WO2020001129A1 - 一种基站设备的节能方法和设备 - Google Patents

一种基站设备的节能方法和设备 Download PDF

Info

Publication number
WO2020001129A1
WO2020001129A1 PCT/CN2019/082458 CN2019082458W WO2020001129A1 WO 2020001129 A1 WO2020001129 A1 WO 2020001129A1 CN 2019082458 W CN2019082458 W CN 2019082458W WO 2020001129 A1 WO2020001129 A1 WO 2020001129A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy saving
discharge depth
discharge
information
traffic
Prior art date
Application number
PCT/CN2019/082458
Other languages
English (en)
French (fr)
Inventor
关鑫
方良任
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19826690.0A priority Critical patent/EP3783965A4/en
Publication of WO2020001129A1 publication Critical patent/WO2020001129A1/zh
Priority to US17/132,956 priority patent/US20210120487A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/266Arrangements to supply power to external peripherals either directly from the computer or under computer control, e.g. supply of power through the communication port, computer controlled power-strips
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/0277Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof according to available power supply, e.g. switching off when a low battery condition is detected
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0296Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level switching to a backup power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and a device for energy saving of a base station device.
  • hybrid power solutions including electric hybrids (mix of mains and storage equipment), oil hybrids (mixed oil and storage equipment), and optical hybrids. (Mixed solar and storage equipment) Three power supply solutions.
  • Power generation system During the operation of the power generation system, power is supplied to the base station and the storage equipment is charged. When the charging capacity of the power storage device reaches a preset ratio of full capacity, such as 95%, the charging of the power storage device is stopped. In the case of oil mixing, the power supply of the oil generator will be stopped at this time, and the power supply of the power storage equipment will be switched to reduce the operation of the oil generator.
  • the optical hybrid and electric hybrid scenarios continue to use the power generation system to power the storage equipment until solar power or utility power is lost.
  • Discharge of power storage equipment When the power generation system stops working, such as when the mains power is cut off, there is no sunlight, and the oil engine stops running, etc., the base station is discharged through the power storage equipment until the mains, solar energy, or oil engine is restored, or The depth of discharge (DOD) of the storage device reaches a certain threshold. If the DOD of the lead-acid storage device reaches 60% of the discharge or the DOD of the lithium storage device reaches 85%, the storage device stops discharging.
  • DOD depth of discharge
  • the base station is discharged through the discharge of the power storage device. Discharge time can ensure the reliability of base station services.
  • the length of the discharge time of the power storage equipment will directly affect the running time of the oil engine, that is, you can save fuel costs by extending the discharge time of the power storage equipment.
  • Embodiments of the present invention provide a method and a device for energy saving of a base station device, which are used to determine the energy saving level of the base station device.
  • a first aspect of the present application provides a method for energy saving of a base station device, including:
  • the traffic load information of the base station and the discharge depth information of the power storage device By obtaining the traffic load information of the base station and the discharge depth information of the power storage device, and then determining the energy saving level of the base station according to the traffic load information and the discharge depth information, finally making the base station work according to the energy saving level.
  • the traffic load information of the base station and the discharge depth information of the power storage equipment, and then the energy saving level of the base station is determined according to the traffic load information and the discharge depth information, so that the base station can work according to the energy saving level, which can guarantee Under the premise of running the business, the discharge time of the power storage equipment can be prolonged to the maximum extent.
  • the traffic load information includes peak traffic traffic and non-peak traffic segments.
  • a preset amount may be set.
  • the traffic load is greater than the preset value, it is referred to as a business peak, otherwise, it is referred to as an off-peak segment.
  • the traffic load information may include peak traffic traffic and non-peak traffic segments.
  • the discharge depth information includes that a discharge depth of the power storage device is greater than or equal to a preset discharge depth, or a discharge depth of the power storage device is less than the preset discharge depth.
  • the preset discharge depth is 40% discharge or 60% discharge. Since the discharge depth of the power storage device is considered, energy saving can be performed for different discharge depths of the power storage device.
  • the energy saving level includes standard energy saving, general energy saving, and deep energy saving.
  • the energy saving effect of the standard energy saving is 10-15% of the energy saving, and the energy saving effect of the general energy saving is energy saving. 15-20%, the energy saving effect of this deep energy saving is more than 20% energy saving.
  • determining the energy saving level of the base station according to the traffic load information and the discharge depth information includes:
  • the traffic load information is the peak of the traffic service, and the discharge depth information is that when the discharge depth of the power storage device is less than the preset discharge depth, the energy saving level is the standard energy saving mode; or, when the traffic load information is the voice
  • the discharge depth information is that the discharge depth of the power storage device is less than the preset discharge depth, the energy saving level is the general energy saving mode; or when the traffic load information is the traffic non-peak period
  • the discharge depth information is that when the discharge depth of the power storage device is greater than or equal to the preset discharge depth, the energy saving level is the deep energy saving mode; or, when the traffic is
  • the charge information is the peak of the traffic service, and the discharge depth information is that when the discharge depth of the power storage device is greater than or equal to the preset discharge depth, the energy saving level is the general energy saving mode, and different energy saving levels are performed according to different situations, so that Achieve the best energy savings.
  • the method before determining the energy saving level of the base station according to the traffic load information and the discharge depth information, the method further includes: obtaining discharge information of the energy storage device, and the discharge information is a discharge state or a non-discharge state. ; If the discharge information is the discharge state, perform the step of determining the energy saving level of the base station according to the traffic load information and the discharge depth information.
  • the power generation system includes a solar power generation system, an oil turbine power generation system, and a mains power supply system. Because the power supply of the power storage equipment is performed when the power generation system stops supplying power, the power generation system is fully utilized, and the functions of the power storage equipment are fully reflected, and the power storage equipment can work for the longest time.
  • a second aspect of the present application provides an energy-saving device, including:
  • the obtaining module is configured to obtain traffic load information of a base station and discharge depth information of a power storage device.
  • a determining module configured to determine an energy saving level of the base station according to the traffic load information and the discharge depth information, so that the base station works according to the energy saving level.
  • the discharge time of the power storage equipment is extended to the maximum extent.
  • the traffic load information includes peak traffic traffic and non-peak traffic segments. Because the peak traffic traffic and non-peak traffic segments are considered, energy saving can be performed for different traffic needs.
  • the discharge depth information includes that a discharge depth of the power storage device is greater than or equal to a preset discharge depth, or a discharge depth of the power storage device is less than the preset discharge depth.
  • the preset discharge depth is 40% discharge or 60% discharge. Since the discharge depth of the power storage device is considered, energy saving can be performed for different discharge depths of the power storage device.
  • the energy saving level includes standard energy saving, general energy saving, and deep energy saving.
  • the determining module is specifically configured to:
  • the energy saving level is the standard energy saving mode.
  • the energy saving level is the general energy saving mode.
  • the energy saving level is the deep energy saving mode.
  • the energy-saving level is the general energy-saving mode, which is performed in different situations Different energy-saving levels make it possible to achieve the best energy-saving effect.
  • the obtaining module is further configured to obtain discharge information of the energy storage device, where the discharge information is a discharge state or a non-discharge state, and if the discharge information is the discharge state, the execution is performed according to the traffic The step of determining the energy saving level of the base station by using the load information and the discharge depth information.
  • a third aspect of the present application provides an energy-saving device, including:
  • the communication port is used to obtain traffic load information of the base station and discharge depth information of the power storage device.
  • the processor is configured to determine an energy saving level of the base station according to the traffic load information and the discharge depth information, so that the base station works according to the energy saving level.
  • the discharge time of the power storage equipment is extended to the maximum extent.
  • the traffic load information includes peak traffic traffic and non-peak traffic segments. Because the peak traffic traffic and non-peak traffic segments are considered, energy saving can be performed for different traffic needs.
  • the discharge depth information includes that the discharge depth of the power storage device is greater than or equal to a preset discharge depth, or the discharge depth of the power storage device is less than the preset discharge depth. In some feasible embodiments, the The preset discharge depth is 40% or 60%. Because the discharge depth of the power storage device is taken into account, energy can be saved for different depths of the power storage device.
  • the energy saving level includes standard energy saving, general energy saving, and deep energy saving.
  • the processor is specifically configured to:
  • the energy saving level is the standard energy saving mode.
  • the energy saving level is the general energy saving mode.
  • the energy saving level is the deep energy saving mode.
  • the energy-saving level is the general energy-saving mode, which is performed in different situations. Different energy-saving levels make it possible to achieve the best energy-saving effect.
  • the method before determining the energy saving level of the base station according to the traffic load information and the discharge depth information, the method further includes: the communication port is further configured to obtain discharge information of the energy storage device, and the discharge information. It is discharged or non-discharged.
  • the processor is further configured to execute the step of determining the energy saving level of the base station according to the traffic load information and the discharge depth information if the discharge information is the discharge state. Because the power storage system is discharged when the power generation system stops supplying power, the power generation system is fully utilized, and the functions of the power storage equipment are fully reflected, and the power storage equipment can work for the longest time.
  • Another aspect of the present application provides a computer-readable storage medium having instructions stored in the computer-readable storage medium, which when executed on a computer, causes the computer to execute the methods described in the above aspects.
