電磁力を利用して、動力や回転運動を制動または保持する装置である。電磁ブレーキ15は、モータ11と減速機13のいずれか、または両方に取り付けられており、モータ11または減速機13の動きを制動または保持している。
The electromagnetic brake 15 is provided in a drive unit that drives an operating shaft, and is a device that uses an electromagnetic force generated by energizing a coil to brake or hold power or rotational motion. The electromagnetic brake 15 is attached to one or both of the motor 11 and the speed reducer 13, and brakes or holds the movement of the motor 11 or the speed reducer 13.
溶接ガン17は、ロボットアームの先端に取り付けられた作業用の作業部位の一例として記載されており、例えばC型の溶接ガンである。ただし、溶接ガンに限定する必要はなく、ロボットアームに取り付けられる工具であれば、スポット溶接機やレーザ溶接機、ワーク・ハンド等であってもよい。
The welding gun 17 is described as an example of a work part for work attached to the tip of the robot arm, and is, for example, a C-type welding gun. However, it is not necessary to limit to a welding gun, and a spot welding machine, a laser welding machine, a work hand, or the like may be used as long as the tool can be attached to the robot arm.
ロボット制御装置3は、モータ制御装置5と、ブレーキ制御装置7と、溶接ガン制御装置9が必要とする情報を提供するとともに、モータ11、電磁ブレーキ15、溶接ガン17の状態を監視して、ロボット1の動作を制御する。ロボット制御装置3は、作業情報取得部21と、作業制御監視部23とを備えている。
The robot controller 3 provides information required by the motor controller 5, the brake controller 7, and the welding gun controller 9, and monitors the states of the motor 11, the electromagnetic brake 15, and the welding gun 17, The operation of the robot 1 is controlled. The robot control device 3 includes a work information acquisition unit 21 and a work control monitoring unit 23.
作業情報取得部21は、ロボット1の作業に必要となる情報を取得して、作業制御監視部23に提供している。例えば、溶接作業の条件である溶接点座標や溶接電流、ワークの加圧力、加圧時間等の情報や、ワークの素材や枚数、ワークの切り替え情報、パレットの切り替え情報等を製造計画システムから取得して、作業制御監視部23に提供している。
The work information acquisition unit 21 acquires information necessary for the work of the robot 1 and provides the information to the work control monitoring unit 23. For example, information such as welding point coordinates, welding current, work pressure, pressurization time, etc., which are conditions for welding work, material and number of work, work switching information, pallet switching information, etc. are obtained from the manufacturing planning system. Then, it is provided to the work control monitoring unit 23.
作業制御監視部23は、作業情報取得部21から提供された情報に基づいて、モータ制御装置5とブレーキ制御装置7と溶接ガン制御装置9に情報を提供し、モータ11と電磁ブレーキ15と溶接ガン17を制御する。また、作業制御監視部23は、モータ制御装置5とブレーキ制御装置7と溶接ガン制御装置9から情報を取得して、モータ11と電磁ブレーキ15と溶接ガン17を監視する。
The work control monitoring unit 23 provides information to the motor control device 5, the brake control device 7, and the welding gun control device 9 based on the information provided from the work information acquisition unit 21, and The gun 17 is controlled. Further, the work control monitoring unit 23 acquires information from the motor control device 5, the brake control device 7, and the welding gun control device 9, and monitors the motor 11, the electromagnetic brake 15, and the welding gun 17.
モータ制御装置5は、ロボット制御装置3からの指示に基づいて、モータ11の駆動を制御する。具体的に、モータ制御装置5は、モータ11の動作の開始と停止や回転速度の増減などを制御する。
The motor control device 5 controls the driving of the motor 11 based on the instruction from the robot control device 3. Specifically, the motor control device 5 controls the start and stop of the operation of the motor 11, the increase and decrease of the rotation speed, and the like.
ブレーキ制御装置7は、ロボット制御装置3からの指示に基づいて、電磁ブレーキ15の作動及び解除や制動力の増減などを制御する。具体的に、ブレーキ制御装置7は、溶接ガン17がワークに対して複数回の作業を行う一連の作業の開始前に電磁ブレーキ15を作動させ、一連の作業の終了前に電磁ブレーキ15を解除する。特に、本実施形態では、一連の作業うち、少なくとも最終回の作業の開始時には電磁ブレーキ15を解除する。
The brake control device 7 controls the operation and release of the electromagnetic brake 15 and the increase / decrease of the braking force based on an instruction from the robot control device 3. Specifically, the brake control device 7 activates the electromagnetic brake 15 before starting a series of operations in which the welding gun 17 performs a plurality of operations on the workpiece, and releases the electromagnetic brake 15 before the end of the series of operations. I do. In particular, in the present embodiment, the electromagnetic brake 15 is released at least at the start of the last work in the series of works.
溶接ガン制御装置9は、ロボット制御装置3からの指示に基づいて、溶接ガン17の動作を制御する。具体的に、溶接ガン制御装置9は、溶接ガン17による溶接の開始及び停止や溶接電流の増減などの制御に加えて、C型溶接ガンのボールベアリング等を制御してワークを挟んで加圧する作業の開始及び停止や加圧力、加圧速度なども制御する。
The welding gun control device 9 controls the operation of the welding gun 17 based on an instruction from the robot control device 3. Specifically, the welding gun control device 9 controls the ball bearing and the like of the C-type welding gun to pressurize the work in addition to controlling the start and stop of welding by the welding gun 17 and the increase and decrease of the welding current. It also controls the start and stop of work, the pressing force, the pressurizing speed, and the like.
尚、ロボット制御装置3は、CPU(中央処理装置)、メモリ及び入出力部を備えるマイクロコンピュータを用いて実現可能である。マイクロコンピュータをロボット制御装置3として機能させるためのコンピュータプログラムを、マイクロコンピュータにインストールして実行する。これにより、マイクロコンピュータは、ロボット制御装置3が備える複数の情報処理部(21、23)として機能する。ここでは、ソフトウェアによってロボット制御装置3を実現する例を示すが、もちろん、各情報処理を実行するための専用のハードウェアを用意して、ロボット制御装置3を構成することも可能である。専用のハードウェアには、実施形態に記載された機能を実行するようにアレンジされた特定用途向け集積回路(ASIC)、及び従来型の電気回路や回路部品のような装置を含む。また、ロボット制御装置3に含まれる複数の情報処理部(21、23)を個別のハードウェアにより構成してもよい。
The robot controller 3 can be realized using a microcomputer including a CPU (central processing unit), a memory, and an input / output unit. A computer program for causing the microcomputer to function as the robot control device 3 is installed in the microcomputer and executed. Thereby, the microcomputer functions as a plurality of information processing units (21, 23) included in the robot control device 3. Here, an example is shown in which the robot control device 3 is realized by software. However, it is needless to say that the robot control device 3 can be configured by preparing dedicated hardware for executing each information processing. Dedicated hardware includes application-specific integrated circuits (ASICs) arranged to perform the functions described in the embodiments, and devices such as conventional electrical circuits and circuit components. Further, the plurality of information processing units (21, 23) included in the robot control device 3 may be configured by individual hardware.
更に、モータ制御装置5、ブレーキ制御装置7、溶接ガン制御装置9についても、ロボット制御装置3と同様に、CPU、メモリ及び入出力部を備えるマイクロコンピュータを用いて実現可能である。また、ソフトウェア或いは専用のハードウェアとして実現することも可能である。更に、ロボット制御装置3、モータ制御装置5、ブレーキ制御装置7、溶接ガン制御装置9は、車両にかかわる他の制御に用いる電子制御ユニット(ECU)と兼用してもよい。
Further, the motor control device 5, the brake control device 7, and the welding gun control device 9 can be realized using a microcomputer having a CPU, a memory, and an input / output unit, similarly to the robot control device 3. It can also be realized as software or dedicated hardware. Further, the robot control device 3, the motor control device 5, the brake control device 7, and the welding gun control device 9 may also be used as an electronic control unit (ECU) used for other control related to the vehicle.
また、本実施形態では、ロボット制御装置3、モータ制御装置5、ブレーキ制御装置7、溶接ガン制御装置9を、それぞれ別の装置として記載している。しかし、モータ制御装置5、ブレーキ制御装置7、溶接ガン制御装置9は、ロボット制御装置3の一部として構成されていてもよい。例えば、モータ制御装置5、ブレーキ制御装置7、溶接ガン制御装置9を、それぞれモータ制御部、ブレーキ制御部、溶接ガン制御部として、ロボット制御装置3に含まれる複数の情報処理部として構成してもよい。
In the present embodiment, the robot control device 3, the motor control device 5, the brake control device 7, and the welding gun control device 9 are described as separate devices. However, the motor control device 5, the brake control device 7, and the welding gun control device 9 may be configured as a part of the robot control device 3. For example, the motor control device 5, the brake control device 7, and the welding gun control device 9 are configured as a plurality of information processing units included in the robot control device 3 as a motor control unit, a brake control unit, and a welding gun control unit, respectively. Is also good.
さらに、上述したロボット制御装置3、モータ制御装置5、ブレーキ制御装置7、溶接ガン制御装置9は、マイクロコンピュータ、マイクロプロセッサ、CPUを含む汎用の電子回路とメモリ等の周辺機器から構成された制御部を有する。
Further, the above-described robot control device 3, motor control device 5, brake control device 7, and welding gun control device 9 are configured by a general-purpose electronic circuit including a microcomputer, a microprocessor, a CPU, and a peripheral device such as a memory. Having a part.
