WO2020001425A1 - 光纤传感器及其制作方法、运动感测装置 - Google Patents

光纤传感器及其制作方法、运动感测装置 Download PDF

Info

Publication number
WO2020001425A1
WO2020001425A1 PCT/CN2019/092728 CN2019092728W WO2020001425A1 WO 2020001425 A1 WO2020001425 A1 WO 2020001425A1 CN 2019092728 W CN2019092728 W CN 2019092728W WO 2020001425 A1 WO2020001425 A1 WO 2020001425A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
sleeve
sensing
fiber
magnetic mass
Prior art date
Application number
PCT/CN2019/092728
Other languages
English (en)
French (fr)
Inventor
刘宇
翟明
傅晓亮
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/644,264 priority Critical patent/US11408908B2/en
Publication of WO2020001425A1 publication Critical patent/WO2020001425A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/093Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres

Definitions

  • the present disclosure relates to the field of sensors, and in particular, to an optical fiber sensor, a manufacturing method thereof, and a motion sensing device.
  • a magnetic fluid is a liquid magnetic material that has both the fluidity of a liquid and the physical properties of some solid magnetic materials.
  • the magnetic fluid has a second-order suspension effect, so that the permanent magnet can be suspended in the magnetic fluid. This phenomenon can be used to make level, speed, acceleration sensors, etc. Most of these sensor principles in related technologies are based on the Hall effect.
  • the present disclosure provides an optical fiber sensor, a manufacturing method thereof, and a motion sensing device.
  • the present disclosure provides an optical fiber sensor including a ferrule, a magnetic mass, and a sensing fiber;
  • the magnetic mass is located in the sleeve, and a magnetic fluid is adsorbed on an outer surface of the magnetic mass that is opposite to an inner wall of the sleeve, so that the magnetic mass can be suspended in the sleeve. And moving along the axis of the sleeve;
  • One end of the sensing optical fiber is penetrated into the first port of the sleeve, and a reflective surface is arranged on an outer surface of the magnetic mass block opposite to the sensing optical fiber.
  • the surface provides incident light and receives measurement light from the reflective surface.
  • the magnetic mass includes an inner core and an annular permanent magnet surrounding the inner core, and the outer surface of the annular permanent magnet opposite to the inner wall of the sleeve is adsorbed on the outer surface. Magnetic fluid.
  • the inner core includes a first post and a second post that are coaxial, a diameter of the first post is smaller than a diameter of the second post, and the annular permanent magnet It is sheathed outside the first pillar and abuts against the second pillar.
  • the inner core is a length of optical fiber, and the inner core and the sensing optical fiber have the same optical fiber specifications.
  • the magnetic mass includes a reflective layer on a surface of the inner core opposite to the sensing fiber, and the reflective surface is provided by the reflective layer; or, the reflective The face is an end face of the inner core.
  • the optical fiber sensor further includes an elastic member located in the sleeve, a first end of the elastic member is fixedly connected to a second port of the sleeve, and the elastic member The second end is fixedly connected to a side of the magnetic mass away from the sensing fiber.
  • the second port is an open port
  • the optical fiber sensor further includes a support body, and the support body is fixedly connected to the sleeve at the second port of the sleeve, so The first end of the elastic member is fixedly connected to the support; or, the second port is a closed port, and the first end of the elastic member is fixedly connected to the closed port.
  • the supporting body is a supporting optical fiber, and one end of the supporting optical fiber is probed into the second port of the sleeve.
  • the supporting optical fiber and the sensing optical fiber have the same optical fiber specifications.
  • the optical fiber sensor further includes a rigid connector, and one end of the rigid connector is fixedly connected to a side of the magnetic mass away from the sensing optical fiber. The other end protrudes from the second port of the sleeve, and there is a gap between the rigid connector and an inner wall of the sleeve.
  • the surfaces of the sensing fiber and the magnetic mass that are opposite to each other are configured as two parallel cavity surfaces of a Fabry-Perot interference cavity.
  • an end of the sensing fiber that penetrates into the sleeve and the first port of the sleeve are fixed to each other.
  • a sealant is provided between an outer surface of the sensing fiber and an inner wall of the sleeve.
  • the optical fiber sensor further includes an electromagnetic shielding layer located outside the sleeve.
  • the present disclosure also provides a motion sensing device, the motion sensing device includes a light source, a light detector, and at least one of the above-mentioned optical fiber sensors, and the light source is configured to provide A sensing fiber of a fiber optic sensor provides the incident light, and the light detector is configured to detect the measurement light from a sensing fiber of each of the fiber sensors.
  • the motion sensing device further includes at least one circulator, a first end of each circulator is connected to the light source, and a second end of each circulator is respectively
  • the optical fiber sensor is connected to a sensing optical fiber, and the third end of each circulator is connected to the photodetector.
  • the present disclosure also provides a method for manufacturing an optical fiber sensor, including:
  • a magnetic mass with magnetic fluid adsorbed on the outer surface is provided in the casing, so that the magnetic mass can be suspended in the casing and can move along the axis of the casing; wherein the magnetic mass is An outer surface of at least part of the non-adsorbed magnetic fluid is configured as a reflective surface;
  • the reflecting surface is opposed to the sensing fiber, and based on the sensing fiber, incident light can be provided to the reflecting surface and Receive measurement light from the reflecting surface.
  • the step of setting a magnetic mass with magnetic fluid adsorbed on an outer surface in the sleeve includes:
  • a magnetic fluid is dripped into the sleeve, and the magnetic fluid entering the sleeve surrounds the outer surface of the annular permanent magnet after being absorbed.
  • the step of setting a magnetic mass with magnetic fluid adsorbed on an outer surface in the sleeve includes:
  • the magnetic fluid is drawn into the sleeve by capillary action, and the magnetic fluid entering the sleeve surrounds the outer surface of the annular permanent magnet after being absorbed.
  • the method before setting a magnetic mass in which a magnetic fluid is adsorbed on an outer surface in the sleeve, the method further includes:
  • the first optical fiber segment and the second optical fiber segment are obtained from one optical fiber
  • the sensing fiber is made based on the first fiber segment, and the magnetic mass is made based on the second fiber segment.
  • FIG. 1 is a schematic structural diagram of an optical fiber sensor according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a magnetic mass in an optical fiber sensor according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of an optical fiber sensor according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a working principle of an optical fiber sensor according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an optical fiber sensor according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an optical fiber sensor according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a method for manufacturing an optical fiber sensor according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a motion sensing device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of an optical fiber sensor according to an embodiment of the present disclosure.
  • the fiber optic sensor includes a ferrule 10, a magnetic mass 20, and a sensing fiber 30.
  • the magnetic mass 20 is located in the sleeve 10, and a magnetic fluid 24 is adsorbed on the outer surface of the magnetic mass 20 opposite to the inner wall WL of the sleeve 10, so that the magnetic mass 20 can be suspended in the sleeve 10 and along the same.
  • the axis AL of the sleeve 10 moves.
  • One end of the sensing fiber 30 is probed into the first port of the ferrule 10 (for example, the left port of the ferrule 10 shown in FIG. 1), and the outer surface of the magnetic mass 20 opposite the sensing fiber 30 is a reflective surface. Based on the sensing fiber 30, it is possible to provide incident light S1 to the reflecting surface and receive measurement light S2 from the reflecting surface.
  • a fiber optic sensor is a type of sensor. It mainly uses the light emitted by the light source to interact with the parameter to be measured, so that the intensity, wavelength, and phase of the light change to become a modulated signal, so that the optical signal can be demodulated. Obtain the measured parameters.
  • the magnetic fluid 24 may be selected from liquid magnetic materials according to application requirements.
  • the magnetic fluid 24 may be a stable magnetic colloid solution obtained by dispersing magnetic particles in a liquid, and may be an oil-based magnetic fluid or a water-based magnetic fluid.
  • the magnetic field distribution of the magnetic mass 20 in the surrounding space can be designed by the type, content and position distribution of the magnetic material in the magnetic mass 20, so that the magnetic fluid can be adsorbed on the corresponding portion of the magnetic mass 20 according to the magnetic field distribution. on the surface.
  • the magnetic fluid 24 can be adsorbed on the outer surface of the magnetic mass 20 opposite to the inner wall WL of the sleeve 10, so that the magnetic mass 20 can be suspended in the sleeve 10 under the second-order suspension in the magnetic fluid, that is, magnetically.
  • the buoyancy force of the mass 20 in the magnetic fluid can overcome its own gravity, so that its surface can be separated from the inner wall WL of the sleeve 10 to reduce or completely get rid of the frictional force when the surface contacts.
  • the magnetic mass 20 can move along the axis AL of the sleeve 10 while maintaining the suspension state. During the movement, the magnetic mass 20 can not be affected by the friction force, and the magnetic fluid 24 can also not be affected by the shear stress and can move in the magnetic mass 20 The magnetic force attracts and moves with it, so that the free movement of the magnetic mass 20 in the sleeve 10 can be achieved.
  • the sensing fiber 30 can transmit optical signals in both directions, so an external light source can be used to conduct the incident light S1 to the inside of the sleeve 10, and make the incident light S1 incident on the reflective surface of the magnetic mass block 20, so that the light Propagate within the range marked by the dashed box in Figure 1; the distance Lfp between the end face of the sensing fiber 30 and the reflecting surface will affect the phase distribution of the reflected light received by the sensing fiber 30, so the As a light detector that the measurement light is guided to the outside by the sensing fiber 30, the light detector can obtain the movement data of the magnetic mass 20 along the axis AL of the sleeve 10 by detecting the measurement light, and then the parameter to be measured can be obtained.
