WO2020000516A1 - 一种护眼台灯 - Google Patents

一种护眼台灯 Download PDF

Info

Publication number
WO2020000516A1
WO2020000516A1 PCT/CN2018/095312 CN2018095312W WO2020000516A1 WO 2020000516 A1 WO2020000516 A1 WO 2020000516A1 CN 2018095312 W CN2018095312 W CN 2018095312W WO 2020000516 A1 WO2020000516 A1 WO 2020000516A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
natural
red
desk lamp
Prior art date
Application number
PCT/CN2018/095312
Other languages
English (en)
French (fr)
Inventor
曾灵芝
曾骄阳
陈俊达
陈道蓉
曾胜
Original Assignee
朗昭创新控股(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810680562.3A external-priority patent/CN108826069A/zh
Application filed by 朗昭创新控股(深圳)有限公司 filed Critical 朗昭创新控股(深圳)有限公司
Publication of WO2020000516A1 publication Critical patent/WO2020000516A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S10/00Lighting devices or systems producing a varying lighting effect
    • F21S10/02Lighting devices or systems producing a varying lighting effect changing colors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S9/00Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
    • F21S9/02Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V21/00Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
    • F21V21/14Adjustable mountings
    • F21V21/26Pivoted arms
    • F21V21/28Pivoted arms adjustable in more than one plane
    • F21V21/29Pivoted arms adjustable in more than one plane employing universal joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/02Arrangement of electric circuit elements in or on lighting devices the elements being transformers, impedances or power supply units, e.g. a transformer with a rectifier

Definitions

  • the present invention relates to the field of lighting technology, and more particularly, to an eye protection desk lamp.
  • Table lamps are common appliances in people's daily life, and they are also an indispensable tool for people to work and study at night. At present, there are many types of table lamps. There are mainly fluorescent lamps, incandescent lamps, and light emitting diodes (LEDs).
  • Incandescent light heat radiation light source
  • a filament commonly tungsten wire
  • the core component of an incandescent lamp is the filament. The bulb is evacuated to energize the filament and heat it to the incandescent level, which radiates visible light.
  • Incandescent lamps have low luminous efficiency, high energy consumption, not conducive to energy saving, and short life.
  • LED is a semiconductor solid-state light-emitting device. It has significant advantages such as long life, energy saving, safety, environmental protection, rich colors, and miniaturization. It is an ideal lighting element and is increasingly used in desk lamps for lighting.
  • the existing desk lamps using LEDs as light sources usually have the following problems:
  • the purpose of the embodiments of the present invention is to provide an eye-protecting desk lamp, so as to solve the technical problems of uncomfortable desk lamp lighting effect and high blue light ratio in the prior art.
  • an eye protection desk lamp including:
  • a light source assembly including a light source unit including an LED light source for generating near-natural light
  • a light pole component connected to the light source component and configured to support the light source component
  • a control component which is connected to the LED light source and is used to control the working state of the LED light source
  • a power supply component connected to the control component
  • the blue light color ratio in the near-natural light is less than 5.7%, the relative spectral power of the blue light in the near-natural light is less than 0.75, and the relative spectral power of the red light in the near-natural light is greater than 0.60.
  • the LED light source used by the table lamp can emit near-natural light.
  • the near-natural light emitted by it has a blue light color ratio of less than 5.7% and a relative spectral power of less than 0.75. Compared with traditional white lighting, blue light is lower.
  • the eye protection table lamp is helpful for protecting eyesight, especially for young children and children.
  • the near-natural light emitted by the LED light source can cover the natural light band while reducing the proportion of blue light, and its various bands are close to the relative spectral power of natural light. Therefore, it can provide more natural lighting effects and reduce the harm of blue light to health. , The user's visual experience is more comfortable.
  • the red light in the near-natural light emitted by the LED light source is improved.
  • the 640nm ⁇ 700nm red light has a health care function, which further improves the health level of the table lamp.
  • the overall structure of the eye-protection desk lamp is simple, easy to operate, and can protect the eyesight of the user, which is conducive to large-scale promotion and use.
  • FIG. 1 is a schematic structural diagram of an eye protection desk lamp according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an explosion structure of an eye protection desk lamp provided by an embodiment of the present invention
  • FIG. 3 is another schematic structural diagram of an eye protection desk lamp according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another explosion structure of an eye protection desk lamp according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a three-dimensional structure of an LED light source of an eye protection desk lamp according to an embodiment of the present invention
  • FIG. 6 is a top view of an LED light source of an eye protection desk lamp according to an embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional structure diagram of an LED light source of an eye protection desk lamp according to an embodiment of the present invention.
  • FIG. 8 is a comparison diagram of the near-natural light spectrum and the natural light spectrum of the LED light source of the eye protection desk lamp according to the embodiment of the present invention.
  • FIG. 11 is a second spectrum diagram of a white light source in the prior art.
  • an eye protection table lamp includes a light source component 1, a light pole component 2, a control component 3, and a power source component 4.
  • the light source component 1 includes a light source unit 11, and the light source unit 11 includes a light source unit 11.
  • LED light source 111 near natural light;
  • the light pole component 2 is connected to the light source component 1 for supporting the light source component 1;
  • the control component 3 is connected to the LED light source 111 for controlling the working state of the LED light source 111;
  • the power supply component 4 is connected with
  • the control module 3 is connected to power the control module 3 and the LED light source 111.
  • the blue light color ratio b in near-natural light generated by the LED light source 111 is less than 5.7%, the relative spectral power of blue light in near-natural light is less than 0.75, and the relative spectral power of red light in near-natural light is greater than 0.60.
  • the concept of relative spectral power is as follows: Because the spectrum emitted by a light source is often not a single wavelength, but is composed of a mixture of many different wavelengths, the spectral radiation of the light source is called the wavelength order and the intensity distribution of each wavelength. The spectral power distribution of the light source.
  • the parameters used to characterize the spectral power can be divided into absolute spectral power and relative spectral power, where the absolute spectral power distribution curve refers to the curve made by the absolute value of light energy at various wavelengths of spectral radiation; and the relative spectral power distribution curve refers to It compares the energy of the various wavelengths of the light source's radiation spectrum with each other, and normalizes the spectral power distribution curve that changes the radiant power only within a specified range.
  • the relative spectral power with the largest radiant power is 1, and the other The relative spectral powers of the wavelengths are all less than 1.
  • any white light can be obtained by mixing the three primary colors of red (R), green (G), and blue (B) in corresponding proportions.
  • R red
  • G green
  • B blue
  • r R / (R + G + B)
  • g G / (R + G + B)
  • b B / (R + G + B)
  • r + g + b 1
  • r is the red light color ratio
  • g the green light color ratio
  • b the blue light color ratio.
  • the wavelength range of various colored lights in visible light is as follows: red light (622nm ⁇ 700nm), orange light (597nm ⁇ 622nm), yellow light (577nm ⁇ 597nm), green light (492nm ⁇ 577nm), cyan light (475nm ⁇ 492nm), Blue light (435nm ⁇ 475nm), purple light (380nm ⁇ 435nm).
  • the power supply assembly 4 is connected to an external circuit so as to connect the external power supply; the control assembly 3 controls the LED light source 111 of the light source assembly 1 to work, and the LED light source 111 emits near-natural light for illumination.
  • the spectrum diagram and the spectrum test data of the LED light source 111 of this embodiment are shown.
  • the spectrum is close to the spectrum of natural light, the proportion of blue light is reduced, and the red light is reduced. The proportion was increased.
  • the existing near-natural light spectrum and the natural light spectrum still have a large gap, and the blue light component is still high in all bands, and at the same time, a significant deficiency occurs in the red light portion.
  • the blue light color ratio b of the near-natural light emitted by the LED light source 111 is lower than 5.7%, and the relative spectral power is lower than 0.75. Compared with the traditional white light illumination, the blue light is lower.
  • the eye-protection table lamp for illumination there are It is good for protecting eyesight, especially for young children and children, and it also helps to reduce sub-health problems caused by high blue light.
  • the near-natural light emitted by the LED light source 111 can cover the natural light band while reducing the proportion of blue light, and each band is close to the relative spectral power of natural light. Therefore, it can provide a more natural lighting effect and reduce the health of blue light. Harm, users feel more comfortable.
  • red light has been increased, making the spectrum closer to natural light.
  • 640nm ⁇ 700nm red light has health care functions, which further improves the health level of near-natural light illumination.
  • the overall structure of the eye-protection desk lamp is simple, easy to operate, and can protect the eyesight of the user, which is conducive to large-scale promotion and use.
  • the light source assembly 1 is a side-emitting light emitting assembly, which further includes a lamp cap housing 12, a light guide plate 13, and a diffuser plate 14.
  • the lamp cap housing 12 includes a light pole assembly 2
  • the connected lamp base case 121 and the lamp base cover 122 are used for emitting light.
  • the lamp base bottom 121 is detachably connected to the lamp base cover 122.
  • an accommodation space is formed inside.
  • the light guide plate 13 is provided in the lamp housing 12, and the LED light source 111 is provided on the side of the light guide plate 13, and is configured to guide light that is near natural light generated by the LED light source 111.
  • the diffuser plate is disposed in the lamp holder housing 12 and located on the light exit side of the light guide plate 13 to diffuse the light and make the light distribution more uniform.
  • the light source assembly 1 further includes a reflective layer 15 for reflecting light, and the reflective layer 15 is disposed in the base of the lamp cap and is located on the light guide plate 13 on a side opposite to the light exit side of the light guide plate 13.
  • the reflective layer 15 is adhered to the surface of the light guide plate 13 opposite to the light exit side, so as to ensure that all the light exits from the light exit side and avoids the loss of light.
  • the light source unit 11 further includes a lamp board 112 for fixing the LED light source 111.
  • the number of the LED light sources 111 may be one or plural.
  • the number of the light source units 11 is two, and the two light source units 11 are disposed on two opposite sides of the light guide plate 13, so that the light generated by the LED light source 111 enters the light guide plate 13 from the side of the light guide plate 13, and a part of the light may be The light is directly emitted from the light-exiting side of the light guide plate 13, and another part of the light is reflected from the light-exiting side after being reflected by the reflection layer 15, thereby illuminating the area to be illuminated.
  • the number of the light source units 11 can be set as required, and is not limited to the above-mentioned situations.
  • the base bottom case 121 is provided with a bottom case rotation shaft 1210
  • the light pole assembly 2 is provided with a first rotation shaft through hole
  • the bottom case rotation shaft 1210 is accommodated in the first rotation shaft through hole and can be rotated relative to the light pole assembly 2.
  • the base 121 of the lamp cap can be rotated in a vertical direction relative to the lamp post assembly 2, thereby driving the light source assembly 1 to rotate relative to the lamp post assembly 2, so that the user can adjust the light source assembly 1 as needed.
  • the angle of light exposure can also be fixedly connected to the light pole component 2, so that the relative position of the light source component 1 and the light pole component 2 is fixed, so that the structure is more stable.
  • the light source assembly 1 is a direct-type light emitting assembly, which further includes a lamp cap 16 and a diffuser cover 17, wherein the lamp cap 16 is connected to the lamp post assembly 2, and the diffuser cover 17 and the lamp cap 16 may be Disassembly connection, when the diffuser cover 17 is connected to the lamp head 16, an accommodation space is formed inside, the light source unit 11 is disposed in the accommodation space, and the LED light source 111 is disposed toward the diffuser cover 17 to ensure that the light generated by the LED light source 111 passes through the diffuser cover 17. After shooting. Since the light source module 1 uses a direct-type light emitting module, the overall structure of the light source module 1 is simpler.
  • the diffuser cover 17 is an arc-shaped diffuser cover protruding outward, so that the light generated by the LED light source 111 is more uniformly distributed after being diffused by the diffuser cover 17.
  • the diffuser cover 17 is fastened to the lamp base 16 so as to facilitate connection and disassembly.
  • the diffuser cover 17 and the base 16 can also be detachably connected in other ways, which is not limited here.
  • the light plate 112 is affixed to the inner wall of the lamp head 16 through a thermally conductive double-sided adhesive 118, so that the light plate 112 can be fixed, and at the same time, the heat generated during the operation of the LED light source 111 is transmitted to the light source assembly 1. external.
  • the lamp cap 16 is provided with a lamp cap connecting portion 161, a lamp portion connecting portion 161 is provided with a through hole for the screw to pass through, and the lamp pole assembly 2 is correspondingly provided with a through hole.
  • the through hole of the light pole assembly 2 corresponds to the position of the through hole of the connecting portion, and then the screw is passed through the through hole of the light pole component 2 and the through hole of the connecting portion and locked. Tight, so as to achieve the connection between the lamp cap 16 and the lamp pole assembly 2.
  • the lamp head 16 is rotatable relative to the lamp post assembly 2.
  • the lamp head 16 can be rotated in a vertical direction relative to the light pole assembly 2, thereby driving the light source assembly 1 to rotate relative to the light pole assembly 2, so that the user can adjust the light irradiation of the light source assembly 1 as required. angle.
  • the lamp base 16 can also be fixedly connected to the lamp post assembly 2, so that the relative positions of the light source assembly 1 and the lamp post assembly 2 are fixed, so that the structure is more stable.
  • the light pole assembly 2 includes a first light pole 21 and a second light pole 22.
  • One end of the first light pole 21 is connected to the light source assembly 1, and the other end of the first light pole 21 is connected to the second light.
  • the rod 22 is connected and can be rotated relative to the second lamp rod 22.
  • the first light pole 21 and the second light pole 22 are locked by screws, and the screws can be rotated with each other as a rotating shaft, so that the irradiation angle of the light source component 1 and the distance between the light source component 1 and the area to be irradiated can be satisfied, Users with different lighting needs.
  • the light source assembly 1 includes a base 121 and a base 121 provided with a bottom shell rotating shaft 1210, and a first shaft through hole is provided at one end of the first light pole 21 connected to the light source assembly 1. It is located in the first shaft through hole of the first light pole 21 and is rotatable relative to the first light pole 21.
  • the light source assembly 1 includes a lamp cap 16 provided with a lamp cap connection portion 161.
  • One end of the first lamp pole 21 connected to the light source assembly 1 is provided with a through hole therethrough.
  • a screw is passed through the lamp cap connection portion through hole and The through hole of the first lamp post 21 is locked and locked, so that the lamp cap 16 is connected to the first lamp post 21, and the lamp cap 16 can rotate relative to the first lamp post 21.
  • the control component 3 includes a lamp holder 31, a control board 32 and a switch unit 33, wherein the lamp holder 31 is connected to the second lamp post 22, and the second lamp post 22 can be opposite to the lamp holder 31.
  • the control board 32 is disposed in the lamp holder 31 and connected to the LED light source 111, and at the same time, the control board 32 is connected to the power source assembly 4, so that the working state of the LED light source 111 can be controlled.
  • the switch unit 33 is connected to the control board 32, so that the control board 32 can be controlled, and then the working state of the LED light source 111 can be controlled, for example, whether the LED light source 111 is working, its light intensity, etc.
  • the lamp holder 31 includes a lamp holder upper case 311 and a lamp holder lower case 312 connected to each other.
  • the control board 32 is disposed at Accommodation space.
  • the lampholder upper shell 311 is provided with a lampholder rotating shaft 3110
  • the second lamp post 22 is provided with a second rotating shaft through hole.
  • the lamp holder rotating shaft 3110 is accommodated in the second rotating shaft through hole and can be rotated relative to the second lamp shaft 22. .
  • the second lamp post 22 can be rotated in a vertical direction relative to the lamp holder 31, thereby driving the light source module 1 to rotate relative to the lamp holder 31, so that the user can adjust the light of the light source module 1 as required. Irradiation angle.
  • the switch unit 33 includes a switch button, which is convenient for users to operate.
  • the lamp holder upper case 311 of the lamp holder 31 is provided with a switch button through hole 310.
  • the switch button is accommodated in the switch button through hole 310 and is connected to the control board 32.
  • the switch unit 33 includes a touch switch.
  • the touch switch is embedded in the lamp holder 31 and is connected to the control board 32. With the touch switch, the integrity of the lamp holder 31 is higher, the operation is convenient, and the appearance is more vibrant.
  • a weight block 34 is also provided in the lamp holder 31, so that the weight of the lamp holder 31 can be increased, and the whole is more stable during use.
  • the weight 34 may be made of any material, and is not limited herein.
  • the power supply assembly 4 includes a power adapter 41, a power adapter input line 42, and a power adapter output line 43.
  • the power adapter output line 43 is connected to the control board 32, and the power adapter input line 42 is used. It is connected to an external circuit to provide power to the control board 32 and the LED light source 111.
  • the LED light source 111 includes a substrate 51 provided with a conductive circuit 53, and at least one group of light emitting structures 52 disposed on the substrate 51 and connected to the conductive circuit 53.
  • the light emitting structure 52 includes
  • the white light emitter 521 and the red light emitter 522 include a blue light LED chip 5211 and a fluorescent layer 5212 provided outside the blue light LED chip 5211.
  • the red light emitter 522 includes a red light LED chip.
  • the white light emitted by the white light emitter 521 and the red light emitted by the red light emitter 522 are mixed to obtain near-natural light, and the red light is used to compensate for the red light portion of the white light that is missing from the natural spectrum.
  • the ratio of the total luminous flux of the white light emitting body to the total light emitting amount of the red light emitting body is 2 to 10: 1.
  • the combination of white light emitter 521 and red light emitter 522 is used to obtain near-natural light, the structure is simple, and the variable controllability during the debugging process is good, which enables the debugging of near-natural light, and solves the problem that multiple light-emitting body combinations cannot be adjusted.
  • the problem of near-natural light is solved, and the near-natural light is obtained by supplementing the red light emitter, which solves the problem that the near-natural light cannot be obtained through the combination of the blue LED chip and the fluorescent glue.
  • the white light-emitting body 521 and the red light-emitting body 522 can use micro-light-emitting bodies that meet the performance requirements.
  • the LED light source 111 is a micro-light bead as a whole, and multiple light beads can be arranged on the lamp plate 112 in any form, so that The eye-protection desk lamp emits uniform light, and the lighting effect is good.
  • the LED light source 111 provided in this embodiment still satisfies the relative spectral power of blue light of less than 0.75 under a high color temperature of more than 4000K. It is a kind of high color temperature and low blue light illumination, which can have eye health and motivation at the same time. The effect of the state, the desk lamp using this light source can improve work or study efficiency while protecting eyesight.
  • the wavelength range of the blue LED chip 5211 is 450 nm to 480 nm; the wavelength range of the red LED chip is 640 nm to 700 nm, which can be a smaller interval within this range, for example, the wavelength range is 680 nm to 700 nm, corresponding to The center wavelength is 690nm ⁇ 5nm.
  • the center wavelength is usually the center value of the wavelength range, and an adjustable interval of about ⁇ 2nm is allowed.
  • the center wavelength can also be 660nm ⁇ 5nm, 670nm ⁇ 5nm, 680nm ⁇ 5nm, etc., which is not limited here.
  • the wavelength range of the blue LED chip 5211 is 457.5nm ⁇ 480nm, at least 457.5nm ⁇ 460nm, which helps to increase the proportion of blue light in natural light and prevent weak colors due to insufficient blue light in the light generated by the eye protection desk lamp. The problem.
  • This embodiment breaks the traditional convention (using a 450nm ⁇ 455nm blue LED chip) and selects a 457.5nm ⁇ 480nm blue LED chip, so that the relative spectral power of the blue light is significantly improved. Due to the improvement of the blue light and the improvement of the color rendering index R12, the white light generated by the LED light source 111 is closer to the real natural light. The relative spectral power of cyan in traditional near-natural light is lower than 0.3, while the relative spectral power of cyan in this embodiment can reach above 0.4.
  • the spectrum of the white light emitting body 521 adopts a blue LED chip with a wavelength of 457.5nm to 460nm, and the relative spectral power of the blue light has reached above 0.5.
  • the blue LED chip with a wavelength of 457.5nm to 480nm is used, the relative spectrum of the blue light can be higher
  • the traditional scheme uses 452.5nm ⁇ 455nm blue LED chip, the relative spectrum of green light is only between 0.35 ⁇ 0.38.
  • the relative spectral power of blue light in the 475nm ⁇ 492nm band is greater than 0.30; when the color temperature of near-natural light is 4000K ⁇ 4200K, the blue light in 475nm ⁇ 492nm relative The spectral power is greater than 0.40.
  • the relative spectral power of the blue light in the 475nm ⁇ 492nm band is greater than 0.50.
  • the fluorescent layer 5212 includes a colloid and a phosphor mixed in the colloid.
  • the phosphor includes red powder, green powder, and yellow-green powder.
  • the color coordinates of the red powder are X: 0.660 to 0.716, and Y: 0.340 to 0.286.
  • the color coordinates of the green powder are X.
  • red powder: green powder: yellow-green Powder (0.010 ⁇ 0.035): (0.018 ⁇ 0.068): (0.071 ⁇ 0.253); the concentration of the fluorescent layer is 17% ⁇ 43%.
  • the particle sizes of the red powder, green powder, and yellow-green powder are all less than 15 ⁇ m, and preferably 13 ⁇ m ⁇ 2 ⁇ m.
  • the relative spectral power in the 480nm ⁇ 500nm band is greater than 0.30, and the relative spectral power in the 500nm ⁇ 640nm band is greater than 0.70;
  • the relative spectral power in the 480nm ⁇ 500nm band is greater than 0.45, and the relative spectral power in the 500nm ⁇ 640nm band is greater than 0.65;
  • the relative spectral power in the 480nm ⁇ 500nm band is greater than 0.4, and the relative spectral power in the 500nm ⁇ 640nm band is greater than 0.60.
  • the combination of the white light emitting body 521 and the red light emitting body 522 can obtain a near-natural light LED light source 111 with low blue light.
  • the spectrum of the LED light source 111 is also very similar to natural light in other wavelength bands, but the existing near-natural light source is difficult to achieve.
  • the relative spectral power of orange light in near-natural light is greater than 0.55; the relative spectral power of yellow light is greater than 0.50; the relative spectral power of green light is greater than 0.35; the relative spectral power of cyan light is greater than 0.30;
  • the spectral power is less than 0.10, which is close to natural light.
  • the LED light source 111 is more optimized in each band, it also has strict optical parameter requirements, such as color temperature, color tolerance, color rendering index Ra, color rendering index R9, color rendering index R12, and blue light color ratio, etc. .
  • the color temperature of near-natural light includes 2500K ⁇ 6500K, and the color tolerance is less than 5.
  • the color rendering index Ra is greater than 95, wherein the color rendering index of R9 is greater than 90, and the color rendering index of R12 is greater than 80.
  • the light source can meet the above requirements, and the blue light color ratio of the light source can be reduced to less than 5.5%, the color rendering index Ra is increased to more than 97, the color rendering index R9 is more than 95, and the color rendering index R12 is 83. In other test reports, the color rendering index R12 can reach 87.
  • blue light at 440 nm of blue light has the greatest damage to vision.
  • the relative spectral power of 440 nm blue light is used as the optical parameter to be detected.
  • the blue light color ratio is lower than 5.7%
  • the relative spectral power of the 440nm blue light is lower than 0.65. This is difficult to achieve with existing desk lamps.
  • the blue light color ratio of the existing desk lamps is low, the suppression of the 440nm blue light which is the most harmful to the human eye is not obvious, and the eye protection function is minimal.
  • other wavelength components in blue light are necessary for vision development. Significant suppression of blue light not only has ineffective eye protection effects, but also adversely affects the visual development of children, young children and other people.
  • the excessive loss of blue light components causes color weakness. , Decreased color discrimination and other issues.
  • the focus is on suppressing the intensity of blue light at 440 nm, which can truly protect vision.
  • miniature white light emitters 521 and red light emitters 522 According to the luminous flux ratio and the size of the installation space, a small-sized and cost-effective blue LED chip and a red LED chip are selected, and as little red light as possible is preferred.
  • the light emitting body 522 and the white light emitting body 521 are made into a single light source, and one light source is provided with a group of light emitting structures 52. Because the light source can emit near-natural light directly, and can be used in various lamps, any combination can ensure its better luminous effect and strong adaptability. Of course, multiple groups of light-emitting structures 52 can also be integrated into one light source. At this time, a better light output effect can still be guaranteed, and only the size is increased.
  • the ratio of the light flux of the white light emitting body 521 to the light radiation amount of the red light emitting body 522 is 2 to 10: 1, and preferably 2 to 3: 1. This ratio slightly fluctuates at different color temperatures.
  • a ratio of the number of the white light emitting bodies 521 to the number of the red light emitting bodies 522 is 1 to 8: 1, and more preferably 1 to 4: 1.
  • the actual light radiation of the red light emitter 522 is 80mW ⁇ 160mW, and the total luminous flux of the white light emitter 521 is 200lm ⁇ 350lm.
  • the four white light emitters 521 are arranged around the red light emitters 522 and are evenly distributed.
  • the mounting method of the chip it is preferable to invert the blue LED chip and the red LED chip on the surface of the substrate 51.
  • the flip chip is beneficial to the effective connection with the conductive line 53 on the substrate 51, which is conducive to efficient heat dissipation.
  • the film is uniformly formed on the chip to ensure the consistency of the fluorescent layers of different products, which can avoid the problem of poor consistency caused by the dispensing process of the mounted chip. At the same time, different products are in the same BIN position when the color temperature is the same, and the color temperature consistency is good. .
  • the flip chip also reduces the size of the white light emitting body 521, which is beneficial to the size control of the LED light source 111.
  • the width of the white light emitting body 521 is less than 0.8 mm and the height is less than 0.3 mm.
  • the red light emitting body 522 can be controlled within the same range.
  • the distance between the adjacent white light emitting body 521 and the red light emitting body 522 is 1 mm or less.
  • the length of the LED light source 111 is less than or equal to 6 mm, and the width is less than 3 mm.
  • this embodiment is not limited to the use of flip-chips, and the use of front-loaded chips is also feasible.
  • the substrate 51 is preferably a laminar structure made of a non-metal material.
  • the substrate 51 is provided with a reflection cup 511, and the white light emitter 521 and the red light emitter 522 are disposed in the reflection cup 511.
  • the conductive circuit 53 is formed on the surface of the substrate 51, and is wrapped on the front and back sides of the substrate 51, and leads are formed outside the reflection cup 511. A part of the conductive line 53 is exposed at the bottom of the reflection cup 511, and is used for connecting the white light emitting body 521 and The red light emitting body 522 is connected.
  • a reflective surface 510 is provided on the inner wall of the reflection cup 511, and the inside of the reflection cup 511 is filled with a sealing gel.
  • the reflection surface 510 is used for reflecting white and red light.
  • the sealing gel is used to protect the internal structure of the reflection cup 511 and make The light source structure is more stable, and the refraction adjustment is performed on the light.
  • White light and red light are fully mixed and output through the encapsulant.
  • the light emitting angle of the white light emitting body 521 and the red light emitting body 522 may be about 160 °, preferably greater than 160 °, and the light emitting angle of the light source is about 120 °.
  • the entire LED light source 111 is a small-sized, near-natural light bead that emits light uniformly.
  • the first embodiment described above is relatively easy to implement.
  • the second embodiment does not need to configure different driving currents for different light emitters, does not need to increase the control conductive line, and only needs to supply power according to its corresponding current. Therefore, the structure is more simplified, the volume is further reduced, the application is more simple and flexible, and the cost is lower. This is the preferred conductive line connection scheme of this embodiment.
  • two white light emitters 521 and one red light emitter 522 are connected in series.
  • the two white light emitters 521 are respectively connected to a first pin 531, and the first pin 531 protrudes from the bottom of the reflection cup 511. Used to connect external power.
  • the red light emitting body 522 is connected in series between the two white light emitting bodies 521.
  • the light source may also be provided with a second pin 532.
  • the second pin 532 is not used to connect to an external power source, but is used to dissipate heat, as well as improve the overall symmetry of the light source, improve strength, and be installed on a conductive circuit 53 On stability.
  • a color temperature adjustment chip can be added to the substrate 51.
  • the color temperature adjustment chip is provided independently of the light emitting structure 52. Accordingly, the conductive circuit 53 is appropriately adjusted so that the color temperature adjustment chip can independently emit light or go out. Further, by controlling its light emitting state, it is mixed with the near-natural light emitted by the light emitting structure 52 to adjust the color temperature.
  • the optimization process for the same drive current includes the following steps:
  • Step S10 selecting a white light emitter, the white light emitter is used to emit white light;
  • Step S20 Optimize the spectral distribution of the white light emitter, and optimize the white light to the first near-natural light;
  • Step S30 Determine a to-be-optimized wavelength band of the first near-natural light according to the spectral distribution of the first near-natural light and the spectral distribution of the natural light;
  • Step S40 selecting a red light emitter according to the waveband to be optimized
  • Step S50 determine the initial luminous flux ratio of the white light emitter and the red light emitter
  • Step S60 By adjusting the spectral distribution of the white light emitter and the red light emitter, the combined spectrum of the white light emitter and the red light emitter is optimized to obtain near-natural light and the driving current of the white light emitter and the red light emitter is the same or both The difference is within a predetermined range; wherein the adjustment of the spectral distribution of the white light emitter and the red light emitter includes at least adjustment of the driving current.
  • the white light-emitting body is first used as the main light-emitting body, and the main light-emitting body includes a large wavelength range, including at least a 400 nm to 640 nm band.
  • the white light is optimized to be the first near-natural light, so that the white light is as close as possible to the natural light.
  • the relative spectral power of the white light is increased as much as possible. In this way, the type selection of the subsequent red light emitter is simpler, and Conducive to the optimization of the combined spectrum of the two illuminants, the first near-natural light generated by the optimized white light illuminant has the characteristics described above.
  • red light of 640 nm to 700 nm needs to be supplemented. Then choose a red light emitter that emits red light. On the one hand, it is used in combination with white light emitters to obtain lighting light closer to natural light; on the other hand, by supplementing red light, the blue light color ratio can be reduced, thereby reducing the proportion of blue light. .
  • the central wavelength of the red light emitter is preferably 690 nm ⁇ 5 nm, in order to combine it with the first near-natural light spectrum as much as possible.
  • a reasonable luminous flux ratio can be selected according to the spectra of the two light emitters, that is, the ratio of the light flux of the white light emitter to the light radiation amount of the red light emitter.
  • "Initial luminous flux ratio” based on the above-mentioned wavelength range and spectral characteristics of the first near-natural light and red light, it can be initially determined that the initial luminous flux ratio is within the range of 2-10: 1.
  • the initial luminous flux ratio is in a range of 2 to 5: 1, and then a corresponding number of white light emitting bodies and a corresponding number of red light emitting bodies are lit according to a preset initial luminous flux ratio, and an optimized combination is performed.
  • the process of spectroscopy is performed.
  • step S60 includes:
  • step S601 Adjust the driving current of the white light emitter and the red light emitter, and monitor the combined spectrum in real time. When the relative spectral power of the combined spectrum reaches a predetermined range, go to step S602, otherwise repeat step S601;
  • step S602 Detect the optical parameters of the combined spectrum. When the optical parameters reach a predetermined range, go to step S603, otherwise go back to step S601;
  • step S604 Adjust the luminous flux of the white light emitter and / or the light radiation amount of the red light emitter according to the change of the relative spectral power of the combined spectrum, and monitor the combined spectrum in real time.
  • step S605 When the relative spectral power of the combined spectrum meets a predetermined range, go to step S605, otherwise proceed to step S601;
  • step S605 Detect the optical parameters of the combined spectrum. When the optical parameters reach a predetermined range, confirm that near natural light is obtained, and proceed to step S606, otherwise proceed to step S601;
  • S606 Record the actual driving current of the white light emitter and the red light emitter, the actual ratio of the light flux of the white light emitter and the light radiation amount of the red light emitter, and the optical parameters of near-natural light.
  • step S60 reveal the specific implementation process of step S60.
  • the corresponding number of white light emitters and red light emitters are lit according to the initial luminous flux ratio, and the light flux of the white light emitter and the light radiation of the red light emitter are adjusted by adjusting the driving current.
  • the combined spectrum will change.
  • the shape of the combined spectrum that is, the relative spectral power of each band
  • the shape of the combined spectrum is close to the allowable range of natural light. At this time, it is confirmed that the spectrum meets the requirements.
  • step S603 the driving current of the white light emitting body and / or the red light emitting body is adjusted so that the two driving currents tend to be consistent; when the currents are consistent, the combined spectrum will inevitably change.
  • step S604 is performed: according to the change in the relative spectral power of the combined spectrum, the light flux of the white light emitter and the light radiation amount of the red light emitter are further adjusted, and the combined spectrum is monitored in real time.
  • the object adjusted in this step is the light flux or light radiation
  • the optical parameters of the combined spectrum are detected, and when the optical parameters reach the predetermined range, it is confirmed that near natural light is obtained. This is the ideal situation.
  • steps S601 to S605 need to be repeatedly performed to readjust the driving current (fine adjustment is sufficient at this time) so that the relative spectral power and optical parameters conform to a predetermined range. Because in the process of repeating steps S601-S605, the step of adjusting the driving current to be the same for each debugging, therefore, in multiple adjustments, the current will gradually become consistent, and the adjustment range of the luminous flux and current will be Gradually decreasing, you will eventually get near-natural light that meets the requirements under the same driving current.
  • the spectrum or light parameters still cannot meet the requirements.
  • the formula and / or concentration of the fluorescent film and / or Thickness and then proceed to step S601; or, adjust the central wavelength of the red light emitting body, and then proceed to step S601; or, add a third light emitting body whose center wavelength is different from that of the red light emitting body, and then proceed to step S601.
  • an appropriate method can be selected to adjust the optimization scheme.
  • the adjustment of the fluorescent film, the adjustment of the red light-emitting body 522, and the adjustment of the driving current and luminous flux repeated several times can be used to obtain the final result.
  • the white light emitting body 521 and the red light emitting body 522 are determined, and the actual ratio of the light flux of the white light emitting body 521 and the light radiation amount of the red light emitting body 522 is 2 ⁇ 3: 1, and the current is 20 mA Between ⁇ 100 mA, preferably 60 mA.
  • one to four white light emitters 521 and one to two red light emitters 522 form a light source in series, and the power of a single light source is about 0.5W.
  • the actual data is slightly different.

Abstract

一种护眼台灯,包括光源组件(1)、灯杆组件(2)、控制组件(3)以及电源组件(4),光源组件(1)包括光源单元(11),光源单元(11)包括用于产生近自然光的LED光源(111);灯杆组件(2)与光源组件(1)连接,用于对光源组件(1)起支撑作用;控制组件(3)与LED光源(111)连接,用于控制LED光源(111)的工作状态;电源组件(4)与控制组件(3)连接,用于为控制组件(3)以及LED光源(111)供电;LED光源(111)产生的近自然光中的蓝光色比小于5.7%,近自然光中蓝光的相对光谱功率小于 0.75,近自然光中红光的相对光谱功率大于0.60;护眼台灯发出的近自然光在降低蓝光比例的同时能够覆盖自然光的波段,各波段接近自然光的相对光谱功率。

Description

一种护眼台灯 技术领域
本发明涉及照明技术领域,更具体地说,是涉及一种护眼台灯。
背景技术
台灯是人们日常生活中常见的电器,也是人们在夜晚工作、学习的必备工具。目前台灯的种类有很多,从光源的种类区分主要有荧光灯、白炽灯以及发光二极管(LED)等几种。白炽灯(热辐射光源)是电流通过灯丝(常见为钨丝)后加热,即热辐射而发光的灯泡,它是电光源中最早的一代灯泡,也是使用最广泛的灯泡。白炽灯的核心部件是灯丝,灯泡通过抽真空,将灯丝通电,使它热到白炽程度,即会辐射出可见光。白炽灯发光效率低,耗能大,不利于节能,而且寿命较短。普通荧光灯容易使人产生视力疲劳,使用时间长了会有眼睛发胀等不适感,因此普通荧光灯不易用于书写照明的台灯。LED是一种半导体固体发光器件,其具有寿命长、节能、安全、绿色环保、色彩丰富、微型化等显著优点,是较理想的照明元件,越来越多地用于台灯中进行照明。
现有的采用LED作为光源的台灯通常具有如下的问题:
第一,现有台灯所产生的光线虽然亮度高,但是仍然使人感觉不自然不舒适。
第二,现有台灯产生的光线中蓝光比例较大,会对用户的眼睛造成损害,严重的甚至导致失明。蓝光对眼睛的伤害,尤其是对未成年学生和儿童的视力损害比较明显,会导致儿童色弱,降低儿童的辨色能力,并且导致未成年人近视率的攀升。
以上不足,有待改进。
技术问题
本发明实施例的目的在于提供一种护眼台灯,以解决现有技术中存在的台灯照明效果不舒适、蓝光比例高的技术问题。
技术解决方案
为解决上述技术问题,本发明实施例采用的技术方案是:提供一种护眼台灯,包括:
光源组件,包括光源单元,所述光源单元包括用于产生近自然光的LED光源;
灯杆组件,与所述光源组件连接,用于对所述光源组件起支撑作用;
控制组件,与所述LED光源连接,用于控制所述LED光源的工作状态;
电源组件,与所述控制组件连接;
所述近自然光中的蓝光色比小于5.7%,所述近自然光中蓝光的相对光谱功率小于 0.75,所述近自然光中红光的相对光谱功率大于0.60。
有益效果
本发明实施例提供的一种护眼台灯的有益效果在于:
(1)该台灯采用的LED光源可发出近自然光,其发出的近自然光中蓝光色比低于5.7%,相对光谱功率低于0.75,相比于传统白光照明,蓝光更低,当用户在使用护眼台灯进行照明时,有利于保护视力,尤其是幼儿和儿童视力。
(2)LED光源发出的近自然光在降低蓝光比例的同时能够覆盖自然光的波段,其各波段又接近自然光的相对光谱功率,因此,可以在提供更加自然的照明效果的同时降低蓝光对健康的伤害,用户视觉感受更加舒适。
(3)LED光源发出的近自然光中红光得以提升,640nm~700nm红光具有保健功能,进而提升了台灯的健康等级。
(4)护眼台灯整体结构简单,操作方便,且能够保护用户的视力,有利于进行大范围推广使用。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的护眼台灯的一种结构示意图;
图2为本发明实施例提供的护眼台灯的一种爆炸结构示意图;
图3为本发明实施例提供的护眼台灯的另一种结构示意图;
图4为本发明实施例提供的护眼台灯的另一种爆炸结构示意图;
图5为本发明实施例提供的护眼台灯的LED光源的立体结构示意图;
图6为本发明实施例提供的护眼台灯的LED光源的俯视图;
图7为本发明实施例提供的护眼台灯的LED光源的剖面结构示意图;
图8为本发明实施例提供的护眼台灯的LED光源的近自然光光谱和自然光光谱的对比图;
图9为本发明实施例提供的护眼台灯的LED光源的近自然光光谱和测试报告图;
图10是现有技术中白光光源的第一种光谱图;
图11是现有技术中白光光源的第二种光谱图。
本发明的实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接或者间接位于该另一个部件上。当一个部件被称为“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置为基于附图所示的方位或位置,仅是为了便于描述,不能理解为对本技术方案的限制。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请参阅图1至图4以及图8,一种护眼台灯,包括光源组件1、灯杆组件2、控制组件3以及电源组件4,光源组件1包括光源单元11,光源单元11包括用于产生近自然光的LED光源111;灯杆组件2与光源组件1连接,用于对光源组件1起支撑作用;控制组件3与LED光源111连接,用于控制LED光源111的工作状态;电源组件4与控制组件3连接,用于为控制组件3以及LED光源111供电。LED光源111产生的近自然光中的蓝光色比b小于5.7%,近自然光中蓝光的相对光谱功率小于 0.75,近自然光中红光的相对光谱功率大于0.60。
关于相对光谱功率的概念如下:由于一种光源所发射的光谱往往不是单一的波长,而是由许多不同波长的混合辐射所组成,因此将光源的光谱辐射按波长顺序和各波长强度分布称为光源的光谱功率分布。用于表征光谱功率大小的参数可以分为绝对光谱功率和相对光谱功率,其中绝对光谱功率分布曲线指的是以光谱辐射的各种波长光能量绝对值所作的曲线;而相对光谱功率分布曲线指的是将光源辐射光谱的各种波长的能量进行相互比较,作归一化处理后使辐射功率仅在规定的范围内变化的光谱功率分布曲线,其中辐射功率最大的相对光谱功率为1,其他波长的相对光谱功率均小于1。
关于色比的概念如下:任何白光均可由红(R)、绿(G)、蓝(B)三原色以相应比例混合得到,为了表示R、G、B三原色各自在白光总量中的相对比例,引入色度坐标r、g、b,其中,r=R/(R+G+B),g=G/(R+G+B),b= B/(R+G+B),r+g+b=1,r为红光色比、g为绿光色比、b为蓝光色比。
可见光中各种色光的波长范围如下:红色光(622nm~700nm),橙色光(597nm~622nm),黄色光(577nm~597nm),绿色光(492nm~577nm),青色光(475nm~492nm),蓝色光(435nm~475nm),紫色光(380nm~435nm)。
当需要使用护眼台灯时,将电源组件4与外部电路连接,从而接通外部电源;控制组件3控制光源组件1的LED光源111工作,LED光源111发射近自然光进行照明。
如图8和图9,分别示意了本实施例的LED光源111的光谱图和光谱测试数据,通过图8和图9可以看出,该光谱接近自然光的光谱,蓝光的比例被降低,红光的比例被提高。参考图10和图11,现有的近自然光光谱和自然光光谱仍然差距较大,蓝光成分在全部波段中仍然很高,同时在红光部分出现明显的不足。
本发明实施例提供的护眼台灯的有益效果至少包括:
(1)LED光源111发出的近自然光中蓝光色比b低于5.7%,相对光谱功率低于0.75,相比于传统白光照明,蓝光更低,当用户在使用护眼台灯进行照明时,有利于保护视力,尤其是幼儿和儿童视力,还有利于减少由于蓝光过高导致的亚健康问题。
(2)LED光源111发出的近自然光在降低蓝光比例的同时能够覆盖自然光的波段,其各波段又接近自然光的相对光谱功率,因此,可以在提供更加自然的照明效果的同时降低蓝光对健康的伤害,用户视觉感受更加舒适。
(3)提升了红光的相对光谱功率,使得光谱更加接近自然光,640nm~700nm红光具有保健功能,进而提升了近自然光照明的健康等级。
(4)护眼台灯整体结构简单,操作方便,且能够保护用户的视力,有利于进行大范围推广使用。
请参阅图1和图2,在一个实施例中,光源组件1为侧发光式发光组件,其还包括灯头壳体12、导光板13以及扩散板14,灯头壳体12包括与灯杆组件2连接的灯头底壳121以及用于出光的灯头面盖122,灯头底壳121与灯头面盖122可拆卸连接,且当灯头底壳121与灯头面盖122连接时其内部形成容置空间。导光板13设于灯头壳体12内,LED光源111设于导光板13的侧面,用于对LED光源111产生的近自然光进行导光。扩散板设于灯头壳体12内且位于导光板13的出光侧,从而对光线进行扩散,使得光线分布更加均匀。
进一步地,光源组件1还包括用于反射光线的反射层15,反射层15设于灯头壳体内,且位于导光板13上与导光板13的出光侧相对的一侧。优选地,反射层15贴合在导光板13上与出光侧相对的表面,从而确保光线均从出光侧出射,避免了光线的损失。光源单元11还包括用于固定LED光源111的灯板112,LED光源111的数量可以为一个,也可以为多个。
进一步地,光源单元11的数量为两个,两个光源单元11设于导光板13的相对两侧面,从而LED光源111产生的光线从导光板13的侧面进入导光板13中,其中一部分光线可直接从导光板13的出光侧出射,另一部分光线经过反射层15反射后从出光侧出射,从而对待照明区域进行照明。当然,光源单元11的数量可以根据需要进行设置,并不仅限于上述的情形。
进一步地,灯头底壳121设有底壳转轴1210,灯杆组件2设有第一转轴通孔,底壳转轴1210容置于第一转轴通孔中,且可相对灯杆组件2转动。优选地,在使用护眼台灯时,灯头底壳121可相对灯杆组件2在竖直方向上转动,进而可带动光源组件1相对灯杆组件2转动,使得用户可以根据需要调整光源组件1的光线照射角度。当然,灯头底壳121也可以与灯杆组件2固定连接,从而使得光源组件1与灯杆组件2的相对位置固定,从而结构更加稳定。
请参阅图3和图4,在一个实施例中,光源组件1为直下式发光组件,其还包括灯头16以及扩散罩17,其中灯头16与灯杆组件2连接,扩散罩17与灯头16可拆卸连接,当扩散罩17与灯头16连接时其内部形成容置空间,光源单元11设于容置空间中,且LED光源111朝向扩散罩17设置,确保LED光源111产生的光线通过扩散罩17后出射。由于光源组件1采用直下式发光组件,从而光源组件1的整体结构更加简单。扩散罩17为向外凸起的弧形扩散罩,从而使得LED光源111产生的光线经扩散罩17扩散后分布更加均匀。扩散罩17与灯头16扣合连接,从而连接和拆卸方便。当然,扩散罩17与灯头16也可以采用其他方式可拆卸连接,此处不做限制。
在一个实施例中,灯板112通过导热双面胶118粘贴在灯头16的内壁,从而可以实现对灯板112的固定,同时也有助于LED光源111工作时产生的热量传导至光源组件1的外部。
在一个实施例中,灯头16上设有灯头连接部161,灯头连接部161上开设有可供螺丝穿过的连接部通孔,灯杆组件2上也相应贯通开设有通孔。当需要将灯头16与灯杆组件2连接时,将灯杆组件2的通孔与连接部通孔的位置相对应,然后将螺丝穿过灯杆组件2的通孔与连接部通孔并锁紧,从而实现灯头16与灯杆组件2的连接。
在一个实施例中,灯头16可相对灯杆组件2转动。优选地,在使用护眼台灯时,灯头16可相对灯杆组件2在竖直方向上转动,进而可带动光源组件1相对灯杆组件2转动,使得用户可以根据需要调整光源组件1的光线照射角度。当然,灯头16也可以与灯杆组件2固定连接,从而使得光源组件1与灯杆组件2的相对位置固定,从而结构更加稳定。
请参阅图4,进一步地,灯杆组件2包括第一灯杆21和第二灯杆22,第一灯杆21的一端与光源组件1连接,第一灯杆21的另一端与第二灯杆22连接,且可相对第二灯杆22转动。优选地,第一灯杆21和第二灯杆22通过螺丝锁紧,且可以该螺丝为转轴而相互转动,从而可以调整光源组件1的照射角度以及光源组件1与待照射区域的距离,满足用户不同的照明需求。
在一个实施例中,光源组件1包括设有底壳转轴1210的灯头底壳121,第一灯杆21与光源组件1连接的一端设有第一转轴通孔,此时底壳转轴1210容置于第一灯杆21的第一转轴通孔中且可相对第一灯杆21转动。
在一个实施例中,光源组件1包括设有灯头连接部161的灯头16,第一灯杆21与光源组件1连接的一端贯通开设有通孔,此时通过螺丝穿过灯头连接部通孔和第一灯杆21的通孔并锁紧,从而实现灯头16与第一灯杆21的连接,且灯头16可相对第一灯杆21转动。
请参阅图2和图4,进一步地,控制组件3包括灯座31、控制板32以及开关单元33,其中灯座31与第二灯杆22连接,且第二灯杆22可相对灯座31转动,从而可以通过调整第二灯杆22的位置来进一步调整光源组件1的位置,从而能够更好地照明。控制板32设于灯座31内且与LED光源111连接,同时控制板32与电源组件4连接,从而可以控制LED光源111的工作状态。开关单元33与控制板32连接,从而可以对控制板32进行控制,进而控制LED光源111的工作状态,例如可以控制LED光源111是否工作、其发光强度等。
在一个实施例中,灯座31包括相互配合连接的灯座上壳311和灯座下壳312,灯座上壳311和灯座下壳312连接时内部形成容置空间,控制板32设于容置空间中。灯座上壳311上设有灯座转轴3110,第二灯杆22上设有第二转轴通孔,灯座转轴3110容置于第二转轴通孔中,且可相对第二灯杆22转动。优选地,在使用护眼台灯时,第二灯杆22可相对灯座31在竖直方向上转动,进而可带动光源组件1相对灯座31转动,使得用户可以根据需要调整光源组件1的光线照射角度。
请参阅图1和图2,在一个实施例中,开关单元33包括开关按钮,用户操作方便。灯座31的灯座上壳311上开设有开关按钮通孔310,开关按钮容置于开关按钮通孔310中,且与控制板32连接。
请参阅图3和图4,在一个实施例中,开关单元33包括触摸开关,触摸开关嵌于灯座31中,且与控制板32连接。设置触摸开关,灯座31的整体性更高,且操作方便,外观也更加精美。
进一步地,灯座31内还设有配重块34,从而可以增加灯座31的重量,在使用过程中整体更加稳定。配重块34可以由任何材料制成,此处不做限制。
请参阅图1和图2,进一步地,电源组件4包括电源适配器41、电源适配器输入线42以及电源适配器输出线43,其中电源适配器输出线43与控制板32连接,电源适配器输入线42则用于与外部电路连接,从而为控制板32以及LED光源111供电。
请参阅图5至图8,进一步地,LED光源111包括设有导电线路53的基片51,以及设置于基片51上并与导电线路53连接的至少一组发光结构52,发光结构52包括白光发光体521和红光发光体522,白光发光体521包括蓝光LED芯片5211和设置于蓝光LED芯片5211外部的荧光层5212,红光发光体522包括红光LED芯片。白光发光体521发射的白光与红光发光体522发射的红光混合获得近自然光,红光用于补偿白光相对于自然光谱缺失的红光部分。白光发光体的总光通量和红光发光体的总光辐射量比为2~10:1。
一方面,采用白光发光体521和红光发光体522组合的形式获得近自然光,结构简洁,在调试过程中变量可控性好,使近自然光的调试得以实现,解决多个发光体组合无法调出近自然光的问题,并且通过补充红光发光体获得近自然光,解决了通过蓝光LED芯片和荧光胶结合的方式无法获得近自然光的问题。另一方面,白光发光体521和红光发光体522可以采用满足性能要求的微型发光体,LED光源111整体为一微型灯珠,可多个灯珠以任意形式布置于灯板112上,使得护眼台灯整体发光均匀,照明效果好。
进一步地,在本领域内,根据大量的传统白光照明的规律,白光色温越高,其短波长成分的比例越高,蓝光越高,甚至紫光也较高,而高蓝光会危害用户的沈婷健康,同时高色温有利于提升辨识度,提升环境的明亮感,提升人的精神状态,常规光源通常是高色温高蓝光的白光,难以兼顾各方面的需求。根据图7所示,本实施例提供的LED光源111在4000K以上的高色温情况下,仍满足蓝光相对光谱功率小于0.75,是一种高色温低蓝光照明,能够同时具有用眼健康和激励精神状态的效果,使用这种光源的台灯在保护视力的同时能够提升工作或者学习效率。
进一步地,蓝光LED芯片5211的波长范围为450nm~480nm;红光LED芯片的波长范围为640nm~700nm,具体可以是在该范围内的某个更小区间,例如波长范围为680nm~700nm,对应中心波长为690nm±5nm。中心波长通常为波长范围的中心值,且允许有±2nm左右可调区间。针对不同区间的情况,中心波长还可以是660nm±5nm、670nm±5nm、680nm±5nm等,此处不做限制。优选地,蓝光LED芯片5211的波长范围为457.5nm~480nm,至少为457.5nm~460nm,有助于提升近自然光中的青光比例,防止由于护眼台灯产生的光线中青光不足而导致色弱的问题。
本实施例突破传统惯例(采用450nm~455nm蓝光LED芯片),选择了457.5nm~480nm的蓝光LED芯片,使得青光的相对光谱功率得到明显提升。由于青光的提升,同时提升显色指数R12,LED光源111产生的白光更加接近真实自然光。传统近自然光中的青光相对光谱功率低于0.3,而本实施例中的青光相对光谱功率可达到0.4以上。
本实施例中白光发光体521的光谱,采用457.5nm~460nm的蓝光LED芯片时,青光相对光谱功率已经达到0.5以上,采用457.5nm~480nm的蓝光LED芯片时,青光相对光谱可以更高,而传统的方案中采用452.5nm~455nm蓝光LED芯片时,青光相对光谱仅为0.35~0.38之间。
并且,经过不同色温光源的测试,近自然光的色温为2700K~3000K时,475nm~492nm波段的青光相对光谱功率大于0.30;近自然光的色温为4000K~4200K时,475nm~492nm波段的青光相对光谱功率大于0.40;近自然光的色温为5500K~6000K时,475nm~492nm波段的青光相对光谱功率大于0.50。
荧光层5212包括胶体和混合于胶体内部的荧光粉,荧光粉包括红粉、绿粉和黄绿粉;红粉的色坐标为X:0.660~0.716,Y:0.340~0.286;绿粉的色坐标为X:0.064~0.081,Y:0.488~0.507;黄绿粉的色坐标为X:0.367~0.424,Y:0.571~0.545;红粉、绿粉和黄绿粉的重量比为:红粉:绿粉:黄绿粉=(0.010~0.035):(0.018~0.068):(0.071~0.253);荧光层的浓度为17%~43%。红粉、绿粉和黄绿粉的粒径均小于15μm,优选为13μm±2μm。
通过选择上述蓝光LED芯片5211和荧光层5212,可以获得白光,其具有如下光学参数:
色温为2700K~3000K时,480nm~500nm波段的相对光谱功率大于0.30,500nm~640nm波段的相对光谱功率大于0.70;
色温为4000K~4200K时,480nm~500nm波段的相对光谱功率大于0.45,500nm~640nm波段的相对光谱功率大于0.65;
色温为5500K~6000K时,480nm~500nm波段的相对光谱功率大于0.4,500nm~640nm波段的相对光谱功率大于0.60。
上述白光发光体521与红光发光体522组合,可以得到低蓝光的近自然光LED光源111。LED光源111的光谱在其他波段也和自然光极其相似,而现有近自然光光源则难以实现。如图8和图9,近自然光中橙色光的相对光谱功率大于0.55;黄色光的相对光谱功率大于0.50;绿色光的相对光谱功率大于0.35;青色光的相对光谱功率大于 0.30;紫色光的相对光谱功率小于0.10,均与自然光接近。
另外,LED光源111在各波段光谱更为优化的同时,还具有严格的光学参数要求,如色温,色容差,显色指数Ra 、显色指数R9、显色指数R12以及蓝光色比等等。具体地,近自然光的色温包含2500K~6500K,色容差小于5。显色指数Ra大于95,其中,R9的显色指数大于90,R12的显色指数大于80。根据图7可以确定本光源能够满足上述要求,并且本光源的蓝光色比可以降低到5.5%以下,显色指数Ra提高到97以上,显色指数R9达到95以上,显色指数R12达到了83,在其他测试报告中,显色指数R12可以达到87。
进一步地,蓝光中440nm的蓝光对视力的伤害最大,作为进一步的优化方案,本实施例还将440nm蓝光的相对光谱功率作为待检测的光学参数。在蓝光色比低于5.7%的情况下,440nm蓝光的相对光谱功率低于0.65。这是现有的台灯难以实现的。现有的台灯中蓝光色比虽然较低,但是其中对人眼伤害最大的440nm蓝光的抑制并不明显,护眼功能微乎其微。而蓝光中的其他波段成分对视力发育是必要的,大幅度抑制蓝光不仅护眼效果不明显,还会对儿童、幼儿等人群的视力发育造成不良影响,例如由于蓝光成分的过分缺失,导致色弱,辨色能力下降等问题。本实施例在将蓝光色比降低至5.7%以下的基础上,重点抑制440nm蓝光的强度,能够真正的起到保护视力的作用。
本实施例优选采用微型的白光发光体521和红光发光体522,根据光通量比和安装空间的大小选择小规格且性价比较高的蓝光LED芯片和红光LED芯片,优先选择尽量少的红光发光体522和白光发光体521,制作成单颗光源,一颗光源设置一组发光结构52。由于该光源可以直接发出近自然光,进而可以用于各种灯具中,任意组合,均可保证其较佳的发光效果,适应性强。当然,也可以将多组发光结构52集成于一颗光源内,此时仍可保证较佳的出光效果,仅尺寸增大。
具体地,该白光发光体521的光通量和红光发光体522的光辐射量之比为2~10:1,优选为2~3:1。在不同的色温下,该比例略有浮动。在一个实施例中,白光发光体521的数量和红光发光体522的数量比为1~8:1,进一步优选为1~4:1。实际红光发光体522的光辐射量为80mW~160mW,白光发光体521的总光通量为200lm~350lm。
在一种实施例中,白光发光体521有四个,红光发光体522有一个,四个白光发光体521设置于红光发光体522的周围且均匀分布。
在另一种实施例中,白光发光体521有两个,红光发光体522有一个,两个白光发光体521对称地设置于红光发光体522的两侧。
关于芯片的安装方式,优选将蓝光LED芯片和红光LED芯片倒装于基片51的表面,倒装芯片有利于和基片51上的导电线路53有效连接,有利于高效散热,可以通过设备在芯片上统一成膜,保证不同产品的荧光层一致性好,进而可以避免正装芯片的点胶过程造成一致性差的问题,同时,使得不同产品在色温相同时处于同一BIN位,色温一致性好。
另外,倒装芯片也使得白光发光体521的体积进一步减小,有利于LED光源111尺寸控制。在本实施例中,白光发光体521的宽度小于0.8mm,高度小于0.3mm,红光发光体522可控制在同样范围内。相邻的白光发光体521和红光发光体522间距为1mm以下。LED光源111的长度小于或等于6mm,宽度小于3mm。
当然,本实施例不局限于采用倒装芯片,采用正装芯片也是可行的。
在一种实施例中,基片51优选为非金属材料制作的片层结构,基片51上设有反射杯511,白光发光体521、红光发光体522设置于反射杯511中,导电线路53形成于基片51的表面,且包裹于基片51的正反两面,并在反射杯511之外形成引脚,反射杯511的底部露出部分导电线路53,用于与白光发光体521和红光发光体522连接。
更进一步地,反射杯511的内壁设有反光面510,反射杯511内部还填充有封装胶体,反光面510用于将白光和红光进行反射,封装胶体用于保护反射杯511内部结构和使光源结构更加稳定,并对光线进行折射调整。白光和红光充分混合后经过封装胶体输出。具体地,白光发光体521和红光发光体522的发光角度可以为160°左右,优选大于160°,光源的出光角度为120°左右。整个LED光源111为小型均匀发光的近自然光灯珠。
在本实施例中,导电线路53具有若干组正负极引脚,可以每个发光体对应一组正负极引脚,或者若干个发光体对应一组正负极引脚。在驱动方式上,有两种实施例,其一,白光发光体521和红光发光体522分别连接不同的正负极引脚,单独驱动,此时各自的驱动电流不同,可以配合控制芯片进行控制。其二,白光发光体521和红光发光体522串联,即连接相同的正负极引脚,统一相同电流驱动。
上述第一种实施例较容易实施。而第二种实施例不需要针对不同发光体配置不同的驱动电流,不需要增加控制导电线路,仅需要按照其对应的电流供电即可。因此,在结构上更为简化,体积进一步减小,应用更加简便灵活,成本更低。此为本实施例优选的导电线路连接方案。
参考图5和图6,两个白光发光体521和一个红光发光体522串联,两个白光发光体521分别连接一个第一引脚531,第一引脚531自反射杯511底部伸出,用于连接外部电源。红光发光体522串联于两个白光发光体521之间。
进一步地,该光源还可以设有第二引脚532,该第二引脚532不用于连接外部电源,而是用于散热,以及提升光源整体的对称性,提升强度和安装于导电线路53板上的稳定性。
进一步地,本实施例还可以在基片51上增设一个色温调节芯片,该色温调节芯片独立于发光结构52设置,相应地,对导电线路53进行适当调整,使色温调节芯片可以独立发光或熄灭,进而通过控制其发光状态,与发光结构52发出的近自然光进行混合,调节色温。
以下,简要说明该LED光源111中针对相同驱动电流的优化过程。
针对相同驱动电流的优化过程包括下述步骤:
步骤S10:选取白光发光体,白光发光体用于发出白光;
步骤S20:优化白光发光体的光谱分布,将白光优化为第一近自然光;
步骤S30:根据第一近自然光的光谱分布以及自然光的光谱分布,确定第一近自然光的待优化波段;
步骤S40:根据待优化波段选择红光发光体;
步骤S50:确定白光发光体和红光发光体的初始光通量比;
步骤S60:通过调节白光发光体和红光发光体的光谱分布,优化白光发光体和红光发光体的组合光谱,获得近自然光且白光发光体和红光发光体的驱动电流相同或二者之差在预定范围内;其中,对白光发光体和红光发光体的光谱分布的调节至少包括对驱动电流的调节。
在该优化过程中,首先以该白光发光体作为主发光体,主发光体所包含的波长范围较大,至少包括400nm~640nm波段。将白光优化为第一近自然光,使得该白光尽可能的接近自然光,在优化过程中,使白光的相对光谱功率尽可能的提高,这样,后续红光发光体的类型选择更为简单,并且有利于对两发光体组合光谱的优化,优化后的白光发光体产生的第一近自然光具有前文所述的特征。
参考该第一近自然光光谱,可以确定需要补充640nm~700nm红光。进而选择发红光的红光发光体,其一方面用于和白光发光体组合,获得更加接近自然光的照明光线;另一方面,通过补充红光,可以减少蓝光色比,从而降低蓝光的比例。
进一步地,根据第一近自然光的光谱曲线,并通过大量组合光谱调试实验,确定该红光发光体的中心波长选择优选为690nm±5nm,目的在于和第一近自然光光谱结合后能够尽可能的使640nm~700nm红光的相对光谱功率接近自然光的光谱。
在确定白光发光体和红光发光体后,可以根据两发光体的光谱,选择合理的光通量比,即白光发光体的光通量和红光发光体的光辐射量之比,此处称之为“初始光通量比”,根据上述第一近自然光和红光的波长范围以及光谱特征,可以初步确定该初始光通量比在2~10:1的范围内是可行的。进一步地,通过实验可以进一步确定该初始光通量比在2~5:1的范围内,然后按照预设的初始光通量比点亮相应数量的白光发光体和相应数量的红光发光体,进行优化组合光谱的过程。
进一步地,步骤S60包括:
S601:调节白光发光体和红光发光体的驱动电流,并实时监控组合光谱,当组合光谱的相对光谱功率达到预定范围时,进行步骤S602,否则重复进行步骤S601;
S602:检测组合光谱的光学参数,当光学参数达到预定范围时,进行步骤S603,否则返回进行步骤S601;
S603:调节白光发光体和/或红光发光体的驱动电流,使两驱动电流趋于一致;
S604:根据组合光谱的相对光谱功率的变化,调整白光发光体的光通量和/或红光发光体的光辐射量,并实时监控组合光谱,当组合光谱的相对光谱功率符合预定范围时,进行步骤S605,否则进行步骤S601;
S605:检测组合光谱的光学参数,当光学参数达到预定范围时,确认获得近自然光,进行步骤S606,否则进行步骤S601;
S606:记录白光发光体和红光发光体的实际驱动电流、白光发光体的光通量和红光发光体的光辐射量的实际比例以及近自然光的光学参数。
以上步骤揭示了步骤S60的具体实现过程,首先,根据初始光通量比点亮相应数量的白光发光体和红光发光体,通过调节驱动电流分别调节白光发光体的光通量和红光发光体的光辐射量,此时组合光谱会发生变化,经过若干次调试之后,组合光谱的形状(即各波段的相对光谱功率)与自然光接近到允许范围内,此时确认光谱满足要求。
在此基础上,查看光学参数,如果光学参数满足预设的范围,则确定获得近自然光,如果光学参数不满足预设的范围,则反复调整驱动电流,使光参数满足要求。
在光谱和光参数均符合要求后,此时驱动电流通常是不一致的,为了实现统一驱动,需进行后续的调整,该调整过程是漫长且复杂的。首先进行步骤S603:调节白光发光体和/或红光发光体的驱动电流,使两驱动电流趋于一致;当电流一致时,组合光谱必然发生变化。进而,进行步骤S604:根据组合光谱的相对光谱功率的变化,进一步调整白光发光体的光通量和红光发光体的光辐射量,并实时监控组合光谱,此步骤中调整的对象为光通量或者光辐射量,当组合光谱的相对光谱功率符合预定范围时,检测组合光谱的光学参数,当光学参数达到预定范围时,确认获得近自然光。这是理想情况。
然而,调整光通量后,相对光谱功率难以符合预定范围,光学参数也容易出现波动。因此,还需要重复进行步骤S601至S605,重新调节驱动电流(此时为微调即可),使相对光谱功率和光学参符合预定范围。由于在重复步骤S601-S605的过程中,每次调试均会进行将驱动电流调为一致的步骤,因此,在多次的调整中,电流将逐渐趋于一致,对光通量和电流的调整幅度将逐渐减小,最终会得到在驱动电流一致的情况下获得满足要求的近自然光。
进一步地,在组合光谱的优化过程中,可能存在如下情况:经过较多次调节驱动电流,仍不能使光谱或者光参数满足要求,此时,需要调整荧光膜的配方和/或浓度和/或厚度,然后再进行步骤S601;或者,调整红光发光体的中心波长,然后进行步骤S601;或者,增加中心波长不同于红光发光体中心波长的第三发光体,然后进行步骤S601。
根据荧光膜与光谱优化的关系、红光与光谱优化的关系,可以选择合适的方式调整优化方案。在实际的优化过程中,涉及到荧光膜的调整、红光发光体522的调整以及反复多次的驱动电流和光通量的调整,才能获得最终的结果。
最后,调试结束后需要记录相应参数,该数据用于为光源的生产制造提供必要的信息。
经过上述优化过程,确定了上述的白光发光体521和红光发光体522,且白光发光体521的光通量和红光发光体522的光辐射量的实际比例为2~3:1,电流为20mA~100mA之间,优选为60mA。优选1~4个白光发光体521和1~2个红光发光体522串联构成一个光源,单颗光源的功率为0.5W左右。色温不同的情况下,实际数据略有不同。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种护眼台灯,其特征在于,包括:
    光源组件,包括光源单元,所述光源单元包括用于产生近自然光的LED光源;
    灯杆组件,与所述光源组件连接,用于对所述光源组件起支撑作用;
    控制组件,与所述LED光源连接,用于控制所述LED光源的工作状态;
    电源组件,与所述控制组件连接;
    所述近自然光中的蓝光色比小于5.7%,所述近自然光中蓝光的相对光谱功率小于 0.75,所述近自然光中红光的相对光谱功率大于0.60。
  2. 如权利要求1所述的护眼台灯,其特征在于,所述光源组件还包括:
    灯头壳体,包括与所述灯杆组件连接的灯头底壳以及用于出光的灯头面盖,所述灯头底壳与所述灯头面盖可拆卸连接;
    导光板,设于所述灯头壳体内,用于对所述LED光源产生的近自然光进行导光,所述LED光源设于所述导光板的侧面;
    扩散板,设于所述灯头壳体内,且位于所述导光板的出光侧。
  3. 如权利要求2所述的护眼台灯,其特征在于,所述光源组件还包括:
    反射层,设于所述灯头壳体内,且位于所述导光板上与所述出光侧相对的一侧,用于反射光线。
  4. 如权利要求2所述的护眼台灯,其特征在于,所述灯头底壳设有底壳转轴,所述灯杆组件设有第一转轴通孔,所述底壳转轴容置于所述第一转轴通孔中,且可相对所述灯杆组件转动。
  5. 如权利要求1所述的护眼台灯,其特征在于,所述光源组件还包括:
    灯头,与所述灯杆组件连接;
    扩散罩,与所述灯头可拆卸连接,且与所述灯头连接后内部形成容置空间;
    所述光源单元设于所述容置空间中,且所述LED光源朝向所述扩散罩。
  6. 如权利要求5所述的护眼台灯,其特征在于,所述灯头可相对所述灯杆组件转动。
  7. 如权利要求1所述的护眼台灯,其特征在于,所述灯杆组件包括第一灯杆和第二灯杆,所述第一灯杆的一端与所述光源组件连接,所述第一灯杆的另一端与所述第二灯杆连接,且可相对所述第二灯杆转动。
  8. 如权利要求7所述的护眼台灯,其特征在于,所述控制组件包括:
    灯座,与所述第二灯杆转动连接;
    控制板,设于所述灯座内,且与所述LED光源连接,所述控制板与所述电源组件连接;
    开关单元,与所述控制板连接。
  9. 如权利要求8所述的护眼台灯,其特征在于,所述开关单元包括开关按钮,所述灯座上开设有开关按钮通孔,所述开关按钮容置于所述开关按钮通孔中,且与所述控制板连接。
  10. 如权利要求8所述的护眼台灯,其特征在于,所述开关单元包括触摸开关,所述触摸开关嵌于所述灯座中,且与所述控制板连接。
  11. 如权利要求8所述的护眼台灯,其特征在于,所述灯座内还设有配重块。
  12. 如权利要求1所述的护眼台灯,其特征在于,所述LED光源包括设有导电线路的基片,以及设置于所述基片上并与所述导电线路连接的至少一组发光结构;
    所述发光结构包括白光发光体和红光发光体,所述白光发光体包括蓝光LED芯片和设置于所述蓝光LED芯片外部的荧光层,所述红光发光体包括红光LED芯片;
    所述白光发光体发射的白光与所述红光发光体发射的红光混合获得近自然光,所述红光用于补偿所述白光相对于自然光谱缺失的红光部分;
    所述白光发光体的总光通量和所述红光发光体的总光辐射量比为2~10:1。
  13. 如权利要求12所述的护眼台灯,其特征在于,所述近自然光的色温范围为2500K~6500K,色容差小于5,显色指数Ra大于95,R9的显色指数大于90,R12的显色指数大于80;
    在色温高于4000K时,蓝光的相对光谱功率保持小于 0.75,蓝光色比保持小于5.7%。
  14. 如权利要求12所述的护眼台灯,其特征在于,所述近自然光中440nm蓝光的相对光谱功率低于0.65。
  15. 如权利要求12所述的护眼台灯,其特征在于,
    所述近自然光的色温为2700K~3000K时,440nm蓝光的相对光谱功率低于0.50;
    所述近自然光的色温为4000K~4200K时,440nm蓝光的相对光谱功率低于0.60;
    所述近自然光的色温为5500K~6000K时,440nm蓝光的相对光谱功率低于0.65。
  16. 如权利要求12所述的护眼台灯,其特征在于,
    所述近自然光中橙色光的相对光谱功率大于 0.55;
    所述近自然光中黄色光的相对光谱功率大于0.50;
    所述近自然光中绿色光的相对光谱功率大于0.35;
    所述近自然光中青色光的相对光谱功率大于0.30;
    所述近自然光中紫色光的相对光谱功率小于0.10。
  17. 如权利要求12所述的护眼台灯,其特征在于,所述蓝光LED芯片的波长范围为450nm~480nm;所述红光LED芯片的波长为640nm~700nm;
    在一组发光结构中,所述蓝光LED芯片与红光LED芯片的数量比为1~8:1;
    所述蓝光LED芯片和红光LED芯片倒装或正装设置于所述基片上。
  18. 如权利要求12所述的护眼台灯,其特征在于,所述导电线路包括一组正负极,所述白光发光体和红光发光体串联,并且电连接于所述一组正负极,通过相同的驱动电流统一驱动。
  19. 如权利要求12所述的护眼台灯,其特征在于,所述导电线路包括至少两组正负极,所述白光发光体和红光发光体分别电连接于不同组正负极,通过不同的驱动电流分别驱动。
PCT/CN2018/095312 2018-06-27 2018-07-11 一种护眼台灯 WO2020000516A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201821007763 2018-06-27
CN201810680562.3A CN108826069A (zh) 2018-06-27 2018-06-27 一种护眼台灯
CN201810680562.3 2018-06-27
CN201821007763.9 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020000516A1 true WO2020000516A1 (zh) 2020-01-02

Family

ID=68984615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095312 WO2020000516A1 (zh) 2018-06-27 2018-07-11 一种护眼台灯

Country Status (1)

Country Link
WO (1) WO2020000516A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201428983Y (zh) * 2009-03-27 2010-03-24 中山市强力电器科技有限公司 超薄护眼led台灯
CN102573227A (zh) * 2011-12-27 2012-07-11 杭州浙大三色仪器有限公司 一种采用led光源的护眼台灯
CN207422087U (zh) * 2017-09-28 2018-05-29 深圳市金尊能源科技有限公司 便携式可调色温led台灯

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201428983Y (zh) * 2009-03-27 2010-03-24 中山市强力电器科技有限公司 超薄护眼led台灯
CN102573227A (zh) * 2011-12-27 2012-07-11 杭州浙大三色仪器有限公司 一种采用led光源的护眼台灯
CN207422087U (zh) * 2017-09-28 2018-05-29 深圳市金尊能源科技有限公司 便携式可调色温led台灯

Similar Documents

Publication Publication Date Title
JP5322695B2 (ja) 照明装置
WO2009132508A1 (zh) 白光发光二极管及白光发光二极管灯
CN108826069A (zh) 一种护眼台灯
CN202484932U (zh) 弱蓝色光谱led复合光源总成
CN109027719A (zh) 一种色温可调的led光源组件及照明装置
CN109000160A (zh) 一种准自然光led光源及照明装置
CN108843983A (zh) 一种高红光的准自然光光源及灯具
CN108826098A (zh) 一种植物生长灯
CN109011171A (zh) 一种理疗灯
CN108799867A (zh) 灯管
CN208572493U (zh) 一种色温可调的led光源组件及照明装置
WO2020000516A1 (zh) 一种护眼台灯
CN108878624A (zh) 一种白光led光源及照明装置
CN108843984A (zh) 一种全自然光谱led发光体及照明装置
CN208566236U (zh) 一种家居照明球泡灯
CN109027779A (zh) 一种高青光led发光件及照明设备
CN209859973U (zh) 一种光源模组及包括该光源模组的照明装置
CN209325502U (zh) 一种自然光灯泡及便携式护眼台灯
CN211743149U (zh) 一种色温可调的色彩增强的led灯
CN108826030A (zh) 一种家居照明球泡灯
CN109027778A (zh) 办公射灯
CN202327835U (zh) 一种可调节光谱的led口腔灯
WO2020000514A1 (zh) 一种背光模组
WO2020000518A1 (zh) 一种准自然光led光源及照明装置
CN208566216U (zh) 低蓝光led光源及照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924858

Country of ref document: EP

Kind code of ref document: A1