WO2020001541A1 - 发射功率的指示方法、接收方法、网络设备和接入设备 - Google Patents

发射功率的指示方法、接收方法、网络设备和接入设备 Download PDF

Info

Publication number
WO2020001541A1
WO2020001541A1 PCT/CN2019/093283 CN2019093283W WO2020001541A1 WO 2020001541 A1 WO2020001541 A1 WO 2020001541A1 CN 2019093283 W CN2019093283 W CN 2019093283W WO 2020001541 A1 WO2020001541 A1 WO 2020001541A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
network device
transmission power
power
backhaul
Prior art date
Application number
PCT/CN2019/093283
Other languages
English (en)
French (fr)
Inventor
郑毅
吴丹
董静
侯雪颖
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Priority to US17/058,236 priority Critical patent/US11523352B2/en
Publication of WO2020001541A1 publication Critical patent/WO2020001541A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/46TPC being performed in particular situations in multi hop networks, e.g. wireless relay networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method for indicating transmission power, a method for receiving, a network device, and an access device.
  • the self-backhaul technology uses high-frequency air interface transmission to replace fiber backhaul.
  • the data can be transmitted back to the site with optical fiber transmission capability through the multi-hop link.
  • the base station B and the base station C transmit data to the base station A with optical fiber transmission capability through the backhaul link.
  • FIG. 2 is a schematic diagram of the backhaul link and the access link TDM
  • FIG. 3 is a schematic diagram of the backhaul link and the access link FDM
  • FIG. 4 is a diagram of the backhaul link and the access link
  • an integrated access and backhaul (IAB) relay station can perform BH (backhaul link) transmission and correspond to the service of the relay station at the same time when returning or sending Transmission of the terminal (IAB serving UE) link, that is, space division multiplexing (SDM) of IAB backhaul and access link.
  • BH backhaul link
  • SDM space division multiplexing
  • the IAB will perform backhaul and service the user terminal of the cell.
  • the IAB is the serving cell.
  • the terminal can determine the downlink reference symbol, such as a synchronization signal block (SS), according to the energy per resource element (EPRE, also called reference power) in the broadcast information of the IAB-1 base station.
  • SS synchronization signal block
  • EPRE energy per resource element
  • PBCH block, SSB
  • CSI-RS Channel State Information Reference Signal
  • the UE can perform beam management and measurement of neighboring cells.
  • IAB-1 When IAB-1 performs space division multiplexing on the backhaul link and access link, the transmission power of P BH is not visible to the access terminals below the IAB.
  • the terminal still uses EPRE for beam management and measurement of neighboring cells. Causes beam management problems or inaccurate measurements in neighboring cells.
  • the present disclosure provides a transmission power indication method, a reception method, and a network device and an access device.
  • the backhaul link and the access link of the network device perform space division multiplexing or power sharing, the access link is enabled.
  • the device can accurately obtain the power of the access link, thereby performing beam management and measurement of neighboring cells, and avoiding measurement failure or inaccuracy caused by using total power for beam management and measurement.
  • a transmission power indication method applied to network equipment includes:
  • sending the instruction information on the first link of the network device includes:
  • the indication information is sent on the first link of the network device.
  • the first link is an access link between the network device and a terminal or a next hop node of the network device
  • the second link is a link between the network device and the network device.
  • the backhaul link between the previous hop nodes.
  • the backhaul power of the backhaul link is less than or equal to the transmit power offset of the access link.
  • the sum of the backhaul power of the network device on each of the at least two backhaul links is less than or equal to The transmission power offset of the first link is described.
  • the indication information is used to instruct the network device on the first link of the updated The current transmit power or updated transmit power offset.
  • the current transmit power is less than or equal to the transmit power before the network device sends the instruction information minus the return power of the return link.
  • the method for indicating transmit power further includes:
  • the transmission power before the network device sends the instruction information is restored.
  • recovering the transmission power before the network device sends the instruction information includes:
  • DCI downlink control information
  • RRC radio resource control
  • MAC CE medium access control unit
  • the sending of the instruction information includes: sending the instruction information through radio resource control (RRC) signaling or medium access control unit (MAC) CE signaling or downlink control information (DCI).
  • RRC radio resource control
  • MAC medium access control unit
  • DCI downlink control information
  • the current transmission power is used to send a synchronization signal block (SSB) and / or a channel quality information reference symbol (CSI-RS).
  • SSB synchronization signal block
  • CSI-RS channel quality information reference symbol
  • Some embodiments of the present disclosure also provide a receiving method for transmitting power, which is applied to a receiving device, and the receiving method includes:
  • the transmission power offset is a difference between a current transmission power of the first link and a transmission power before the network device sends the instruction information.
  • receiving the instruction information on the first link of the network device includes:
  • the indication information is received on the first link of the network device.
  • the first link is an access link between the network device and the terminal or a next hop node of the network device
  • the second link is the network device and the network The backhaul link between the devices' previous hop nodes.
  • the backhaul power of the backhaul link is less than or equal to the transmit power offset of the access link.
  • the sum of the backhaul power of the network device on each of the at least two backhaul links is less than or equal to The transmission power offset of the first link is described.
  • the indication information is used to instruct the network device on the first link of the updated The current transmit power or updated transmit power offset.
  • the current transmit power is less than or equal to the transmit power before the network device sends the instruction information minus the return power of the return link.
  • Some embodiments of the present disclosure further provide a network device, including:
  • a transceiver configured to send indication information on a first link of the network device, where the indication information is used to indicate a current transmit power of the network device on the first link, or the first
  • the transmission power offset of the link is the difference between the current transmission power of the first link and the transmission power before the network device sends the instruction information.
  • the transceiver is specifically configured to: when the second link of the network device and the first link are space-division multiplexed and / or share power for transmission, the first link of the network device Send instruction information on.
  • Some embodiments of the present disclosure further provide an access device, including:
  • a transceiver configured to receive instruction information on a first link of the network device, where the instruction information is used to indicate a current transmit power of the network device on the first link, or the first chain
  • the transmission power offset of the channel is the difference between the current transmission power of the first link and the transmission power before the network device sends the instruction information.
  • the transceiver is specifically configured to: when the second link of the network device and the first link are space-division multiplexed and / or share power for transmission, the first link of the network device To receive instructions.
  • Some embodiments of the present disclosure further provide a communication device including a processor and a memory storing a computer program, and when the computer program is executed by the processor, the method described above is performed.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium including instructions that, when the instructions are run on a computer, cause the computer to perform a method as described above.
  • the transmission power or transmission power offset of the access link is sent to the devices in the access link.
  • the equipment of the access link can accurately obtain the power of the access link, so that beam management and measurement of neighboring cells are performed based on the power of the access link, which improves the accuracy of the measurement and avoids using the described
  • the total power broadcasted by the network equipment is used for beam management and measurement, resulting in inaccurate measurement problems.
  • Figure 1 is a schematic diagram of the basic principle of the backhaul scheme
  • FIG. 2 is a schematic diagram of a backhaul link and an access link TDM
  • FIG. 3 is a schematic diagram of a backhaul link and an access link FDM
  • FIG. 4 is a schematic diagram of a backhaul link and an access link SDM
  • FIG. 5 is a schematic diagram of an IAB that needs to perform backhaul and service a user terminal of the cell in slot 2 (time slot 2);
  • FIG. 6 is a schematic diagram of the IAB's backhaul link and access link SDM in slot 2 (time slot 2);
  • Figure 7 shows the power EPRE-1 broadcasted by the IAB when the backhaul link and the access link are not space division multiplexed, and the access chain sent on SlotX when the backhaul link and the access link SDM Schematic diagram of the transmission power EPRE-2 of the channel;
  • FIG. 8 is a schematic flowchart of a terminal transmission power indication method according to the present disclosure.
