WO2020001559A1 - 风力发电机组的控制方法、控制装置、控制器及控制系统 - Google Patents
风力发电机组的控制方法、控制装置、控制器及控制系统 Download PDFInfo
- Publication number
- WO2020001559A1 WO2020001559A1 PCT/CN2019/093375 CN2019093375W WO2020001559A1 WO 2020001559 A1 WO2020001559 A1 WO 2020001559A1 CN 2019093375 W CN2019093375 W CN 2019093375W WO 2020001559 A1 WO2020001559 A1 WO 2020001559A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wind
- wind direction
- wind turbine
- downstream
- upstream
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 114
- 238000010248 power generation Methods 0.000 claims description 23
- 238000005070 sampling Methods 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 15
- 230000001186 cumulative effect Effects 0.000 claims description 7
- 230000004044 response Effects 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 description 10
- 230000009471 action Effects 0.000 description 9
- 238000007405 data analysis Methods 0.000 description 8
- 238000013500 data storage Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 230000003993 interaction Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
- F03D7/042—Automatic control; Regulation by means of an electrical or electronic controller
- F03D7/048—Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0204—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/022—Adjusting aerodynamic properties of the blades
- F03D7/0224—Adjusting blade pitch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/70—Adjusting of angle of incidence or attack of rotating blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/32—Wind speeds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/321—Wind directions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present disclosure relates to wind power generation technology, and in particular, the present disclosure relates to a control method, a control device, a controller, and a control system for a wind turbine.
- wind turbines cannot effectively predict environmental changes and respond quickly.
- the wind farm in the whole site is in a stop state, if the wind speed starts to increase, each wind turbine judges the wind speed acting on itself independently. If the wind speed is higher than the set threshold within a continuous period of time, the yaw action on the wind is started and the standby state is entered.
- each wind turbine judges the wind separately based on the wind speed and wind direction data collected by its own sensors. If the deviation from the wind is higher than a set threshold for a continuous period of time, the wind turbine starts to yaw against the wind to continue the power generation state.
- the wind turbine's response to environmental changes is relatively slow. It often takes a long time from the judgment of each wind turbine to the start of yaw action on the wind, which results in a loss of power generation.
- a control method for a wind turbine includes:
- each downstream wind turbine generating unit associated with the current main wind direction is controlled.
- a control device for a wind turbine includes:
- the current wind direction determination module is used to obtain the current wind direction of each upstream wind turbine in the wind farm in real time
- a main wind direction determining module configured to determine a current main wind direction to which the current wind direction of each upstream wind turbine belongs;
- the downstream wind turbine determining module is configured to determine the current wind direction associated with each upstream wind turbine according to the association relationship between the main wind directions of the multiple upstream wind turbines and the downstream wind turbines in the main wind direction.
- a control instruction determination module is configured to determine a control instruction for each downstream wind power generator unit associated with the current main wind direction according to a working condition state and a working condition parameter of the downstream wind power unit associated with the current main wind direction.
- a controller for a wind turbine is provided.
- the controller is communicatively connected with the control device described above.
- the controller includes a receiving module for receiving the current main wind direction sent by the control device.
- a control system for a wind turbine including: the above-mentioned control device; and the above-mentioned controller, the controller being communicatively connected with the control device.
- a computer-readable storage medium is provided.
- the computer-readable storage medium is used to store a computer program that, when executed by a processor, implements the above-mentioned control method of a wind turbine.
- the embodiment of the present disclosure can use the control device of the wind turbine to sense the wind direction of the upstream wind turbine through a control algorithm, and control the pre-yaw to the wind of the downstream wind turbine in advance, so that the downstream wind turbine can respond in advance. , Can effectively reduce the loss of power generation and improve power generation efficiency.
- FIG. 1 is a block diagram of a control system of a wind turbine according to an embodiment of the present disclosure
- FIG. 2 is a flowchart illustrating a control method of a wind turbine according to an embodiment of the present disclosure
- FIG. 3 is a functional block diagram of a control system of a wind turbine according to an embodiment of the present disclosure
- FIG. 4 is a flowchart illustrating a method for determining an association relationship between a main wind direction of a plurality of upstream wind turbines and a downstream wind turbine at the main wind direction according to an embodiment of the present disclosure
- FIG. 5 is a flowchart illustrating an operation of the group marking module in FIG. 3 according to an embodiment of the present disclosure
- FIG. 6 is a flowchart illustrating an operation of the data analysis module in FIG. 3 according to an embodiment of the present disclosure
- FIG. 7 is a flowchart illustrating an operation of the data analysis module in FIG. 3 according to another embodiment of the present disclosure
- FIG. 8 is a block diagram of a control device for a wind turbine according to an embodiment of the present disclosure.
- FIG. 9 is a block diagram of a controller of a wind turbine according to an embodiment of the present disclosure.
- Upwind and downwind The position where the wind first blows is called the upwind position, and the position where the wind blows after is called the downwind position.
- the upwind direction can also be understood as the direction from which the wind is blowing. Wind in nature usually blows from the upwind to the downwind.
- Upstream wind turbine Wind turbine located in the upwind direction.
- Downstream wind turbines Wind turbines located in the downwind direction.
- FIG. 1 is a block diagram of a control system 10 of a wind turbine according to an embodiment of the present disclosure.
- the control system 10 may include a central controller 101 of a wind farm and a main controller 102 of a wind turbine.
- the main controller 102 may include a controller 1021 of the wind turbine.
- the central controller 101 may include a control device 1011 of the wind turbine.
- the control device 1011 and the controller 1021 can be communicatively connected.
- FIG. 2 is a flowchart illustrating a control method of a wind turbine according to an embodiment of the present disclosure.
- step S201 the current wind direction of each upstream wind turbine in the wind farm can be obtained (for example, through a sensor) in real time.
- the current main wind direction to which the current wind direction of each upstream wind power generator belongs can be determined. For example, it can be determined whether the current wind direction of each upstream wind turbine belongs to the main wind direction of the upstream wind turbine according to the association relationship between the main wind direction of multiple upstream wind turbines and the downstream wind turbines in the main wind direction obtained in advance. Wind direction one. If it is determined that the current wind direction of the upstream wind turbine belongs to one of the main wind directions of the upstream wind turbine, the main wind direction to which the current wind direction belongs may be determined as the current main wind direction.
- step S203 the downstream wind turbine associated with the current main wind direction of each upstream wind turbine may be determined according to the above-mentioned association relationship.
- step S204 the operating conditions and operating parameters (including but not limited to time stamp, wind speed, absolute wind direction, yaw position, wind direction angle, fan status, impeller speed, Pitch angle, etc.), determine a control instruction for each downstream wind turbine associated with the current main wind direction.
- the operating conditions and operating parameters including but not limited to time stamp, wind speed, absolute wind direction, yaw position, wind direction angle, fan status, impeller speed, Pitch angle, etc.
- each of the downstream wind turbines associated with the current main wind direction is in a shutdown or standby state. If it is determined that each downstream wind turbine is in a stopped state or standby state, it can be determined according to the current wind direction of the upstream wind turbine belonging to the current main wind direction and the yaw position of each downstream wind turbine associated with the current main wind direction.
- a first yaw offset value of each downstream wind power unit associated with the current main wind direction, and a yaw control command for each downstream wind power unit associated with the current main wind direction may be generated according to the first yaw deviation value.
- each downstream wind power generating unit associated with the current main wind direction is in a grid-connected power generation state. If it is determined that each downstream wind turbine is in the state of grid-connected power generation, in response to the average wind direction change angle of the upstream wind turbine belonging to the current main wind direction in the first specified period being greater than the first threshold, it is determined that A second yaw deviation value of each downstream wind turbine, and a yaw control command for each downstream wind turbine associated with the current main wind direction may be generated according to the second yaw deviation.
- each downstream wind power generating unit associated with the current main wind direction can be determined whether each downstream wind power generating unit associated with the current main wind direction is in a grid-connected power generation state. If it is determined that each downstream wind power generator is in a grid-connected power generation state, it can be determined whether the average wind speed change amount of the upstream wind power generator belonging to the current main wind direction within a second specified period is greater than a second threshold. If the average wind speed change is greater than the second threshold, it can be determined whether the pitch angle of each downstream wind turbine associated with the upstream wind turbine belonging to the current main wind direction is within a specified range. If the pitch angle is within the specified range, the minimum pitch angle of each downstream wind turbine associated with the current main wind direction can be determined, and each downstream wind power associated with the current main wind direction can be generated based on the minimum pitch angle Pitch control command for generator set.
- each downstream wind power generator group associated with the current main wind direction may be controlled according to the control instruction.
- control method may further include: determining whether a current operating state status of each upstream wind turbine belongs to a grid-connected state; if it is determined that a current operating state status of each upstream wind turbine belongs to a grid-connected Status, step S204 is performed.
- the central controller 101 may control the downstream turbine to make a yaw action in accordance with the control instruction in advance according to the wind direction and wind speed information sensed by the upstream wind turbine, thereby improving power generation efficiency.
- FIG. 3 is a functional block diagram of a control system of a wind turbine according to an embodiment of the present disclosure.
- the control system of the wind turbine may include a data acquisition module, a data analysis module, a command push module, a timer module, a data storage module, and a group marking module.
- the data acquisition module can collect the time stamp, wind speed, absolute wind direction, yaw position, wind direction angle, fan status, impeller speed, pitch angle and other data of the entire wind turbine in real time.
- the sampling frequency can be a specified frequency, such as the sampling frequency It is 1Hz. It should be noted that the timestamps collected by each fan must be consistent, such as the time of the central controller.
- the data analysis module can read the current data collected by the above data acquisition module in real time and process it with a specific algorithm in order to determine whether the current wind direction of the upstream wind turbine is one of the main wind directions of the upstream wind turbine, and the analysis also belongs to the current The working condition status of the downstream wind turbine in the main wind direction. Analyze whether the working condition of the downstream wind turbine is a small wind start, sudden wind direction or gust turbulence.
- the data analysis module may combine the results of the association relationship between the units calculated by the group marking module to give control instructions for the downstream wind turbines associated with the current main wind direction.
- the data storage module can meet the fast read and write performance of a large amount of data, and may include a real-time database, a relational database, and / or a file database.
- the data storage module can store the data collected by the data acquisition module, and store the main wind direction information of the wind turbines in the entire wind farm, the information of the upstream wind turbines, and the information of the downstream wind turbines.
- the packet marking module can read data of a certain period of time from the data storage module and perform calculation processing on the read data.
- the reading and calculation functions performed by the group marking module do not have to be in the running state all the time, and only need to run once every certain period.
- the timer module can call the packet marking module periodically.
- the calling period can be no less than 1 day and no more than 30 days.
- the command push module can use a universal protocol to achieve fast communication between the central controller (also called the wind farm controller) and the entire field wind turbine, and send control instructions to each downstream wind power generator associated with the current main wind direction. unit.
- the controller according to the embodiment of the present disclosure may control each downstream wind turbine associated with the current main wind direction according to the obtained control instruction.
- the above-mentioned control system of the wind turbine according to the embodiment of the present disclosure can implement a time stamp, wind speed, absolute wind direction, and yaw position of the collected wind turbine by means of a central controller (also referred to as a wind farm controller).