また、図1では、本発明を産業用ロボットに適用する場合を一例として説明したが、本発明は産業用ロボットに限定されるものではない。例えば、モータ11の代わりに自動車のエンジン、減速機13の代わりにトランスミッションを適用することも可能であり、この他にも遊園地の移動体や3次元プリンタのような工作機器等に適用することも可能である。したがって、回転機構とそれを伝達する機構を有するものであれば、すべてに適用可能である。
In FIG. 1, the case where the present invention is applied to an industrial robot has been described as an example, but the present invention is not limited to an industrial robot. For example, an automobile engine may be used instead of the motor 11, and a transmission may be used instead of the speed reducer 13. In addition, the present invention may be applied to a moving object in an amusement park or a machine tool such as a three-dimensional printer. Is also possible. Therefore, the present invention can be applied to any apparatus having a rotation mechanism and a mechanism for transmitting the rotation mechanism.
[ブレーキ制御処理]
次に、図2、3を参照して、本実施形態に係るブレーキ制御装置7によるブレーキ制御処理を説明する。図2は、ブレーキ制御装置7によるブレーキ制御処理の処理手順を示すタイムチャートであり、図3はそのフローチャートである。 [Brake control processing]
Next, a brake control process performed by the brake control device 7 according to the present embodiment will be described with reference to FIGS. FIG. 2 is a time chart showing a processing procedure of the brake control processing by the brake control device 7, and FIG. 3 is a flowchart thereof.
次に、図2、3を参照して、本実施形態に係るブレーキ制御装置7によるブレーキ制御処理を説明する。図2は、ブレーキ制御装置7によるブレーキ制御処理の処理手順を示すタイムチャートであり、図3はそのフローチャートである。 [Brake control processing]
Next, a brake control process performed by the brake control device 7 according to the present embodiment will be described with reference to FIGS. FIG. 2 is a time chart showing a processing procedure of the brake control processing by the brake control device 7, and FIG. 3 is a flowchart thereof.
溶接作業を行うロボット1が実行する一連の作業情報は製造計画によって決定され、その作業情報は、作業情報取得部21が取得して記録し、保存している。作業制御監視部23は、この作業情報を基にモータ制御装置5、ブレーキ制御装置7、溶接ガン制御装置9と交信して、現在の状態を確認しながら作業計画に応じた作業指示の命令を各機器に送信する。これにより、一連の作業の準備が完了する。
A series of operation information executed by the robot 1 performing the welding operation is determined by the manufacturing plan, and the operation information is acquired, recorded, and stored by the operation information acquisition unit 21. The work control monitoring unit 23 communicates with the motor control device 5, the brake control device 7, and the welding gun control device 9 based on the work information, and issues a work instruction command according to the work plan while checking the current state. Send to each device. Thus, preparation for a series of operations is completed.
図2に示すように、時刻t1において、複数のワークが載せられたパレットP1に切り替えられると、パレットP1から作業対象物となるワークW1が作業用の所定治具に取り付けられて一連の作業がスタートする。
As shown in FIG. 2, at time t1, when the pallet is switched to a pallet P1 on which a plurality of works are placed, a work W1 to be a work target is attached from the pallet P1 to a predetermined work jig, and a series of work is performed. Start.
ステップS101において、ロボット1の動作軸が動作を開始して(図2の時刻t2)、溶接ガン17が移動する。ロボット1の動作軸には、駆動機構であるモータ11と、モータ11の動力を伝達する減速機13が取り付けられている。モータ11は、モータ制御装置5から送信される回転動作のON/OFFや回転速度等の指令に応じて動作し、減速機13を介して動作軸を駆動する。これにより、ロボットアームが動いて、溶接ガン17が所定の位置へ向けて移動する。
In step S101, the operation axis of the robot 1 starts operating (time t2 in FIG. 2), and the welding gun 17 moves. A motor 11 as a drive mechanism and a speed reducer 13 for transmitting the power of the motor 11 are attached to the operation shaft of the robot 1. The motor 11 operates according to a command such as ON / OFF of the rotation operation and a rotation speed transmitted from the motor control device 5, and drives an operation axis via the speed reducer 13. Accordingly, the robot arm moves, and the welding gun 17 moves toward a predetermined position.
ステップS103において、ブレーキ制御装置7は、溶接ガン17が所定の位置まで移動して停止したか否かを判定する。ブレーキ制御装置7は、この判定を継続して行い、溶接ガン17が所定の位置まで移動して停止したと判定すると、ステップS105へ進む。
In step S103, the brake control device 7 determines whether the welding gun 17 has moved to a predetermined position and stopped. The brake control device 7 continuously performs this determination, and proceeds to step S105 when determining that the welding gun 17 has moved to the predetermined position and stopped.
ステップS105において、ブレーキ制御装置7は、溶接ガン17によるワークへの加圧前に電磁ブレーキ15を作動させる(時刻t3)。作動させる電磁ブレーキ15としては、すべての動作軸に設けられた電磁ブレーキを作動させてもよいし、一部の電磁ブレーキだけを作動させてもよい。このように電磁ブレーキ15を作動させて動作軸を固定してから加圧することにより、ワークの位置ずれや変形によって機械的負荷となる振動が発生しても、モータ11や減速機13に負担がかかることを防止することができる。
In step S105, the brake control device 7 operates the electromagnetic brake 15 before pressurizing the work with the welding gun 17 (time t3). As the electromagnetic brake 15 to be operated, an electromagnetic brake provided on all operation shafts may be operated, or only a part of the electromagnetic brakes may be operated. In this way, by pressing the electromagnetic shaft 15 to fix the operating shaft and then pressurizing, even if vibrations that become a mechanical load due to displacement or deformation of the work occur, a load is imposed on the motor 11 and the speed reducer 13. This can be prevented.
ステップS107において、溶接ガン制御装置9は、溶接ガン17を制御してワークに加圧し(図2のA1)、加圧が完了すると、通電を開始して溶接を行う(B1)。
に お い て In step S107, the welding gun control device 9 controls the welding gun 17 to pressurize the work (A1 in FIG. 2), and when the pressurization is completed, energization is started to perform welding (B1).
ステップS109において、ブレーキ制御装置7は、溶接が完了したか否かを判定する。ブレーキ制御装置7は、溶接ガン17によってワークが加圧され(A1)、溶接ガン17への通電が終了したことを検出すると(B1)、溶接が完了したと判定する。ブレーキ制御装置7は、溶接が完了したか否かの判定を継続して行い、溶接が完了したと判定するとステップS111へ進む。
に お い て In step S109, the brake control device 7 determines whether or not welding has been completed. When detecting that the work is pressurized by the welding gun 17 (A1) and the energization of the welding gun 17 is completed (B1), the brake control device 7 determines that the welding is completed. The brake control device 7 continuously determines whether or not the welding has been completed, and proceeds to step S111 when determining that the welding has been completed.
ステップS111において、ブレーキ制御装置7は、電磁ブレーキ15を解除する(時刻t4)。
In step S111, the brake control device 7 releases the electromagnetic brake 15 (time t4).
ステップS113において、ブレーキ制御装置7は、同一のワークに行う複数の溶接作業のうち最終溶接の前であるか否かを判定する。例えば、1つのワークに対する一連の作業として、溶接点が10箇所ある場合には、9箇所目の溶接作業が完了して、最終回の溶接である10箇所目の溶接前であるか否かを判定する。図2では、A1~A9の加圧とB1~B9の通電が終わって、A10の加圧前であるか否かを判定する。
In step S113, the brake control device 7 determines whether or not a plurality of welding operations to be performed on the same work are before final welding. For example, when there are ten welding points as a series of operations for one workpiece, it is determined whether the ninth welding operation is completed and before the tenth welding which is the final welding. judge. In FIG. 2, it is determined whether or not the pressurization of A1 to A9 and the energization of B1 to B9 are completed and before the pressurization of A10.
そして、ブレーキ制御装置7は、最終回の溶接の前ではないと判定すると、ステップS101に戻って、残りの溶接点の溶接を継続して行う。一方、最終回の溶接の前であると判定すると、ブレーキ制御装置7は、最終回の10箇所目の溶接作業の前に本実施形態に係るブレーキ制御処理を終了する。したがって、ブレーキ制御装置7は、最終回の作業の開始時には電磁ブレーキ15を解除している。そのため、図2に示すように、1箇所目から9箇所目までの溶接時の電磁ブレーキの動作S1~S9は行われるが、10箇所目の溶接では電磁ブレーキ15は作動せずに解除した状態で溶接作業が行われる。ただし、少なくとも最終回の作業の開始時に電磁ブレーキ15を解除していればよいので、最終回より前の6箇所目や7箇所目の溶接作業から電磁ブレーキ15を解除してもよい。
If the brake control device 7 determines that it is not before the final welding, it returns to step S101 and continues welding at the remaining welding points. On the other hand, if it is determined that the current time is before the final welding, the brake control device 7 ends the brake control process according to the present embodiment before the final welding work at the tenth place. Therefore, the brake control device 7 releases the electromagnetic brake 15 at the start of the final work. Therefore, as shown in FIG. 2, the operations S1 to S9 of the electromagnetic brake at the time of welding from the first position to the ninth position are performed, but the electromagnetic brake 15 is released without being operated at the tenth position. The welding work is performed. However, since it is sufficient that the electromagnetic brake 15 is released at least at the start of the final work, the electromagnetic brake 15 may be released from the sixth or seventh welding work before the final work.
こうして、1つのワークに対して一連の作業である10箇所の溶接作業が完了すると、作業の完了したワークW1は、次の工程へ移動する。そして、作業用の治具には何もない状態になるので、新たなワークW2がパレットP1から取り出されて作業用の治具に設置され、新たな一連の作業が開始される。
Thus, when ten welding operations, which are a series of operations, are completed for one workpiece, the completed workpiece W1 moves to the next step. Then, since there is no state in the work jig, a new work W2 is taken out from the pallet P1, placed on the work jig, and a new series of work is started.