  • any parameter that can affect the movement of the magnetic mass 20 along the axis AL of the sleeve 10 can be used as the measured parameter, for example, the displacement / speed / acceleration of the object connected to the magnetic mass 20 through a rigid connection, or The level / acceleration and the like of the sleeve 10 after the magnetic mass 20 and the other port of the sleeve 10 are connected through an elastic member, and may not be limited thereto.
  • corresponding types of transmission components can be added to the above-mentioned fiber-optic sensor structure (such as the structure of the fiber-optic sensor shown in FIG. 1) according to the measured parameter to be measured, so that the measured parameter directly or indirectly affects the magnetic mass.
  • the movement of 20 along the axis 10 of the sleeve 10 is then combined with the corresponding relationship between the parameter to be measured and the above-mentioned motion data to obtain the parameter to be measured in the manner described above, thereby realizing a corresponding type of fiber optic sensor.
  • the fiber optic sensor may further include an electromagnetic shielding layer on an outer wall of the sleeve.
  • the electromagnetic shielding layer may be a metal shielding layer, for example, a copper shielding layer.
  • the optical fiber sensor of this embodiment is based on the optical measurement principle and belongs to a passive device.
  • the measurement light is not easily affected by electromagnetic interference in the process of generation and transmission, and the electromagnetic shielding layer provided outside the casing will not affect the optical fiber sensor.
  • the optical fiber sensor of this embodiment can have a strong ability and sensitivity to resist electromagnetic interference (no need to suppress electromagnetic interference and sacrifice sensitivity).
  • the optical fiber sensor of this embodiment may have a radial dimension equivalent to that of an optical fiber (for example, the radial dimension of the optical fiber sensor in FIG.
  • the electromagnetic shielding layer provided outside the casing will not affect the internal second-order suspension effect, so it is not easy to generate electromagnetic interference to the outside.
  • it is easy to realize long-distance, distributed sensing measurement by arranging long-distance optical fibers and combining optical signal switching equipment.
  • the outer surface of the sensing optical fiber 30 and the inner wall WL of the ferrule 10 are filled with a sealant 11, thereby realizing mutual interaction between the sensing optical fiber 30 and the first port of the ferrule 10.
  • the mutual fixation between the sensing fiber 30 and the first port of the sleeve 10 is more conducive to fixing the propagation direction and the propagation path of the incident light S1 and the measurement light S2, which makes the detection and calculation more convenient.
  • the sealing of the first port of the sleeve 10 helps to prevent the magnetic fluid 24 from leaving the sleeve 10 and helps to isolate external oxygen and moisture.
  • the sensing optical fiber 30 includes a core 31 and a cladding 32 surrounding the core 31.
  • the incident light S1 and the measurement of the incident light S1 can be set in advance by setting the refractive index of the cladding 32 and the core 31 to match.
  • the light S2 can be transmitted in a total reflection manner in the core 31.
  • a single-mode quartz optical fiber can be used to form the sensing optical fiber 30, a quartz glass tube having a tube diameter matching that of the single-mode quartz optical fiber can be used to form the sleeve 10, and an ultraviolet curing glue or glass glue can be used as the above-mentioned seal. ⁇ 11 ⁇ Glue 11.
  • other material combinations can also be selected within the possible range, and need not be limited to the above examples.
  • FIG. 2 is a schematic structural diagram of a magnetic mass in an optical fiber sensor according to an embodiment of the present disclosure. 1 and 2, the magnetic mass 20 includes an inner core 21 and an annular permanent magnet 22 surrounding the inner core 21.
  • the inner core 21 may include a first post 21a and a second post 21b coaxially connected, a diameter of the first post 21a is smaller than a diameter of the second post 21b, and a ring-shaped permanent magnet 22 is sleeved on the first post Outside the body 21a and abutting against the second pillar 21b.
  • the second pillar 21b can play a limiting role.
  • a reflective layer 23 may be first formed on the top surface of the inner core 21 as shown in FIG. 2 to provide a reflective surface, and then a ring-shaped permanent magnet 22 is sleeved around the inner core 21 and the Adhesive bonding is fixed. Finally, after the magnetic fluid is adsorbed on the outer surface of the annular permanent magnet 22, it is placed inside the sleeve 10 to form a magnetic mass 20 as shown in FIG. 1 (as shown in FIG. 1, the annular permanent magnet 22 and the sleeve A magnetic fluid 24 is adsorbed on the opposite outer surface of the inner wall WL of the tube 10).
  • an object including a magnetic material and having a corresponding shape can be made as the magnetic mass mass 20, and may not be limited to this.
  • HfO 2 / SiO 2 that is, a layer of HfO 2 and SiO laminated together
  • the reflective surface may be formed by, for example, polishing the top surface of the inner core 21, and is not limited to this.
  • FIG. 3 is a schematic structural diagram of an optical fiber sensor according to an embodiment of the present disclosure.
  • the second port (right port in FIG. 3) of the sleeve 10 in the optical fiber sensor shown in FIG. 3 is a closed port, so that the above seal can be matched.
  • the glue 11 makes the internal space of the sleeve 10 a closed space.
  • the movement of the magnetic mass 20 is restricted in the closed space inside the sleeve 10, and the magnetic fluid is also sealed inside the sleeve 10, so that the overall movement of the sleeve 10 can change the motion state of the magnetic mass 20, Furthermore, the acceleration of the sleeve 10 can be measured by detecting the measurement light S2.
  • the optical fiber sensor shown in FIG. 3 further includes a micro spring 40 as an elastic member, a first end of the micro spring 40 and a second port of the sleeve 10 are fixed to each other, and a second end of the micro spring 40 and The side of the magnetic mass 20 that is far from the sensing fiber 30 is fixedly connected.
  • the miniature spring 40 may play a role of returning the magnetic mass 20 to an equilibrium position and / or limiting a moving range of the magnetic mass 20.
  • two ends of the micro spring 40 may be connected to a base 41 respectively, and the base 41 is connected to the magnetic mass 20 and the second port.
  • the base 41 may be clipped on the magnetic mass block 20, that is, one end of the magnetic mass block 20 is inserted into the base 41.
  • an end of the sensing fiber 30 that penetrates into the ferrule 10 and the first port of the ferrule 10 are fixed to each other, and a Fabry-Perot interference cavity (FP interference for short) is formed between the sensing fiber 30 and the magnetic mass 20.
  • Cavity), and the surfaces of the sensing fiber 30 and the magnetic mass 20 facing each other are configured as two parallel cavity surfaces of a Fabry-Perot interference cavity (referred to as an FP interference cavity), and incident light S1 occurs in the FP interference cavity
  • the multi-beam interference becomes measurement light received by the sensing fiber 30.
  • the measurement light S2 which is an interference light, undergoes a phase shift, and the acceleration can be inverted from this change.
  • FIG. 4 is a schematic diagram of a working principle of an optical fiber sensor according to an embodiment of the present disclosure.
  • n is the refractive index of the medium between the two parallel cavity surfaces of the FP
  • L is the distance between the two parallel cavity surfaces of the FP
  • ⁇ t is the light rays on the two parallel cavity surfaces.
  • the optical path difference ⁇ L can be calculated by formula (1):
  • is the wavelength of the transmitted light
  • is the circumference.
  • the phase difference It is mainly related to the refractive index n of the medium and the distance L between the two parallel cavity surfaces.
  • the refractive index n is a known fixed value
  • the distance Lfp that is, the above-mentioned L
  • the distance Lfp between them changes, so that the spectral phase of the measurement light S2 as the interference light changes, and thus the value of this acceleration can be measured.
  • the distance Lfp L 0 between the parallel cavity surfaces.
  • the fiber optic sensor receives the acceleration a, the magnetic mass 20 moves along the axis to generate a displacement ⁇ L. Compress the micro spring 40 until it reaches a new force equilibrium position. At this time, the restoring force of the micro spring 40 can be expressed by formula (3):
  • the wavelength ⁇ of the incident light S1 and the measurement light S2 the refractive index n of the medium between the parallel cavity surfaces, the spring coefficient k of the miniature spring 40, the mass m of the magnetic mass 20, and the light in
  • the angle ⁇ t formed between the two parallel cavity surfaces and the normal vector of the optical plane is the phase difference detected based on the measurement light S2
  • the acceleration a received by the optical fiber sensor is calculated to realize the function of the acceleration sensor.
  • phase change in the FP interference cavity can also be used to implement, for example, a displacement sensor, a level sensor, Force sensors, speed sensors, and other types of sensors (and may not be limited to this) can all be implemented with reference to related technologies, and are not repeated here one by one.
  • the same optical fiber specifications may mean that the types of optical fibers are the same. For example, G.654 single-mode optical fibers are used.
  • the optical fiber may include a cladding and a core, in which case the inner core 21 may be obtained by cutting out a part of the cladding.
  • miniature spring 40 as an elastic member, it should be understood that it can be replaced by any other form of elastic member, such as rubber members, elastic fibers, other types of springs, or a combination of at least two types of elastic elements.
  • the composite elastic member (such as an elastic member composed of a spring connected at each end of the rubber block) is not limited to this. Similar to the miniature spring 40 described above, the replacement of the elastic member can also play a role of returning the magnetic mass 20 to an equilibrium position and / or limiting the moving range of the magnetic mass 20, and can be used as a transmission component connected to the magnetic mass 20 A link.
  • FIG. 5 is a schematic structural diagram of an optical fiber sensor according to an embodiment of the present disclosure.
  • the difference from the structure of the optical fiber sensor shown in FIG. 4 is that the second port of the ferrule 10 in FIG. 5 is an open port, and the optical fiber sensor further includes a support body 50, and the support body 50 is connected to the second port of the ferrule 10.
  • the sleeve 10 is fixedly connected, and the above-mentioned miniature spring 40 as an elastic member is fixedly connected to the support body 50 through the first end to achieve mutual fixation with the second port of the sleeve 10.
  • two ends of the micro spring 40 may be respectively connected to a base 41, and the base 41 is connected to the magnetic mass 20 and the support 50 through the base 41.
  • the base 41 may be clipped on the magnetic mass block 20, that is, one end of the magnetic mass block 20 is inserted in the base 41.
  • the base 41 can be snapped onto the support body 50, that is, the support body 50 is inserted into the base 41.
  • the above-mentioned supporting body 50 is implemented by using a supporting optical fiber, one end of the supporting optical fiber is penetrated into the second port of the ferrule 10, and the outer surface of the supporting optical fiber is glued to the inner wall of the ferrule 10.
  • the supporting optical fiber may have the same optical fiber specifications as the sensing optical fiber 30, and the above-mentioned gluing may be implemented in the same manner as the filling of the sealant with the sensing optical fiber 30.
  • the support body 50 may also be implemented in a manner such as a tube hole cover or a tube hole plug, and may not be limited thereto.
  • the use of a support fiber with the same fiber specifications as the sensing fiber 30 can eliminate the need to separately design the support body 50 to match the shape and size of the support body 50 with other parts.
  • the same raw materials and / or matching processes of the optical fiber 30 simplify the manufacturing process of the optical fiber sensor.
  • FIG. 6 is a schematic structural diagram of an optical fiber sensor according to an embodiment of the present disclosure. Different from the structure of the optical fiber sensor shown in FIG. 1, the optical fiber sensor shown in FIG. 6 further includes a rigid connector 60. One end of the rigid connector 60 is fixedly connected to a side of the magnetic mass 20 away from the sensing fiber 30. The other end of the rigid connecting member 60 protrudes from the second port of the sleeve 10, and there is a gap between the rigid connecting member 60 and the inner wall WL of the sleeve 10.
  • One end of the rigid connector 60 protruding from the second port of the sleeve 10 is in contact with or connected with the measured object.
  • the movement of the measured object drives the rigid connector 60 to move the magnetic mass 20.
  • the movement of the magnetic mass 20 causes The FP cavity length changes, and the measured parameter can be determined based on the FP cavity length change.
  • the rigid connector 60 may include a connecting rod, which may be arranged coaxially with the sensing optical fiber 30.
  • an inner flange or other limiting structure may be provided at the second port of the sleeve, as long as it affects the movement of the rigid connecting member 60 in the sleeve 10.
  • FIG. 6 is a schematic flowchart of a method for manufacturing an optical fiber sensor according to an embodiment of the present disclosure. Referring to FIG. 6, the method includes:
  • a magnetic mass with a magnetic fluid adsorbed on the outer surface is provided in the casing, so that the magnetic mass can be suspended in the casing and can be moved along the axis of the casing.
  • at least a part of the outer surface of the magnetic mass that does not adsorb the magnetic fluid is configured as a reflective surface.
  • step 102 after the one end of the sensing fiber is probed into the first port of the sleeve, the reflecting surface is opposed to the sensing fiber, and the sensing fiber can provide incident light to the reflecting surface and receive the light from the reflecting surface. Measure light.
  • the method further includes the following steps not shown in FIG. 6: obtaining a first fiber segment and a second fiber segment from one optical fiber; making based on the first fiber segment
  • the sensing fiber is made of a magnetic mass based on the second fiber segment.
  • the second optical fiber segment may be the inner core 21 used as the basis for making the magnetic mass 20.
  • the inner core 21 and the sensing optical fiber 30 are obtained from the same optical fiber, they have the same optical fiber between each other. specification. In this way, the process of individually designing the inner core 21 to match its shape and size with other parts can be simplified, and the types of raw materials can be reduced to simplify the manufacturing process of the optical fiber sensor.
  • the manufacturing method of the foregoing optical fiber sensor may include: obtaining a first optical fiber segment, a second optical fiber segment, and a third optical fiber segment from one optical fiber. Based on the second optical fiber segment, its shape is processed into the inner core 21 as shown in FIG. 2, and a reflective layer 23 is formed on the top surface to provide a reflective surface, and then a ring-shaped permanent magnet 22 is set around the inner core 21 It is fixed in a glued manner to complete the production of the magnetic mass 20.
  • the two ends of the micro spring 40 are fixedly connected to the bottom surface of the inner core 21 and the end surface of the third optical fiber segment as a supporting optical fiber, respectively, and the ferrule 10 and the magnetic mass 20 are fixed by the supporting structure, so that the magnetic mass is
  • the side of the block 20 on which the reflective layer 23 is deposited extends into the inside of the sleeve 10 inward.
  • the magnetic fluid is dripped into the casing 10, or the casing 10 is placed in the magnetic fluid, and the magnetic fluid is sucked into the casing 10 by capillary action, and the magnetic fluid entering the casing 10 is adsorbed and surrounds the ring-shaped permanent magnet 22
  • a visual inspection mechanism can then be used to check the setting of the magnetic mass in the sleeve 10 to prevent abnormality.
  • the third optical fiber segment and the ferrule 10 are respectively fixed by using a supporting mechanism, and after the third optical fiber segment is probed into the second port of the ferrule 10, a sealant is used to fill the space between the outer surface of the third optical fiber segment and the inner wall of the ferrule 10 The gap between the support fiber and the second port of the ferrule 10 is fixed, and the second port of the ferrule 10 is sealed. Finally, after the end surface of one end of the first optical fiber segment is processed into a high reflectance interface, the first optical fiber segment and the ferrule 10 are also respectively fixed by using a supporting mechanism, and the end of the first optical fiber segment serving as the sensing optical fiber 30 is probed.
  • the first port of the ferrule 10 Enter the first port of the ferrule 10, and adjust the penetration part to a level, and then fill the gap between the outer surface of the first optical fiber segment and the inner wall of the ferrule 10 with a sealant to complete the sensing fiber 30 and the ferrule
  • the first ports of 10 are fixed to each other, and the first ports of the sleeve 10 are sealed. Since then, the production of the optical fiber sensor shown in FIG. 5 is completed.
  • the optical fiber sensor manufactured by the method of this embodiment may be any of the above-mentioned optical fiber sensors. Therefore, according to the structural details of the optical fiber sensor, a corresponding method may be adopted to implement the production of the optical fiber sensor according to related technologies. This will not repeat them one by one. Based on the internal structure of the optical fiber sensor, it is possible to provide incident light and collect measurement light through the sensing fiber, and obtain the motion parameter of the magnetic mass by detecting the measurement light, thereby realizing the measurement of the parameter to be measured.
  • the measurement light is not easily affected by electromagnetic interference during the generation and transmission process, and the magnetic mass can move freely along the axis of the casing based on the second-order suspension of the magnetic fluid, so it can be combined with the optical measurement principle to achieve a very high Sensitivity, and has the advantages of simple structure, small volume and mass, easy to realize long-distance measurement and distributed measurement.
  • FIG. 7 is a schematic structural diagram of a motion sensing device according to an embodiment of the present disclosure.
  • the motion sensing device includes a light source, a photodetector, and at least one of the foregoing optical fiber sensors (in FIG. 7, an optical fiber sensor having a structure as shown in FIG. 5 is taken as an example), and the light source is It is configured to provide incident light S1 to the sensing fiber of each fiber sensor, and the light detector is configured to detect the measurement light S2 from the sensing fiber of each fiber sensor.
  • the light source can couple the incident light S1 into the sensing fiber according to the set wavelength ⁇ and angle ⁇ t , and the light detector can detect the phase difference change of the measurement light S2 Based on this, the acceleration measurement of the optical fiber sensor is implemented in cooperation with the corresponding calculation component according to the above principle.
  • the light source may be a broadband light source having a wavelength of 1000 to 1680 nm.
  • the motion sensing device further includes at least one circulator (one circulator is taken as an example in FIG. 7), and a first end (upper end) of each circulator is connected to the light source, and each The second end (right end) of each of the circulators is respectively connected to a sensing fiber of the optical fiber sensor, and the third end (lower end) of each of the circulators is connected to the photodetector so that all The incident light S1 is unidirectionally transmitted from the light source to any of the sensing fibers, and the measurement light S2 is unidirectionally transmitted from any of the sensing fibers to the light detector.
  • one circulator is taken as an example in FIG. 7
  • a first end (upper end) of each circulator is connected to the light source
  • each The second end (right end) of each of the circulators is respectively connected to a sensing fiber of the optical fiber sensor
  • the third end (lower end) of each of the circulators is connected to the photodetector so that all The incident light S1 is unidirectionally
  • the unidirectional transmission characteristic of the circulator can be used to couple the incident light S1 into the sensing fiber while receiving the measurement light S2 from the sensing fiber.
  • the transmission path of the measurement light S2 in different sensor network topologies can also be implemented through other optical signal switching components, and is not limited to the above examples.
  • several optical fiber sensors that measure the same acceleration value can use the same circulator to transmit the multiple measurement lights S2 generated to the photodetector for unified detection to simplify the internal structure of the motion sensing device.
  • the motion sensing device refers to a device having a motion sensing function, and may be, for example, a sensor, a sensor string, a sensor array, or an electronic device including a sensor, such as various types of wearable devices.
  • a sensor Smart bracelet, smart watch, smart earring, smart necklace, head-mounted display, etc.
  • terminal device laptop, PDA, mobile phone, tablet, wireless terminal device, communication device, embedded device or similar structure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光纤传感器,包括套管(10)、磁性质量块(20)和传感光纤(30);磁性质量块(20)位于套管(10)之中,磁性质量块(20)之与套管(10)的内壁(WL)相对的外表面上吸附有磁流体(24),以使磁性质量块(20)能够悬浮在套管(10)中并且能够沿套管(10)的轴线(AL)移动;传感光纤(30)的一端位于套管(10)的第一端口中,磁性质量块(20)与传感光纤(30)相对的表面为反射面,传感光纤(30)被配置为能够向反射面提供入射光(S1)并接收来自反射面的测量光(S2)。还公开了一种运动感测装置及一种光纤传感器的制作方法。