  • FIG. 9 is a schematic structural diagram of a communication device of the present disclosure.
  • Some embodiments of the present disclosure are directed to the related art.
  • the relay station IAB or the backhaul node multiplexes or shares power in its backhaul link and access link
  • the terminals in the access link still use the power broadcasted by the IAB.
  • the terminals in the access link For the problem of inaccurate measurement of neighboring cells or beam management, provide a method for indicating the transmit power, so that the equipment of the access link can accurately obtain the power of the access link, so as to perform beam management and measurement of neighboring cells.
  • the problem of measurement failure or inaccuracy caused by using the total power for beam management and measurement is avoided.
  • Some embodiments of the present disclosure provide a method for indicating transmit power, which is applied to a network device.
  • the method includes:
  • Step 11 Send indication information on the first link of the network device, where the indication information is used to indicate the current transmission power of the network device on the first link, or the transmission of the first link A power offset, where the transmit power offset is a difference between a current transmit power of the first link and a transmit power before the network device sends the instruction information.
  • the network device here may be a base station or a network node with a backhaul capability such as a relay station IAB.
  • the first relay station IAB-1 is a backhaul node, which can communicate with its previous hop node gNB (5G base station), or with the terminal in the IAB-1 access link.
  • gNB previous hop node
  • the backhaul link between IAB-1 and gNB and the access link space division multiplexing (SDM) between IAB-1 and the terminal are a backhaul node, which can communicate with its previous hop node gNB (5G base station), or with the terminal in the IAB-1 access link.
  • gNB previous hop node
  • SDM access link space division multiplexing
  • sending the indication information on the first link of the network device includes: space division multiplexing and / or shared power on the second link of the network device and the first link When transmitting, the instruction information is sent on the first link of the network device.
  • the first link here may be an access link between the network device and a terminal or the network device and a next hop node of the network device, and the second link is the network device and the network device. The backhaul link between the previous hop nodes of the network device.
  • the backhaul power of the backhaul link is less than or equal to the transmit power offset of the access link.
  • the current transmit power is less than or equal to the transmit power before the network device sends the instruction information minus the return power of the backhaul link.
  • the return power here may also be referred to as the transmit power on the backhaul link.
  • the network The transmit power before the device sends the instruction information can also be called the total power.
  • the terminal when the relay station performs space division multiplexing of access link and backhaul link or shares power, the terminal still uses the total power for beam management and measurement of neighboring cells.
  • the power of the access link with the terminal is less than the total power
  • the total power here is the transmit power broadcasted by the IAB-1 on the access link before sending the above indication information. This is because a part of the power needs to be offloaded for communication with the backhaul link between the gNB.
  • the IAB- The backhaul power of the backhaul link between 1 and gNB is scheduled and configured by the gNB.
  • the terminal cannot know the backhaul power of the backhaul link between IAB-1 and gNB.
  • the total broadcast power is measured by beam management and neighboring cells, resulting in inaccurate measurements;
  • the current transmission power of the network device on the first link or the transmission power offset of the first link is sent to the terminal, so that the terminal can directly use
  • the current transmission power is used for beam management and neighboring cell measurement, or after the terminal receives the transmission power offset, the current transmission on the access link can be determined by subtracting the transmission power offset here from the total power received before. Power, and use the current transmit power on the access link for beam management and neighboring cell measurements, improving measurement accuracy.
  • the sending instruction information may include: via radio resource control (RRC) signaling or media access control unit (Media Control Control Element (MAC)) signaling or downlink control information (Downlink Control Information (DCI), sending the indication information.
  • RRC radio resource control
  • MAC Media Control Control Element
  • DCI Downlink Control Information
  • the indication information is not limited to being transmitted by using these signalings.
  • the current transmission power is used to send a synchronization signal block SSB and / or a channel quality information reference symbol (CSI-RS).
  • the SSB here may include: a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and / or a physical broadcast channel (PBCH) signal.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • the backhaul power of the backhaul link is less than or equal to the transmission power offset of the access link; that is, the network The transmit power on the return link allocated by the device can be equal to the transmit power offset here.
  • the transmit power offset is all used for the communication of the return link, and the transmit power on the access link is equal to the previous The total power minus the transmit power offset; of course, it is not excluded that there may be other power losses in addition to the return link, so that the transmit power of the access link is less than the total power.
  • the The return power is less than the transmit power offset.
  • the network device when the network device has at least two backhaul links, that is, when the network device is in communication connection with at least two previous hop nodes, the network device is in the at least two backhaul links.
  • the sum of the backhaul power on each backhaul link in the path is less than or equal to the transmit power offset of the first link.
  • IAB_1 is configured with multiple backhaul nodes IAB_P1, IAB_P2, IAB_P3 ... IAB_PN.
  • the corresponding backhaul powers are: P_offset_1, ..., P_offset_N.
  • the IAB informs the UE and the next power offset through RRC or MAC CE.
  • the IAB informs the terminal that the transmission power on the access link is EPRE (that is, the total power described above) through broadcast information.
  • EPRE that is, the total power described above
  • the terminal or IAB_child_1 will respond accordingly to ERPE.
  • Measured power such as calculating L1_RSRP, L3_RSRP, PL, etc.
  • IAB_1 When the backhaul link of the upper level is configured to perform space division multiplexing or shared power transmission with the terminal of the IAB or the access link of IAB_child_1, IAB_1 is based on the backhaul node of the upper level (such as gNB). Supports specific backhaul power or backhaul power index, and sends the backhaul power or backhaul power index to the terminal, so that the terminal can determine the access link based on the backhaul power or backhaul power index The access power of the access link can also be sent directly to the terminal.
  • the backhaul node of the upper level such as gNB
  • the total power, offset is the transmit power offset of the access link.
  • the transmit power offset is equal to or greater than the return power of one backhaul link of IAB_1, or equal to or greater than the return power of multiple backhaul links of IAB_1.
  • the offset is the sum of the backhaul power of the backhaul links between the IAB and all backhaul nodes, and the offset is P_offset_1 + P_offset_2 + ... + P_offset_N;
  • ERPE ' is the sum of the power of multiple terminals or multiple next-hop IABs or multiple terminals and IABs. If the number of terminals is N, the access power allocated to each terminal is ERPE' / N; of course, It is also possible to use other methods to allocate access power, that is, when there are multiple access links, the current transmit power is the sum of the transmit powers of the multiple access links.
  • the indication information is used to instruct the network device to be in the first node.
  • the updated current transmit power or updated transmit power offset on a link is less than or equal to the transmission power before the network device sends the instruction information minus the updated transmission power offset.
  • IAB_1 switches from the current upper-level IAB_P1 to IAB_P2
  • the IAB instructs the terminal and / or IAB_child node it serves to update the specific power offset offset or ERPE '.
  • the updated ERPE ' EPRE-P1
  • P1 is the return power of the backhaul link between IAB_1 and IAB_P2
  • the updated offset P1 or greater than P1.
  • the offset is the transmission power when the IAB performs a higher-level backhaul, that is, the backhaul power of the backhaul link P BH .