[第1実施形態の効果]
以上、詳細に説明したように、本実施形態に係るブレーキ制御装置7では、作業部位である溶接ガン17が作業対象物のワークに対して複数回の作業を行う一連の作業の開始前に電磁ブレーキ15を作動させ、一連の作業の終了前に電磁ブレーキ15を解除する。これにより、一連の作業の開始前から終了後までのすべてに電磁ブレーキ15を作動させることがなくなり、一連の作業が終了する前の早い段階で電磁ブレーキ15を解除できるので、電磁ブレーキ15の利用頻度を下げることができる。したがって、電磁ブレーキ15に関連する機器の寿命を延ばすことができ、また消費電力を低減することもできる。 [Effects of First Embodiment]
As described above in detail, in the brake control device 7 according to the present embodiment, thewelding gun 17 which is a work part is electromagnetically operated before starting a series of works for performing a plurality of works on a work to be worked. The brake 15 is operated, and the electromagnetic brake 15 is released before the end of a series of operations. As a result, the electromagnetic brake 15 is not actuated from before the start of the series of operations until after the end thereof, and the electromagnetic brake 15 can be released at an early stage before the end of the series of operations. Frequency can be reduced. Therefore, the life of the devices related to the electromagnetic brake 15 can be extended, and the power consumption can be reduced.
以上、詳細に説明したように、本実施形態に係るブレーキ制御装置7では、作業部位である溶接ガン17が作業対象物のワークに対して複数回の作業を行う一連の作業の開始前に電磁ブレーキ15を作動させ、一連の作業の終了前に電磁ブレーキ15を解除する。これにより、一連の作業の開始前から終了後までのすべてに電磁ブレーキ15を作動させることがなくなり、一連の作業が終了する前の早い段階で電磁ブレーキ15を解除できるので、電磁ブレーキ15の利用頻度を下げることができる。したがって、電磁ブレーキ15に関連する機器の寿命を延ばすことができ、また消費電力を低減することもできる。 [Effects of First Embodiment]
As described above in detail, in the brake control device 7 according to the present embodiment, the
特に、電磁ブレーキやブレーキ制御用の有接点リレーでは、機器の寿命がブレーキの動作回数に依存する場合があり、そのような場合には動作回数が2倍になれば寿命は1/2に短くなる。同様に、電磁ブレーキの動作時における消費電力は、動作回数が2倍になれば、消費電力も同様に2倍になる。したがって、本実施形態に係るブレーキ制御装置7により、電磁ブレーキ15の利用頻度を下げることができれば、電磁ブレーキ15に関連する機器の寿命を延ばすことができ、また消費電力を低減することもできる。
In particular, in the case of electromagnetic relays and contact relays for brake control, the life of the device may depend on the number of times of operation of the brake. In such a case, if the number of times of operation is doubled, the life is shortened to half. Become. Similarly, when the number of times of operation of the electromagnetic brake is doubled, the power consumption of the electromagnetic brake is also doubled. Therefore, if the use frequency of the electromagnetic brake 15 can be reduced by the brake control device 7 according to the present embodiment, the life of the device related to the electromagnetic brake 15 can be extended, and the power consumption can be reduced.
また、ワークに対する作業を行っているときに、電磁ブレーキ15を作動させて動作軸を固定することにより、ワークの位置ずれや変形によって機械的負荷となる振動が発生しても、モータ11や減速機13に負担がかかることを防止することができる。
In addition, when the electromagnetic brake 15 is actuated to fix the operation axis during work on the workpiece, the motor 11 and the deceleration can be performed even if vibrations that cause a mechanical load due to displacement or deformation of the workpiece occur. The load on the machine 13 can be prevented.
さらに、本実施形態に係るブレーキ制御装置7では、一連の作業のうち、少なくとも最終回の作業の開始時には電磁ブレーキ15を解除する。これにより、最終回の作業を行う前に電磁ブレーキ15の動作を終了させることができるので、電磁ブレーキ15の利用頻度を下げることができる。したがって、電磁ブレーキ15に関連する機器の寿命を延ばすことができ、また消費電力を低減することもできる。
Further, in the brake control device 7 according to the present embodiment, the electromagnetic brake 15 is released at least at the start of the last work in the series of works. Thus, the operation of the electromagnetic brake 15 can be terminated before the final work is performed, so that the use frequency of the electromagnetic brake 15 can be reduced. Therefore, the life of the devices related to the electromagnetic brake 15 can be extended, and the power consumption can be reduced.
[第2実施形態]
以下、本発明を適用した第2実施形態について図面を参照して説明する。ただし、第1実施形態と同一の構成には同一の番号を付して詳細な説明は省略する。 [Second embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. However, the same components as those of the first embodiment are denoted by the same reference numerals, and detailed description is omitted.
以下、本発明を適用した第2実施形態について図面を参照して説明する。ただし、第1実施形態と同一の構成には同一の番号を付して詳細な説明は省略する。 [Second embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. However, the same components as those of the first embodiment are denoted by the same reference numerals, and detailed description is omitted.
[ロボット制御システムの構成]
本実施形態に係るロボット制御システムの構成は、図1に示した第1実施形態と同一であるため、詳細な説明は省略する。 [Robot control system configuration]
Since the configuration of the robot control system according to the present embodiment is the same as that of the first embodiment shown in FIG. 1, detailed description will be omitted.
本実施形態に係るロボット制御システムの構成は、図1に示した第1実施形態と同一であるため、詳細な説明は省略する。 [Robot control system configuration]
Since the configuration of the robot control system according to the present embodiment is the same as that of the first embodiment shown in FIG. 1, detailed description will be omitted.
[ブレーキ制御処理]
次に、図4、5を参照して、本実施形態に係るブレーキ制御装置7によるブレーキ制御処理を説明する。図4は、ブレーキ制御装置7によるブレーキ制御処理の処理手順を示すタイムチャートであり、図5はそのフローチャートである。 [Brake control processing]
Next, a brake control process by the brake control device 7 according to the present embodiment will be described with reference to FIGS. FIG. 4 is a time chart showing a processing procedure of the brake control processing by the brake control device 7, and FIG. 5 is a flowchart thereof.
次に、図4、5を参照して、本実施形態に係るブレーキ制御装置7によるブレーキ制御処理を説明する。図4は、ブレーキ制御装置7によるブレーキ制御処理の処理手順を示すタイムチャートであり、図5はそのフローチャートである。 [Brake control processing]
Next, a brake control process by the brake control device 7 according to the present embodiment will be described with reference to FIGS. FIG. 4 is a time chart showing a processing procedure of the brake control processing by the brake control device 7, and FIG. 5 is a flowchart thereof.
本実施形態に係るブレーキ制御処理では、一連の作業のうちの初回の溶接作業の間のみ電磁ブレーキ15を作動させるようにしたことが第1実施形態と相違している。そのため、図5のフローチャートでは、第1実施形態の図3のフローチャートからステップS113を削除し、ステップS201を追加したことが相違している。したがって、図5のステップS203~213は、それぞれ図3のステップS101~111と同一である。また、図4のタイムチャートでは、初回の溶接作業における電磁ブレーキ15の動作を示す信号S1のみが記載され、2回目以降の溶接作業における電磁ブレーキ15の動作を示す信号S2~S9が記載されていないことが、第1実施形態の図2と相違している。
ブ レ ー キ The brake control process according to the present embodiment is different from the first embodiment in that the electromagnetic brake 15 is operated only during the first welding operation of a series of operations. Therefore, the flowchart of FIG. 5 differs from the flowchart of FIG. 3 of the first embodiment in that step S113 is deleted and step S201 is added. Therefore, steps S203 to S213 in FIG. 5 are the same as steps S101 to S111 in FIG. 3, respectively. Further, in the time chart of FIG. 4, only the signal S1 indicating the operation of the electromagnetic brake 15 in the first welding operation is described, and the signals S2 to S9 indicating the operation of the electromagnetic brake 15 in the second and subsequent welding operations are described. This is different from the first embodiment in FIG.
図5に示すように、ステップS201において、ブレーキ制御装置7は、ワークが切り替えられたか否かを判定し、ワークの切り替えを検知すると、ステップS203へ進む。したがって、ブレーキ制御装置7は、ワークの切り替えを検知したときだけ、ブレーキ制御処理を実行する。ワークの切り替えは、作業制御監視部23からワークの切り替え情報を取得して検知すればよい。
ブ レ ー キ As shown in FIG. 5, in step S201, the brake control device 7 determines whether or not the work has been switched, and upon detecting that the work has been switched, proceeds to step S203. Therefore, the brake control device 7 executes the brake control process only when switching of the work is detected. Work switching may be detected by acquiring work switching information from the work control monitoring unit 23.
ステップS201においてワークの切り替えが検知され、図5に示すステップS203~213の処理が行われると、同一のワークに対して行う複数の溶接作業のうちの初回の溶接作業が行われる。このとき、ステップS211において、ブレーキ制御装置7は、溶接ガン17への通電が終了したことを検出すると(図4のB1)、初回の溶接が完了したと判定し、ステップS213へ進んで電磁ブレーキ15を解除する。
(5) When the switching of the work is detected in step S201 and the processes in steps S203 to S213 shown in FIG. 5 are performed, the first welding operation of the plurality of welding operations performed on the same work is performed. At this time, in step S211, when the brake control device 7 detects that the current supply to the welding gun 17 has been completed (B1 in FIG. 4), the brake control device 7 determines that the first welding has been completed, and proceeds to step S213 to perform electromagnetic braking. Release 15.
この後、ブレーキ制御装置7がブレーキ制御処理を終了すれば、一連の溶接作業のうちの初回の溶接作業の間のみで電磁ブレーキ15が作動し、2回目以降の溶接作業では電磁ブレーキ15は作動せずに解除された状態で溶接作業が行われる。
Thereafter, when the brake control device 7 ends the brake control process, the electromagnetic brake 15 is operated only during the first welding operation of the series of welding operations, and the electromagnetic brake 15 is operated during the second and subsequent welding operations. The welding work is performed in a state where the welding is released without being performed.