  • the discharge time of the power storage equipment is extended to the maximum extent.
  • FIG. 1 is a schematic diagram of an embodiment of an energy saving method
  • FIG. 2-1 is a schematic diagram of an embodiment of an energy-saving system architecture of the present application.
  • FIG. 2-2 is a schematic diagram of another embodiment of an energy-saving system architecture according to the present application.
  • FIG. 3 is a schematic diagram of another embodiment of an energy saving method
  • FIG. 4 is a schematic diagram of an embodiment of an energy-saving device
  • FIG. 5 is a schematic diagram of another embodiment of an energy-saving device.
  • Embodiments of the present invention provide a method and a device for energy saving of a base station device, which are used to determine an energy saving level of the base station.
  • hybrid power solutions including electric hybrids (mix of mains and storage equipment), oil hybrids (mixed oil generators and storage equipment) and optical Hybrid (hybrid solar and storage equipment) three power supply solutions.
  • a power generation system mains power, oil power or solar power
  • power storage equipment to alternately supply power to the base station.
  • Power generation system During the operation of the power generation system, power is supplied to the base station and the power storage equipment is charged. When the charging capacity of the power storage device reaches a preset ratio of full capacity, such as 95%, charging of the power storage device is stopped. If it is an oil-mixed scenario, the power supply of the oil turbine will be stopped at this time, and the power storage equipment will be switched to discharge to reduce the operation of the oil turbine.
  • the optical hybrid and electric hybrid scenarios continue to use the power generation system to charge the power storage equipment until solar power or utility power is lost.
  • Discharge of power storage equipment When the power generation system stops working, such as when the mains power fails, there is no sunlight, and the oil machine stops operating, etc., the base station is discharged through the power storage equipment to the base station until the mains, solar, or oil power is restored, or the power is stored.
  • the depth of discharge (DOD) of the electrical equipment reaches a certain threshold. For example, if the DOD of the lead-acid storage equipment reaches 60% of the discharge or the DOD of the lithium storage equipment reaches 85%, the storage equipment stops discharging.
  • the base station discharges through the power storage device.
  • the discharge time of the power storage device needs to be extended as much as possible to ensure the base station Service reliability.
  • the length of the discharge time of the power storage equipment will directly affect the running time of the oil engine, that is, you can save fuel costs by extending the discharge time of the power storage equipment.
  • FIG. 1 is a schematic diagram of an embodiment of an energy saving method, including:
  • This application obtains the traffic load information of the base station and the discharge depth information of the power storage device, and then determines the energy saving level of the base station according to the traffic load information and the discharge depth information, so that the base station works according to the energy saving level. , It can maximize the discharge time of the power storage equipment on the premise of ensuring the operation of the business.
  • FIG. 2-1 is an energy saving system architecture 200 of this application, including an operation support system 210 (The Office of Strategic Services), a base station 220, an energy system control unit 230, and a power generation system 240.
  • operation support system 210 The Office of Strategic Services
  • base station 220 the base station 220
  • energy system control unit 230 the energy system control unit 230
  • power generation system 240 the power generation system 240.
  • the base station 220 that is, a public mobile communication base station is a form of a radio station, and refers to a radio that transmits information to and from a mobile phone terminal through a mobile communication switching center in a certain radio coverage area. Send and receive radio stations.
  • the base station 220 includes a base station controller (BSC), a baseband processing unit (Building baseband unit, BBU), and a radio remote unit (RRU).
  • BSC base station controller
  • BBU baseband processing unit
  • RRU radio remote unit
  • the BSC is used For wireless channel management, implementation of call and communication link establishment and removal, and control of handover of mobile stations in the control area
  • BBU is used to transmit baseband signals
  • RRU is used to remotely baseband optical signals. Converted into RF signal to be amplified and transmitted.
  • the operation support system 210 is a comprehensive service operation and management platform, and also integrates a comprehensive management platform of traditional IP data services and mobile value-added services. It is mainly composed of network management, system management, billing, It is composed of business, accounting and customer service, and the systems are organically integrated through a unified information bus. It can not only help operators formulate operation support systems that meet their own characteristics, but also help determine the development direction of the system. It can also help users formulate system integration standards, improve and improve user service levels.
  • the energy system control unit 230 is connected to the power generation system 240, and is configured to obtain discharge depth information of the power storage equipment in the power generation system 240, and transmit the discharge depth information to the base station 220 or the operation support system 210.
  • the energy system control unit 230 may be a server, and the server may have a large difference due to different configurations or performance, and may include one or more central processing units (CPUs) (for example, , One or more processors) and memory, one or more storage media (for example, one or more storage devices) that store application programs or data.
  • the memory and the storage medium may be transient storage or persistent storage.
  • the program stored in the storage medium may include one or more modules (not shown in the figure), and each module may include a series of instruction operations on the server.
  • the central processing unit may be configured to communicate with the storage medium, and execute a series of instruction operations in the storage medium on the server.
  • the power generation system 240 may include a power generation system and a power storage device.
  • the power storage device refers to a cup, tank, or other container or composite container containing an electrolyte solution and a metal electrode to generate electric current, and a device capable of converting chemical energy into electrical energy.
  • the performance parameters of power storage equipment mainly include electromotive force, capacity, specific energy and resistance.
  • FIG. 3 is a schematic diagram of another embodiment of a power saving method, including:
  • the discharge depth of the energy storage device can be obtained by connecting the energy system control unit of the power generation system, and the traffic load information can be obtained through the base station.
  • the traffic load information includes the traffic load of the base station at different time points of a cycle.
  • a cycle can be one day.
  • the traffic carrying capacity within a day is changed.
  • the power consumption needs to be different.
  • the traffic carrying capacity is larger, , The more power you need to consume.
  • the traffic carrying capacity in a cycle can be of different orders of magnitude, such as from the order of small to large, the traffic carrying capacity gradually increases; in some feasible embodiments, the traffic carrying capacity can also be simply changed
  • the traffic load is divided into two levels, which are the peak and off-peak segments of the business.
  • a preset amount may be set.
  • the traffic load is greater than the preset value, it is referred to as a business peak, otherwise, it is referred to as an off-peak segment.
  • the traffic load information may include peak traffic traffic and non-peak traffic segments.
  • the discharge depth of the power storage device when the power storage device is being used or used, the discharge depth of the power storage device can be detected. It should be noted that the depth of discharge is the power that the power storage device has used, such as 20%, that is, the power storage device has used 20% of the power and the remaining 80% of the power. In some feasible embodiments, when the discharge depth reaches a preset discharge depth, in order to extend the discharge time of the power storage device, the base station may be put into an energy-saving state. In some feasible embodiments, the preset discharge depth may be 40% discharge or 60% discharge, that is, the corresponding remaining power is 60% and 40%. In some feasible embodiments, the discharge depth information includes that a discharge depth of the power storage device is greater than or equal to a preset discharge depth, or a discharge depth of the power storage device is less than the preset discharge depth.
  • the power generation system includes a solar power generation system, an oil turbine power generation system and a city power supply system.
  • the hybrid power supply is mainly implemented by a hybrid power generation system.
  • the hybrid power system includes a power generation system and an energy storage device. Among them, the mains, oil, and solar power are referred to as a power generation system.
  • the energy storage device includes And it is not limited to lead-acid batteries, lithium batteries, high-temperature batteries, etc. currently used for communication energy.
  • the fuel consumption per unit energy consumption is nearly 6 times the electricity cost.
  • the amount of solar power generation is small, and the battery backup time is required to be long. Therefore, in the power supply process of the hybrid power system, how to extend the battery backup time and ensure the uninterrupted reliability of the base station business is very important.
  • the power storage device may not be used for discharging until the power generation system no longer generates power, and the power storage device may be used for discharging.
  • the electricity generated from hydroelectric power stations may be in a blackout for a long time; for example, at night or dusk, solar power may not be sustainable; if the cost of gasoline is too high, use as little as possible , You need to discharge the storage device.
  • step 303 is performed.
  • the energy saving level when it is necessary to use the power storage device for discharging, it can be determined according to the traffic load information and the discharge depth information whether to save energy and to what level of energy saving.
  • the energy saving level may include multiple energy saving levels, or may include three energy saving levels, which are respectively standard energy saving, general energy saving, and deep energy saving.
  • the energy saving effect of the standard energy saving is 10-15%, which is the Key Performance Indicator (KPI) that does not affect the business of the base station;
  • the energy saving effect of the general energy saving is 15-20% , Affecting some business KPIs (less than 10%), such as turning off some carriers on the base station, reducing some power consumption, may slow down the Internet speed, etc., but compared to standard energy saving, further increase energy saving benefits, extend battery time; this depth
  • the energy saving effect of energy saving is more than 20% energy saving.
  • the impact of business KPI is greater than 10%, but compared with general energy saving, it further increases energy saving income and extends battery time.
  • the traffic load information is used as the peak and non-peak period of the traffic, and the discharge depth is greater than or equal to the preset discharge depth, or less than the preset discharge depth.
  • the discharge depth is greater than or equal to the preset discharge depth, or less than the preset discharge depth.
  • the base station does not enter the energy saving mode.
  • the traffic load information is the peak traffic, at T2 in Figure 4, the battery is fully charged. If the power generation system stops supplying power at this time, the storage equipment enters the discharging state, and the base station enters the standard energy saving mode.
  • the energy saving benefit is 10% to 15 %, At this time it does not affect the business KPI.
  • the traffic load shifts from peak to low peak hours. At this time, the base station turns on the general energy saving mode, and further saves energy when it affects some business KPIs (less than 10%).