- a central controller also referred to as a wind farm controller.
- Analysis and calculation of wind direction angle, fan status, impeller speed, pitch angle and other data, as well as data interaction with the wind turbine rely on the control module in the central controller to achieve logical calculation and signal processing functions.
- FIG. 4 is a flowchart illustrating a method for determining an association relationship between a main wind direction of a plurality of upstream wind turbines and a downstream wind turbine at the main wind direction according to an embodiment of the present disclosure.
- step S401 the wind speed, absolute wind direction, and time stamp of each upstream wind turbine in the wind farm during the first sampling period may be obtained, and the wind speed of each upstream wind turbine in the absolute wind direction during the second sampling period may be determined.
- the first sampling period may include a plurality of second sampling periods.
- the first sampling period can be set to 3 months, and the second sampling period can be set to 10 minutes (that is, 10 min).
- step S402 a plurality of sectors with a specified angle can be divided for each upstream wind turbine, and the wind frequency of each sector in the first sampling period is determined, and the predetermined number of fans with the largest wind frequency is determined.
- the area serves as the main wind direction of the upstream wind turbine.
- the frequency at which the average wind speed in the second sampling period in the absolute wind direction appears in the sector during the first sampling period can be determined, and this frequency is taken as the wind frequency.
- step S403 for each main wind direction of each upstream wind turbine, it is possible to determine the cumulative startup times and each startup time of the upstream wind turbine during the first sampling period.
- step S404 for each other wind turbine in the wind farm except for the upstream wind turbine, the cumulative start times of the other wind turbines during the first sampling time and the cumulative start of an upstream wind turbine may be determined. Whether the ratio of the number of generators reaches the ratio threshold, and whether the other wind turbine is started within a set period of time from the start-up time of the upstream wind turbine. If both determination results are positive, it may be determined in step S405 that the other wind turbine is the downstream wind turbine of the upstream wind turbine in the main wind direction. If both determination results are not positive, the process may return to step S401. For example, the cumulative start-up times of the upstream wind turbine can be set to N, and the ratio threshold can be set to 0.8.
- the update frequency of the above-mentioned association relationship or the update frequency of internal parameters may be established only once and no longer updated, once a year, once a quarter, once a month, once every ten days, or Update once a few days and so on.
- association relationship can also be obtained in advance through a human-computer interaction interface.
- association relationship between each upstream wind turbine, each main wind direction of the upstream wind turbine, and the downstream wind turbine at the main wind direction may be received through a human-computer interaction interface.
- FIG. 5 is a flowchart illustrating an operation of the group marking module in FIG. 3 according to an embodiment of the present disclosure, where the sample data of the last 3 months is taken as an example to describe the calculation processing flow performed by the group marking module.
- the group marking module can read data such as wind speed, absolute wind direction, wind turbine status, and time stamp from the data storage module in the last 3 months, and calculate the average and maximum wind speed and / or absolute wind direction in a 10-minute period Value, minimum.
- each upstream wind turbine a can be traversed: using 22.5 ° as a sector, calculate the wind frequency in each sector in the past 3 months (that is, the average value of the absolute wind direction within 10 minutes in the past 3 months).
- the frequency of occurrence of each sector), and the 1 sector with the largest wind frequency or 2 sectors with the largest and 2nd largest wind frequencies are taken as the main wind direction of the upstream wind turbine a.
- each main wind direction of each upstream wind turbine a can be traversed to find the start-up process of the unit within 3 months: when the unit starts up once, record the time; the number of start-up times is N.
- step S504 other unit b can be traversed: if the number of startups of an upstream unit a is N, and a unit b exceeds N * 0.8 times and is started within 30 minutes after the unit a is started, the unit can be started b is marked as the downstream unit of the unit a in the main wind direction.
- the packet marking module may output a packet marking result and store the result in the data storage module.
- the grouping mark result may include the fan number, the main wind direction number, the downstream unit number sequence of the downstream wind turbine of each upstream wind turbine in its main wind direction.
- Wind direction usually refers to the direction of the wind.
- Wind direction representation methods usually include degree and azimuth representation.
- the degree representation is the most direct way to express wind direction.
- the direction of the wind is expressed in degrees from 0 to 360 °.
- This representation is simple and simple. In order to more intuitively indicate the direction of the wind, you can use the azimuth representation, discretize the wind direction from 0 to 360 °, and divide the different wind direction values into corresponding sectors. Usually, 16 sectors are set, and each sector is 22.5 degrees .
- the wind direction in the range of 348.75 ° to 360 ° and 0 to 11.25 ° is northerly, represented by N;
- the wind direction in the range of 11.25 ° to 33.75 ° is northeast wind;
- the wind direction in the 33.75 to 56.25 ° range is northeast wind.
- FIG. 6 is a flowchart illustrating an operation of the data analysis module in FIG. 3 according to an embodiment of the present disclosure.
- step S601 the current wind direction of each upstream wind turbine in the wind farm can be obtained in real time.
- step S602 it can be determined whether the current wind direction of each upstream wind turbine belongs to the upstream wind turbine according to the association relationship between the main wind directions of the plurality of upstream wind turbines and the downstream wind turbines in the main wind direction. One of the main wind directions. If it is determined that the current wind direction of each upstream wind turbine belongs to one of the main wind directions of the upstream wind turbine, it may proceed to step S603; otherwise, continue to step S602.
- step S603 the main wind direction to which the current wind direction belongs may be determined as the current main wind direction.
- step S604 the downstream wind turbines associated with the current main wind direction of each upstream wind turbine may be determined according to the above-mentioned association relationship.