このため、図4のタイムチャートでは、初回の溶接時だけ電磁ブレーキ15の動作を示す信号S1が記載され、2回目以降の溶接時には電磁ブレーキ15の動作を示す信号は記載されていない。
Therefore, in the time chart of FIG. 4, the signal S1 indicating the operation of the electromagnetic brake 15 is described only during the first welding, and the signal indicating the operation of the electromagnetic brake 15 is not described during the second and subsequent weldings.
こうして、1つのワークに対して一連の作業である10箇所の溶接作業が完了すると、作業の完了したワークW1は、次の工程へ移動する。そして、作業用の治具には何もない状態になるので、新たなワークW2がパレットP1から取り出されて作業用の治具に設置され、新たな一連の作業が開始される。
Thus, when ten welding operations, which are a series of operations, are completed for one workpiece, the completed workpiece W1 moves to the next step. Then, since there is no state in the work jig, a new work W2 is taken out from the pallet P1, placed on the work jig, and a new series of work is started.
[第2実施形態の効果]
以上、詳細に説明したように、本実施形態に係るブレーキ制御装置7では、一連の作業のうち、初回の作業の間のみ電磁ブレーキ15を作動させる。これにより、ワークの位置ずれが最も起きやすい初回の作業のときだけ電磁ブレーキ15を作動させ、2回目以降の作業では電磁ブレーキ15を解除した状態で作業を行うことができる。したがって、電磁ブレーキ15の利用頻度を大きく低下させることができるので、電磁ブレーキ15に関連する機器の寿命をさらに延ばすことができ、また消費電力を大きく低減することもできる。 [Effect of Second Embodiment]
As described above in detail, in the brake control device 7 according to the present embodiment, theelectromagnetic brake 15 is operated only during the first operation of a series of operations. Thus, the electromagnetic brake 15 can be operated only during the first work in which the positional displacement of the work is most likely to occur, and the work can be performed with the electromagnetic brake 15 released in the second and subsequent work. Therefore, the frequency of use of the electromagnetic brake 15 can be greatly reduced, so that the life of the devices related to the electromagnetic brake 15 can be further extended, and the power consumption can be greatly reduced.
以上、詳細に説明したように、本実施形態に係るブレーキ制御装置7では、一連の作業のうち、初回の作業の間のみ電磁ブレーキ15を作動させる。これにより、ワークの位置ずれが最も起きやすい初回の作業のときだけ電磁ブレーキ15を作動させ、2回目以降の作業では電磁ブレーキ15を解除した状態で作業を行うことができる。したがって、電磁ブレーキ15の利用頻度を大きく低下させることができるので、電磁ブレーキ15に関連する機器の寿命をさらに延ばすことができ、また消費電力を大きく低減することもできる。 [Effect of Second Embodiment]
As described above in detail, in the brake control device 7 according to the present embodiment, the
また、本実施形態に係るブレーキ制御装置7では、初回の作業において溶接ガン17への通電が終了したことを検出すると、電磁ブレーキ15を解除する。これにより、初回の作業が完了するのと同時に電磁ブレーキ15を解除できるので、最も早く電磁ブレーキ15を解除することができ、無駄に電磁ブレーキ15を作動させ続けることがなくなる。したがって、電磁ブレーキ15に関連する機器の寿命を延ばすことができ、また消費電力を低減することもできる。
In addition, in the brake control device 7 according to the present embodiment, upon detecting that the power supply to the welding gun 17 has been completed in the first operation, the electromagnetic brake 15 is released. Thus, the electromagnetic brake 15 can be released at the same time when the first work is completed. Therefore, the electromagnetic brake 15 can be released at the earliest, and the electromagnetic brake 15 is not continuously operated unnecessarily. Therefore, the life of the devices related to the electromagnetic brake 15 can be extended, and the power consumption can be reduced.
[第3実施形態]
以下、本発明を適用した第3実施形態について図面を参照して説明する。ただし、第1及び第2実施形態と同一の構成には同一の番号を付して詳細な説明は省略する。 [Third embodiment]
Hereinafter, a third embodiment to which the present invention is applied will be described with reference to the drawings. However, the same components as those of the first and second embodiments are denoted by the same reference numerals, and detailed description is omitted.
以下、本発明を適用した第3実施形態について図面を参照して説明する。ただし、第1及び第2実施形態と同一の構成には同一の番号を付して詳細な説明は省略する。 [Third embodiment]
Hereinafter, a third embodiment to which the present invention is applied will be described with reference to the drawings. However, the same components as those of the first and second embodiments are denoted by the same reference numerals, and detailed description is omitted.
[ロボット制御システムの構成]
本実施形態に係るロボット制御システムの構成は、図1に示した第1実施形態と同一であるため、詳細な説明は省略する。ただし、本実施形態では、ロボット1として、図6に示すように動作軸が6箇所あるロボットの場合について説明する。図6のJ1軸は水平に回転する軸であり、J2軸は前後方向に動作する軸である。また、J4~J6軸は溶接ガン17を動作させる軸である。尚、本実施形態では、J1~J6の動作軸に設けられたモータ11と減速機13の両方に電磁ブレーキ15が設けられている。 [Robot control system configuration]
Since the configuration of the robot control system according to the present embodiment is the same as that of the first embodiment shown in FIG. 1, detailed description will be omitted. However, in the present embodiment, a case where therobot 1 has six operation axes as shown in FIG. 6 will be described. The J1 axis in FIG. 6 is an axis that rotates horizontally, and the J2 axis is an axis that moves in the front-rear direction. The axes J4 to J6 are axes for operating the welding gun 17. In this embodiment, the electromagnetic brake 15 is provided on both the motor 11 and the speed reducer 13 provided on the operation axes J1 to J6.
本実施形態に係るロボット制御システムの構成は、図1に示した第1実施形態と同一であるため、詳細な説明は省略する。ただし、本実施形態では、ロボット1として、図6に示すように動作軸が6箇所あるロボットの場合について説明する。図6のJ1軸は水平に回転する軸であり、J2軸は前後方向に動作する軸である。また、J4~J6軸は溶接ガン17を動作させる軸である。尚、本実施形態では、J1~J6の動作軸に設けられたモータ11と減速機13の両方に電磁ブレーキ15が設けられている。 [Robot control system configuration]
Since the configuration of the robot control system according to the present embodiment is the same as that of the first embodiment shown in FIG. 1, detailed description will be omitted. However, in the present embodiment, a case where the
[ブレーキ制御処理]
次に、図7を参照して、本実施形態に係るブレーキ制御装置7によるブレーキ制御処理を説明する。図7は、ブレーキ制御装置7によるブレーキ制御処理の処理手順を示すフローチャートである。 [Brake control processing]
Next, a brake control process performed by the brake control device 7 according to the present embodiment will be described with reference to FIG. FIG. 7 is a flowchart illustrating a processing procedure of a brake control process performed by the brake control device 7.
次に、図7を参照して、本実施形態に係るブレーキ制御装置7によるブレーキ制御処理を説明する。図7は、ブレーキ制御装置7によるブレーキ制御処理の処理手順を示すフローチャートである。 [Brake control processing]
Next, a brake control process performed by the brake control device 7 according to the present embodiment will be described with reference to FIG. FIG. 7 is a flowchart illustrating a processing procedure of a brake control process performed by the brake control device 7.
本実施形態に係るブレーキ制御処理では、複数の動作軸を駆動する複数の駆動部にそれぞれ電磁ブレーキ15を設け、複数の駆動部に設けられた電磁ブレーキ15に対して、それぞれ異なる制御を行うようにしたことが第1実施形態と相違している。特に、ブレーキ制御装置7は、ロボット1の姿勢を示す姿勢情報を取得し、取得した姿勢情報に基づいて動作軸にかかる機械的負荷を推定し、推定された機械的負荷に応じて、電磁ブレーキ15に対して、それぞれ異なる制御を行うようにする。
In the brake control processing according to the present embodiment, the electromagnetic brakes 15 are provided in a plurality of driving units that drive a plurality of operation axes, respectively, and different controls are performed on the electromagnetic brakes 15 provided in the plurality of driving units. This is different from the first embodiment. In particular, the brake control device 7 acquires posture information indicating the posture of the robot 1, estimates a mechanical load applied to the operation axis based on the acquired posture information, and, based on the estimated mechanical load, generates an electromagnetic brake. 15 are controlled differently.
また、本実施形態では、各動作軸を駆動するモータ11と減速機13の両方に電磁ブレーキ15を設けている。そして、モータ11に設けられた電磁ブレーキ15と、減速機13に設けられた電磁ブレーキ15に対して、それぞれ異なる制御を行うようにしたことが第1実施形態と相違している。
Also, in the present embodiment, the electromagnetic brake 15 is provided on both the motor 11 for driving each operation axis and the speed reducer 13. The second embodiment is different from the first embodiment in that different controls are performed on the electromagnetic brake 15 provided on the motor 11 and the electromagnetic brake 15 provided on the speed reducer 13.
そのため、図7のフローチャートでは、ステップS305~311の処理が追加されていることが図3のフローチャートと相違している。したがって、図7のステップS301、303、313~321の処理は、それぞれ図3のステップS101、103、105~113と同様の処理が行われる。
Therefore, the flowchart of FIG. 7 differs from the flowchart of FIG. 3 in that the processes of steps S305 to S311 are added. Therefore, the processes in steps S301, 303, 313 to 321 in FIG. 7 are the same as those in steps S101, 103, 105 to 113 in FIG. 3, respectively.
図7に示すように、ステップS301において、ロボット1の動作軸が動作を開始して溶接ガン17が移動を開始すると、ステップS303において、ブレーキ制御装置7は、溶接ガン17が所定の位置まで移動して停止したか否かを判定する。そして、溶接ガン17が所定の位置まで移動して停止したと判定すると、ステップS305へ進む。
As shown in FIG. 7, when the operation axis of the robot 1 starts operating and the welding gun 17 starts moving in step S301, the brake control device 7 moves the welding gun 17 to a predetermined position in step S303. To determine whether or not it has stopped. When it is determined that the welding gun 17 has moved to the predetermined position and stopped, the process proceeds to step S305.