  • the energy saving benefits are 15% to 20% to extend storage. Discharge time of electrical equipment.
  • the discharge depth of the power storage device has reached the traditional default value of 60%. If the preset discharge depth of the power storage device has been set at this time ( It can be set to 80%) to further use the discharge. Then the base station needs to enter deep energy saving. At this time, the business KPI impact is greater than 10%, but it can achieve energy saving benefits of more than 20% to delay the discharge time of the power storage equipment. If the power is not restored here at the peak traffic time, the discharge depth information is that the discharge depth of the power storage device is greater than or equal to the preset discharge depth, and the energy saving level is the general energy saving mode. At time T5, when the traffic peak time is reached, if the power generation system resumes power supply at this time, the power storage equipment enters the charging state, and the base station turns off the energy saving mode.
  • the energy saving level is the standard energy saving mode; or, when the The traffic load information is the non-peak period of the traffic, and the discharge depth information is that when the discharge depth of the power storage device is less than the preset discharge depth, the energy saving level is the general energy saving mode; or, when the traffic load information is In the non-peak period of traffic, the discharge depth information is that when the discharge depth of the power storage device is greater than or equal to the preset discharge depth, the energy saving level is the deep energy saving mode; or, when the traffic load information is the traffic service When the discharge depth information is that the discharge depth of the power storage device is greater than or equal to the preset discharge depth, the energy saving level is the general energy saving mode.
  • the steps of "determining the energy saving level of the base station according to the traffic load information and the discharge depth information" may be performed by the base station or by the operation support system. Be limited. According to different execution subjects, it can be divided into the following four cases and discussed separately.
  • the base station and the energy system control unit may be unified in the network management, that is, the same operation support system is used.
  • the base station may be composed of an RRU, a BBU, and a BSC.
  • the BBU is responsible for collecting traffic load information of the base station
  • the energy system control unit is responsible for collecting information on whether the power generation system supplies power and discharge depth information of the power storage equipment.
  • the BBU communicates with the energy system control unit, and the energy system control unit sends the operating status of the power generation system and the discharge depth information of the power storage equipment to the BBU.
  • the BBU according to the current traffic load information and the Discharge depth information to determine the energy-saving level of the base station for adaptive adjustment, such as starting a hierarchical energy-saving mode. Finally, the BBU reports the traffic load information and the discharge depth information to the operation support system, and the operation support system is responsible for counting the traffic load information and the discharge depth information and the corresponding energy saving level.
  • the base station and the energy system control unit may be unified in the network management, that is, the same operation support system is used.
  • the base station may be composed of an RRU, a BBU, and a BSC.
  • the BBU is responsible for collecting traffic load information of the base station
  • the energy system control unit is responsible for collecting information on whether the power generation system supplies power and discharge depth information of the power storage equipment.
  • the BBU reports the collected traffic load information to the operation support system.
  • the energy system control unit reports the operation status of the power generation system (such as power supply and power outages) and the discharge depth information of the power storage equipment to the operation support system.
  • the operation support system The energy saving level of the base station is determined uniformly according to the current traffic load information and the power generation system and discharge depth information for adaptive adjustment, such as starting a hierarchical energy saving mode. At the same time, the operation support system is responsible for counting the traffic load information, the discharge depth information, and the corresponding energy-saving level.
  • FIG. 2-2 is a schematic diagram of another embodiment of the energy-saving system architecture of this application.
  • the operation support system of the base station and the energy system control unit can be separated independently, that is, two different operation support systems are used respectively.
  • the base station may be composed of an RRU, a BBU, and a BSC.
  • the BBU is responsible for collecting traffic load information of the base station
  • the energy system control unit is responsible for collecting information on whether the power generation system supplies power and discharge depth information of the power storage equipment.
  • the BBU and the energy system control unit respectively report the collected data to their respective operation support systems, which are called base station OSS and energy OSS, respectively.
  • the energy system control unit reports the operating status of the power generation system and the discharge depth information of the power storage equipment to the corresponding energy OSS, and the energy OSS transmits the data through the corresponding interface channel with the base station OSS, and the base station OSS transmits the data according to the current traffic.
  • the load information, as well as the power generation system and discharge depth information determine the energy saving level of the base station for adaptive adjustment, and then issue a corresponding hierarchical energy saving mode instruction to the base station.
  • the operation support system is responsible for counting the traffic load information, the discharge depth information, and the corresponding energy-saving level.
  • the operation support system of the base station and the energy system control unit can be separated independently, that is, two different operation support systems are used respectively.
  • the base station may be composed of RRU, BBU, and BSC.
  • the BBU is responsible for collecting the traffic load information of the base station
  • the energy system control unit is responsible for collecting information on whether the power generation system supplies power and discharge depth information of the power storage equipment.
  • the energy system control unit is responsible for collecting information on whether the power generation system supplies power and discharge depth information of the power storage equipment.
  • the BBU and the energy system control unit respectively report the data collected to their respective operating support systems.
  • the energy system control unit reports the operating status of the power generation system and the discharge depth information of the power storage equipment to the corresponding energy OSS.
  • the energy OSS then transmits the data through the corresponding interface channel with the base station OSS, and the base station OSS sends the energy data to the bottom. It is sent to the BBU.
  • the BBU determines the energy saving level of the base station according to the current traffic load information and the power generation system and discharge depth information, and determines the energy saving level of the base station for adaptive adjustment.
  • the operation support system is responsible for counting the traffic load information, the discharge depth information, and the corresponding energy-saving level.
  • FIG. 4 is an energy-saving device 400 including:
  • the obtaining module 401 is configured to obtain traffic load information of a base station and discharge depth information of a power storage device.
  • a determining module 402 is configured to determine an energy saving level of the base station according to the traffic load information and the discharge depth information, so that the base station works according to the energy saving level.
  • the discharge time of the power storage equipment is extended to the maximum extent.
  • the traffic load information includes peak traffic traffic and non-peak traffic segments. Because the peak traffic traffic and non-peak traffic segments are considered, energy saving can be performed for different traffic needs.
  • the discharge depth information includes that a discharge depth of the power storage device is greater than or equal to a preset discharge depth, or a discharge depth of the power storage device is less than the preset discharge depth.
  • the preset discharge depth is 40% discharge or 60% discharge. Since the discharge depth of the power storage device is considered, energy saving can be performed for different discharge depths of the power storage device.
  • the energy saving level includes standard energy saving, general energy saving, and deep energy saving.
  • the determining module is specifically configured to:
  • the energy saving level is the standard energy saving mode.
  • the energy saving level is the general energy saving mode.
  • the energy saving level is the deep energy saving mode.
  • the energy-saving level is the general energy-saving mode, which is performed in different situations. Different energy-saving levels make it possible to achieve the best energy-saving effect.
  • the obtaining module is further configured to obtain discharge information of the energy storage device, where the discharge information is a discharge state or a non-discharge state, and if the discharge information is the discharge state, the execution is performed according to the traffic.
  • FIG. 5 is an energy-saving device 500 including:
  • the communication port 502 is configured to obtain traffic load information of a base station and discharge depth information of a power storage device.
  • the processor 501 is configured to determine an energy saving level of the base station according to the traffic load information and the discharge depth information, so that the base station works according to the energy saving level.
  • the discharge time of the power storage equipment is extended to the maximum extent.
  • the traffic load information includes peak traffic traffic and non-peak traffic segments. Because the peak traffic traffic and non-peak traffic segments are considered, energy saving can be performed for different traffic needs.
  • the discharge depth information includes that the discharge depth of the power storage device is greater than or equal to a preset discharge depth, or the discharge depth of the power storage device is less than the preset discharge depth. In some feasible embodiments, the The preset discharge depth is 40% or 60%. Because the discharge depth of the power storage device is taken into account, energy can be saved for different depths of the power storage device.
  • the energy saving level includes standard energy saving, general energy saving, and deep energy saving.
  • the processor is specifically configured to:
  • the energy saving level is the standard energy saving mode.
  • the energy saving level is the general energy saving mode.
  • the energy saving level is the deep energy saving mode.
  • the energy-saving level is the general energy-saving mode, which is performed in different situations. Different energy-saving levels make it possible to achieve the best energy-saving effect.
  • the communication port 502 before determining the energy saving level of the base station according to the traffic load information and the discharge depth information, is further configured to obtain discharge information of the energy storage device, the discharge The information is either a discharged state or a non-discharged state.
  • the processor 501 is further configured to execute the step of determining the energy saving level of the base station according to the traffic load information and the discharge depth information if the discharge information is the discharge state.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center. Transmission via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present invention essentially or part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium Including a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present invention.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本发明实施例公开了一种基站设备的节能方法和设备,用于确定基站设备的节能级别。本发明实施例方法包括:获取基站的话务负荷信息和储电设备的放电深度信息;根据所述话务负荷信息和所述放电深度信息确定所述基站的节能级别,以使得所述基站根据所述节能级别进行工作。通过获取基站的话务负荷信息和储电设备的放电深度信息,然后根据该话务负荷信息和该放电深度信息确定该基站的节能级别,以使得所述基站根据所述节能级别进行工作,可以在保障业务的运行的前提下,最大限度地延长储电设备的放电时长。