  • the base station When the base station configures the UE and the backhaul link (BH) for space division multiplexing (SDM) transmission, the base station informs the terminal of the power offset (offset), or instructs the user to use a certain updated EPRE ', so that the terminal will follow the update.
  • the subsequent offset determines ERPE 'or directly measures the neighboring cell according to ERPE' to improve the accuracy of the measurement of the neighboring cell.
  • the network device may recover to the network The transmit power before the device sends the indication. That is, when the backhaul link of the IAB_1 and the access link are spatially multiplexed and / or shared power is transmitted, IAB_1 recovers to the total power before sending the instruction information and broadcasts on the access link.
  • the restoration of the transmission power before the network device sends the instruction information may be specifically implemented in the following ways:
  • DCI or radio resource control RRC signaling or medium access control unit MAC CE signaling the DCI or RRC signaling or MAC CE signaling is used to instruct the network device on the access link
  • the transmission power on the network is restored to the transmission power before the network device sends the instruction information; that is, the terminal is instructed to notify the terminal or the next hop node that the network device resumes to send the instruction information on the access link by using a signaling instruction. Previous transmit power; or
  • the transmission power before the network device sends the instruction information is automatically restored, that is, it can be agreed in advance that the return link and access link of the network device When space division multiplexing or shared power transmission ends, the transmission power on the access link is automatically restored to that before the network device sends the instruction information.
  • some embodiments of the present disclosure further provide a receiving method for transmitting power, which is applied to a receiving device.
  • the receiving method includes:
  • Step 81 Receive instruction information on a first link of a network device, where the instruction information is used to indicate a current transmit power of the network device on the first link, or a transmit power of the first link An offset, where the transmit power offset is the difference between the current transmit power of the first link and the transmit power before the network device sends the instruction information.
  • receiving the indication information on the first link of the network device includes: when the second link of the network device and the first link are space-division multiplexed and / or shared power is transmitted, the network device The device receives the indication information on the first link.
  • the first link is an access link between the network device and the terminal or a next hop node of the network device
  • the second link is the network device and the network The backhaul link between the devices' previous hop nodes.
  • the backhaul power of the backhaul link is less than or equal to the transmit power offset of the access link.
  • the sum of the backhaul power of the network device on each of the at least two backhaul links is less than or equal to The transmission power offset of the first link is described.
  • the indication information is used to instruct the network device on the first link of the updated The current transmit power or updated transmit power offset.
  • the current transmit power is less than or equal to the transmit power before the network device sends the instruction information minus the return power of the return link.
  • the method for receiving transmission power further includes: Step 82: Perform beam management and / or neighbor cell measurement according to the instruction information.
  • the indication information indicates the transmission power of the access link
  • the beam management and / or the measurement of the neighboring cells are directly performed according to the transmission power
  • the indication information indicates the transmission power of the access link is offset
  • it may be adopted. Subtract the transmit power offset from the previously received total power to obtain the transmit power of the access link, and perform beam management and / or neighboring cell measurement based on the transmit power.
  • the previous hop node of the backhaul link of the network device is switched from the first node to the second node
  • the previous hop node of the second link of the network device is switched from
  • the indication information is used to indicate the updated current transmission power or the updated transmission power offset of the network device on the first link.
  • the terminal can perform beam management and / or neighboring cell measurement according to the updated current transmission power, or obtain the transmission power of the current access link according to the updated transmission power offset and the previously received total power, so that according to the transmission The power is used for beam management and / or neighboring cell measurement.
  • This embodiment of the present disclosure is the method corresponding to the method on the network device side, the corresponding terminal or the next hop node.
  • the terminal or the next hop node can control RRC signaling or a medium access control unit MAC CE through radio resources. Signaling, receiving the transmit power or transmit power offset of the access link.
  • Some embodiments of the present disclosure further provide a network device, including:
  • a transceiver configured to send indication information on a first link of the network device, where the indication information is used to indicate a current transmit power of the network device on the first link, or the first
  • the transmission power offset of the link is the difference between the current transmission power of the first link and the transmission power before the network device sends the instruction information.
  • the transceiver is specifically configured to: when the second link of the network device and the first link are space-division multiplexed and / or share power for transmission, the first link of the network device Send instruction information on.
  • the network equipment here may be a base station, and the relay station may be a node having a backhaul capability such as an IAB.
  • This embodiment is a device corresponding to the method on the network device side, and all implementation manners in the foregoing method embodiments are applicable to the embodiment of the network device, and can also achieve the same technical effect.
  • the network device may further include a processor and the like, which are connected to the transceiver through a bus or an interface.
  • An embodiment of the present disclosure further provides an access device, where the access device may be a terminal or a next hop node on an access link, and the access device includes:
  • a transceiver configured to receive instruction information on a first link of the network device, where the instruction information is used to indicate a current transmit power of the network device on the first link, or the first chain
  • the transmission power offset of the channel is the difference between the current transmission power of the first link and the transmission power before the network device sends the instruction information.
  • the transceiver is specifically configured to: when the second link of the network device and the first link are space-division multiplexed and / or share power for transmission, the first link of the network device To receive instructions.
  • the embodiment of the access device may further include a processor, a memory, and the like.
  • the transceiver and the processor are communicatively connected through a bus interface or interface, and the transceiver and the memory may also be communicatively connected through a bus interface or interface.
  • the functions of the above transceiver may also be implemented by a processor.
  • a communication device 90 of the present disclosure includes a processor 92 and a memory 93 storing a computer program.
  • the computer program is run by the processor 92, the method according to the foregoing embodiment is executed.
  • the communication device may further include a transceiver 91, which is communicatively connected with the processor 92 through a bus interface or interface, and the transceiver 91 and the memory 93 may also be communicatively connected through a bus interface or interface.
  • the functions of the above transceiver may also be implemented by a processor.
  • the communication device of the present disclosure may also include other components that implement the above method, such as a user interface. All implementations in the above method embodiments are applicable to the embodiment of the communication device, and the same technical effects can be achieved.
  • the communication device may be a terminal described in the foregoing embodiment, or may be a network device described in the foregoing embodiment, such as a base station or a relay node.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium including instructions that, when the instructions are run on a computer, cause the computer to perform a method as described above.
  • the disclosed apparatus and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially a part that contributes to related technologies or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • each component or each step can be disassembled and / or recombined.
  • These decompositions and / or recombinations should be considered as equivalent solutions of the present disclosure.
  • the steps for performing the above-mentioned series of processes can be naturally performed in chronological order according to the order of description, but need not necessarily be performed in chronological order, and certain steps may be performed in parallel or independently of each other.
  • Software, or a combination thereof which can be achieved by a person of ordinary skill in the art using their basic programming skills after reading the description of the present disclosure.