ステップS305において、ブレーキ制御装置7は、作業制御監視部23からロボット1の姿勢を示す姿勢情報を取得する。姿勢情報は、ロボットアームの各動作軸の角度情報であり、各動作軸のモータ11付近に取り付けられたエンコーダ等で検出される。作業制御監視部23は、この角度情報をモータ制御装置5から取得して、ロボット1の姿勢情報として格納している。
In step S305, the brake control device 7 acquires posture information indicating the posture of the robot 1 from the work control monitoring unit 23. The posture information is angle information of each operation axis of the robot arm, and is detected by an encoder or the like attached near the motor 11 of each operation axis. The work control monitoring unit 23 acquires this angle information from the motor control device 5 and stores it as posture information of the robot 1.
ブレーキ制御装置7は、姿勢情報を取得すると、この姿勢情報に基づいて各動作軸にかかる機械的負荷を推定する。機械的負荷の推定方法としては、ロボットアームが上下、左右、前後に移動した場合に発生するトルクを以下の式(1)で算出し、算出したトルクの大きさに応じて推定する。
(4) Upon acquiring the posture information, the brake control device 7 estimates a mechanical load applied to each operation axis based on the posture information. As a method of estimating the mechanical load, the torque generated when the robot arm moves up and down, left and right, and back and forth is calculated by the following equation (1), and is estimated according to the calculated torque.
トルク(mN)=アーム長L(m)×荷重F(N)×sinθ (1)
図8に示すように、θは重力に対するアームの角度であり、荷重Fはアームの重量×加速度である。 Torque (mN) = arm length L (m) x load F (N) x sinθ (1)
As shown in FIG. 8, θ is the angle of the arm with respect to gravity, and the load F is the weight of the arm × acceleration.
図8に示すように、θは重力に対するアームの角度であり、荷重Fはアームの重量×加速度である。 Torque (mN) = arm length L (m) x load F (N) x sinθ (1)
As shown in FIG. 8, θ is the angle of the arm with respect to gravity, and the load F is the weight of the arm × acceleration.
ブレーキ制御装置7は、図6に示した動作軸J1~J6についてそれぞれ式(1)によってトルクを算出し、予め設定された閾値と比較することで機械的負荷を推定する。例えば、閾値T1、T2(T1>T2)を設定しておくことで、算出したトルクがT1より大きい場合には機械的負荷が「大」と判定し、T2以上T1以下の場合に機械的負荷が「中」と判定し、T2未満の場合に機械的負荷が「小」と判定する。こうして推定された各動作軸の機械的負荷の推定結果を図9に示す。
(6) The brake control device 7 calculates the torque for each of the operation axes J1 to J6 shown in FIG. 6 according to the equation (1) and estimates the mechanical load by comparing the calculated torque with a preset threshold. For example, by setting thresholds T1 and T2 (T1> T2), if the calculated torque is larger than T1, the mechanical load is determined to be "large", and if the calculated torque is equal to or more than T2 and equal to or less than T1, the mechanical load is determined. Is determined to be “medium”, and when it is less than T2, the mechanical load is determined to be “small”. FIG. 9 shows a result of estimating the mechanical load of each operation axis thus estimated.
図9に示すように、J1~J6の動作軸のうち、J3軸の機械的負荷が「大」と推定され、J2軸の機械的負荷が「中」と推定され、その他の動作軸は機械的負荷が「小」と推定されている。このような機械的負荷となるのは、ロボット1の姿勢が、図10に示すような状態の場合である。また、ロボット1の姿勢が、図11に示すような場合には、J3軸だけではなくJ2軸も機械的負荷が「大」となる。こうして各動作軸の機械的負荷が推定されると、ステップS307へ進む。
As shown in FIG. 9, among the operation axes J1 to J6, the mechanical load on the J3 axis is estimated to be “large”, the mechanical load on the J2 axis is estimated to be “medium”, and the other operation axes are mechanical. The target load is estimated to be "small". Such a mechanical load occurs when the posture of the robot 1 is in a state as shown in FIG. In addition, when the posture of the robot 1 is as shown in FIG. 11, the mechanical load is “large” not only on the J3 axis but also on the J2 axis. When the mechanical load of each operation axis is estimated in this way, the process proceeds to step S307.
ステップS307において、ブレーキ制御装置7は、ステップS305で推定された機械的負荷に応じて、複数の動作軸に設けられた電磁ブレーキのうち作動させる電磁ブレーキ15を選定する。例えば、ブレーキ制御装置7は、ステップS305で推定された機械的負荷が「大」の動作軸に設けられた電磁ブレーキのみを選定し、その他の動作軸に設けられた電磁ブレーキは選定しないようにする。図9の場合では、J3軸に設けられた電磁ブレーキのみを選定し、その他の動作軸に設けられた電磁ブレーキは選定しないようにする。ただし、機械的負荷が「大」の動作軸だけではなく、「大」と「中」の動作軸に設けられた電磁ブレーキを選定するようにしてもよい。また、各動作軸の間で機械的負荷に差がない場合には、機械的負荷の絶対値が閾値以上であればすべての動作軸の電磁ブレーキを選定し、閾値未満であればすべての電磁ブレーキを選定しないようにしてもよい。
In step S307, the brake control device 7 selects the electromagnetic brake 15 to be operated among the electromagnetic brakes provided on the plurality of operation axes according to the mechanical load estimated in step S305. For example, the brake control device 7 selects only the electromagnetic brake provided on the operation axis whose mechanical load estimated in step S305 is “large”, and does not select the electromagnetic brakes provided on the other operation axes. I do. In the case of FIG. 9, only the electromagnetic brake provided on the J3 axis is selected, and the electromagnetic brakes provided on other operation axes are not selected. However, it is also possible to select the electromagnetic brakes provided not only for the operation axis having the “large” mechanical load but also for the “large” and “medium” operation axes. If there is no difference in the mechanical load between the operating axes, the electromagnetic brakes of all the operating axes are selected if the absolute value of the mechanical load is equal to or greater than the threshold, and if the absolute value of the mechanical load is less than the threshold, all electromagnetic brakes are selected. The brake may not be selected.
また、上述した例では、図9の機械的負荷に応じて、作動させる電磁ブレーキを選定する場合について説明したが、電磁ブレーキの作動の有無を選定するだけではなく、動作時間や動作強度、動作周波数を設定するようにしてもよい。例えば、機械的負荷が大きくなるのに応じて電磁ブレーキの動作時間が長くなるように設定してもよい。したがって、図9の場合では、J3軸の電磁ブレーキの動作時間が最も長くなるように設定し、J2軸の電磁ブレーキの動作時間がJ3軸の電磁ブレーキより短くなるように設定し、その他の動作軸の電磁ブレーキの動作時間がさらに短くなるように設定してもよい。
Further, in the above-described example, the case where the electromagnetic brake to be operated is selected according to the mechanical load in FIG. 9 has been described. The frequency may be set. For example, the operation time of the electromagnetic brake may be set to be longer as the mechanical load increases. Therefore, in the case of FIG. 9, the operation time of the electromagnetic brake of the J3 axis is set to be the longest, the operation time of the electromagnetic brake of the J2 axis is set to be shorter than the electromagnetic brake of the J3 axis, and other operations are performed. The operation time of the electromagnetic brake of the shaft may be set to be shorter.
また、機械的負荷が大きくなるのに応じて電磁ブレーキの動作強度が強くなるように設定してもよい。この動作強度は、電磁ブレーキをPWM制御した場合に、デューティ比を調節することで制御することができる。さらに、機械的負荷が大きくなるのに応じて電磁ブレーキの動作周波数が大きくなるように制御してもよい。このように、ブレーキ制御装置7は、複数の動作軸に設けられた電磁ブレーキに対して、それぞれ異なる制御を行っている。
動作 Also, the operating strength of the electromagnetic brake may be set to increase as the mechanical load increases. This operation intensity can be controlled by adjusting the duty ratio when the electromagnetic brake is subjected to PWM control. Further, control may be performed such that the operating frequency of the electromagnetic brake increases as the mechanical load increases. As described above, the brake control device 7 performs different controls on the electromagnetic brakes provided on the plurality of operation axes.
ステップS309において、ブレーキ制御装置7は、モータと減速機のどちらの機械的負荷が大きいかを判定する。例えば、減速機13のほうがモータ11よりも溶接ガン17(ロボットアームの先端)に近い側に取り付けられている場合には、減速機13の機械的負荷のほうが大きいと判定する。逆に、モータ11のほうが減速機13よりも溶接ガン17に近い側に取り付けられている場合には、モータ11の機械的負荷のほうが大きいと判定する。また、モータ11と減速機13が、溶接ガン17から同様の距離に設けられている場合には、モータ11の機械的負荷と減速機13の機械的負荷が等しいと判定する。さらに、モータの位置にかかるトルクと減速機の位置にかかるトルクを、それぞれ上述した式(1)を用いて算出し、算出したトルクの比率によって負担率を求め、この負担率に応じてモータと減速機のどちらの機械的負荷が大きいか判定してもよい。
に お い て In step S309, the brake control device 7 determines which of the mechanical loads of the motor and the speed reducer is larger. For example, if the speed reducer 13 is mounted closer to the welding gun 17 (the tip of the robot arm) than the motor 11, it is determined that the mechanical load of the speed reducer 13 is larger. Conversely, when the motor 11 is mounted closer to the welding gun 17 than the speed reducer 13, it is determined that the mechanical load of the motor 11 is larger. When the motor 11 and the speed reducer 13 are provided at the same distance from the welding gun 17, it is determined that the mechanical load of the motor 11 is equal to the mechanical load of the speed reducer 13. Further, the torque applied to the position of the motor and the torque applied to the position of the speed reducer are respectively calculated by using the above-described equation (1), and the burden ratio is determined by the calculated torque ratio. It may be determined which mechanical load of the reduction gear is larger.
ステップS311において、ブレーキ制御装置7は、ステップS309の判定結果に応じて、モータの電磁ブレーキと減速機の電磁ブレーキのいずれか、または両方を選定する。ただし、ここで選定される電磁ブレーキは、ステップS307で選定された動作軸の電磁ブレーキである。例えば、ステップS307においてJ3軸の電磁ブレーキが選定されている場合には、J3軸に設けられたモータの電磁ブレーキと減速機の電磁ブレーキのいずれか、または両方を選定する。
In step S311, the brake control device 7 selects one or both of the electromagnetic brake of the motor and the electromagnetic brake of the speed reducer according to the determination result in step S309. However, the electromagnetic brake selected here is the electromagnetic brake of the operation axis selected in step S307. For example, when the electromagnetic brake of the J3 axis is selected in step S307, one or both of the electromagnetic brake of the motor and the electromagnetic brake of the speed reducer provided on the J3 axis are selected.
図12に示すように、モータの機械的負荷のほうが大きいと判定された場合には、モータの電磁ブレーキを選定し、減速機の電磁ブレーキは選定されない。逆に、減速機の機械的負荷のほうが大きいと判定された場合には、減速機の電磁ブレーキを選定し、モータの電磁ブレーキは選定されない。また、モータの機械的負荷と減速機の機械的負荷が等しいと判定された場合には、減速機の電磁ブレーキとモータの電磁ブレーキの両方を選定する。
示 す As shown in FIG. 12, when it is determined that the mechanical load of the motor is larger, the electromagnetic brake of the motor is selected, and the electromagnetic brake of the speed reducer is not selected. Conversely, when it is determined that the mechanical load of the reduction gear is greater, the electromagnetic brake of the reduction gear is selected, and the electromagnetic brake of the motor is not selected. If it is determined that the mechanical load of the motor is equal to the mechanical load of the speed reducer, both the electromagnetic brake of the speed reducer and the electromagnetic brake of the motor are selected.
ただし、動作軸の機械的負荷が非常に大きい場合には、減速機の電磁ブレーキとモータの電磁ブレーキの両方を選定する。例えば、ステップS305の閾値T1よりも大きな閾値T0よりも動作軸の機械的負荷が大きい場合には、減速機の電磁ブレーキとモータの電磁ブレーキの両方を選定する。これにより、機械的負荷が非常に大きい場合でも、動作軸に対する機械的負荷の影響を最小限にすることができる。逆に、動作軸の機械的負荷が非常に小さい場合には、減速機の電磁ブレーキとモータの電磁ブレーキの両方を選定しない。例えば、ステップS305の閾値T2よりも小さい閾値T3よりも動作軸の機械的負荷が小さい場合には、減速機の電磁ブレーキとモータの電磁ブレーキの両方を選定しないようにする。このように、ブレーキ制御装置7は、モータの電磁ブレーキと減速機の電磁ブレーキの両方を制御し、それぞれ異なる制御を行っている。
However, if the mechanical load on the operating axis is extremely large, select both the electromagnetic brake for the reducer and the electromagnetic brake for the motor. For example, when the mechanical load on the operation axis is larger than the threshold value T0 larger than the threshold value T1 in step S305, both the electromagnetic brake of the reduction gear and the electromagnetic brake of the motor are selected. Thereby, even when the mechanical load is very large, the influence of the mechanical load on the operation axis can be minimized. Conversely, when the mechanical load on the operating shaft is very small, neither the electromagnetic brake of the speed reducer nor the electromagnetic brake of the motor is selected. For example, when the mechanical load on the operation axis is smaller than the threshold T3 smaller than the threshold T2 in step S305, both the electromagnetic brake of the speed reducer and the electromagnetic brake of the motor are not selected. In this way, the brake control device 7 controls both the electromagnetic brake of the motor and the electromagnetic brake of the speed reducer, and performs different controls.
また、上述した例では、モータの電磁ブレーキと減速機の電磁ブレーキを選定する場合について説明したが、電磁ブレーキを選定するだけではなく、動作時間やブレーキ圧力を設定するようにしてもよい。例えば、機械的負荷の大きさに応じてモータの電磁ブレーキの動作時間を1秒、減速機の電磁ブレーキの動作時間を0.5秒に設定するようにしてもよい。また、機械的負荷の大きさに応じてモータの電磁ブレーキのブレーキ圧力を100%、減速機の電磁ブレーキのブレーキ圧力を50%に設定するようにしてもよい。さらに、モータと減速機の価格の差異や機械的負荷に対する影響度の大きさに応じて設定方法を変更してもよい。
In the example described above, the case where the electromagnetic brake of the motor and the electromagnetic brake of the reduction gear are selected has been described. However, not only the electromagnetic brake but also the operating time and the brake pressure may be set. For example, the operation time of the electromagnetic brake of the motor may be set to 1 second, and the operation time of the electromagnetic brake of the speed reducer may be set to 0.5 second according to the magnitude of the mechanical load. Further, the brake pressure of the electromagnetic brake of the motor may be set to 100% and the brake pressure of the electromagnetic brake of the speed reducer may be set to 50% according to the magnitude of the mechanical load. Further, the setting method may be changed according to the difference between the price of the motor and the speed reducer and the degree of influence on the mechanical load.
こうしてステップS305~311の処理によって、作動させる電磁ブレーキが選定されると、選定された電磁ブレーキに対してステップS313~321の処理が行われる。例えば、ステップS307で選定された動作軸の電磁ブレーキのうちステップS311で選定されたモータまたは減速機の電磁ブレーキを作動させる。図9の場合では、J3軸が選定されているので、J3軸の電磁ブレーキのうちモータの機械的負荷が大きければ、J3軸のモータの電磁ブレーキを作動させ、減速機の電磁ブレーキは作動させない。
(4) When the electromagnetic brake to be operated is selected by the processing of steps S305 to S311, the processing of steps S313 to 321 is performed on the selected electromagnetic brake. For example, the electromagnetic brake of the motor or the reduction gear selected in step S311 is operated among the electromagnetic brakes of the operation axis selected in step S307. In the case of FIG. 9, since the J3 axis is selected, if the mechanical load of the motor is large among the electromagnetic brakes of the J3 axis, the electromagnetic brake of the J3 axis motor is operated, and the electromagnetic brake of the reduction gear is not operated. .
また、ステップS307において、機械的負荷が大きくなるのに応じて電磁ブレーキの動作時間が長くなるように設定されている場合には、図12に示すように動作軸毎にモータまたは減速機の電磁ブレーキが選定される。そして、機械的負荷の「大」、「中」、「小」に応じて、選定された電磁ブレーキの動作時間が長くなるように設定される。動作強度や動作周波数の場合も同様に設定される。さらに、機械的負荷の大きさに応じて、モータの電磁ブレーキと減速機の電磁ブレーキの動作時間やブレーキ圧力を設定してもよい。
If it is determined in step S307 that the operation time of the electromagnetic brake is set to be longer as the mechanical load becomes larger, as shown in FIG. A brake is selected. Then, the operation time of the selected electromagnetic brake is set to be longer according to the “large”, “medium”, and “small” mechanical loads. The same applies to the case of the operation intensity and the operation frequency. Further, the operation time and brake pressure of the electromagnetic brake of the motor and the electromagnetic brake of the speed reducer may be set according to the magnitude of the mechanical load.
こうして、ステップS313~321の処理が行われ、ブレーキ制御装置7が、ステップS321において、最終の溶接作業の前であると判定すると、本実施形態に係るブレーキ制御処理を終了する。
Thus, the processes of steps S313 to 321 are performed, and if the brake control device 7 determines in step S321 that it is before the final welding work, the brake control process according to the present embodiment ends.
尚、上述した説明では、電磁ブレーキを選定するステップS305~311の処理を、第1実施形態のブレーキ制御処理に追加した場合について説明した。しかし、第2実施形態のブレーキ制御処理に、本実施形態のステップS305~311の処理を追加してもよい。
In the above description, the case where the processes of steps S305 to S311 for selecting the electromagnetic brake are added to the brake control process of the first embodiment has been described. However, the processing of steps S305 to S311 of the present embodiment may be added to the brake control processing of the second embodiment.
[第3実施形態の効果]
以上、詳細に説明したように、本実施形態に係るブレーキ制御装置7は、複数の動作軸に設けられた電磁ブレーキに対して、それぞれ異なる制御を行っている。これにより、動作軸毎に電磁ブレーキの制御を変更できるので、動作軸の状況に応じた電磁ブレーキの制御を行うことができる。したがって、すべての動作軸の電磁ブレーキを無駄に作動させることがなくなるので、電磁ブレーキの利用頻度を下げることができる。これにより、電磁ブレーキに関連する機器の寿命を延ばすことができ、また消費電力を低減することもできる。 [Effects of Third Embodiment]
As described above in detail, the brake control device 7 according to the present embodiment performs different controls on the electromagnetic brakes provided on a plurality of operation axes. Thus, the control of the electromagnetic brake can be changed for each operation axis, so that the electromagnetic brake can be controlled according to the state of the operation axis. Therefore, the electromagnetic brakes of all the operation axes are not operated unnecessarily, so that the frequency of using the electromagnetic brakes can be reduced. Thereby, the life of the device related to the electromagnetic brake can be extended, and the power consumption can be reduced.