Description

一种基站设备的节能方法和设备
本申请要求于2018年6月27日提交中国专利局、申请号为201810682368.9、发明名称为“一种基站设备的节能方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及一种基站设备的节能方法和设备。
背景技术
在缺乏市电基础设施或者市电不稳定的场景下,基站通常采用混合供电的解决方案,包括电混(市电和储电设备混合),油混(油机和储电设备混合)和光混(太阳能和储电设备混合)三种供电解决方案。
目前,通信厂商在混电场景下,对基站的供电采用发电系统(市电、油机或太阳能)和储电设备交替给供电的方案,具体方案如下:
1、发电系统供电:发电系统运行过程中,边给基站供电,边给储电设备充电。当储电设备的充电量达到满容量的预设比例时,比如95%,则停止给储电设备充电。如果是油混场景,此时将停止油机供电,切换到储电设备供电,以达到减少油机运行的目的。光混和电混场景则继续使用发电系统给储电设备供电,直到太阳能或者市电掉电为止。
2、储电设备放电:发电系统停止工作时,如市电断电,无日照,油机停止运行等情况下,通过储电设备放电给基站放电,直到市电、太阳能或油机恢复,或者储电设备的放电深度(depth of discharge,DOD)达到某一设定门限,如铅酸储电设备的DOD到达放电60%或者锂储电设备的DOD到达85%,则储电设备停止放电。
上述供电方案,光混场景中若遇到雨季,连续雨天,电混场景中市电长期断电,基站通过储电设备放电来放电,在储电设备配置一定时,需要尽量延长储电设备的放电时间,才能保证基站服务的可靠性。而油混场景中,储电设备放电时间的长短将直接影响油机的运行时间,即可以通过延长储电设备的放电时间来节省油费。
发明内容
本发明实施例提供了一种基站设备的节能方法和设备,用于确定基站设备的节能级别。
本申请第一方面提供了一种基站设备的节能方法,包括:
通过获取基站的话务负荷信息和储电设备的放电深度信息,然后根据该话务负荷信息和该放电深度信息确定该基站的节能级别,最后使得该基站根据该节能级别进行工作,由于通过获取基站的话务负荷信息和储电设备的放电深度信息,然后根据该话务负荷信息和该放电深度信息确定该基站的节能级别,以使得所述基站根据所述节能级别进行工作,可以在保障业务的运行的前提下,最大限度地延长储电设备的放电时长。
在一些可行的实施例中,该话务负荷信息包括话务业务高峰和话务非高峰段。在本申请实施例中,可以设置预设量,当话务承载量大于预设值时,称为业务高峰,否则,称为 非高峰段。在本申请实施例中,该话务负荷信息可以包括话务业务高峰和话务非高峰段。当使用储电设备放电时,需要考虑不同时间点的话务承载量,具体的,若某个时间点的话务承载量较高,那么需要提供更多的放电,某个时间点话务承载量较低,那么可以提供较少的电量。由于考虑了话务业务高峰和话务非高峰段,可以针对不同的话务需求进行节能。
在一些可行的实施例中,该放电深度信息包括该储电设备的放电深度大于等于预设放电深度,或该储电设备的放电深度小于该预设放电深度,在一些可行的实施例中,该预设放电深度为放电40%或放电60%,由于考虑了储电设备的放电深度,可以针对不同的储电设备的放电深度进行节能。
在一些可行的实施例中,该节能级别包括标准节能、一般节能和深度节能,在一些可行的实施例中,该标准节能的节能效果为节能10-15%,该一般节能的节能效果为节能15-20%,该深度节能的节能效果为节能20%以上,在一些可行的实施例中,该节能设备根据该话务负荷信息和该放电深度信息确定该基站的节能级别包括:当该话务负荷信息为该话务业务高峰,该放电深度信息为该储电设备的放电深度小于该预设放电深度时,该节能级别为该标准节能模式;或,当该话务负荷信息为该话务非高峰段,该放电深度信息为该储电设备的放电深度小于该预设放电深度时,该节能级别为该一般节能模式;或,当该话务负荷信息为该话务非高峰段,该放电深度信息为该储电设备的放电深度大于等于该预设放电深度时,该节能级别为该深度节能模式;或,当该话务负荷信息为该话务业务高峰,该放电深度信息为该储电设备的放电深度大于等于该预设放电深度时,该节能级别为该一般节能模式,通过不同的情况进行不同的节能级别,使得实现最好的节能效果。
在一些可行的实施例中,该根据该话务负荷信息和该放电深度信息确定该基站的节能级别之前,还包括:获取该储能设备的放电信息,该放电信息为放电状态或非放电状态;若该放电信息为该放电状态,则执行该根据该话务负荷信息和该放电深度信息确定该基站的节能级别的步骤。在一些可行的实施例中,该发电系统包括太阳能发电系统、油机发电系统和市电供系统。由于在发电系统停止供电的时候再进行储电设备的供电,充分利用了发电系统,也充分体现了储电设备的功能,同时使储电设备可以最长时间的工作。
本申请第二方面提供了一种节能设备,包括:
获取模块,用于获取基站的话务负荷信息和储电设备的放电深度信息。确定模块,用于根据该话务负荷信息和该放电深度信息确定该基站的节能级别,以使得该基站根据该节能级别进行工作。
通过获取基站的话务负荷信息和储电设备的放电深度信息,然后根据该话务负荷信息和该放电深度信息确定该基站的节能级别,以使得所述基站根据所述节能级别进行工作,可以在保障业务的运行的前提下,最大限度地延长储电设备的放电时长。
在一些可行的实施例中,该话务负荷信息包括话务业务高峰和话务非高峰段,由于考虑了话务业务高峰和话务非高峰段,可以针对不同的话务需求进行节能。
在一些可行的实施例中,该放电深度信息包括该储电设备的放电深度大于等于预设放电深度,或该储电设备的放电深度小于该预设放电深度,在一些可行的实施例中,该预设放电深度为放电40%或放电60%,由于考虑了储电设备的放电深度,可以针对不同的储电设备的放电深度进行节能。
在一些可行的实施例中,该节能级别包括标准节能、一般节能和深度节能。
在一些可行的实施例中,该确定模块具体用于:
当该话务负荷信息为该话务业务高峰,该放电深度信息为该储电设备的放电深度小于该预设放电深度时,该节能级别为该标准节能模式。或,当该话务负荷信息为该话务非高峰段,该放电深度信息为该储电设备的放电深度小于该预设放电深度时,该节能级别为该一般节能模式。或,当该话务负荷信息为该话务非高峰段,该放电深度信息为该储电设备的放电深度大于等于该预设放电深度时,该节能级别为该深度节能模式。或,当该话务负荷信息为该话务业务高峰,该放电深度信息为该储电设备的放电深度大于等于该预设放电深度时,该节能级别为该一般节能模式,通过不同的情况进行不同的节能级别,使得实现最好的节能效果。
在一些可行的实施例中,该获取模块,还用于获取该储能设备的放电信息,该放电信息为放电状态或非放电状态,若该放电信息为该放电状态,则执行根据该话务负荷信息和该放电深度信息确定该基站的节能级别的步骤。
本申请第三方面提供了一种节能设备,包括:
处理器和通信端口。
该通信端口,用于获取基站的话务负荷信息和储电设备的放电深度信息。
该处理器,用于根据该话务负荷信息和该放电深度信息确定该基站的节能级别,以使得该基站根据该节能级别进行工作。
通过获取基站的话务负荷信息和储电设备的放电深度信息,然后根据该话务负荷信息和该放电深度信息确定该基站的节能级别,以使得所述基站根据所述节能级别进行工作,可以在保障业务的运行的前提下,最大限度地延长储电设备的放电时长。
在一些可行的实施例中,该话务负荷信息包括话务业务高峰和话务非高峰段,由于考虑了话务业务高峰和话务非高峰段,可以针对不同的话务需求进行节能。
在一些可行的实施例中,放电深度信息包括该储电设备的放电深度大于等于预设放电深度,或该储电设备的放电深度小于该预设放电深度,在一些可行的实施例中,该预设放电深度为放电40%或放电60%,由于考虑了储电设备的放电深度,可以针对不同的储电设备的放电深度进行节能。
在一些可行的实施例中,该节能级别包括标准节能、一般节能和深度节能。
在一些可行的实施例中,该处理器具体用于:
当该话务负荷信息为该话务业务高峰,该放电深度信息为该储电设备的放电深度小于该预设放电深度时,该节能级别为该标准节能模式。或,当该话务负荷信息为该话务非高峰段,该放电深度信息为该储电设备的放电深度小于该预设放电深度时,该节能级别为该一般节能模式。或,当该话务负荷信息为该话务非高峰段,该放电深度信息为该储电设备的放电深度大于等于该预设放电深度时,该节能级别为该深度节能模式。或,当该话务负荷信息为该话务业务高峰,该放电深度信息为该储电设备的放电深度大于等于该预设放电深度时,该节能级别为该一般节能模式,通过不同的情况进行不同的节能级别,使得实现最好的节能效果。
在一些可行的实施例中,该根据该话务负荷信息和该放电深度信息确定该基站的节能 级别之前,还包括:该通信端口,还用于获取该储能设备的放电信息,该放电信息为放电状态或非放电状态。该处理器,还用于若该放电信息为该放电状态,则执行该根据该话务负荷信息和该放电深度信息确定该基站的节能级别的步骤。由于在发电系统停止供电的时候再进行储电设备的放电,充分利用了发电系统,也充分体现了储电设备的功能,同时使储电设备可以最长时间的工作。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
从以上技术方案可以看出,本发明实施例具有以下优点:
通过获取基站的话务负荷信息和储电设备的放电深度信息,然后根据该话务负荷信息和该放电深度信息确定该基站的节能级别,以使得所述基站根据所述节能级别进行工作,可以在保障业务的运行的前提下,最大限度地延长储电设备的放电时长。
附图说明
图1为一种节能方法的实施例示意图;
图2-1为本申请节能系统架构的实施例示意图;
图2-2为本申请节能系统架构的另一实施例示意图;