- step S605 it can be determined whether the current working condition status of each upstream wind turbine belongs to the grid-connected status. If the current working condition state belongs to the grid-connected state, the process may proceed to step S606; otherwise, the process returns to step S602.
- step S606 it can be determined whether each of the downstream wind turbines associated with the current main wind direction is in a stopped state or a standby state. If each of the downstream wind turbines is in a stopped or standby state, it can proceed to step S607; otherwise, it can proceed to step S609.
- each downstream wind turbine unit associated with the current main wind direction may be determined according to the current wind direction of the upstream wind turbine unit belonging to the current main wind direction and the yaw position of each downstream wind turbine unit associated with the current main wind direction.
- the first yaw bias value For example, the current wind direction of an upstream wind turbine belonging to the current main wind direction can be obtained by subtracting the yaw position of each downstream wind turbine associated with the current main wind direction to obtain the value of each downstream wind turbine associated with the current main wind direction.
- the first yaw bias value is derived from the current wind direction of an upstream wind turbine belonging to the current main wind direction.
- a yaw control command for each downstream wind turbine associated with the current main wind direction may be generated according to the first yaw deviation value.
- the identification information of a downstream wind turbine associated with the current main wind direction may be carried in the yaw control command, and the yaw variable and the crew state variable in the yaw control command are set to the first yaw deviation value, respectively. And enter standby.
- step S609 it can be determined whether the current working state status of each downstream wind power generating unit associated with the current main wind direction belongs to the grid-connected state. If the current working condition of each downstream wind turbine belongs to the grid-connected state, the process may proceed to steps S610 and S612; otherwise, no operation is performed.
- step S610 in response to that the average wind direction change angle of the upstream wind power generating unit belonging to the current main wind direction during the first specified period is greater than the first threshold, a second yaw of each downstream wind power generating unit associated with the current main wind direction may be determined. Deviation. For example, the current absolute wind direction of the upstream wind turbine that belongs to the current main wind direction during the current first specified period may be subtracted from the average absolute wind direction of the upstream wind turbine during the first first specified period. A second yaw bias value for each associated downstream wind turbine.
- a yaw control command for each downstream wind turbine associated with the current main wind direction may be generated according to the second yaw deviation value.
- the identification information of a downstream wind turbine associated with the current main wind direction may be carried in the yaw control command, and the yaw variable in the yaw control command is set to the second yaw deviation value.
- step S612 it can be determined whether the average wind speed change amount of the upstream wind power generating unit belonging to the current main wind direction in the second specified period is greater than the second threshold. If the change amount of the average wind speed is greater than the second threshold, the process may proceed to step S613; otherwise, no operation is performed.
- the average wind speed of an upstream wind turbine belonging to the current main wind direction during the current second specified period may be subtracted from the average wind speed of the upstream wind turbine during the previous second specified period to obtain the upstream wind turbine The amount of change in the average wind speed during the second specified period, and then it is determined whether the amount of change in the average wind speed is greater than a second threshold.
- step S613 it may be determined whether the pitch angle of each downstream wind turbine associated with the upstream wind turbine belonging to the current main wind direction is within a specified range. If the pitch angle is within the specified range, it may proceed to step S614; otherwise, no operation is performed.
- step S614 the minimum pitch angle of each downstream wind turbine associated with the current main wind direction may be determined.
- a pitch control command for each downstream wind turbine associated with the current main wind direction may be generated according to the minimum pitch angle.
- the identification information of a downstream wind turbine associated with the current main wind direction may be carried in a pitch control command, and the pitch angle variable in the pitch control command is set to the minimum pitch angle.
- the pitch control command generated for each downstream wind turbine associated with the current main wind direction may have a fixed format.
- the pitch control command may include at least a fan number, a modified target variable name, and a target modified value, and there may be multiple modified target variables. If the unit is not in the above-mentioned target operating conditions, the control command may not be output.
- FIG. 7 is a flowchart illustrating an operation of the data analysis module in FIG. 3 according to another embodiment of the present disclosure.
- the data analysis module may obtain the current wind speed and absolute wind direction data of each wind turbine in the current 1 minute from the data storage module.
- step S702 each unit can be traversed: the main wind direction sequence of the wind turbine is obtained from the data storage module.
- step S703 it can be determined whether the average wind direction of a certain wind power generator group A in the current 1 minute belongs to one of the main wind directions. If it is determined that the average wind direction belongs to one of the main wind directions, it may proceed to step S704; otherwise, return to step S702.
- step S704 it can be determined whether the wind turbine A belongs to a grid-connected state in the current 1 minute. If it is determined that the wind power generating unit A belongs to the grid-connected state in the current 1 minute, it may proceed to step S705; otherwise, return to step S702.
- step S705 it can be traversed whether the downstream wind turbine B of the wind turbine A is in a shutdown or standby state. If the traversal result reflects that the downstream wind power generator B of the wind power generator set A is in a shutdown or standby state, it may proceed to step S706; otherwise, it may proceed to step S708.
- the yaw deviation value (corresponding to the first yaw deviation value) can be obtained by subtracting the value representing the current absolute yaw position of the downstream wind turbine B from the value representing the absolute wind direction of the wind turbine A.
- the yaw deviation value can be expressed as "value 1: dev_a”.
- a pitch control command for a downstream wind turbine associated with the main wind direction may be output, and identification information indicating the small wind start of the downstream wind turbine is carried in the pitch control command.
- the pitch control command may include: fan number: B; variable 1: yaw; value 1: dev_a; variable 2: fan status; value 2: enter standby. This indicates that the working condition of the downstream wind turbine at this time is small wind start, and it will enter the standby state.
- step S708 it can be determined whether the downstream fan B is in the state of grid-connected power generation. If it is determined that the downstream fan B is in the state of grid-connected power generation, the process may proceed to steps S709 and S710; otherwise, no operation is performed.
- step S709 it can be determined whether the change in the wind direction of the upstream wind turbine A in the last 1 minute from the wind direction of the previous 1 minute is greater than 20 degrees. If it is determined that the change is greater than 20 degrees, it may proceed to step S711; otherwise, no operation is performed.
- the yaw deviation value (equivalent to the second yaw deviation value) can be obtained by subtracting the average absolute wind direction within the last 1 minute from the average absolute wind direction within the last 1 minute of the wind turbine A, and the yaw deviation The value can be expressed as "dev_b".
- a pitch control command for a downstream wind turbine associated with the main wind direction may be output, and identification information indicating a sudden wind direction change of the downstream wind turbine is carried in the pitch control command.
- the pitch control command may include: fan number: B; variable 1: yaw action; value 1: dev_b. This indicates that the working condition of the downstream wind turbine at this time is a sudden change in wind direction, and a yaw action will be performed.
- step S710 it can be determined whether the wind speed within the last 10s of the upstream wind turbine A has increased by 5m / s relative to the wind speed within the last 10s. If it is determined that the wind speed increases by 5 m / s, the process may proceed to step S713; otherwise, no operation is performed.
- step S713 it can be determined whether the pitch angle of the downstream fan B is within a range of 0 degrees ⁇ 2 degrees. If it is determined that the pitch angle is within the range of 0 degrees ⁇ 2 degrees, the process may proceed to step S714; otherwise, no operation is performed.
- step S714 the minimum pitch angle of each downstream wind power unit associated with the current main wind direction may be determined, and a pitch control command for each downstream wind power unit associated with the current main wind direction may be generated according to the minimum pitch angle. .
- a pitch control command for a downstream wind turbine associated with the main wind direction may be output, and identification information indicating gust turbulence of the downstream wind turbine may be carried in the pitch control command.
- the pitch control command may include: fan number: B; variable 1: minimum pitch angle; value 1: 3 degrees. This indicates that the working condition of the downstream wind turbine at this time is gust turbulence, and yaw action will be performed.
- an embodiment of the present disclosure further provides a control device for a wind turbine.
- control device 1011 of the wind power generator set may include a current wind direction determination module 10111, a main wind direction determination module 10112, a downstream wind power generator determination module 10113, and a control instruction determination module 10114.
- the current wind direction determination module 10111 can obtain the current wind direction of each upstream wind turbine in the wind farm in real time.
- the main wind direction determination module 10112 may determine the current main wind direction to which the current wind direction of each upstream wind power generator set obtained by the current wind direction determination module 10111 in real time belongs.
- the downstream wind turbine determining module 10113 may determine the associated current wind direction of each upstream wind turbine according to the association relationship between the main wind directions of the multiple upstream wind turbines and the downstream wind turbines in the main wind direction. Downstream wind turbine.
- the control instruction determination module 10114 may determine a control instruction for each of the downstream wind turbines associated with the current main wind direction according to the working condition state and the operation parameter of the downstream wind turbines associated with the current main wind direction.
- control device 1011 may be integrated in the central controller 101 of the wind farm.
- an embodiment of the present disclosure further provides a controller of a wind turbine.
- the controller 1021 of the wind turbine may include a receiving module 10211 and a control module 10212.
- the controller 1021 may be communicatively connected with the control device 1011 of the wind turbine described with reference to FIG. 8.
- the receiving module 10211 may receive a control instruction sent by the control device 1011 for each downstream wind turbine associated with the current main wind direction.
- the control module 10212 may control each downstream wind turbine associated with the current main wind direction according to the control instruction received by the receiving module 10211.
- the controller 1021 may be integrated in the main controller 102 of the wind turbine.
- the present disclosure also provides a computer-readable storage medium for storing a computer program that, when executed by a processor, can implement a method for controlling a wind turbine according to an embodiment of the present disclosure. .
- control system for a wind turbine.
- the control system may include: the above-mentioned control device of the wind turbine; and the above-mentioned controller of the wind turbine connected in communication with the control device.
- the embodiment of the present disclosure can predict the wind speed and direction for the downstream wind turbine, start the small wind in advance, and control the downstream turbine to make a yaw action in advance after the downstream wind turbine starts generating power.
- wind turbines usually use wind speed and direction data collected by their own sensors as the basis for wind yaw, and it often takes a delay of about 20 minutes to determine the wind direction. If the direction of the incoming wind and the yaw position of the wind turbine are large, it will take several minutes to complete the yaw-to-wind action, which will require a delay of about 30 minutes before the start.
- the central controller can control the downstream wind turbine at The yaw action is completed before the wind arrives, which adds about 30 minutes to the power generation time of the wind turbine, which significantly improves the power generation and efficiency of the wind turbine.