以上、詳細に説明したように、本実施形態に係るブレーキ制御装置7は、複数の動作軸に設けられた電磁ブレーキに対して、それぞれ異なる制御を行っている。これにより、動作軸毎に電磁ブレーキの制御を変更できるので、動作軸の状況に応じた電磁ブレーキの制御を行うことができる。したがって、すべての動作軸の電磁ブレーキを無駄に作動させることがなくなるので、電磁ブレーキの利用頻度を下げることができる。これにより、電磁ブレーキに関連する機器の寿命を延ばすことができ、また消費電力を低減することもできる。 [Effects of Third Embodiment]
As described above in detail, the brake control device 7 according to the present embodiment performs different controls on the electromagnetic brakes provided on a plurality of operation axes. Thus, the control of the electromagnetic brake can be changed for each operation axis, so that the electromagnetic brake can be controlled according to the state of the operation axis. Therefore, the electromagnetic brakes of all the operation axes are not operated unnecessarily, so that the frequency of using the electromagnetic brakes can be reduced. Thereby, the life of the device related to the electromagnetic brake can be extended, and the power consumption can be reduced.
また、本実施形態に係るブレーキ制御装置7は、ロボット1の姿勢を示す姿勢情報を取得し、取得した姿勢情報に基づいて動作軸にかかる機械的負荷を推定する。そして、推定された機械的負荷に応じて、複数の動作軸に設けられた電磁ブレーキに対して、それぞれ異なる制御を行っている。これにより、動作軸にかかる機械的負荷に応じて、各動作軸の電磁ブレーキを個別に制御することができる。
The brake control device 7 according to the present embodiment acquires posture information indicating the posture of the robot 1 and estimates a mechanical load applied to the operation axis based on the acquired posture information. Then, according to the estimated mechanical load, different controls are performed on the electromagnetic brakes provided on the plurality of operation axes. Thereby, the electromagnetic brake of each operation axis can be individually controlled according to the mechanical load applied to the operation axis.
さらに、本実施形態に係るブレーキ制御装置7は、モータに設けられた電磁ブレーキと減速機に設けられた電磁ブレーキの両方を制御する。これにより、モータの電磁ブレーキと減速機の電磁ブレーキの両方を作動させ、モータと減速機の両方にかかる機械的負荷を低減することができる。
Furthermore, the brake control device 7 according to the present embodiment controls both the electromagnetic brake provided on the motor and the electromagnetic brake provided on the speed reducer. Thereby, both the electromagnetic brake of the motor and the electromagnetic brake of the reduction gear are operated, and the mechanical load applied to both the motor and the reduction gear can be reduced.
また、本実施形態に係るブレーキ制御装置7では、モータに設けられた電磁ブレーキと減速機に設けられた電磁ブレーキに対して、それぞれ異なる制御を行っている。これにより、モータの電磁ブレーキと減速機の電磁ブレーキをそれぞれ個別に制御できるので、モータと減速機のそれぞれの状況に応じた電磁ブレーキの制御を行うことができる。
In the brake control device 7 according to the present embodiment, different controls are performed on the electromagnetic brake provided on the motor and the electromagnetic brake provided on the speed reducer. Thus, the electromagnetic brake of the motor and the electromagnetic brake of the speed reducer can be individually controlled, so that the electromagnetic brake can be controlled according to the respective situations of the motor and the speed reducer.
[第4実施形態]
以下、本発明を適用した第4実施形態について図面を参照して説明する。ただし、第1~第3実施形態と同一の構成には同一の番号を付して詳細な説明は省略する。 [Fourth embodiment]
Hereinafter, a fourth embodiment to which the present invention is applied will be described with reference to the drawings. However, the same components as those of the first to third embodiments are denoted by the same reference numerals, and detailed description is omitted.
以下、本発明を適用した第4実施形態について図面を参照して説明する。ただし、第1~第3実施形態と同一の構成には同一の番号を付して詳細な説明は省略する。 [Fourth embodiment]
Hereinafter, a fourth embodiment to which the present invention is applied will be described with reference to the drawings. However, the same components as those of the first to third embodiments are denoted by the same reference numerals, and detailed description is omitted.
[ロボット制御システムの構成]
本実施形態に係るロボット制御システムの構成は、図1に示した第1実施形態と同一であるため、詳細な説明は省略する。 [Robot control system configuration]
Since the configuration of the robot control system according to the present embodiment is the same as that of the first embodiment shown in FIG. 1, detailed description will be omitted.
本実施形態に係るロボット制御システムの構成は、図1に示した第1実施形態と同一であるため、詳細な説明は省略する。 [Robot control system configuration]
Since the configuration of the robot control system according to the present embodiment is the same as that of the first embodiment shown in FIG. 1, detailed description will be omitted.
[ブレーキ制御処理]
次に、図13を参照して、本実施形態に係るブレーキ制御装置7によるブレーキ制御処理を説明する。図13は、ブレーキ制御装置7によるブレーキ制御処理の処理手順を示すフローチャートである。 [Brake control processing]
Next, a brake control process by the brake control device 7 according to the present embodiment will be described with reference to FIG. FIG. 13 is a flowchart illustrating a procedure of a brake control process performed by the brake control device 7.
次に、図13を参照して、本実施形態に係るブレーキ制御装置7によるブレーキ制御処理を説明する。図13は、ブレーキ制御装置7によるブレーキ制御処理の処理手順を示すフローチャートである。 [Brake control processing]
Next, a brake control process by the brake control device 7 according to the present embodiment will be described with reference to FIG. FIG. 13 is a flowchart illustrating a procedure of a brake control process performed by the brake control device 7.
本実施形態に係るブレーキ制御処理では、運搬器具であるパレットに載せられた複数のワークのうち、最初に作業が行われるワークにのみ電磁ブレーキを作動させるようにしたことが第2実施形態と相違している。そのため、図13のフローチャートでは、ステップS401が、図5のフローチャートのステップS201と相違しているだけで、その他のステップは図5と同一である。したがって、ステップS403~413は、それぞれ図5のステップS203~213と同一である。
The brake control process according to the present embodiment is different from the second embodiment in that the electromagnetic brake is operated only on the first work to be performed among a plurality of works placed on a pallet which is a transport device. are doing. Therefore, in the flowchart in FIG. 13, step S401 is different from step S201 in the flowchart in FIG. 5 only, and the other steps are the same as those in FIG. Therefore, steps S403 to 413 are the same as steps S203 to 213 in FIG. 5, respectively.
図13に示すように、ステップS401において、ブレーキ制御装置7は、パレットが切り替えられたか否かを判定し、パレットの切り替えを検知すると、ステップS403へ進む。したがって、ブレーキ制御装置7は、パレットの切り替えを検知したときだけ、ブレーキ制御処理を実行する。パレットの切り替えは、作業制御監視部23からパレットの切り替え情報を取得して検知すればよい。
As shown in FIG. 13, in step S401, the brake control device 7 determines whether or not the pallet has been switched, and upon detecting the pallet switching, proceeds to step S403. Therefore, the brake control device 7 executes the brake control process only when the pallet switching is detected. The pallet switching may be detected by acquiring pallet switching information from the work control monitoring unit 23.
パレットの切り替えが検知され、図13に示すステップS403~413の処理が行われると、パレットに載せられたワークのうち最初に作業が行われるワークの初回の溶接作業が行われる。
When the switching of the pallet is detected and the processes of steps S403 to 413 shown in FIG. 13 are performed, the first welding work of the work to be performed first among the works placed on the pallet is performed.
この後、ブレーキ制御装置7がブレーキ制御処理を終了すれば、パレットに載せられた複数のワークのうち最初に作業が行われるワークのみで電磁ブレーキ15が作動する。そして、2枚目以降のワークでは電磁ブレーキ15は作動せずに解除された状態で溶接作業が行われることになる。
After that, when the brake control device 7 finishes the brake control processing, the electromagnetic brake 15 is operated only on the work that is to be performed first among the plurality of works placed on the pallet. Then, in the second and subsequent works, the welding work is performed in a state where the electromagnetic brake 15 is released without being operated.
こうしてパレットに載せられた残りのワークに対して溶接作業が完了すると、次のパレットに切り替えられ、新たなパレットに対する一連の作業が開始される。ただし、図13では、本実施形態のブレーキ制御処理を第2実施形態に適用した場合について説明したが、第1及び第3実施形態に適用することも可能である。
溶 接 When the welding work on the remaining work placed on the pallet is completed, the work is switched to the next pallet, and a series of work on a new pallet is started. Although FIG. 13 illustrates the case where the brake control process of the present embodiment is applied to the second embodiment, it is also possible to apply the brake control process to the first and third embodiments.
[第4実施形態の効果]
以上、詳細に説明したように、本実施形態に係るブレーキ制御装置7では、パレットに載せられた複数のワークのうち、最初に作業が行われるワークにのみ電磁ブレーキを作動させる。パレットの最初に作業が行われるワークは変形している可能性が高いので、パレットの最初のワークのときだけ電磁ブレーキを作動させ、2枚目以降のワークでは電磁ブレーキを解除して作業を行うようにする。これにより、ワークの変形によって生じるモータ11や減速機13にかかる負担を防止できるとともに、変形している可能性が高いワークのときだけ電磁ブレーキを作動させるので、電磁ブレーキの利用頻度を大きく下げることができる。したがって、電磁ブレーキ15に関連する機器の寿命をさらに延ばすことができ、また消費電力を大きく低減することもできる。 [Effect of Fourth Embodiment]
As described above in detail, in the brake control device 7 according to the present embodiment, the electromagnetic brake is operated only on the work on which work is performed first among a plurality of works placed on the pallet. Since the work to be performed at the beginning of the pallet is likely to be deformed, the electromagnetic brake is activated only for the first work on the pallet, and the electromagnetic brake is released for the second and subsequent works to perform the work. To do. This can prevent the load on themotor 11 and the speed reducer 13 caused by the deformation of the work, and can operate the electromagnetic brake only when the work is highly likely to be deformed. Can be. Therefore, the life of the devices related to the electromagnetic brake 15 can be further extended, and the power consumption can be greatly reduced.