图3为一种节能方法的另一实施例示意图;
图4为一种节能设备的实施例示意图;
图5为一种节能设备的另一实施例示意图。
具体实施方式
本发明实施例提供了一种基站设备的节能方法以及设备,用于确定该基站的节能级别。
为了使本技术领域的人员更好地理解本申请实施例方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在缺乏市电基础设施或者市电不稳定的场景下,通信基站通常采用混合供电的解决方案,包括电混(市电和储电设备混合),油混(油机和储电设备混合)和光混(太阳能和储电设备混合)三种供电解决方案。
目前,通信厂商在混电场景下,基站供电采用发电系统(市电、油电或太阳能电)和储电设备交替给供电的方案。发电系统供电:发电系统运行过程中,边给基站供电,边给储电设备充电。当储电设备的充电量达到满容量的预设比例时,比如95%,则停止给储电 设备充电。如果是油混场景,此时将停止油机供电,切换到储电设备放电,以达到减少油机运行的目的。光混和电混场景则继续使用发电系统给储电设备充电,直到太阳能或者市电掉电为止。储电设备放电:发电系统停止工作时,如市电断电,无日照,油机停止运行等情况下,通过储电设备放电给基站放电,直到市电、太阳能电或油电恢复,或者储电设备的放电深度(depth of discharge,DOD)达到某一设定门限,如铅酸储电设备的DOD到达放电60%或者锂储电设备的DOD到达85%,则储电设备停止放电。
但是,若光混场景中遇到连续雨天,电混场景中市电长期断电,基站通过储电设备放电,在储电设备配置一定时,需要尽量延长储电设备的放电时间,才能保证基站服务的可靠性。而油混场景中,储电设备放电时间的长短将直接影响油机的运行时间,即可以通过延长储电设备的放电时间来节省油费。
为此,请参考图1,为一种节能方法的实施例示意图,包括:
101、获取基站的话务负荷信息和储电设备的放电深度信息。
102、根据所述话务负荷信息和所述放电深度信息确定所述基站的节能级别,以使得所述基站根据所述节能级别进行工作。
本申请通过获取基站的话务负荷信息和储电设备的放电深度信息,然后根据该话务负荷信息和该放电深度信息确定该基站的节能级别,以使得所述基站根据所述节能级别进行工作,可以在保障业务的运行的前提下,最大限度地延长储电设备的放电时长。
请参考图2-1,为本申请节能系统架构200,包括运营支撑系统210(The Office of Strategic Services,OSS)、基站220、能源系统控制单元230和发电系统240。
在本申请实施例中,基站220即公用移动通信基站是无线电台站的一种形式,是指在一定的无线电覆盖区中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台。在一些可行的实施例中,基站220包括基站控制器(Base Station Controller,BSC)、基带处理单元(Building Base band Unit,BBU)和射频拉远单元(Radio Remote Unit,RRU),其中,BSC用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内移动台的过区切换进行控制等,BBU用于传送基带信号,RRU用于在远端将基带光信号转成射频信号放大传送出去。
在本申请实施例中,运营支撑系统210是一个综合的业务运营和管理平台,同时也融合了传统IP数据业务与移动增值业务的综合管理平台,它主要由网络管理、系统管理、计费、营业、账务和客户服务等部分组成,系统间通过统一的信息总线有机整合在一起。它不仅能在帮助运营商制订符合自身特点的运营支撑系统的同时帮助确定系统的发展方向,还能帮助用户制订系统的整合标准的,改善和提高用户的服务水平。
在本申请实施例中,能源系统控制单元230连接发电系统240,用于获取发电系统240中的储电设备的放电深度信息,并将该放电深度信息传送给基站220或者运营支撑系统210。在一些可行的实施例中,能源系统控制单元230可以为服务器,该服务器可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上中央处理器(central processing units,CPU)(例如,一个或一个以上处理器)和存储器,一个或一个以上存储应用程序或数据的存储介质(例如一个或一个以上海量存储设备)。其中,存储器和存储介质可以是短暂存储或持久存储。存储在存储介质的程序可以包括一个或一个以上模块(图示没标出), 每个模块可以包括对服务器中的一系列指令操作。更进一步地,中央处理器可以设置为与存储介质通信,在服务器上执行存储介质中的一系列指令操作。
在本申请实施例中,发电系统240可以包括发电系统和储电设备。在本申请实施例中,储电设备指的是盛有电解质溶液和金属电极以产生电流的杯、槽或其他容器或复合容器,能将化学能转化成电能的装置。储电设备的性能参数主要有电动势、容量、比能量和电阻。利用储电设备作为能量来源,可以得到具有稳定电压,稳定电流,长时间稳定放电,受外界影响很小的电流,并且电池结构简单,携带方便,充放电操作简便易行,不受外界气候和温度的影响,性能稳定可靠,在现代社会生活中的各个方面发挥有很大作用。
请参考图3,为一种节能方法的另一实施例示意图,包括:
301、获取基站的话务负荷信息和储电设备的放电深度信息。
在一些可行的实施例中,可以通过连接发电系统的能源系统控制单元,获取储能设备的放电深度,可以通过基站获取话务负荷信息。
在本申请实施例中,话务负荷信息包括基站在一个周期的不同时间点的话务承载量,一般而言,一个周期可以为一天。在一些可行的实施例中,一天内的话务承载量是变化的,在不同的话务承载量的情况下,需要消耗的电量是不同的,一般而言,话务承载量越大的时候,需要消耗的电量越多。
在一些可行的实施例中,一个周期内的话务承载量可以为不同的数量级,如从小到大的数量级,话务承载量逐步变大;在一些可行的实施例中,也可以简单地将话务承载量的大小分为2个级别,分别是业务高峰和非高峰段。
在本申请实施例中,可以设置预设量,当话务承载量大于预设值时,称为业务高峰,否则,称为非高峰段。在本申请实施例中,该话务负荷信息可以包括话务业务高峰和话务非高峰段。当使用储电设备放电时,需要考虑不同时间点的话务承载量,具体的,若某个时间点的话务承载量较高,那么需要提供更多的放电,某个时间点话务承载量较低,那么可以提供较少的电量。
在本申请实施例中,当正在使用或者使用过储电设备,可以检测储电设备的放电深度。需要说明的是,放电深度为储电设备已经使用的电量,如20%,即该储电设备已经使用20%的电量,剩余80%的电量。在一些可行的实施例中,当放电深度到达预设放电深度时,为了延长储电设备的放电时间,可以将基站进入节能的状态。在一些可行的实施例中,该预设放电深度可以为放电40%或者放电60%,即对应的剩余电量为60%和40%。在一些可行的实施例中,该放电深度信息包括该储电设备的放电深度大于等于预设放电深度,或该储电设备的放电深度小于该预设放电深度。
302、获取该储能设备的放电信息,该放电信息为放电状态或非放电状态;
该发电系统包括太阳能发电系统、油机发电系统和市电供系统。在一些可行的实施例中,进行混合供电时,主要通过混合发电系统实现,混电系统包括发电系统和储能设备,其中,市电、油电和太阳能电称为发电系统,储能设备包含且不仅限于目前用于通信能源的铅酸电池,锂电池,高温电池等。在油混场景下,由于油费成本较高,一般情况下,单位能耗下油耗是电费近6倍。在光混场景中,若遇到连续阴雨天,太阳能发电量少,要求电池备电时间长。因此,混电系统的供电过程中,如何延长电池的备电时间,保证基站业 务不间断的可靠性问题至关重要。
需要说明的是,在本申请实施例中,若发电系统在供电的时候,可以不使用储电设备进行放电,直到发电系统不再发电,则可以使用储电设备进行放电。如在干旱的情况下,从水能发电站发电的市电,可能会处于较长时间的停电;如晚上或者黄昏时候,太阳能电可能无法持续;如汽油成本太高,尽量减少使用的情况下,则需要储电设备进行放电。当该放电信息为放电状态,则执行步骤303。
303、根据该话务负荷信息和该放电深度信息确定该基站的节能级别,该基站根据该节能级别进行工作。
在本申请实施例中,当需要使用储电设备进行放电,可以根据该话务负荷信息和该放电深度信息确定是否要节能,要节能到什么节能级别。在一些可行的实施例中,节能级别可以包括多个节能级别,也可以包括三个节能级别,分别为标准节能、一般节能和深度节能。需要说明的是,该标准节能的节能效果为节能10-15%,此时为不影响基站的业务的关键绩效指标(Key Performance Indicator,KPI);该一般节能的节能效果为节能15-20%,影响部分业务KPI(小于10%),如基站关掉一些载波,降一些功耗,可能会使得上网速度减慢等,但是相比较标准节能,更进一步增加节能收益,延长电池时间;该深度节能的节能效果为节能20%以上,此时业务KPI影响大于10%,但是相比较一般节能,更进一步增加节能收益,更加延长电池时间。
以话务负荷信息为话务高峰和非高峰段,放电深度为大于等于预设放电深度,或小于所述预设放电深度两种情况为例进行说明。请参考图4,为xx。
可知,在话务高峰时段(如T1时刻),发电系统运行,储电设备处于充电状态,由于供电系统有充足的电能,基站不进入节能模式。当话务负荷信息为话务高峰时,在图4中的T2时刻,电池电量充满,如果此时发电系统停止供电,储电设备进入放电状态,基站进入标准节能模式,节能收益10%到15%,此时为不影响业务KPI。在T3时刻,话务负荷从高峰转到低峰时段,此时基站开启一般节能模式,在影响部分业务KPI(小于10%)的情况下进一步节能,节能收益15%到20%,以延长储电设备的放电时间。
在储电设备的放电期间的T4时刻,此时仍然处于话务低峰时段,但是储电设备的放电深度已经到达传统默认值60%,如果此时已经设置储电设备的预设放电深度(可设置到80%)来进一步使用放电来,则基站需要进入深度节能,此时业务KPI影响大于10%,但是可达到20%以上节能收益,以延迟储电设备的放电时间。若在话务高峰时刻,若此处仍未恢复供电,该放电深度信息为该储电设备的放电深度大于等于该预设放电深度时,该节能级别为该一般节能模式。在T5时刻,到达话务高峰时刻,若此时若发电系统恢复供电,储电设备进入充电状态,基站关闭节能模式。
总体而言,当该话务负荷信息为该话务业务高峰,该放电深度信息为该储电设备的放电深度小于该预设放电深度时,该节能级别为该标准节能模式;或,当该话务负荷信息为该话务非高峰段,该放电深度信息为该储电设备的放电深度小于该预设放电深度时,该节能级别为该一般节能模式;或,当该话务负荷信息为该话务非高峰段,该放电深度信息为该储电设备的放电深度大于等于该预设放电深度时,该节能级别为该深度节能模式;或,当该话务负荷信息为该话务业务高峰,该放电深度信息为该储电设备的放电深度大于等于 该预设放电深度时,该节能级别为该一般节能模式。
需要说明的是,在本申请实施例中,“根据该话务负荷信息和该放电深度信息确定该基站的节能级别”的步骤可以由基站执行,也可以由运营支撑系统来执行,此处不做限定。根据不同的执行主体,可以分成以下4种情况分别讨论。
一、BBU执行。
在一些可行的实施例中,可以将基站和能源系统控制单元统一网管,即使用同一个运营支撑系统。具体的,基站可以由RRU、BBU和BSC组成,其中BBU负责采集基站的话务负荷信息,能源系统控制单元负责采集发电系统是否供电的信息和储电设备的放电深度信息。在本申请实施例中,BBU和能源系统控制单元进行交互通信,能源系统控制单元将发电系统的运行状态和储电设备的放电深度信息发送给BBU,BBU根据当前的该话务负荷信息和该放电深度信息,确定该基站的节能级别,以进行自适应的调节,如启动分级节能模式。最后,BBU将该话务负荷信息和该放电深度信息上报给运营支撑系统,运营支撑系统负责统计该话务负荷信息和该放电深度信息以及相应的节能级别。
二、运营支撑系统执行。
在一些可行的实施例中,可以将基站和能源系统控制单元统一网管,即使用同一个运营支撑系统。具体的,基站可以由RRU、BBU和BSC组成,其中BBU负责采集基站的话务负荷信息,能源系统控制单元负责采集发电系统是否供电的信息和储电设备的放电深度信息。BBU将采集到的该话务负荷信息上报给运营支撑系统,能源系统控制单元将发电系统的运行状态(如供电和停电)和储电设备的该放电深度信息上报给运营支撑系统,运营支撑系统统一根据当前的话务负荷信息以及发电系统和放电深度信息确定该基站的节能级别,以进行自适应调节,如启动分级节能模式。同时,运营支撑系统负责统计该话务负荷信息和该放电深度信息以及相应的节能级别。
三、两个运营支撑系统分别执行,请参考图2-2,为本申请节能系统架构的另一实施例示意图。
在一些可行的实施例中,可以将基站和能源系统控制单元的运营支撑系统独立分开,即分别使用两个不同的运营支撑系统。具体的,基站可以由RRU、BBU和BSC组成,其中BBU负责采集基站的话务负荷信息,能源系统控制单元负责采集发电系统是否供电的信息和储电设备的放电深度信息。BBU和能源系统控制单元分别将各自采集到的数据上报给各自的运营支撑系统,分别称为基站OSS和能源OSS。
能源系统控制单元将发电系统的运行状态和储电设备的该放电深度信息上报给对应的能源OSS上,能源OSS再通过和基站OSS的对应接口通道将数据传过去,基站OSS根据当前的话务负荷信息,以及发电系统和放电深度信息确定该基站的节能级别,以进行自适应调节,再给基站下发对应的分级节能模式的指令。同时,运营支撑系统负责统计该话务负荷信息和该放电深度信息以及相应的节能级别。
四、两个运营支撑系统分开,BBU执行,请参考图2-2。
在一些可行的实施例中,可以将基站和能源系统控制单元的运营支撑系统独立分开,即分别使用两个不同的运营支撑系统。具体的,基站可以由RRU、BBU和BSC组成,其中BBU负责采集基站的话务负荷信息,能源系统控制单元负责采集发电系统是否供电的信息 和储电设备的放电深度信息。能源系统控制单元负责采集发电系统是否供电的信息和储电设备的放电深度信息。BBU和能源系统控制单元分别将各自采集到的数据上报给各自的运营支撑系统。
能源系统控制单元将发电系统的运行状态和储电设备的该放电深度信息上报给对应的能源OSS上,能源OSS再通过和基站OSS的对应接口通道将数据传过去,基站OSS将能源数据后在下发给BBU,BBU根据当前的话务负荷信息以及发电系统和放电深度信息确定该基站的节能级别,确定该基站的节能级别,以进行自适应调节。同时,运营支撑系统负责统计该话务负荷信息和该放电深度信息以及相应的节能级别。
上面对方法部分进行了描述,以下以功能模块的角度进行描述,请参考图4,为一种节能设备400,包括:
获取模块401,用于获取基站的话务负荷信息和储电设备的放电深度信息。
确定模块402,用于根据该话务负荷信息和该放电深度信息确定该基站的节能级别,以使得该基站根据该节能级别进行工作。
通过获取基站的话务负荷信息和储电设备的放电深度信息,然后根据该话务负荷信息和该放电深度信息确定该基站的节能级别,以使得所述基站根据所述节能级别进行工作,可以在保障业务的运行的前提下,最大限度地延长储电设备的放电时长。
在一些可行的实施例中,该话务负荷信息包括话务业务高峰和话务非高峰段,由于考虑了话务业务高峰和话务非高峰段,可以针对不同的话务需求进行节能。
在一些可行的实施例中,该放电深度信息包括该储电设备的放电深度大于等于预设放电深度,或该储电设备的放电深度小于该预设放电深度,在一些可行的实施例中,该预设放电深度为放电40%或放电60%,由于考虑了储电设备的放电深度,可以针对不同的储电设备的放电深度进行节能。
在一些可行的实施例中,该节能级别包括标准节能、一般节能和深度节能。
在一些可行的实施例中,该确定模块具体用于:
当该话务负荷信息为该话务业务高峰,该放电深度信息为该储电设备的放电深度小于该预设放电深度时,该节能级别为该标准节能模式。或,当该话务负荷信息为该话务非高峰段,该放电深度信息为该储电设备的放电深度小于该预设放电深度时,该节能级别为该一般节能模式。或,当该话务负荷信息为该话务非高峰段,该放电深度信息为该储电设备的放电深度大于等于该预设放电深度时,该节能级别为该深度节能模式。或,当该话务负荷信息为该话务业务高峰,该放电深度信息为该储电设备的放电深度大于等于该预设放电深度时,该节能级别为该一般节能模式,通过不同的情况进行不同的节能级别,使得实现最好的节能效果。
在一些可行的实施例中,该获取模块,还用于获取该储能设备的放电信息,该放电信息为放电状态或非放电状态,若该放电信息为该放电状态,则执行根据该话务负荷信息和该放电深度信息确定该基站的节能级别的步骤,由于在发电系统停止供电的时候再进行储电设备的放电,充分利用了发电系统,也充分体现了储电设备的功能,同时使储电设备可以最长时间的工作。
请参考图5,为一种节能设备500,包括:
处理器501和通信端口502。
该通信端口502,用于获取基站的话务负荷信息和储电设备的放电深度信息。
该处理器501,用于根据该话务负荷信息和该放电深度信息确定该基站的节能级别,以使得该基站根据该节能级别进行工作。
通过获取基站的话务负荷信息和储电设备的放电深度信息,然后根据该话务负荷信息和该放电深度信息确定该基站的节能级别,以使得所述基站根据所述节能级别进行工作,可以在保障业务的运行的前提下,最大限度地延长储电设备的放电时长。
在一些可行的实施例中,该话务负荷信息包括话务业务高峰和话务非高峰段,由于考虑了话务业务高峰和话务非高峰段,可以针对不同的话务需求进行节能。
在一些可行的实施例中,放电深度信息包括该储电设备的放电深度大于等于预设放电深度,或该储电设备的放电深度小于该预设放电深度,在一些可行的实施例中,该预设放电深度为放电40%或放电60%,由于考虑了储电设备的放电深度,可以针对不同的储电设备的放电深度进行节能。
在一些可行的实施例中,该节能级别包括标准节能、一般节能和深度节能。
在一些可行的实施例中,该处理器具体用于:
当该话务负荷信息为该话务业务高峰,该放电深度信息为该储电设备的放电深度小于该预设放电深度时,该节能级别为该标准节能模式。或,当该话务负荷信息为该话务非高峰段,该放电深度信息为该储电设备的放电深度小于该预设放电深度时,该节能级别为该一般节能模式。或,当该话务负荷信息为该话务非高峰段,该放电深度信息为该储电设备的放电深度大于等于该预设放电深度时,该节能级别为该深度节能模式。或,当该话务负荷信息为该话务业务高峰,该放电深度信息为该储电设备的放电深度大于等于该预设放电深度时,该节能级别为该一般节能模式,通过不同的情况进行不同的节能级别,使得实现最好的节能效果。
在一些可行的实施例中,该根据该话务负荷信息和该放电深度信息确定该基站的节能级别之前,还包括:该通信端口502,还用于获取该储能设备的放电信息,该放电信息为放电状态或非放电状态。该处理器501,还用于若该放电信息为该放电状态,则执行该根据该话务负荷信息和该放电深度信息确定该基站的节能级别的步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如, DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (22)

  1. 一种基站设备的节能方法,其特征在于,包括:
    获取基站的话务负荷信息和储电设备的放电深度信息;
    根据所述话务负荷信息和所述放电深度信息确定所述基站的节能级别,以使得所述基站根据所述节能级别进行工作。
  2. 根据权利要求1所述方法,其特征在于,所述话务负荷信息包括话务业务高峰和话务非高峰段。
  3. 根据权利要求1或2所述方法,其特征在于,所述放电深度信息包括所述储电设备的放电深度大于等于预设放电深度,或所述储电设备的放电深度小于所述预设放电深度。
  4. 根据权利要求3所述方法,其特征在于,所述预设放电深度为放电40%或放电60%。
  5. 根据权利要求3或4所述方法,其特征在于,所述节能级别包括标准节能、一般节能和深度节能。
  6. 根据权利要求5所述方法,其特征在于,所述标准节能的节能效果为节能10-15%,所述一般节能的节能效果为节能15-20%,所述深度节能的节能效果为节能20%以上。
  7. 根据权利要求5或6所述方法,其特征在于,所述节能设备根据所述话务负荷信息和所述放电深度信息确定所述基站的节能级别包括:
    当所述话务负荷信息为所述话务业务高峰,所述放电深度信息为所述储电设备的放电深度小于所述预设放电深度时,所述节能级别为所述标准节能模式;
    或,
    当所述话务负荷信息为所述话务非高峰段,所述放电深度信息为所述储电设备的放电深度小于所述预设放电深度时,所述节能级别为所述一般节能模式;
    或,
    当所述话务负荷信息为所述话务非高峰段,所述放电深度信息为所述储电设备的放电深度大于等于所述预设放电深度时,所述节能级别为所述深度节能模式;
    或,
    当所述话务负荷信息为所述话务业务高峰,所述放电深度信息为所述储电设备的放电深度大于等于所述预设放电深度时,所述节能级别为所述一般节能模式。
  8. 根据权利要求1-7中任一项所述方法,其特征在于,所述根据所述话务负荷信息和所述放电深度信息确定所述基站的节能级别之前,还包括:
    获取所述储能设备的放电信息,所述放电信息为放电状态或非放电状态;
    若所述放电信息为所述非放电状态,则执行所述根据所述话务负荷信息和所述放电深度信息确定所述基站的节能级别的步骤。
  9. 根据权利要求8所述方法,其特征在于,所述发电系统包括太阳能发电系统、油机发电系统和市电供系统。
  10. 一种节能设备,其特征在于,包括:
    获取模块,用于获取基站的话务负荷信息和储电设备的放电深度信息;
    确定模块,用于根据所述话务负荷信息和所述放电深度信息确定所述基站的节能级别,以使得所述基站根据所述节能级别进行工作。
  11. 根据权利要求10所述节能设备,其特征在于,所述话务负荷信息包括话务业务高峰和话务非高峰段。
  12. 根据权利要求10或11所述节能设备,其特征在于,所述放电深度信息包括所述储电设备的放电深度大于等于预设放电深度,或所述储电设备的放电深度小于所述预设放电深度。
  13. 根据权利要求12所述节能设备,其特征在于,所述节能级别包括标准节能、一般节能和深度节能。
  14. 根据权利要求13所述节能设备,其特征在于,所述确定模块具体用于:
    当所述话务负荷信息为所述话务业务高峰,所述放电深度信息为所述储电设备的放电深度小于所述预设放电深度时,所述节能级别为所述标准节能模式;
    或,
    当所述话务负荷信息为所述话务非高峰段,所述放电深度信息为所述储电设备的放电深度小于所述预设放电深度时,所述节能级别为所述一般节能模式;
    或,
    当所述话务负荷信息为所述话务非高峰段,所述放电深度信息为所述储电设备的放电深度大于等于所述预设放电深度时,所述节能级别为所述深度节能模式;
    或,
    当所述话务负荷信息为所述话务业务高峰,所述放电深度信息为所述储电设备的放电深度大于等于所述预设放电深度时,所述节能级别为所述一般节能模式。
  15. 根据权利要求10-14中任一项所述节能设备,其特征在于,
    所述获取模块,还用于获取所述储能设备的放电信息,所述放电信息为放电状态或非放电状态,若所述放电信息为所述非放电状态,则执行根据所述话务负荷信息和所述放电深度信息确定所述基站的节能级别的步骤。
  16. 一种节能设备,其特征在于,包括:
    处理器和存储器;
    所述存储器,用于存储程序;所述处理器调用所述存储器存储的程序,用于执行:
    获取基站的话务负荷信息和储电设备的放电深度信息;
    根据所述话务负荷信息和所述放电深度信息确定所述基站的节能级别,以使得所述基站根据所述节能级别进行工作。
  17. 根据权利要求16所述设备,其特征在于,所述话务负荷信息包括话务业务高峰和话务非高峰段。
  18. 根据权利要求17所述设备,其特征在于,所述放电深度信息包括所述储电设备的放电深度大于等于预设放电深度,或所述储电设备的放电深度小于所述预设放电深度。
  19. 根据权利要求18所述设备,其特征在于,所述节能级别包括标准节能、一般节能和深度节能。
  20. 根据权利要求19所述设备,其特征在于,所述节能设备根据所述话务负荷信息和所述放电深度信息确定所述基站的节能级别包括:
    当所述话务负荷信息为所述话务业务高峰,所述放电深度信息为所述储电设备的放电 深度小于所述预设放电深度时,所述节能级别为所述标准节能模式;
    或,
    当所述话务负荷信息为所述话务非高峰段,所述放电深度信息为所述储电设备的放电深度小于所述预设放电深度时,所述节能级别为所述一般节能模式;
    或,
    当所述话务负荷信息为所述话务非高峰段,所述放电深度信息为所述储电设备的放电深度大于等于所述预设放电深度时,所述节能级别为所述深度节能模式;
    或,
    当所述话务负荷信息为所述话务业务高峰,所述放电深度信息为所述储电设备的放电深度大于等于所述预设放电深度时,所述节能级别为所述一般节能模式。
  21. 根据权利要求16-20中任一项所述设备,其特征在于,所述根据所述话务负荷信息和所述放电深度信息确定所述基站的节能级别之前,还包括:
    获取所述储能设备的放电信息,所述放电信息为放电状态或非放电状态;
    若所述放电信息为所述放电状态,则执行所述根据所述话务负荷信息和所述放电深度信息确定所述基站的节能级别的步骤。
  22. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-9中任一项所述的方法。
PCT/CN2019/082458 2018-06-27 2019-04-12 一种基站设备的节能方法和设备 WO2020001129A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19826690.0A EP3783965A4 (en) 2018-06-27 2019-04-12 ENERGY SAVING METHOD AND DEVICE FOR A BASE STATION
US17/132,956 US20210120487A1 (en) 2018-06-27 2020-12-23 Energy-saving method and device for base station device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810682368.9A CN110650518A (zh) 2018-06-27 2018-06-27 一种基站设备的节能方法和设备
CN201810682368.9 2018-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/132,956 Continuation US20210120487A1 (en) 2018-06-27 2020-12-23 Energy-saving method and device for base station device

Publications (1)

Publication Number Publication Date
WO2020001129A1 true WO2020001129A1 (zh) 2020-01-02

Family

ID=68985990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082458 WO2020001129A1 (zh) 2018-06-27 2019-04-12 一种基站设备的节能方法和设备

Country Status (4)

Country Link
US (1) US20210120487A1 (zh)
EP (1) EP3783965A4 (zh)
CN (1) CN110650518A (zh)
WO (1) WO2020001129A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021188677A1 (en) * 2020-03-20 2021-09-23 Dish Wireless L.L.C. Method and system for power management based on full rf conditions
EP4080942A4 (en) * 2020-01-09 2023-01-25 Huawei Digital Power Technologies Co., Ltd. BASE STATION CONTROL METHOD, OPERATION SUPPORT SYSTEM (OSS), AND DISTRIBUTED BASE STATION SYSTEM (DBS)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918370A (zh) * 2020-07-27 2020-11-10 东联信息技术有限公司 基于大数据挖掘及ai调度的无线基站的节能降耗方法
CN112533270B (zh) * 2020-12-16 2022-09-13 中国联合网络通信集团有限公司 基站节能的处理方法、装置、电子设备及存储介质
WO2023043346A1 (en) * 2021-09-17 2023-03-23 Telefonaktiebolaget Lm Ericsson (Publ) Network node, and method performed in a wireless communications network

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034476A1 (en) * 2009-09-21 2011-03-24 Telefonaktiebolaget L M Ericsson (Publ) A method and a radio base station for handling of data traffic
CN102239730A (zh) * 2011-04-15 2011-11-09 华为技术有限公司 基站设备的供电管理方法和装置
CN104053162A (zh) * 2013-03-11 2014-09-17 株式会社日立制作所 可再生能源基站及其覆盖调整方法、无线蜂窝系统
CN106332124A (zh) * 2015-06-29 2017-01-11 华为技术有限公司 一种降低无线网络能耗的方法及宏基站
CN106507450A (zh) * 2016-10-09 2017-03-15 上海斐讯数据通信技术有限公司 一种基于无线ap的节能方法及其装置
CN106961716A (zh) * 2017-03-16 2017-07-18 华北电力大学(保定) 一种能耗优先的能源代价最小化基站休眠方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100377418C (zh) * 2004-10-28 2008-03-26 华为技术有限公司 延长蓄电池供电时间的方法
US8471406B2 (en) * 2009-11-02 2013-06-25 General Electric Company Controllable energy utilization system and associated method
CN102137419A (zh) * 2011-03-17 2011-07-27 华为技术有限公司 载频调整方法、配套监控设备、基站及系统
CN104581906A (zh) * 2012-03-12 2015-04-29 华为技术有限公司 控制功率损耗的方法和装置
CN103369640B (zh) * 2012-03-29 2018-03-27 中兴通讯股份有限公司 基站节电方法及装置
CN102665259B (zh) * 2012-05-07 2014-12-24 中国联合网络通信集团有限公司 基站节能模式控制方法、装置和系统
US9560597B2 (en) * 2015-02-09 2017-01-31 Qualcomm Incorporated Battery status indication within a Wi-Fi Beacon
US20160241031A1 (en) * 2015-02-18 2016-08-18 Nec Laboratories America, Inc. Dynamic probability-based power outage management system
CN106507451B (zh) * 2016-10-10 2020-04-10 上海斐讯数据通信技术有限公司 一种基于连接速率的无线ap节能方法及其装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034476A1 (en) * 2009-09-21 2011-03-24 Telefonaktiebolaget L M Ericsson (Publ) A method and a radio base station for handling of data traffic
CN102239730A (zh) * 2011-04-15 2011-11-09 华为技术有限公司 基站设备的供电管理方法和装置
CN104053162A (zh) * 2013-03-11 2014-09-17 株式会社日立制作所 可再生能源基站及其覆盖调整方法、无线蜂窝系统
CN106332124A (zh) * 2015-06-29 2017-01-11 华为技术有限公司 一种降低无线网络能耗的方法及宏基站
CN106507450A (zh) * 2016-10-09 2017-03-15 上海斐讯数据通信技术有限公司 一种基于无线ap的节能方法及其装置
CN106961716A (zh) * 2017-03-16 2017-07-18 华北电力大学(保定) 一种能耗优先的能源代价最小化基站休眠方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3783965A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4080942A4 (en) * 2020-01-09 2023-01-25 Huawei Digital Power Technologies Co., Ltd. BASE STATION CONTROL METHOD, OPERATION SUPPORT SYSTEM (OSS), AND DISTRIBUTED BASE STATION SYSTEM (DBS)
WO2021188677A1 (en) * 2020-03-20 2021-09-23 Dish Wireless L.L.C. Method and system for power management based on full rf conditions
US11849390B2 (en) 2020-03-20 2023-12-19 Dish Wireless L.L.C. Method and system for power management based on full RF conditions

Also Published As

Publication number Publication date
US20210120487A1 (en) 2021-04-22
EP3783965A1 (en) 2021-02-24
CN110650518A (zh) 2020-01-03
EP3783965A4 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
WO2020001129A1 (zh) 一种基站设备的节能方法和设备
CN110536342B (zh) 一种网络模式控制方法及终端、存储介质
CN102387570B (zh) 一种无线网络的节能控制方法及系统
CN102172082B (zh) 管理电源的方法、终端设备、网络侧设备和通信系统
US8831672B2 (en) Method and arrangement in a communication system
CN103117564B (zh) 一种风光互补发电协调控制系统和方法
US10827430B2 (en) Signaling for controlling power usage in radio access networks
CN104272857A (zh) 智能选择无线技术的方法和装置
WO2011097979A1 (zh) 一种蓄电池供电方法、装置及系统
JP5751941B2 (ja) 無線通信システムの設定方法、基地局および無線通信システム
CN102904301B (zh) 终端的无线充电方法及装置
CN104301974A (zh) 一种网络切换方法、系统及终端
CN205847614U (zh) 移动自组织接入的便携式热点路由器
CN205453152U (zh) 混合式智能微电网系统
CN103297584B (zh) 一种剩余通话时间的获知方法、系统和移动终端
CN102931688B (zh) 混合式可再生能源供电装置
CN106332124B (zh) 一种降低无线网络能耗的方法及宏基站
CN102238591A (zh) 一种无线网络实现节能的方法及系统
CN204131738U (zh) Dmr终端降低电路功耗的实现电路
CN114679772A (zh) 一种基于用户关联的5g基站自寻优休眠方法及装置
CN204190499U (zh) 支持太阳能取电的配电线路在线监测采集终端
WO2017197591A1 (zh) 终端的通信方法、终端和无线网络控制器
Wang et al. Key technologies of green communication for 5G mobile network
CN206099487U (zh) 可远程控制和切换的充电能源管理系统及模型赛车系统
CN204794166U (zh) 一种配锂电池的移动通信基站电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019826690

Country of ref document: EP

Effective date: 20201116

NENP Non-entry into the national phase

Ref country code: DE