  • the purpose of the present disclosure can also be achieved by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the object of the present disclosure can also be achieved only by providing a program product including a program code that implements the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future. It should also be noted that, in the apparatus and method of the present disclosure, it is obvious that each component or each step can be disassembled and / or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种发射功率的指示方法、接收方法、网络设备和接入设备,指示方法应用于网络设备,指示方法包括:在所述网络设备的第一链路上发送指示信息,所述指示信息用于指示所述网络设备在所述第一链路上的当前发射功率,或者,所述第一链路的发射功率偏移,所述发射功率偏移为所述第一链路的当前发射功率与所述网络设备发送指示信息之前的发射功率的差。

Description

发射功率的指示方法、接收方法、网络设备和接入设备
相关申请的交叉引用
本申请主张在2018年6月29日在中国提交的中国专利申请号No.201810695652.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别是指一种发射功率的指示方法、接收方法、网络设备和接入设备。
背景技术
如图1所示,自回传技术利用高频的空口传输,替换光纤回传。并可以通过多跳的链路,将数据回传至具有光纤传输能力的站点,比如,基站B和基站C通过回传链路,将数据回传到具有光纤传输能力的基站A上。
在回传链路(backhaul link,BH)和接入链路(access link)上分配资源的方式可以分为:时分复用(time division multiplexing,TDM)、频分复用(frequency division multiplexing,FDM)、空分复用(space division multiplexing,SDM)的方式。其中,图2所示的是回传链路和接入链路TDM的示意图;图3所示的是回传链路和接入链路FDM的示意图;图4所示是回传链路和接入链路SDM的示意图。
图4中,为了保证充分利用资源,接入回传一体化(Integrated Access and Backhaul,IAB)中继站在回传或者发送的时候,可以同时进行BH(回传链路)的传输和对应本中继站服务的终端(IAB serving UE)链路的传输,也即IAB backhaul和access link的空分复用(SDM)。
如图5和图6所示,在时隙2(slot 2)时,IAB即要进行回传和对本小区的用户终端进行服务,对于接入IAB的终端AC-UE来讲,IAB是服务小区,IAB-1在没有进行回传时,终端可以根据IAB-1基站广播信息中的每资源元素能量(Energy Per Resource Element,EPRE,也叫参考功率)判断下行参考符号,如同步信号块(SS/PBCH block,SSB),信道状态信息参考信号 (Channel State Information Reference Signal,CSI-RS)等信号的发送功率。基于该功率,UE可以进行波束管理以及邻小区的测量。
当IAB-1进行回传链路和接入链路空分复用传输时,P BH的发送功率对于IAB下面的接入终端不可见,终端仍然采用EPRE进行波束管理以及邻小区的测量,从而造成波束管理产生问题或者邻小区的测量不准确。
发明内容
本公开提供了一种发射功率的指示方法、接收方法和网络设备和接入设备,在网络设备的回传链路和接入链路进行空分复用或者功率共享时,使接入链路的设备能够准确的获得接入链路的功率,从而进行波束管理和邻小区的测量,避免了采用总功率进行波束管理和测量造成的测量失败或者不准确的问题。
为解决上述技术问题,本公开的一些实施例提供如下方案:
一种发射功率的指示方法,应用于网络设备,包括:
在所述网络设备的第一链路上发送指示信息,所述指示信息用于指示所述网络设备在所述第一链路上的当前发射功率,或者,所述第一链路的发射功率偏移,所述发射功率偏移为所述第一链路的当前发射功率与所述网络设备发送指示信息之前的发射功率的差。
其中,在所述网络设备的第一链路上发送指示信息包括:
在所述网络设备的第二链路和所述第一链路空分复用和/或共享功率进行传输时,在所述网络设备的第一链路上发送指示信息。
其中,所述第一链路为所述网络设备与终端或者所述网络设备的下一跳节点之间的接入链路,所述第二链路为所述网络设备与所述网络设备的上一跳节点之间的回传链路。
其中,所述回传链路的回传功率小于或者等于所述接入链路的发射功率偏移。
其中,所述网络设备具有至少两个回传链路时,所述网络设备在所述至少两个回传链路中的每一个回传链路上的回传功率的和,小于或者等于所述第一链路的发射功率偏移。
其中,所述网络设备的第二链路的上一跳节点从第一节点切换到第二节点时,所述指示信息用于指示所述网络设备在所述第一链路上的更新后的当前发射功率或者更新后的发射功率偏移。
其中,所述当前发射功率小于或者等于所述网络设备发送指示信息之前的发射功率减去所述回传链路的回传功率。
其中,发射功率的指示方法还包括:
在所述网络设备的回传链路和所述接入链路空分复用和/或共享功率进行传输结束时,恢复到所述网络设备发送指示信息之前的发射功率。
其中,恢复到所述网络设备发送指示信息之前的发射功率,包括:
发送下行控制信息(DCI)或者无线资源控制(RRC)信令或者介质访问控制单元(MAC CE)信令,所述DCI或者RRC信令或者MAC CE信令用于指示所述网络设备在所述接入链路上的所述发射功率恢复到所述网络设备发送指示信息之前的发射功率;或者
按照协议约定在所述传输结束时刻到达时,自动恢复到所述网络设备发送指示信息之前的发射功率。
其中,发送指示信息包括:通过无线资源控制(RRC)信令或者介质访问控制单元(MAC CE)信令或者下行控制信息(DCI),发送所述指示信息。
其中,所述当前发射功率用于发送同步信号块(SSB)和/或信道质量信息参考符号(CSI-RS)。
本公开的一些实施例还提供一种发射功率的接收方法,应用于接收设备,所述接收方法包括:
在网络设备的第一链路接收指示信息,所述指示信息用于指示所述网络设备在所述第一链路上的当前发射功率,或者,所述第一链路的发射功率偏移,所述发射功率偏移为所述第一链路的当前发射功率与所述网络设备发送指示信息之前的发射功率的差。
其中,在网络设备的第一链路上接收指示信息包括:
在所述网络设备的第二链路和所述第一链路空分复用和/或共享功率进行传输时,在所述网络设备的第一链路上接收指示信息。
其中,所述第一链路为所述网络设备与所述终端或者所述网络设备的下 一跳节点之间的接入链路,所述第二链路为所述网络设备与所述网络设备的上一跳节点之间的回传链路。
其中,所述回传链路的回传功率小于或者等于所述接入链路的发射功率偏移。
其中,所述网络设备具有至少两个回传链路时,所述网络设备在所述至少两个回传链路中的每一个回传链路上的回传功率的和,小于或者等于所述第一链路的发射功率偏移。
其中,所述网络设备的第二链路的上一跳节点从第一节点切换到第二节点时,所述指示信息用于指示所述网络设备在所述第一链路上的更新后的当前发射功率或者更新后的发射功率偏移。
其中,所述当前发射功率小于或者等于所述网络设备发送指示信息之前的发射功率减去所述回传链路的回传功率。
本公开的一些实施例还提供一种网络设备,包括:
收发机,用于在所述网络设备的第一链路上发送指示信息,所述指示信息用于指示所述网络设备在所述第一链路上的当前发射功率,或者,所述第一链路的发射功率偏移,所述发射功率偏移为所述第一链路的当前发射功率与所述网络设备发送指示信息之前的发射功率的差。
其中,所述收发机具体用于:在所述网络设备的第二链路和所述第一链路空分复用和/或共享功率进行传输时,在所述网络设备的第一链路上发送指示信息。
本公开的一些实施例还提供一种接入设备,包括:
收发机,用于在所述网络设备的第一链路接收指示信息,所述指示信息用于指示所述网络设备在所述第一链路上的当前发射功率,或者,所述第一链路的发射功率偏移,所述发射功率偏移为所述第一链路的当前发射功率与所述网络设备发送指示信息之前的发射功率的差。
其中,所述收发机具体用于:在所述网络设备的第二链路和所述第一链路空分复用和/或共享功率进行传输时,在所述网络设备的第一链路上接收指示信息。
本公开的一些实施例还提供一种通信设备,包括:处理器、存储有计算 机程序的存储器,所述计算机程序被处理器运行时,执行如上所述的方法。
本公开的一些实施例还提供一种计算机可读存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如上所述的方法。
本公开的上述方案至少包括以下有益效果:
本公开的上述方案,在网络设备的回传链路和接入链路进行空分复用或者功率共享时,向接入链路中的设备发送接入链路的发射功率或者发射功率偏移,从而使接入链路的设备能够准确的获得接入链路的功率,从而基于该接入链路的功率进行波束管理和邻小区的测量,提高了测量的准确性,避免了采用所述网络设备广播的总功率进行波束管理和测量,产生的测量不准确的问题。
附图说明
图1为回传方案的基本原理示意图;
图2为回传链路和接入链路TDM的示意图;
图3为回传链路和接入链路FDM的示意图;
图4为回传链路和接入链路SDM的示意图;
图5为在slot 2(时隙2)时,IAB即要进行回传和对本小区的用户终端进行服务的示意图;
图6为在slot 2(时隙2)时,IAB的回传链路与接入链路SDM时的示意图;
图7为IAB在回传链路与接入链路没有空分复用时的广播的功率EPRE-1,以及在回传链路和接入链路SDM时即在SlotX上发送的接入链路的发射功率EPRE-2的示意图;
图8为本公开的终端发射功率的指示方法的流程示意图;
图9为本公开的通信设备的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不 应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本公开的一些实施例针对相关技术中,中继站IAB或者回传节点在其回传链路和接入链路空分复用或者共享功率时,接入链路中的终端依然使用IAB广播的功率进行邻区测量不准确或者波束管理的问题,提供一种发射功率的指示方法,使接入链路的设备能够准确的获得接入链路的功率,从而进行波束管理和邻小区的测量,而不是采用所述网络设备广播的总功率进行波束管理和测量,避免了采用总功率进行波束管理和测量造成的测量失败或者不准确的问题。
本公开的一些实施例提供一种发射功率的指示方法,应用于网络设备,该方法包括:
步骤11,在网络设备的第一链路上发送指示信息,所述指示信息用于指示所述网络设备在所述第一链路上的当前发射功率,或者,所述第一链路的发射功率偏移,所述发射功率偏移为所述第一链路的当前发射功率与所述网络设备发送指示信息之前的发射功率的差。这里的网络设备可以是基站,也可以是中继站IAB等具有回传能力的网络节点。
具体如图6、图7所示,第一中继站IAB-1为回传节点,可以和其上一跳节点gNB(5G基站)进行通信,也可以和该IAB-1接入链路中的终端进行通信,IAB-1与gNB之间的回传链路与IAB-1与终端之间的接入链路空分复用(SDM)。
进一步的,该实施例中,在所述网络设备的第一链路上发送指示信息包括:在所述网络设备的第二链路和所述第一链路空分复用和/或共享功率进行传输时,在所述网络设备的第一链路上发送指示信息。。这里的第一链路可以为所述网络设备与终端或者所述网络设备与该网络设备的下一跳节点之间的接入链路,所述第二链路为所述网络设备与所述网络设备的上一跳节点之间的回传链路。
本公开的该实施例中,所述回传链路的回传功率小于或者等于所述接入链路的发射功率偏移。所述当前发射功率小于或者等于所述网络设备发送指示信息之前的发射功率减去所述回传链路的回传功率,这里的回传功率也可 以叫做回传链路上的发射功率,网络设备发送指示信息之前的发射功率也可以叫做总功率。
相关技术中,在中继站进行接入链路和回传链路空分复用或者共享功率时,终端依然会使用该总功率进行波束管理和邻小区的测量,实际上,如图6所示,在IAB-1与gNB之间的回传链路与IAB-1与终端之间的接入链路空分复用或者共享功率时,与终端之间的接入链路的功率小于总功率,这里的总功率是IAB-1在发送上述指示信息之前在接入链路上广播的发射功率,这是因为需要分流一部分功率用于与gNB之间的回传链路的通信,然而,IAB-1与gNB之间的回传链路的回传功率是由gNB进行调度和配置的,终端无法知道IAB-1与gNB之间的回传链路的回传功率,造成终端依然根据IAB-1广播的总功率进行波束管理和邻小区的测量,从而造成测量不准确;
本公开的一些实施例中,通过将所述网络设备在所述第一链路上的当前发射功率,或者,所述第一链路的发射功率偏移发送给终端,从而使终端可以直接使用该当前发射功率进行波束管理和邻小区测量,或者,终端接收到发射功率偏移后,通过之前接收到的总功率减去这里的发射功率偏移,也可以确定接入链路上的当前发射功率,并利用该接入链路上的当前发射功率进行波束管理和邻小区的测量,提高了测量的准确性。
本公开的该实施例中,发送指示信息可以包括:通过无线资源控制(radio resource control,RRC)信令或者介质访问控制单元(Media Access Control Control Element,MAC CE)信令或者下行控制信息(Downlink Control Information,DCI),发送所述指示信息,当然,本公开的实施例中,并不限于利用这些信令发送所述指示信息。
本公开的实施例中,当前发射功率是的用于发送同步信号块SSB和/或信道质量信息参考符号(Channel State Information Reference Symbol,CSI-RS)的。这里的SSB可以包括:主同步信号(Primary synchronization signal,PSS)、辅同步信号(Secondary synchronization signal,SSS)和/或物理广播信道(Physical Broadcast Channel,PBCH)的信号。
本公开的具体实施例中,所述网络设备具有一个回传链路时,所述回传链路的回传功率小于或者等于所述接入链路的发射功率偏移;也就是说,网 络设备分给回传链路上的回传功率可以等于这里的发射功率偏移,此时,该发射功率偏移全部用于回传链路的通讯,接入链路上的发射功率等于之前的总功率减去该发射功率偏移;当然,也不排除,除了回传链路还可能会有其它的功率损耗,使得接入链路的发射功率小于总功率,此时,回传链路的回传功率小于该发射功率偏移。
本公开的具体实施例中,所述网络设备具有至少两个回传链路时,即网络设备与至少两个上一跳节点通讯连接时,所述网络设备在所述至少两个回传链路中的每一个回传链路上的回传功率的和,小于或者等于所述第一链路的发射功率偏移。
例如,IAB_1配置了多个上一级的回传节点IAB_P1,IAB_P2,IAB_P3…IAB_PN。分别对应不同的上行发送的回传链路P _BH_1,…P _BH_N,分别对应的回传功率分别为:P_offset_1,…,P_offset_N,IAB通过RRC或者MAC CE将具体的功率偏移告知UE和下一级IAB节点。这里的一个回传链路的回传功率P IAB_BH=P0+alpha*PL,P0为目标接收功率,PL为传播损耗功率,alpha为一系数;即P_offset_1=P01+alpha1*PL1,依次类推;
IAB通过广播信息告知终端接入链路上的发射功率为EPRE(即上述总功率),当用户配置IAB与终端1或者下一级节点IAB_child_1进行传输时,该终端或者IAB_child_1都将按照ERPE进行相应的测量功率,比如计算L1_RSRP,L3_RSRP,PL等。
而当配置成上一级的回传链路传输与本IAB的终端或IAB_child_1的接入链路进行空分复用或者共享功率传输时,IAB_1根据上一级的回传节点(如gNB),支持具体的回传功率或者回传功率的索引(index),向终端发送该回传功率或者回传功率的index,从而使终端可以依据该回传功率或者回传功率的index确定接入链路的接入功率;也可以向终端直接发送接入链路的接入功率。UE或者IAB_child按照ERPE’=EPRE-offset的方式进行相关信息的测量与检测,这里的ERPE’为IAB_1接入链路的发射功率,EPRE为IAB_1在发送指示信息之前在接入链路上广播的总功率,offset为接入链路的发射功率偏移,该发射功率偏移等于或者大于IAB_1的一个回传链路的回传功率,或者等于或者大于IAB_1的多个回传链路的回传功率的总和;
比如,当有多个上一级的回传节点时,offset为IAB与所有回传节点之间的回传链路的回传功率的和,offset为P_offset_1+P_offset_2+…+P_offset_N;
当然,当接入链路的终端有多个时,或者,接入链路的下一跳IAB节点有多个时,或者,接入链路的终端和下一跳的IAB有多个时,ERPE’为多个终端或者多个下一跳IAB或者多个终端和IAB的功率之和,如果终端的数量为N个,则分配到每一个终端的接入功率为ERPE’/N;当然,也可能采用其它方式进行接入功率的分配,也就是说,当接入链路有多条时,当前发射功率为多条接入链路的发射功率的总和。
另外,本公开的上述实施例中,所述网络设备的回传链路的上一跳节点从第一节点切换到第二节点时,所述指示信息用于指示所述网络设备在所述第一链路上的更新后的当前发射功率或者更新后的发射功率偏移。这里,更新后的当前发射功率小于或者等于所述网络设备发送指示信息之前的发射功率减去更新后的发射功率偏移。
例如,当IAB_1从当前的上一级IAB_P1切换到IAB_P2时,IAB向其服务的终端和/或IAB_child节点,指示更新具体的功率偏移offset或者ERPE’。终端和IAB_child按照更新后的offset或者ERPE’进行测量。这里更新后的ERPE’=EPRE-P1,P1为IAB_1与IAB_P2之间的回传链路的回传功率,更新后的offset=P1或者大于P1。
本公开的上述实施例引入一种功率偏移量offset,如该offset为IAB进行上一级回传时的发送功率,即回传链路的回传功率P BH,当IAB有多个上一级的回传节点时,可以配置多套的P BH。当IAB服务的用户或者下一级节点进行回传链路与接入链路的空分传输时,UE按照更新的EPRE’计算下行的信道信息,如RSRP,PL等。其中EPRE’=EPRE–offset。当基站配置UE和回传链路(BH)进行空分复用(SDM)传输时,基站告知终端功率的偏移(offset),或者指示用户采用某一个更新的EPRE’,从而使终端按照更新后的offset确定ERPE’或者直接按照ERPE’进行邻小区的测量,提高邻小区的测量的准确性。
进一步的,本公开的一些实施例中,在所述网络设备的回传链路和所述 接入链路空分复用和/或共享功率进行传输结束时,网络设备可以恢复到所述网络设备发送指示信息之前的发射功率。也就是说,IAB_1的回传链路和接入链路空分复用和/或共享功率进行传输结束时,IAB_1恢复到发送指示信息之前的总功率在接入链路上广播。
恢复到所述网络设备发送指示信息之前的发射功率,具体可以通过以下方式实现:
1)发送下行控制信息DCI或者无线资源控制RRC信令或者介质访问控制单元MAC CE信令,所述DCI或者RRC信令或者MAC CE信令用于指示所述网络设备在所述接入链路上的所述发射功率恢复到所述网络设备发送指示信息之前的发射功率;即采用信令指示的方式,告知终端或下一跳节点,该网络设备在接入链路上恢复到发送指示信息之前的发射功率;或者
2)按照协议约定在所述传输结束时刻到达时,自动恢复到所述网络设备发送指示信息之前的发射功率,也就是说,可以预先约定,在网络设备的回传链路与接入链路空分复用或者共享功率传输结束时,在接入链路上自动恢复到所述网络设备发送指示信息之前的发射功率。
如图8所示,本公开的一些实施例还提供一种发射功率的接收方法,应用于接收设备,所述接收方法包括:
步骤81,在网络设备的第一链路接收指示信息,所述指示信息用于指示所述网络设备在所述第一链路上的当前发射功率,或者,所述第一链路的发射功率偏移,所述发射功率偏移为所述第一链路的当前发射功率与所述网络设备发送指示信息之前的发射功率的差。
其中,在网络设备的第一链路上接收指示信息包括:在所述网络设备的第二链路和所述第一链路空分复用和/或共享功率进行传输时,在所述网络设备的第一链路上接收指示信息。
其中,所述第一链路为所述网络设备与所述终端或者所述网络设备的下一跳节点之间的接入链路,所述第二链路为所述网络设备与所述网络设备的上一跳节点之间的回传链路。
其中,所述回传链路的回传功率小于或者等于所述接入链路的发射功率偏移。
其中,所述网络设备具有至少两个回传链路时,所述网络设备在所述至少两个回传链路中的每一个回传链路上的回传功率的和,小于或者等于所述第一链路的发射功率偏移。
其中,所述网络设备的第二链路的上一跳节点从第一节点切换到第二节点时,所述指示信息用于指示所述网络设备在所述第一链路上的更新后的当前发射功率或者更新后的发射功率偏移。
其中,所述当前发射功率小于或者等于所述网络设备发送指示信息之前的发射功率减去所述回传链路的回传功率。
其中,发射功率的接收方法,还包括:步骤82,根据所述指示信息,进行波束的管理和/或邻区的测量。
具体的,当指示信息指示接入链路的发射功率时,直接按照该发射功率进行波束的管理和/或邻区的测量;当指示信息指示接入链路的发射功率偏移时,可以采用之前接收的总功率减去该发射功率偏移,得到接入链路的发射功率,并按照该发射功率进行波束的管理和/或邻区的测量。
并进一步的,该实施例中,若所述网络设备的回传链路的上一跳节点从第一节点切换到第二节点时,所述网络设备的第二链路的上一跳节点从第一节点切换到第二节点时,所述指示信息用于指示所述网络设备在所述第一链路上的更新后的当前发射功率或者更新后的发射功率偏移。终端可以按照更新后的当前发射功率进行波束的管理和/邻区的测量,或者按照更新后的发射功率偏移以及之前接收的总功率,得到当前接入链路的发射功率,从而按照该发射功率进行波束的管理和/邻区的测量。
本公开的该实施例是与上述网络设备侧的方法,对应的终端或者下一跳节点的方法,具体的,终端或者下一跳节点可以通过无线资源控制RRC信令或者介质访问控制单元MAC CE信令,接收所述接入链路的发射功率或者发射功率偏移。
上述网络设备侧的方法中所有实现方式均可以适用于该实施例中,也能达到相同的技术效果。
本公开的一些实施例还提供一种网络设备,包括:
收发机,用于在所述网络设备的第一链路上发送指示信息,所述指示信 息用于指示所述网络设备在所述第一链路上的当前发射功率,或者,所述第一链路的发射功率偏移,所述发射功率偏移为所述第一链路的当前发射功率与所述网络设备发送指示信息之前的发射功率的差。
其中,所述收发机具体用于:在所述网络设备的第二链路和所述第一链路空分复用和/或共享功率进行传输时,在所述网络设备的第一链路上发送指示信息。
这里的网络设备可以是基站,中继站可以是IAB等具有回传能力的节点。该实施例是与上述网络设备侧的方法对应的设备,上述方法实施例中的所有实现方式均适用于该网络设备的实施例中,也能达到相同的技术效果。该网络设备还可以包括:处理器等,与收发机通过总线或者接口连接。
本公开的实施例还提供一种接入设备,这里的接入设备可以是接入链路上的终端或者下一跳节点,该接入设备包括:
收发机,用于在所述网络设备的第一链路接收指示信息,所述指示信息用于指示所述网络设备在所述第一链路上的当前发射功率,或者,所述第一链路的发射功率偏移,所述发射功率偏移为所述第一链路的当前发射功率与所述网络设备发送指示信息之前的发射功率的差。
其中,所述收发机具体用于:在所述网络设备的第二链路和所述第一链路空分复用和/或共享功率进行传输时,在所述网络设备的第一链路上接收指示信息。
该接入设备的实施例中,还可以包括处理器,存储器等,收发机与处理器通过总线接口或者接口通信连接,收发机与存储器也可以通过总线接口或者接口通信连接。上述收发机的功能,也可以由处理器实现。
如图9所示,本公开的一种通信设备90,包括:处理器92、存储有计算机程序的存储器93,所述计算机程序被处理器92运行时,执行如上述实施例所述的方法。
需要说明的是,该通信设备中,还可以包括:收发机91,与处理器92通过总线接口或者接口通信连接,收发机91与存储器93也可以通过总线接口或者接口通信连接。上述收发机的功能,也可以由处理器实现。本公开的通信设备还可以包括实现上述方法的其它部件,如用户接口,上述方法实施 例中的所有实现方式均适用于该通信设备的实施例中,也能达到相同的技术效果。该通信设备可以是上述实施例中所述终端,也可以是上述实施例中所述的网络设备,如基站或者中继节点。
本公开的一些实施例还提供一种计算机可读存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如上所述的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的 技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (24)

  1. 一种发射功率的指示方法,应用于网络设备,包括:
    在所述网络设备的第一链路上发送指示信息,所述指示信息用于指示所述网络设备在所述第一链路上的当前发射功率,或者,所述第一链路的发射功率偏移,所述发射功率偏移为所述第一链路的当前发射功率与所述网络设备发送指示信息之前的发射功率的差。
  2. 根据权利要求1所述的发射功率的指示方法,其中,在所述网络设备的第一链路上发送指示信息包括:
    在所述网络设备的第二链路和所述第一链路空分复用和/或共享功率进行传输时,在所述网络设备的第一链路上发送指示信息。
  3. 根据权利要求2所述的发射功率的指示方法,其中,所述第一链路为所述网络设备与终端或者所述网络设备的下一跳节点之间的接入链路,所述第二链路为所述网络设备与所述网络设备的上一跳节点之间的回传链路。
  4. 根据权利要求3所述的发射功率的指示方法,其中,所述回传链路的回传功率小于或者等于所述接入链路的发射功率偏移。
  5. 根据权利要求4所述的发射功率的指示方法,其中,所述网络设备具有至少两个回传链路时,所述网络设备在所述至少两个回传链路中的每一个回传链路上的回传功率的和,小于或者等于所述第一链路的发射功率偏移。
  6. 根据权利要求3所述的发射功率的指示方法,其中,所述网络设备的第二链路的上一跳节点从第一节点切换到第二节点时,所述指示信息用于指示所述网络设备在所述第一链路上的更新后的当前发射功率或者更新后的发射功率偏移。
  7. 根据权利要求3或6所述的发射功率的指示方法,其中,所述当前发射功率小于或者等于所述网络设备发送指示信息之前的发射功率减去所述回传链路的回传功率。
  8. 根据权利要求3所述的发射功率的指示方法,还包括:
    在所述网络设备的回传链路和所述接入链路空分复用和/或共享功率进行传输结束时,恢复到所述网络设备发送指示信息之前的发射功率。
  9. 根据权利要求8所述的发射功率的指示方法,其中,恢复到所述网络设备发送指示信息之前的发射功率,包括:
    发送下行控制信息(DCI)或者无线资源控制(RRC)信令或者介质访问控制单元(MAC CE)信令,所述DCI或者RRC信令或者MAC CE信令用于指示所述网络设备在所述接入链路上的所述发射功率恢复到所述网络设备发送指示信息之前的发射功率;或者
    按照协议约定在所述传输结束时刻到达时,自动恢复到所述网络设备发送指示信息之前的发射功率。
  10. 根据权利要求1所述的发射功率的指示方法,其中,发送指示信息包括:
    通过无线资源控制(RRC)信令或者介质访问控制单元(MAC CE)信令或者下行控制信息(DCI),发送所述指示信息。
  11. 根据权利要求1所述的发射功率的指示方法,其中,所述当前发射功率用于发送同步信号块(SSB)和/或信道质量信息参考符号(CSI-RS)。
  12. 一种发射功率的接收方法,应用于接收设备,所述接收方法包括:
    在网络设备的第一链路接收指示信息,所述指示信息用于指示所述网络设备在所述第一链路上的当前发射功率,或者,所述第一链路的发射功率偏移,所述发射功率偏移为所述第一链路的当前发射功率与所述网络设备发送指示信息之前的发射功率的差。
  13. 根据权利要求12所述的发射功率的接收方法,其中,在网络设备的第一链路上接收指示信息包括:
    在所述网络设备的第二链路和所述第一链路空分复用和/或共享功率进行传输时,在所述网络设备的第一链路上接收指示信息。
  14. 根据权利要求13所述的发射功率的接收方法,其中,所述第一链路为所述网络设备与所述终端或者所述网络设备的下一跳节点之间的接入链路,所述第二链路为所述网络设备与所述网络设备的上一跳节点之间的回传链路。
  15. 根据权利要求14所述的发射功率的接收方法,其中,所述回传链路的回传功率小于或者等于所述接入链路的发射功率偏移。
  16. 根据权利要求15所述的发射功率的接收方法,其中,所述网络设备 具有至少两个回传链路时,所述网络设备在所述至少两个回传链路中的每一个回传链路上的回传功率的和,小于或者等于所述第一链路的发射功率偏移。
  17. 根据权利要求14所述的发射功率的接收方法,其中,所述网络设备的第二链路的上一跳节点从第一节点切换到第二节点时,所述指示信息用于指示所述网络设备在所述第一链路上的更新后的当前发射功率或者更新后的发射功率偏移。
  18. 根据权利要求14或17所述的发射功率的接收方法,其中,所述当前发射功率小于或者等于所述网络设备发送指示信息之前的发射功率减去所述回传链路的回传功率。
  19. 一种网络设备,包括:
    收发机,用于在所述网络设备的第一链路上发送指示信息,所述指示信息用于指示所述网络设备在所述第一链路上的当前发射功率,或者,所述第一链路的发射功率偏移,所述发射功率偏移为所述第一链路的当前发射功率与所述网络设备发送指示信息之前的发射功率的差。
  20. 根据权利要求19所述的网络设备,其中,所述收发机具体用于:在所述网络设备的第二链路和所述第一链路空分复用和/或共享功率进行传输时,在所述网络设备的第一链路上发送指示信息。
  21. 一种接入设备,包括:
    收发机,用于在所述网络设备的第一链路接收指示信息,所述指示信息用于指示所述网络设备在所述第一链路上的当前发射功率,或者,所述第一链路的发射功率偏移,所述发射功率偏移为所述第一链路的当前发射功率与所述网络设备发送指示信息之前的发射功率的差。
  22. 根据权利要求21所述的接入设备,其中,所述收发机具体用于:在所述网络设备的第二链路和所述第一链路空分复用和/或共享功率进行传输时,在所述网络设备的第一链路上接收指示信息。
  23. 一种通信设备,包括:处理器、存储有计算机程序的存储器,所述计算机程序被处理器运行时,执行如权利要求1至11任一项所述的方法或者12至18任一项所述的方法。
  24. 一种计算机可读存储介质,包括指令,当所述指令在计算机运行时, 使得计算机执行如权利要求1至11任一项所述的方法或者12至18任一项所述的方法。
PCT/CN2019/093283 2018-06-29 2019-06-27 发射功率的指示方法、接收方法、网络设备和接入设备 WO2020001541A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/058,236 US11523352B2 (en) 2018-06-29 2019-06-27 Transmit power indication method, transmit power receiving method, network device and access device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810695652.XA CN110662240B (zh) 2018-06-29 2018-06-29 发射功率的指示方法、接收方法、网络设备和接入设备
CN201810695652.X 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020001541A1 true WO2020001541A1 (zh) 2020-01-02

Family

ID=68986202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093283 WO2020001541A1 (zh) 2018-06-29 2019-06-27 发射功率的指示方法、接收方法、网络设备和接入设备

Country Status (3)

Country Link
US (1) US11523352B2 (zh)
CN (1) CN110662240B (zh)
WO (1) WO2020001541A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112333811B (zh) * 2019-08-05 2022-04-05 成都华为技术有限公司 一种同步信号/物理广播信道块发送功率配置方法及装置
US11997600B2 (en) * 2019-09-09 2024-05-28 Qualcomm Incorporated Signaling to support power utilization modes for power saving
CN113099542B (zh) * 2020-01-09 2023-04-07 维沃移动通信有限公司 参数上报方法及上行调度方法、设备及介质
CN111683413B (zh) * 2020-08-12 2020-11-10 成都极米科技股份有限公司 多链路连接建立的方法、终端、网络接入设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102726097A (zh) * 2010-01-28 2012-10-10 高通股份有限公司 用于根据回程链路来偏置切换决策的方法和装置