- steps in the flowchart of the drawings are sequentially displayed according to the directions of the arrows, these steps are not necessarily performed in the order indicated by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited, and they can be performed in other orders. Moreover, at least a part of the steps in the flowchart of the drawing may include multiple sub-steps or stages. These sub-steps or stages may not necessarily be executed at the same time, but may be executed at different times, and their execution order is not necessarily Performed sequentially, but may be performed in turn or alternately with other steps or at least a part of the sub-steps or stages of other steps.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Abstract
Description
Claims (17)
- 一种风力发电机组的控制方法,包括以下步骤:实时获取风电场内每个上游风力发电机组的当前风向;确定每个所述上游风力发电机组的当前风向所属的当前主风向;根据预先获得的多个上游风力发电机组的主风向和在主风向的下游风力发电机组之间的关联关系,确定每个所述上游风力发电机组的当前主风向所关联的下游风力发电机组;根据所述当前主风向所关联的下游风力发电机组的工况状态和工况参数,确定针对所述当前主风向所关联的每个下游风力发电机组的控制指令;根据所述控制指令,对所述当前主风向所关联的每个下游风力发电机组进行控制。
- 根据权利要求1所述的控制方法,其中,确定所述当前主风向的步骤包括:根据所述关联关系,确定每个所述上游风力发电机组的当前风向是否属于该上游风力发电机组的主风向之一;如果确定所述当前风向属于该上游风力发电机组的主风向之一,则将所述当前风向所属的主风向确定为所述当前主风向。
- 根据权利要求1所述的控制方法,其中,确定所述控制指令的步骤包括:确定所述当前主风向所关联的每个下游风力发电机组是否处于停机状态或待机状态;如果所述每个下游风力发电机组处于停机状态或待机状态,则根据属于所述当前主风向的上游风力发电机组的当前风向、以及所述当前主风向所关联的每个下游风力发电机组的偏航位置,确定所述当前主风向所关联的每个下游风力发电机组的第一偏航偏差值;根据所述第一偏航偏差值,生成针对所述当前主风向所关联的每个下 游风力发电机组的偏航控制命令。
- 根据权利要求3所述的控制方法,其中,通过将属于所述当前主风向的上游风力发电机组的当前风向减去所述当前主风向所关联的每个下游风力发电机组的偏航位置,得到所述第一偏航偏差值;将所述当前主风向所关联的一个下游风力发电机组的标识信息携带于所述偏航控制命令中,并将所述偏航控制命令中的偏航变量和机组状态变量分别设置为所述第一偏航偏差值和进入待机状态。
- 根据权利要求1所述的控制方法,其中,确定所述控制指令的步骤包括:确定所述当前主风向所关联的每个下游风力发电机组是否处于并网发电状态;如果所述每个下游风力发电机组处于并网发电状态,则响应于属于所述当前主风向的上游风力发电机组在第一指定时段内的平均风向变化角度大于第一阈值,确定所述当前主风向所关联的每个下游风力发电机组的第二偏航偏差值;根据所述第二偏航偏差值,生成针对所述当前主风向所关联的每个下游风力发电机组的偏航控制命令。
- 根据权利要求5所述的控制方法,其中,通过将属于所述当前主风向的上游风力发电机组在当前第一指定时段内的平均绝对风向减去该上游风力发电机组在上一个第一指定时段内的平均绝对风向,得到所述当前主风向所关联的每个下游风力发电机组的第二偏航偏差值;将所述当前主风向所关联的一个下游风力发电机组的标识信息携带于所述偏航控制命令中,并将所述偏航控制命令中的偏航变量设置为所述第二偏航偏差值。
- 根据权利要求1所述的控制方法,其中,确定所述控制指令的步骤包括:确定所述当前主风向所关联的每个下游风力发电机组是否处于并网发电状态;如果所述每个下游风力发电机组处于并网发电状态,则确定属于所述当前主风向的上游风力发电机组在第二指定时段内的平均风速变化量是否大于第二阈值;如果所述平均风速变化量大于第二阈值,则确定属于所述当前主风向的上游风力发电机组所关联的每个下游风力发电机组的桨距角是否在指定范围内;如果所述桨距角在指定范围内,则确定所述当前主风向所关联的每个下游风力发电机组的最小桨距角;根据所述最小桨距角,生成针对所述当前主风向所关联的每个下游风力发电机组的变桨控制命令。
- 根据权利要求7所述的控制方法,其中,通过将属于所述当前主风向的上游风力发电机组在当前第二指定时段内的平均风速减去该上游风力发电机组在上一个第二指定时段内的平均风速,得到所述平均风速变化量,进而确定所述平均风速变化量是否大于所述第二阈值;将所述当前主风向所关联的一个下游风力发电机组的标识信息携带于所述变桨控制命令中,并将所述变桨控制命令中的桨距角变量设置为所述最小桨距角。
- 根据权利要求1所述的控制方法,还包括:确定每个所述上游风力发电机组的当前工况状态是否属于并网状态;如果所述当前工况状态属于并网状态,则执行确定所述控制指令的步骤。
- 根据权利要求1所述的控制方法,其中,所述关联关系是通过下列操作确定的:获取风电场内每个上游风力发电机组在第一取样时段内的风速、绝对风向和时间戳,并确定每个上游风力发电机组在绝对风向上在第二取样时段内的风速平均值、风速最大值和风速最小值,第一取样时段包括多个第二取样时段;为每个上游风力发电机组划分出多个具有指定夹角的扇区,确定每个扇区在第一取样时段内的风频,并将风频最大的预定个数的扇区作为该上游风力发电机组的主风向;对于每个上游风力发电机组的每个主风向,确定该上游风力发电机组在第一取样时段内的累计启机次数和每次启机时刻;对于所述风电场中除了上游风力发电机组之外的每个其它风力发电机组,确定该其它风力发电机组在第一取样时间内的累计启机次数与一个上游风力发电机组的所述累计启机次数的比例是否达到比例阈值,且该其它风力发电机组是否在自该上游风力发电机组的启机时刻起的设定时段内启机,若两个确定结果都是肯定的,则确定该其它风力发电机组为该上游风力发电机组在该主风向的下游风力发电机组;建立每个上游风力发电机组、该上游风力发电机组的每个主风向和在该主风向的下游风力发电机组之间的关联关系。
- 根据权利要求10所述的控制方法,其中,对于每个上游风力发电机组的每个扇区,确定在所述绝对风向上在第二取样时间段内的平均风速在第一取样时段内在该扇区出现的频率,并将该频率作为所述风频。
- 一种风力发电机组的控制装置,包括:当前风向确定模块,用于实时获取风电场内每个上游风力发电机组的当前风向;主风向确定模块,用于确定每个所述上游风力发电机组的当前风向所 属的当前主风向;下游风力发电机组确定模块,用于根据预先获得的多个上游风力发电机组的主风向和在主风向的下游风力发电机组之间的关联关系,确定每个所述上游风力发电机组的当前主风向所关联的下游风力发电机组;控制指令确定模块,用于根据所述当前主风向所关联的下游风力发电机组的工况状态和工况参数,确定针对所述当前主风向所关联的每个下游风力发电机组的控制指令。
- 根据权利要求12所述的控制装置,其被集成设置在风电场的中央控制器中。
- 一种风力发电机组的控制器,与根据权利要求12或13所述的控制装置通信连接,所述控制器包括:接收模块,用于接收所述控制装置发送的针对当前主风向所关联的每个下游风力发电机组的控制指令;控制模块,用于根据所述接收模块接收到的控制指令,对所述当前主风向所关联的每个下游风力发电机组进行控制。
- 根据权利要求14所述的控制器,其被集成设置在风力发电机组的主控器中。
- 一种风力发电机组的控制系统,包括:根据权利要求12或13所述的控制装置;以及根据权利要求14或15所述的控制器,所述控制器与所述控制装置通信连接。
- 一种计算机可读的存储介质,用于存储计算机程序,该计算机程序被处理器执行时实现根据权利要求1-11中任一项所述的控制方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/043,478 US11493023B2 (en) | 2018-06-28 | 2019-06-27 | Wind turbine control method and device, controller, and control system |
AU2019296291A AU2019296291B2 (en) | 2018-06-28 | 2019-06-27 | Wind turbine control method and device, controller, and control system |
EP19827431.8A EP3770423B1 (en) | 2018-06-28 | 2019-06-27 | Wind turbine control method and device, controller, and control system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810691480.9A CN108798997B (zh) | 2018-06-28 | 2018-06-28 | 风力发电机组的控制方法、装置、控制器及系统 |
CN201810691480.9 | 2018-06-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020001559A1 true WO2020001559A1 (zh) | 2020-01-02 |
Family
ID=64072482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/093375 WO2020001559A1 (zh) | 2018-06-28 | 2019-06-27 | 风力发电机组的控制方法、控制装置、控制器及控制系统 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11493023B2 (zh) |
EP (1) | EP3770423B1 (zh) |
CN (1) | CN108798997B (zh) |
AU (1) | AU2019296291B2 (zh) |
WO (1) | WO2020001559A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108798997B (zh) | 2018-06-28 | 2020-02-07 | 北京金风科创风电设备有限公司 | 风力发电机组的控制方法、装置、控制器及系统 |
CN110210996A (zh) * | 2019-06-05 | 2019-09-06 | 华润电力投资有限公司北方分公司 | 一种风力发电的机组控制方法以及相关装置 |
CN110778454B (zh) * | 2019-10-11 | 2021-04-09 | 许昌许继风电科技有限公司 | 一种风电机组协调控制方法和系统 |
CN112796942B (zh) * | 2021-03-26 | 2022-02-11 | 中国华能集团清洁能源技术研究院有限公司 | 一种风电机组桨距角的控制方法、系统、设备及存储介质 |
CN117028150B (zh) * | 2023-08-17 | 2024-04-19 | 贵州众联新能源科技有限公司 | 一种风力发电机组区时域化策略的偏航控制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1975155A (zh) * | 2005-11-29 | 2007-06-06 | 通用电气公司 | 风力发电场涡轮控制系统以及估算风力条件并优化性能的方法 |
CN102609590A (zh) * | 2012-02-16 | 2012-07-25 | 中国科学院寒区旱区环境与工程研究所 | 风电场群布局方法 |
EP2674617A2 (en) * | 2012-06-14 | 2013-12-18 | GE Wind Energy GmbH | Wind turbine rotor control |
EP2757255A1 (en) * | 2013-01-21 | 2014-07-23 | Alstom Wind, S.L.U. | Method of operating a wind farm |
CN108798997A (zh) * | 2018-06-28 | 2018-11-13 | 北京金风科创风电设备有限公司 | 风力发电机组的控制方法、装置、控制器及系统 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10011393A1 (de) | 2000-03-09 | 2001-09-13 | Tacke Windenergie Gmbh | Regelungssystem für eine Windkraftanlage |
US20090099702A1 (en) * | 2007-10-16 | 2009-04-16 | General Electric Company | System and method for optimizing wake interaction between wind turbines |
JP4698718B2 (ja) * | 2008-09-30 | 2011-06-08 | 株式会社日立製作所 | 風力発電装置群の制御装置及び制御方法 |
JP5199828B2 (ja) * | 2008-10-29 | 2013-05-15 | 三菱重工業株式会社 | 風力発電装置及びその制御方法 |
CN102472248B (zh) * | 2009-12-15 | 2015-05-13 | 维斯塔斯风力系统有限公司 | 用于避免共因关机的风力发电场控制器 |
GB2476316B (en) | 2009-12-21 | 2014-07-16 | Vestas Wind Sys As | A wind turbine having a control method and controller for predictive control of a wind turbine generator |
US8554519B2 (en) * | 2010-02-25 | 2013-10-08 | International Business Machines Corporation | Method for designing the layout of turbines in a windfarm |
GB201006727D0 (en) * | 2010-04-22 | 2010-06-09 | Rolls Royce Plc | An advanced warning apparatus and method for a turbine |
GB2481461A (en) * | 2010-06-21 | 2011-12-28 | Vestas Wind Sys As | Control of a downstream wind turbine in a wind park by sensing the wake turbulence of an upstream turbine |
US8035241B2 (en) * | 2010-07-09 | 2011-10-11 | General Electric Company | Wind turbine, control system, and method for optimizing wind turbine power production |
US8987929B2 (en) * | 2012-11-01 | 2015-03-24 | General Electric Company | System and method for operating wind farm |
EP3047143B1 (en) * | 2013-09-17 | 2018-02-21 | Vestas Wind Systems A/S | Control method for a wind turbine |
KR101575102B1 (ko) * | 2013-12-27 | 2015-12-07 | 두산중공업 주식회사 | 풍력 발전 단지, 풍력 발전 단지의 제어방법 및 풍력 발전 유닛 |
US9551322B2 (en) * | 2014-04-29 | 2017-01-24 | General Electric Company | Systems and methods for optimizing operation of a wind farm |