Description

光纤传感器及其制作方法、运动感测装置
本申请要求于2018年6月26日提交的、申请号为201810670006.8、发明名称为“光纤传感器及其制作方法、运动感测装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及传感器领域,特别涉及一种光纤传感器及其制作方法、运动感测装置。
背景技术
磁流体是一种液态磁性材料,既具有液体的流动性又具有某些固体磁性材料的物理特性。磁流体具有二阶悬浮作用,使得永磁体能够悬浮于磁流体中。利用这一现象可以制成水平、速度、加速度传感器等,相关技术中这些传感器原理大多是基于霍尔效应。
发明内容
本公开提供一种光纤传感器及其制作方法、运动感测装置。
第一方面,本公开提供了一种光纤传感器,所述光纤传感器包括套管、磁性质量块和传感光纤;
所述磁性质量块位于所述套管之中,所述磁性质量块与所述套管的内壁相对的外表面上吸附有磁流体,以使所述磁性质量块能够悬浮在所述套管当中并沿所述套管的轴线移动;
所述传感光纤的一端探入所述套管的第一端口,所述磁性质量块与所述传感光纤相对的外表面上配置有反射面,基于所述传感光纤能够向所述反射面提供入射光并接收来自所述反射面的测量光。
在一种可能的实现方式中,所述磁性质量块包括内芯和围绕所述内芯的环形永磁体,所述环形永磁体之与所述套管的内壁相对的外表面上吸附有所述磁流体。
在一种可能的实现方式中,所述内芯包括同轴的第一柱体和第二柱体,所述第一柱体的直径小于所述第二柱体的直径,所述环形永磁体套在所述第一柱 体外且与第二柱体相抵。
在一种可能的实现方式中,所述内芯为一段光纤,所述内芯与所述传感光纤具有相同的光纤规格。
在一种可能的实现方式中,所述磁性质量块包括位于所述内芯的与所述传感光纤相对的表面的反射层,所述反射面由所述反射层提供;或者,所述反射面为所述内芯的端面。
在一种可能的实现方式中,所述光纤传感器还包括位于所述套管之中的弹性构件,所述弹性构件的第一端与所述套管的第二端口固定连接,所述弹性构件的第二端与所述磁性质量块远离所述传感光纤的一侧固定连接。
在一种可能的实现方式中,所述第二端口为开放端口,所述光纤传感器还包括支撑体,所述支撑体在所述套管的第二端口处与所述套管固定连接,所述弹性构件的第一端与所述支撑体固定连接;或者,所述第二端口为封闭端口,所述弹性构件的第一端与所述封闭端口固定连接。
在一种可能的实现方式中,所述支撑体为支撑光纤,所述支撑光纤的一端探入所述套管的第二端口。
在一种可能的实现方式中,所述支撑光纤与所述传感光纤具有相同的光纤规格。
在一种可能的实现方式中,所述光纤传感器还包括刚性连接件,所述刚性连接件的一端与所述磁性质量块远离所述传感光纤的一侧固定连接,所述刚性连接件的另一端伸出所述套管的所述第二端口,所述刚性连接件与所述套管的内壁之间具有间隙。
可选地,所述传感光纤与所述磁性质量块彼此相对的表面被配置为法布里珀罗干涉腔的两个平行腔面。
在一种可能的实现方式中,所述传感光纤探入所述套管的一端与所述套管的第一端口相互固定。
在一种可能的实现方式中,所述传感光纤的外表面与所述套管的内壁之间具有密封胶。
可选地,所述光纤传感器还包括位于所述套管外的电磁屏蔽层。
第二方面,本公开还提供了一种运动感测装置,所述运动感测装置包括光源、光检测器以及至少一个上述任意一种的光纤传感器,所述光源被配置为向每个所述光纤传感器的传感光纤提供所述入射光,所述光检测器被配置为检测 来自每个所述光纤传感器的传感光纤的所述测量光。
在一种可能的实现方式中,所述运动感测装置还包括至少一个环形器,每个所述环形器的第一端均与所述光源相连,每个所述环形器的第二端分别与一个所述光纤传感器的传感光纤相连,每个所述环形器的第三端均与所述光检测器相连。
第三方面,本公开还提供了一种光纤传感器的制作方法,包括:
在套管当中设置外表面上吸附有磁流体的磁性质量块,以使所述磁性质量块能够悬浮在所述套管当中并且能够沿所述套管的轴线移动;其中,所述磁性质量块的至少部分未吸附磁流体的外表面被配置为反射面;
在将传感光纤的一端探入所述套管的第一端口后,使得所述反射面与所述传感光纤相对,并使得基于所述传感光纤能够向所述反射面提供入射光并接收来自所述反射面的测量光。
在一种可能的实现方式中,所述在套管当中设置外表面上吸附有磁流体的磁性质量块,包括:
将所述磁性质量块伸入所述套管内部;
向所述套管内滴注磁流体,进入所述套管内的磁流体被吸附后围绕所述环形永磁体的外表面。
在一种可能的实现方式中,所述在套管当中设置外表面上吸附有磁流体的磁性质量块,包括:
将所述磁性质量块伸入所述套管内部;
利用毛细作用将磁流体吸入所述套管内,进入所述套管内的磁流体被吸附后围绕所述环形永磁体的外表面。
在一种可能的实现方式中,在套管当中设置外表面上吸附有磁流体的磁性质量块之前,所述方法还包括:
从一条光纤中截取得到第一光纤段和第二光纤段;
基于所述第一光纤段制作所述传感光纤,基于所述第二光纤段制作所述磁性质量块。
附图说明
图1是本公开一个实施例提供的光纤传感器的结构示意图;
图2是本公开一个实施例提供的光纤传感器中磁性质量块的结构示意图;
图3是本公开一个实施例提供的光纤传感器的结构示意图;
图4是本公开一个实施例提供的光纤传感器的工作原理示意图;
图5是本公开一个实施例提供的光纤传感器的结构示意图;
图6是本公开一个实施例提供的光纤传感器的结构示意图;
图7是本公开一个实施例提供的光纤传感器的制作方法的流程示意图;
图8是本公开一个实施例提供的运动感测装置的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
图1是本公开一个实施例提供的光纤传感器的结构示意图。该光纤传感器包括套管10、磁性质量块20和传感光纤30。这里,磁性质量块20位于套管10之中,磁性质量块20与套管10的内壁WL相对的外表面上吸附有磁流体24,以使磁性质量块20能够悬浮在套管10当中并沿套管10的轴线AL移动。传感光纤30的一端探入套管10的第一端口(例如,图1中所示出的套管10的左端口),磁性质量块20与传感光纤30相对的外表面为反射面,基于传感光纤30能够向反射面提供入射光S1并接收来自反射面的测量光S2。
应当理解的是,光纤传感器是传感器的一个类别,其主要利用光源发出光与待测参数相互作用,使得光的强度、波长、相位等发生变化而成为被调制的信号,从而可以解调光信号获得被测参数。磁流体24可以根据应用需求在液体磁性材料中选取,例如可以是一种将磁性微粒分散到液体中所得到的稳定的带有磁性的胶体溶液,可以是油基磁流体或水基磁流体。磁性质量块20在周围空间中产生的磁场分布可以通过磁性质量块20中磁性材料的种类、含量和位置分布来进行设计,从而磁流体可以依照该磁场分布被吸附在磁性质量块20的相应 部分的表面上。由此可以使磁性质量块20与套管10的内壁WL相对的外表面上吸附磁流体24,使得磁性质量块20能够在磁流体中的二阶悬浮作用下悬浮在套管10当中,即磁性质量块20在磁流体中受到的浮力可以克服其自身重力,从而其表面可以与套管10的内壁WL相互分离,减少或完全摆脱表面接触时的摩擦力作用。因此,磁性质量块20可以保持悬浮状态沿套管10的轴线AL移动,移动过程中磁性质量块20可以不受摩擦力作用,磁流体24也可以不受剪切应力作用并在磁性质量块20的磁力吸引下随之移动,从而可以实现磁性质量块20在套管10中的自由运动。
还应理解的是,传感光纤30可以双向传输光信号,因此可以利用外部光源将入射光S1传导至套管10内部,并使入射光S1入射到磁性质量块20的反射面上,使得光线在图1中虚线方框所标注的范围内进行传播;此时传感光纤30的端面与反射面之间的距离Lfp将会影响传感光纤30接收到的反射光的相位分布,因此可以将其作为测量光由传感光纤30引导至外部的光检测器,使得光检测器能够通过检测测量光来得到磁性质量块20沿套管10轴线AL移动的运动数据,进而可以得到待测参量。
需要说明的是,任何可以影响磁性质量块20沿套管10轴线AL移动的参量均可以作为待测参量,例如通过刚性连接件与磁性质量块20相连物体的位移量/速度/加速度,或是在将磁性质量块20与套管10的另一端口通过弹性构件连接后套管10的水平度/加速度等等,并可以不仅限于此。基于此,可以根据需要测量的待测参量在上述光纤传感器结构(例如图1所示的光纤传感器的结构)的基础上添加相应类型的传动部件,从而使得待测参量直接或间接影响磁性质量块20沿套管10轴线AL的运动,继而通过上述方式结合待测参量与上述运动数据之间的对应关系计算得到待测参量,实现相应类型的光纤传感器。
可选地,该光纤传感器还可以包括位于套管外壁上的电磁屏蔽层。电磁屏蔽层可以为金属屏蔽层,例如,铜屏蔽层。
可以看出,本实施例的光纤传感器基于光学测量原理,属于无源器件,测量光在生成和传输的过程中不容易受到电磁干扰,并且在套管外部设置电磁屏蔽层也不会影响光纤传感器的正常工作,因此本实施例的光纤传感器可以具有很强的抗电磁干扰的能力和灵敏度(不需要抑制电磁干扰而牺牲灵敏度)。基于上述构造,本实施例的光纤传感器可以具有与光纤相当的径向尺寸(例如,图1中光纤传感器的径向尺寸大致等于光纤直径与套管壁厚的2倍之和),并且所必 须的元件数量很少,因此可以具有很小的体积和质量,适于应用到各类便携设备、可穿戴设备和微型电子设备之中,具有广泛的应用范围。而且,在套管外部设置电磁屏蔽层也不会影响内部的二阶悬浮作用,因此不容易对外部产生电磁干扰。此外,基于光纤所传导的光信号损耗率低以及光信号元件容易进行串并联设置的特点,容易通过布置长距离光纤并结合光信号的转接设备来实现远距离、分布式的传感测量。
图1中,作为一种示例,传感光纤30的外表面与套管10的内壁WL之间由密封胶11填充,从而实现了传感光纤30与套管10的第一端口之间的相互固定,以及套管10的第一端口的密封。其中,传感光纤30与套管10的第一端口之间的相互固定更有利于固定入射光S1和测量光S2的传播方向和传播路径,使得检测和计算更加方便。而套管10的第一端口的密封则有助于避免磁流体24脱离套管10,并有助于隔绝外部氧气和湿气。
图1中,作为一种示例,传感光纤30包括纤芯31和围绕纤芯31的包层32,可以预先通过包层32与纤芯31的折射率匹配的设置来使入射光S1和测量光S2能在纤芯31内以全反射的方式传输。作为一种材料示例,可以使用单模石英光纤形成传感光纤30,使用管径与该单模石英光纤相匹配的石英玻璃管形成套管10,并使用紫外光固化胶或者玻璃胶作为上述密封胶11。当然,还可以在可能的范围内选取其他材料组合,而不需要限于上述示例。
图2是本公开一个实施例提供的光纤传感器中磁性质量块的结构示意图。参见图1和图2,磁性质量块20包括内芯21和围绕内芯21的环形永磁体22。
示例性地,内芯21可以包括同轴连接的第一柱体21a和第二柱体21b,第一柱体21a的直径小于第二柱体21b的直径,环形永磁体22套在第一柱体21a外且与第二柱体21b相抵。在组装内芯21和环形永磁体22时,第二柱体21b可以起到限位作用。
作为一种示例,在制作光纤传感器时,可以先在如图2所示的内芯21的顶面上制作反射层23以提供反射面,然后将环形永磁体22套在内芯21周围并以胶接方式固定,最后在环形永磁体22外表面上吸附磁流体后放置到套管10内部,以形成如图1所示的磁性质量块20(如图1所示,环形永磁体22与套管10的内壁WL相对的外表面上吸附有磁流体24)。当然,除了可以通过嵌套环形永磁体来使磁性质量块具有磁性之外,还可以制作包括磁性材料并具有相应外形的物体作为磁性质量块20,并可以不仅限于此。
关于上述反射层23,可以例如在内芯21的顶面(即与传感光纤30相对的表面)上以磁控溅射方式沉积HfO 2/SiO 2(即层叠在一起的HfO 2层和SiO 2层)或金属材料薄膜以形成反射率满足应用需求的反射层23。此外,也可以例如通过研磨内芯21的顶面来形成反射面,并可以不仅限于此。
下面以加速度传感器作为示例,说明上述光纤传感器的可选实现方式。图3是本公开一个实施例提供的光纤传感器的结构示意图。参见图3,相比于图1所示的光纤传感器而言,图3所示的光纤传感器中套管10的第二端口(图3中的右端口)为封闭端口,由此可以配合上述密封胶11的设置使套管10的内部空间为封闭空间。由此,磁性质量块20的运动被限制在套管10内部的封闭空间中,并且磁流体也被密封在套管10内部,从而套管10的整体运动可以改变磁性质量块20的运动状态,进而可以通过检测测量光S2对套管10的加速度进行测量。
示例性地,图3所示的光纤传感器中还包括作为弹性构件的微型弹簧40,该微型弹簧40的第一端与套管10的第二端口相互固定,该微型弹簧40的第二端与磁性质量块20远离传感光纤30的一侧固定连接。微型弹簧40可以起到使磁性质量块20回到平衡位置和/或限制磁性质量块20的移动范围的作用。
示例性地,微型弹簧40的两端可以分别连接一底座41,通过该底座41与磁性质量块20和第二端口连接。例如,该底座41可以卡接在磁性质量块20上,也即是,磁性质量块20的一端插接在底座41中。
本实施例中,传感光纤30探入套管10的一端与套管10的第一端口相互固定,传感光纤30与磁性质量块20之间形成法布里珀罗干涉腔(简称F-P干涉腔),并且传感光纤30与磁性质量块20彼此相对的表面被配置为法布里珀罗干涉腔(简称F-P干涉腔)的两个平行腔面,入射光S1在该F-P干涉腔中发生多光束干涉后成为传感光纤30所接收到的测量光。在感应到加速度时,作为干涉光的测量光S2会发生相位漂移,由这一变化可以反演加速度。
图4是本公开一个实施例提供的光纤传感器的工作原理示意图。在如图4所示的F-P干涉腔中,n为F-P两个平行腔面之间的介质折射率,L为F-P两个平行腔面之间的距离,θ t为光线在两个平行腔面之间传播时与光学平面法向量形成的夹角。对于两个平行腔面之间来回反射所形成的多个光波,相邻两个光波(例如,图4中方向朝上的任意相邻的两个箭头表示相邻的两个光波)之间的光程差ΔL可以由公式(1)计算:
ΔL=2nL cosθ t         (1)
所形成的相位差
Figure PCTCN2019092728-appb-000001
可以由公式(2)计算:
Figure PCTCN2019092728-appb-000002
其中,λ为传播光线的波长,π为圆周率。由上式可知,相位差
Figure PCTCN2019092728-appb-000003
主要与介质折射率n和两个平行腔面之间的距离L相关。对于如图3所示的光纤传感器而言,折射率n为已知的固定数值,而平行腔面之间的距离Lfp(即上述L)为变量;当感应到加速度时,而平行腔面之间的距离Lfp发生变化,使得作为干涉光的测量光S2的光谱相位发生变化,由此可以测量得到这一加速度的数值。
在一个示例中,设磁性质量块20处于中心平衡位置时,平行腔面之间的距离Lfp=L 0,当光纤传感器接收到加速度a时,此时磁性质量块20沿轴线移动产生位移为ΔL,压缩微型弹簧40直到达到新的受力平衡位置,此时受到的微型弹簧40的回复力可以由公式(3)表示:
F t=kΔL=ma      (3)
其中,k为微型弹簧40的弹簧系数,m为磁性质量块20的质量。设磁性质量块20在中心平衡位置时的相位差为
Figure PCTCN2019092728-appb-000004
当光纤传感器接收到加速度a后,磁性质量块20沿轴线移动到新的平衡位置,对应的相位差为
Figure PCTCN2019092728-appb-000005
结合上述相位差
Figure PCTCN2019092728-appb-000006
的表达式(即公式(2))可知:
Figure PCTCN2019092728-appb-000007
Figure PCTCN2019092728-appb-000008
公式(4)和公式(5)相减,可以推得:
Figure PCTCN2019092728-appb-000009
基于该公式(6),可以结合入射光S1与测量光S2的波长λ,平行腔面之间的介质折射率n,微型弹簧40的弹簧系数k,磁性质量块20的质量m,以及光线在两个平行腔面之间传播时与光学平面法向量形成的夹角θ t,由基于测量光S2检测出的相位差
Figure PCTCN2019092728-appb-000010
计算得到光纤传感器接收到的加速度a,实现加速度传感器的功能。
当然,还可以上述利用F-P干涉腔中相位变化与平行腔面间距离的变化之间的关系,在图1或图3或图5所示的光纤传感器的基础上实现例如位移传感器、水平传感器、力传感器、速度传感器等类型的传感器(并可以不仅限于此),均可以参照相关技术实现,在此不再一一赘述。
此外,相比于图1而言,图3中采用了与传感光纤30具有相同的光纤规格的一小段光纤作为磁性质量块20的内芯21,由此可以简化单独设计内芯21以使其形状尺寸与其他部分相匹配的过程,并可以减少原材料的种类以简化光纤传感器的制作流程。这里,光纤规格相同可以是指光纤的种类相同,例如都选用G.654单模光纤。
如前所述,光纤可以包括包层和纤芯,在这种情况下内芯21可以通过切除包层的一部分得到。
关于上述作为弹性构件的微型弹簧40,应理解的是其能够被任意一种其他形式的弹性构件代替,例如橡皮构件、弹力纤维、其他类型的弹簧,或者由至少两种类型的弹性元件组合而成的复合式弹性构件(比如橡皮块两端分别连接一弹簧所组成的弹性构件),并可以不仅限于此。与上述微型弹簧40相同,替代弹性构件也能起到使磁性质量块20回到平衡位置和/或限制磁性质量块20的移动范围的作用,并可以作为与磁性质量块20连接的传动部件中的一个环节。
作为加速度传感器实现方式的又一种示例,图5是本公开一个实施例提供的光纤传感器的结构示意图。与图4所示光纤传感器的结构所不同的是,图5中套管10的第二端口为开放端口,而且光纤传感器还包括支撑体50,支撑体50在套管10的第二端口处与套管10固定连接,并且上述作为弹性构件的微型弹簧40通过第一端与支撑体50固定连接实现与套管10的第二端口的相互固定。
示例性地,微型弹簧40的两端可以分别连接一底座41,通过该底座41与磁性质量块20和支撑体50连接。例如,底座41可以卡接在磁性质量块20上,也即是,磁性质量块20的一端插接在底座41中。同样地,底座41可以卡接在支撑体50上,也即是,支撑体50插接在底座41中。
作为一种示例,上述支撑体50采用一条支撑光纤来实现,该支撑光纤的一端探入套管10的第二端口,并且支撑光纤的外表面与套管10的内壁胶接。应理解的是,支撑光纤可以与传感光纤30具有相同的光纤规格,并可以与传感光纤30一样通过上述填充密封胶的方式实现上述胶接。
应理解的是,支撑体50也可以通过例如管孔盖或是管孔塞的方式实现,并可以不限于此。而相比于其他实现方式,采用与传感光纤30具有相同的光纤规格的支撑光纤,可以省去单独设计支撑体50以使其形状尺寸与其他部分相匹配的过程,并可以通过与传感光纤30相同的原材料和/或配合工艺简化光纤传感器的制作流程。
图6是本公开一个实施例提供的光纤传感器的结构示意图。与图1所示光纤传感器的结构所不同的是,图6所示的光纤传感器还包括刚性连接件60,刚性连接件60的一端与磁性质量块20远离传感光纤30的一侧固定连接,刚性连接件60的另一端伸出套管10的第二端口,刚性连接件60与套管10的内壁WL之间具有间隙。
将刚性连接件60伸出套管10的第二端口的一端与被测物体接触或连接,被测物体运动带动刚性连接件60运动,从而带动磁性质量块20运动,磁性质量块20的运动引起F-P腔长变化,进而可以基于F-P腔长变化确定出被测参数。
示例性地,该刚性连接件60可以包括连杆,该连杆可以与传感光纤30同轴布置。
为了避免磁性质量块20脱离套管10,在套管的第二端口还可以设置内凸缘或其他限位结构,只要影响刚性连接件60在套管10中运动即可。
图6是本公开一个实施例提供的光纤传感器的制作方法的流程示意图。参见图6,该方法包括:
在步骤101中,在套管当中设置外表面上吸附有磁流体的磁性质量块,以使磁性质量块能够悬浮在套管中并且能够沿套管的轴线移动。其中,磁性质量块的至少部分未吸附磁流体的外表面被配置为反射面。
在步骤102中,在将传感光纤的一端探入套管的第一端口后,使得反射面与传感光纤相对,并使得基于传感光纤能够向反射面提供入射光并接收来自反射面的测量光。
在一个示例中,在上述步骤101之前,所述方法还包括未在图6中示出的下述步骤:从一条光纤中截取得到第一光纤段和第二光纤段;基于第一光纤段制作传感光纤,基于第二光纤段制作磁性质量块。例如,第二光纤段可以是上述作为磁性质量块20制作基础的内芯21,此时由于内芯21与传感光纤30是从同一条光纤中截取得到的,因此彼此之间具有相同的光纤规格。如此,可以简化单独设计内芯21以使其形状尺寸与其他部分相匹配的过程,并可以减少原材料的种类以简化光纤传感器的制作流程。
以图5所示出的光纤传感器的结构作为示例,上述光纤传感器的制作方法可以包括:从一条光纤中截取得到第一光纤段、第二光纤段和第三光纤段。在第二光纤段的基础上将其外形加工为如图2所示的内芯21,并在其顶面上制作反射层23以提供反射面,然后将环形永磁体22套在内芯21周围并以胶接方式 固定,以完成磁性质量块20的制作。接下来,将微型弹簧40的两端分别固定连接到内芯21的底面上和作为支撑光纤的第三光纤段的端面上,利用支撑结构分别固定套管10和磁性质量块20,将磁性质量块20沉积有反射层23的一面朝内伸入套管10内部。随后向套管10内滴注磁性流体,或者将套管10置于磁性流体中,利用毛细作用将磁流体吸入套管10内,进入套管10内的磁流体被吸附后围绕环形永磁体22外表面,随后可以视觉检测机构检查磁性质量块在套管10内的设置情况以防出现异常。然后利用支撑机构分别固定住第三光纤段和套管10,将第三光纤段探入套管10的第二端口之后,采用密封胶填充第三光纤段的外表面与套管10内壁之间的空隙,完成支撑光纤与套管10第二端口之间的相互固定,以及套管10第二端口的密封。最后,将第一光纤段的一端的端面处理为高反射率界面之后,同样利用支撑机构分别固定住第一光纤段和套管10,将作为传感光纤30的第一光纤段的该端探入套管10的第一端口,将探入部分调整为水平后采用密封胶填充第一光纤段的外表面与套管10内壁之间的空隙,完成所述传感光纤30与所述套管10的第一端口相互固定,以及套管10第一端口的密封。自此,完成如图5所示的光纤传感器的制作。
应理解的是,本实施例的方法所制作的光纤传感器可以是上述任意一种光纤传感器,因此依照光纤传感器的结构细节的不同,可以参照相关技术采用相应的方法来实现光纤传感器的制作,在此不再一一赘述。基于所述光纤传感器的内部构造,可以通过传感光纤提供入射光并采集测量光,并通过对测量光的检测得到磁性质量块的运动参数,从而实现待测参量的测量;由于该光纤传感器是一种无源器件,测量光在产生和传输过程中不容易受到电磁干扰,而且磁性质量块可以基于磁流体的二阶悬浮作用沿套管轴线自由移动,因此可以结合光学测量原理实现很高的灵敏度,并具有结构简单、体积质量小、容易实现远距离测量和分布式测量等优点。
图7是本公开一个实施例提供的运动感测装置的结构示意图。参见图7,所述运动感测装置包括光源、光检测器以及至少一个上述任意一种的光纤传感器(图7中以一个具有如图5所示结构的光纤传感器作为示例),所述光源被配置为向每个光纤传感器的传感光纤提供入射光S1,所述光检测器被配置为检测来自每个光纤传感器的传感光纤的测量光S2。对于上述F-P干涉腔的示例来说,光源可以按照所设置的波长λ和角度θ t来将入射光S1耦入传感光纤,而光检测器可以检测测量光S2的相位差变化
Figure PCTCN2019092728-appb-000011
从而基于此按照上述原理配合相应的计 算部件实现光纤传感器的加速度测量。
示例性地,光源可以为波长为1000~1680nm的宽带光源。
作为一种示例,所述运动感测装置还包括至少一个环形器(图7中以一个环形器作为示例),每个所述环形器的第一端(上端)均与所述光源相连,每个所述环形器的第二端(右端)分别与一个所述光纤传感器的传感光纤相连,每个所述环形器的第三端(下端)均与所述光检测器相连,以使所述入射光S1在所述光源到任一所述传感光纤之间为单向传输,所述测量光S2在任一所述传感光纤到所述光检测器之间为单向传输。如此,可以利用环形器的单向传输特性来将入射光S1耦入传感光纤的同时接收来自传感光纤的测量光S2。应当理解的是,还可以通过其他光信号的转接部件实现不同传感器网络拓扑下测量光S2的传输路径,而并不需要限于以上示例。比如,若干个测量同一加速度数值的光纤传感器可以使用同一个环形器将所产生的多个测量光S2一并传输到光检测器中统一检测,以简化运动感测装置的内部构造。
需要说明的是,所述运动感测装置指的是具备运动感测功能的装置,可以例如是传感器、传感器组串、传感器组阵,或者包含传感器的电子设备,例如各种类型的可穿戴设备(智能手环、智能手表、智能耳环、智能项链、头戴式显示装置等等)或者终端设备(便携式电脑、PDA、移动手机、平板电脑、无线终端设备、通信设备、嵌入式设备或类似结构的设备),并可以不仅限于此。
在可能的范围内,上述各示例所说明的不同方面的技术要素可以相互组合。而且,以上所述仅为本公开的实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的范围之内。

Claims (20)

  1. 一种光纤传感器,包括套管(10)、磁性质量块(20)和传感光纤(30);
    所述磁性质量块(20)位于所述套管(10)之中,所述磁性质量块(20)之与所述套管(10)的内壁(WL)相对的外表面上吸附有磁流体(24),以使所述磁性质量块(20)能够悬浮在所述套管(10)中并且能够沿所述套管(10)的轴线(AL)移动;
    所述传感光纤(30)的一端位于所述套管(10)的第一端口中,所述磁性质量块(20)与所述传感光纤(30)相对的表面为反射面,所述传感光纤(30)被配置为能够向所述反射面提供入射光(S1)并接收来自所述反射面的测量光(S2)。
  2. 根据权利要求1所述的光纤传感器,所述磁性质量块(20)包括内芯(21)和围绕所述内芯(21)的环形永磁体(22),所述环形永磁体(22)之与所述套管(10)的内壁(WL)相对的外表面上吸附有所述磁流体(24)。
  3. 根据权利要求2所述的光纤传感器,所述内芯(21)包括同轴连接的第一柱体(21a)和第二柱体(21b),所述第一柱体(21a)的直径小于所述第二柱体(21b)的直径,所述环形永磁体(22)套在所述第一柱体(21a)外且与第二柱体(21b)相抵。
  4. 根据权利要求2所述的光纤传感器,所述内芯(21)为一段光纤,所述内芯(21)与所述传感光纤(30)具有相同的光纤规格。
  5. 根据权利要求2所述的光纤传感器,所述磁性质量块包括位于所述内芯(21)的与所述传感光纤(30)相对的表面的反射层(23),所述反射面由所述反射层(23)提供;或者,所述反射面为所述内芯(21)的端面。
  6. 根据权利要求1至5中任一项所述的光纤传感器,还包括位于所述套管(10)之中的弹性构件(40),
    所述弹性构件(40)的第一端与所述套管(10)的第二端口固定连接,所 述弹性构件(40)的第二端与所述磁性质量块(20)远离所述传感光纤(30)的一侧固定连接。
  7. 根据权利要求6所述的光纤传感器,
    所述第二端口为开放端口,所述光纤传感器还包括支撑体(50),所述支撑体(50)在所述套管(10)的第二端口处与所述套管(10)固定连接,所述弹性构件(40)的第一端与所述支撑体(50)固定连接;
    或者,
    所述第二端口为封闭端口,所述弹性构件(40)的第一端与所述封闭端口固定连接。
  8. 根据权利要求7所述的光纤传感器,所述支撑体(50)为支撑光纤,所述支撑光纤的一端位于所述套管(10)的第二端口中。
  9. 根据权利要求8所述的光纤传感器,所述支撑光纤与所述传感光纤(30)具有相同的光纤规格。
  10. 根据权利要求1至5中任一项所述的光纤传感器,还包括刚性连接件(60),所述刚性连接件(60)的一端与所述磁性质量块(20)远离所述传感光纤(30)的一侧固定连接,所述刚性连接件(60)的另一端伸出所述套管(10)的所述第二端口,所述刚性连接件(60)与所述套管(10)的内壁(WL)之间具有间隙。
  11. 根据权利要求1至10中任一项所述的光纤传感器,所述传感光纤(30)与所述磁性质量块(10)彼此相对的表面被配置为法布里珀罗干涉腔的两个平行腔面。
  12. 根据权利要求1至11中任一项所述的光纤传感器,所述传感光纤(30)位于所述套管(10)中的一端与所述套管(10)的第一端口相互固定。
  13. 根据权利要求12所述的光纤传感器,所述传感光纤(30)的外表面与所述套管(10)的内壁(WL)之间具有密封胶(51)。
  14. 根据权利要求1至13中任一项所述的光纤传感器,还包括位于所述套管(10)外的电磁屏蔽层。
  15. 一种运动感测装置,包括光源、光检测器以及至少一个如权利要求1至14中任一项所述的光纤传感器,所述光源被配置为向每个所述光纤传感器的传感光纤提供所述入射光,所述光检测器被配置为检测来自每个所述光纤传感器的传感光纤的所述测量光。
  16. 根据权利要求15所述的运动感测装置,还包括至少一个环形器,每个所述环形器的第一端均与所述光源相连,每个所述环形器的第二端分别与一个所述光纤传感器的传感光纤相连,每个所述环形器的第三端均与所述光检测器相连。
  17. 一种光纤传感器的制作方法,包括:
    在套管中设置外表面上吸附有磁流体的磁性质量块,以使所述磁性质量块能够悬浮在所述套管当中并且能够沿所述套管的轴线移动;其中,所述磁性质量块的至少部分未吸附磁流体的外表面为反射面;
    在将传感光纤的一端探入所述套管的第一端口,使得所述反射面与所述传感光纤相对,并使得基于所述传感光纤能够向所述反射面提供入射光并接收来自所述反射面的测量光。
  18. 根据权利要求17所述的方法,所述在套管当中设置外表面上吸附有磁流体的磁性质量块,包括:
    将所述磁性质量块伸入所述套管内部;
    向所述套管内滴注磁流体,进入所述套管内的磁流体被吸附后围绕所述环形永磁体的外表面。
  19. 根据权利要求17所述的方法,所述在套管当中设置外表面上吸附有磁流体的磁性质量块,包括:
    将所述磁性质量块伸入所述套管内部;
    利用毛细作用将磁流体吸入所述套管内,进入所述套管内的磁流体被吸附后围绕所述环形永磁体的外表面。
  20. 根据权利要求17至19中任一项所述的方法,在套管当中设置外表面上吸附有磁流体的磁性质量块之前,所述方法还包括:
    从一条光纤中截取得到第一光纤段和第二光纤段;
    基于所述第一光纤段制作所述传感光纤,基于所述第二光纤段制作所述磁性质量块。
PCT/CN2019/092728 2018-06-26 2019-06-25 光纤传感器及其制作方法、运动感测装置 WO2020001425A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/644,264 US11408908B2 (en) 2018-06-26 2019-06-25 Fiber optic sensor, manufacturing method thereof and motion sensing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810670006.8A CN108801306B (zh) 2018-06-26 2018-06-26 光纤传感器及其制作方法、运动感测装置
CN201810670006.8 2018-06-26

Publications (1)

Publication Number Publication Date
WO2020001425A1 true WO2020001425A1 (zh) 2020-01-02

Family

ID=64071445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092728 WO2020001425A1 (zh) 2018-06-26 2019-06-25 光纤传感器及其制作方法、运动感测装置

Country Status (3)

Country Link
US (1) US11408908B2 (zh)
CN (1) CN108801306B (zh)
WO (1) WO2020001425A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111443313A (zh) * 2020-04-26 2020-07-24 浙江大学 一种利用双光子飞秒激光直写技术3d打印的f-p磁场传感器及其制作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108801306B (zh) * 2018-06-26 2020-01-24 京东方科技集团股份有限公司 光纤传感器及其制作方法、运动感测装置
CN109870449B (zh) * 2019-02-25 2021-11-26 京东方科技集团股份有限公司 一种气体监控装置、系统和方法,以及橱柜
CN110470328B (zh) * 2019-07-29 2021-07-09 东北大学 一种具有低温漂可填充的光纤fp传感器及其制备方法
CN114088122B (zh) * 2021-11-19 2024-04-16 中国工商银行股份有限公司 一种传感器、传感装置和信息处理系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2269593Y (zh) * 1996-05-21 1997-12-03 桂昱 D字形磁液悬浮加速度计
JP2000009506A (ja) * 1998-06-22 2000-01-14 Yamatake Corp 電磁流量計用測定管およびその製造方法
US6580511B1 (en) * 1997-10-28 2003-06-17 Reliance Electric Technologies, Llc System for monitoring sealing wear
CN2651754Y (zh) * 2003-11-12 2004-10-27 中国科学院半导体研究所 光纤光栅式加速度计
CN200962056Y (zh) * 2005-12-23 2007-10-17 谭成忠 基于磁悬浮原理的振动传感器
CN201155991Y (zh) * 2007-12-20 2008-11-26 武汉理工大学 一种新型的光纤光栅加速度传感器
CN201188116Y (zh) * 2008-03-24 2009-01-28 重庆工学院 一种磁流体光学电流传感器的包覆式紧凑型传感头
CN103149384A (zh) * 2013-02-07 2013-06-12 北京交通大学 一种磁性液体加速度传感器
CN103760616A (zh) * 2014-01-24 2014-04-30 天津大学 磁流体复合物重力梯度仪
CN103758482A (zh) * 2014-02-20 2014-04-30 邓海波 万向随机纠偏外注磁流体光杆密封器
CN203909058U (zh) * 2014-04-03 2014-10-29 天津大学 一种磁流体复合物角速度传感器
CN104236597A (zh) * 2013-06-06 2014-12-24 泰科电子(上海)有限公司 光传感器、光传感器组件和监测装置
CN106525093A (zh) * 2016-11-03 2017-03-22 深圳大学 基于磁流体非均匀团簇的光纤矢量磁场传感器及制作方法
CN108801306A (zh) * 2018-06-26 2018-11-13 京东方科技集团股份有限公司 光纤传感器及其制作方法、运动感测装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921894B2 (en) * 2002-09-10 2005-07-26 The Regents Of The University Of California Fiber optic micro accelerometer
US7017417B2 (en) * 2004-02-10 2006-03-28 Weatherford/Lamb, Inc. Pressure sensor assembly suitable for use in harsh environments
GB2487883B (en) * 2009-10-23 2014-09-10 Us Seismic Systems Inc Fiber optic microseismic sensing systems
JP5807542B2 (ja) * 2011-12-22 2015-11-10 株式会社島津製作所 対象成分を操作するためのチップデバイス及びそれを用いた方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2269593Y (zh) * 1996-05-21 1997-12-03 桂昱 D字形磁液悬浮加速度计
US6580511B1 (en) * 1997-10-28 2003-06-17 Reliance Electric Technologies, Llc System for monitoring sealing wear
JP2000009506A (ja) * 1998-06-22 2000-01-14 Yamatake Corp 電磁流量計用測定管およびその製造方法
CN2651754Y (zh) * 2003-11-12 2004-10-27 中国科学院半导体研究所 光纤光栅式加速度计
CN200962056Y (zh) * 2005-12-23 2007-10-17 谭成忠 基于磁悬浮原理的振动传感器
CN201155991Y (zh) * 2007-12-20 2008-11-26 武汉理工大学 一种新型的光纤光栅加速度传感器
CN201188116Y (zh) * 2008-03-24 2009-01-28 重庆工学院 一种磁流体光学电流传感器的包覆式紧凑型传感头
CN103149384A (zh) * 2013-02-07 2013-06-12 北京交通大学 一种磁性液体加速度传感器
CN104236597A (zh) * 2013-06-06 2014-12-24 泰科电子(上海)有限公司 光传感器、光传感器组件和监测装置
CN103760616A (zh) * 2014-01-24 2014-04-30 天津大学 磁流体复合物重力梯度仪
CN103758482A (zh) * 2014-02-20 2014-04-30 邓海波 万向随机纠偏外注磁流体光杆密封器
CN203909058U (zh) * 2014-04-03 2014-10-29 天津大学 一种磁流体复合物角速度传感器
CN106525093A (zh) * 2016-11-03 2017-03-22 深圳大学 基于磁流体非均匀团簇的光纤矢量磁场传感器及制作方法
CN108801306A (zh) * 2018-06-26 2018-11-13 京东方科技集团股份有限公司 光纤传感器及其制作方法、运动感测装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111443313A (zh) * 2020-04-26 2020-07-24 浙江大学 一种利用双光子飞秒激光直写技术3d打印的f-p磁场传感器及其制作方法

Also Published As

Publication number Publication date
CN108801306A (zh) 2018-11-13
CN108801306B (zh) 2020-01-24
US11408908B2 (en) 2022-08-09
US20210063430A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
WO2020001425A1 (zh) 光纤传感器及其制作方法、运动感测装置
CN105549156B (zh) 一种集成于悬挂芯光纤内部的微球谐振滤波器
CN101424696B (zh) 全光纤温度自补偿微型f-p加速度传感器及制作方法
Fu et al. Micromachined extrinsic Fabry-Pérot cavity for low-frequency acoustic wave sensing
CN105158506A (zh) 光纤mems法珀加速度传感器及其制作方法
CN103154682A (zh) 光纤兼容声学传感器
CN103528665A (zh) 一种新型法布里-帕罗干涉型mems声波传感器
CN105092016B (zh) 一种moems矢量水听器
WO2010094190A1 (zh) 一种悬臂梁结构的谐振式集成光波导加速度计
CN108663113A (zh) 一种光纤悬臂梁振动传感器及其制备方法
CN111044137A (zh) 一种基于镀金振动薄膜的光纤声振动传感器及其制作方法
CN113295260A (zh) 一种基于推挽结构的光纤水听器
Qu et al. Miniature tri-axis accelerometer based on fiber optic Fabry-Pérot interferometer
CN113091970B (zh) 一种自愈型智能全光柔性膜片
CN201382956Y (zh) 集成光波导加速度计
CN104977427A (zh) 一种双圆柱形mim表面等离子波导结构的加速度传感装置
CN102890163B (zh) 基于表面等离子体共振的光学加速度传感器
CN111443429B (zh) 一种薄膜式光纤起偏器件
CN109164068A (zh) 一种对称式长程表面等离激元共振传感器
CN209432336U (zh) 一种差压光纤探头结构及其差压光纤传感器
CN205537938U (zh) 光纤水听器
WO2015080663A1 (en) Micro-machined optical pressure sensors
CN101806935A (zh) 内壁融嵌式单模保偏光纤在线起偏器
CN210862899U (zh) 基于聚合物光纤微腔和聚合物光纤薄膜的振动传感器
CN206504823U (zh) 基于无芯光纤的气压传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19826630

Country of ref document: EP

Kind code of ref document: A1