US20120327794A1 (en) * 2011-06-24 2012-12-27 Sungkyunkwan University Foundation For Corporate Collaboration Method and apparatus for configuring transmit power of relay node
CN103906246A (zh) * 2014-02-25 2014-07-02 北京邮电大学 一种蜂窝异构网络下的无线回传资源调度方法
CN105472623A (zh) * 2014-09-10 2016-04-06 上海朗帛通信技术有限公司 一种蜂窝网中的laa通信方法和装置
US20160205695A1 (en) * 2013-08-23 2016-07-14 Ntt Docomo, Inc. Radio base station, relay station and radio communication method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699888B2 (ja) * 2005-12-08 2011-06-15 株式会社エヌ・ティ・ティ・ドコモ 呼受付制御装置、呼受付制御方法
CN101094030B (zh) * 2006-06-19 2010-12-01 中兴通讯股份有限公司 用于移动通信系统中的无线资源分配方法
CN101207416B (zh) * 2006-12-19 2012-07-18 中兴通讯股份有限公司 高速共享控制信道的功率控制方法
CN102149205B (zh) 2010-02-09 2016-06-15 中兴通讯股份有限公司 一种中继节点的状态管理方法及系统
CN102196496B (zh) * 2010-03-19 2016-05-11 中兴通讯股份有限公司 一种处理回程链路错误的方法和中继节点
US8706026B2 (en) * 2010-09-30 2014-04-22 Futurewei Technologies, Inc. System and method for distributed power control in a communications system
US8798525B2 (en) * 2010-11-09 2014-08-05 Telefonaktiebolaget L M Ericsson (Publ) Composite reporting of wireless relay power capability
CN103327593B (zh) * 2012-03-21 2016-06-29 中国移动通信集团公司 一种自适应上行功控方法及移动中继设备
CN102811469B (zh) * 2012-07-25 2018-08-07 南京中兴软件有限责任公司 一种功率控制方法和装置
EP3794881A1 (en) * 2018-06-20 2021-03-24 Convida Wireless, LLC Synchronization in multi-hop nr iab deployment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102726097A (zh) * 2010-01-28 2012-10-10 高通股份有限公司 用于根据回程链路来偏置切换决策的方法和装置
US20120327794A1 (en) * 2011-06-24 2012-12-27 Sungkyunkwan University Foundation For Corporate Collaboration Method and apparatus for configuring transmit power of relay node
US20160205695A1 (en) * 2013-08-23 2016-07-14 Ntt Docomo, Inc. Radio base station, relay station and radio communication method
CN103906246A (zh) * 2014-02-25 2014-07-02 北京邮电大学 一种蜂窝异构网络下的无线回传资源调度方法
CN105472623A (zh) * 2014-09-10 2016-04-06 上海朗帛通信技术有限公司 一种蜂窝网中的laa通信方法和装置

Also Published As

Publication number Publication date
CN110662240B (zh) 2021-08-06
US11523352B2 (en) 2022-12-06
CN110662240A (zh) 2020-01-07
US20210195534A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2020001541A1 (zh) 发射功率的指示方法、接收方法、网络设备和接入设备
EP3609225B1 (en) Communication method, base station and system
CN112865947B (zh) 测量间隔的配置方法及装置、存储介质、电子装置
WO2020015563A1 (zh) 用于测量配置的方法、用户设备、网络设备、及存储介质
US8010147B2 (en) Method and apparatus for interference limitation in uplink communication in a cellular communication system
KR101288770B1 (ko) 부하 분산을 위한 기지국들 간 자원 상태 정보의 시그널링
EP3723447A1 (en) Relay transmission method and device
CN104412654A (zh) 用于在多扇区部署中做出切换决策的小区间协作
US20220303108A1 (en) Cross Link Interference Handling
CN103765969A (zh) 终端、基站以及通信方法
EP2534866A1 (en) Mechanism for aggregating uplink interference information for use in multi-carrier systems
KR20210055065A (ko) 시간 영역 리소스 구성 방법 및 액세스 네트워크 디바이스
US10798643B2 (en) Signal sending method and device
TW201322805A (zh) 天線系統及其中接收功率的報告方法
CN111464965A (zh) 资源周期的配置,链路的处理、建立方法及装置
CN104254102A (zh) 一种测量报告的上报方法、通信节点和系统
CN110870348A (zh) 使用短信号身份在无线电终端和无线电接入节点之间通信的方法、无线电终端和无线电接入节点
US20210345276A1 (en) Base station, user equipment, and transmission method
EP2809114B1 (en) Method and device for determining transmitting power
KR20170081673A (ko) 소형 셀 및 소형 셀의 통신 제어 방법
JP7229243B2 (ja) 同期ブロックとページングスケジューリングシグナリングの関連付けと指示方法及び装置
CN109155953A (zh) 小区切换方法及装置
EP3675577A1 (en) Transmission control method
CN116095712A (zh) 一种通信方法及装置
EP2765757B1 (en) Method for exploiting M2M communication properties in cellular systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19825635

Country of ref document: EP

Kind code of ref document: A1