JP2016070085A (ja) * | 2014-09-26 | 2016-05-09 | 株式会社東芝 | ウィンドファーム |
JP2016098787A (ja) * | 2014-11-26 | 2016-05-30 | 株式会社東芝 | ウィンドファーム、風力発電システム |
EP3037657A1 (en) * | 2014-12-23 | 2016-06-29 | ABB Technology AG | Optimal wind farm operation |
WO2018111290A1 (en) * | 2016-12-16 | 2018-06-21 | General Electric Company | Wind farm topology and method of operating the same |
-
2018
- 2018-06-28 CN CN201810691480.9A patent/CN108798997B/zh active Active
-
2019
- 2019-06-27 US US17/043,478 patent/US11493023B2/en active Active
- 2019-06-27 EP EP19827431.8A patent/EP3770423B1/en active Active
- 2019-06-27 WO PCT/CN2019/093375 patent/WO2020001559A1/zh unknown
- 2019-06-27 AU AU2019296291A patent/AU2019296291B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1975155A (zh) * | 2005-11-29 | 2007-06-06 | 通用电气公司 | 风力发电场涡轮控制系统以及估算风力条件并优化性能的方法 |
CN102609590A (zh) * | 2012-02-16 | 2012-07-25 | 中国科学院寒区旱区环境与工程研究所 | 风电场群布局方法 |
EP2674617A2 (en) * | 2012-06-14 | 2013-12-18 | GE Wind Energy GmbH | Wind turbine rotor control |
EP2757255A1 (en) * | 2013-01-21 | 2014-07-23 | Alstom Wind, S.L.U. | Method of operating a wind farm |
CN108798997A (zh) * | 2018-06-28 | 2018-11-13 | 北京金风科创风电设备有限公司 | 风力发电机组的控制方法、装置、控制器及系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3770423A4 * |
Also Published As
Publication number | Publication date |
---|---|
AU2019296291B2 (en) | 2021-12-23 |
AU2019296291A1 (en) | 2020-11-26 |
CN108798997B (zh) | 2020-02-07 |
US20210054825A1 (en) | 2021-02-25 |
EP3770423B1 (en) | 2022-05-18 |
EP3770423A1 (en) | 2021-01-27 |
CN108798997A (zh) | 2018-11-13 |
EP3770423A4 (en) | 2021-05-12 |
US11493023B2 (en) | 2022-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020001559A1 (zh) | 风力发电机组的控制方法、控制装置、控制器及控制系统 | |
WO2019184171A1 (zh) | 风力发电机组的偏航控制方法、设备及系统 | |
Schlechtingen et al. | Using data-mining approaches for wind turbine power curve monitoring: A comparative study | |
US20210262441A1 (en) | Method for determining the available power of a wind park, and corresponding wind park | |
US11644009B2 (en) | Method and apparatus for detecting yaw-to-wind abnormality, and device and storage medium thereof | |
US11835032B2 (en) | Controlling wind turbine | |
TW201013045A (en) | Device, method and program for adjusting restriction on operation of windmill | |
CN111126651A (zh) | 风电场噪声预测方法、装置及系统 | |
US20150097373A1 (en) | System for automatic power estimation adjustment | |
EP2840257A1 (en) | Method of determining a cut-in wind speed | |
EP4194684A1 (en) | Load control method and apparatus for wind turbine generator system | |
CN111125895B (zh) | 一种风力发电机整机服役功率特性在线评估方法 | |
CN105186502B (zh) | 基于安全域的含双馈风机电力系统暂态稳定性分析方法 | |
CN112434936A (zh) | 一种电力系统惯量安全域评估方法、系统、电子设备及可读存储介质 | |
CN110928341B (zh) | 温度控制方法、装置、设备及存储介质 | |
DK201670830A1 (en) | Method and system of yaw control of wind turbines in a wind turbine farm | |
GB2555010B (en) | Determining loads on a wind turbine | |
CN111340307A (zh) | 预测风机风力发电功率的方法以及相关装置 | |
CN113761692A (zh) | 一种基于迁移成分分析的多风电机组运行状态辨识方法 | |
WO2024041409A1 (zh) | 确定代表风力发电机组的方法和装置以及控制方法和装置 | |
CN110139983A (zh) | 实证评估风力涡轮机发电机运行的方法和系统 | |
CN116857118A (zh) | 一种基于物联网技术的风力发电变桨方法和系统 | |
Couchman et al. | Active load reduction by means of trailing edge flaps on a wind turbine blade | |
CN114510815A (zh) | 一种风电机组功率特性评估方法及系统 | |
Li et al. | Adaptive LQR control with Kalman filter for the variable-speed wind turbine in Region II |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19827431 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019827431 Country of ref document: EP Effective date: 20201020 |
|
ENP | Entry into the national phase |
Ref document number: 2019296291 Country of ref document: AU Date of ref document: 20190627 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |