WO2020000844A1 - 开关电源电路 - Google Patents

开关电源电路 Download PDF

Info

Publication number
WO2020000844A1
WO2020000844A1 PCT/CN2018/113687 CN2018113687W WO2020000844A1 WO 2020000844 A1 WO2020000844 A1 WO 2020000844A1 CN 2018113687 W CN2018113687 W CN 2018113687W WO 2020000844 A1 WO2020000844 A1 WO 2020000844A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
module
supply circuit
switching power
secondary side
Prior art date
Application number
PCT/CN2018/113687
Other languages
English (en)
French (fr)
Inventor
金胜昔
邓永文
杜东逸
张祝宾
宁瀛锋
赵跃
王锦辉
李亮
刘玉婷
Original Assignee
格力电器(武汉)有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810664151.5A external-priority patent/CN108809105B/zh
Priority claimed from CN201810664006.7A external-priority patent/CN108599562B/zh
Application filed by 格力电器(武汉)有限公司, 珠海格力电器股份有限公司 filed Critical 格力电器(武汉)有限公司
Publication of WO2020000844A1 publication Critical patent/WO2020000844A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the field of power supply technology, and in particular, to a switching power supply circuit.
  • Switching power supply is a type of power supply that uses modern power electronics technology to control the time ratio of switching tubes on and off and maintain a stable output voltage. With the development and innovation of power electronics technology, switching power supply technology is also constantly innovating. Switching power supply products are widely used in industrial automation control, military equipment, scientific research equipment, LED lighting, industrial control equipment, communication equipment, power equipment, instrumentation, medical equipment, refrigeration and heating (refrigerators and air conditioners, etc.), air purifiers, liquid crystal displays, LED lamps, communication equipment, audiovisual products, security monitoring, LED strips, computer cases, digital products and instruments.
  • flyback switching power supplies are popular because of their simple circuit structure, low cost, and existing flyback switching power supplies generally include isolated switching power supplies and non-isolated switching power supplies.
  • isolated switching power supplies due to the existence of the transformer, the primary side is isolated from the secondary side. This circuit cannot be applied to thyristors and other circuits that require common ground for the first time.
  • the non-isolated switching power supply circuit is limited by the I-shaped inductor and cannot provide large power, which is difficult to adapt to a wide range of applications.
  • the technical problem to be solved in this application is how to increase the output power of the switching power supply circuit.
  • an example of the present application provides a switching power supply circuit, including: a power control module for converting electric energy of a preset frequency; an energy transfer module, a primary side of the energy transfer module and an input terminal of the power control module Connection, the secondary side of the energy transfer module is connected to the output terminal of the power control module.
  • a first end of the secondary side of the energy transfer module is connected to one end of the power control module, and a second end of the secondary side is grounded.
  • the power control module includes a switch tube, an input end of the switch tube is connected to a primary side of the energy transfer module, and an output end of the switch tube is connected to a secondary side of the energy transfer module.
  • an output end of the switching tube is connected to a first end of a secondary side of the energy transfer module.
  • the energy transfer module includes a high-frequency transformer
  • One end of the primary side of the high-frequency transformer is used to connect to a power source, the other end of the primary side is connected to an input terminal of the power control module, and one end of the secondary side of the high-frequency transformer is connected to the power control module.
  • the output terminal is connected to the other end of the secondary side of the high-frequency transformer and serves as the output terminal of the switching power supply circuit.
  • one end of the primary side of the high-frequency transformer is used to connect to a power source, the other end of the primary side of the high-frequency transformer is connected to an input end of the power control module, and the first side of the secondary side of the transformer One end is connected to the output end of the power control module.
  • the switching power supply circuit further includes: a rectification and filtering module configured to be rectified and filtered on the power supply, disposed between the energy transfer module and the power supply.
  • the switching power supply circuit further includes: an absorption module disposed between the rectification and filtering module and the power control module, and connected in parallel with the energy transfer module for excess energy in the circuit.
  • the switching power supply circuit further includes a surge suppression module configured to be disposed between the rectification and filtering module and the power supply, and used to suppress a surge current and / or a surge voltage.
  • a surge suppression module configured to be disposed between the rectification and filtering module and the power supply, and used to suppress a surge current and / or a surge voltage.
  • the switching power supply circuit further includes a feedback module disposed between an output end of the switching power supply circuit and a control end of the power control module.
  • the feedback module includes a current feedback module or a voltage feedback module.
  • the switching power supply circuit further includes: an output filtering module disposed at an output end of the switching power supply circuit.
  • a freewheeling device is provided between one end of the secondary side and the output terminal of the switching power supply circuit, and the positive electrode of the freewheeling device is connected to the output terminal of the switching power supply circuit, and the freewheeling device The negative electrode of the device is connected to the first end of the secondary side.
  • the switching power supply circuit and the power supply control module provided in the embodiments of the present application are used to convert electric energy of a preset frequency; the energy transfer module, the primary side of the energy transfer module is connected to the input end of the power control module, and the energy transfer The secondary side of the module is connected to the output terminal of the power control module.
  • the power control module When the power control module is turned on, the secondary side and the secondary side are connected in series, a current flows through the primary side and the secondary side at the same time, and the primary side and the secondary side are charged at the same time.
  • the power control module is turned off, the energy stored on the primary side is transferred to the secondary side through the iron core. At the same time, the energy obtained by the secondary side when the switching power supply is turned on is simultaneously output to the output of the switching power supply.
  • the output energy can greatly increase the output power.
  • the primary side and the secondary side are connected in series through a power control module, so that the primary side and the secondary side can share a reference potential, and the switching power supply circuit can be applied to thyristors and other circuits that require the common ground of the first stage.
  • the energy transfer module is a transformer, and the transformer is used instead of the I-shaped inductor, which can not only provide higher power, but also can adapt to high-frequency circuits to prevent noise.
  • FIG. 1 shows a modular schematic diagram of a switching power supply circuit according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a light-emitting power circuit according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a current flow when the power control module of the embodiment of the present application is turned on
  • FIG. 4 shows a schematic diagram of a current flow when the power control module of the embodiment of the present application is turned off
  • FIG. 5 shows a modular schematic diagram of a switching power supply circuit according to another embodiment of the present application.
  • FIG. 6 is a schematic diagram of a light-emitting power circuit according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram of a current flow when a power control module is turned on according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a current flow when a power supply control module according to another embodiment of the present application is turned off.
  • An embodiment of the present application provides a switching power supply circuit, as shown in FIG. 1 and FIG. 2, including a power control module 10 for converting electric energy of a preset frequency; an energy transfer module 20, a primary side of the energy transfer module 20 It is connected to the input of the power control module, and the secondary side of the energy transfer module 20 is connected to the output of the power control module 10.
  • the power supply control module 10 is generally composed of a pulse width modulation (PWM) control chip and a switching tube. Power electronics technology can be used to control the time ratio of the switching tube to turn on and off to maintain a stable output voltage.
  • PWM pulse width modulation
  • the so-called energy transfer module 20 may be an I-shaped inductor or a transformer. Since the I-shaped inductor is difficult to provide large power, and it is easy to generate high-frequency noise that can be heard by the ear in a high-frequency circuit. The environment is polluted. Therefore, in this embodiment, a transformer may be preferentially selected as the energy transfer module 20. Specifically, if a high-frequency circuit is required, a high-frequency transformer may be selected as the energy transfer module 20 in this embodiment.
  • both the primary side and the secondary side of the energy transfer module 20 can be used as energy storage inductors, that is, the primary side and the secondary side of the energy transfer module 20 are connected in series through the power control module 20.
  • the energy transfer module 20 is described using a transformer as an example, as shown in FIG. 3. It is shown that when the power control module 10 is turned on, the primary side and the secondary side are connected in series, a current flows through the primary side and the secondary side at the same time, and the primary side and the secondary side are charged at the same time. As shown in FIG. 4, when the power control module 10 is turned off, the energy stored on the primary side is transferred to the secondary side through the transformer core, and at the same time, the energy obtained when the switching power supply is turned on is output to the output terminal of the switching power supply at the same time.
  • the output power can be greatly increased because the energy is also output on the primary side.
  • One end of the secondary side of the energy transfer module 20 is connected to the power control module 10, the other end of the secondary side is connected to the output end of the switching power supply circuit, and a current guiding device 80 is provided between one end of the secondary side and the ground.
  • a positive electrode of the current guiding device 80 is grounded, and a negative electrode of the current guiding device 80 is connected to one end of the secondary side.
  • the output terminal of the switching power supply circuit outputs a positive voltage.
  • the current guiding device may be a diode.
  • the primary side and the secondary side of the transformer are connected in series through a power control module, which can make the primary and secondary share a reference potential, and the switching power supply circuit of this embodiment can be applied to thyristors such as thyristors that require a common ground for the first stage. Circuit.
  • the switching tube of the power control module 10 may include a metal-oxide semiconductor field effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET), and the specific drain is used as the input terminal of the field effect tube.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the pole is used as the output terminal of the FET
  • the grid is used as the control terminal of the FET.
  • the drain of the FET is connected to the primary side of the energy transfer module 20, and the source of the FET is connected to the secondary side of the energy transfer module 20.
  • the switching power supply circuit may further include a rectification and filtering module 30 configured to be disposed between the energy transfer module and the power source to perform rectification and filtering on the power source.
  • the rectifying and filtering circuit may include a first capacitor C1, which is arranged in parallel between the positive and negative poles of the power supply, a common mode inductor L1, and a rectifying bridge BD1.
  • a second capacitor C7 is provided, and the second capacitor C2 is used to filter the output signal of the rectifier bridge BD1.
  • the first capacitor C1 may use a safety capacitor to increase the safety factor.
  • the switching power supply circuit may further include an absorption module 40 disposed between the rectification and filtering module 30 and the power control module 10 and connected in parallel with the energy transfer module 20. Used for excess energy in the circuit.
  • the absorption module 40 may adopt an RCD absorption circuit. Specifically, the first resistor group 41 (the third resistor R3 and the fourth resistor R4 are connected in series, and the fifth resistor R5 and the sixth resistor R6 are connected in series.
  • the absorption module 40 can eliminate the stray energy in the circuit and the excess energy stored in the transformer leakage inductance to prevent the voltage across the field effect tube from becoming too high.
  • the switching power supply circuit may further include a surge suppression module 50.
  • the switching power supply circuit is disposed between the rectification and filtering module 30 and the power supply, and is configured to suppress a surge current. And / or surge voltage. Surge voltage is suppressed at the instant of power-up.
  • a varistor RV1 can be used to achieve over-voltage protection, lightning strikes, surge current / voltage absorption of spikes, and limit power supply amplitude.
  • the surge suppression module 50 may further include a current protection device. For details, refer to the fuse F1 in FIG. 2.
  • the switching power supply circuit may further include a feedback module disposed between an output terminal of the switching power supply circuit and a control terminal of the power control module.
  • the feedback module includes a current feedback module or a voltage feedback module. Taking voltage feedback as an example, as shown in FIG. 2, a proportional resistor can be used.
  • the seventh resistor R7 and the eighth resistor R8 shown in FIG. 2 are adjusted by adjusting the resistance of the resistor.
  • the resistance value determines the output voltage, and the adjustment method of the resistance can be determined according to the chip used by the power control module.
  • the output end of the switching power supply circuit may further include an output filtering module 70.
  • a capacitor may be connected in parallel between the output ends to filter the output power.
  • the current-conducting device 80 at one end of the secondary side can prevent a sudden increase in the electrical energy on the secondary side, causing a sudden change in the electric current voltage.
  • the current guiding device 80 may be a freewheeling diode, and specifically, a fast recovery diode or a Schottky diode may be used.
  • the switching power supply circuit includes a surge suppression module.
  • the output end of the surge suppression module is connected to the rectification and filtering module.
  • the first end of the primary side of the transformer is connected to the output of the rectification and filtering module.
  • One end of the terminal is connected, the second end of the primary side is connected to the input end of the power control module, the absorption module is connected in parallel between the primary side and the input end of the power control module, and the output end of the power control module is connected to one end of the secondary side. It is used together with the other end as the switching power supply circuit as the output end of the switching power supply circuit. According to the above connection relationship, please refer to FIG. 3 and FIG.
  • the electric signal flow of the switching power supply when the power control module is turned on, the electric signal output from one end of the rectification and filtering module is output. After the primary side, the primary side stores electrical energy, and the electrical signal reaches the input terminal of the power control module. The electrical signal is output from the output terminal through the power control module, flows through the secondary side, and the secondary side stores electrical energy and returns to the other end of the rectification and filtering module. At this time, the electrical signal does not pass through the load.
  • this application provides another embodiment.
  • the power control module 10 for converting electric energy of a preset frequency; an energy transfer module 20, and a primary side of the energy transfer module 20 is connected to an input terminal of the power control module, so that The first end A of the secondary side of the energy transfer module 20 is connected to the output end of the power control module, and the second end B of the secondary side is grounded.
  • the power supply control module 10 is generally composed of a pulse width modulation (PWM) control chip and a switching tube. Power electronics technology can be used to control the time ratio of the switching tube to turn on and off to maintain a stable output voltage.
  • the so-called energy transfer module 20 may be an I-shaped inductor or a transformer.
  • a transformer may be preferentially selected as the energy transfer module 20. Specifically, if a high-frequency circuit is required, a high-frequency transformer may be selected as the energy transfer module 20 in this embodiment.
  • the use of high-frequency transformers can not only provide higher power, but also can adapt to high-frequency circuits to prevent noise.
  • both the primary side and the secondary side of the energy transfer module 20 can be regarded as energy storage inductors, that is, the primary side and the secondary side of the energy transfer module 20 are connected in series through the power control module 20.
  • the energy transfer module 20 is described using a transformer as an example, as shown in FIG. 7. It is shown that when the power control module 10 is turned on, the primary side and the secondary side are connected in series, a current flows through the primary side and the secondary side at the same time, and the primary side and the secondary side.
  • a diversion device 8 is provided between one end of the secondary side and the output terminal of the switching power supply circuit.
  • a positive electrode of the current guiding device 80 is connected to an output terminal of the switching power supply circuit.
  • a negative electrode of the current guiding device 80 is provided. It is connected to the first end A of the secondary side.
  • the so-called current-conducting device 80 may be a diode D1 ′. Since the anode of the diode D1 is connected to the output terminal of the switching power supply, the anode of the diode D1 ′ is connected to the first terminal A of the secondary side.
  • the control module 10 When the control module 10 is turned on, the primary side and the secondary side are charged at the same time, and current cannot flow to the output terminal of the switching power supply. Can complete better charging.
  • the power control module 10 when the power control module 10 is turned off, the energy stored on the primary side is transferred to the secondary side through the transformer core, and at the same time, the energy obtained by the secondary side when the switching power supply is turned on is provided by the second end B of the secondary side.
  • the secondary-side inductor is first charged and then output, the polarity of the secondary-side inductor is exactly the opposite of that during charging, which forms a negative voltage output.
  • the output power can be greatly increased because the energy is also output on the primary side.
  • the primary side and the secondary side of the transformer are connected in series through a power control module, which can make the primary and secondary share a reference potential, and the switching power supply circuit of this embodiment can be applied to thyristors such as thyristors that require a common ground for the first stage. Circuit, and the output negative voltage can make the thyristor work directly in two quadrants, and the temperature rise is lower.
  • the switching tube of the power control module 10 may include a metal-oxide semiconductor field effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET), and the specific drain is used as the input terminal of the field effect tube.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the pole is used as the output terminal of the FET
  • the grid is used as the control terminal of the FET.
  • the drain of the FET is connected to the primary side of the energy transfer module 20, and the source of the FET is connected to the secondary side of the energy transfer module 20.
  • the switching power supply circuit may further include a rectification and filtering module 30, which is configured between the energy transfer module and the power supply and performs rectification and filtering on the power supply.
  • the rectification and filtering circuit may include a first capacitor C1, which is disposed in parallel between the positive and negative poles of the power supply, a common mode inductor L1, and a rectifier bridge BD1.
  • the so-called The rectifier bridge BD1 may be a full-wave rectifier bridge or a half-wave rectifier bridge.
  • a second capacitor C7 can be set at the output of the rectifier bridge BD1.
  • the second capacitor C2 is used to filter the output signal of the rectifier bridge BD1.
  • the first capacitor C1 can use a safety capacitor to increase the safety factor.
  • the switching power supply circuit may further include an absorption module 40 disposed between the rectification and filtering module 30 and the power control module 10 and connected in parallel with the energy transfer module 20. Used for excess energy in the circuit.
  • the absorption module 40 may adopt an RCD absorption circuit.
  • the first resistor group 41 (the third resistor R3 and the fourth resistor R4 are connected in series, and the fifth resistor R5 and the sixth resistor R6 It is connected in series and then in parallel to form a first resistor group 41) in parallel with a third capacitor C3 and in series with a second diode D2 to form an RCD absorption circuit, one end of which is connected to the output end of the rectifier bridge and the other end is connected to a power control module
  • the RCD absorption circuit is connected in parallel with the primary side of the transformer.
  • the absorption module 40 can eliminate the stray energy in the circuit and the excess energy stored in the transformer leakage inductance to prevent the voltage across the field effect tube from becoming too high.
  • the switching power supply circuit may further include a surge suppression module 50.
  • the switching power supply circuit is disposed between the rectification and filtering module 30 and the power supply, and is configured to suppress a surge current. And / or surge voltage. Surge voltage is suppressed at the instant of power-up.
  • a varistor RV1 can be used to achieve over-voltage protection, lightning strikes, surge current / voltage absorption of peak pulses, and limit power supply amplitude.
  • the surge suppression module 50 may further include a current protection device. For details, refer to the fuse F1 in FIG. 6.
  • the switching power supply circuit may further include a feedback module disposed between an output end of the switching power supply circuit and a control end of the power control module.
  • the feedback module includes: a current feedback module or a voltage feedback module. Taking voltage feedback as an example, as shown in FIG. 6, a proportional resistor can be used.
  • the seventh resistor R7 and the eighth resistor R8 shown in FIG. The resistance value determines the output voltage, and the adjustment method of the resistance can be determined according to the chip used by the power control module.
  • the output end of the switching power supply circuit may further include an output filtering module 70, and a capacitor may be connected in parallel between the output ends to filter the output power.
  • a freewheeling module may also be included at one end of the secondary side, which can prevent the sudden increase of the electrical energy on the secondary side, causing sudden changes in the electrical current and voltage.
  • the switching power supply circuit includes a surge suppression module.
  • the output end of the surge suppression module is connected to the rectifier and filter module.
  • the primary side of the transformer is connected to the output terminal of the rectifier and filter module. Connection, the other end of the primary side is connected to the input end of the power control module, the absorption module is connected in parallel between the primary side and the input end of the power control module, and the output end of the power control module is connected to the first end A of the secondary side,
  • the second terminal B is grounded.
  • the energy stored on the primary side is transmitted to the secondary side through the transformer core, and the energy stored on the secondary side is output by the second end B of the secondary side at the same time.
  • the load reaches the first end A on the secondary side through the flow guiding device 80. Since the energy also is output on the primary side, the output power can be greatly increased.
  • the inductance of the secondary side is first charged and then output, the polarity of the inductance of the secondary side is just opposite to that during charging, which forms a negative voltage output.
  • the output negative voltage can make the thyristor work directly in two quadrants, and the temperature rise is lower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种开关电源电路,包括电源控制模块,用于转换预设频率的电能;能量传递模块,能量传递模块的初级侧与电源控制模块的输入端连接,能量传递模块的次级侧与电源控制模块的输出端连接。在电源控制模块开通时,初级侧与次级侧串联在一起,初级侧和次级侧同时流过电流,同时充能。在电源控制模块关闭时,初级侧存储的能量通过铁芯传递到次级侧,同时次级侧在开关电源开通时获得的电能同时输出至开关电源的输出端,在输出时,由于初级侧也输出能量,可以提高输出功率;并且初级侧与次级侧通过电源控制模块串联在一起,可以使得初级侧和次级侧共用一个参考电势,可以将开关电源电路应用于可控硅等需要初次级共地的电路。

Description

开关电源电路
相关申请
本申请要求2018年6月25日申请的,申请号为201810664006.7,名称为“开关电源电路”的中国专利申请的优先权,以及2018年6月25日申请的,申请号为201810664151.5,名称为“开关电源电路”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电源技术领域,具体涉及到一种开关电源电路。
背景技术
开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、制冷制热(冰箱空调等)、空气净化器,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED灯带,电脑机箱,数码产品和仪器类等领域。
其中,反激式开关电源以其电路结构简单,成本低廉而深受欢迎,现有的反激式开关电源通常包括隔离型开关电源和非隔离型开关电源,然而,在隔离开关电源的技术方案中,由于变压器的存在,原边与副边隔离,该电路不能应用于可控硅等需要初次级共地的电路中。非隔离开关电源电路中受限于工字电感,不能提供较大的功率,难以适应较为广泛的应用。
发明内容
本申请要解决的技术问题在于如何提高开关电源电路的输出功率。
为此,本申请实例提供了一种开关电源电路,包括:电源控制模块,用于转换预设频率的电能;能量传递模块,所述能量传递模块的初级侧与所述电源控制模块的输入端连接,所述能量传递模块的次级侧与所述电源控制模块的输出端连接。
可选地,所述能量传递模块的次级侧的第一端与所述电源控制模块的一端连接,所述次级侧的第二端接地。
可选地,所述电源控制模块包括开关管,所述开关管的输入端与所述能量传递模块的初级侧连接,所述开关管的输出端与所述能量传递模块的次级侧连接。
可选地,所述开关管的输出端与所述能量传递模块的次级侧的第一端连接。
可选地,所述能量传递模块包括高频变压器;
所述高频变压器的初级侧的一端用于连接至电源,所述初级侧的另一端连接至所述电源控制模块输入端,所述高频变压器的次级侧的一端与所述电源控制模块的输出端连接,并与所述高频变压器的次级侧的另一端共同作为开关电源电路的输出端。
可选地,所述高频变压器的初级侧的一端用于连接至电源,所述高频变压器的初级侧的另一端连接至所述电源控制模块输入端,所述变压器的次级侧的第一端与所述电源控制模块的输出端连接。
可选地,开关电源电路还包括:整流滤波模块,用于设置在所述能量传递模块和电源之间,对所述电源进行整流滤波。
可选地,开关电源电路还包括:吸收模块,设置在所述整流滤波模块和所述电源控制模块之间,与所述能量传递模块并联,用于电路中多余的能量。
可选地,开关电源电路还包括:浪涌抑制模块,用于设置在所述整流滤波模块和所述电源之间,用于抑制浪涌电流和/或浪涌电压。
可选地,开关电源电路还包括:反馈模块,设置在所述开关电源电路的输出端和所述电源控制模块的控制端之间。
可选地,所述反馈模块包括:电流反馈模块或电压反馈模块。
可选地,开关电源电路还包括:输出滤波模块,设置在所述开关电源电路的输出端。
可选地,所述次级侧的一端与所述开关电源电路的输出端之间设置有续流器件,所述续流器件的正极与所述开关电源电路的输出端连接,所述续流器件的负极与所述次级侧的第一端连接。
本申请实施例提供的开关电源电路,电源控制模块,用于转换预设频率的电能;能量传递模块,所述能量传递模块的初级侧与所述电源控制模块的输入端连接,所述能量传递模块的次级侧与所述电源控制模块的输出端连接。在电源控制模块开通时,次级侧与次级侧串联在一起,初级侧和次级侧同时流过电流,初级侧和次级侧同时充能。在电源控制模块关闭时,初级侧存储的能量通过铁芯传递到次级侧,同时次级侧在开关电源开通时获得的电能同时输出至开关电源的输出端,在输出时,由于初级侧也输出的能量,即可以较大程度的提高输出功率。并且初级侧与次级侧通过电源控制模块串联在一起,可以使得初级侧和次级侧共用了一个参考电势,可以将开关电源电路应用于可控硅等需要初次级共地的 电路。
本实施例提供的可选地技术方案中,能量传递模块为变压器,采用变压器代替工字型电感,不仅可以提供更高的功率,并且可以适应高频电路防止出现噪音。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请实施例的开关电源电路的模块化示意图;
图2示出了本申请实施例的开光电源电路的示意图;
图3示出了本申请实施例的电源控制模块开通时电流流向示意图;
图4示出了本申请实施例的电源控制模块关断时电流流向示意图;
图5示出了本申请另一实施例的开关电源电路的模块化示意图;
图6示出了本申请另一实施例的开光电源电路的示意图;
图7示出了本申请另一实施例的电源控制模块开通时电流流向示意图;
图8示出了本申请另一实施例的电源控制模块关断时电流流向示意图。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种开关电源电路,如图1和图2所示,包括电源控制模块10,用于转换预设频率的电能;能量传递模块20,所述能量传递模块20的初级侧与所述电源控制模块的输入端连接,所述能量传递模块20的次级侧与所述电源控制模块10的输出端连接。在本实施例中,电源控制模块10通常由脉冲宽度调制(PWM)控制芯片和开关管构成,可以利用电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压。
在本实施例中,能量传递模块20的次级侧的一端与电源控制模块10连接,次级侧的另一端与所述开关电源电路的输出端连接。开关电源电路的输出端输出正电压。在本实施例中,所称能量传递模块20可以为工字型电感,可以为变压器,由于工字型电感难以提供较大的功率,并且在高频电路中容易产生耳能听见的高频噪音,污染环境,因此,在本 实施例中,可以优先选用变压器作为能量传递模块20,具体的,如果需要高频电路,在本实施例中可以选用高频变压器作为能量传递模块20。采用高频变压器不仅可以提供更高的功率,并且可以适应高频电路防止出现噪音。在具体的实施例中,能量传递模块20的初级侧和次级侧均可以作为储能电感,即能量传递模块20的初级侧和次级侧通过电源控制模块20串联在一起。
以图3和图4所示的电流在开关电源电路中流动示意图对本实施例中的开关电源的原理进行说明,在本实施例中,能量传递模块20以变压器为例进行说明,如图3所示,在电源控制模块10开通时,初级侧与次级侧串联在一起,初级侧和次级侧同时流过电流,初级侧和次级侧同时充能。如图4所示,在电源控制模块10关闭时,初级侧存储的能量通过变压器铁芯传递到次级侧,同时次级侧在开关电源开通时获得的电能同时输出至开关电源的输出端,在输出时,由于初级侧也输出的能量,即可以较大程度的提高输出功率。能量传递模块20的次级侧的一端与电源控制模块10连接,次级侧的另一端与开关电源电路的输出端连接,次级侧的一端与地之间设置有导流器件80,所述导流器件80的正极接地,所述导流器件80的负极与所述次级侧的一端连接。开关电源电路的输出端输出正电压。在本实施例中,导流器件可以为二极管。并且,变压器的初级侧与次级侧通过电源控制模块串联在一起,可以使得初级和次级共用了一个参考电势,可以将本实施例的开关电源电路应用于可控硅等需要初次级共地的电路。
在本实施例中,电源控制模块10的开关管可以包括金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET),具体的漏极作为场效应管的输入端,源极作为场效应管的输出端,栅极中作为场效应管的控制端。在本实施例中,场效应管的漏极与述能量传递模块20的初级侧连接,场效应管的源极与所述能量传递模块20的次级侧连接。
在可选的实施例中,如图1所示,开关电源电路还可以包括整流滤波模块30,用于设置在所述能量传递模块和电源之间,对所述电源进行整流滤波。在本实施例中,如图2所示,整流滤波电路可以包括第一电容C1,并联设置在电源正负极之间,共模电感L1,和整流桥BD1,在整流桥BD1的输出端可以设置第二电容C7,第二电容C2用于对整流桥BD1输出信号进行滤波,第一电容C1可以采用安规电容,以增加安全系数。
在可选地实施例中,如图1所示开关电源电路还可以包括吸收模块40,设置在所述整流滤波模块30和所述电源控制模块10之间,与所述能量传递模块20并联,用于电路中多余的能量。在本实施例中,如图2所示,吸收模块40可以采用RCD吸收电路,具体的,第一电阻组41(第三电阻R3与第四电阻R4串联,第五电阻R5与第六电阻R6串联,然 后并联组成第一电阻组41)与第三电容C3并联后与第一二极管D1串联,组成RCD吸收电路,其一端与所述整流桥的输出端连接,另一端与电源控制模块的输入端连接,RCD吸收电路与变压器的初级侧并联,吸收模块40可以消除电路中的杂散和变压漏感所储存的多余能量,防止场效应管两端电压过高。
在可选地实施例中,如图1所示,开关电源电路还可以包括浪涌抑制模块50,具体的,设置在所述整流滤波模块30和所述电源之间,用于抑制浪涌电流和/或浪涌电压。在上电瞬间抑制浪涌电压,在本实施例中,如图2所示,可以采用压敏电阻RV1,可以实现过压保护、雷击、浪涌电流/电压吸收尖峰脉冲,限制电源幅值,保护开关电源电路,在本实施例中,为防止电流过大,引起负载或电路中元器件烧毁,浪涌抑制模块50还可以包括电流保护装置,具体的可以参见图2中的保险管F1。
在可选的实施例中,如图1所示,开关电源电路还可以包括反馈模块,设置在所述开关电源电路的输出端和所述电源控制模块的控制端之间,在本实施例中,反馈模块包括:电流反馈模块或电压反馈模块,以电压反馈为例,如图2所示,可以采用比例电阻,图2中所示的第七电阻R7和第八电阻R8,通过调节电阻的阻值以确定输出电压,电阻的调节方式可以根据电源控制模块采用的芯片的不同确定。
在本实施例中,如图1所示,在开关电源电路的输出端还可以包括输出滤波模块70,可以由电容并联在输出端之间,对输出的电能进行滤波。在次级侧的一端的导流器件80,可以防止次级侧的电能突然增加,引起的电电流电压突变。在本实施例中,导流器件80可以采用续流二极管,具体的可以采用快速回复二极管或肖特基二极管。
结合图1,对开关电路的结构进行具体的说明,开关电源电路包括浪涌抑制模块,浪涌抑制模块的输出端与整流滤波模块连接,变压器的初级侧的第一端与整流滤波模块的输出端的一端连接,初级侧的第二端与电源控制模块的输入端连接,吸收模块并联连接在初级侧和电源控制模块的输入端之间,电源控制模块的输出端与次级侧的一端连接,并与另一端共同作为开关电源电路作为开关电源电路的输出端。按照上述连接关系,请参考图3和图4,具体阐述开关电源的电信号流向,具体的,如图3所示,在电源控制模块开通时,整流滤波模块的一端输出端输出的电信号,经过初级侧,初级侧存储电能,电信号达到电源控制模块的输入端,电信号经过电源控制模块从输出端输出,流经次级侧,次级侧存储电能,返回至整流滤波模块的另一端,此时,电信号不经过负载。如图4所示,在电源控制模块关闭时,初级侧存储的能量,通过变压器磁芯传递至次级侧,并与次级侧存储的能量同时达到负载,并经过导流器件达到次级侧的另一端。由于初级侧也输出的能量,可以较大程度的提高输出功率。
结合图5至图8,本申请提供另一实施例。
如图5和图6所示,包括电源控制模块10,用于转换预设频率的电能;能量传递模块20,所述能量传递模块20的初级侧与所述电源控制模块的输入端连接,所述能量传递模块20的次级侧的第一端A与所述电源控制模块的输出端连接,所述次级侧的第二端B接地。在本实施例中,电源控制模块10通常由脉冲宽度调制(PWM)控制芯片和开关管构成,可以利用电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压。在本实施例中,所称能量传递模块20可以为工字型电感,可以为变压器,由于工字型电感难以提供较大的功率,并且在高频电路中容易产生耳能听见的高频噪音,污染环境,因此,在本实施例中,可以优先选用变压器作为能量传递模块20,具体的,如果需要高频电路,在本实施例中可以选用高频变压器作为能量传递模块20。采用高频变压器不仅可以提供更高的功率,并且可以适应高频电路防止出现噪音。在具体的实施例中,能量传递模块20的初级侧和次级侧均可以看作为储能电感,即能量传递模块20的初级侧和次级侧通过电源控制模块20串联在一起。
以图7和图8所示的电流在开关电源电路中流动示意图对本实施例中的开关电源的原理进行说明,在本实施例中,能量传递模块20以变压器为例进行说明,如图7所示,在电源控制模块10开通时,初级侧与次级侧串联在一起,初级侧和次级侧同时流过电流,初级侧次级侧。次级侧的一端与所述开关电源电路的输出端之间设置有导流器件8,所述导流器件80的正极与所述开关电源电路的输出端连接,所述导流器件80的负极与所述次级侧的第一端A连接。在本实施例中,所称导流器件80可以为二极管D1’,由于二极管D1的正极与开关电源的输出端连接,二极管D1’的负极与次级侧的第一端A连接,可以在电源控制模块10开通时,初级侧和次级侧同时充能,电流不能流至开关电源的输出端。可以完成较好的充电。如图8所示,在电源控制模块10关闭时,初级侧存储的能量通过变压器铁芯传递到次级侧,同时次级侧在开关电源开通时获得的电能由次级侧的第二端B同时输出至开关电源的输出端,经导流器件80二极管D1’返回至次级侧的第一端A。由于次级侧的电感是先充能后输出,所以次级侧的电感的极性与充能时的极性刚好相反,这就形成负电压输出。在输出时,由于初级侧也输出的能量,即可以较大程度的提高输出功率。并且,变压器的初级侧与次级侧通过电源控制模块串联在一起,可以使得初级和次级共用了一个参考电势,可以将本实施例的开关电源电路应用于可控硅等需要初次级共地的电路,并且,输出负电压却可以使可控硅直接的工作在两个象限,温升更低。
在本实施例中,电源控制模块10的开关管可以包括金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET),具体的漏极作为场效应管 的输入端,源极作为场效应管的输出端,栅极中作为场效应管的控制端。在本实施例中,场效应管的漏极与述能量传递模块20的初级侧连接,场效应管的源极与所述能量传递模块20的次级侧连接。
在可选的实施例中,如图5所示,开关电源电路还可以包括整流滤波模块30,用于设置在所述能量传递模块和电源之间,对所述电源进行整流滤波。在本实施例中,如图6所示,整流滤波电路可以包括第一电容C1,并联设置在电源正负极之间,共模电感L1,和整流桥BD1,在本实施例中,所称整流桥BD1可以为全波整流桥可以为半波整流桥。在整流桥BD1的输出端可以设置第二电容C7,第二电容C2用于对整流桥BD1输出信号进行滤波,第一电容C1可以采用安规电容,以增加安全系数。
在可选地实施例中,如图5所示开关电源电路还可以包括吸收模块40,设置在所述整流滤波模块30和所述电源控制模块10之间,与所述能量传递模块20并联,用于电路中多余的能量。在本实施例中,如图6所示,吸收模块40可以采用RCD吸收电路,具体的,第一电阻组41(第三电阻R3与第四电阻R4串联,第五电阻R5与第六电阻R6串联,然后并联组成第一电阻组41)与第三电容C3并联后与第二二极管D2串联,组成RCD吸收电路,其一端与所述整流桥的输出端连接,另一端与电源控制模块的输入端连接,RCD吸收电路与变压器的初级侧并联,吸收模块40可以消除电路中的杂散和变压漏感所储存的多余能量,防止场效应管两端电压过高。
在可选地实施例中,如图5所示,开关电源电路还可以包括浪涌抑制模块50,具体的,设置在所述整流滤波模块30和所述电源之间,用于抑制浪涌电流和/或浪涌电压。在上电瞬间抑制浪涌电压,在本实施例中,如图6所示,可以采用压敏电阻RV1,可以实现过压保护、雷击、浪涌电流/电压吸收尖峰脉冲,限制电源幅值,保护开关电源电路,在本实施例中,为防止电流过大,引起负载或电路中元器件烧毁,浪涌抑制模块50还可以包括电流保护装置,具体的可以参见图6中的保险管F1。
在可选的实施例中,如图5所示,开关电源电路还可以包括反馈模块,设置在所述开关电源电路的输出端和所述电源控制模块的控制端之间,在本实施例中,反馈模块包括:电流反馈模块或电压反馈模块,以电压反馈为例,如图6所示,可以采用比例电阻,图6中所示的第七电阻R7和第八电阻R8,通过调节电阻的阻值以确定输出电压,电阻的调节方式可以根据电源控制模块采用的芯片的不同确定。
在本实施例中,如图5所示,在开关电源电路的输出端还可以包括输出滤波模块70,可以由电容并联在输出端之间,对输出的电能进行滤波。在次级侧的一端还可以包括续流模块,可以防止次级侧的电能突然增加,引起的电电流电压突变。
结合图5,对开关电路的结构进行具体的说明,开关电源电路包括浪涌抑制模块,浪涌抑制模块的输出端与整流滤波模块连接,变压器的初级侧的一端与整流滤波模块的输出端的一端连接,初级侧的另一端与电源控制模块的输入端连接,吸收模块并联连接在初级侧和电源控制模块的输入端之间,电源控制模块的输出端与次级侧的第一端A连接,第二端B接地。按照上述连接关系,请参考图7和图8,具体阐述开关电源的电信号流向,具体的,如图7所示,在电源控制模块开通时,整流滤波模块的一端输出端输出的电信号,经过初级侧,初级侧存储电能,电信号达到电源控制模块的输入端,电信号经过电源控制模块从输出端输出,流经次级侧,次级侧存储电能由于次级侧的第二端B接地,返回至整流滤波模块的另一端,此时,由于导流器件80二极管D1’存在,电信号不经过负载。如图8所示,在电源控制模块关闭时,初级侧存储的能量,通过变压器磁芯传递至次级侧,并与次级侧存储的能量由次级侧的第二端B输出,同时达到负载,并经过导流器件80达到次级侧的第一端A。由于初级侧也输出的能量,可以较大程度的提高输出功率。并且,由于次级侧的电感是先充能后输出,所以次级侧的电感的极性与充能时的极性刚好相反,这就形成负电压输出。输出负电压却可以使可控硅直接的工作在两个象限,温升更低。
虽然结合附图描述了本申请的实施方式,但是本领域技术人员可以在不脱离本申请的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (13)

  1. 一种开关电源电路,其特征在于,包括:
    电源控制模块,用于转换预设频率的电能;
    能量传递模块,所述能量传递模块的初级侧与所述电源控制模块的输入端连接,所述能量传递模块的次级侧与所述电源控制模块的输出端连接。
  2. 如权利要求1所述的开关电源电路,其特征在于,所述能量传递模块的次级侧的第一端与所述电源控制模块的一端连接,所述次级侧的第二端接地。
  3. 如权利要求1所述的开关电源电路,其特征在于,所述电源控制模块包括开关管,所述开关管的输入端与所述能量传递模块的初级侧连接,所述开关管的输出端与所述能量传递模块的次级侧连接。
  4. 如权利要求1所述的开关电源电路,其特征在于,所述开关管的输出端与所述能量传递模块的次级侧的第一端连接。
  5. 如权利要求1所述的开关电源电路,其特征在于,所述能量传递模块包括高频变压器;
    所述高频变压器的初级侧的一端用于连接至电源,所述初级侧的另一端连接至所述电源控制模块输入端,所述高频变压器的次级侧的一端与所述电源控制模块的输出端连接,并与所述高频变压器的次级侧的另一端共同作为开关电源电路的输出端。
  6. 如权利要求5所述的开关电源电路,其特征在于,所述高频变压器的初级侧的一端用于连接至电源,所述高频变压器的初级侧的另一端连接至所述电源控制模块输入端,所述变压器的次级侧的第一端与所述电源控制模块的输出端连接。
  7. 如权利要求1-6任意一项所述的开关电源电路,其特征在于,还包括:整流滤波模块,用于设置在所述能量传递模块和电源之间,对所述电源进行整流滤波。
  8. 如权利要求7所述的开关电源电路,其特征在于,还包括:吸收模块,设置在所述整流滤波模块和所述电源控制模块之间,与所述能量传递模块并联,用于吸收电路中多余的能量。
  9. 如权利要求7所述的开关电源电路,其特征在于,还包括:浪涌抑制模块,用于设置在所述整流滤波模块和所述电源之间,用于抑制浪涌电流和/或浪涌电压。
  10. 如权利要求7所述的开关电源电路,其特征在于,还包括:反馈模块,设置在所述开关电源电路的输出端和所述电源控制模块的控制端之间。
  11. 如权利要求10所述的开关电源电路,其特征在于,所述反馈模块包括:电流反馈 模块或电压反馈模块。
  12. 如权利要求1-6任意一项所述的开关电源电路,其特征在于,还包括:输出滤波模块,设置在所述开关电源电路的输出端。
  13. 如权利要求1-6任意一项所述的开关电源电路,其特征在于,所述次级侧的一端与所述开关电源电路的输出端之间设置有续流器件,所述续流器件的正极与所述开关电源电路的输出端连接,所述续流器件的负极与所述次级侧的第一端连接。
PCT/CN2018/113687 2018-06-25 2018-11-02 开关电源电路 WO2020000844A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810664151.5 2018-06-25
CN201810664151.5A CN108809105B (zh) 2018-06-25 2018-06-25 开关电源电路
CN201810664006.7A CN108599562B (zh) 2018-06-25 2018-06-25 开关电源电路
CN201810664006.7 2018-06-25

Publications (1)

Publication Number Publication Date
WO2020000844A1 true WO2020000844A1 (zh) 2020-01-02

Family

ID=68984403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113687 WO2020000844A1 (zh) 2018-06-25 2018-11-02 开关电源电路

Country Status (1)

Country Link
WO (1) WO2020000844A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541460A (zh) * 2021-07-20 2021-10-22 珠海格力电器股份有限公司 供电电路、遥控器和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099201A (zh) * 2015-07-11 2015-11-25 青岛鼎信通讯股份有限公司 微功耗单端反激高压电源电路
CN205792252U (zh) * 2016-05-23 2016-12-07 昂宝电子(上海)有限公司 反激开关电源电路
CN107610891A (zh) * 2017-09-28 2018-01-19 梁瑞城 一种干变高压线圈上的绝缘装置
CN108599562A (zh) * 2018-06-25 2018-09-28 珠海格力电器股份有限公司 开关电源电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099201A (zh) * 2015-07-11 2015-11-25 青岛鼎信通讯股份有限公司 微功耗单端反激高压电源电路
CN205792252U (zh) * 2016-05-23 2016-12-07 昂宝电子(上海)有限公司 反激开关电源电路
CN107610891A (zh) * 2017-09-28 2018-01-19 梁瑞城 一种干变高压线圈上的绝缘装置
CN108599562A (zh) * 2018-06-25 2018-09-28 珠海格力电器股份有限公司 开关电源电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541460A (zh) * 2021-07-20 2021-10-22 珠海格力电器股份有限公司 供电电路、遥控器和系统

Similar Documents

Publication Publication Date Title
US9199327B2 (en) Portable IGBT arc welding machine
CN108599562B (zh) 开关电源电路
TW588497B (en) Synchronous rectifier of intermittent control and its control method
US8400789B2 (en) Power supply with input filter-controlled switch clamp circuit
US8891262B2 (en) Series switch bridgeless power supply
JPS6146176A (ja) 入力交流電圧から直流電圧を発生させるための整流装置を有するスイツチング電源回路装置
WO2020224303A1 (zh) 空调器过压检测电路、空调器电控装置和空调器
WO2017124744A1 (zh) 一种直接滤波式开关电源
CN103944416A (zh) 一种电路简单的多输出开关直流稳压电源
CN104185333A (zh) 恒流恒压电路及照明装置
TWI815183B (zh) 高頻ac/ac直接變換器及ac/ac直接變換方法
CN101594046B (zh) 突入电流限制器
WO2020000844A1 (zh) 开关电源电路
CN109274279A (zh) 电源供应器
CN207782395U (zh) 一种过温保护电路及电子设备
TWI530074B (zh) 具功因修正之轉換器電路
CN108809105B (zh) 开关电源电路
CN107026571A (zh) 一种开关电源装置
TWI642262B (zh) 電源供應器
WO2019001218A1 (zh) 一种正激开关电源
JP2015008589A (ja) スイッチング電源装置
CN208479469U (zh) 开关电源电路
JP2013090491A (ja) フォワード・フライバック電源回路
CN207910691U (zh) 一种新型大功率半桥式输出可调开关电源
CN203872072U (zh) 一种电路简单的多输出开关直流稳压电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924367

Country of ref document: EP

Kind code of ref document: A1