WO2020000857A1 - 共万向轴式全刚性双旋翼直升机 - Google Patents

共万向轴式全刚性双旋翼直升机 Download PDF

Info

Publication number
WO2020000857A1
WO2020000857A1 PCT/CN2018/114399 CN2018114399W WO2020000857A1 WO 2020000857 A1 WO2020000857 A1 WO 2020000857A1 CN 2018114399 W CN2018114399 W CN 2018114399W WO 2020000857 A1 WO2020000857 A1 WO 2020000857A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
shaft
axis
rotating shaft
fuselage
Prior art date
Application number
PCT/CN2018/114399
Other languages
English (en)
French (fr)
Inventor
盛利元
Original Assignee
盛利元
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盛利元 filed Critical 盛利元
Publication of WO2020000857A1 publication Critical patent/WO2020000857A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • B64C27/10Helicopters with two or more rotors arranged coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage

Definitions

  • the present disclosure relates to the technical field of aeronautical flight equipment, and in particular, to a universal cardan type full rigid double-rotor helicopter.
  • Rotor helicopters include many types, including: single rotor, coaxial double rotor, and non-coaxial multiple rotor.
  • the flight control mechanism of the coaxial double-rotor helicopter in the prior art is relatively complicated and difficult to control.
  • the purpose of the present disclosure includes, for example, providing a universal cardan type full-rigid double-rotor helicopter to alleviate the technical problem of the control difficulty of the helicopter in the prior art.
  • the universal cardan type full-rigid double-rotor helicopter provided by the embodiment of the present disclosure includes: a fuselage, a rotor shaft, a rotor, and a driving device; the rotor shaft includes an inner rotation shaft and an outer rotation shaft; the rotor includes an upper rotor and a lower rotor; the inner rotation shaft and an outer rotor
  • the rotating shaft is coaxial and is connected to the fuselage through a universal bearing assembly, which can rotate relative to the fuselage about the same fixed fulcrum; the fixed fulcrum is located on the axis of the internal rotating shaft;
  • the driving device is respectively connected with the internal rotating shaft and the external rotating shaft to drive separately
  • the inner rotating shaft rotates around its own axis and the outer rotating shaft rotates around its own axis; the upper rotor is fixedly connected to the inner rotating shaft, and the lower rotor is fixedly connected to the outer rotating shaft; the upper and lower rotors are spaced along the axial direction of the inner rotating shaft.
  • the upper rotor includes an upper hub and a plurality of upper blades, and the upper hub is fixedly connected to the end of the inner shaft; the upper blades are evenly spaced along the circumferential direction of the inner shaft and are fixedly connected to the upper hub.
  • the lower rotor includes a lower hub and a plurality of lower blades, and the lower hub is fixedly connected to the end of the outer rotating shaft; the multiple lower blades are evenly spaced along the circumferential direction of the outer rotating shaft, and are all fixedly connected to the lower hub.
  • the number of upper blades is the same as the number of lower blades.
  • the universal bearing assembly includes a swivel ring and a transmission frame body; both the inner rotation shaft and the outer rotation shaft are rotatably connected to the transmission frame body, and both can rotate relative to the transmission frame body about their own axis; the transmission frame body is rotationally connected to the swivel ring, It can rotate relative to the first axis; the swivel ring is connected to the fuselage and can rotate relative to the fuselage about the second axis; the first axis intersects the second axis at a fixed fulcrum.
  • the swivel ring surrounds the transmission frame body; the opposite sides of the swivel ring are respectively connected with a ring shaft, the ring shaft is fixed to the swivel ring, and the axes of the ring shafts located on both sides of the swivel ring are collinear;
  • the ring shafts on both sides are rotatably connected to the body through a first bearing, so that the swivel ring can rotate relative to the body about the axis of the ring shaft; the axis of the ring shaft is the second axis.
  • the swivel ring is also provided with a trunnion hole; the axis of the trunnion hole intersects with the axis of the ring shaft; two opposite sides of the transmission frame body are respectively provided with trunnions that cooperate with the trunnion holes; trunnion insertion
  • the trunnion hole is rotatably connected to the swivel ring through a second bearing, so that the transmission frame can rotate relative to the axis of the trunnion hole; the axis of the trunnion hole is the first axis.
  • the first axis is perpendicular to the second axis.
  • the outer rotating shaft is rotatably connected to the transmission frame body through an upper shaft sleeve; the inner rotating shaft passes through the outer rotating shaft, and is rotationally connected to the transmission frame body and the outer rotating shaft through a rotation connection component.
  • the rotary connection assembly includes a lower shaft sleeve and a third bearing; the inner shaft passes through the outer shaft and the transmission frame body, and the inner shaft is rotatably connected to the outer shaft through the third bearing, and the inner shaft protrudes near the fuselage.
  • the rotating shaft is rotatably connected with the transmission frame body through a lower shaft sleeve.
  • two third bearings are provided between the inner rotating shaft and the outer rotating shaft.
  • the two third bearings are spaced apart along the axial direction of the outer rotating shaft, and are respectively located at the end of the outer rotating shaft near the lower rotor and the outer rotating shaft near the fuselage. Of the end.
  • the driving device includes a first bevel gear, a second bevel gear, and a third bevel gear; the outer rotating shaft is fixedly connected to the second bevel gear; the inner rotating shaft passes through the outer rotating shaft and is fixedly connected to the first bevel gear;
  • the three bevel gear is rotatably connected to the transmission frame body, and can rotate relative to the transmission frame body around its own axis, and both sides of the third bevel gear mesh with the first bevel gear and the second bevel gear, respectively.
  • the number of teeth of the first bevel gear is equal to the number of teeth of the second bevel gear.
  • the driving device includes two third bevel gears, and the two third bevel gears are oppositely disposed.
  • the driving device further includes an engine driving component and a first universal joint, and the engine driving component is drivingly connected to the inner shaft through the first universal joint.
  • the driving device includes a first motor and a second motor, both of the first motor and the second motor are connected to the transmission frame body, and the rotor of the first motor and the rotor of the second motor are coaxial; the outer shaft and the second motor The inner rotor shaft is passed through the outer rotor shaft and the second motor, and is connected to the rotor of the first motor.
  • the universal cardan type full-rigid double-rotor helicopter provided by the embodiment of the present disclosure further includes a second cardan joint and a joystick, and the joystick is connected to an end of the inner shaft away from the upper rotor through the second cardan and configured It drives the inner rotating shaft and the outer rotating shaft to rotate relative to the fuselage around a fixed fulcrum.
  • the universal cardan type full rigid double-rotor helicopter provided by the embodiments of the present disclosure has at least the following beneficial effects, for example:
  • the universal cardan type full-rigid double-rotor helicopter provided by the embodiment of the present disclosure includes: a fuselage, a rotor shaft, a rotor, and a driving device; the rotor shaft includes an inner rotation shaft and an outer rotation shaft; the rotor includes an upper rotor and a lower rotor; the inner rotation shaft and an outer rotor
  • the rotating shaft is coaxial and is connected to the fuselage through a universal bearing assembly, which can rotate relative to the fuselage about the same fixed fulcrum; the fixed fulcrum is located on the axis of the internal rotating shaft;
  • the driving device is respectively connected with the internal rotating shaft and the external rotating shaft to drive separately
  • the inner rotating shaft rotates around its own axis and the outer rotating shaft rotates around its own axis; the upper rotor is fixedly connected to the inner rotating shaft, and the lower rotor is fixedly connected to the outer rotating shaft; the upper and lower rotors are spaced along the axial direction of the inner rotating shaft.
  • the universal cardan type full-rigid double-rotor helicopter provided by the embodiment of the present disclosure can drive the upper rotor and the lower rotor to rotate in opposite directions through the driving device, and the reaction torque of the upper rotor and the fuselage, respectively. Can offset each other, which is beneficial to the balance of the fuselage.
  • the lift generated by the upper rotor is unevenly distributed on both sides
  • the lift generated by the lower rotor is unevenly distributed on both sides, which can be balanced with each other, which is beneficial to the balance of the fuselage. .
  • the center of gravity of the fuselage of the helicopter will shift; under normal circumstances, the center of gravity of the fuselage is not on the axis of the rotor axis.
  • the universal cardan type full rigid double-rotor helicopter provided by the embodiment of the present disclosure has a gravity center of the fuselage shifted after loading.
  • the center of gravity of the fuselage In the first flight state, the center of gravity of the fuselage is not on the axis of the internal rotation axis; the connection between the fixed fulcrum and the center of gravity of the fuselage is recorded as the axis of the aircraft; in the first flight state, the axis of the axis of the aircraft and the internal axis of rotation is not coincide.
  • the rotor shaft At a fixed fulcrum, the rotor shaft generates a rotor pull force on the fuselage along the axial direction of the inner shaft.
  • the gravity of the fuselage is vertically downward due to the center of gravity, and the fuselage gravity generates a first moment at a fixed fulcrum.
  • the fuselage is subject to air resistance during flight.
  • the direction of the air resistance is opposite to the flight direction, and a second moment is generated at a fixed fulcrum.
  • This second moment can be equivalent to the air resistance of the center of gravity and perpendicular to the axis. Moment from fixed fulcrum.
  • the pilot can control the rotation speed of the rotor through the driving device to control the rotor pulling force.
  • the inner rotation shaft and the outer rotation shaft can rotate relative to the fuselage around a fixed fulcrum, that is, the angle between the axis of the rotor shaft and the shaft can be adjusted.
  • the amount of air resistance is affected by the speed of flight, that is, the effectiveness of air resistance is affected by the speed of flight.
  • the universal cardan type full-rigid double-rotor helicopter provided by the embodiment of the present disclosure can gradually rotate the rotor shaft to coincide with the shaft; air resistance and other effects vary with flight speed; the pilot controls the size of the rotor pull.
  • the force component of the fuselage gravity along the direction perpendicular to the axis of the fuselage can be balanced with the effects of air resistance, and the force component of the fuselage gravity along the axis of the fuselage can be balanced with the pulling force of the rotor.
  • the universal cardan type full rigid double The rotorcraft is gradually adjusted from the first flight state to a balanced state to achieve hovering or straight flight at a uniform speed.
  • the rotor shaft can be fixed relative to the fuselage through the rotor shaft without using the tail rotor and the automatic tilter in the prior art helicopter.
  • the rotation of the fulcrum balances the torque generated by the fuselage gravity and the torque generated by the air resistance, so that it is easy to achieve the dynamic balance of the universal cardan type full rigid double-rotor helicopter provided by the embodiment of the present disclosure, which reduces the control difficulty and eases It also solves the technical problem of the control difficulty of the helicopter in the prior art.
  • FIG. 1 is a schematic structural diagram of a universal cardan type full rigid double-rotor helicopter according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a rotor shaft, a transmission body, and a swivel in a universal cardan type full rigid double-rotor helicopter provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a first embodiment of a driving device in a universal cardan type full-rigid double-rotor helicopter according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a second embodiment of a driving device in a universal cardan type full-rigid double-rotor helicopter provided by an embodiment of the present disclosure
  • FIG. 5 is a force analysis diagram of a universal cardan type full-rigid double-rotor helicopter in a balanced state according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a flight attitude control principle of a universal cardan type full rigid double-rotor helicopter provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a flight attitude control of a universal cardan type full rigid double-rotor helicopter provided by an embodiment of the present disclosure.
  • Icons 011-inner shaft; 012-upper rotor; 021-outer shaft; 022-lower rotor; 03-drive frame; 031-trunnion; 04-rotating ring; 041-ring shaft; 051-first bevel gear; 052- second bevel gear; 053- third bevel gear; 061- first motor; 062- second motor; 07- first universal joint; 08- joystick; 081- chute; 082- handle; 083- Slider; 084-sliding pin; 09- second universal joint.
  • the flight control mechanism of a single-rotor helicopter generally includes rotors and tail rotors; when the rotors rotate, a reaction torque will be generated on the helicopter fuselage, and this reaction torque tends to drive the helicopter to rotate about the fuselage axis, affecting the balance of the fuselage;
  • a tail rotor is set on the side of the tail of the helicopter, and the torque generated by the rotation of the tail rotor to the fuselage is used to balance the reaction torque of the rotor.
  • the relative air velocity of the forward blades turning toward the nose in the rotor is higher than the relative air velocity of the backward blades turning toward the tail, and the lift generated by the forward blades is greater than the rearward blades.
  • the generated lift causes uneven lift distribution on both sides of the fuselage; uneven lift distribution will cause the fuselage to roll to one side, which is not conducive to the balance of the fuselage. Therefore, the blades of single-rotor helicopters in the prior art are generally connected to the rotor shaft by a full articulation, and the structure that realizes a full articulation connection between the blade and the rotor shaft generally includes a swing hinge, a swing hinge and a variable pitch hinge.
  • the swing hinge enables the blade to swing up and down within a certain range relative to the rotor shaft to solve the problem of uneven lift distribution on both sides of the fuselage; the swing hinge enables the blade to swing within a certain range along the rotation direction of the blade;
  • the variable pitch hinge enables the blade to be deflected within a certain range around its own axis to adjust the installation angle of the blade relative to the rotor shaft and adjust the lift generated by the blade.
  • the coaxial double-rotor helicopter includes two sets of rotors spaced up and down along the axis of the rotor axis.
  • the rotation directions of the two sets of rotors are opposite.
  • the reaction torque generated by the rotation of the two sets of rotors on the fuselage can be balanced with each other. Omit the tail rotor.
  • the blades are generally connected to an automatic tilter.
  • the driver can adjust the installation angle of the blades relative to the rotor shaft through the automatic tilter, that is, adjust the angle of attack of the blades to achieve blade changes.
  • each rotor For non-coaxial multi-rotor helicopters, the blades in each rotor are fixedly connected to each rotor shaft, and each rotor shaft is spaced on the helicopter. By controlling the rotation direction and rotation size of each rotor, the rotors cooperate with each other. The helicopter performs motion control.
  • the structure is complex and the control is difficult.
  • the universal cardan type full rigid double-rotor helicopter provided in this embodiment can solve the technical problem.
  • the structure is as follows:
  • the universal cardan type full rigid double-rotor helicopter provided by the embodiment of the present disclosure includes: a fuselage, a rotor shaft, a rotor and a driving device;
  • the rotor shaft includes an inner rotating shaft 011 and an outer rotating shaft 021;
  • the rotor includes an upper rotor 012 and a lower rotor 022;
  • the inner rotating shaft 011 and the outer rotating shaft 021 are coaxial, and both are connected to the fuselage through a universal bearing assembly, and can rotate relative to the fuselage about the same fixed fulcrum;
  • the fixed fulcrum is located on the axis of the inner rotating shaft 011;
  • the driving device is respectively connected with the inner rotating shaft 011 and
  • the outer rotating shaft 021 is drivingly connected to drive the inner rotating shaft 011 to rotate about its own axis and the outer rotating shaft 021 to rotate about its own axis;
  • the upper rotor 012 is fixedly connected to the inner rotating shaft 011, and the lower rotor 022 is
  • the universal cardan type all-steel double-rotor helicopter provided by the embodiment of the present disclosure can drive the upper rotor 012 and the lower rotor 022 to rotate in opposite directions through a driving device, and the reaction torque of the upper rotor 012 on the fuselage and the lower
  • the reaction moments of rotor 022 on the fuselage can offset each other, which is beneficial to the balance of the fuselage.
  • the lift generated by the upper rotor 012 is unevenly distributed on both sides
  • the lift generated by the lower rotor 022 is unevenly distributed on both sides. Can be balanced with each other, which is beneficial to the balance of the fuselage.
  • the center of gravity of the fuselage of the helicopter will shift; under normal circumstances, the center of gravity of the fuselage is not on the axis of the rotor axis.
  • the center of gravity of the fuselage shifts after loading.
  • the center of gravity of the fuselage In the first flight state, the center of gravity of the fuselage is not on the axis of the internal rotation axis 011; the connection between the fixed fulcrum and the center of gravity of the fuselage is recorded as the axis of the aircraft; in the first flight state, the axis of the aircraft and the internal axis of rotation 011 The axes do not coincide.
  • the rotor shaft At a fixed fulcrum, the rotor shaft generates a rotor pull force on the fuselage along the axial direction of the internal rotation shaft 011.
  • the gravity of the fuselage is over the center of gravity and goes down vertically.
  • the gravity of the fuselage generates a first moment at a fixed fulcrum.
  • the fuselage is subject to air resistance during flight.
  • the direction of the air resistance is opposite to the flight direction, and a second moment is generated at a fixed fulcrum.
  • This second moment can be equivalent to the air resistance of the center of gravity and perpendicular to the axis. Moment from fixed fulcrum.
  • the pilot can control the rotation speed of the rotor through the driving device to control the rotor pulling force.
  • the inner rotating shaft 011 and the outer rotating shaft 021 can rotate relative to the fuselage around a fixed fulcrum, that is, the angle between the axis of the rotor shaft and the shaft can be adjusted. .
  • the amount of air resistance is affected by the speed of flight, that is, the effectiveness of air resistance is affected by the speed of flight.
  • the rotor shaft can gradually rotate to coincide with the shaft; the effectiveness of air resistance and other changes with the flight speed; the pilot controls the size of the rotor pull Can balance the force of the fuselage gravity along the direction perpendicular to the axis of the machine and the air resistance, and balance the force of the fuselage gravity along the axis of the machine and the tension of the rotor.
  • the universal cardan shaft type The rigid double-rotor helicopter is gradually adjusted from the first flight state to a balanced state to achieve hovering or straight flight at a uniform speed.
  • the rotor shaft can be wound relative to the fuselage through the rotor shaft without using the tail rotor and the automatic tilter in the prior art helicopter.
  • the rotation of the fixed fulcrum balances the torque generated by the fuselage gravity and the torque generated by the air resistance, thereby easily achieving the dynamic balance of the universal cardan all-steel double-rotor helicopter provided by the embodiment of the present disclosure, reducing the difficulty of control .
  • the tilt angle of the shaft with respect to the vertical direction should not be greater than the maximum rotation angle of the rotor axis with respect to the vertical direction.
  • the fixed fulcrum is rotated to coincide with the shaft.
  • the outer rotation shaft 021 is a hollow structure; the inner rotation shaft 011 passes through the outer rotation shaft 021, and both ends of the inner rotation shaft 011 exceed the outer rotation shaft 021.
  • the end portion of the inner rotation shaft 011 near the fuselage and the end portion of the outer rotation shaft 021 near the fuselage are connected to the driving device.
  • the upper rotor 012 is located on the side of the lower rotor 022 away from the fuselage.
  • the universal cardan type all-steel double-rotor helicopter provided by the embodiment of the present disclosure has an upper rotor 012 fixedly connected to the inner rotating shaft 011 and a lower rotor 022 fixedly connected to the outer rotating shaft 021.
  • fixed connection includes rigid connection methods such as bolt connection and welding.
  • the universal cardan type all-steel double-rotor helicopter provided by the embodiment of the present disclosure eliminates the swing hinge, the swing hinge and the variable pitch hinge, so that the connection structure of the rotor is more simplified and the structure is more reliable.
  • the universal cardan type all-steel double-rotor helicopter provided by the embodiment of the present disclosure has a fixed connection between the rotor and the rotor shaft, thereby reducing the risk of interference between two sets of rotors when they approach each other.
  • the upper rotor 012 includes an upper hub and a plurality of upper blades, and the upper hub is fixedly connected to the end of the internal rotation shaft 011; the multiple upper blades are evenly spaced along the circumferential direction of the internal rotation shaft 011, and are all fixedly connected to Upper hub; lower rotor 022 includes lower hub and multiple lower blades, the lower hub is fixedly connected to the end of the outer rotation shaft 021; multiple lower blades are evenly spaced along the circumference of the outer rotation shaft 021, and are all fixed Connected to the lower hub.
  • the upper rotor 012 includes 2-5 upper blades, and the upper blades are evenly spaced on the upper hub along the circumferential direction of the upper hub.
  • the lower rotor 022 includes 2-5 lower blades, and the lower blades are evenly distributed on the lower hub along the circumferential direction of the lower hub.
  • the upper and lower blades are the same shape and the same size.
  • the number of upper rotors 012 including upper blades is equal to the number of lower rotors 022 including lower blades.
  • the universal bearing assembly includes a swivel ring 04 and a transmission frame body 03; both the inner rotation shaft 011 and the outer rotation shaft 021 are rotatably connected to the transmission frame body 03, and both can rotate around their own axis relative to the transmission frame body 03; the transmission frame body 03 is connected to the swivel ring 04 and can be rotated about the first axis relative to the swivel ring 04; swivel ring 04 is connected to the fuselage and can be rotated about the second axis relative to the fuselage; the first axis and the second axis intersect at a fixed fulcrum .
  • the swivel ring 04 surrounds the transmission frame 03; the opposite sides of the swivel ring 04 are respectively connected with a ring shaft 041, the ring shaft 041 is fixed to the swivel ring 04, and is located on both sides of the swivel ring 04.
  • the axis of the ring shaft 041 is collinear; the ring shafts 041 located on both sides of the swivel ring 04 are rotatably connected to the body through a first bearing, so that the swivel ring 04 can rotate relative to the body about the axis of the ring shaft 041.
  • the axis of the ring shaft 041 is the second axis.
  • the swivel ring 04 is also provided with a trunnion hole.
  • the axis of the trunnion hole and the axis of the ring shaft 041 intersect.
  • the two opposite sides of the transmission frame body 03 are respectively provided with trunnions 031 mating with the trunnion holes; the trunnions 031 are inserted into the trunnion holes and are rotatably connected to the swivel ring 04 through the second bearing, so that the transmission frame body 03 It can rotate relative to the rotation ring 04 about the axis of the trunnion hole.
  • the axis of the trunnion hole is the first axis.
  • the swivel ring 04 has a rectangular frame structure, and two ring shafts 041 are distributed on both sides of the rectangular frame structure. In other embodiments, the two ring shafts 041 may also be distributed in a rectangular frame structure. On both ends.
  • the transmission frame body 03 has a rectangular parallelepiped structure, and two trunnions 031 are distributed on both sides of the rectangular parallelepiped structure. In other embodiments, the two trunnions 031 may also be distributed on two vertices of the rectangular parallelepiped structure. , Or on the edge.
  • FIG. 1 the transmission frame body 03 has a rectangular parallelepiped structure, and two trunnions 031 are distributed on both sides of the rectangular parallelepiped structure. In other embodiments, the two trunnions 031 may also be distributed on two vertices of the rectangular parallelepiped structure. , Or on the edge.
  • a trunnion hole is provided on the swivel ring 04, and a trunnion 031 is provided on the transmission frame body 03.
  • a trunnion hole may be provided on the transmission frame body 03, and the rotator 04 is provided.
  • the swivel ring 04 may also have a ring frame structure, and the transmission frame body 03 may also have a cylindrical structure.
  • the inner rotating shaft 011 and the outer rotating shaft 021 are both connected to the transmission frame 03.
  • the intersection point of the axis of the ring shaft 041 and the axis of the trunnion hole is located on the axis of the inner rotating shaft 011. This intersection point is a fixed fulcrum.
  • the three-stage rotation linking method between the rotor shaft and the fuselage makes the axial direction of the rotor shaft change with two degrees of freedom relative to the fuselage, which is no longer fixed and achieves universal Shaft connection.
  • the first axis is perpendicular to the second axis.
  • the axis of the ring shaft 041 is perpendicular to and intersects the axis of the trunnion hole.
  • the axis of the ring shaft 041 intersects the axis of the trunnion hole, and the included angle is greater than 0 ° and less than 90 °.
  • the outer rotation shaft 021 is rotatably connected to the transmission frame body 03 through an upper shaft sleeve; the inner rotation shaft 011 passes through the outer rotation shaft 021 and is rotatably connected to the transmission frame body 03 and the outer rotation shaft 021 through a rotation connection component.
  • the outer rotation shaft 021 projects into the transmission frame body 03 and is rotatably connected to the transmission frame body 03 through the upper shaft sleeve.
  • the rotary connection assembly includes a lower shaft sleeve and a third bearing.
  • the inner rotating shaft 011 passes through the outer rotating shaft 021 and the transmission frame 03, and the inner rotating shaft 011 is rotatably connected to the outer rotating shaft 021 through a third bearing.
  • the end of the inner rotating shaft 011 near the fuselage protrudes from the outer rotating shaft 021 and is connected with the transmission through the lower sleeve.
  • Frame 03 rotates and connects.
  • two third bearings are disposed between the inner rotation shaft 011 and the outer rotation shaft 021.
  • the two third bearings are spaced apart along the axial direction of the outer rotation shaft 021, and are respectively located at the ends of the outer rotation shaft 021 near the lower rotor 022.
  • the outer part and the outer rotating shaft 021 are close to the end of the fuselage.
  • the driving device includes a first bevel gear 051, a second bevel gear 052, and a third bevel gear 053;
  • the second bevel gear 052 is fixedly connected to the outer rotation shaft 021;
  • the inner rotation shaft 011 passes through the outer rotation shaft 021, and the first
  • the bevel gear 051 is fixedly connected to the internal rotation shaft 011;
  • the third bevel gear 053 is rotatably connected to the transmission frame body 03, and can be rotated about its own axis relative to the transmission frame body 03, and the two sides of the third bevel gear 053 and the first bevel gear 051 are respectively Engages with the second bevel gear 052.
  • the first bevel gear 051 is coaxial with the second bevel gear 052, and is drivingly connected through the third bevel gear 053.
  • the rotation direction of the first bevel gear 051 and the second bevel gear 052 is opposite, thereby achieving The rotation directions of the inner rotation shaft 011 and the outer rotation shaft 021 are opposite.
  • the number of teeth of the first bevel gear 051 is equal to the number of teeth of the second bevel gear 052, so that the rotation speed of the inner rotation shaft 011 is equal to the rotation speed of the outer rotation shaft 021.
  • the number of teeth of the first bevel gear 051 is greater than that of the second bevel gear 052, so that the rotation speed of the outer rotation shaft 021 is greater than the rotation speed of the inner rotation shaft 011, and the lift generated by a single lower blade is greater than that generated by a single upper blade.
  • the lower rotor blade 022 includes fewer lower blades than the upper rotor blade 012 includes.
  • the driving device includes two third bevel gears 053, and the two third bevel gears 053 are oppositely disposed.
  • the axes of the two third bevel gears 053 are collinear, so that the force distribution during the transmission of the first bevel gear 051 and the second bevel gear 052 is more uniform, and the transmission is more stable.
  • the driving device further includes an engine driving component and a first universal joint 07, and the engine driving component is drivingly connected to the inner shaft 011 through the first universal joint 07.
  • the engine driving assembly includes an engine and a reducer; the engine is fixed to the fuselage, and the input shaft of the reducer is drivingly connected to the output shaft of the engine.
  • the inner rotating shaft 011 extends out of the transmission frame 03; one end of the first universal joint 07 is connected to the inner rotating shaft 011, and the other end is connected to the output shaft of the reducer, so that the inner rotating shaft 011 can rotate relative to the output shaft of the reducer.
  • the inner rotating shaft 011 rotates relative to the fuselage around a fixed fulcrum.
  • the first universal joint 07 can keep the output shaft of the reducer and the inner rotating shaft 011 in transmission connection.
  • the driving device includes a motor.
  • the motor is mounted on the transmission frame 03, and the output shaft of the motor is drivingly connected to the inner shaft 011.
  • the driving device includes a first motor 061 and a second motor 062.
  • the first motor 061 and the second motor 062 are both connected to the transmission frame 03, and the rotor of the first motor 061 and the rotor of the second motor 062 are coaxial.
  • the outer rotating shaft 021 is drivingly connected to the rotor of the second motor 062; the inner rotating shaft 011 passes through the outer rotating shaft 021 and the second motor 062 and is drivingly connected to the rotor of the first motor 061.
  • the first motor 061 and the second motor 062 are distributed along the axial direction of the inner rotation shaft 011, and the second motor 062 is located at an end of the first motor 061 away from the fuselage; the outer rotation shaft 021 is connected to the second motor through a key.
  • the rotor transmission connection of 062; the inner rotation shaft 011 passes through the outer rotation shaft 021 and the rotor of the first motor 061, and is connected with the rotor of the first motor 061 through key transmission.
  • the first motor 061 drives the inner rotating shaft 011 to rotate
  • the second motor 062 drives the outer rotating shaft 021 to rotate.
  • the speed and direction of the inner shaft 011 and the speed and direction of the outer shaft 021 can be controlled independently, which simplifies the power transmission mechanism.
  • the two implementations of the above-mentioned driving device are that the connection structure of the driving device and the rotor shaft is simplified, and the rotor shaft is controlled axially; the second is that it is beneficial to the rotor shaft center of gravity counterweight, and is of great significance for the balance control of the flying attitude.
  • the universal cardan all-steel twin-rotor helicopter provided by the embodiment of the present disclosure further includes a second cardan joint 09 and a joystick 08, and the joystick 08 is connected to the inner shaft 011 through the second cardan 09 and away from One end of the upper rotor 012 is configured to drive the inner rotation shaft 011 and the outer rotation shaft 021 to rotate relative to the fuselage around a fixed fulcrum.
  • the rotation of the inner shaft 011 is driven by the first motor 061, one end of the second universal joint 09 is connected to the inner shaft 011, and the other end is connected to the joystick 08; the driver can drive the inner shaft through the joystick 08 011 rotates around a fixed fulcrum to adjust the angle between the rotor shaft and the shaft.
  • the rotation of the inner rotating shaft 011 is driven by an engine driving assembly, and an end of the inner rotating shaft 011 is connected to the first end of the second universal joint 09; the second end of the second universal joint 09 is connected to the first The first end of the universal joint 07 is connected, and the joystick 08 is connected to the second end of the second universal joint 09; the second end of the first universal joint 07 is connected to the output shaft of the reducer.
  • the driver can drive the inner rotating shaft 011 to rotate around a fixed fulcrum through the joystick 08 to adjust the angle between the rotor shaft and the shaft.
  • FIG. 1 and FIG. 7 a universal cardan type full rigid double-rotor helicopter provided by an embodiment of the present disclosure.
  • the joystick 08 is rotationally connected to the lower end of the inner rotating shaft 011 through the second universal joint 09 to control the axial direction of the rotor shaft.
  • joystick 08 includes chute 081, handle 082, slider 083, and slide pin 084; through the cooperation of chute 081, slider 083, and slide pin 084, the rotor shaft can be controlled by handle 082 The direction changes within a given cone angle; release the handle 082, let the rotor shaft be in a free state, and the helicopter can automatically return to a balanced state.
  • the center of gravity of the rotor shaft is located on the side of the fixed fulcrum close to the fuselage, or the center of gravity of the rotor shaft is coincident with the fixed fulcrum.
  • the center of gravity of the rotor shaft refers to the center of gravity of the rotor, the rotor shaft, the first motor 061, the second motor 062, and the transmission frame 03 as a whole.
  • the first motor 061, the second motor 062, and the transmission frame 03 have a counterweight function, so that the center of gravity of the rotor shaft is shifted toward the fuselage.
  • the center of gravity of the rotor shaft refers to the center of gravity of the rotor, the rotor shaft, the first bevel gear 051, the second bevel gear 052, the third bevel gear 053, and the transmission frame 03 as a whole.
  • the first bevel gear 051, the second bevel gear 052, the third bevel gear 053, and the transmission frame 03 have a counterweight function, so that the center of gravity of the rotor shaft is shifted toward the fuselage.
  • a trunnion 031 is disposed at an end of the transmission frame body 03 away from the fuselage.
  • the center of gravity of the rotor shaft is located on the side of the plane formed by the axis of the trunnion 031 and the axis of the ring shaft 041 near the fuselage, or the center of gravity of the rotor shaft is located on the axis of the trunnion 031.
  • the universal cardan type all-steel twin-rotor helicopter provided by the embodiment of the present disclosure has advantages compared with the helicopters in the prior art, including: a full rigid connection between the blade and the rotor shaft, and a rigid connection between the rotor shaft and the fuselage.
  • FIG. 5 is a force analysis diagram of the balance state of the universal cardan type full rigid double-rotor helicopter according to an embodiment of the present disclosure during flight.
  • F is the rotor pulling force of the rotor shaft acting on the fuselage in the axial direction, and the point of action is o F , which is fixed relative to the fuselage.
  • the rotor shaft can change the axial direction within a cone angle around the point o F ;
  • F is the horizontal x-axis and vertical z-axis respectively;
  • F is coplanar with the x-axis and the z-axis, and the angle with the z-axis is ⁇ ;
  • v is the flight speed of the helicopter, parallel to the x-axis;
  • W is the Gravity, vertical downward, acts on the center of gravity o W of the fuselage;
  • l is the shaft, that is, the extension of the line connecting point o F and o W ;
  • T is the total resistance of the air to the helicopter, which is opposite to the speed v, Acts on the surface of the fuselage at the same horizontal line as the center of gravity o W.
  • T ′ is an equal effect of the air-resistance resistance T on the resistance moment generated by the fuselage o F point, and acts on the fuselage center of gravity o W in a direction perpendicular to the machine shaft l and upward.
  • the first equilibrium condition indicates that the torque generated by the rotor pulling force F provided by the rotor shaft to the helicopter is equal to zero.
  • the rotor shaft is axially fixed, so it is difficult for the shaft 1 to coincide with the rotor shaft symmetry axis due to load changes. The heavy moment to the rotor shaft always exists, and additional balancing devices are needed, such as through The "Auto Tilt" adjusts the direction of the rotor vertebra to achieve balance.
  • the universal cardan type full-rigid double-rotor helicopter provided by the embodiment of the present disclosure has a rotor shaft that automatically rotates o F to coincide with the shaft l under the action of the air resistance T.
  • the pulling force is horizontal, similar to a fixed-wing aircraft, which allows the fuselage to obtain maximum level flight speed.
  • FIG. 6 is a flight attitude control principle diagram of a universal cardan type full rigid double-rotor helicopter provided by an embodiment of the present disclosure, showing the force relationship between the rotor axis and the fuselage within the cone angle, and Its flight attitude control principle.
  • W and F still represent the gravity of the fuselage and the rotor pulling force of the rotor axis on the fuselage; o F is the point of action of F, and the x-axis is the horizontal axis passing o F ; the two-dot chain line l F Is the extension of the rotor pull force F, that is, the axis of symmetry of the rotor axis; use w to represent the rotor axis gravity, o w is the point of action of w, on l F , and is much smaller than the fuselage gravity, ie
  • ; dot-dash line l represents the axis, that is, the connection between o F and the center of gravity o W of the fuselage; then the thick solid line l 1 represents the maximum allowable crossing boundary of l F , and the thin solid line l 2 represents the largest axis l The boundaries allowed for ferry crossing, l 1 and l 2 actually give the
  • the dashed line l o represents the design position of the machine axis l during the design and manufacture of the helicopter, which is called the theoretical machine axis, and is also a symmetry axis of the cone angle ⁇ 1 and the cone angle ⁇ 2 .
  • the deviation angle is represented by [omega], gravity W o F for generating a deflection so that the body Heavy moment; on the other hand, if the symmetry axis l F of the rotor axis deviates from the machine axis l, the deviation angle is It is indicated that the closing moment of the fuselage is not zero, and the rotor pull force F generates a moment that makes the fuselage turn clockwise to the center of gravity o W of the fuselage. At this time, the position of the center of gravity of the rotor shaft o w will determine the helicopter's control mode, which is explained as follows:
  • the rotor shaft center of gravity o w coincides with o F
  • the helicopter has the function of stabilizing flight.
  • the center of gravity o w of the rotor shaft coincides with o F
  • the moment of the rotor shaft gravity w with respect to o F is zero, so the direction of l F remains unchanged.
  • the body weight W makes the shaft l tend to be vertical
  • the rotor pull force F increases the fuselage speed
  • the resistance moment of the air combined resistance T to the point o F increases, and Keep it clockwise.
  • FIG. 7 is a schematic diagram of a flight attitude control of a universal cardan type full rigid double-rotor helicopter provided by an embodiment of the present disclosure, showing a simple control structure and a control method.
  • FIG. 7 can be understood as the horizontal section of FIG. 1 and FIG. 6 at the second universal joint 09 at the lower end of the inner shaft 011 of FIG. 1.
  • the cut line of which, the joystick 08 and the second universal joint 09 are real objects, from Figure 1; two solid line circles, a dashed circle and the corresponding two coordinate systems are virtual objects, from Figure 6, for Out of the real-time status of the helicopter flight.
  • the two concentric circles of solid lines correspond to the cone angle ⁇ 1 and the cone angle ⁇ 2 respectively, which represent the maximum allowable crossing boundaries of l F and the shaft l; the points o F , o w, and o w can be considered respectively.
  • the point o F occupies the center points of the concentric circles ⁇ 1 and ⁇ 2 , corresponding to the conical apex in FIG.
  • the point o W is the actual position of the center of gravity of the fuselage
  • the circle ⁇ 2 can also be interpreted as the allowable drift range of the center of gravity o W ; the point o w is the actual position of the center of gravity of the rotor axis, overlaps with the second universal joint 09, and is limited to change within the circle ⁇ 1 .
  • the transit point o F is a theoretical coordinate system, which indicates the four directions of the front, back, left, and right. It indicates that, in an ideal situation, the position of the point o w relative to the point o F indicates the intensity of the helicopter's variable speed flight forward, backward, left, and right. Therefore, on the extension line in the front-rear direction, a slider 083 that can be switched between moving and fixed is provided. A slider pin 084 is provided on the slider 083, and the slider pin 084 slides in the slide groove 081 of the joystick 08.
  • the joystick 082 swings left and right and moves forward and backward, and by adjusting the slider 083 forward and backward, the control point o w can be changed within a circle ⁇ 1 .
  • a modified coordinate system xo W y is used to replace the theoretical coordinate system at the point o W , and the actual forward and backward directions are represented by the x axis.
  • axis represents the actual left and right, then o W as the center point, for ⁇ circle inscribed circle (dashed circle in FIG. 7) is 1, then the point may be restricted o w o W opposite points vary within a dashed circle.
  • the flying attitude control method of the universal cardan type full rigid double-rotor helicopter provided by the embodiment of the present disclosure is as follows:
  • the first step is to start the engine and warm up at idle;
  • the third step is to slowly refuel until the fuselage hoveres off the ground, at which point o w and o w overlap;
  • the fourth step is to mark the position of the center of gravity o W of the fuselage in FIG. 7 as a reference point, and move the slider 083 along the dotted line to the middle position of the sliding pin 084 to the sliding groove 081, and fix the slider 083;
  • the fifth step is to use the sliding pin 084 as a fulcrum and control the point o w to deviate from the point o W through the handle 082. For example, if you slowly move the point o w along the x-axis rearward and cooperate with the throttle to increase the rotor speed, the helicopter will move forward or forward. Accelerated flight above
  • the sixth step is to fly to the desired height and speed. Release the joystick 08 to the free state and control the throttle. The point o w will automatically return to the point o W. At this time, the axis l coincides with the symmetry axis l F of the rotor axis. The helicopter enters a stable flight state and maintains straight and horizontal flight at a constant speed.
  • the present disclosure provides a universal cardan type full-rigid dual-rotor helicopter, which has a simple structure, reduces the risk of two sets of rotors approaching each other and interfering with each other, and simplifies the control mechanism and method, reducing Control difficulty.

Abstract

一种共万向轴式全刚性双旋翼直升机,其包括机身、旋翼轴、旋翼和驱动装置。旋翼轴包括内转轴(011)和外转轴(021);旋翼包括上旋翼(012)和下旋翼(022);内转轴(011)和外转轴(021)共轴,并且均通过万向轴承组件与机身连接,可相对机身绕同一固定支点转动;固定支点位于内转轴(011)的轴线上;驱动装置分别与内转轴(011)和外转轴(021)传动连接,以分别驱动内转轴(011)绕自身轴线转动和外转轴(021)绕自身轴线转动;上旋翼(012)固定连接于内转轴(011),下旋翼(022)固定连接于外转轴(021);上旋翼(012)和下旋翼(022)沿内转轴(011)的轴向间隔分布。通过该共万向轴式全刚性双旋翼直升机,缓解了直升机存在的操控难度较大的技术问题。

Description

共万向轴式全刚性双旋翼直升机
相关申请的交叉引用
本公开要求于2018年06月27日提交中国专利局的申请号为201810682930.8、名称为“共万向轴式全刚性双旋翼直升机”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及航空飞行装备技术领域,尤其是涉及一种共万向轴式全刚性双旋翼直升机。
背景技术
旋翼直升机包括多种形式,主要有:单旋翼、共轴双旋翼和不共轴的多旋翼。
现有技术中的共轴双旋翼直升机的飞控机构比较复杂,并且操控难度较大。
发明内容
本公开的目的包括,例如,提供了一种共万向轴式全刚性双旋翼直升机,以缓解现有技术中的直升机所存在的操控难度较大的技术问题。
本公开的实施例可以这样实现:
本公开实施例提供的共万向轴式全刚性双旋翼直升机包括:机身、旋翼轴、旋翼和驱动装置;旋翼轴包括内转轴和外转轴;旋翼包括上旋翼和下旋翼;内转轴和外转轴共轴,并且均通过万向轴承组件与机身连接,可相对机身绕同一固定支点转动;固定支点位于内转轴的轴线上;驱动装置分别与内转轴和外转轴传动连接,以分别驱动内转轴绕自身轴线转动和外转轴绕自身轴线转动;上旋翼固定连接于内转轴,下旋翼固定连接于外转轴;上旋翼和下旋翼沿内转轴的轴向间隔分布。
可选的,上旋翼包括上桨毂和多片上桨叶,上桨毂固定连接于内转轴的端部;多片上桨叶沿内转轴的周向均匀间隔分布,并且均固定连接于上桨毂;下旋翼包括下桨毂和多片下桨叶,下桨毂固定连接于外转轴的端部;多片下桨叶沿外转轴的周向均匀间隔分布,并且均固定连接于下桨毂。
可选的,上桨叶的数量与下桨叶的数量相同。
可选的,万向轴承组件包括转环和传动架体;内转轴和外转轴均转动连接于传动架体,且均可相对传动架体绕自身轴线转动;传动架体转动连接于转环,可相对转环绕第一轴线转动;转环转动连接于机身,可相对于机身绕第二轴线转动;第一轴线与第二轴线相交于固定支点。
可选的,转环包围传动架体;转环的相对的两侧分别连接有环轴,环轴与转环固定,并且位于转环的两侧的环轴的轴线共线;位于转环的两侧的环轴通过第一轴承转动连接于机身,使得转环可相对机身绕环轴的轴线转动;环轴的轴线为第二轴线。
可选的,转环还设置有耳轴孔;耳轴孔的轴线与环轴的轴线相交;传动架体的两个相对的侧面上分别设置有与耳轴孔配合的耳轴;耳轴插入耳轴孔中,并通过第二轴承与转环转动连接,使得传动架体可相对转环绕耳轴孔的轴线转动;耳轴孔的轴线为第一轴线。
可选的,第一轴线垂直于第二轴线。
可选的,外转轴通过上轴套转动连接于传动架体;内转轴从外转轴中穿过,并且通过转动连接组件与传动架体和外转轴转动连接。
可选的,转动连接组件包括下轴套和第三轴承;内转轴从外转轴和传动架体穿过,并且内转轴通过第三轴承与外转轴转动连接,内转轴靠近机身的一端伸出外转轴,且通过下轴套与传动架体转动连接。
可选的,内转轴与外转轴之间设置有两个第三轴承,两个第三轴承沿外转轴的轴线方向间隔分布,且分别位于外转轴靠近下旋翼的端部和外转轴靠近机身的端部。
可选的,驱动装置包括第一锥齿轮、第二锥齿轮和第三锥齿轮;外转轴与第二锥齿轮固定连接;内转轴从外转轴中穿过,与第一锥齿轮固定连接;第三锥齿轮转动连接于传动架体,可相对传动架体绕自身轴线转动,并且第三锥齿轮的两侧分别与第一锥齿轮和第二锥齿轮啮合。
可选的,第一锥齿轮的齿数等于第二锥齿轮的齿数。
可选的,驱动装置包括两个第三锥齿轮,两个第三锥齿轮相对设置。
可选的,驱动装置还包括发动机驱动组件和第一万向节,发动机驱动组件通过第一万向节与内转轴传动连接。
可选的,驱动装置包括第一电机和第二电机,第一电机和第二电机均连接于传动架体,并且第一电机的转子和第二电机的转子共轴;外转轴与第二电机 的转子传动连接;内转轴从外转轴和第二电机中穿过,且与第一电机的转子传动连接。
可选的,本公开实施例提供的共万向轴式全刚性双旋翼直升机还包括第二万向节和操纵杆,操纵杆通过第二万向节连接于内转轴远离上旋翼的一端,配置成驱动内转轴和外转轴相对机身绕固定支点转动。
本公开实施例提供的共万向轴式全刚性双旋翼直升机至少具有以下有益效果,例如:
本公开实施例提供的共万向轴式全刚性双旋翼直升机包括:机身、旋翼轴、旋翼和驱动装置;旋翼轴包括内转轴和外转轴;旋翼包括上旋翼和下旋翼;内转轴和外转轴共轴,并且均通过万向轴承组件与机身连接,可相对机身绕同一固定支点转动;固定支点位于内转轴的轴线上;驱动装置分别与内转轴和外转轴传动连接,以分别驱动内转轴绕自身轴线转动和外转轴绕自身轴线转动;上旋翼固定连接于内转轴,下旋翼固定连接于外转轴;上旋翼和下旋翼沿内转轴的轴向间隔分布。本公开实施例提供的共万向轴式全刚性双旋翼直升机,可通过驱动装置驱动上旋翼和下旋翼分别向相反方向转动,上旋翼对机身的反作用力矩和下旋翼对机身的反作用力矩可相互抵消,有利于机身的平衡;另外,上旋翼产生的升力在两侧的分布不均,与下旋翼产生的升力在两侧的分布不均,可相互平衡,有利于机身的平衡。
由于装载的载荷不同,直升机的机身的重心会发生偏移;一般情况下,机身的重心不在旋翼轴的轴线上。
本公开实施例提供的共万向轴式全刚性双旋翼直升机,装载载荷后,机身的重心发生偏移。在第一飞行状态时,机身的重心不在内转轴的轴线上;将固定支点与机身的重心之间的连线记为机轴;在第一飞行状态,机轴与内转轴的轴线不重合。在固定支点,旋翼轴对机身产生沿内转轴的轴线方向的旋翼拉力。机身的重力过重心竖直向下,机身重力在固定支点产生第一力矩。机身在飞行过程中受到空气阻力,该空气阻力的方向与飞行方向相反,并且在固定支点产生第二力矩,该第二力矩可等效为过重心且垂直于机轴的空阻等效力在固定支点产生的力矩。
在飞行过程中,驾驶员可通过驱动装置控制旋翼的转速,来控制旋翼拉力的大小。本公开实施例提供的共万向轴式全刚性双旋翼直升机中,内转轴和外转轴可相对机身绕固定支点转动,即旋翼轴的轴线与机轴之间的夹角可调节。空气阻力的大小受飞行速度影响,即空阻等效力受飞行速度影响。
在飞行过程中,本公开实施例提供的共万向轴式全刚性双旋翼直升机,旋翼轴可逐渐转动至与机轴重合;空阻等效力随飞行速度变化;驾驶员控制旋翼拉力的大小,可使机身重力沿垂直于机轴方向的分力与空阻等效力平衡,机身重力沿机轴方向的分力与旋翼拉力平衡,本公开实施例提供的共万向轴式全刚 性双旋翼直升机从第一飞行状态逐渐调整至平衡状态,实现悬停或者匀速直线飞行。
在本公开实施例提供的共万向轴式全刚性双旋翼直升机的飞行状态调整过程,可不借助现有技术的直升机中的尾桨和自动倾斜器等部件,通过旋翼轴相对于机身绕固定支点转动,使得机身重力产生的力矩与空气阻力产生的力矩之间相互平衡,从而易于使本公开实施例提供的共万向轴式全刚性双旋翼直升机达到动态平衡,降低了操控难度,缓解了现有技术中的直升机所存在的操控难度较大的技术问题。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举本公开的实施例,并配合所附附图,做详细说明如下。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的共万向轴式全刚性双旋翼直升机的结构示意图;
图2为本公开实施例提供的共万向轴式全刚性双旋翼直升机中旋翼轴、传动架体和转环的结构示意图;
图3为本公开实施例提供的共万向轴式全刚性双旋翼直升机中驱动装置的第一种实施方式的结构示意图;
图4为本公开实施例提供的共万向轴式全刚性双旋翼直升机中驱动装置的第二种实施方式的结构示意图;
图5为本公开实施例提供的共万向轴式全刚性双旋翼直升机平衡状态时的受力分析图;
图6为本公开实施例提供的共万向轴式全刚性双旋翼直升机的飞行姿态操纵原理图;
图7为本公开实施例提供的共万向轴式全刚性双旋翼直升机的飞行姿态操纵示意图。
图标:011-内转轴;012-上旋翼;021-外转轴;022-下旋翼;03-传动架体;031-耳轴;04-转环;041-环轴;051-第一锥齿轮;052-第二锥齿轮;053-第三锥齿轮;061-第一电机;062-第二电机;07-第一万向节;08-操纵杆;081-滑槽;082-手柄;083-滑块;084-滑销;09-第二万向节。
具体实施方式
下面将结合附图对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,若出现术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,若出现术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,若出现术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
一般的,单旋翼直升机的飞控机构一般包括旋翼和尾桨;旋翼旋转时,会对直升机机身产生反作用力矩,该反作用力矩趋于驱动直升机绕机身轴线转动,影响机身的平衡;在直升机尾部的侧面设置尾桨,利用尾桨旋转产生的对机身的力矩,来平衡旋翼的反作用力矩。
旋翼旋转时,旋翼中向机头方向转动的前行桨叶的相对气流速度,高于向机尾方向转动的后行桨叶的相对气流速度,前行桨叶产生的升力大于后行桨叶产生的升力,导致机身两侧的升力分布不均;升力分布不均,会使机身向一侧翻滚,不利于机身平衡。因此,现有技术中的单旋翼直升机的桨叶一般采用全铰接式来与旋翼轴连接,桨叶与旋翼轴之间实现全铰接式连接的结构一般包括挥舞铰、摆振铰和变距铰;挥舞铰使桨叶可相对于旋翼轴在一定范围内上下摆动,以解决机身两侧升力分布不均的问题;摆振铰使桨叶可沿桨叶的回转方向在一定范围内摆动;变距铰使桨叶可绕自身轴线在一定范围内偏转,以调节桨叶相对旋翼轴的安装角,调整桨叶产生的升力。
共轴双旋翼直升机包括两组沿旋翼轴的轴向上下间隔设置的旋翼,两组旋翼的转动方向相反,两组旋翼旋转对机身产生的反作用力矩可相互平衡,从而共轴双旋翼直升机可省略尾桨。
单旋翼直升机和共轴双旋翼直升机,桨叶一般与自动倾斜器连接,驾驶员可通过自动倾斜器来调整桨叶相对于旋翼轴的安装角,即调整桨叶的迎角,实现桨叶变距,从而调节旋翼的升力大小,对直升机的运动状况进行控制。
不共轴的多旋翼直升机,各个旋翼中的桨叶分别固定连接于各个旋翼轴,各个旋翼轴在直升机上间隔布置,通过控制各个旋翼的转动方向和转动大小,使各个旋翼相互配合,来对直升机进行运动控制。
发明人在研究中发现,现有的一些单旋翼直升机和共轴双旋翼直升机,其桨叶与旋翼轴之间一般需要设置变距铰,并通过自动倾斜器来对桨叶进行变距控制,其结构复杂、操控难度较大,本实施例提供的共万向轴式全刚性双旋翼直升机可以解决该技术问题,该结构具体如下:
本公开实施例提供的共万向轴式全刚性双旋翼直升机包括:机身、旋翼轴、旋翼和驱动装置;旋翼轴包括内转轴011和外转轴021;旋翼包括上旋翼012和下旋翼022;内转轴011和外转轴021共轴,并且均通过万向轴承组件与机身连接,可相对机身绕同一固定支点转动;固定支点位于内转轴011的轴线上;驱动装置分别与内转轴011和外转轴021传动连接,以分别驱动内转轴011绕自身轴线转动和外转轴021绕自身轴线转动;上旋翼012固定连接于内转轴011,下旋翼022固定连接于外转轴021;上旋翼012和下旋翼022沿内转轴011的轴向间隔分布。
具体地,本公开实施例提供的共万向轴式全钢性双旋翼直升机,可通过驱动装置驱动上旋翼012和下旋翼022分别向相反方向转动,上旋翼012对机身的反作用力矩和下旋翼022对机身的反作用力矩可相互抵消,有利于机身的平衡;另外,上旋翼012产生的升力在两侧的分布不均,与下旋翼022产生的升力在两侧的分布不均,可相互平衡,有利于机身的平衡。
由于装载的载荷不同,直升机的机身的重心会发生偏移;一般情况下,机身的重心不在旋翼轴的轴线上。
本公开实施例提供的共万向轴式全钢性双旋翼直升机,装载载荷后,机身的重心发生偏移。在第一飞行状态时,机身的重心不在内转轴011的轴线上;将固定支点与机身的重心之间的连线记为机轴;在第一飞行状态,机轴与内转轴011的轴线不重合。在固定支点,旋翼轴对机身产生沿内转轴011的轴线方向的旋翼拉力。机身的重力过重心且沿竖直向下,机身重力在固定支点产生第一力矩。机身在飞行过程中受到空气阻力,该空气阻力的方向与飞行方向相反,并且在固定支点产生第二力矩,该第二力矩可等效为过重心且垂直于机轴的空阻等效力在固定支点产生的力矩。
在飞行过程中,驾驶员可通过驱动装置控制旋翼的转速,来控制旋翼拉力的大小。本公开实施例提供的共万向轴式全钢性双旋翼直升机中,内转轴011和外转轴021可相对机身绕固定支点转动,即旋翼轴的轴线与机轴之间的夹角可调节。空气阻力的大小受飞行速度影响,即空阻等效力受飞行速度影响。
在飞行过程中,本公开实施例提供的共万向轴式全钢性双旋翼直升机,旋翼轴可逐渐转动至与机轴重合;空阻等效力随飞行速度变化;驾驶员控制旋翼拉力的大小,可使机身重力沿垂直于机轴方向的分力与空阻等效力平衡,机身重力的沿机轴方向的分力与旋翼拉力平衡,本公开实施例提供的共万向轴式全钢性双旋翼直升机从第一飞行状态逐渐调整至平衡状态,实现悬停或者匀速直线飞行。
在本公开实施例提供的共万向轴式全钢性双旋翼直升机的飞行状态调整过程,可不借助现有技术的直升机中的尾桨和自动倾斜器等部件,通过旋翼轴相对于机身绕固定支点转动,使得机身重力产生的力矩与空气阻力产生的力矩之间相互平衡,从而易于使本公开实施例提供的共万向轴式全钢性双旋翼直升机达到动态平衡,降低了操控难度。
本公开实施例提供的共万向轴式全钢性双旋翼直升机中,旋翼与旋翼轴之间实现全刚性连接,省去了现有技术中“挥舞铰”、“摆振铰”和“变距铰”这类构件及其附属的复杂操纵机构,降低了两组旋翼相互靠近发生干涉碰撞的风险,为简化操纵机构和操纵方法、提高有效载荷、提升最大飞行速度和上升动力创造了基础条件。
需要说明的是,机身装载货物后,机身的重心发生偏移,机轴相对于竖直方向的倾斜角度应该不大于旋翼轴相对于竖直方向的最大转动角度,应使旋翼轴可绕固定支点转动至与机轴重合。
具体地,请参照图1,外转轴021为空心结构;内转轴011从外转轴021中穿过,并且内转轴011的两端均超出外转轴021。内转轴011靠近机身的端部和外转轴021靠近机身的端部均与驱动装置连接。上旋翼012位于下旋翼022远离机身的一侧。
本公开实施例提供的共万向轴式全钢性双旋翼直升机,上旋翼012固定连接于内转轴011;下旋翼022固定连接于外转轴021。需要说明的是,术语“固定连接”包括螺栓连接和焊接等刚性连接方式。
本公开实施例提供的共万向轴式全钢性双旋翼直升机省去了挥舞铰、摆振铰和变距铰,使旋翼的连接结构更加简化,结构更加可靠。
间隔设置的两组旋翼在旋转时,在气流作用下具有相互靠近的趋势。本公开实施例提供的共万向轴式全钢性双旋翼直升机,旋翼与旋翼轴固定连接,从而降低了两组旋翼相互靠近发生干涉碰撞的风险。
可选的,上旋翼012包括上桨毂和多片上桨叶,上桨毂固定连接于内转轴011的端部;多片上桨叶沿内转轴011的周向均匀间隔分布,并且均固定连接于上桨毂;下旋翼022包括下桨毂和多片下桨叶,下桨毂固定连接于外转轴021的端部;多片下桨叶沿外转轴021的周向均匀间隔分布,并且均固定连接于下桨毂。
具体地,上旋翼012包括2-5个上桨叶,上桨叶沿上桨毂的周向均匀间隔分布于上桨毂上。下旋翼022包括2-5个下桨叶,下桨叶沿下桨毂的周向均匀间隔分布于下桨毂上。
在一些实施例中,上桨叶和下桨叶的形状相同,且尺寸相等。上旋翼012包括上桨叶的数量等于下旋翼022包括下桨叶的数量。
可选的,万向轴承组件包括转环04和传动架体03;内转轴011和外转轴021均转动连接于传动架体03,且均可相对传动架体03绕自身轴线转动;传动架体03转动连接于转环04,可相对转环04绕第一轴线转动;转环04转动连接于机身,可相对于机身绕第二轴线转动;第一轴线与第二轴线相交于固定支点。
具体地,请参照图2,转环04包围传动架体03;转环04的相对的两侧分别连接有环轴041,环轴041与转环04固定,并且位于转环04的两侧的环轴041的轴线共线;位于转环04的两侧的环轴041通过第一轴承转动连接于机身,使得转环04可相对机身绕环轴041的轴线转动。环轴041的轴线即为第二轴线。
转环04还设置有耳轴孔。耳轴孔的轴线与环轴041的轴线相交。传动架体03的两个相对的侧面上分别设置有与耳轴孔配合的耳轴031;耳轴031插入耳轴孔中,并通过第二轴承与转环04转动连接,使得传动架体03可相对转环04绕耳轴孔的轴线转动。耳轴孔的轴线即为第一轴线。
需要说明的是,图2中,转环04呈矩形框结构,两个环轴041分布在矩形框结构的两个侧面上,其他实施例中,两个环轴041也可以分布在矩形框结构的两个端部上。并且,图2中,传动架体03呈长方体结构,两个耳轴031分布在长方体结构的两个侧面上,其他实施例中,两个耳轴031也可以分布在长方体结构的两个顶点上,或者棱上。并且,图2中,是在转环04上开设耳轴孔,传动架体03上设置耳轴031,其他实施例中,也可以是传动架体03上设置耳轴孔,转环04上设置耳轴031。还需要说明的是,图2中,其他实施例中,转环04也可以是圆环框结构,传动架体03也可以是圆柱体结构。
内转轴011和外转轴021均连接于传动架体03,环轴041的轴线与耳轴孔的轴线的交点位于内转轴011的轴线上,该交点即为固定支点。
通过万向轴承组件,旋翼轴与机身之间的这种三级转动链接方式使旋翼轴轴向相对于机身具有了二自由度的变化,不再是固定不变的,实现了万向轴式的连接。
采用这种万向轴式的连接,不仅可以通过控制旋翼轴轴向在圆锥角内的变化来操纵直升机的飞行姿态,而且还可以利用机身重心与旋翼轴重心的相对位置实现重力矩与阻力矩之间的自动平衡,不需要附加平衡机构及人为操纵就可以让机身重心自动回到平衡位置,即具有自稳功能。
可选的,第一轴线垂直于第二轴线。
在一些实施例中,环轴041的轴线与耳轴孔的轴线垂直且相交。
作为另一种实施方式,环轴041的轴线与耳轴孔的轴线相交,并且夹角大于0°,小于90°。
可选的,外转轴021通过上轴套转动连接于传动架体03;内转轴011从外转轴021中穿过,并且通过转动连接组件与传动架体03和外转轴021转动连接。
具体地,外转轴021伸入传动架体03中,并且通过上轴套转动连接于传动架体03。
转动连接组件包括下轴套和第三轴承。内转轴011从外转轴021和传动架体03穿过,并且内转轴011通过第三轴承与外转轴021转动连接,内转轴011靠近机身的一端伸出外转轴021,且通过下轴套与传动架体03转动连接。
在一些实施例中,内转轴011与外转轴021之间设置有两个第三轴承,两个第三轴承沿外转轴021的轴线方向间隔分布,且分别位于外转轴021靠近下旋翼022的端部和外转轴021靠近机身的端部。
可选的,驱动装置包括第一锥齿轮051、第二锥齿轮052和第三锥齿轮053;第二锥齿轮052固定连接于外转轴021;内转轴011从外转轴021中穿过,第一锥齿轮051固定连接于内转轴011;第三锥齿轮053转动连接于传动架体03,可相对传动架体03绕自身轴线转动,并且第三锥齿轮053的两侧分别与第一锥齿轮051和第二锥齿轮052啮合。
具体地,请参照图3,第一锥齿轮051与第二锥齿轮052同轴,并且通过第三锥齿轮053传动连接;第一锥齿轮051与第二锥齿轮052的转动方向相反,从而实现内转轴011和外转轴021的转动方向相反。
在一些实施例中,第一锥齿轮051的齿数等于第二锥齿轮052的齿数,使得内转轴011的转速等于外转轴021的转速。
作为另一种实施方式,第一锥齿轮051的齿数大于第二锥齿轮052的齿数,使得外转轴021的转速大于内转轴011的转速,单个下桨叶产生的升力大于单个上桨叶产生的升力。下旋翼022包括的下桨叶的数量小于上旋翼012包括的上桨叶的数量。通过使第一锥齿轮051与第二锥齿轮052之间的齿数比,与上桨叶与下桨叶之间的数量比相配合,使得本公开实施例提供的共万向轴式全钢性双旋翼直升机的两侧的升力保持分布均匀。
可选的,驱动装置包括两个第三锥齿轮053,两个第三锥齿轮053相对设置。
具体地,两个第三锥齿轮053的轴线共线,使得第一锥齿轮051与第二锥齿轮052传动过程中受力分布更加均匀,传动更加平稳。
可选的,驱动装置还包括发动机驱动组件和第一万向节07,发动机驱动组件通过第一万向节07与内转轴011传动连接。
具体地,发动机驱动组件包括发动机和减速器;发动机固定于机身,减速器的输入轴与发动机的输出轴传动连接。
内转轴011伸出传动架体03;第一万向节07的一端与内转轴011连接,另一端与减速器的输出轴连接,使得内转轴011可相对减速器的输出轴转动。内转轴011相对机身绕固定支点发生转动,第一万向节07可使减速器的输出轴与内转轴011保持传动连接。
作为另一种实施方式,驱动装置包括电动机,电动机安装于传动架体03,并且电动机的输出轴与内转轴011传动连接。
可选的,驱动装置包括第一电机061和第二电机062,第一电机061和第二电机062均连接于传动架体03,并且第一电机061的转子和第二电机062的转子同轴;外转轴021与第二电机062的转子传动连接;内转轴011穿过外转轴021和第二电机062,且与第一电机061的转子传动连接。
具体地,请参照图4,第一电机061和第二电机062沿内转轴011的轴向分布,第二电机062位于第一电机061远离机身的一端;外转轴021通过键与第二电机062的转子传动连接;内转轴011穿过外转轴021和第一电机061的转子,并且与第一电机061的转子通过键传动连接。
第一电机061带动内转轴011转动,第二电机062带动外转轴021转动。内转轴011的转速大小和方向与外转轴021的转速大小和方向可分别进行独立控制,简化了动力传输机构。
上述驱动装置的两种实施方式,一是简化了驱动装置与旋翼轴的连接结构,便于旋翼轴轴向控制;二是利于旋翼轴重心配重,对于飞行姿态平衡控制有重要意义。
可选的,本公开实施例提供的共万向轴式全钢性双旋翼直升机还包括第二万向节09和操纵杆08,操纵杆08通过第二万向节09连接于内转轴011远离上旋翼012的一端,配置成驱动内转轴011和外转轴021相对机身绕固定支点转动。
在一些实施例中,内转轴011的转动由第一电机061驱动,第二万向节09的一端与内转轴011连接,另一端与操纵杆08连接;驾驶员通过操纵杆08可驱动内转轴011绕固定支点转动,以调节旋翼轴与机轴之间的角度。
在一些实施例中,内转轴011的转动由发动机驱动组件来驱动,内转轴011的端部与第二万向节09的第一端连接;第二万向节09的第二端与第一万向节07的第一端连接,并且操纵杆08连接于第二万向节09的第二端端部;第一万向节07的第二端与减速器的输出轴连接。驾驶员通过操纵杆08可驱动内转轴011绕固定支点转动,以调节旋翼轴与机轴之间的角度。
请参照图1和图7,本公开实施例提供的共万向轴式全刚性双旋翼直升机,操纵杆08通过第二万向节09与内转轴011的下端部转动连接来控制旋翼轴轴向,进而控制直升机的飞行姿态;操纵杆08包括滑槽081、手柄082、滑块083和滑销084;通过滑槽081、滑块083和滑销084相互配合,可以由手柄 082控制旋翼轴轴向在一个给定的圆锥角内变化;放开手柄082,让旋翼轴处于自由状态,直升机可以自动回到平衡状态。
可选的,旋翼轴重心位于固定支点靠近机身的一侧,或者旋翼轴重心与固定支点重合。
具体地,当内转轴011的转动由第一电机061驱动时,旋翼轴重心是指旋翼、旋翼轴、第一电机061、第二电机062和传动架体03作为整体的重心。第一电机061、第二电机062和传动架体03具有配重的作用,使得旋翼轴重心向机身偏移。
当内转轴011的转动由发动机驱动组件驱动时,旋翼轴重心是指旋翼、旋翼轴、第一锥齿轮051、第二锥齿轮052、第三锥齿轮053和传动架体03作为整体的重心。第一锥齿轮051、第二锥齿轮052、第三锥齿轮053和传动架体03具有配重的作用,使得旋翼轴重心向机身偏移。
请参照图1和图2,耳轴031设置于传动架体03远离机身的端部。旋翼轴重心位于耳轴031的轴线与环轴041的轴线形成的平面的靠近机身的一侧,或者旋翼轴重心位于耳轴031的轴线上。
本公开实施例提供的共万向轴式全钢性双旋翼直升机,相比于现有技术中的直升机具有的优点包括:桨叶与旋翼轴间的全刚性连接,旋翼轴与机身间的万向轴式连接,旋翼轴与驱动装置一体化,简化的操纵机构。
下面对本公开实施例提供的共万向轴式全钢性双旋翼直升机的飞行操纵进行说明。
一、飞行平衡条件
请参照图5,图5为本公开实施例提供的共万向轴式全刚性双旋翼直升机飞行时平衡状态的受力分析图。
图5中,F为旋翼轴沿轴向作用在机身的旋翼拉力,作用点为o F,相对机身固定不变,旋翼轴可绕o F点在一个圆锥角内改变轴向;过o F分别作水平轴x轴和垂直轴z轴;F与x轴和z轴共面,且与z轴的夹角为θ;v为直升机的飞行速度,与x轴平行;W为机身的重力,垂直向下,作用于机身的重心o W;l为机轴,即o F点与o W的连线的延长线;T为直升机迎面受到的空气合阻力,方向与速度v相反,作用在与重心o W同一条水平线的机身表面。
根据力学原理,在不考虑机身绕机轴l的转动,只考虑机身发生翻滚的情况下,直升机飞行处于平衡状态的条件是:作用在直升机上的合外力和合外力矩均为零。可以证明,直升机的飞行姿态平衡条件是:
1)机身重心o W在旋翼拉力F的延长线上,这时,旋翼轴的对称轴与机轴l重合;
2)|T′|=|W|sinθ;
3)|F|=|W|cosθ;
其中,T′是空气合阻力T对机身o F点产生的阻力矩的等效力,作用在机身重心o W,方向与机轴l垂直且向上。
第一个平衡条件表示旋翼轴提供的旋翼拉力F对直升机产生的力矩等于零。在现有技术的直升机中,旋翼轴轴向固定不变,故机轴l因为载荷变化很难与旋翼轴的对称轴重合,对旋翼轴的重力矩总是存在,需要附加平衡装置,如通过“自动倾斜器”调整旋翼椎体方向实现平衡。本公开实施例提供的共万向轴式全刚性双旋翼直升机,其旋翼轴在空气阻力T的作用下自动绕o F转动至与机轴l重合。这时,空气阻力T对o F的力矩等于重力W对o F的力矩,即自动使第二个平衡条件|T′|=|W|sinθ成立,形成重力矩与阻力矩的相互平衡,不需要附加装置或人为操纵。
第三个平衡条件|F|=|W|cosθ表示垂直方向的合外力平衡,特别当θ=0时,F=W,直升机悬停;当θ=90°时,旋翼轴对机身的旋翼拉力沿水平方向,类似固定翼飞机,可使机身获得最大平飞速度。
二、飞行操纵模式
请参照图5和图6,图6为本公开实施例提供的共万向轴式全刚性双旋翼直升机的飞行姿态操纵原理图,展示了旋翼轴与机身在圆锥角内的受力关系及其飞行姿态操纵原理。
图6中,W和F仍然分别表示机身的重力和旋翼轴作用在机身上的旋翼拉力;o F为F的作用点,x轴为过o F的水平轴;双点划线l F为旋翼拉力F的延长线,亦即旋翼轴的对称轴;用w表示旋翼轴重力,o w为w的作用点,在l F上,且远小于机身重力,即|w|<<|W|;点划线l表示机轴,即o F与机身重心o W的连线;再用粗实线l 1表示l F的最大允许摆渡边界,细实线l 2表示机轴l最大允许摆渡的边界,l 1和l 2实际上分别给出了两个圆锥的锥面,对应的圆锥角分别为Ω 1(图6中虚线圆)和Ω 2(图6中点划线圆);虚线l o表示直升机设计制造时机轴l的设计位置,称为理论机轴,也是圆锥角Ω 1和圆锥角Ω 2的对称轴。
一般情况下,由于载荷变化,机身的实际重心位置相对设计位置存在漂移,机轴l将偏离理论机轴l o,偏离角用ω表示,重力W对o F产生一个使机身偏斜的重力矩;另一方面,如果旋翼轴的对称轴l F偏离机轴l,偏离角用
Figure PCTCN2018114399-appb-000001
表示,机身的合外力矩不为零,旋翼拉力F对机身重心o W产生一个使机身顺时钟翻 转的力矩。这时,旋翼轴重心o w的位置将决定直升机的操纵模式,分别解释如下:
第一模式,o w在o F下方,直升机具有趋于稳定悬停的功能。图6给出了这种模式一种状态,这时可以看到,ω>0,重力W对o F产生的重力矩会使机轴l趋于与水平面垂直,同时因
Figure PCTCN2018114399-appb-000002
或者因l F不与水平面垂直,旋翼轴重力w对o F点产生一个力矩会使l F趋于与水平面垂直。结果是,机轴l与旋翼轴的对称轴l F将在水平面垂直方向上重合。这时,驾驶员只要放开操纵杆08,使之处于自由状态,通过油门控制好旋翼转速,使得最后F=W,直升机自动趋于稳定平衡的悬停状态。
第二模式,旋翼轴重心o w与o F重合,直升机具有趋于稳定飞行的功能。在图6中,若旋翼轴重心o w与o F重合,则旋翼轴重力w对o F的力矩为零,因而l F的方向保持不变。在图6中其它初始条件不变的情况下,则有机身重力W使机轴l趋向垂直,旋翼拉力F使机身增速,空气合阻力T对o F点的阻力矩增大,且保持顺时钟方向不变。这样,重力W的重力矩将从顺时钟方向,逐渐减小至零,再逆时钟方向由零逐渐增大,直到与空气的阻力矩相互平衡为止,即出现图5所示的状态。这时,机轴l顺时钟自动向l F靠拢,重心o W也自动移到l F上,驾驶员只要放开操纵杆08,使之处于自由状态,通过油门控制好旋翼转速,使得|F|=|W|cosθ,直升机自动趋于稳定平衡的前飞状态。
以上两种操纵模式分析可见,旋翼轴重力w的相对位置对于直升机飞行的稳定性具有决定性作用,而旋翼轴与驱动装置一体化的技术方案特别便于旋翼轴配重处理,确保直升机具有自稳功能。
三、飞行操纵
请参照图1、图6和图7,图7为本公开实施例提供的共万向轴式全刚性双旋翼直升机的飞行姿态操纵示意图,展示了一种简单的操纵结构与操纵方法。
因为图6中的圆锥角Ω 1和圆锥角Ω 2一般较小,故图7可以理解为在图1的内转轴011下端部第二万向节09处对图1和图6作水平截面时的截线,其中,操纵杆08与第二万向节09是实物对象,来自图1;两个实线圆、一个虚线圆和对应的两个坐标系都是虚拟对象,来自图6,给出了直升机飞行的即时状态。
图7中,两个实线同心圆分别对应圆锥角Ω 1和圆锥角Ω 2,分别表示l F和机轴l的最大允许摆渡边界;点o F、点o W和点o w可以认为分别是三个力F、W 和w的作用点分别沿理论机轴l o、机轴l和旋翼轴的对称轴l F到水平截面上的投影(或者理解为l o、l和l F与水平截面的交点);点o F占据同心圆Ω 1和Ω 2的圆心,对应图6中的圆锥顶点,固定不动,也是机身重心的理想位置;点o W为机身重心的实际位置,圆Ω 2也可以解释为重心o W的允许漂移范围;点o w为旋翼轴重心的实际位置,与第二万向节09重叠,限制在圆Ω 1内变动。
过点o F作一理论坐标系,标示前后左右四个方向,表示在理想情况下,相对点o F,点o w所在的位置指示出直升机向前向后向左向右变速飞行的强度。因此,在前后方向的延长线上,设置一个可在移动和固定之间切换的滑块083,滑块083上设置一个滑销084,滑销084在操纵杆08的滑槽081内滑动,通过操纵手柄082左右摆动前后移动并通过前后调节滑块083,便可以控制点o w在圆Ω 1内全域变动。
但是,点o W总是存在漂移,将最大漂移量限制在圆Ω 2内,故过点o W作一个修正坐标系xo Wy取代理论坐标系,用x轴表示实际的前与后,y轴表示实际的左与右,再以点o W为圆心,作圆Ω 1的内切圆(图7中虚线圆),则可以限制点o w相对点o W在虚线圆内变动。
这样,本公开实施例提供的共万向轴式全刚性双旋翼直升机的飞行姿态操纵方法如下:
1)上升、下降。通过控制旋翼的转速操纵上升与下降。
2)悬停、前飞、侧飞、后飞、转弯。在图7中,通过操纵杆08将点o w控制到相对点o W的前后左右相应位置。
3)航向。由于力F、W与机轴l共面,不能直接用来操纵航向,故采用发动机驱动时,可在机身设置一小尾舵,利用旋翼提供的气流改变航向,而采用电力驱动时,可直接调节上旋翼012与下旋翼022之间的转速比改变航向。
在第二模式下,飞行操纵步骤:
第一步,启动发动机,怠速预热;
第二步,操纵旋翼轴至垂直,放开操纵杆08至自由状态;
第三步,缓慢加油至机身离地悬停,这时点o w与点o W重叠;
第四步,标记图7中机身重心o W位置作为参考点,且让滑块083沿虚线平移至滑销084居滑槽081的中间位置,固定滑块083;
第五步,再以滑销084为支点,通过手柄082控制点o w偏离点o W,如沿x轴后方缓慢移动点o w,配合控制油门增大旋翼的转速,直升机将向前或前上方加速飞行;
第六步,飞行达预期高度和速度,放开操纵杆08至自由状态,控制好油门,点o w将自动返回点o W,这时,机轴l与旋翼轴的对称轴l F重合,直升机进入稳定飞行状态,保持匀速直线水平飞行。
最后应说明的是:每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同相似的部分相互参见即可;以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。而这些修改、替换或者组合,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性:
综上所述,本公开提供了一种共万向轴式全刚性双旋翼直升机,其结构简单,降低了两组旋翼相互靠近发生干涉碰撞的风险,并且简化了操纵机构和操纵方法,降低了操控难度。

Claims (16)

  1. 一种共万向轴式全刚性双旋翼直升机,其特征在于,包括:机身、旋翼轴、旋翼和驱动装置;
    所述旋翼轴包括内转轴和外转轴;
    所述旋翼包括上旋翼和下旋翼;
    所述内转轴和所述外转轴共轴,并且均通过万向轴承组件与所述机身连接,可相对所述机身绕同一固定支点转动;所述固定支点位于所述内转轴的轴线上;
    所述驱动装置分别与所述内转轴和所述外转轴传动连接,以分别驱动所述内转轴绕自身轴线转动和所述外转轴绕自身轴线转动;
    所述上旋翼固定连接于所述内转轴,所述下旋翼固定连接于所述外转轴;所述上旋翼和所述下旋翼沿所述内转轴的轴向间隔分布。
  2. 根据权利要求1所述的共万向轴式全刚性双旋翼直升机,其特征在于,所述上旋翼包括上桨毂和多片上桨叶,所述上桨毂固定连接于所述内转轴的端部;多片所述上桨叶沿所述内转轴的周向均匀间隔分布,并且均固定连接于所述上桨毂;
    所述下旋翼包括下桨毂和多片下桨叶,所述下桨毂固定连接于所述外转轴的端部;多片所述下桨叶沿所述外转轴的周向均匀间隔分布,并且均固定连接于所述下桨毂。
  3. 根据权利要求2所述的共万向轴式全刚性双旋翼直升机,其特征在于,所述上桨叶的数量与所述下桨叶的数量相同。
  4. 根据权利要求1-3任一项所述的共万向轴式全刚性双旋翼直升机,其特征在于,所述万向轴承组件包括转环和传动架体;所述内转轴和所述外转轴均转动连接于所述传动架体,且均可相对所述传动架体绕自身轴线转动;
    所述传动架体转动连接于所述转环,可相对所述转环绕第一轴线转动;
    所述转环转动连接于所述机身,可相对于所述机身绕第二轴线转动;
    所述第一轴线与所述第二轴线相交于所述固定支点。
  5. 根据权利要求4所述的共万向轴式全刚性双旋翼直升机,其特征在于,所述转环包围所述传动架体;
    所述转环的相对的两侧分别连接有环轴,所述环轴与所述转环固定,并且位于所述转环的两侧的所述环轴的轴线共线;
    位于所述转环的两侧的所述环轴通过第一轴承转动连接于所述机身,使得所述转环可相对所述机身绕所述环轴的轴线转动;
    所述环轴的轴线为第二轴线。
  6. 根据权利要求5所述的共万向轴式全刚性双旋翼直升机,其特征在于,所述转环还设置有耳轴孔;
    所述耳轴孔的轴线与所述环轴的轴线相交;
    所述传动架体的两个相对的侧面上分别设置有与所述耳轴孔配合的耳轴;
    所述耳轴插入所述耳轴孔中,并通过第二轴承与所述转环转动连接,使得所述传动架体可相对所述转环绕所述耳轴孔的轴线转动;
    所述耳轴孔的轴线为第一轴线。
  7. 根据权利要求4-6任一项所述的共万向轴式全刚性双旋翼直升机,其特征在于,所述第一轴线垂直于所述第二轴线。
  8. 根据权利要求4-7任一项所述的共万向轴式全刚性双旋翼直升机,其特征在于,所述外转轴通过上轴套转动连接于所述传动架体;
    所述内转轴从所述外转轴中穿过,并且通过转动连接组件与所述传动架体和所述外转轴转动连接。
  9. 根据权利要求8所述的共万向轴式全刚性双旋翼直升机,其特征在于,所述转动连接组件包括下轴套和第三轴承;
    所述内转轴从所述外转轴和所述传动架体穿过,并且所述内转轴通过所述第三轴承与所述外转轴转动连接,所述内转轴靠近所述机身的一端伸出所述外转轴,且通过所述下轴套与所述传动架体转动连接。
  10. 根据权利要求9所述的共万向轴式全刚性双旋翼直升机,其特征在于,所述内转轴与所述外转轴之间设置有两个所述第三轴承,两个所述第三轴承沿所述外转轴的轴线方向间隔分布,且分别位于所述外转轴靠近所述下旋翼的端部和所述外转轴靠近所述机身的端部。
  11. 根据权利要求4-10任一项所述的共万向轴式全刚性双旋翼直升机,其特征在于,所述驱动装置包括第一锥齿轮、第二锥齿轮和第三锥齿轮;
    所述外转轴与所述第二锥齿轮固定连接;
    所述内转轴从所述外转轴中穿过,与所述第一锥齿轮固定连接;
    所述第三锥齿轮转动连接于所述传动架体,可相对所述传动架体绕自身轴线转动,并且所述第三锥齿轮的两侧分别与所述第一锥齿轮和所述第二锥齿轮啮合。
  12. 根据权利要求11所述的共万向轴式全刚性双旋翼直升机,其特征在于,所述第一锥齿轮的齿数等于所述第二锥齿轮的齿数。
  13. 根据权利要求11或12所述的共万向轴式全刚性双旋翼直升机,其特征在于,所述驱动装置包括两个所述第三锥齿轮,两个所述第三锥齿轮相对设置。
  14. 根据权利要求11-13任一项所述的共万向轴式全刚性双旋翼直升机,其特征在于,所述驱动装置还包括发动机驱动组件和第一万向节,所述发动机驱动组件通过所述第一万向节与所述内转轴传动连接。
  15. 根据权利要求4-13任一项所述的共万向轴式全刚性双旋翼直升机,其特征在于,所述驱动装置包括第一电机和第二电机,所述第一电机和所述第二电机均连接于所述传动架体,并且所述第一电机的转子和所述第二电机的转子共轴;
    所述外转轴与所述第二电机的转子传动连接;
    所述内转轴从所述外转轴和所述第二电机中穿过,且与所述第一电机的转子传动连接。
  16. 根据权利要求1-15任一项所述的共万向轴式全刚性双旋翼直升机,其特征在于,所述共万向轴式全刚性双旋翼直升机还包括第二万向节和操纵杆,所述操纵杆通过所述第二万向节连接于所述内转轴远离所述上旋翼的一端,配置成驱动所述内转轴和所述外转轴相对所述机身绕所述固定支点转动。
PCT/CN2018/114399 2018-06-27 2018-11-07 共万向轴式全刚性双旋翼直升机 WO2020000857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810682930.8 2018-06-27
CN201810682930.8A CN108791857B (zh) 2018-06-27 2018-06-27 共万向轴式全刚性双旋翼直升机

Publications (1)

Publication Number Publication Date
WO2020000857A1 true WO2020000857A1 (zh) 2020-01-02

Family

ID=64070845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114399 WO2020000857A1 (zh) 2018-06-27 2018-11-07 共万向轴式全刚性双旋翼直升机

Country Status (2)

Country Link
CN (1) CN108791857B (zh)
WO (1) WO2020000857A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109955639B (zh) * 2019-03-22 2020-09-22 浙江大学 一种动态雕塑体验互动装置
CN110341947B (zh) * 2019-06-25 2022-07-19 武汉科技大学 一种可多向倾转的四旋翼飞行器
CN111137436B (zh) * 2020-01-19 2023-05-23 广州佳禾创新科技有限公司 飞行汽车机翼倾转机构及包含其的飞行汽车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160046371A1 (en) * 2012-02-21 2016-02-18 Bell Helicopter Textron Inc. Coaxial counter-rotating rotor system
CN106314785A (zh) * 2016-08-30 2017-01-11 中航沈飞民用飞机有限责任公司 一种共轴双旋翼飞行器
CN207257981U (zh) * 2017-09-05 2018-04-20 南京荣骏科技发展有限公司 一种油电混合重载多旋翼直升机
CN208515806U (zh) * 2018-06-27 2019-02-19 盛利元 共万向轴式全刚性双旋翼直升机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070209457A1 (en) * 2006-02-17 2007-09-13 Koji Irikura Power transmission apparatus for working vehicle
US9169010B2 (en) * 2012-02-24 2015-10-27 Bell Helicopter Textron Inc. Offset stacked yoke hub for tiltrotor aircraft
US10370089B2 (en) * 2016-03-30 2019-08-06 Lockheed Martin Corporation Weight-shifting coaxial helicopter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160046371A1 (en) * 2012-02-21 2016-02-18 Bell Helicopter Textron Inc. Coaxial counter-rotating rotor system
CN106314785A (zh) * 2016-08-30 2017-01-11 中航沈飞民用飞机有限责任公司 一种共轴双旋翼飞行器
CN207257981U (zh) * 2017-09-05 2018-04-20 南京荣骏科技发展有限公司 一种油电混合重载多旋翼直升机
CN208515806U (zh) * 2018-06-27 2019-02-19 盛利元 共万向轴式全刚性双旋翼直升机

Also Published As

Publication number Publication date
CN108791857B (zh) 2024-01-19
CN108791857A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
US10301016B1 (en) Stabilized VTOL flying apparatus and aircraft
US6719244B1 (en) VTOL aircraft control using opposed tilting of its dual propellers or fans
US6863241B2 (en) Control of an aircraft as a thrust-vectored pendulum in vertical, horizontal and all flight transitional modes thereof
US5085315A (en) Wide-range blade pitch control for a folding rotor
US6343768B1 (en) Vertical/short take-off and landing aircraft
WO2016109408A4 (en) Rotary wing vtol with fixed wing forward flight mode
US20180141655A1 (en) VTOL airplane or drone utilizing at least two tilting propellers located in front of wings center of gravity.
WO2020000857A1 (zh) 共万向轴式全刚性双旋翼直升机
JP3884025B2 (ja) 二重反転翼のピッチ角可変機構およびそれを備えた二重反転翼を有する飛行装置
US11731759B2 (en) Systems and methods for yaw-torque reduction on a multi-rotor aircraft
CN107264796A (zh) 具有至少两个螺旋桨桨叶的螺旋桨组件
CN106915459A (zh) 一种混合式倾转旋翼无人机
US11975824B2 (en) Systems for flight control on a multi-rotor aircraft
US11822348B2 (en) Flight vehicle and method of controlling flight vehicle
CN107042885A (zh) 一种采用风扇涵道结构控制偏航和俯仰的倾转旋翼机
CN205366061U (zh) 非平面八臂三十二旋翼飞行器
CN104973241A (zh) 具有主副多旋翼结构的无人飞行器
US20230356832A1 (en) Dual-state rotatable propulsion system
CN208515806U (zh) 共万向轴式全刚性双旋翼直升机
KR102381052B1 (ko) 브이톨 드론
CN209683994U (zh) 一种多轴多向倾转式多旋翼飞行器传动系统
CN110626494A (zh) 纵列式三旋翼直升机
CN206374980U (zh) 一种采用风扇涵道结构控制偏航和俯仰的倾转旋翼机
CN106364670A (zh) 非平面八臂十六旋翼飞行器
CN110877722A (zh) 三自由度无铰链无柔性联接双旋翼飞行器动力结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18924113

Country of ref document: EP

Kind code of ref document: A1