以上、詳細に説明したように、本実施形態に係るブレーキ制御装置7では、パレットに載せられた複数のワークのうち、最初に作業が行われるワークにのみ電磁ブレーキを作動させる。パレットの最初に作業が行われるワークは変形している可能性が高いので、パレットの最初のワークのときだけ電磁ブレーキを作動させ、2枚目以降のワークでは電磁ブレーキを解除して作業を行うようにする。これにより、ワークの変形によって生じるモータ11や減速機13にかかる負担を防止できるとともに、変形している可能性が高いワークのときだけ電磁ブレーキを作動させるので、電磁ブレーキの利用頻度を大きく下げることができる。したがって、電磁ブレーキ15に関連する機器の寿命をさらに延ばすことができ、また消費電力を大きく低減することもできる。 [Effect of Fourth Embodiment]
As described above in detail, in the brake control device 7 according to the present embodiment, the electromagnetic brake is operated only on the work on which work is performed first among a plurality of works placed on the pallet. Since the work to be performed at the beginning of the pallet is likely to be deformed, the electromagnetic brake is activated only for the first work on the pallet, and the electromagnetic brake is released for the second and subsequent works to perform the work. To do. This can prevent the load on the
なお、上述の実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計などに応じて種々の変更が可能であることは勿論である。
The above embodiment is an example of the present invention. For this reason, the present invention is not limited to the above-described embodiment, and even if it is in a form other than this embodiment, as long as it does not deviate from the technical idea according to the present invention, Of course, various changes are possible.
1 ロボット
3 ロボット制御装置
5 モータ制御装置
7 ブレーキ制御装置
9 溶接ガン制御装置
11 モータ
13 減速機
15 電磁ブレーキ
17 溶接ガン
21 作業情報取得部
23 作業制御監視部
100 ロボット制御システム REFERENCE SIGNSLIST 1 robot 3 robot control device 5 motor control device 7 brake control device 9 welding gun control device 11 motor 13 speed reducer 15 electromagnetic brake 17 welding gun 21 work information acquisition unit 23 work control monitoring unit 100 robot control system
3 ロボット制御装置
5 モータ制御装置
7 ブレーキ制御装置
9 溶接ガン制御装置
11 モータ
13 減速機
15 電磁ブレーキ
17 溶接ガン
21 作業情報取得部
23 作業制御監視部
100 ロボット制御システム REFERENCE SIGNS
Claims (10)
- 所定の作業を行う作業部位が取り付けられた作業機器の回転機構を駆動する駆動部に設けられたブレーキを制御するブレーキ制御装置であって、
前記作業部位が作業対象物に対して複数回の作業を行う一連の作業の開始前に前記ブレーキを作動させ、前記一連の作業の終了前に前記ブレーキを解除することを特徴とするブレーキ制御装置。 A brake control device that controls a brake provided in a drive unit that drives a rotation mechanism of a work device to which a work site that performs a predetermined work is attached,
A brake control device that activates the brake before starting a series of operations in which the work site performs a plurality of operations on an operation target, and releases the brake before the end of the series of operations. . - 前記一連の作業のうち、少なくとも最終回の作業の開始時には前記ブレーキを解除することを特徴とする請求項1に記載のブレーキ制御装置。 The brake control device according to claim 1, wherein the brake is released at least at the start of the last work in the series of works.
- 前記一連の作業のうち、初回の作業の間のみ前記ブレーキを作動させることを特徴とする請求項1に記載のブレーキ制御装置。 The brake control device according to claim 1, wherein the brake is operated only during the first operation of the series of operations.
- 前記初回の作業において前記作業部位への通電が終了したことを検出すると、前記ブレーキを解除することを特徴とする請求項3に記載のブレーキ制御装置。 4. The brake control device according to claim 3, wherein upon detecting that the energization of the work site is completed in the first work, the brake is released. 5.
- 前記作業機器が複数の前記回転機構を備え、前記ブレーキは前記複数の回転機構を駆動する複数の前記駆動部にそれぞれ設けられ、前記複数の駆動部に設けられたブレーキに対して、それぞれ異なる制御を行うことを特徴とする請求項1~4のいずれか1項に記載のブレーキ制御装置。 The work equipment includes a plurality of the rotation mechanisms, and the brakes are respectively provided in the plurality of the driving units that drive the plurality of the rotation mechanisms, and different control is performed on the brakes provided in the plurality of the driving units. The brake control device according to any one of claims 1 to 4, wherein the control is performed.
- 前記作業機器の姿勢を示す姿勢情報を取得し、取得した前記姿勢情報に基づいて前記回転機構にかかる機械的負荷を推定し、推定された前記機械的負荷に応じて、前記複数の駆動部に設けられたブレーキに対して、それぞれ異なる制御を行うことを特徴とする請求項5に記載のブレーキ制御装置。 Acquiring posture information indicating the posture of the work equipment, estimating a mechanical load applied to the rotating mechanism based on the acquired posture information, and according to the estimated mechanical load, the plurality of driving units The brake control device according to claim 5, wherein different controls are performed on the provided brakes.
- 前記駆動部はモータと減速機によって前記回転機構を駆動し、前記モータと前記減速機の両方に前記ブレーキを設け、前記モータに設けられたブレーキと前記減速機に設けられたブレーキの両方を制御することを特徴とする請求項1~6のいずれか1項に記載のブレーキ制御装置。 The drive unit drives the rotation mechanism by a motor and a speed reducer, provides the brakes on both the motor and the speed reducer, and controls both a brake provided on the motor and a brake provided on the speed reducer. The brake control device according to any one of claims 1 to 6, wherein:
- 前記モータに設けられたブレーキと前記減速機に設けられたブレーキに対して、それぞれ異なる制御を行うことを特徴とする請求項7に記載のブレーキ制御装置。 8. The brake control device according to claim 7, wherein different controls are performed on a brake provided on the motor and a brake provided on the speed reducer, respectively.
- 前記作業対象物を運搬するための運搬器具に載せられた複数の作業対象物のうち、最初に作業が行われる作業対象物にのみ前記ブレーキを作動させることを特徴とする請求項1~8のいずれか1項に記載のブレーキ制御装置。 The brake according to any one of claims 1 to 8, wherein the brake is operated only on a work object on which work is to be performed first among a plurality of work objects placed on a transportation device for carrying the work object. The brake control device according to claim 1.
- 所定の作業を行う作業部位が取り付けられた作業機器の回転機構を駆動する駆動部に設けられたブレーキを制御するブレーキ制御装置のブレーキ制御方法であって、
前記ブレーキ制御装置は、前記作業部位が作業対象物に対して複数回の作業を行う一連の作業の開始前に前記ブレーキを作動させ、前記一連の作業の終了前に前記ブレーキを解除することを特徴とするブレーキ制御方法。 A brake control method of a brake control device that controls a brake provided in a drive unit that drives a rotation mechanism of a work device to which a work site performing a predetermined work is attached,
The brake control device may actuate the brake before starting a series of operations in which the work site performs a plurality of operations on the work target, and release the brake before the end of the series of operations. Characteristic brake control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/024202 WO2020003380A1 (en) | 2018-06-26 | 2018-06-26 | Brake control device and brake control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/024202 WO2020003380A1 (en) | 2018-06-26 | 2018-06-26 | Brake control device and brake control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020003380A1 true WO2020003380A1 (en) | 2020-01-02 |
Family
ID=68984996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/024202 WO2020003380A1 (en) | 2018-06-26 | 2018-06-26 | Brake control device and brake control method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020003380A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60196276A (en) * | 1984-03-16 | 1985-10-04 | Kawasaki Heavy Ind Ltd | Method and device for holding reaction of pressurization for stud gun robot |
JP2013035098A (en) * | 2011-08-08 | 2013-02-21 | Yaskawa Electric Corp | Robot |
JP2013067009A (en) * | 2013-01-23 | 2013-04-18 | Denso Wave Inc | Electromagnetic brake control device of robot |
-
2018
- 2018-06-26 WO PCT/JP2018/024202 patent/WO2020003380A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60196276A (en) * | 1984-03-16 | 1985-10-04 | Kawasaki Heavy Ind Ltd | Method and device for holding reaction of pressurization for stud gun robot |
JP2013035098A (en) * | 2011-08-08 | 2013-02-21 | Yaskawa Electric Corp | Robot |
JP2013067009A (en) * | 2013-01-23 | 2013-04-18 | Denso Wave Inc | Electromagnetic brake control device of robot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140000355A1 (en) | Brake abnormality diagnosis method and brake abnormality diagnosis device | |
JP4277683B2 (en) | robot | |
KR0144650B1 (en) | Method of detecting and regulating load on servomotor | |
US6741057B2 (en) | Servo controller for preventing downward displacement in gravitating axis | |
JP5447455B2 (en) | Robot and robot system | |
US8886360B2 (en) | Motor velocity control apparatus and method | |
CN106476009B (en) | Machine with a movable working part | |
WO2020003380A1 (en) | Brake control device and brake control method | |
CN113119058B (en) | Robot control method and robot system | |
JP5030628B2 (en) | Interference check system | |
US20140236353A1 (en) | Robot | |
JPH11320477A (en) | Malfunction detecting method for industrial robot | |
CN116242642A (en) | Brake abnormality detection system and detection method in dual motor drive robot | |
JPS63245389A (en) | Method of controlling robot | |
JPH1110580A (en) | Method and device for controlling driving shaft of industrial robot | |
JP2013163232A (en) | Robot arm control device, robot arm, and program of the same | |
JPH06246674A (en) | Method for detecting brake abnormality of industrical robot | |
JPH11165240A (en) | Feed shaft control method in numerical control and device thereof | |
JP6063750B2 (en) | Press machine, shaft drive device, and shaft drive method | |
CN109693013B (en) | Control device and method for controlling coordinated action of workpiece moving device and robot | |
JP6274967B2 (en) | Drive control device for rotary actuator | |
JP5827835B2 (en) | Electric parking brake device | |
CN113396031A (en) | Force-limited travel of at least one element of a production machine in manual operation | |
CN112975948B (en) | Control method and robot system | |
JP2019203568A (en) | Driving device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18925023 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18925023 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |