WO2020000481A1 - 整流器及其驱动方法、芯片、电力设备 - Google Patents

整流器及其驱动方法、芯片、电力设备 Download PDF

Info

Publication number
WO2020000481A1
WO2020000481A1 PCT/CN2018/093916 CN2018093916W WO2020000481A1 WO 2020000481 A1 WO2020000481 A1 WO 2020000481A1 CN 2018093916 W CN2018093916 W CN 2018093916W WO 2020000481 A1 WO2020000481 A1 WO 2020000481A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge arm
semiconductor switch
rectifier
inductor
working mode
Prior art date
Application number
PCT/CN2018/093916
Other languages
English (en)
French (fr)
Inventor
黄冬其
王鹏飞
李汇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880091474.8A priority Critical patent/CN111869085B/zh
Priority to PCT/CN2018/093916 priority patent/WO2020000481A1/zh
Publication of WO2020000481A1 publication Critical patent/WO2020000481A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • the present application relates to the field of electronic technology, and in particular, to a rectifier, a driving method thereof, a chip, and a power device.
  • Wireless power transfer (WPT) technology is a technology that directly transmits power in space without passing through wires.
  • WPT technology includes magnetic coupling technology based on tight coupling and magnetic resonance technology based on loose coupling.
  • the magnetic induction technology is dominated by the Wireless Charging Alliance WPC (Wireless Power Consortium), and the magnetic resonance technology is led by the wireless charging organization AirFuel.
  • WPC Wireless Power Consortium
  • AirFuel the wireless charging organization AirFuel.
  • the power equipment including the transmitting device and the receiving device of the electric signal
  • the working frequency of the electric device is 100-205KHz (kilohertz)
  • the space of the transmitting device and the receiving device is free.
  • the working frequency of the power equipment is 6.78MHz, and the degree of freedom of the space of the transmitting device and the receiving device is greater.
  • the same power device can support multiple working modes to be suitable for different working frequencies. Since the rectifier (which is used to convert AC power to DC power) is an indispensable part of the receiver device described above, in order to reduce costs, the rectifier needs to support multiple working modes.
  • the circuit structure of the rectifier is shown in Figure 1. It includes two N-type metal-oxide semiconductor field effect transistors (MOSFETs): M1 and M3. This rectifier is called Half bridge class D rectifier. N-type MOSFET is also called NMOSFET. Referring to FIG. 1, assuming that the current signal at the input AC is a sinusoidal current signal, during each half cycle of the sinusoidal current signal, one NMOSFET is turned on and the other NMOSFET is turned off, so in the sinusoidal current signal During each cycle, the rectifier can supply current to the load.
  • MOSFETs metal-oxide semiconductor field effect transistors
  • the above-mentioned rectifier working mode is generally suitable for low working frequencies and has low versatility.
  • the present application provides a rectifier, a driving method, a chip, and a power device, which can solve the problems that the current rectifier working mode is generally applicable to a low working frequency and has low versatility.
  • the technical solution is as follows:
  • a rectifier includes a first bridge arm and a first inductor.
  • the first bridge arm includes a first upper bridge arm and a first lower bridge arm.
  • the first upper bridge arm is coupled between the first input terminal and the voltage output terminal
  • the first lower bridge arm is coupled between the first input terminal and the ground terminal.
  • the first upper bridge arm is provided with a first semiconductor switch, and the first semiconductor switch is used for turning on or off the first upper bridge arm.
  • the first lower bridge arm is provided with a second semiconductor switch, and the second semiconductor switch is used for turning on or off the first lower bridge arm.
  • the first inductor is disposed on the first upper bridge arm and connected in series with the first semiconductor switch, or the first inductor is disposed on the first lower bridge arm and connected in series with the second semiconductor switch.
  • the rectifier has a first working mode and a second working mode.
  • the first working mode is suitable for high working frequencies and the second working mode is suitable for low working frequencies.
  • the first working mode is suitable for a working frequency of 6.78 MHz;
  • the second working mode is suitable for a working frequency of 100 to 205 KHz.
  • Each working mode corresponds to a WPT technology.
  • the first working mode corresponds to magnetic resonance technology, and the second working mode corresponds to magnetic induction technology.
  • the rectifier provided in this application can have the characteristics of a half-bridge class E rectifier in the first working mode, which is suitable for high operating frequencies, and has the characteristics of a half-bridge class D rectifier in the second working mode, which is suitable for low working frequencies. It can switch between the first working mode and the second working mode to adapt to different scenarios.
  • the semiconductor switch may be a single semiconductor switching device or a semiconductor switching device having a semiconductor switching function including a plurality of circuit elements.
  • the rectifier may further include a driving control circuit, and the rectifier has a first working mode and a second working mode under the control of the driving control circuit.
  • the driving control circuit is used for: in the first working mode, when the first inductor is set on the first upper bridge arm, the first semiconductor switch is turned on so that the first upper bridge arm is always on, and is periodically turned on or off.
  • a second semiconductor switch when the first inductor is disposed on the first lower bridge arm, the second semiconductor switch is turned on so that the first lower bridge arm is always on, and the first semiconductor switch is periodically turned on or off.
  • the first semiconductor switch and the second semiconductor switch are turned on at different times, so that one of the first upper bridge arm and the first lower bridge arm is turned on and the other is turned off in the same period.
  • the first inductor has a rectifying characteristic.
  • the on-resistance of the first semiconductor switch or the second semiconductor switch can be regarded as a part of the DC resistance of the first inductor. In this way, a half-bridge class is provided.
  • the characteristics of the E rectifier, and the switching loss of the rectifier is small.
  • the first inductor is a low-impedance path for the AC component of the electrical signal at the first input terminal. In this way, it has the characteristics of a half-bridge class D rectifier.
  • the rectifier may further include a first capacitor.
  • the first inductor is disposed on the first upper bridge arm, and the first capacitor is disposed on the first lower bridge arm and is connected in parallel with the second semiconductor switch.
  • the first capacitor and the first inductor form a resonance circuit to reduce harmonic distortion and reduce electromagnetic interference (EMI) noise.
  • EMI electromagnetic interference
  • the second semiconductor switch has a first capacitor in parallel, the second semiconductor switch can be smaller in size, thereby avoiding the larger size of the rectifier due to the larger size of the second semiconductor switch.
  • the first capacitor reduces the occupied space of the rectifier.
  • the rectifier may further include a first capacitor.
  • the first inductor is disposed on the first lower bridge arm, and the first capacitor is disposed on the first upper bridge arm and is connected in parallel with the first semiconductor switch.
  • the first capacitor and the first inductor form a resonance circuit to reduce harmonic distortion and reduce EMI noise. Because the first semiconductor switch has a first capacitor in parallel, the first semiconductor switch can be smaller in size, thereby avoiding the larger size of the rectifier due to the larger size of the first semiconductor switch.
  • the first capacitor reduces the occupied space of the rectifier.
  • the rectifier may further include: a first AC signal switching module.
  • the first AC signal switch module is connected in parallel with the first inductor and is connected to the drive control circuit.
  • the driving control circuit is further configured to: in the second working mode, turn on the first AC signal switching module, so that the low-frequency component of the electric signal at the first input terminal passes through the first inductance, and the high-frequency component passes through the first AC signal switching module. In the first working mode, the first AC signal switch module is turned off.
  • the first AC signal switching module allows the high-frequency component in the electrical signal at the first input terminal to pass through the first AC signal switching module, thereby preventing the high-frequency component from being blocked by the first inductance and eliminating the voltage signal at the first input
  • the ringing phenomenon of the amplitude waveform appears, which can ensure the normal operation of the rectifier and improve the stability of the rectifier.
  • the first AC signal switching module may include a fifth semiconductor switch and a first bypass capacitor connected in series.
  • the fifth semiconductor switch is connected to a driving control circuit.
  • the driving control circuit is configured to: in the second working mode, turn on the fifth semiconductor switch to turn on the first AC signal switching module. In the first working mode, the fifth semiconductor switch is turned off to turn off the first AC signal switch module.
  • the rectifier when the rectifier is a full-bridge rectifier, the rectifier may further include a second bridge arm and a second inductor.
  • the second bridge arm includes a second upper bridge arm and a second lower bridge arm.
  • the second upper bridge arm is coupled between the second input terminal and the voltage output terminal
  • the second lower bridge arm is coupled between the second input terminal and the ground terminal.
  • a third semiconductor switch is provided on the second upper bridge arm, and the third semiconductor switch is used to turn on or off the second upper bridge arm;
  • a fourth semiconductor switch is provided on the second lower bridge arm, and the fourth semiconductor switch is used to conduct Or close the second lower bridge arm.
  • the first inductor and the second inductor are arranged in accordance with one of the following cases: the first inductor is disposed on the first upper bridge arm, the second inductor is disposed on the second upper bridge arm and connected in series with the third semiconductor switch; or An inductor is disposed on the first lower bridge arm, and a second inductor is disposed on the second lower bridge arm and is connected in series with the fourth semiconductor switch.
  • the rectifier may further include a driving control circuit.
  • the rectifier has a first working mode and a second working mode under the control of the driving control circuit.
  • the driving control circuit is configured to: in the first working mode, when the first inductor When set on the first upper bridge arm, when the second inductor is set on the second upper bridge arm, the first semiconductor switch is turned on so that the first upper bridge arm is always on, and the third semiconductor switch is turned on so that the second upper bridge arm is turned on Always on, and turn on the second semiconductor switch and the fourth semiconductor switch at different times, so that one of the first lower bridge arm and the second lower bridge arm is turned on and the other is turned off during the same period; when the first inductor is set at On the first lower bridge arm, when the second inductor is disposed on the second lower bridge arm, the second semiconductor switch is turned on so that the first lower bridge arm is always on, and the fourth semiconductor switch is turned on so that the second lower bridge arm is always on.
  • One of the two semiconductor switch groups includes a third semiconductor switch and a second semiconductor switch, and the other semiconductor switch group includes a first semiconductor switch and a fourth semiconductor switch.
  • One of the two bridge arm groups includes a first lower bridge arm and a second upper bridge arm, and the other bridge arm group includes a second lower bridge arm and a first upper bridge arm.
  • the first inductor and the second inductor have rectification characteristics.
  • the first semiconductor switch and the third semiconductor switch are always turned on, or the second semiconductor switch and the fourth semiconductor switch are always turned on.
  • the rectifier And the switching frequency of the rectifier is low, and the switching loss is small.
  • the first inductor is a low-impedance path for the AC component in the electrical signal at the first input terminal, and the second inductor is also a low-impedance for the AC component in the electrical signal at the second input terminal.
  • the channel has the characteristics of a full-bridge class D rectifier.
  • the rectifier may further include a second capacitor and a third capacitor.
  • the first inductor is disposed on the first upper bridge arm
  • the second inductor is disposed on the second upper bridge arm
  • the second capacitor is disposed on the first lower bridge arm and is connected in parallel with the second semiconductor switch
  • the third capacitor is disposed on the second
  • the lower bridge arm is connected in parallel with the fourth semiconductor switch.
  • the second capacitor and the first inductor form a resonance circuit
  • the third capacitor and the second inductor form a resonance circuit. The purpose of reducing the EMI noise can be achieved through the resonance circuit.
  • the second semiconductor switch and the fourth semiconductor switch can be smaller in size, thereby avoiding the second semiconductor switch and the fourth semiconductor switch.
  • the larger size makes the overall size of the rectifier larger, reducing the space occupied by the rectifier.
  • the rectifier may further include a second capacitor and a third capacitor.
  • the first inductor is disposed on the first lower bridge arm
  • the second inductor is disposed on the second lower bridge arm
  • the second capacitor is disposed on the first upper bridge arm and is connected in parallel with the first semiconductor switch
  • the third capacitor is disposed on the second
  • the upper bridge arm is connected in parallel with the third semiconductor switch.
  • the second capacitor and the first inductor form a resonance circuit
  • the third capacitor and the second inductor form a resonance circuit. The purpose of reducing the EMI noise can be achieved through the resonance circuit.
  • the first semiconductor switch and the third semiconductor switch can be smaller in size, thereby avoiding the problem caused by the first semiconductor switch and the third semiconductor switch.
  • the larger size makes the overall size of the rectifier larger, reducing the space occupied by the rectifier.
  • the rectifier may further include a second AC signal switch module and a third AC signal switch module.
  • the second AC signal switch module is connected in parallel with the first inductor and is connected to the drive control circuit.
  • the third AC signal switch module is connected in parallel with the second inductor and is connected to the drive control circuit.
  • the driving control circuit is further configured to: in the second working mode, turn on the second AC signal switching module, so that the low-frequency component of the electric signal at the first input terminal passes through the first inductance, and the high-frequency component passes through the second AC signal switching module;
  • the third AC signal switching module so that the low-frequency component of the electrical signal at the second input terminal passes through the second inductor, and the high-frequency component passes through the third AC signal switching module; in the first working mode, the second AC signal switching module and the first Three AC signal switch modules.
  • This application can eliminate the ringing phenomenon of the amplitude of the voltage signal at the first input terminal through the second AC signal switching module, and the ringing phenomenon of the amplitude of the voltage signal at the second input terminal can be eliminated by the third AC signal switching module. This phenomenon can further ensure the normal operation of the rectifier and improve the working stability of the rectifier.
  • the second AC signal switching module may include a sixth semiconductor switch and a second bypass capacitor connected in series.
  • the sixth semiconductor switch is connected to the driving control circuit.
  • the driving control circuit is used to: in the second working mode, turn on the sixth semiconductor switch to turn on the second AC signal switch module; in the first working mode, turn off the sixth A semiconductor switch to turn off the second AC signal switching module.
  • the third AC signal switching module may include a seventh semiconductor switch and a third bypass capacitor connected in series.
  • the seventh semiconductor switch is connected to the driving control circuit.
  • the driving control circuit is used to: in the second working mode, turn on the seventh semiconductor switch to turn on the third AC signal switch module; in the first working mode, turn off the seventh A semiconductor switch to turn off the third AC signal switching module.
  • the first semiconductor switch, the second semiconductor switch, the third semiconductor switch, or the fourth semiconductor switch in this application may be a transistor.
  • the transistor may be a field effect transistor or a bipolar junction transistor.
  • the transistor when the transistor is a field effect transistor, the transistor may be a junction field effect transistor, or may be a MOSFET.
  • transistors are divided into P-type transistors and N-type transistors.
  • the transistor may be a P-type transistor or an N-type transistor, and the type of the transistor is not limited in this application.
  • control pole of the semiconductor switch is connected to an output terminal of the drive control circuit, and the output terminal is used to output a control signal, and the control signal is used to control the semiconductor switch to be turned on or off.
  • the semiconductor switch is a transistor.
  • the transistor is a field effect transistor and the gate of the transistor is the control electrode, the gate of the transistor is connected to the output of the drive control circuit.
  • the transistor is a bipolar junction transistor, the base of the transistor is controlled. Pole, then the base of the transistor is connected to the output of the drive control circuit.
  • the drive control circuit in the rectifier in the present application includes a frequency discriminator inside, and the frequency discriminator is used to determine the working mode to be entered according to the frequency of the electric signal at the input end.
  • the driving control circuit is used to implement AC-DC rectification by controlling the opening or closing of each semiconductor switch in the rectifier according to the working mode to be entered determined by the frequency discriminator.
  • the input terminal is a first input terminal, or the input terminal is a first input terminal and a second input terminal.
  • the working mode to be entered is the first working mode or the second working mode.
  • the frequency discriminator When the rectifier is a half-bridge rectifier, the frequency discriminator is connected to the first input terminal; when the rectifier is a full-bridge rectifier, the frequency discriminator is connected to the first input terminal and the second input terminal.
  • the driving control circuit further includes a voltage comparator, which is connected to the voltage output terminal, and is used to detect whether the voltage at the voltage output terminal is greater than a preset voltage, and when the voltage at the voltage output terminal is greater than the preset voltage, an indicator is provided.
  • the frequency converter determines the working mode to be entered according to the frequency of the electric signal at the input end.
  • the rectifier can be switched to the first working mode or the second working mode according to actual needs, thereby adapting to different scenarios.
  • a method for driving a rectifier is provided for the rectifier.
  • the rectifier is the rectifier described in the first aspect, and the rectifier includes a first bridge arm and a first inductor.
  • the first bridge arm includes a first upper bridge arm and a first lower bridge arm.
  • the first upper bridge arm is coupled between the first input terminal and the voltage output terminal, and the first lower bridge arm is coupled between the first input terminal and the ground terminal.
  • the first upper bridge arm is provided with a first semiconductor switch
  • the first lower bridge arm is provided with a second semiconductor switch
  • the first inductor is disposed on the first upper bridge arm or the first lower bridge arm.
  • the method includes: When the voltage at the voltage output terminal is greater than the preset voltage, the working mode to be entered is determined according to the frequency of the electrical signal at the input terminal, the working mode to be entered is the first working mode or the second working mode, and the input terminal includes the first input terminal. After that, the first upper bridge arm and the first lower bridge arm are controlled to be turned on or off according to the determined working mode to be entered.
  • the rectifier may further include a drive control circuit.
  • controlling the on or off of the first upper bridge arm and the first lower bridge arm according to the determined working mode to be entered may include: In the mode, when the first inductor is set on the first upper bridge arm, the first semiconductor switch is turned on by the driving control circuit so that the first upper bridge arm is always on, and the second semiconductor switch is periodically turned on or off; When an inductor is disposed on the first lower bridge arm, the second semiconductor switch is turned on by the driving control circuit so that the first lower bridge arm is always on, and the first semiconductor switch is periodically turned on or off. In the second working mode, the first semiconductor switch and the second semiconductor switch are turned on at different times by the driving control circuit, so that one of the first upper bridge arm and the first lower bridge arm is turned on and the other is turned off in the same period.
  • the driving method of the rectifier provided in this application can control the first upper bridge arm and the first lower bridge arm to be turned on or off according to the determined working mode to be entered, so that the rectifier has a half-bridge class E rectifier in the first working mode.
  • the characteristics are suitable for high working frequency, and have the characteristics of half-bridge class D rectifier in the second working mode, suitable for low working frequency.
  • This driving method can make the rectifier switch between the first working mode and the second working mode. Then adapt to different scenarios.
  • the rectifier may further include a second bridge arm and a second inductor.
  • the second bridge arm includes a second upper bridge arm and a second lower bridge arm.
  • the second upper bridge arm is coupled between the second input terminal and the voltage output terminal.
  • the second lower bridge arm is coupled between the second input terminal and the ground terminal.
  • a third semiconductor switch is provided on the second upper bridge arm, and a fourth semiconductor switch is provided on the second lower bridge arm.
  • the first inductor and the second inductor are arranged in accordance with one of the following cases: the first inductor is disposed on the first upper bridge arm, the second inductor is disposed on the second upper bridge arm and connected in series with the third semiconductor switch; or An inductor is disposed on the first lower bridge arm, a second inductor is disposed on the second lower bridge arm and is connected in series with the fourth semiconductor switch, and the input terminal further includes a second input terminal.
  • the method may further include: controlling on or off of the second upper bridge arm and the second lower bridge arm according to the determined working mode to be entered.
  • the rectifier may further include a drive control circuit, and accordingly, the first upper bridge arm, the first lower bridge arm, the second upper bridge arm, and the second lower bridge arm are controlled according to the determined working mode to be entered.
  • Turning on or off may include: in the first operating mode, when the first inductor is disposed on the first upper bridge arm and the second inductor is disposed on the second upper bridge arm, the first semiconductor is turned on by the drive control circuit Switch to make the first upper bridge arm always on, turn on the third semiconductor switch to make the second upper arm always on, and turn on the second semiconductor switch and the fourth semiconductor switch at different times to make the first One of the lower bridge arm and the second lower bridge arm is turned on, and the other is closed.
  • the first control is turned on by the drive control circuit.
  • two semiconductor switch groups are turned on at different times by a driving control circuit, so that one of the two bridge arm groups is turned on and the other is turned off in the same period, and one semiconductor switch group of the two semiconductor switch groups is turned on.
  • the other bridge arm group includes a second lower bridge arm and a first upper bridge arm.
  • the driving method of the rectifier provided in this application can control the conduction of the first upper bridge arm, the first lower bridge arm, the second upper bridge arm, and the second lower bridge arm according to the determined working mode to be entered.
  • the rectifier has the characteristics of a full-bridge class E rectifier in the first working mode, which is suitable for high operating frequencies, and has the characteristics of a full-bridge class D rectifier in the second working mode, which is suitable for low working frequencies.
  • This driving method can make the rectifier Switch between the first working mode and the second working mode to adapt to different scenarios.
  • the rectifier when the rectifier is a half-bridge rectifier, the rectifier may further include: a first AC signal switching module, and the method may further include: in the second working mode, turning on the first AC signal switching module through a driving control circuit.
  • the low-frequency component of the electrical signal at the first input terminal passes through the first inductor, and the high-frequency component passes through the first AC signal switch module.
  • the first AC signal switch module In the first working mode, the first AC signal switch module is turned off by the drive control circuit.
  • the driving method can eliminate the ringing phenomenon that occurs in the waveform of the voltage signal at the first input terminal, thereby ensuring the normal operation of the rectifier.
  • the rectifier when the rectifier is a full-bridge rectifier, the rectifier may further include a second AC signal switch module and a third AC signal switch module.
  • the method may further include: in the second working mode, turning on the second AC signal switch module through the driving control circuit, so that the low-frequency component of the electric signal at the first input end passes the first inductance, and the high-frequency component passes the second AC signal switch. Module; the third AC signal switch module is turned on by the drive control circuit, so that the low frequency component of the electric signal at the second input terminal passes through the second inductor, and the high frequency component passes through the third AC signal switch module. In the first working mode, the second AC signal switch module and the third AC signal switch module are turned off by the drive control circuit.
  • the driving method can eliminate the ringing phenomenon of the amplitude of the voltage signals of the first input terminal and the second input terminal, thereby ensuring the normal operation of the rectifier and improving the working stability of the rectifier.
  • a chip includes a programmable logic circuit and / or stores program instructions for implementing the driving method of the rectifier according to the second aspect.
  • a chip including a rectifier, and a resonant circuit and an output capacitor connected to the rectifier.
  • the rectifier is the rectifier according to the first aspect.
  • the resonance circuit is configured to receive an electrical signal sent by a transmitting-end device and provide the electrical signal to an input end of a rectifier.
  • the input end is a first input end, or the input end is a first input end and a second input end.
  • the output capacitor is used to stabilize the DC signal obtained by the rectifier and provide it to the load.
  • an electronic device is provided, and the electronic device is loaded with the chip according to the fourth aspect.
  • the rectifier provided in this application has a first working mode and a second working mode.
  • the first working mode is suitable for a high working frequency
  • the second working mode is suitable for a low working frequency.
  • the rectifier In the first working mode, the rectifier has the characteristics of a class E rectifier.
  • the rectifier In the second working mode, the rectifier has the characteristics of a class D rectifier.
  • the rectifier can switch between the first working mode and the second working mode. For different working frequencies, and then adapt to different scenarios.
  • An electronic device including a chip manufactured by the rectifier also has two working modes, which are suitable for different working frequencies, improving device compatibility and reducing device costs.
  • FIG. 1 is a schematic circuit structure diagram of a half-bridge class D rectifier in the related art
  • FIG. 2 is a schematic diagram of a circuit structure of a full-bridge class D rectifier in the related art
  • FIG. 3 is a schematic circuit structure diagram of a half-bridge class E rectifier in the related art
  • FIG. 4 is a schematic circuit structure diagram of a full-bridge class E rectifier in the related art
  • FIG. 5 is a schematic diagram of a circuit structure of another half-bridge class E rectifier in the related art
  • FIG. 6 is a schematic circuit structure diagram of another full-bridge class E rectifier in the related art.
  • FIG. 7 is a schematic structural diagram of a power transmission system related to a rectifier according to an embodiment of the present invention.
  • FIG. 8A is a schematic circuit structure diagram of a rectifier provided by an embodiment of the present invention.
  • FIG. 8B is a schematic circuit structure diagram of another rectifier according to an embodiment of the present invention.
  • FIG. 9 is a schematic circuit structure diagram of another rectifier according to an embodiment of the present invention.
  • FIG. 10A is a schematic circuit structure diagram of another rectifier according to an embodiment of the present invention.
  • FIG. 10B is a schematic circuit structure diagram of another rectifier according to an embodiment of the present invention.
  • FIG. 11 is a schematic circuit structure diagram of another rectifier according to an embodiment of the present invention.
  • FIG. 12A is a schematic circuit structure diagram of another rectifier according to an embodiment of the present invention.
  • FIG. 12B is a schematic circuit structure diagram of another rectifier according to an embodiment of the present invention.
  • FIG. 12C is a schematic waveform diagram of voltage signals of a first input terminal and a second input terminal in a first working mode according to an embodiment of the present invention.
  • 12D is a schematic waveform diagram of a voltage signal at a voltage output terminal in a first working mode according to an embodiment of the present invention
  • FIG. 12E is a schematic waveform diagram of voltage signals of a first input terminal and a second input terminal in a second working mode according to an embodiment of the present invention.
  • 12F is a schematic waveform diagram of a voltage signal at a voltage output terminal in a second working mode according to an embodiment of the present invention.
  • FIG. 13A is a schematic circuit structure diagram of another rectifier according to an embodiment of the present invention.
  • FIG. 13B is a waveform diagram of voltage signals of the first input terminal and the second input terminal in a second working mode according to an embodiment of the present invention
  • 13C is a schematic waveform diagram of a voltage signal at a voltage output terminal in a second working mode according to an embodiment of the present invention
  • FIG. 14 is a schematic circuit structure diagram of another rectifier according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a circuit structure of another rectifier according to an embodiment of the present invention.
  • FIG. 16 is a flowchart of a method for driving a rectifier according to an embodiment of the present invention.
  • each working mode corresponds to a WPT technology.
  • each working mode can correspond to magnetic induction technology or magnetic resonance technology.
  • class D rectifier There are two types of rectifiers in the related art, one is a class D rectifier, and the other is a class E rectifier. Among them, the working mode of the class D rectifier is more suitable for low working frequencies (such as 100 ⁇ 205KHz), and it is not suitable for high working frequencies (such as 6.78MHz); while the class E rectifier is more suitable for high working frequencies, not suitable for low working frequencies .
  • Class D rectifiers are divided into half-bridge class D rectifiers and full-bridge class D rectifiers, and class E rectifiers are further divided into half-bridge class E rectifiers and full-bridge class E rectifiers.
  • Class D rectifiers are divided into half-bridge class D rectifiers and full-bridge class D rectifiers
  • class E rectifiers are further divided into half-bridge class E rectifiers and full-bridge class E rectifiers.
  • Class E rectifier makes a brief introduction.
  • the circuit structure of the half-bridge class D rectifier is shown in Figure 1.
  • the gates of M1 and M3 are connected to the gate drive control circuit.
  • M1 and M3 are set on a bridge arm.
  • the output capacitor Co is set at the voltage output terminal Vo and the ground terminal. GND.
  • the gate drive control circuit is used to turn on M1 and M3 at different periods.
  • the gate drive control circuit controls the opening and closing of M1 and M3 based on the voltage of the input terminal AC, the voltage of the voltage output terminal Vo, and the voltage of the ground terminal GND. For example, the gate drive control circuit turns off M1 when the voltage at the input AC is less than the voltage at the voltage output Vo, and turns on M3 when the voltage at the input AC is less than the voltage at the ground GND.
  • the current signal at the input AC is a sinusoidal current signal. During each half cycle of the sinusoidal current signal, one NMOSFET is turned on and the other NMOSFET is turned off. Therefore, during each period of the sinusoidal current signal, The rectifier can provide current to the load R L.
  • the half-bridge class D rectifier works in a high operating frequency scenario, the waveform of the voltage signal at the input AC is close to a square wave, and the harmonic distortion is serious.
  • the harmonic frequency is in the high frequency range, it will give electronic equipment Brings serious EMI noise.
  • EMI noise will have a large impact on the performance of electronic equipment (such as mobile terminals).
  • the switching frequency of the half-bridge class D rectifier that is, two NMOSFETs that are turned on or off in a unit time) The number of times
  • the switching loss is large. Therefore, the working mode of this half-bridge class D rectifier is not suitable for high operating frequencies.
  • FIG. 2 shows a schematic diagram of the circuit structure of a full-bridge class D rectifier.
  • the full-bridge class D rectifier includes four NMOSFETs: M1, M2, M3, and M4.
  • the gates of the four NMOSFETs are connected to the gate drive control circuit.
  • M1 and M3 are arranged on a bridge arm, and M2 and M4 It is set on the other bridge arm, and the output capacitor Co is set between the voltage output terminal Vo and the ground terminal GND.
  • a pair of NMOSFETs in a diagonal position are the same group of NMOSFETs, that is, M1 and M4 are a group, and M2 and M3 are a group.
  • the gate drive control circuit is used to turn on two groups of NMOSFETs at different periods.
  • the gate drive control circuit controls the on and off of the two sets of NMOSFETs based on the voltage of the input terminal AC1, the voltage of the input terminal AC2, the voltage of the voltage output terminal Vo, and the voltage of the ground terminal GND.
  • the current signal at the input terminals AC1 and AC2
  • AC1 and AC2 is a sinusoidal current signal
  • a pair of NMOSFETs on the diagonal position are turned on, and the other pair of NMOSFETs are turned off
  • M1 and M4 are turned on, and M2 and M3 are turned off.
  • the rectifier can provide current to the load R L to achieve the full-bridge rectification function.
  • the full-bridge class D rectifier shown in Figure 2 works in a high operating frequency scenario, the waveform of the voltage signal at the input (AC1 and AC2) is close to a square wave, the harmonic distortion is serious, and the EMI noise is large;
  • the bridge class D rectifier has a higher switching frequency and a larger switching loss. Therefore, the working mode of the full-bridge class D rectifier is not suitable for high operating frequencies.
  • Figure 3 shows a schematic diagram of the circuit structure of a half-bridge class E rectifier.
  • the half-bridge class E rectifier includes one NMOSFET: M3, and one inductor: L1.
  • the gate of M3 is connected to the gate drive control circuit.
  • M3 and L1 are arranged on a bridge arm, and M3 is connected in parallel with the capacitor C p1 .
  • the output capacitor Co is disposed between the voltage output terminal Vo and the ground terminal GND.
  • the gate drive control circuit is used to turn on M3 periodically.
  • the gate drive control circuit controls the turning on of M3 based on the voltage of the input terminal AC, the voltage of the voltage output terminal Vo, and the voltage of the ground terminal GND.
  • the magnitude of the current on L1 changes with the voltage difference across L1.
  • the current on L1 decreases because the pressure difference across L1 is negative; when M3 is off, the current on L1 increases and the current on L1 increases because the voltage difference across L1 is positive. Maintaining unidirectional flow, L1 has rectification characteristics at high operating frequencies. So when the current signal at the input AC is a sinusoidal current signal, the half-bridge class E rectifier can provide current to the load R L in each cycle of the sinusoidal current signal. Compared with the half-bridge class D rectifier shown in FIG.
  • Figure 4 shows a schematic diagram of the circuit structure of a full-bridge class E rectifier.
  • the full-bridge class E rectifier includes two NMOSFETs: M3 and M4, and two inductors: L1 and L2.
  • the gates of M3 and M4 are connected to the gate drive control circuit, M3 and L1 are arranged on one bridge arm, M4 and L2 are arranged on the other bridge arm, M3 is connected in parallel with the capacitor C p1 , and M4 is connected in parallel with the capacitor C p2 .
  • the output capacitor Co is disposed between the voltage output terminal Vo and the ground terminal GND.
  • the gate drive control circuit is used to turn on M3 and M4 at different periods.
  • the gate drive control circuit controls the opening and closing of M3 and M4 based on the voltage of the input terminal AC1, the voltage of the input terminal AC2, the voltage of the voltage output terminal Vo, and the voltage of the ground terminal GND.
  • the current on L1 decreases because the voltage difference across L1 is negative, and the current on L2 increases because the voltage difference across L2 is positive.
  • M4 is on and M3 is off
  • the current on L1 increases because the pressure difference across L1 is positive
  • the current on L2 decreases because the voltage difference across L2 is negative, and L1 and L2 are the same It also has rectification characteristics.
  • the full bridge class E rectifier can provide current to the load R L in each cycle of the sinusoidal current signal.
  • the full-bridge class E rectifier includes a resonant circuit, which reduces harmonic distortion, reduces EMI noise, and reduces switching loss.
  • the inductance values of L1 and L2 in high-frequency operating scenarios are not suitable for the full-bridge class E rectifier to work in low-frequency operating scenarios.
  • FIG. 5 shows a schematic circuit structure diagram of another half-bridge class E rectifier in the related art.
  • the half-bridge class E rectifier works similarly to the half-bridge class E rectifier shown in FIG. 3.
  • the working mode is also suitable for high working frequencies, but not for low working frequencies.
  • FIG. 6 shows a schematic diagram of the circuit structure of another full-bridge class E rectifier in the related art.
  • the full-bridge class E rectifier works similarly to the full-bridge class E rectifier shown in FIG. 4.
  • the full-bridge class rectifier works similarly.
  • the working mode of the E rectifier is also more suitable for high operating frequencies and not for low operating frequencies.
  • the rectifier provided by the embodiment of the present invention has the characteristics of a class D rectifier and a class E rectifier.
  • the rectifier has a first working mode and a second working mode.
  • the first working mode is suitable for high working frequencies and the second working mode is suitable for low. working frequency.
  • the first working mode is suitable for a working frequency of 6.78 MHz;
  • the second working mode is suitable for a working frequency of 100 to 205 KHz.
  • Each working mode corresponds to a WPT technology.
  • the first working mode corresponds to magnetic resonance technology
  • the second working mode corresponds to magnetic induction technology.
  • FIG. 7 shows a schematic structural diagram of a power transmission system related to a rectifier according to an embodiment of the present invention.
  • the power transmission system includes an electronic device 01 and an electronic device 02, and the electronic device 01 is an electrical signal.
  • the transmitting device, and the electronic device 02 is a receiving device of the electric signal.
  • the electronic device 02 is loaded with a chip, and the rectifier 021 provided in the embodiment of the present invention may be set in the chip.
  • the chip further includes a resonance circuit 022 and an output capacitor Co connected to the rectifier 021.
  • the output terminal of the resonance circuit 022 is connected to the first input terminal AC1 and the second input terminal AC2 of the rectifier 021, and the voltage output terminal Vo of the rectifier 021 is connected to the output capacitor Co.
  • the resonance circuit 022 is configured to receive an electric signal sent by the electronic device 01 and provide the electric signal to an input terminal of the rectifier 021.
  • the input terminal is the first input terminal AC1, or the input terminal is the first input terminal AC1 and the second input. ⁇ AC2.
  • the resonance circuit 022 may include a receiving coil L R and a resonance capacitor C R.
  • the output capacitor Co is used to stabilize the DC electric signal obtained by the rectifier 021 and provide it to the load.
  • the chip may further include a communication module, and the electronic device 02 may exchange information with an external device (such as the electronic device 01) through the communication module.
  • an external device such as the electronic device 01
  • FIG. 8A illustrates a schematic circuit structure diagram of a rectifier provided by an embodiment of the present invention.
  • the rectifier is a half-bridge rectifier.
  • the rectifier includes a first bridge arm and a first inductor L1.
  • the first bridge arm includes a first upper bridge arm 001 and a first lower bridge arm 002.
  • the first upper bridge arm is coupled between the first input terminal AC1 and the voltage output terminal Vo, and the first lower bridge arm is coupled at the first input terminal. Between AC1 and the ground terminal GND.
  • the first upper bridge arm 001 is provided with a first semiconductor switch M1, and the first semiconductor switch M1 is used for turning on or off the first upper bridge arm 001.
  • the first lower bridge arm 002 is provided with a second semiconductor switch M3, and the second semiconductor switch M3 is used for turning on or off the first lower bridge arm 002.
  • the first inductor L1 is disposed on the first upper bridge arm 001 and is connected in series with the first semiconductor switch M1. In the embodiment of the present invention, the first inductor L1 and the first semiconductor switch M1 may be connected in series. The first inductor L1 may be disposed between the first input terminal AC1 and the first semiconductor switch M1, as shown in FIG. 8A. In addition, The first inductor L1 may also be disposed between the first semiconductor switch M1 and the voltage output terminal Vo, as shown in FIG. 8B.
  • the rectifier has a first working mode and a second working mode.
  • the first working mode is suitable for high working frequencies and the second working mode is suitable for low working frequencies.
  • the first working mode is suitable for a working frequency of 6.78 MHz;
  • the second working mode is suitable for a working frequency of 100 to 205 KHz.
  • Each working mode corresponds to a WPT technology.
  • the first working mode corresponds to magnetic resonance technology, and the second working mode corresponds to magnetic induction technology.
  • the rectifier may further include a first capacitor C P1 .
  • the first capacitor C P1 is disposed on the first lower bridge arm 002 and is connected in parallel with the second semiconductor switch M3.
  • the first capacitor C P1 and the first inductor L1 form a resonance Circuit to reduce harmonic distortion and reduce EMI noise.
  • the first capacitor C P1 and the first inductor L1 are disposed on both sides of the first input terminal AC1, that is, one is disposed on the first upper bridge arm, and one is disposed on the first lower bridge arm. In this way, the first The resonance circuit formed by the capacitor C P1 and the first inductor L1 does not affect the rectification characteristics of the first inductor L1 at a high operating frequency.
  • the second semiconductor switch M3 since the second semiconductor switch M3 is connected in parallel with the first capacitor C P1 , the second semiconductor switch M3 can adopt a smaller size, thereby avoiding the rectifier due to the large size of the second semiconductor switch M3.
  • the overall size is relatively large.
  • the second semiconductor switch M3 is connected in parallel with the first capacitor C P1 to reduce the occupied space of the rectifier.
  • the rectifier further includes a driving control circuit CTRL.
  • the rectifier has a first working mode and a second working mode under the control of the driving control circuit CTRL.
  • the driving control circuit CTRL is used for:
  • the first semiconductor switch M1 In the first working mode, the first semiconductor switch M1 is turned on so that the first upper bridge arm 001 is always on, and the second semiconductor switch M3 is turned on or off periodically.
  • the first inductor L1 has a rectifying characteristic, the first semiconductor switch M1 is always on, and the on-resistance of the first semiconductor switch M1 can be regarded as a part of the DC resistance (DCR) of the first inductor L1.
  • the driving control circuit CTRL periodically turns on or off the second semiconductor switch M3 based on the voltage of the first input terminal AC1, the voltage of the voltage output terminal Vo, and the voltage of the ground terminal GND.
  • the driving control circuit CTRL at the first input When the voltage at terminal AC1 is lower than the voltage at ground terminal GND, M3 is turned on.
  • the current signal at the first input terminal AC1 is a periodic signal.
  • the drive control circuit CTRL can turn on the second semiconductor switch M3 in the first half of each cycle, and then can provide a current to the load during the entire cycle. It has the characteristics of a half-bridge class E rectifier.
  • the function of the rectifier is similar to that of the half-bridge class E rectifier shown in FIG. 3, and the switching loss of the rectifier is small;
  • the first semiconductor switch M1 and the second semiconductor switch M3 are turned on at different periods, so that one of the first upper bridge arm 001 and the first lower bridge arm 002 is turned on and the other is turned off during the same period.
  • the first inductor L1 is a low-impedance path for the AC component of the electrical signal at the first input terminal AC1, that is, it has a smaller blocking effect on the AC component.
  • the drive control circuit CTRL is based on the first The voltage of the input terminal AC1, the voltage of the voltage output terminal Vo, and the voltage of the ground terminal GND are used to turn on the first semiconductor switch M1 and the second semiconductor switch M3 at different times. For example, the drive control circuit CTRL is at the first input terminal AC1.
  • the first semiconductor switch M1 When the voltage is lower than the voltage at the voltage output terminal Vo, the first semiconductor switch M1 is turned off, and when the voltage at the first input terminal AC1 is lower than the voltage at the ground terminal GND, the second semiconductor switch M3 is turned on.
  • the current signal at the first input terminal AC1 is a periodic signal.
  • the drive control circuit CTRL can turn on the first semiconductor switch M1 in the first half of each cycle, and turn on the second semiconductor switch M3 in the second half of the cycle, and then turn on the entire cycle. It can provide current to the load. In this way, it has the characteristics of a half-bridge class D rectifier.
  • the function of the rectifier is similar to that of the half-bridge class D rectifier shown in FIG. 1.
  • the semiconductor switch when the semiconductor switch is turned on, the upper or lower arm where the semiconductor switch is located is turned on.
  • the first semiconductor switch M1 when the first semiconductor switch M1 is turned on, the first upper arm 001 is turned on.
  • the rectifier provided by the embodiment of the present invention has a first working mode and a second working mode.
  • the first semiconductor switch M1 In the first working mode, the first semiconductor switch M1 is always turned on for the first upper bridge arm, and the second semiconductor switch M3 is cycled.
  • the first lower bridge arm is conductively connected to have the characteristics of a half-bridge class E rectifier, which is suitable for high operating frequencies.
  • the first semiconductor switch M1 turns on the first upper bridge arm at different periods.
  • the two semiconductor switches M3 are turned on to the first lower bridge arm to have the characteristics of a half-bridge class D rectifier, which is suitable for low operating frequencies.
  • the rectifier can switch between the first working mode and the second working mode, thereby adapting to different scenarios. .
  • FIG. 9 is a schematic circuit structure diagram of another rectifier provided on the basis of the rectifier shown in FIG. 8A according to an embodiment of the present invention.
  • the rectifier is a half-bridge rectifier.
  • the rectifier includes a first bridge arm and a first inductor. L1
  • the first bridge arm includes a first upper bridge arm 001 and a first lower bridge arm 002
  • the first upper bridge arm 001 is coupled between the first input terminal AC1 and the voltage output terminal Vo
  • the first lower bridge arm 002 is coupled between Between the first input terminal AC1 and the ground terminal GND.
  • the first upper bridge arm 001 is provided with a first semiconductor switch M1, and the first semiconductor switch M1 is used for turning on or off the first upper bridge arm 001.
  • the first lower bridge arm 002 is provided with a second semiconductor switch M3, and the second semiconductor switch M3 is used for turning on or off the first lower bridge arm 002.
  • the first inductor L1 is disposed on the first upper bridge arm 001 and is connected in series with the first semiconductor switch M1.
  • the rectifier has a first working mode and a second working mode.
  • the first working mode is suitable for high working frequencies and the second working mode is suitable for low working frequencies.
  • the rectifier may further include a first capacitor C P1 .
  • the first capacitor C P1 is disposed on the first lower bridge arm 002 and is connected in parallel with the second semiconductor switch M3.
  • the first capacitor C P1 and the first inductor L1 form a resonance circuit to reduce harmonic distortion and reduce EMI noise. Since the second semiconductor switch M3 is connected in parallel with the first capacitor C P1 , the second semiconductor switch M3 can adopt a smaller size, thereby reducing the occupied space of the rectifier.
  • the rectifier further includes a drive control circuit CTRL.
  • the rectifier has a first work mode and a second work mode under the control of the drive control circuit CTRL.
  • the drive control circuit CTRL is used for:
  • the first semiconductor switch M1 is turned on so that the first upper bridge arm 001 is always on, and the second semiconductor switch M3 is turned on or off periodically.
  • the driving control circuit CTRL is based on the first input terminal AC1.
  • the voltage, the voltage at the voltage output terminal Vo, and the voltage at the ground terminal GND periodically turn the second semiconductor switch M3 on or off.
  • the current signal at the first input terminal AC1 is a periodic signal.
  • the drive control circuit CTRL can turn on the second semiconductor switch M3 in the first half of each cycle, and then can provide current to the load during the entire cycle. It has a half-bridge class.
  • the E rectifier The function of the rectifier is similar to that of the half-bridge E rectifier shown in Figure 3.
  • the first semiconductor switch M1 and the second semiconductor switch M3 are turned on at different periods, so that one of the first upper bridge arm 001 and the first lower bridge arm 002 is turned on and the other is turned off during the same period.
  • the driving control circuit CTRL turns on the first semiconductor switch M1 and the second semiconductor switch M3 at different periods based on the voltage of the first input terminal AC1, the voltage of the voltage output terminal Vo, and the voltage of the ground terminal GND.
  • the current signal at the first input terminal AC1 is a periodic signal.
  • the drive control circuit CTRL can turn on the first semiconductor switch M1 in the first half of each cycle, and turn on the second semiconductor switch M3 in the second half of the cycle, and then turn on the entire cycle. It can provide current to the load and has the characteristics of a half-bridge class D rectifier. The function of this rectifier is similar to that of the half-bridge class D rectifier shown in FIG. 1.
  • the rectifier further includes a first AC signal switch module 91, and the first AC signal switch module 91 is connected in parallel with the first inductor L1 and is connected to the drive control circuit CTRL.
  • the drive control circuit CTRL is also used for:
  • the first AC signal switching module 91 In the second working mode, the first AC signal switching module 91 is turned on, so that the low-frequency component of the electrical signal at the first input terminal AC1 passes through the first inductor L1 and the high-frequency component passes through the first AC signal switching module 91. In the second working mode, the first AC signal switch module 91 is always on;
  • the first AC signal switch module 91 is turned off.
  • the resonance circuit formed by the first capacitor C P1 and the first inductor L1 connected in parallel with the second semiconductor switch M3 will affect the high-frequency component in the electrical signal of the first input terminal AC1.
  • the first inductor L1 has a large blocking effect on high-frequency components, resulting in a ringing phenomenon of the waveform of the voltage signal of the first input terminal AC1, and a ringing phenomenon of the voltage signal of the first input terminal AC1.
  • the ringing phenomenon will directly affect the normal operation of the rectifier, and the working state of the rectifier is unstable.
  • the first AC signal switching module can pass high-frequency components through the first AC signal switching module, thereby preventing high-frequency components from being blocked by the first inductor L1, and eliminating the waveform of the voltage signal at the first input terminal AC1.
  • the ringing phenomenon of amplitude reduction can ensure the normal operation of the rectifier and improve the working stability of the rectifier.
  • the second semiconductor switch M3 when the size of the second semiconductor switch M3 is large and the capacitance value of the parasitic capacitor can reach the capacitance required for operation, the second semiconductor switch M3 does not need to be connected in parallel with the first capacitor C P1 .
  • the first The parasitic capacitance of the two semiconductor switches M3 and the first inductor L1 form a resonance circuit.
  • the resonant circuit formed by the parasitic capacitance of the second semiconductor switch M3 and the first inductor L1 will affect the high-frequency component in the electrical signal of the first input terminal AC1, and the first inductor L1 will The component has a relatively large blocking effect, which causes the waveform of the voltage signal at the first input terminal AC1 to appear ringing ringing phenomenon.
  • the high-frequency component passes the first alternating-current signal switching module through the first alternating-current signal switching module, thereby preventing the high-frequency component from being blocked by the first inductor L1, and eliminating the waveform of the voltage signal at the first input terminal AC1.
  • the reduced ringing phenomenon can ensure the normal operation of the rectifier and improve the stability of the rectifier.
  • the first AC signal switch module 91 may include a fifth semiconductor switch M5 and a first bypass capacitor C1 connected in series.
  • the fifth semiconductor switch M5 is connected to the driving control circuit CTRL, and the driving control circuit CTRL is used for:
  • the fifth semiconductor switch M5 is turned on to turn on the first AC signal switch module 91;
  • the fifth semiconductor switch M5 is turned off to turn off the first AC signal switch module 91.
  • Inductance and capacitance have a blocking effect on AC power.
  • the blocking effect of inductance on AC power is to pass low frequencies and high frequencies.
  • capacitors the higher the frequency of alternating current, the smaller the capacitive reactance.
  • the blocking effect of capacitors on alternating current is to pass high frequencies and low frequencies.
  • the fifth semiconductor switch M5 in the second working mode, is turned on.
  • the low-frequency component of the electrical signal at the first input terminal AC1 passes through the first inductor L1 and the high-frequency component passes through the first bypass capacitor. C1, to prevent high-frequency components from being blocked by the first inductor L1, and improve the working stability of the rectifier.
  • the rectifier provided by the embodiment of the present invention has a first working mode and a second working mode.
  • the first semiconductor switch M1 In the first working mode, the first semiconductor switch M1 is always turned on for the first upper bridge arm, and the second semiconductor switch M3 is cycled.
  • the first lower bridge arm is conductively connected to have the characteristics of a half-bridge class E rectifier, which is suitable for high operating frequencies.
  • the first semiconductor switch M1 turns on the first upper bridge arm at different periods.
  • the two semiconductor switches M3 are turned on to the first lower bridge arm to have the characteristics of a half-bridge class D rectifier, which is suitable for low operating frequencies.
  • the rectifier can switch between the first working mode and the second working mode, thereby adapting to different scenarios. .
  • the rectifier eliminates the ringing phenomenon of the amplitude of the voltage signal at the first input terminal AC1 through the first AC signal switching module, thereby ensuring the normal operation of the rectifier and improving the working stability of the rectifier.
  • FIG. 10A illustrates a schematic circuit structure diagram of another rectifier according to an embodiment of the present invention.
  • the rectifier is a half-bridge rectifier.
  • the rectifier includes a first bridge arm and a first inductor L1. Including a first upper bridge arm 001 and a first lower bridge arm 002, the first upper bridge arm 001 is coupled between the first input terminal AC1 and the voltage output terminal Vo, and the first lower bridge arm 002 is coupled between the first input terminal AC1 and Ground terminal GND.
  • the first upper bridge arm 001 is provided with a first semiconductor switch M1, and the first semiconductor switch M1 is used for turning on or off the first upper bridge arm 001.
  • the first lower bridge arm 002 is provided with a second semiconductor switch M3, and the second semiconductor switch M3 is used for turning on or off the first lower bridge arm 002.
  • the first inductor L1 is disposed on the first lower bridge arm 002 and is connected in series with the second semiconductor switch M3.
  • the first inductor L1 and the second semiconductor switch M3 may be connected in series, and the first inductor L1 may be disposed between the first input terminal AC1 and the second semiconductor switch M3, as shown in FIG. 10A;
  • the first inductor L1 may also be disposed between the second semiconductor switch M3 and the ground terminal, as shown in FIG. 10B.
  • the rectifier has a first working mode and a second working mode.
  • the first working mode is suitable for high working frequencies and the second working mode is suitable for low working frequencies.
  • the rectifier may further include a first capacitor C P1 .
  • the first capacitor C P1 is disposed on the first upper bridge arm 001 and is connected in parallel with the first semiconductor switch M1.
  • the first capacitor C P1 and the first inductor L1 Form a resonant circuit to reduce harmonic distortion and reduce EMI noise.
  • the first capacitor C P1 and the first inductor L1 are disposed on both sides of the first input terminal AC1, and the resonance circuit formed by the first capacitor C P1 and the first inductor L1 will not have a high operating frequency for the first inductor L1. Influence the rectification characteristics.
  • the first semiconductor switch M1 since the first semiconductor switch M1 is connected in parallel with the first capacitor C P1 , the first semiconductor switch M1 can adopt a smaller size, thereby avoiding the rectifier due to the large size of the first semiconductor switch M1.
  • the overall size is large, and the first semiconductor switch M1 is connected in parallel with the first capacitor C P1 to reduce the occupied space of the rectifier.
  • the rectifier further includes a driving control circuit CTRL.
  • the rectifier has a first working mode and a second working mode under the control of the driving control circuit CTRL.
  • the driving control circuit CTRL is used for:
  • the second semiconductor switch M3 is turned on so that the first lower bridge arm 002 is always on, and the first semiconductor switch M1 is turned on or off periodically.
  • the first inductor L1 has a rectifying characteristic
  • the second semiconductor switch M3 is always on, and the on-resistance of the second semiconductor switch M3 can be regarded as a part of the DCR of the first inductor L1.
  • the first input terminal The current signal of AC1 is a periodic signal.
  • the drive control circuit CTRL can turn on the first semiconductor switch M1 in the first half of each cycle, and then can supply current to the load throughout the cycle. It has the characteristics of a half-bridge class E rectifier. The function of the rectifier is similar to that of the half-bridge class E rectifier shown in FIG. 5, and the switching loss of the rectifier is small;
  • the first semiconductor switch M1 and the second semiconductor switch M3 are turned on at different periods, so that one of the first upper bridge arm 001 and the first lower bridge arm 002 is turned on and the other is turned off during the same period.
  • the first inductor L1 is a low-impedance path for the AC component of the electrical signal at the first input terminal AC1, where the current signal at the first input terminal AC1 is a periodic signal, such as a drive control circuit CTRL can turn on the first semiconductor switch M1 in the first half of each cycle, and turn on the second semiconductor switch M3 in the second half of the cycle, so that it can supply current to the load throughout the cycle.
  • It has the characteristics of a half-bridge class D rectifier. The function of the rectifier is similar to that of the half-bridge class D rectifier shown in FIG. 1.
  • the rectifier provided in the embodiment of the present invention has a first working mode and a second working mode.
  • the first working mode the second semiconductor switch M3 is always turned on to the first lower bridge arm, and the first semiconductor switch M1 is cycled.
  • the first upper bridge arm is conductively connected to have the characteristics of a half-bridge class E rectifier, which is suitable for high operating frequencies.
  • the first semiconductor switch M1 turns on the first upper bridge arm at different periods.
  • the two semiconductor switches M3 are turned on to the first lower bridge arm to have the characteristics of a half-bridge class D rectifier, which is suitable for low operating frequencies.
  • the rectifier can switch between the first working mode and the second working mode, thereby adapting to different scenarios. .
  • FIG. 11 is a schematic circuit structure diagram of another rectifier provided on the basis of the rectifier shown in FIG. 10A according to an embodiment of the present invention.
  • the rectifier is a half-bridge rectifier.
  • the rectifier includes a first bridge arm and a first inductor.
  • L1 the first bridge arm includes a first upper bridge arm 001 and a first lower bridge arm 002.
  • the first upper bridge arm 001 is coupled between the first input terminal AC1 and the voltage output terminal Vo
  • the first lower bridge arm 002 is coupled between the first input terminal AC1 and the ground terminal GND.
  • the first upper bridge arm 001 is provided with a first semiconductor switch M1, and the first semiconductor switch M1 is used for turning on or off the first upper bridge arm 001.
  • the first lower bridge arm 002 is provided with a second semiconductor switch M3, and the second semiconductor switch M3 is used for turning on or off the first lower bridge arm 002.
  • the first inductor L1 is disposed on the first lower bridge arm 002 and is connected in series with the second semiconductor switch M3.
  • the rectifier has a first working mode and a second working mode.
  • the first working mode is suitable for high working frequencies and the second working mode is suitable for low working frequencies.
  • the rectifier may further include a first capacitor C P1 .
  • the first capacitor C P1 is disposed on the first upper bridge arm 001 and is connected in parallel with the first semiconductor switch M1.
  • the first capacitor C P1 and the first inductor L1 form a resonance circuit to reduce harmonic distortion and reduce EMI noise. Since the first semiconductor switch M1 is connected in parallel with the first capacitor C P1 , the first semiconductor switch M1 can adopt a smaller size and reduce the occupied space of the rectifier.
  • the rectifier further includes a driving control circuit CTRL.
  • the rectifier has a first working mode and a second working mode under the control of the driving control circuit CTRL.
  • the driving control circuit CTRL is used for:
  • the second semiconductor switch M3 is turned on so that the first lower bridge arm 002 is always turned on, and the first semiconductor switch M1 is periodically turned on or off, which has the characteristics of a half-bridge class E rectifier.
  • the function is similar to that of the half-bridge class E rectifier shown in FIG. 5;
  • the first semiconductor switch M1 and the second semiconductor switch M3 are turned on at different periods, so that one of the first upper bridge arm 001 and the first lower bridge arm 002 is turned on and the other is turned off during the same period.
  • the first inductor L1 is a low-impedance path for the AC component of the electrical signal at the first input AC1, and has the characteristics of a half-bridge class D rectifier.
  • the function of the rectifier is as shown in Figure 1.
  • the function of the half-bridge class D rectifier is similar.
  • the rectifier further includes: a first AC signal switch module 91, the first AC signal switch module 91 is connected in parallel with the first inductor L1 and is connected to the drive control circuit CTRL, and accordingly, the drive control The circuit CTRL is also used for:
  • the first AC signal switching module 91 In the second working mode, the first AC signal switching module 91 is turned on, so that the low-frequency component of the electrical signal at the first input terminal AC1 passes through the first inductor L1 and the high-frequency component passes through the first AC signal switching module 91. In the second working mode, the first AC signal switch module 91 is always on;
  • the first AC signal switch module 91 is turned off.
  • the resonance circuit formed by the first capacitor C P1 and the first inductor L1 will affect the high-frequency component in the electrical signal of the first input terminal AC1, resulting in the The amplitude of the voltage signal appears ringing.
  • the first AC signal switching module allows the high-frequency component to pass through the first AC signal switching module, thereby eliminating the ringing phenomenon of the amplitude of the voltage signal at the first input terminal AC1 and ensuring the normal operation of the rectifier. To improve the working stability of the rectifier.
  • the first semiconductor switch M1 when the size of the first semiconductor switch M1 is large and the capacitance value of the parasitic capacitance can reach the capacitance value required for operation, the first semiconductor switch M1 does not need to be connected in parallel with the first capacitor C P1 .
  • the first The parasitic capacitance of a semiconductor switch M1 and the first inductor L1 form a resonance circuit.
  • the resonant circuit formed by the parasitic capacitance of the first semiconductor switch M1 and the first inductor L1 will affect the high-frequency component in the electrical signal at the first input terminal AC1.
  • the first inductor L1 will The component has a relatively large blocking effect, which causes the waveform of the voltage signal at the first input terminal AC1 to appear ringing ringing phenomenon.
  • the first AC signal switching module can pass high-frequency components through the first AC signal switching module, thereby preventing high-frequency components from being blocked by the first inductor L1, and eliminating the waveform of the voltage signal at the first input terminal AC1.
  • the ringing phenomenon of amplitude reduction can ensure the normal operation of the rectifier and improve the working stability of the rectifier.
  • the first AC signal switch module 91 may include a fifth semiconductor switch M5 and a first bypass capacitor C1 connected in series.
  • the fifth semiconductor switch M5 is connected to a drive control circuit CTRL, and the drive control circuit CTRL is configured to:
  • the fifth semiconductor switch M5 is turned on to turn on the first AC signal switch module 91;
  • the fifth semiconductor switch M5 is turned off to turn off the first AC signal switch module 91.
  • the rectifier provided in the embodiment of the present invention has a first working mode and a second working mode.
  • the first working mode the second semiconductor switch M3 is always turned on to the first lower bridge arm, and the first semiconductor switch M1 is cycled.
  • the first upper bridge arm is conductively connected to have the characteristics of a half-bridge class E rectifier, which is suitable for high operating frequencies.
  • the first semiconductor switch M1 turns on the first upper bridge arm at different periods.
  • the two semiconductor switches M3 are turned on to the first lower bridge arm to have the characteristics of a half-bridge class D rectifier, which is suitable for low operating frequencies.
  • the rectifier can switch between the first working mode and the second working mode, thereby adapting to different scenarios. .
  • the rectifier eliminates the ringing phenomenon of the amplitude of the voltage signal at the first input terminal AC1 through the first AC signal switching module, thereby ensuring the normal operation of the rectifier and improving the working stability of the rectifier.
  • FIG. 12A shows a schematic circuit structure diagram of another rectifier according to an embodiment of the present invention.
  • the rectifier is a full-bridge rectifier.
  • the rectifier includes a first bridge arm, a second bridge arm, a first inductor L1, and a first bridge arm.
  • the first bridge arm includes a first upper bridge arm 001 and a first lower bridge arm 002.
  • the first upper bridge arm 001 is coupled between the first input terminal AC1 and the voltage output terminal Vo
  • the first lower bridge arm 002 is coupled to the first Between the input terminal AC1 and the ground terminal GND.
  • the second bridge arm includes a second upper bridge arm 003 and a second lower bridge arm 004, the second upper bridge arm 003 is coupled between the second input terminal AC2 and the voltage output terminal Vo, and the second lower bridge arm 004 is coupled between the second Between the input terminal AC2 and the ground terminal GND.
  • the first upper bridge arm 001 is provided with a first semiconductor switch M1, and the first semiconductor switch M1 is used for turning on or off the first upper bridge arm 001.
  • the first lower bridge arm 002 is provided with a second semiconductor switch M3, and the second semiconductor switch M3 is used for turning on or off the first lower bridge arm 002.
  • the first inductor L1 is disposed on the first upper bridge arm 001 and is connected in series with the first semiconductor switch M1. In the embodiment of the present invention, the first inductor L1 and the first semiconductor switch M1 may be connected in series. The first inductor L1 may be disposed between the first input terminal AC1 and the first semiconductor switch M1, as shown in FIG. 12A. In addition, The first inductor L1 may also be disposed between the first semiconductor switch M1 and the voltage output terminal Vo, as shown in FIG. 12B.
  • the second upper bridge arm 003 is provided with a third semiconductor switch M2, and the third semiconductor switch M2 is used for turning on or off the second upper bridge arm 003.
  • the second lower bridge arm 004 is provided with a fourth semiconductor switch M4, and the fourth semiconductor switch M4 is used for turning on or off the second lower bridge arm 004.
  • the second inductor L2 is disposed on the second upper bridge arm 003 and is connected in series with the third semiconductor switch M2. Similarly, the second inductor L2 may be disposed between the second input terminal AC2 and the third semiconductor switch M2, as shown in FIG. 12A; In addition, the second inductor L2 may also be disposed between the third semiconductor switch M2 and the voltage output terminal Vo Between, as shown in Figure 12B.
  • the rectifier has a first working mode and a second working mode.
  • the first working mode is suitable for high working frequencies and the second working mode is suitable for low working frequencies.
  • the rectifier may further include a second capacitor C P2 and a third capacitor C P3 .
  • the second capacitor C P2 is disposed on the first lower bridge arm 002 and is connected in parallel with the second semiconductor switch M3, and the third capacitor C P3 is disposed on the second lower bridge arm 004 and is connected in parallel with the fourth semiconductor switch M4.
  • the second capacitor C P2 and the first inductor L1 form a resonance circuit, and the third capacitor C P3 and the second inductor L2 form a resonance circuit. The purpose of reducing the EMI noise is achieved through the resonance circuit.
  • the second semiconductor switch M3 since the second semiconductor switch M3 is connected with the second capacitor C P2 in parallel and the fourth semiconductor switch M4 is connected with the third capacitor C P3 in parallel, the second semiconductor switch M3 and the fourth semiconductor switch M4 may be smaller. Size, thereby avoiding the larger size of the rectifier due to the larger size of the second semiconductor switch M3 and the fourth semiconductor switch M4, and reducing the occupied space of the rectifier.
  • the rectifier may further include a driving control circuit CTRL.
  • the rectifier has a first working mode and a second working mode under the control of the driving control circuit CTRL.
  • the driving control circuit CTRL is configured to:
  • the first semiconductor switch M1 is turned on so that the first upper bridge arm 001 is always turned on
  • the third semiconductor switch M2 is turned on so that the second upper bridge arm 003 is always turned on
  • the second The semiconductor switch M3 and the fourth semiconductor switch M4 are such that one of the first lower bridge arm 002 and the second lower bridge arm 004 is turned on and the other is turned off during the same period.
  • the first inductor L1 and the second inductor L2 have rectification characteristics.
  • the first semiconductor switch M1 and the third semiconductor switch M2 are always on.
  • the on-resistance of the first semiconductor switch M1 can be used as the first inductor L1.
  • the driving control circuit CTRL is based on the voltage of the first input terminal AC1, the voltage of the second input terminal AC2, and the voltage.
  • the voltage of the output terminal Vo and the voltage of the ground terminal GND turn on the second semiconductor switch M3 and the fourth semiconductor switch M4 at different periods.
  • the current signals at the first input terminal AC1 and the second input terminal AC2 are periodic signals.
  • the drive control circuit CTRL may turn on the second semiconductor switch M3 in the first half of each cycle and turn on the fourth semiconductor switch M4 in the second half of the cycle. Furthermore, the current can be provided to the load during the entire cycle.
  • FIG. 12C shows a waveform diagram of the voltage signals of the first input terminal AC1 and the second input terminal AC2 in this working mode.
  • the waveform of the voltage signal of the first input terminal AC1 and the waveform of the voltage signal of the second input terminal AC2. the same. It can be seen from FIG. 12C that the waveform of the voltage signal at the input terminal is close to the cosine wave, which is an important feature of the full bridge class E rectifier.
  • FIGS. 12C and 12D shows a waveform diagram of the voltage signal at the voltage output terminal Vo in this working mode.
  • the abscissa in FIGS. 12C and 12D is time, the unit is microseconds (us), the ordinate is the voltage value, and the unit is volts (V);
  • two semiconductor switch groups are turned on at different times, so that one of the two bridge arm groups is turned on and the other is turned off in the same time period.
  • One of the two semiconductor switch groups includes a third semiconductor switch M2 and a second semiconductor switch M3, and the other semiconductor switch group includes a first semiconductor switch M1 and a fourth semiconductor switch M4.
  • One of the two bridge arm groups includes a first lower bridge arm 002 and a second upper bridge arm 003, and the other bridge arm group includes a second lower bridge arm 004 and a first upper bridge arm 001.
  • the first inductor L1 is a low-impedance path for the AC component of the electrical signal at the first input terminal AC1, that is, it has a smaller blocking effect on the AC component
  • the second inductor L2 is The AC component of the electrical signal at the input AC2 is also a low-impedance path.
  • the drive control circuit CTRL is based on the voltage of the first input AC1, the voltage of the second input AC2, the voltage of the voltage output Vo, and the ground.
  • the voltage of GND turns on two semiconductor switch groups at different periods.
  • the current signals of the first input terminal AC1 and the second input terminal AC2 are periodic signals.
  • the driving control circuit CTRL may turn on the third semiconductor switch M2 and the second semiconductor switch M3 during the first half of each cycle and turn on during the second half
  • the first semiconductor switch M1 and the fourth semiconductor switch M4 can provide current to the load throughout the entire cycle. In this way, it has the characteristics of a full-bridge class D rectifier.
  • the function of the bridge class D rectifier is similar.
  • FIG. 12E shows a waveform diagram of the voltage signals of the first input terminal AC1 and the second input terminal AC2 in this working mode. The waveform of the voltage signal of the first input terminal AC1 and the waveform of the voltage signal of the second input terminal AC2. the same. It can be seen that the waveform of the voltage signal at the input of the rectifier shown in FIG.
  • the waveform of the voltage signal at the input of the full-bridge class D rectifier shown in FIG. 2 is close to a square wave.
  • the waveform of the voltage signal at the input terminal of the rectifier shown in FIG. 12A appears ringing phenomenon. This is because the second capacitor C P2 and the first inductor L1 form a resonance circuit, and the resonance circuit will react to the electrical signal at the first input terminal AC1.
  • the high-frequency component in the high-frequency component has an impact on the high-frequency component.
  • the third capacitor C P3 and the second inductor L2 form a resonance circuit, which will affect the second input AC2.
  • FIG. 12F shows a waveform diagram of the voltage signal at the voltage output terminal Vo in the working mode.
  • the abscissa in FIGS. 12E and 12F is time, the unit is microseconds, and the ordinate is the voltage value, the unit is volts.
  • the rectifier provided by the embodiment of the present invention has a first working mode and a second working mode.
  • the first semiconductor switch M1 is always on the first upper bridge arm, and the third semiconductor switch M2 is always on.
  • the second semiconductor switch M3 turns on the first lower bridge arm, and the fourth semiconductor switch M4 turns on the second lower bridge arm, in order to have the characteristics of a full-bridge class E rectifier, applicable
  • the second operating mode two semiconductor switch groups are turned on at different times, so that one of the two bridge arm groups is turned on and the other is turned off in the same period, so as to have the characteristics of a full-bridge class D rectifier It is suitable for low working frequency, and the rectifier can switch between the first working mode and the second working mode, thereby adapting to different scenarios.
  • FIG. 13A is a schematic circuit structure diagram of another rectifier provided on the basis of the rectifier shown in FIG. 12A according to an embodiment of the present invention.
  • the rectifier is a full-bridge rectifier.
  • the rectifier includes a first bridge arm and a second bridge. Arm, first inductor L1 and second inductor L2.
  • the first bridge arm includes a first upper bridge arm 001 and a first lower bridge arm 002.
  • the first upper bridge arm is coupled between the first input terminal AC1 and the voltage output terminal Vo, and the first lower bridge arm 002 is coupled to the first input. Between terminal AC1 and ground terminal GND.
  • the second bridge arm includes a second upper bridge arm 003 and a second lower bridge arm 004, the second upper bridge arm 003 is coupled between the second input terminal AC2 and the voltage output terminal Vo, and the second lower bridge arm 004 is coupled between the second Between the input terminal AC2 and the ground terminal GND.
  • the first upper bridge arm 001 is provided with a first semiconductor switch M1, and the first semiconductor switch M1 is used for turning on or off the first upper bridge arm 001.
  • the first lower bridge arm 002 is provided with a second semiconductor switch M3, and the second semiconductor switch M3 is used for turning on or off the first lower bridge arm 002.
  • the first inductor L1 is disposed on the first upper bridge arm 001 and is connected in series with the first semiconductor switch M1.
  • the first inductor L1 may be disposed between the first input terminal AC1 and the first semiconductor switch M1, or may be disposed between the first semiconductor switch M1 and the voltage output terminal Vo.
  • the second upper bridge arm 003 is provided with a third semiconductor switch M2, and the third semiconductor switch M2 is used for turning on or off the second upper bridge arm 003.
  • the second lower bridge arm 004 is provided with a fourth semiconductor switch M4, and the fourth semiconductor switch M4 is used for turning on or off the second lower bridge arm 004.
  • the second inductor L2 is disposed on the second upper bridge arm 003 and is connected in series with the third semiconductor switch M2.
  • the second inductor L2 may be disposed between the second input terminal AC2 and the third semiconductor switch M2, or may be disposed between the third semiconductor switch M2 and the voltage output terminal Vo.
  • the rectifier has a first working mode and a second working mode.
  • the first working mode is suitable for high working frequencies and the second working mode is suitable for low working frequencies.
  • the rectifier may further include a second capacitor C P2 and a third capacitor C P3 .
  • the second capacitor C P2 is disposed on the first lower bridge arm 002 and is connected in parallel with the second semiconductor switch M3, and the third capacitor C P3 is disposed on the second lower bridge arm 004 and is connected in parallel with the fourth semiconductor switch M4.
  • the second capacitor C P2 and the first inductor L1 form a resonance circuit, and the third capacitor C P3 and the second inductor L2 form a resonance circuit. The purpose of reducing the EMI noise is achieved through the resonance circuit.
  • the second semiconductor switch M3 since the second semiconductor switch M3 is connected with the second capacitor C P2 in parallel and the fourth semiconductor switch M4 is connected with the third capacitor C P3 in parallel, the second semiconductor switch M3 and the fourth semiconductor switch M4 may be smaller. The size reduces the footprint of the rectifier.
  • the rectifier may further include a driving control circuit CTRL.
  • the rectifier has a first working mode and a second working mode under the control of the driving control circuit CTRL.
  • the driving control circuit CTRL is configured to:
  • the first semiconductor switch M1 is turned on so that the first upper bridge arm 001 is always turned on
  • the third semiconductor switch M2 is turned on so that the second upper bridge arm 003 is always turned on
  • the second The semiconductor switch M3 and the fourth semiconductor switch M4 enable one of the first lower bridge arm 002 and the second lower bridge arm 004 to be turned on and the other to be closed during the same period, and have the characteristics of a full-bridge class E rectifier. Functions are similar to those of the full-bridge class E rectifier shown in Figure 4;
  • two semiconductor switch groups are turned on at different times, so that one of the two bridge arm groups is turned on and the other is turned off during the same period.
  • One of the two semiconductor switch groups includes a third semiconductor.
  • the other semiconductor switch group includes a first semiconductor switch M1 and a fourth semiconductor switch M4.
  • One of the two bridge arm groups includes a first lower bridge arm 002 and a second upper bridge arm.
  • the other bridge arm group includes the second lower bridge arm 004 and the first upper bridge arm 001, which has the characteristics of a full bridge class D rectifier.
  • the function of the rectifier is similar to that of the full bridge class D rectifier shown in FIG. 2 .
  • the rectifier may further include a second AC signal switching module 131 and a third AC signal switching module 132.
  • the second AC signal switch module 131 is connected in parallel with the first inductor L1 and is connected to the drive control circuit CTRL.
  • the third AC signal switch module 132 is connected in parallel with the second inductor L2 and is connected to the drive control circuit CTRL.
  • the drive control circuit CTRL is also used for:
  • the second AC signal switching module 131 In the second working mode, the second AC signal switching module 131 is turned on, so that the low-frequency component of the electrical signal at the first input terminal AC1 passes through the first inductor L1 and the high-frequency component passes through the second AC signal switching module 131;
  • the AC signal switching module 132 allows the low-frequency component of the electrical signal at the second input terminal AC2 to pass through the second inductor L2 and the high-frequency component to pass through the third AC signal switching module 132.
  • the second AC signal switch module 131 and the third AC signal switch module 132 are always on;
  • the second AC signal switch module 131 and the third AC signal switch module 132 are turned off.
  • the resonance circuit formed by the second capacitor C P2 and the first inductor L1 will cause the waveform of the voltage signal at the first input terminal AC1 to appear ringing phenomenon.
  • the third capacitor C P3 and The resonance circuit formed by the second inductor L2 may cause a ringing phenomenon of the waveform of the voltage signal of the second input terminal AC2.
  • the ringing phenomenon that occurs in the waveform of the voltage signal at the first input terminal AC1 can be eliminated by the second AC signal switch module, and the voltage signal at the second input terminal AC2 can be eliminated by the third AC signal switch module.
  • the amplitude-reducing ringing phenomenon of the waveform can further ensure the normal operation of the rectifier and improve the working stability of the rectifier.
  • the second semiconductor switch M3 and the fourth semiconductor switch M4 when the size of the second semiconductor switch M3 and the fourth semiconductor switch M4 is large, the second semiconductor switch M3 does not need to be connected in parallel with the second capacitor C P2 , and the fourth semiconductor switch M4 does not need to be connected with the third capacitor C P3 in parallel.
  • the parasitic capacitance of the second semiconductor switch M3 and the first inductance L1 form a resonance circuit
  • the parasitic capacitance of the fourth semiconductor switch M4 and the second inductance L2 form a resonance circuit.
  • the resonant circuit formed by the parasitic capacitance of the second semiconductor switch M3 and the first inductor L1 will affect the high-frequency component in the electrical signal of the first input terminal AC1, and the first inductor L1 will The component has a relatively large blocking effect, which causes the waveform of the voltage signal at the first input terminal AC1 to appear ringing ringing phenomenon.
  • the resonant circuit formed by the parasitic capacitance of the fourth semiconductor switch M4 and the second inductor L2 will affect the high-frequency components in the electrical signal at the second input terminal AC2, and the second inductor L2 has a greater obstacle to the high-frequency components.
  • the second AC signal switching module and the third AC signal switching module allow high-frequency components to pass through the second AC signal switching module and the third AC signal switching module, thereby preventing high-frequency components from being blocked and eliminating the first
  • the amplitude ringing phenomenon of the waveforms of the voltage signals at one input terminal AC1 and the second input terminal AC2 can further ensure the normal operation of the rectifier and improve the working stability of the rectifier.
  • the second AC signal switching module 131 may include a sixth semiconductor switch M6 and a second bypass capacitor C2 connected in series.
  • the sixth semiconductor switch M6 is connected to the driving control circuit CTRL, and the driving control circuit CTRL is used for:
  • the sixth semiconductor switch M6 is turned on to turn on the second AC signal switching module 131;
  • the sixth semiconductor switch M6 is turned off to turn off the second AC signal switch module 131.
  • the third AC signal switch module 132 may include a seventh semiconductor switch M7 and a third bypass capacitor C3 connected in series.
  • the seventh semiconductor switch M7 is connected to the driving control circuit CTRL, and the driving control circuit CTRL is used for:
  • the seventh semiconductor switch M7 is turned on to turn on the third AC signal switch module 132;
  • the seventh semiconductor switch M7 is turned off to turn off the third AC signal switch module 132.
  • the sixth semiconductor switch M6 and the seventh semiconductor switch M7 are always on, and the second bypass capacitor C2 is a high-frequency component of the electric signal of the first input terminal AC1.
  • the low-impedance path allows the low-frequency component of the electrical signal at the first input terminal AC1 to pass through the first inductor L1 and the high-frequency component to pass through the second bypass capacitor C2; In terms of components, it is also a low-impedance path, so that the low-frequency component of the electrical signal at the second input terminal AC2 passes through the second inductor L2 and the high-frequency component passes through the third bypass capacitor C3.
  • FIG. 13B shows a waveform diagram of the voltage signals of the first input terminal AC1 and the second input terminal AC2 in the second working mode.
  • the waveform of the voltage signal of the first input terminal AC1 and the voltage signal of the second input terminal AC2 The waveforms are the same.
  • the waveforms of the voltage signals of the first input terminal AC1 and the second input terminal AC2 are close to square waves. This characteristic is an important characteristic of the full-bridge class D rectifier.
  • the rectifier since the rectifier includes the second AC signal switching module 131 and the third AC signal switching module 132, the ringing phenomenon that appears in the waveforms of the voltage signals of the first input terminal AC1 and the second input terminal AC2 has been eliminated.
  • FIG. 13B shows a waveform diagram of the voltage signals of the first input terminal AC1 and the second input terminal AC2 in the second working mode.
  • the waveforms are the same.
  • the waveforms of the voltage signals of the first input terminal AC1 and the second input terminal AC2 are close to square waves. This
  • FIGS. 13B and 13C shows a waveform diagram of the voltage signal at the voltage output terminal Vo in the second working mode.
  • the abscissa in FIGS. 13B and 13C is time, the unit is microseconds, and the ordinate is the voltage value, the unit is volts.
  • the sixth semiconductor switch M6 and the seventh semiconductor switch M7 are always turned off, and the low-impedance path effect of the second bypass capacitor C2 and the third bypass capacitor C3 on the high-frequency component is released, thereby providing a full
  • the characteristics of the bridge class E rectifier are similar to those of the full bridge class E rectifier shown in FIG. 4.
  • the rectifier provided by the embodiment of the present invention has a first working mode and a second working mode.
  • the first semiconductor switch M1 is always on the first upper bridge arm, and the third semiconductor switch M2 is always on.
  • the second semiconductor switch M3 turns on the first lower bridge arm, and the fourth semiconductor switch M4 turns on the second lower bridge arm, in order to have the characteristics of a full-bridge class E rectifier, applicable
  • the second operating mode two semiconductor switch groups are turned on at different times, so that one of the two bridge arm groups is turned on and the other is turned off in the same period, so as to have the characteristics of a full-bridge class D rectifier It is suitable for low working frequency, and the rectifier can switch between the first working mode and the second working mode, thereby adapting to different scenarios.
  • the rectifier eliminates the ringing phenomenon of the amplitude of the voltage signal at the first input terminal AC1 through the second AC signal switching module, and eliminates the waveform of the voltage signal at the second input AC2 through the third AC signal switching module.
  • the ringing phenomenon of amplitude reduction can further ensure the normal operation of the rectifier and improve the working stability of the rectifier.
  • FIG. 14 exemplarily illustrates a schematic circuit structure of a rectifier provided by an embodiment of the present invention.
  • the rectifier is a full-bridge rectifier.
  • the rectifier includes a first bridge arm, a second bridge arm, a first inductor L1, and The second inductor L2, the first bridge arm includes a first upper bridge arm 001 and a first lower bridge arm 002, the first upper bridge arm 001 is coupled between the first input terminal AC1 and the voltage output terminal Vo, and the first lower bridge arm 002 is coupled between the first input terminal AC1 and the ground terminal GND.
  • the second bridge arm includes a second upper bridge arm 003 and a second lower bridge arm 004, the second upper bridge arm 003 is coupled between the second input terminal AC2 and the voltage output terminal Vo, and the second lower bridge arm 004 is coupled between the second Between the input terminal AC2 and the ground terminal GND.
  • the first upper bridge arm 001 is provided with a first semiconductor switch M1, and the first semiconductor switch M1 is used for turning on or off the first upper bridge arm 001.
  • the first lower bridge arm 002 is provided with a second semiconductor switch M3, and the second semiconductor switch M3 is used for turning on or off the first lower bridge arm 002.
  • the first inductor L1 is disposed on the first lower bridge arm 002 and is connected in series with the second semiconductor switch M3.
  • the first inductor L1 may be disposed between the first input terminal AC1 and the second semiconductor switch M3, or may be disposed between the second semiconductor switch M3 and the ground terminal.
  • the second upper bridge arm 003 is provided with a third semiconductor switch M2, and the third semiconductor switch M2 is used for turning on or off the second upper bridge arm 003.
  • the second lower bridge arm 004 is provided with a fourth semiconductor switch M4, and the fourth semiconductor switch M4 is used for turning on or off the second lower bridge arm 004.
  • the second inductor L2 is disposed on the second lower bridge arm 004 and is connected in series with the fourth semiconductor switch M4.
  • the second inductor L2 may be disposed between the second input terminal AC2 and the fourth semiconductor switch M4, or may be disposed between the fourth semiconductor switch M4 and the ground terminal.
  • the rectifier has a first working mode and a second working mode.
  • the first working mode is suitable for high working frequencies and the second working mode is suitable for low working frequencies.
  • the rectifier may further include a second capacitor C P2 and a third capacitor C P3 .
  • the second capacitor C P2 is disposed on the first upper bridge arm 001 and is connected in parallel with the first semiconductor switch M1
  • the third capacitor C P3 is disposed on the second upper bridge arm 003 and is connected in parallel with the third semiconductor switch M2.
  • the second capacitor C P2 and the first inductor L1 form a resonance circuit
  • the third capacitor C P3 and the second inductor L2 form a resonance circuit. The purpose of reducing the EMI noise is achieved through the resonance circuit.
  • the first semiconductor switch M1 and the third semiconductor switch M2 may be smaller. The size, thereby avoiding the larger size of the rectifier due to the larger size of the first semiconductor switch M1 and the third semiconductor switch M2, and reducing the occupied space of the rectifier.
  • the rectifier may further include a driving control circuit CTRL.
  • the rectifier has a first working mode and a second working mode under the control of the driving control circuit CTRL.
  • the driving control circuit CTRL is configured to:
  • the second semiconductor switch M3 is turned on so that the first lower bridge arm 002 is always turned on
  • the fourth semiconductor switch M4 is turned on so that the second lower bridge arm 004 is always turned on
  • the first is turned on at different times
  • the semiconductor switch M1 and the third semiconductor switch M2 are such that one of the first upper bridge arm 001 and the second upper bridge arm 003 is turned on and the other is turned off during the same period.
  • the first inductor L1 and the second inductor L2 have rectification characteristics
  • the second semiconductor switch M3 and the fourth semiconductor switch M4 are always on
  • the on-resistance of the second semiconductor switch M3 can be regarded as the first inductor L1.
  • the drive control circuit CTRL is based on the voltage of the first input terminal AC1, the voltage of the second input terminal AC2, and the voltage output.
  • the voltage of the terminal Vo and the voltage of the ground terminal GND turn on the first semiconductor switch M1 and the third semiconductor switch M2 at different periods.
  • the current signals of the first input terminal AC1 and the second input terminal AC2 are periodic signals.
  • the driving control circuit CTRL may turn on the first semiconductor switch M1 in the first half cycle of each cycle and turn on the third semiconductor switch M2 in the second half cycle. Furthermore, the current can be supplied to the load during the entire cycle.
  • two semiconductor switch groups are turned on at different times, so that one of the two bridge arm groups is turned on and the other is turned off during the same period.
  • One of the two semiconductor switch groups includes a third semiconductor.
  • the other semiconductor switch group includes a first semiconductor switch M1 and a fourth semiconductor switch M4.
  • One of the two bridge arm groups includes a first lower bridge arm 002 and a second upper bridge arm.
  • the other bridge arm group includes a second lower bridge arm 004 and a first upper bridge arm 001.
  • the first inductor L1 is a low-impedance path for the AC component of the electrical signal at the first input terminal AC1, that is, it has a smaller blocking effect on the AC component
  • the second inductor L2 is The AC component of the electrical signal at the input AC2 is also a low-impedance path.
  • the drive control circuit CTRL is based on the voltage of the first input AC1, the voltage of the second input AC2, the voltage of the voltage output Vo, and the ground.
  • the voltage of GND turns on two semiconductor switch groups at different periods.
  • the current signals of the first input terminal AC1 and the second input terminal AC2 are periodic signals.
  • the driving control circuit CTRL may turn on the third semiconductor switch M2 and the second semiconductor switch M3 during the first half of each cycle, and turn on during the second half of the cycle.
  • the first semiconductor switch M1 and the fourth semiconductor switch M4 can provide current to the load throughout the entire cycle. In this way, it has the characteristics of a full-bridge class D rectifier. The function of the bridge class D rectifier is similar.
  • the rectifier provided by the embodiment of the present invention has a first working mode and a second working mode.
  • the first working mode the second semiconductor switch M3 is always turned on to the first lower bridge arm, and the fourth semiconductor switch M4 is always turned on.
  • the first semiconductor switch M1 turns on the first upper bridge arm
  • the third semiconductor switch M2 turns on the second upper bridge arm, so as to have the characteristics of a full-bridge class E rectifier, applicable
  • two semiconductor switch groups are turned on at different times, so that one of the two bridge arm groups is turned on and the other is turned off in the same period, so as to have the characteristics of a full-bridge class D rectifier It is suitable for low working frequency, and the rectifier can switch between the first working mode and the second working mode, thereby adapting to different scenarios.
  • FIG. 15 is a schematic circuit structure diagram of another rectifier provided on the basis of the rectifier shown in FIG. 14 according to an embodiment of the present invention.
  • the rectifier is a full-bridge rectifier.
  • the rectifier includes a first bridge arm and a second bridge. Arm, first inductor L1 and second inductor L2.
  • the first bridge arm includes a first upper bridge arm 001 and a first lower bridge arm 002.
  • the first upper bridge arm 001 is coupled between the first input terminal AC1 and the voltage output terminal Vo
  • the first lower bridge arm 002 is coupled to the first Between the input terminal AC1 and the ground terminal GND.
  • the second bridge arm includes a second upper bridge arm 003 and a second lower bridge arm 004, the second upper bridge arm 003 is coupled between the second input terminal AC2 and the voltage output terminal Vo, and the second lower bridge arm 004 is coupled between the second Between the input terminal AC2 and the ground terminal GND.
  • the first upper bridge arm 001 is provided with a first semiconductor switch M1, and the first semiconductor switch M1 is used for turning on or off the first upper bridge arm 001.
  • the first lower bridge arm 002 is provided with a second semiconductor switch M3, and the second semiconductor switch M3 is used for turning on or off the first lower bridge arm 002.
  • the first inductor L1 is disposed on the first lower bridge arm 002 and is connected in series with the second semiconductor switch M3.
  • the first inductor L1 may be disposed between the first input terminal AC1 and the second semiconductor switch M3, or may be disposed between the second semiconductor switch M3 and the ground terminal.
  • the second upper bridge arm 003 is provided with a third semiconductor switch M2, and the third semiconductor switch M2 is used for turning on or off the second upper bridge arm 003.
  • the second lower bridge arm 004 is provided with a fourth semiconductor switch M4, and the fourth semiconductor switch M4 is used for turning on or off the second lower bridge arm 004.
  • the second inductor L2 is disposed on the second lower bridge arm 004 and is connected in series with the fourth semiconductor switch M4.
  • the second inductor L2 may be disposed between the second input terminal AC2 and the fourth semiconductor switch M4, or may be disposed between the fourth semiconductor switch M4 and the ground terminal.
  • the rectifier has a first working mode and a second working mode.
  • the first working mode is suitable for high working frequencies and the second working mode is suitable for low working frequencies.
  • the rectifier may further include a second capacitor C P2 and a third capacitor C P3 .
  • the second capacitor C P2 is disposed on the first upper bridge arm 001 and is connected in parallel with the first semiconductor switch M1
  • the third capacitor C P3 is disposed on the second upper bridge arm 003 and is connected in parallel with the third semiconductor switch M2.
  • the second capacitor C P2 and the first inductor L1 form a resonance circuit
  • the third capacitor C P3 and the second inductor L2 form a resonance circuit. The purpose of reducing the EMI noise is achieved through the resonance circuit.
  • the first semiconductor switch M1 since the first semiconductor switch M1 is connected with the second capacitor C P2 in parallel and the third semiconductor switch M2 is connected with the third capacitor C P3 in parallel, the first semiconductor switch M1 and the third semiconductor switch M2 may be smaller. Size, thereby reducing the footprint of the rectifier.
  • the rectifier further includes a driving control circuit CTRL.
  • the rectifier has a first working mode and a second working mode under the control of the driving control circuit CTRL.
  • the driving control circuit CTRL is used for:
  • the second semiconductor switch M3 is turned on so that the first lower bridge arm 002 is always turned on
  • the fourth semiconductor switch M4 is turned on so that the second lower bridge arm 004 is always turned on
  • the first is turned on at different times
  • the semiconductor switch M1 and the third semiconductor switch M2 enable one of the first upper bridge arm 001 and the second upper bridge arm 003 to be turned on and the other to be closed during the same period, and have the characteristics of a full-bridge class E rectifier. Functions are similar to those of the full-bridge class E rectifier shown in Figure 6;
  • two semiconductor switch groups are turned on at different times, so that one of the two bridge arm groups is turned on and the other is turned off during the same period.
  • One of the two semiconductor switch groups includes a third semiconductor.
  • the other semiconductor switch group includes a first semiconductor switch M1 and a fourth semiconductor switch M4.
  • One of the two bridge arm groups includes a first lower bridge arm 002 and a second upper bridge arm.
  • the other bridge arm group includes the second lower bridge arm 004 and the first upper bridge arm 001, which has the characteristics of a full bridge class D rectifier.
  • the function of the rectifier is similar to that of the full bridge class D rectifier shown in FIG. 2 .
  • the rectifier may further include a second AC signal switch module 131 and a third AC signal switch module 132.
  • the second AC signal switch module 131 is connected in parallel with the first inductor L1 and connected to the drive control circuit CTRL
  • the third AC signal switch module 132 is connected in parallel with the second inductor L2 and connected to the drive control circuit CTRL.
  • the drive control circuit CTRL is also used for:
  • the second AC signal switching module 131 In the second working mode, the second AC signal switching module 131 is turned on, so that the low-frequency component of the electrical signal at the first input terminal AC1 passes through the first inductor L1 and the high-frequency component passes through the second AC signal switching module 131;
  • the AC signal switching module 132 allows the low-frequency component of the electrical signal at the second input terminal AC2 to pass through the second inductor L2 and the high-frequency component to pass through the third AC signal switching module 132.
  • the second AC signal switch module 131 and the third AC signal switch module 132 are always on;
  • the second AC signal switch module 131 and the third AC signal switch module 132 are turned off.
  • the resonance circuit formed by the second capacitor C P2 and the first inductor L1 will cause the waveform of the voltage signal at the first input terminal AC1 to appear ringing phenomenon.
  • the third capacitor C P3 and The resonance circuit formed by the second inductor L2 may cause a ringing phenomenon of the waveform of the voltage signal of the second input terminal AC2.
  • the ringing phenomenon that occurs in the waveform of the voltage signal at the first input terminal AC1 can be eliminated by the second AC signal switch module, and the voltage signal at the second input terminal AC2 can be eliminated by the third AC signal switch module.
  • the amplitude-reducing ringing phenomenon of the waveform can further ensure the normal operation of the rectifier and improve the working stability of the rectifier.
  • the first semiconductor switch M1 and the third semiconductor switch M2 when the size of the first semiconductor switch M1 and the third semiconductor switch M2 is large, the first semiconductor switch M1 does not need to be connected in parallel with the second capacitor C P2 , and the third semiconductor switch M2 does not need to be connected in parallel with the third capacitor C P3 .
  • the parasitic capacitance of the first semiconductor switch M1 and the first inductor L1 form a resonance circuit
  • the parasitic capacitance of the third semiconductor switch M2 and the second inductor L2 form a resonance circuit.
  • the first semiconductor switch M1 In the second operating mode, the first semiconductor switch M1
  • the resonance circuit formed by the parasitic capacitance of the first inductor L1 will affect the high-frequency components in the electrical signal of the first input terminal AC1, and the first inductor L1 will have a large blocking effect on the high-frequency components, causing the first input terminal The waveform of the voltage signal of AC1 appears ringing phenomenon.
  • the resonance circuit formed by the parasitic capacitance of the third semiconductor switch M2 and the second inductor L2 will affect the high-frequency component in the electrical signal of the second input terminal AC2.
  • the second inductor L2 also has a large blocking effect on the high-frequency component, causing the waveform of the voltage signal at the second input terminal AC2 to appear ringing phenomenon.
  • the second AC signal switching module and the third AC signal switching module allow high-frequency AC components to pass through the second AC signal switching module and the third AC signal switching module, thereby preventing high-frequency components from being blocked and eliminating The amplitude ringing phenomenon of the waveforms of the voltage signals at the first input terminal AC1 and the second input terminal AC2 is prevented, thereby ensuring the normal operation of the rectifier and improving the working stability of the rectifier.
  • the second AC signal switch module 131 may include a sixth semiconductor switch M6 and a second bypass capacitor C2 connected in series.
  • the sixth semiconductor switch M6 is connected to the driving control circuit CTRL, and the driving control circuit CTRL is used for:
  • the sixth semiconductor switch M6 is turned on to turn on the second AC signal switching module 131;
  • the sixth semiconductor switch M6 is turned off to turn off the second AC signal switch module 131.
  • the third AC signal switch module 132 may include a seventh semiconductor switch M7 and a third bypass capacitor C3 connected in series.
  • the seventh semiconductor switch M7 is connected to the driving control circuit CTRL, and the driving control circuit CTRL is used for:
  • the seventh semiconductor switch M7 is turned on to turn on the third AC signal switch module 132;
  • the seventh semiconductor switch M7 is turned off to turn off the third AC signal switch module 132.
  • the sixth semiconductor switch M6 and the seventh semiconductor switch M7 are always on, and the second bypass capacitor C2 is a high-frequency component of the electric signal of the first input terminal AC1.
  • the low-impedance path allows the low-frequency component of the electrical signal at the first input terminal AC1 to pass through the first inductor L1 and the high-frequency component to pass through the second bypass capacitor C2; In terms of components, it is also a low-impedance path, so that the low-frequency component of the electrical signal at the second input terminal AC2 passes through the second inductor L2 and the high-frequency component passes through the third bypass capacitor C3.
  • the sixth semiconductor switch M6 and the seventh semiconductor switch M7 are always turned off, and the low-impedance path effect of the second bypass capacitor C2 and the third bypass capacitor C3 on the high-frequency component is released, thereby providing a full
  • the characteristics of the bridge class E rectifier are similar to those of the full bridge class E rectifier shown in FIG. 4.
  • the rectifier provided by the embodiment of the present invention has a first working mode and a second working mode.
  • the first working mode the second semiconductor switch M3 is always turned on to the first lower bridge arm, and the fourth semiconductor switch M4 is always turned on.
  • the first semiconductor switch M1 turns on the first upper bridge arm
  • the third semiconductor switch M2 turns on the second upper bridge arm, so as to have the characteristics of a full-bridge class E rectifier, applicable
  • two semiconductor switch groups are turned on at different times, so that one of the two bridge arm groups is turned on and the other is turned off in the same period, so as to have the characteristics of a full-bridge class D rectifier It is suitable for low working frequency, and the rectifier can switch between the first working mode and the second working mode, thereby adapting to different scenarios.
  • the rectifier eliminates the ringing phenomenon of the amplitude of the voltage signal at the first input terminal AC1 through the second AC signal switching module, and eliminates the waveform of the voltage signal at the second input AC2 through the third AC signal switching module.
  • the ringing phenomenon of amplitude reduction can further ensure the normal operation of the rectifier and improve the working stability of the rectifier.
  • the semiconductor switch involved in the embodiment of the present invention may be a single semiconductor switching device, or a semiconductor switching device with a semiconductor switching function including a plurality of circuit elements.
  • the semiconductor switch may be a transistor.
  • the transistor may be a field effect transistor or a bipolar junction transistor (BJT).
  • BJT bipolar junction transistor
  • the transistor when the transistor is a field effect transistor, the transistor may be a junction field effect transistor (JFET) or a MOSFET.
  • Transistors are divided into P-type transistors and N-type transistors.
  • the transistor may be a P-type transistor or an N-type transistor.
  • the embodiment of the present invention does not limit the type of the transistor.
  • a transistor has three poles. When the transistor is a field effect transistor, the three poles of the transistor are a source, a gate, and a drain.
  • the transistor When the transistor is a bipolar junction transistor, The three poles of the transistor are an emitter, a base, and a collector.
  • the circuit structures of the rectifiers shown in the above embodiments all take the semiconductor switch as an N-type MOSFET as an example for description.
  • the output capacitor Co in the rectifiers shown in the foregoing embodiments is used to perform voltage stabilization processing on the DC signal converted by the finisher, so that the voltage output by the voltage output terminal Vo is more stable.
  • the control pole of the semiconductor switch is connected to the output terminal of the driving control circuit, and the output terminal is used to output a control signal, and the control signal is used to control the semiconductor switch to be turned on or off.
  • the semiconductor switch is a transistor.
  • the gate of the transistor is the control electrode, and the gate is connected to the output of the drive control circuit.
  • the transistor is a bipolar junction transistor, the base of the transistor is the control electrode. The pole is connected to the output terminal of the drive control circuit.
  • the drive control circuit CTRL in the rectifier provided in the foregoing embodiments further includes a frequency discriminator, and the frequency discriminator is configured to determine a working mode to be entered according to a frequency of an electric signal at an input end.
  • the working mode to be entered is the first working mode or the second working mode.
  • the drive control circuit CTRL is used to implement AC-DC rectification by controlling the opening or closing of each semiconductor switch in the rectifier according to the working mode determined by the frequency discriminator.
  • the input terminal is a first input terminal, or the input terminal is a first input terminal and a second input terminal.
  • the drive control circuit CTRL realizes AC-DC rectification by controlling the opening or closing of each semiconductor device switch in the rectifier.
  • the frequency discriminator When the rectifier is a half-bridge rectifier, the frequency discriminator is connected to the first input terminal AC1; when the rectifier is a full-bridge rectifier, the frequency discriminator is connected to the first input terminal AC1 and the second input terminal AC2.
  • the driving control circuit CTRL further includes a voltage comparator connected to the voltage output terminal Vo for detecting whether the voltage at the voltage output terminal is greater than a preset voltage, and when the voltage at the voltage output terminal is greater than the preset voltage, The frequency discriminator is instructed to determine the working mode to be entered according to the frequency of the electric signal at the input end.
  • the rectifier is the rectifier shown in FIG. 8A.
  • the driving control circuit CTRL turns on the first semiconductor switch M1 so that the first upper bridge arm 001 is always turned on.
  • the second semiconductor switch M3 is turned on or off periodically; when the working mode to be entered determined by the frequency discriminator is the second working mode, the drive control circuit CTRL turns on the first semiconductor switch M1 and the second semiconductor switch at different periods. M3, so that one of the first upper bridge arm 001 and the first lower bridge arm 002 is turned on and the other is closed during the same period.
  • the rectifier is the rectifier shown in FIG. 10A.
  • the driving control circuit CTRL turns on the second semiconductor switch M3 so that the first lower bridge arm 002 is always turned on. And the first semiconductor switch M1 is periodically turned on or off; when the working mode to be entered determined by the frequency discriminator is the second working mode, the drive control circuit CTRL turns on the first semiconductor switch M1 and the second semiconductor switch at different times M3, so that one of the first upper bridge arm 001 and the first lower bridge arm 002 is turned on and the other is closed during the same period.
  • the rectifier is the rectifier shown in FIG. 12A.
  • the driving control circuit CTRL turns on the first semiconductor switch M1 so that the first upper bridge arm 001 is always turned on. ON, the third semiconductor switch M2 is turned on so that the second upper bridge arm 003 is always on, and the second semiconductor switch M3 and the fourth semiconductor switch M4 are turned on at different times, so that the first lower bridge arm 002 and the first One of the two lower bridge arms 004 is turned on and the other is turned off.
  • the drive control circuit CTRL turns on the two semiconductor switch groups at different periods to make the same period
  • One of the two bridge arm groups is turned on and the other is turned off.
  • One of the two semiconductor switch groups includes a third semiconductor switch M2 and a second semiconductor switch M3, and the other semiconductor switch group includes a first semiconductor switch M1 and Fourth semiconductor switch M4, one of the two bridge arm groups includes a first lower bridge arm 002 and a second upper bridge arm 003, and the other bridge arm group includes a second lower bridge arm 004 and a first upper bridge 001.
  • the rectifier is the rectifier shown in FIG. 14.
  • the drive control circuit CTRL turns on the second semiconductor switch M3 so that the first lower bridge arm 001 is always turned on.
  • the fourth semiconductor switch M4 is turned on so that the second lower bridge arm 004 is always turned on, and the first semiconductor switch M1 and the third semiconductor switch M2 are turned on at different times, so that the first upper bridge arm 001 and the first One of the two upper bridge arms 003 is turned on, and the other is turned off.
  • the drive control circuit CTRL turns on the two semiconductor switch groups at different periods to make the same period
  • One of the two bridge arm groups is turned on and the other is turned off.
  • One of the two semiconductor switch groups includes a third semiconductor switch M2 and a second semiconductor switch M3, and the other semiconductor switch group includes a first semiconductor switch M1 and Fourth semiconductor switch M4, one of the two bridge arm groups includes a first lower bridge arm 002 and a second upper bridge arm 003, and the other bridge arm group includes a second lower bridge arm 004 and a first upper bridge 001.
  • An embodiment of the present invention further provides a rectifier driving method for a rectifier.
  • the rectifier may be the rectifier shown in FIG. 8A or FIG. 10A. As shown in FIG. 16, the method may include:
  • Step 1601 Determine the working mode to be entered according to the frequency of the electrical signal at the first input terminal, and the working mode to be entered is the first working mode or the second working mode.
  • the rectifier determines the working mode to be entered according to the frequency of the electrical signal at the first input terminal.
  • the first working mode is suitable for high working frequencies, and the second working mode is suitable for low working frequencies.
  • the first working mode is suitable for a working frequency of 6.78 MHz; the second working mode is suitable for a working frequency of 100 to 205 KHz.
  • Each working mode corresponds to a WPT technology.
  • the first working mode corresponds to magnetic resonance technology, and the second working mode corresponds to magnetic induction technology.
  • Step 1602 Turn on or off the first upper bridge arm and the first lower bridge arm according to the determined working mode to be entered.
  • controlling the on or off of the first upper bridge arm and the first lower bridge arm according to the determined working mode to be entered may include:
  • the first semiconductor switch M1 is turned on by the driving control circuit so that the first upper bridge arm 001 is always on, and the second semiconductor switch M3 is turned on or off periodically.
  • the first semiconductor switch M1 and the second semiconductor switch M3 are turned on at different times by the drive control circuit, so that one of the first upper bridge arm 001 and the first lower bridge arm 002 is turned on in the same period. Pass, the other closes.
  • controlling the on or off of the first upper bridge arm and the first lower bridge arm according to the determined working mode to be entered may include:
  • the second semiconductor switch M3 is turned on by the driving control circuit so that the first lower bridge arm 002 is always turned on, and the first semiconductor switch M1 is periodically turned on or off.
  • the first semiconductor switch M1 and the second semiconductor switch M3 are turned on at different times by the drive control circuit, so that one of the first upper bridge arm 001 and the first lower bridge arm 002 is turned on in the same period. Pass, the other closes.
  • the rectifier may further include: a first AC signal switching module 91
  • the driving method may further include: in the second working mode, turning on the first AC signal switch through the driving control circuit Module, so that the low-frequency component of the electrical signal at the first input terminal AC1 passes through the first inductor L1 and the high-frequency component passes through the first AC signal switch module; in the first working mode, the first AC signal switch module is turned off by the drive control circuit .
  • the driving method of the rectifier can determine a working mode to be entered according to the frequency of the electrical signal at the first input end, and control the first upper bridge arm and the working mode to be entered according to the determined working mode to be entered.
  • the first lower bridge arm is turned on or off, so that the rectifier implements the function of a half-bridge class E rectifier in the first working mode, which is suitable for high operating frequencies, so that the rectifier has a half-bridge class D rectifier in the second working mode.
  • the rectifier can switch between the first working mode and the second working mode in order to be suitable for a low working frequency, thereby adapting to different scenarios.
  • the driving method can eliminate the ringing phenomenon of the amplitude of the voltage signal at the first input terminal AC1, thereby ensuring the normal operation of the rectifier and improving the stability of the finishing device.
  • An embodiment of the present invention further provides a rectifier driving method for a rectifier.
  • the rectifier may be the rectifier shown in FIG. 12A, FIG. 12B, or FIG. 14, and the method may include:
  • the first working mode is suitable for high working frequencies
  • the second working mode is suitable for low working frequencies
  • the first upper bridge arm, the first lower bridge arm, the second upper bridge arm, and the second lower bridge arm are controlled according to the determined current working mode.
  • On or off can include:
  • the first semiconductor switch M1 is turned on by the drive control circuit so that the first upper bridge arm 001 is always on, and the third semiconductor switch M2 is turned on so that the second upper bridge arm 003 is always on, and The second semiconductor switch M3 and the fourth semiconductor switch M4 are turned on at different periods, so that one of the first lower bridge arm 002 and the second lower bridge arm 004 is turned on and the other is turned off in the same period.
  • the switch group includes a third semiconductor switch M2 and a second semiconductor switch M3.
  • the other semiconductor switch group includes a first semiconductor switch M1 and a fourth semiconductor switch M4.
  • One of the two bridge arm groups includes a first lower bridge arm 002.
  • the second upper bridge arm 003, the other bridge arm group includes a second lower bridge arm 004 and a first upper bridge arm 001.
  • the guides of the first upper bridge arm, the first lower bridge arm, the second upper bridge arm, and the second lower bridge arm are controlled according to the determined working mode to be entered. On or off, it can include:
  • the second semiconductor switch M3 is turned on by the driving control circuit so that the first lower bridge arm 001 is always on, and the fourth semiconductor switch M4 is turned on so that the second lower bridge arm 004 is always on, and
  • the first semiconductor switch M1 and the third semiconductor switch M2 are turned on at different periods, so that one of the first upper bridge arm 001 and the second upper bridge arm 003 is turned on and the other is turned off during the same period.
  • the switch group includes a third semiconductor switch M2 and a second semiconductor switch M3.
  • the other semiconductor switch group includes a first semiconductor switch M1 and a fourth semiconductor switch M4.
  • One of the two bridge arm groups includes a first lower bridge arm 002.
  • the second upper bridge arm 003, the other bridge arm group includes a second lower bridge arm 004 and a first upper bridge arm 001.
  • the rectifier may further include a second AC signal switch module 131 and a third AC signal switch module 132
  • the driving method may further include: in the second working mode, by driving The control circuit turns on the second AC signal switching module 131, so that the low-frequency component of the electrical signal at the first input terminal AC1 passes through the first inductor L1 and the high-frequency component passes through the second AC signal switching module; the third AC signal is turned on by driving the control circuit Switching module 132, so that the low-frequency component of the electric signal at the second input terminal AC2 passes through the second inductor L2 and the high-frequency component passes through the third AC signal switching module 132; in the first working mode, the second AC is turned off by the drive control circuit The signal switching module 131 and the third AC signal switching module 132.
  • the driving method of the rectifier can determine a working mode to be entered according to the frequency of the electric signals of the first input terminal and the second input terminal, and control the first working mode according to the determined working mode to be entered.
  • An upper bridge arm, a first lower bridge arm, a second upper bridge arm, and a second lower bridge arm are turned on or off, so that the rectifier has the characteristics of a full-bridge class E rectifier in the first working mode, which is suitable for high
  • the working frequency makes the rectifier have the characteristics of a full-bridge class D rectifier in the second working mode, which is suitable for low working frequencies.
  • the rectifier can switch between the first working mode and the second working mode, thereby adapting to different scenarios.
  • the driving method can eliminate the ringing phenomenon of the amplitude of the voltage signals of the first input terminal AC1 and the second input terminal AC2, thereby ensuring the normal operation of the rectifier and improving the stability of the rectifier.
  • An embodiment of the present invention further provides a chip, where the chip includes a programmable logic circuit and / or a stored program instruction for implementing the driving method of the rectifier provided in the foregoing embodiment.
  • An embodiment of the present invention further provides a chip.
  • the chip includes a rectifier 021, a resonance circuit 022 and an output capacitor Co connected to the rectifier 021.
  • the rectifier 021 is any of the rectifiers provided in the foregoing embodiments.
  • the rectifier 021 can be any of the rectifiers provided in FIGS. 8A, 8B, 9, 10A, 10B, 11, 12A, 12B, 13A, 14 or 15 Shown rectifier.
  • the resonance circuit 022 is configured to receive an electric signal sent by a transmitting-end device and provide the electric signal to an input terminal of a rectifier, where the input terminal is a first input terminal, or the input terminals are a first input terminal and a second input terminal.
  • the resonance circuit 022 may include a receiving coil L R and a resonance capacitor C R.
  • the output capacitor Co is used to stabilize the DC electric signal obtained by the rectifier 021 and provide it to the load.
  • An embodiment of the present invention further provides an electronic device, and the electronic device is loaded with a chip shown in FIG. 7.
  • the steps in the driving method in the foregoing embodiments may be implemented by hardware, or may be implemented by a program instructing related hardware.
  • the program may be stored in a computer-readable format.
  • the storage media the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Rectifiers (AREA)

Abstract

本申请提供了一种整流器及其驱动方法、芯片、电力设备,涉及电子技术领域,该整流器包括第一桥臂和第一电感。第一桥臂包括第一上桥臂和第一下桥臂,第一上桥臂耦合在第一输入端与电压输出端之间,第一下桥臂耦合在第一输入端与接地端之间。同时,第一上桥臂上设置有第一半导体开关。第一下桥臂上设置有第二半导体开关。第一电感设置在第一上桥臂上且与第一半导体开关串联,或者,第一电感设置在第一下桥臂上且与第二半导体开关串联。该整流器具有第一工作模式和第二工作模式,第一工作模式适用于高工作频率,第二工作模式适用于低工作频率,该整流器能够根据实际需求切换至第一工作模式或第二工作模式,进而适应不同的场景,通用性较高。

Description

整流器及其驱动方法、芯片、电力设备 技术领域
本申请涉及电子技术领域,特别涉及一种整流器及其驱动方法、芯片、电力设备。
背景技术
无线电力传输(wireless power transfer,WPT)技术是一种不经过导线而直接在空间进行电力传输的技术。目前,WPT技术包括基于紧耦合的磁感应技术和基于松耦合的磁共振技术,其中,磁感应技术由无线充电联盟WPC(Wireless Power Consortium)主导,磁共振技术由无线充电组织AirFuel主导。当电力设备(包括电信号的发送端设备和电信号的接收端设备)基于磁感应技术工作时,电力设备的工作频率为100~205KHz(千赫兹),且发送端设备和接收端设备的空间自由度较小;当电力设备基于磁共振技术工作时,电力设备的工作频率为6.78MHz,且发送端设备和接收端设备的空间自由度较大。目前,考虑到设备兼容性和成本问题,同一电力设备可以支持多种工作模式,以适用于不同的工作频率。由于整流器(其用于将交流电转换为直流电)是上述接收端设备中必不可少的一部分,所以为了降低成本,整流器需要支持多种工作模式。
相关技术中,整流器的电路结构如图1所示,包括2个N型金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET):M1和M3,该整流器被称作半桥class D整流器。N型MOSFET也称为NMOSFET。参见图1,假设输入端AC的电流信号是一个正弦电流信号,那么在该正弦电流信号的每半个周期内,会有1个NMOSFET导通,另1个NMOSFET截止,所以在该正弦电流信号的每个周期内,该整流器都可以给负载提供电流。
然而上述整流器的工作模式通常适用于低工作频率,通用性较低。
发明内容
本申请提供了一种整流器及其驱动方法、芯片、电力设备,可以解决目前的整流器的工作模式通常适用于低工作频率,通用性较低的问题。所述技术方案如下:
第一方面,提供了一种整流器,该整流器包括:第一桥臂和第一电感。其中,第一桥臂包括第一上桥臂和第一下桥臂。第一上桥臂耦合在第一输入端与电压输出端之间,第一下桥臂耦合在第一输入端与接地端之间。第一上桥臂上设置有第一半导体开关,第一半导体开关用于导通或关闭第一上桥臂。第一下桥臂上设置有第二半导体开关,第二半导体开关用于导通或关闭第一下桥臂。第一电感设置在第一上桥臂上且与第一半导体开关串联,或者,第一电感设置在第一下桥臂上且与第二半导体开关串联。
该整流器具有第一工作模式和第二工作模式,第一工作模式适用于高工作频率,第二工作模式适用于低工作频率。示例的,第一工作模式适用于6.78MHz的工作频率;第二工作模式适用于100~205KHz的工作频率。每种工作模式对应一种WPT技术,比如,第一工作模式对应磁共振技术,第二工作模式对应磁感应技术。
本申请提供的整流器能够在第一工作模式下具备半桥class E整流器的特点,适用于高 工作频率,在第二工作模式下具备半桥class D整流器的特点,适用于低工作频率,该整流器能够在第一工作模式和第二工作模式之间切换,进而适应不同的场景。
在本申请中,半导体开关可以是单独的半导体开关器件,也可以是包括多个电路元件的具有半导体开关功能的半导体开关器件。
可选的,该整流器还可以包括驱动控制电路,该整流器在驱动控制电路的控制下具有第一工作模式和第二工作模式。该驱动控制电路用于:在第一工作模式下,当第一电感设置在第一上桥臂上时,开启第一半导体开关以使第一上桥臂始终导通,并周期性开启或关闭第二半导体开关;当第一电感设置在第一下桥臂时,开启第二半导体开关以使第一下桥臂始终导通,并周期性开启或关闭第一半导体开关。在第二工作模式下,在不同时段开启第一半导体开关和第二半导体开关,以使同一时段内第一上桥臂和第一下桥臂中一个导通,另一个关闭。
在第一工作模式下,第一电感具有整流特性,第一半导体开关或第二半导体开关的导通电阻可以被当做是第一电感的直流电阻的一部分,这样一来,便具备了半桥class E整流器的特点,且该整流器的开关损耗较小。在第二工作模式下,第一电感对于第一输入端的电信号中的交流分量来说,是低阻通路,这样一来,便具备了半桥class D整流器的特点。
可选的,该整流器还可以包括第一电容。第一电感设置在第一上桥臂上,第一电容设置在第一下桥臂上且与第二半导体开关并联。第一电容与第一电感形成谐振电路以减弱谐波失真,减小电磁干扰(Electromagnetic Interference,EMI)噪声。由于第二半导体开关并联有第一电容,所以第二半导体开关可以采用较小尺寸,从而避免了因第二半导体开关的尺寸较大而使整流器的整体尺寸较大,通过给第二半导体开关并联第一电容,减小了整流器的占用空间。
可选的,该整流器还可以包括第一电容。第一电感设置在第一下桥臂上,第一电容设置在第一上桥臂上且与第一半导体开关并联。第一电容与第一电感形成谐振电路以减弱谐波失真,减小EMI噪声。由于第一半导体开关并联有第一电容,所以第一半导体开关可以采用较小尺寸,从而避免了因第一半导体开关的尺寸较大而使整流器的整体尺寸较大,通过给第一半导体开关并联第一电容,减小了整流器的占用空间。
可选的,该整流器还可以包括:第一交流信号开关模块。第一交流信号开关模块与第一电感并联,且与驱动控制电路连接。驱动控制电路还用于:在第二工作模式下,开启第一交流信号开关模块,以使第一输入端的电信号中低频分量经过第一电感,高频分量经过第一交流信号开关模块。在第一工作模式下,关闭第一交流信号开关模块。
本申请通过第一交流信号开关模块,使得第一输入端的电信号中的高频分量经过第一交流信号开关模块,进而避免了高频分量被第一电感阻碍,消除了第一输入端的电压信号的波形出现的减幅振铃现象,进而能够保证整流器正常工作,提高整流器的工作稳定性。
可选的,第一交流信号开关模块可以包括:串联的第五半导体开关和第一旁路电容。其中,第五半导体开关与驱动控制电路连接,驱动控制电路用于:在第二工作模式下,开启第五半导体开关,以开启第一交流信号开关模块。在第一工作模式下,关闭第五半导体开关,以关闭第一交流信号开关模块。
可选的,当该整流器为全桥整流器时,该整流器还可以包括第二桥臂和第二电感。其中,第二桥臂包括第二上桥臂和第二下桥臂。第二上桥臂耦合在第二输入端与电压输出端 之间,第二下桥臂耦合在第二输入端与接地端之间。第二上桥臂上设置有第三半导体开关,第三半导体开关用于导通或关闭第二上桥臂;第二下桥臂上设置有第四半导体开关,第四半导体开关用于导通或关闭第二下桥臂。第一电感和第二电感的设置符合下面情况中的一个:第一电感设置在第一上桥臂上,第二电感设置在第二上桥臂上且与第三半导体开关串联;或者,第一电感设置在第一下桥臂上,第二电感设置在第二下桥臂上且与第四半导体开关串联。
可选的,该整流器还可以包括驱动控制电路,该整流器在驱动控制电路的控制下具有第一工作模式和第二工作模式,驱动控制电路用于:在第一工作模式下,当第一电感设置在第一上桥臂上,第二电感设置在第二上桥臂上时,开启第一半导体开关以使第一上桥臂始终导通,开启第三半导体开关以使第二上桥臂始终导通,并在不同时段开启第二半导体开关和第四半导体开关,以使同一时段内第一下桥臂和第二下桥臂中一个导通,另一个关闭;当第一电感设置在第一下桥臂上,第二电感设置在第二下桥臂上时,开启第二半导体开关以使第一下桥臂始终导通,开启第四半导体开关以使第二下桥臂始终导通,并在不同时段开启第一半导体开关和第三半导体开关,以使同一时段内第一上桥臂和第二上桥臂中一个导通,另一个关闭。在第二工作模式下,在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭。其中,两个半导体开关组中一个半导体开关组包括第三半导体开关和第二半导体开关,另一个半导体开关组包括第一半导体开关和第四半导体开关。两个桥臂组中一个桥臂组包括第一下桥臂和第二上桥臂,另一个桥臂组包括第二下桥臂和第一上桥臂。
在第一工作模式下,第一电感和第二电感具有整流特性,第一半导体开关和第三半导体开关始终开启,或者,第二半导体开关和第四半导体开关始终开启,具备了全桥class E整流器的特点。且该整流器的开关频次较低,开关损耗较小。在第二工作模式下,第一电感对于第一输入端的电信号中的交流分量来说,是低阻通路,且第二电感对于第二输入端的电信号中的交流分量来说,也是低阻通路,具备了全桥class D整流器的特点。
可选的,该整流器还可以包括第二电容和第三电容。第一电感设置在第一上桥臂上,第二电感设置在第二上桥臂上,第二电容设置在第一下桥臂上且与第二半导体开关并联,第三电容设置在第二下桥臂上且与第四半导体开关并联。第二电容与第一电感形成谐振电路,第三电容与第二电感形成谐振电路,通过谐振电路可以达到减小EMI噪声的目的。
由于第二半导体开关并联有第二电容,第四半导体开关并联有第三电容,所以第二半导体开关和第四半导体开关可以采用较小尺寸,从而避免了因第二半导体开关和第四半导体开关的尺寸较大而使整流器的整体尺寸较大,减小了整流器的占用空间。
可选的,该整流器还可以包括第二电容和第三电容。第一电感设置在第一下桥臂上,第二电感设置在第二下桥臂上,第二电容设置在第一上桥臂上且与第一半导体开关并联,第三电容设置在第二上桥臂上且与第三半导体开关并联。第二电容与第一电感形成谐振电路,第三电容与第二电感形成谐振电路,通过谐振电路可以达到减小EMI噪声的目的。
由于第一半导体开关并联有第二电容,第三半导体开关并联有第三电容,所以第一半导体开关和第三半导体开关可以采用较小尺寸,从而避免了因第一半导体开关和第三半导体开关的尺寸较大而使整流器的整体尺寸较大,减小了整流器的占用空间。
可选的,该整流器还可以包括:第二交流信号开关模块和第三交流信号开关模块。其 中,第二交流信号开关模块与第一电感并联,且与驱动控制电路连接。第三交流信号开关模块与第二电感并联,且与驱动控制电路连接。驱动控制电路还用于:在第二工作模式下,开启第二交流信号开关模块,以使第一输入端的电信号中低频分量经过第一电感,高频分量经过第二交流信号开关模块;开启第三交流信号开关模块,以使第二输入端的电信号中低频分量经过第二电感,高频分量经过第三交流信号开关模块;在第一工作模式下,关闭第二交流信号开关模块和第三交流信号开关模块。
本申请通过第二交流信号开关模块可以消除第一输入端的电压信号的波形出现的减幅振铃现象,通过第三交流信号开关模块可以消除第二输入端的电压信号的波形出现的减幅振铃现象,进而能够保证整流器正常工作,提高整流器的工作稳定性。
可选的,第二交流信号开关模块可以包括:串联的第六半导体开关和第二旁路电容。其中,第六半导体开关与驱动控制电路连接,驱动控制电路用于:在第二工作模式下,开启第六半导体开关,以开启第二交流信号开关模块;在第一工作模式下,关闭第六半导体开关,以关闭第二交流信号开关模块。
第三交流信号开关模块可以包括:串联的第七半导体开关和第三旁路电容。其中,第七半导体开关与驱动控制电路连接,驱动控制电路用于:在第二工作模式下,开启第七半导体开关,以开启第三交流信号开关模块;在第一工作模式下,关闭第七半导体开关,以关闭第三交流信号开关模块。
本申请中的第一半导体开关,第二半导体开关,第三半导体开关或第四半导体开关可以为晶体管。示例的,晶体管可以为场效应晶体管或双极结型晶体管等。比如当晶体管为场效应晶体管时,晶体管可以为结型场效应晶体管,或者可以为MOSFET。另外,晶体管又分为P型晶体管和N型晶体管,在本申请中,晶体管可以为P型晶体管,也可以为N型晶体管,本申请对晶体管的类型不做限定。
可选的,半导体开关的控制极均与驱动控制电路的输出端连接,该输出端用于输出控制信号,该控制信号用于控制半导体开关开启或关闭。假设半导体开关为晶体管,当晶体管为场效应晶体管时,晶体管的栅极为控制极,那么晶体管的栅极与驱动控制电路的输出端连接;当晶体管为双极结型晶体管时,晶体管的基极为控制极,那么晶体管的基极与驱动控制电路的输出端连接。
可选的,本申请中整流器中的驱动控制电路内部包括鉴频器,该鉴频器用于根据输入端的电信号的频率确定待进入的工作模式。驱动控制电路用于根据该鉴频器确定的待进入的工作模式,通过控制整流器中各半导体开关的开启或关闭来实现AC-DC整流。输入端为第一输入端,或者,输入端为第一输入端和第二输入端。其中,待进入的工作模式为第一工作模式或第二工作模式。当整流器为半桥整流器时,该鉴频器与第一输入端连接;当整流器为全桥整流器时,该鉴频器与第一输入端和第二输入端连接。进一步的,该驱动控制电路还包括电压比较器,该电压比较器与电压输出端连接,用于检测电压输出端的电压是否大于预设电压,并当电压输出端的电压大于预设电压时,指示鉴频器根据输入端的电信号的频率确定待进入的工作模式。该整流器能够根据实际需求切换至第一工作模式或第二工作模式,进而适应不同的场景。
第二方面,提供了一种整流器的驱动方法,用于整流器,该整流器如第一方面所述的整流器,该整流器包括第一桥臂和第一电感。第一桥臂包括第一上桥臂和第一下桥臂,第 一上桥臂耦合在第一输入端与电压输出端之间,第一下桥臂耦合在第一输入端与接地端之间,第一上桥臂上设置有第一半导体开关,第一下桥臂上设置有第二半导体开关,第一电感设置在第一上桥臂或第一下桥臂上,该方法包括:当电压输出端的电压大于预设电压时,根据输入端的电信号的频率确定待进入的工作模式,待进入的工作模式为第一工作模式或第二工作模式,输入端包括第一输入端。之后,根据确定的待进入的工作模式,控制第一上桥臂以及第一下桥臂的导通或关闭。
可选的,该整流器还可以包括驱动控制电路,相应的,根据确定的待进入的工作模式,控制第一上桥臂以及第一下桥臂的导通或关闭,可以包括:在第一工作模式下,当第一电感设置在第一上桥臂上时,通过驱动控制电路开启第一半导体开关以使第一上桥臂始终导通,并周期性开启或关闭第二半导体开关;当第一电感设置在第一下桥臂时,通过驱动控制电路开启第二半导体开关以使第一下桥臂始终导通,并周期性开启或关闭第一半导体开关。在第二工作模式下,通过驱动控制电路在不同时段开启第一半导体开关和第二半导体开关,以使同一时段内第一上桥臂和第一下桥臂中一个导通,另一个关闭。
本申请提供的整流器的驱动方法,能够根据确定的待进入的工作模式,控制第一上桥臂以及第一下桥臂导通或关闭,使得整流器在第一工作模式下具备半桥class E整流器的特点,适用于高工作频率,在第二工作模式下具备半桥class D整流器的特点,适用于低工作频率,该驱动方法能够使整流器在第一工作模式和第二工作模式之间切换,进而适应不同的场景。
可选的,该整流器还可以包括第二桥臂和第二电感,第二桥臂包括第二上桥臂和第二下桥臂,第二上桥臂耦合在第二输入端与电压输出端之间,第二下桥臂耦合在第二输入端与接地端之间。第二上桥臂上设置有第三半导体开关,第二下桥臂上设置有第四半导体开关。第一电感和第二电感的设置符合下面情况中的一个:第一电感设置在第一上桥臂上,第二电感设置在第二上桥臂上且与第三半导体开关串联;或者,第一电感设置在第一下桥臂上,第二电感设置在第二下桥臂上且与第四半导体开关串联,输入端还包括第二输入端。该方法还可以包括:根据确定的待进入的工作模式,控制第二上桥臂以及第二下桥臂的导通或关闭。
可选的,该整流器还可以包括驱动控制电路,相应的,根据确定的待进入的工作模式,控制第一上桥臂,第一下桥臂,第二上桥臂,以及第二下桥臂的导通或关闭,可以包括:在第一工作模式下,当第一电感设置在第一上桥臂上,第二电感设置在第二上桥臂上时,通过驱动控制电路开启第一半导体开关以使第一上桥臂始终导通,开启第三半导体开关以使第二上桥臂始终导通,并在不同时段开启第二半导体开关和第四半导体开关,以使同一时段内第一下桥臂和第二下桥臂中一个导通,另一个关闭;当第一电感设置在第一下桥臂上,第二电感设置在第二下桥臂上时,通过驱动控制电路开启第二半导体开关以使第一下桥臂始终导通,开启第四半导体开关以使第二下桥臂始终导通,并在不同时段开启第一半导体开关和第三半导体开关,以使同一时段内第一上桥臂和第二上桥臂中一个导通,另一个关闭。在第二工作模式下,通过驱动控制电路在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭,两个半导体开关组中一个半导体开关组包括第三半导体开关和第二半导体开关,另一个半导体开关组包括第一半导体开关和第四半导体开关,两个桥臂组中一个桥臂组包括第一下桥臂和第二上桥臂,另一个桥臂组包括 第二下桥臂和第一上桥臂。
本申请提供的整流器的驱动方法,能够根据确定的待进入的工作模式,控制第一上桥臂,第一下桥臂,第二上桥臂,以及第二下桥臂的导通或关闭,使得整流器在第一工作模式下具备全桥class E整流器的特点,适用于高工作频率,在第二工作模式下具备全桥class D整流器的特点,适用于低工作频率,该驱动方法能够使整流器在第一工作模式和第二工作模式之间切换,进而适应不同的场景。
可选的,当该整流器为半桥整流器时,该整流器还可以包括:第一交流信号开关模块,该方法还可以包括:在第二工作模式下,通过驱动控制电路开启第一交流信号开关模块,以使第一输入端的电信号中低频分量经过第一电感,高频分量经过第一交流信号开关模块。在第一工作模式下,通过驱动控制电路关闭第一交流信号开关模块。
在本申请中,通过该驱动方法,能够消除第一输入端的电压信号的波形出现的减幅振铃现象,进而能够保证整流器正常工作。
可选的,当该整流器为全桥整流器时,该整流器还可以包括:第二交流信号开关模块和第三交流信号开关模块。该方法还可以包括:在第二工作模式下,通过驱动控制电路开启第二交流信号开关模块,以使第一输入端的电信号中低频分量经过第一电感,高频分量经过第二交流信号开关模块;通过驱动控制电路开启第三交流信号开关模块,以使第二输入端的电信号中低频分量经过第二电感,高频分量经过第三交流信号开关模块。在第一工作模式下,通过驱动控制电路关闭第二交流信号开关模块和第三交流信号开关模块。
在本申请中,通过该驱动方法,能够消除第一输入端和第二输入端的电压信号的波形出现的减幅振铃现象,进而能够保证整流器正常工作,提高整流器的工作稳定性。
第三方面,提供了一种芯片,该芯片包括可编程逻辑电路和/或存储有程序指令,用于实现如第二方面所述的整流器的驱动方法。
第四方面,提供了一种芯片,包括整流器,以及与整流器连接的谐振电路和输出电容。其中,整流器为第一方面所述的整流器。谐振电路用于接收发送端设备发送的电信号,并将该电信号提供给整流器的输入端,输入端为第一输入端,或者,输入端为第一输入端和第二输入端。输出电容用于将整流器转换得到的直流电信号进行稳压处理,并提供给负载。
第五方面,提供了一种电子设备,该电子设备装载有第四方面所述的芯片。
本申请提供的技术方案的有益效果至少包括:
本申请提供的整流器具有第一工作模式和第二工作模式,第一工作模式适用于高工作频率,第二工作模式适用于低工作频率。在第一工作模式下,该整流器具备class E整流器的特点;在第二工作模式下,该整流器具备class D整流器的特点,该整流器能够在第一工作模式和第二工作模式之间切换,适用于不同的工作频率,进而适应不同的场景。包括由该整流器制造的芯片的电子设备也具有两种工作模式,适用于不同的工作频率,提高了设备兼容性,降低了设备成本。
附图说明
图1是相关技术中的一种半桥class D整流器的电路结构示意图;
图2是相关技术中的一种全桥class D整流器的电路结构示意图;
图3是相关技术中的一种半桥class E整流器的电路结构示意图;
图4是相关技术中的一种全桥class E整流器的电路结构示意图;
图5是相关技术中的另一种半桥class E整流器的电路结构示意图;
图6是相关技术中的另一种全桥class E整流器的电路结构示意图;
图7是本发明实施例提供的整流器所涉及的一种电力传输系统的结构示意图;
图8A是本发明实施例提供的一种整流器的电路结构示意图;
图8B是本发明实施例提供的另一种整流器的电路结构示意图;
图9是本发明实施例提供的另一种整流器的电路结构示意图;
图10A是本发明实施例提供的另一种整流器的电路结构示意图;
图10B是本发明实施例提供的另一种整流器的电路结构示意图;
图11是本发明实施例提供的另一种整流器的电路结构示意图;
图12A是本发明实施例提供的另一种整流器的电路结构示意图;
图12B是本发明实施例提供的另一种整流器的电路结构示意图;
图12C是本发明实施例提供的第一工作模式下第一输入端和第二输入端的电压信号的波形示意图;
图12D是本发明实施例提供的第一工作模式下电压输出端的电压信号的波形示意图;
图12E是本发明实施例提供的第二工作模式下第一输入端和第二输入端的电压信号的波形示意图;
图12F是本发明实施例提供的第二工作模式下电压输出端的电压信号的波形示意图;
图13A是本发明实施例提供的另一种整流器的电路结构示意图;
图13B是本发明实施例提供的第二工作模式下第一输入端和第二输入端的电压信号的波形示意图;
图13C是本发明实施例提供的第二工作模式下电压输出端的电压信号的波形示意图;
图14是本发明实施例提供的另一种整流器的电路结构示意图;
图15是本发明实施例提供的另一种整流器的电路结构示意图;
图16是本发明实施例提供的一种整流器的驱动方法的流程图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
考虑到设备兼容性和成本问题,同一电力设备可以支持多种工作模式,以适用于不同的工作频率,比如适用于100~205KHz的工作频率,适用于6.78MHz的工作频率等。由于整流器是接收端设备中必不可少的一部分,所以为了降低成本,整流器需要支持多种工作模式。其中,每种工作模式对应一种WPT技术,比如,每种工作模式可以对应磁感应技术或磁共振技术。
相关技术中有两种整流器,一种整流器为class D整流器,另一种整流器为class E整流器。其中,class D整流器的工作模式比较适用于低工作频率(比如100~205KHz),不适用于高工作频率(比如6.78MHz);而class E整流器比较适用于高工作频率,不适用于低工作频率。class D整流器又分为半桥class D整流器和全桥class D整流器,class E整流器又分为半桥class E整流器和全桥class E整流器,下面对相关技术中几种不同的class D 整流器和class E整流器做一简单介绍。
半桥class D整流器的电路结构如图1所示,M1和M3的栅极与栅极驱动控制电路连接,M1和M3设置在一个桥臂上,输出电容Co设置在电压输出端Vo和接地端GND之间。
栅极驱动控制电路用于在不同时段开启M1和M3。栅极驱动控制电路基于输入端AC的电压、电压输出端Vo的电压和接地端GND的电压的大小控制M1和M3的开启和关闭。比如,栅极驱动控制电路在输入端AC的电压小于电压输出端Vo的电压时关闭M1,并在输入端AC的电压小于接地端GND的电压时开启M3。假设输入端AC的电流信号是一个正弦电流信号,在该正弦电流信号的每半个周期内,会有1个NMOSFET导通,另1个NMOSFET截止,所以在该正弦电流信号的每个周期内,该整流器都可以给负载R L提供电流。当该半桥class D整流器工作在高工作频率的场景时,输入端AC的电压信号的波形接近方波,谐波失真较严重,且当谐波频率位于高频率范围内时,会给电子设备带来严重的EMI噪声,EMI噪声会对电子设备(比如移动终端)的性能产生较大的影响;其次,该半桥class D整流器的开关频次(即2个NMOSFET在单位时间内开启或关闭的次数)较高,开关损耗较大。因此该半桥class D整流器的工作模式不适用于高工作频率。
图2示出了全桥class D整流器的电路结构示意图。参见图2,该全桥class D整流器包括4个NMOSFET:M1、M2、M3和M4,4个NMOSFET的栅极与栅极驱动控制电路连接,M1和M3设置在一个桥臂上,M2和M4设置在另一桥臂上,输出电容Co设置在电压输出端Vo和接地端GND之间。处于对角线位置的一对NMOSFET为同一组NMOSFET,即M1和M4为一组,M2和M3为一组,栅极驱动控制电路用于在不同时段开启两组NMOSFET。栅极驱动控制电路基于输入端AC1的电压、输入端AC2的电压、电压输出端Vo的电压和接地端GND的电压的大小控制两组NMOSFET的开启和关闭。假设输入端(AC1和AC2)的电流信号是一个正弦电流信号,那么在该正弦电流信号的每半个周期内,会有处于对角线位置的一对NMOSFET导通,而另一对NMOSFET截止,比如,M1和M4导通,M2和M3截止。这样一来,在正弦电流信号的每个周期内,该整流器都可以给负载R L提供电流,实现全桥整流功能。
然而图2所示的全桥class D整流器工作在高工作频率的场景时,输入端(AC1和AC2)的电压信号的波形接近方波,谐波失真较严重,EMI噪声较大;且该全桥class D整流器的开关频次较高,开关损耗较大。因此该全桥class D整流器的工作模式也不适用于高工作频率。
图3示出了半桥class E整流器的电路结构示意图。参见图3,该半桥class E整流器包括1个NMOSFET:M3,以及1个电感:L1。M3的栅极与栅极驱动控制电路连接。M3和L1设置在一个桥臂上,M3与电容C p1并联。输出电容Co设置在电压输出端Vo和接地端GND之间。栅极驱动控制电路用于周期性开启M3。栅极驱动控制电路基于输入端AC的电压、电压输出端Vo的电压和接地端GND的电压的大小控制M3的开启。在高工作频率的场景中,L1上的电流大小随着L1两端的压差的变化而变化。当M3开启时,由于L1两端的压差为负值,所以L1上的电流减小;当M3关闭时,由于L1两端的压差为正值,所以L1上的电流增大,L1上的电流保持单向流通,L1在高工作频率下具有整流特性。所以当输入端AC的电流信号是一个正弦电流信号时,在该正弦电流信号的每个周期内,该半桥class E整流器都可以给负载R L提供电流。相较于图1所示的半桥class D整流器,该半桥 class E整流器中的C p1和L1形成谐振电路,谐波失真减弱,EMI噪声减小,且开关损耗减小。然而工作在高工作频率的场景中的L1的电感值不适宜使该半桥class E整流器工作在低工作频率的场景中。
图4示出了全桥class E整流器的电路结构示意图。参见图4,该全桥class E整流器包括2个NMOSFET:M3和M4,以及2个电感:L1和L2。M3和M4的栅极均与栅极驱动控制电路连接,M3和L1设置在一个桥臂上,M4和L2设置在另一桥臂上,M3与电容C p1并联,M4与电容C p2并联。输出电容Co设置在电压输出端Vo和接地端GND之间。栅极驱动控制电路用于在不同时段开启M3和M4。栅极驱动控制电路基于输入端AC1的电压、输入端AC2的电压、电压输出端Vo的电压和接地端GND的电压的大小控制M3和M4的开启和关闭。在高工作频率的场景中,当M3开启,M4关闭时,由于L1两端的压差为负值,所以L1上的电流减小,由于L2两端的压差为正值,所以L2上的电流增大;当M4开启,M3关闭时,由于L1两端的压差为正值,所以L1上的电流增大,由于L2两端的压差为负值,所以L2上的电流减小,L1和L2同样也具有整流特性。所以当输入端(AC1和AC2)的电流信号是一个正弦电流信号时,在该正弦电流信号的每个周期内,该全桥class E整流器都可以给负载R L提供电流。相较于图2所示的全桥class D整流器,该全桥class E整流器包括谐振电路,谐波失真减弱,EMI噪声减小,且开关损耗减小。然而工作在高工作频率的场景中L1和L2的电感值不适宜使该全桥class E整流器工作在低工作频率的场景中。
图5示出了相关技术中另一种半桥class E整流器的电路结构示意图,该半桥class E整流器与图3所示的半桥class E整流器的工作原理类似,该半桥class E整流器的工作模式也是比较适用于高工作频率,不适用于低工作频率。
图6示出了相关技术中另一种全桥class E整流器的电路结构示意图,该全桥class E整流器与图4所示的全桥class E整流器的工作原理类似,同样的,该全桥class E整流器的工作模式也是比较适用于高工作频率,不适用于低工作频率。
而本发明实施例提供的整流器同时具备class D整流器和class E整流器的特点,该整流器具有第一工作模式和第二工作模式,第一工作模式适用于高工作频率,第二工作模式适用于低工作频率。示例的,第一工作模式适用于6.78MHz的工作频率;第二工作模式适用于100~205KHz的工作频率。每种工作模式对应一种WPT技术,比如,第一工作模式对应磁共振技术,第二工作模式对应磁感应技术。
图7示出了本发明实施例提供的整流器所涉及的一种电力传输系统的结构示意图,如图7所示,该电力传输系统包括电子设备01和电子设备02,电子设备01为电信号的发送端设备,电子设备02为电信号的接收端设备。
电子设备02装载有芯片,本发明实施例提供的整流器021可以设置在该芯片中。参见图7,该芯片还包括与整流器021连接的谐振电路022和输出电容Co。谐振电路022的输出端与整流器021的第一输入端AC1和第二输入端AC2连接,整流器021的电压输出端Vo与输出电容Co连接。
谐振电路022用于接收电子设备01发送的电信号,并将该电信号提供给整流器021的输入端,输入端为第一输入端AC1,或者,输入端为第一输入端AC1和第二输入端AC2。 谐振电路022可以包括接收线圈L R和谐振电容C R
输出电容Co用于将整流器021转换得到的直流电信号进行稳压处理,并提供给负载。
可选的,该芯片还可以包括通信模块,电子设备02通过该通信模块可以和外部设备(比如电子设备01)交互信息。
图8A示例性示出了本发明实施例提供的一种整流器的电路结构示意图,该整流器为半桥整流器,参见图8A,该整流器包括第一桥臂和第一电感L1。第一桥臂包括第一上桥臂001和第一下桥臂002,第一上桥臂耦合在第一输入端AC1与电压输出端Vo之间,第一下桥臂耦合在第一输入端AC1与接地端GND之间。
第一上桥臂001上设置有第一半导体开关M1,第一半导体开关M1用于导通或关闭第一上桥臂001。
第一下桥臂002上设置有第二半导体开关M3,第二半导体开关M3用于导通或关闭第一下桥臂002。
第一电感L1设置在第一上桥臂001上且与第一半导体开关M1串联。在本发明实施例中,第一电感L1与第一半导体开关M1串联即可,第一电感L1可以设置在第一输入端AC1和第一半导体开关M1之间,如图8A所示;此外,第一电感L1也可以设置在第一半导体开关M1和电压输出端Vo之间,如图8B所示。
该整流器具有第一工作模式和第二工作模式,第一工作模式适用于高工作频率,第二工作模式适用于低工作频率。示例的,第一工作模式适用于6.78MHz的工作频率;第二工作模式适用于100~205KHz的工作频率。每种工作模式对应一种WPT技术,比如,第一工作模式对应磁共振技术,第二工作模式对应磁感应技术。
参见图8A,该整流器还可以包括第一电容C P1,第一电容C P1设置在第一下桥臂002上且与第二半导体开关M3并联,第一电容C P1与第一电感L1形成谐振电路以减弱谐波失真,减小EMI噪声。
其中,第一电容C P1和第一电感L1设置在第一输入端AC1的两侧,即一个设置在第一上桥臂上,一个设置在第一下桥臂上,这样一来,第一电容C P1与第一电感L1形成的谐振电路不会对第一电感L1在高工作频率下具有的整流特性产生影响。
在本发明实施例中,由于第二半导体开关M3并联有第一电容C P1,所以第二半导体开关M3可以采用较小尺寸,从而避免了因第二半导体开关M3的尺寸较大而使整流器的整体尺寸较大,在本发明实施例中,通过给第二半导体开关M3并联第一电容C P1,减小了整流器的占用空间。
参见图8A,可选的,该整流器还包括驱动控制电路CTRL,该整流器在驱动控制电路CTRL的控制下具有第一工作模式和第二工作模式,驱动控制电路CTRL用于:
在第一工作模式下,开启第一半导体开关M1以使第一上桥臂001始终导通,并周期性开启或关闭第二半导体开关M3。在该工作模式下,第一电感L1具有整流特性,第一半导体开关M1始终开启,第一半导体开关M1的导通电阻可以被当做是第一电感L1的直流电阻(DC resistance,DCR)的一部分,其中,驱动控制电路CTRL基于第一输入端AC1的电压、电压输出端Vo的电压和接地端GND的电压的大小周期性开启或关闭第二半导体开关M3,如驱动控制电路CTRL在第一输入端AC1的电压小于接地端GND的电压时开启 M3。第一输入端AC1的电流信号为周期信号,比如,驱动控制电路CTRL可以在每个周期的前半周期开启第二半导体开关M3,进而在整个周期内都可以给负载提供电流,这样一来,便具备了半桥class E整流器的特点,该整流器的功能与图3所示的半桥class E整流器的功能类似,该整流器的开关损耗较小;
在第二工作模式下,在不同时段开启第一半导体开关M1和第二半导体开关M3,以使同一时段内第一上桥臂001和第一下桥臂002中一个导通,另一个关闭。在该工作模式下,第一电感L1对于第一输入端AC1的电信号中的交流分量来说,是低阻通路,即对交流分量有较小的阻碍作用,其中,驱动控制电路CTRL基于第一输入端AC1的电压、电压输出端Vo的电压和接地端GND的电压的大小,在不同时段开启第一半导体开关M1和第二半导体开关M3,比如,驱动控制电路CTRL在第一输入端AC1的电压小于电压输出端Vo的电压时关闭第一半导体开关M1,并在第一输入端AC1的电压小于接地端GND的电压时开启第二半导体开关M3。第一输入端AC1的电流信号为周期信号,比如,驱动控制电路CTRL可以在每个周期的前半周期开启第一半导体开关M1,在后半周期开启第二半导体开关M3,进而在整个周期内都可以给负载提供电流,这样一来,便具备了半桥class D整流器的特点,该整流器的功能与图1所示的半桥class D整流器的功能类似。
在本发明实施例中,开启半导体开关即导通该半导体开关所在的上桥臂或下桥臂,比如,参见图8A,开启第一半导体开关M1即导通第一上桥臂001。
综上所述,本发明实施例提供的整流器具有第一工作模式和第二工作模式,在第一工作模式下,第一半导体开关M1始终导通第一上桥臂,第二半导体开关M3周期性导通第一下桥臂,以具备半桥class E整流器的特点,适用于高工作频率;在第二工作模式下,在不同时段,第一半导体开关M1导通第一上桥臂,第二半导体开关M3导通第一下桥臂,以具备半桥class D整流器的特点,适用于低工作频率,该整流器能够在第一工作模式和第二工作模式之间切换,进而适应不同的场景。
图9是本发明实施例在图8A所示的整流器的基础上提供的另一种整流器的电路结构示意图,该整流器为半桥整流器,参见图9,该整流器包括第一桥臂和第一电感L1,第一桥臂包括第一上桥臂001和第一下桥臂002,第一上桥臂001耦合在第一输入端AC1与电压输出端Vo之间,第一下桥臂002耦合在第一输入端AC1与接地端GND之间。
第一上桥臂001上设置有第一半导体开关M1,第一半导体开关M1用于导通或关闭第一上桥臂001。
第一下桥臂002上设置有第二半导体开关M3,第二半导体开关M3用于导通或关闭第一下桥臂002。
第一电感L1设置在第一上桥臂001上且与第一半导体开关M1串联。
该整流器具有第一工作模式和第二工作模式,第一工作模式适用于高工作频率,第二工作模式适用于低工作频率。
可选的,参见图9,该整流器还可以包括第一电容C P1,第一电容C P1设置在第一下桥臂002上且与第二半导体开关M3并联。第一电容C P1与第一电感L1形成谐振电路以减弱谐波失真,减小EMI噪声。由于第二半导体开关M3并联有第一电容C P1,所以第二半导体开关M3可以采用较小尺寸,从而减小了整流器的占用空间。
该整流器还包括驱动控制电路CTRL,该整流器在驱动控制电路CTRL的控制下具有第一工作模式和第二工作模式,驱动控制电路CTRL用于:
在第一工作模式下,开启第一半导体开关M1以使第一上桥臂001始终导通,并周期性开启或关闭第二半导体开关M3,其中,驱动控制电路CTRL基于第一输入端AC1的电压、电压输出端Vo的电压和接地端GND的电压的大小周期性开启或关闭第二半导体开关M3。第一输入端AC1的电流信号为周期信号,比如,驱动控制电路CTRL可以在每个周期的前半周期开启第二半导体开关M3,进而在整个周期内都可以给负载提供电流,具备了半桥class E整流器的特点,该整流器的功能与图3所示的半桥class E整流器的功能类似;
在第二工作模式下,在不同时段开启第一半导体开关M1和第二半导体开关M3,以使同一时段内第一上桥臂001和第一下桥臂002中一个导通,另一个关闭。其中,驱动控制电路CTRL基于第一输入端AC1的电压、电压输出端Vo的电压和接地端GND的电压的大小,在不同时段开启第一半导体开关M1和第二半导体开关M3。第一输入端AC1的电流信号为周期信号,比如,驱动控制电路CTRL可以在每个周期的前半周期开启第一半导体开关M1,在后半周期开启第二半导体开关M3,进而在整个周期内都可以给负载提供电流,具备了半桥class D整流器的特点,该整流器的功能与图1所示的半桥class D整流器的功能类似。
可选的,如图9所示,该整流器还包括:第一交流信号开关模块91,第一交流信号开关模块91与第一电感L1并联,且与驱动控制电路CTRL连接。相应的,驱动控制电路CTRL还用于:
在第二工作模式下,开启第一交流信号开关模块91,以使第一输入端AC1的电信号中低频分量经过第一电感L1,高频分量经过第一交流信号开关模块91。在第二工作模式下,第一交流信号开关模块91始终开启;
在第一工作模式下,关闭第一交流信号开关模块91。
参见图9,在第二工作模式下,和第二半导体开关M3并联的第一电容C P1与第一电感L1形成的谐振电路会对第一输入端AC1的电信号中的高频分量产生影响,第一电感L1对高频分量有较大的阻碍作用,导致第一输入端AC1的电压信号的波形出现减幅振铃现象,而当第一输入端AC1的电压信号的波形出现减幅振铃现象时,会直接影响整流器正常工作,整流器的工作状态较不稳定。本发明实施例通过第一交流信号开关模块,可以使高频分量经过第一交流信号开关模块,进而避免了高频分量被第一电感L1阻碍,消除了第一输入端AC1的电压信号的波形出现的减幅振铃现象,能够保证整流器正常工作,提高整流器的工作稳定性。
示例的,当第二半导体开关M3的尺寸较大,其寄生电容的电容值能够达到工作所需要的电容值时,第二半导体开关M3无需并联第一电容C P1,在这种情况下,第二半导体开关M3的寄生电容与第一电感L1形成谐振电路。而在第二工作模式下,第二半导体开关M3的寄生电容与第一电感L1形成的谐振电路会对第一输入端AC1的电信号中的高频分量产生影响,第一电感L1对高频分量有较大的阻碍作用,导致第一输入端AC1的电压信号的波形出现减幅振铃现象。而当第一输入端AC1的电压信号的波形出现减幅振铃现象时,会直接影响整流器正常工作,整流器的工作状态较不稳定。本发明实施例通过第一交流信号开关模块,使得高频分量经过第一交流信号开关模块,进而避免了高频分量被第一电感L1 阻碍,消除了第一输入端AC1的电压信号的波形出现的减幅振铃现象,能够保证整流器正常工作,提高整流器的工作稳定性。
如图9所示,第一交流信号开关模块91可以包括:串联的第五半导体开关M5和第一旁路电容C1,第五半导体开关M5与驱动控制电路CTRL连接,驱动控制电路CTRL用于:
在第二工作模式下,开启第五半导体开关M5,以开启第一交流信号开关模块91;
在第一工作模式下,关闭第五半导体开关M5,以关闭第一交流信号开关模块91。
电感和电容对交流电具有阻碍作用,对于电感来说,交流电的频率越高,感抗越大,电感对交流电的阻碍作用是通低频阻高频。对于电容来说,交流电的频率越高,容抗越小,电容对交流电的阻碍作用是通高频阻低频。基于此,在本发明实施例中,在第二工作模式下,开启第五半导体开关M5,第一输入端AC1的电信号中低频分量经过第一电感L1,高频分量经过第一旁路电容C1,避免高频分量被第一电感L1阻碍,提高了整流器的工作稳定性。
综上所述,本发明实施例提供的整流器具有第一工作模式和第二工作模式,在第一工作模式下,第一半导体开关M1始终导通第一上桥臂,第二半导体开关M3周期性导通第一下桥臂,以具备半桥class E整流器的特点,适用于高工作频率;在第二工作模式下,在不同时段,第一半导体开关M1导通第一上桥臂,第二半导体开关M3导通第一下桥臂,以具备半桥class D整流器的特点,适用于低工作频率,该整流器能够在第一工作模式和第二工作模式之间切换,进而适应不同的场景。且该整流器通过第一交流信号开关模块消除了第一输入端AC1的电压信号的波形出现的减幅振铃现象,进而能够保证整流器正常工作,提高整流器的工作稳定性。
图10A示例性示出了本发明实施例提供的另一种整流器的电路结构示意图,该整流器为半桥整流器,参见图10A,该整流器包括第一桥臂和第一电感L1,第一桥臂包括第一上桥臂001和第一下桥臂002,第一上桥臂001耦合在第一输入端AC1与电压输出端Vo之间,第一下桥臂002耦合在第一输入端AC1与接地端GND之间。
第一上桥臂001上设置有第一半导体开关M1,第一半导体开关M1用于导通或关闭第一上桥臂001。
第一下桥臂002上设置有第二半导体开关M3,第二半导体开关M3用于导通或关闭第一下桥臂002。
第一电感L1设置在第一下桥臂002上且与第二半导体开关M3串联。在本发明实施例中,第一电感L1与第二半导体开关M3串联即可,第一电感L1可以设置在第一输入端AC1和第二半导体开关M3之间,如图10A所示;此外,第一电感L1也可以设置在第二半导体开关M3和接地端之间,如图10B所示。
该整流器具有第一工作模式和第二工作模式,第一工作模式适用于高工作频率,第二工作模式适用于低工作频率。
如图10A所示,该整流器还可以包括第一电容C P1,第一电容C P1设置在第一上桥臂001上且与第一半导体开关M1并联,第一电容C P1与第一电感L1形成谐振电路以减弱谐波失真,减小EMI噪声。其中,第一电容C P1和第一电感L1设置在第一输入端AC1的两侧,第一电容C P1与第一电感L1形成的谐振电路不会对第一电感L1在高工作频率下具有的整 流特性产生影响。
在本发明实施例中,由于第一半导体开关M1并联有第一电容C P1,所以第一半导体开关M1可以采用较小尺寸,从而避免了因第一半导体开关M1的尺寸较大而使整流器的整体尺寸较大,通过给第一半导体开关M1并联第一电容C P1,减小了整流器的占用空间。
可选的,该整流器还包括驱动控制电路CTRL,该整流器在驱动控制电路CTRL的控制下具有第一工作模式和第二工作模式,驱动控制电路CTRL用于:
在第一工作模式下,开启第二半导体开关M3以使第一下桥臂002始终导通,并周期性开启或关闭第一半导体开关M1。在该工作模式下,第一电感L1具有整流特性,第二半导体开关M3始终开启,第二半导体开关M3的导通电阻可以被当做是第一电感L1的DCR的一部分,其中,第一输入端AC1的电流信号为周期信号,比如,驱动控制电路CTRL可以在每个周期的前半周期开启第一半导体开关M1,进而在整个周期内都可以给负载提供电流,具备了半桥class E整流器的特点,该整流器的功能与图5所示的半桥class E整流器的功能类似,该整流器的开关损耗较小;
在第二工作模式下,在不同时段开启第一半导体开关M1和第二半导体开关M3,以使同一时段内第一上桥臂001和第一下桥臂002中一个导通,另一个关闭。在该工作模式下,第一电感L1对于第一输入端AC1的电信号中的交流分量来说,是低阻通路,其中,第一输入端AC1的电流信号为周期信号,比如,驱动控制电路CTRL可以在每个周期的前半周期开启第一半导体开关M1,在后半周期开启第二半导体开关M3,进而在整个周期内都可以给负载提供电流,具备了半桥class D整流器的特点,该整流器的功能与图1所示的半桥class D整流器的功能类似。
综上所述,本发明实施例提供的整流器具有第一工作模式和第二工作模式,在第一工作模式下,第二半导体开关M3始终导通第一下桥臂,第一半导体开关M1周期性导通第一上桥臂,以具备半桥class E整流器的特点,适用于高工作频率;在第二工作模式下,在不同时段,第一半导体开关M1导通第一上桥臂,第二半导体开关M3导通第一下桥臂,以具备半桥class D整流器的特点,适用于低工作频率,该整流器能够在第一工作模式和第二工作模式之间切换,进而适应不同的场景。
图11是本发明实施例在图10A所示的整流器的基础上提供的另一种整流器的电路结构示意图,该整流器为半桥整流器,参见图11,该整流器包括第一桥臂和第一电感L1,第一桥臂包括第一上桥臂001和第一下桥臂002。第一上桥臂001耦合在第一输入端AC1与电压输出端Vo之间,第一下桥臂002耦合在第一输入端AC1与接地端GND之间。
第一上桥臂001上设置有第一半导体开关M1,第一半导体开关M1用于导通或关闭第一上桥臂001。
第一下桥臂002上设置有第二半导体开关M3,第二半导体开关M3用于导通或关闭第一下桥臂002。
第一电感L1设置在第一下桥臂002上且与第二半导体开关M3串联。
该整流器具有第一工作模式和第二工作模式,第一工作模式适用于高工作频率,第二工作模式适用于低工作频率。
可选的,参见图11,该整流器还可以包括第一电容C P1,第一电容C P1设置在第一上桥 臂001上且与第一半导体开关M1并联。第一电容C P1与第一电感L1形成谐振电路以减弱谐波失真,减小EMI噪声。由于第一半导体开关M1并联有第一电容C P1,所以第一半导体开关M1可以采用较小尺寸,减小了整流器的占用空间。
可选的,该整流器还包括驱动控制电路CTRL,该整流器在驱动控制电路CTRL的控制下具有第一工作模式和第二工作模式,驱动控制电路CTRL用于:
在第一工作模式下,开启第二半导体开关M3以使第一下桥臂002始终导通,并周期性开启或关闭第一半导体开关M1,具备了半桥class E整流器的特点,该整流器的功能与图5所示的半桥class E整流器的功能类似;
在第二工作模式下,在不同时段开启第一半导体开关M1和第二半导体开关M3,以使同一时段内第一上桥臂001和第一下桥臂002中一个导通,另一个关闭。在该工作模式下,第一电感L1对于第一输入端AC1的电信号中的交流分量来说,是低阻通路,具备了半桥class D整流器的特点,该整流器的功能与图1所示的半桥class D整流器的功能类似。
可选的,如图11所示,该整流器还包括:第一交流信号开关模块91,第一交流信号开关模块91与第一电感L1并联,且与驱动控制电路CTRL连接,相应的,驱动控制电路CTRL还用于:
在第二工作模式下,开启第一交流信号开关模块91,以使第一输入端AC1的电信号中低频分量经过第一电感L1,高频分量经过第一交流信号开关模块91。在第二工作模式下,第一交流信号开关模块91始终开启;
在第一工作模式下,关闭第一交流信号开关模块91。
参见图11,在第二工作模式下,第一电容C P1与第一电感L1形成的谐振电路会对第一输入端AC1的电信号中的高频分量产生影响,导致第一输入端AC1的电压信号的波形出现减幅振铃现象。本发明实施例通过第一交流信号开关模块,使得高频分量经过第一交流信号开关模块,进而消除了第一输入端AC1的电压信号的波形出现的减幅振铃现象,能够保证整流器正常工作,提高整流器的工作稳定性。
示例的,当第一半导体开关M1的尺寸较大,其寄生电容的电容值能够达到工作所需要的电容值时,第一半导体开关M1无需并联第一电容C P1,在这种情况下,第一半导体开关M1的寄生电容与第一电感L1形成谐振电路。而在第二工作模式下,第一半导体开关M1的寄生电容与第一电感L1形成的谐振电路会对第一输入端AC1的电信号中的高频分量产生影响,第一电感L1对高频分量有较大的阻碍作用,导致第一输入端AC1的电压信号的波形出现减幅振铃现象。而当第一输入端AC1的电压信号的波形出现减幅振铃现象时,会直接影响整流器正常工作,整流器的工作状态较不稳定。本发明实施例通过第一交流信号开关模块,可以使高频分量经过第一交流信号开关模块,进而避免了高频分量被第一电感L1阻碍,消除了第一输入端AC1的电压信号的波形出现的减幅振铃现象,能够保证整流器正常工作,提高整流器的工作稳定性。
如图11所示,第一交流信号开关模块91可以包括:串联的第五半导体开关M5和第一旁路电容C1,第五半导体开关M5与驱动控制电路CTRL连接,驱动控制电路CTRL用于:
在第二工作模式下,开启第五半导体开关M5,以开启第一交流信号开关模块91;
在第一工作模式下,关闭第五半导体开关M5,以关闭第一交流信号开关模块91。
综上所述,本发明实施例提供的整流器具有第一工作模式和第二工作模式,在第一工 作模式下,第二半导体开关M3始终导通第一下桥臂,第一半导体开关M1周期性导通第一上桥臂,以具备半桥class E整流器的特点,适用于高工作频率;在第二工作模式下,在不同时段,第一半导体开关M1导通第一上桥臂,第二半导体开关M3导通第一下桥臂,以具备半桥class D整流器的特点,适用于低工作频率,该整流器能够在第一工作模式和第二工作模式之间切换,进而适应不同的场景。且该整流器通过第一交流信号开关模块消除了第一输入端AC1的电压信号的波形出现的减幅振铃现象,进而能够保证整流器正常工作,提高整流器的工作稳定性。
图12A示出了本发明实施例提供的另一种整流器的电路结构示意图,该整流器为全桥整流器,参见图12A,该整流器包括第一桥臂、第二桥臂、第一电感L1和第二电感L2。第一桥臂包括第一上桥臂001和第一下桥臂002,第一上桥臂001耦合在第一输入端AC1与电压输出端Vo之间,第一下桥臂002耦合在第一输入端AC1与接地端GND之间。第二桥臂包括第二上桥臂003和第二下桥臂004,第二上桥臂003耦合在第二输入端AC2与电压输出端Vo之间,第二下桥臂004耦合在第二输入端AC2与接地端GND之间。
第一上桥臂001上设置有第一半导体开关M1,第一半导体开关M1用于导通或关闭第一上桥臂001。
第一下桥臂002上设置有第二半导体开关M3,第二半导体开关M3用于导通或关闭第一下桥臂002。
第一电感L1设置在第一上桥臂001上且与第一半导体开关M1串联。在本发明实施例中,第一电感L1与第一半导体开关M1串联即可,第一电感L1可以设置在第一输入端AC1和第一半导体开关M1之间,如图12A所示;此外,第一电感L1也可以设置在第一半导体开关M1和电压输出端Vo之间,如图12B所示。
第二上桥臂003上设置有第三半导体开关M2,第三半导体开关M2用于导通或关闭第二上桥臂003。
第二下桥臂004上设置有第四半导体开关M4,第四半导体开关M4用于导通或关闭第二下桥臂004。
第二电感L2设置在第二上桥臂003上且与第三半导体开关M2串联。同样的,第二电感L2可以设置在第二输入端AC2和第三半导体开关M2之间,如图12A所示;此外,第二电感L2也可以设置在第三半导体开关M2和电压输出端Vo之间,如图12B所示。
该整流器具有第一工作模式和第二工作模式,第一工作模式适用于高工作频率,第二工作模式适用于低工作频率。
参见图12A,该整流器还可以包括第二电容C P2和第三电容C P3。其中,第二电容C P2设置在第一下桥臂002上且与第二半导体开关M3并联,第三电容C P3设置在第二下桥臂004上且与第四半导体开关M4并联。第二电容C P2与第一电感L1形成谐振电路,第三电容C P3与第二电感L2形成谐振电路,通过谐振电路达到减小EMI噪声的目的。
在本发明实施例中,由于第二半导体开关M3并联有第二电容C P2,第四半导体开关M4并联有第三电容C P3,所以第二半导体开关M3和第四半导体开关M4可以采用较小尺寸,从而避免了因第二半导体开关M3和第四半导体开关M4的尺寸较大而使整流器的整体尺寸较大,减小了整流器的占用空间。
参见图12A,该整流器还可以包括驱动控制电路CTRL,该整流器在驱动控制电路CTRL的控制下具有第一工作模式和第二工作模式,驱动控制电路CTRL用于:
在第一工作模式下,开启第一半导体开关M1以使第一上桥臂001始终导通,开启第三半导体开关M2以使第二上桥臂003始终导通,并在不同时段开启第二半导体开关M3和第四半导体开关M4,以使同一时段内第一下桥臂002和第二下桥臂004中一个导通,另一个关闭。在该工作模式下,第一电感L1和第二电感L2具有整流特性,第一半导体开关M1和第三半导体开关M2始终开启,第一半导体开关M1的导通电阻可以被当做第一电感L1的DCR的一部分,第三半导体开关M2的导通内阻可以被当做第二电感L2的DCR的一部分,其中,驱动控制电路CTRL基于第一输入端AC1的电压、第二输入端AC2的电压、电压输出端Vo的电压和接地端GND的电压的大小在不同时段开启第二半导体开关M3和第四半导体开关M4。第一输入端AC1和第二输入端AC2的电流信号为周期信号,比如,驱动控制电路CTRL可以在每个周期的前半周期开启第二半导体开关M3,在后半周期开启第四半导体开关M4,进而在整个周期内都可以给负载提供电流,这样一来,便具备了全桥class E整流器的特点,该整流器的功能与图4所示的全桥class E整流器的功能类似。且由于第一半导体开关M1和第三半导体开关M2始终开启,所以该整流器的开关频次较低,开关损耗较小。图12C示出了在该工作模式下,第一输入端AC1和第二输入端AC2的电压信号的波形示意图,第一输入端AC1的电压信号的波形与第二输入端AC2的电压信号的波形相同。由图12C可以看出,输入端的电压信号的波形接近余弦波,该特征是全桥class E整流器具有的重要特征。图12D示出了在该工作模式下,电压输出端Vo的电压信号的波形示意图。图12C和图12D中的横坐标为时间,单位为微秒(us),纵坐标为电压值,单位为伏(V);
在第二工作模式下,在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭。两个半导体开关组中一个半导体开关组包括第三半导体开关M2和第二半导体开关M3,另一个半导体开关组包括第一半导体开关M1和第四半导体开关M4。两个桥臂组中一个桥臂组包括第一下桥臂002和第二上桥臂003,另一个桥臂组包括第二下桥臂004和第一上桥臂001。在该工作模式下,第一电感L1对于第一输入端AC1的电信号中的交流分量来说,是低阻通路,即对交流分量有较小的阻碍作用,且第二电感L2对于第二输入端AC2的电信号中的交流分量来说,也是低阻通路,其中,驱动控制电路CTRL基于第一输入端AC1的电压、第二输入端AC2的电压、电压输出端Vo的电压和接地端GND的电压的大小在不同时段开启两个半导体开关组。第一输入端AC1和第二输入端AC2的电流信号为周期信号,比如,驱动控制电路CTRL可以在每个周期的前半周期开启第三半导体开关M2和第二半导体开关M3,在后半周期开启第一半导体开关M1和第四半导体开关M4,进而在整个周期内都可以给负载提供电流,这样一来,便具备了全桥class D整流器的特点,该整流器的功能与图2所示的全桥class D整流器的功能类似。图12E示出了在该工作模式下,第一输入端AC1和第二输入端AC2的电压信号的波形示意图,第一输入端AC1的电压信号的波形与第二输入端AC2的电压信号的波形相同。可知,图12A所示的整流器与图2所示的全桥class D整流器的输入端的电压信号的波形不同,图2所示的全桥class D整流器的输入端的电压信号的波形接近方波,而图12A所示的整流器的输入端的电压信号的波形出现减幅振铃现象,这是因为第二电容C P2与第一电感L1形成谐振电路,该谐振电路会对第一输入端AC1的电信号中的高频分量产生影响,第一电感L1对高频分量有较大 的阻碍作用;同时,第三电容C P3与第二电感L2形成谐振电路,该谐振电路会对第二输入端AC2的电信号中的高频分量产生影响,第二电感L2对高频分量有较大的阻碍作用。图12F示出了在工作模式下,电压输出端Vo的电压信号的波形示意图。图12E和图12F中的横坐标为时间,单位为微秒,纵坐标为电压值,单位为伏。
综上所述,本发明实施例提供的整流器具有第一工作模式和第二工作模式,在第一工作模式下,第一半导体开关M1始终导通第一上桥臂,第三半导体开关M2始终导通第二上桥臂,并在不同时段,第二半导体开关M3导通第一下桥臂,第四半导体开关M4导通第二下桥臂,以具备全桥class E整流器的特点,适用于高工作频率;在第二工作模式下,在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭,以具备全桥class D整流器的特点,适用于低工作频率,该整流器能够在第一工作模式和第二工作模式之间切换,进而适应不同的场景。
图13A是本发明实施例在图12A所示的整流器的基础上提供的另一种整流器的电路结构示意图,该整流器为全桥整流器,参见图13A,该整流器包括第一桥臂、第二桥臂、第一电感L1和第二电感L2。第一桥臂包括第一上桥臂001和第一下桥臂002,第一上桥臂耦合在第一输入端AC1与电压输出端Vo之间,第一下桥臂002耦合在第一输入端AC1与接地端GND之间。第二桥臂包括第二上桥臂003和第二下桥臂004,第二上桥臂003耦合在第二输入端AC2与电压输出端Vo之间,第二下桥臂004耦合在第二输入端AC2与接地端GND之间。
第一上桥臂001上设置有第一半导体开关M1,第一半导体开关M1用于导通或关闭第一上桥臂001。
第一下桥臂002上设置有第二半导体开关M3,第二半导体开关M3用于导通或关闭第一下桥臂002。
第一电感L1设置在第一上桥臂001上且与第一半导体开关M1串联。其中,第一电感L1可以设置在第一输入端AC1和第一半导体开关M1之间,也可以设置在第一半导体开关M1和电压输出端Vo之间。
第二上桥臂003上设置有第三半导体开关M2,第三半导体开关M2用于导通或关闭第二上桥臂003。
第二下桥臂004上设置有第四半导体开关M4,第四半导体开关M4用于导通或关闭第二下桥臂004。
第二电感L2设置在第二上桥臂003上且与第三半导体开关M2串联。第二电感L2可以设置在第二输入端AC2和第三半导体开关M2之间,也可以设置在第三半导体开关M2和电压输出端Vo之间。
该整流器具有第一工作模式和第二工作模式,第一工作模式适用于高工作频率,第二工作模式适用于低工作频率。
可选的,参见图13A,该整流器还可以包括第二电容C P2和第三电容C P3。其中,第二电容C P2设置在第一下桥臂002上且与第二半导体开关M3并联,第三电容C P3设置在第二下桥臂004上且与第四半导体开关M4并联。第二电容C P2与第一电感L1形成谐振电路,第三电容C P3与第二电感L2形成谐振电路,通过谐振电路达到减小EMI噪声的目的。
在本发明实施例中,由于第二半导体开关M3并联有第二电容C P2,第四半导体开关M4并联有第三电容C P3,所以第二半导体开关M3和第四半导体开关M4可以采用较小尺寸,减小了整流器的占用空间。
参见图13A,该整流器还可以包括驱动控制电路CTRL,该整流器在驱动控制电路CTRL的控制下具有第一工作模式和第二工作模式,驱动控制电路CTRL用于:
在第一工作模式下,开启第一半导体开关M1以使第一上桥臂001始终导通,开启第三半导体开关M2以使第二上桥臂003始终导通,并在不同时段开启第二半导体开关M3和第四半导体开关M4,以使同一时段内第一下桥臂002和第二下桥臂004中一个导通,另一个关闭,具备了全桥class E整流器的特点,该整流器的功能与图4所示的全桥class E整流器的功能类似;
在第二工作模式下,在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭,两个半导体开关组中一个半导体开关组包括第三半导体开关M2和第二半导体开关M3,另一个半导体开关组包括第一半导体开关M1和第四半导体开关M4,两个桥臂组中一个桥臂组包括第一下桥臂002和第二上桥臂003,另一个桥臂组包括第二下桥臂004和第一上桥臂001,具备了全桥class D整流器的特点,该整流器的功能与图2所示的全桥class D整流器的功能类似。
参见图13A,该整流器还可以包括:第二交流信号开关模块131和第三交流信号开关模块132。第二交流信号开关模块131与第一电感L1并联,且与驱动控制电路CTRL连接。第三交流信号开关模块132与第二电感L2并联,且与驱动控制电路CTRL连接。相应的,驱动控制电路CTRL还用于:
在第二工作模式下,开启第二交流信号开关模块131,以使第一输入端AC1的电信号中低频分量经过第一电感L1,高频分量经过第二交流信号开关模块131;开启第三交流信号开关模块132,以使第二输入端AC2的电信号中低频分量经过第二电感L2,高频分量经过第三交流信号开关模块132。在第二工作模式下,第二交流信号开关模块131和第三交流信号开关模块132始终开启;
在第一工作模式下,关闭第二交流信号开关模块131和第三交流信号开关模块132。
参见图13A,在第二工作模式下,第二电容C P2与第一电感L1形成的谐振电路会导致第一输入端AC1的电压信号的波形出现减幅振铃现象,第三电容C P3与第二电感L2形成的谐振电路会导致第二输入端AC2的电压信号的波形出现减幅振铃现象。而本发明实施例通过第二交流信号开关模块可以消除第一输入端AC1的电压信号的波形出现的减幅振铃现象,通过第三交流信号开关模块可以消除第二输入端AC2的电压信号的波形出现的减幅振铃现象,进而能够保证整流器正常工作,提高整流器的工作稳定性。
示例的,当第二半导体开关M3和第四半导体开关M4的尺寸较大时,第二半导体开关M3无需并联第二电容C P2,第四半导体开关M4无需并联第三电容C P3,在这种情况下,第二半导体开关M3的寄生电容与第一电感L1形成谐振电路,第四半导体开关M4的寄生电容与第二电感L2形成谐振电路。而在第二工作模式下,第二半导体开关M3的寄生电容与第一电感L1形成的谐振电路会对第一输入端AC1的电信号中的高频分量产生影响,第一电感L1对高频分量有较大的阻碍作用,导致第一输入端AC1的电压信号的波形出现减幅振铃现象。同时,第四半导体开关M4的寄生电容与第二电感L2形成的谐振电路会对第二 输入端AC2的电信号中的高频分量产生影响,第二电感L2对高频分量有较大的阻碍作用,导致第二输入端AC2的电压信号的波形出现减幅振铃现象。而当第一输入端AC1和第二输入端AC2的电压信号的波形出现减幅振铃现象时,会直接影响整流器正常工作,整流器工作状态较不稳定。本发明实施例通过第二交流信号开关模块和第三交流信号开关模块,使得高频分量经过第二交流信号开关模块和第三交流信号开关模块,进而避免了高频分量被阻碍,消除了第一输入端AC1和第二输入端AC2的电压信号的波形出现的减幅振铃现象,进而能够保证整流器正常工作,提高整流器的工作稳定性。
如图13A所示,第二交流信号开关模块131可以包括:串联的第六半导体开关M6和第二旁路电容C2,第六半导体开关M6与驱动控制电路CTRL连接,驱动控制电路CTRL用于:
在第二工作模式下,开启第六半导体开关M6,以开启第二交流信号开关模块131;
在第一工作模式下,关闭第六半导体开关M6,以关闭第二交流信号开关模块131。
第三交流信号开关模块132可以包括:串联的第七半导体开关M7和第三旁路电容C3,第七半导体开关M7与驱动控制电路CTRL连接,驱动控制电路CTRL用于:
在第二工作模式下,开启第七半导体开关M7,以开启第三交流信号开关模块132;
在第一工作模式下,关闭第七半导体开关M7,以关闭第三交流信号开关模块132。
在本发明实施例中,在第二工作模式下,第六半导体开关M6和第七半导体开关M7始终开启,第二旁路电容C2对于第一输入端AC1的电信号中高频分量来说,是低阻通路,使得第一输入端AC1的电信号中低频分量经过第一电感L1,高频分量经过第二旁路电容C2;第三旁路电容C3对于第二输入端AC2的电信号中高频分量来说,也是低阻通路,使得第二输入端AC2的电信号中低频分量经过第二电感L2,高频分量经过第三旁路电容C3。
图13B示出了在第二工作模式下,第一输入端AC1和第二输入端AC2的电压信号的波形示意图,第一输入端AC1的电压信号的波形与第二输入端AC2的电压信号的波形相同。第一输入端AC1和第二输入端AC2的电压信号的波形接近方波,该特征是全桥class D整流器具有的重要特征。同时,由于整流器包括第二交流信号开关模块131和第三交流信号开关模块132,第一输入端AC1和第二输入端AC2的电压信号的波形出现的减幅振铃现象已被消除。图13C示出了在第二工作模式下,电压输出端Vo的电压信号的波形示意图。图13B和图13C中的横坐标为时间,单位为微秒,纵坐标为电压值,单位为伏。
在第一工作模式下,第六半导体开关M6和第七半导体开关M7始终关闭,第二旁路电容C2和第三旁路电容C3对高频分量的低阻通路作用被解除,进而具备了全桥class E整流器的特点,该整流器的功能与图4所示的全桥class E整流器的功能类似。
综上所述,本发明实施例提供的整流器具有第一工作模式和第二工作模式,在第一工作模式下,第一半导体开关M1始终导通第一上桥臂,第三半导体开关M2始终导通第二上桥臂,并在不同时段,第二半导体开关M3导通第一下桥臂,第四半导体开关M4导通第二下桥臂,以具备全桥class E整流器的特点,适用于高工作频率;在第二工作模式下,在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭,以具备全桥class D整流器的特点,适用于低工作频率,该整流器能够在第一工作模式和第二工作模式之间切换,进而适应不同的场景。且该整流器通过第二交流信号开关模块消除了第一输入端AC1的电压信号的波形出现的减幅振铃现象,通过第三交流信号开关模块消除 了第二输入端AC2的电压信号的波形出现的减幅振铃现象,进而能够保证整流器正常工作,提高整流器的工作稳定性。
图14示例性示出了本发明实施例提供的一种整流器的电路结构示意图,该整流器为全桥整流器,参见图14,该整流器包括第一桥臂、第二桥臂、第一电感L1和第二电感L2,第一桥臂包括第一上桥臂001和第一下桥臂002,第一上桥臂001耦合在第一输入端AC1与电压输出端Vo之间,第一下桥臂002耦合在第一输入端AC1与接地端GND之间。第二桥臂包括第二上桥臂003和第二下桥臂004,第二上桥臂003耦合在第二输入端AC2与电压输出端Vo之间,第二下桥臂004耦合在第二输入端AC2与接地端GND之间。
第一上桥臂001上设置有第一半导体开关M1,第一半导体开关M1用于导通或关闭第一上桥臂001。
第一下桥臂002上设置有第二半导体开关M3,第二半导体开关M3用于导通或关闭第一下桥臂002。
第一电感L1设置在第一下桥臂002上且与第二半导体开关M3串联。第一电感L1可以设置在第一输入端AC1和第二半导体开关M3之间,也可以设置在第二半导体开关M3和接地端之间。
第二上桥臂003上设置有第三半导体开关M2,第三半导体开关M2用于导通或关闭第二上桥臂003。
第二下桥臂004上设置有第四半导体开关M4,第四半导体开关M4用于导通或关闭第二下桥臂004。
第二电感L2设置在第二下桥臂004上且与第四半导体开关M4串联。第二电感L2可以设置在第二输入端AC2和第四半导体开关M4之间,也可以设置在第四半导体开关M4和接地端之间。
该整流器具有第一工作模式和第二工作模式,第一工作模式适用于高工作频率,第二工作模式适用于低工作频率。
参见图14,该整流器还可以包括第二电容C P2和第三电容C P3。其中,第二电容C P2设置在第一上桥臂001上且与第一半导体开关M1并联,第三电容C P3设置在第二上桥臂003上且与第三半导体开关M2并联。第二电容C P2与第一电感L1形成谐振电路,第三电容C P3与第二电感L2形成谐振电路,通过谐振电路达到减小EMI噪声的目的。
在本发明实施例中,由于第一半导体开关M1并联有第二电容C P2,第三半导体开关M2并联有第三电容C P3,所以第一半导体开关M1和第三半导体开关M2可以采用较小尺寸,从而避免了因第一半导体开关M1和第三半导体开关M2的尺寸较大而使整流器的整体尺寸较大,减小了整流器的占用空间。
参见图14,该整流器还可以包括驱动控制电路CTRL,该整流器在驱动控制电路CTRL的控制下具有第一工作模式和第二工作模式,驱动控制电路CTRL用于:
在第一工作模式下,开启第二半导体开关M3以使第一下桥臂002始终导通,开启第四半导体开关M4以使第二下桥臂004始终导通,并在不同时段开启第一半导体开关M1和第三半导体开关M2,以使同一时段内第一上桥臂001和第二上桥臂003中一个导通,另一个关闭。在该工作模式下,第一电感L1和第二电感L2具有整流特性,第二半导体开关M3 和第四半导体开关M4始终开启,第二半导体开关M3的导通电阻可以被当做第一电感L1的DCR的一部分,第四半导体开关M4的导通电阻可以被当做第二电感L2的DCR的一部分,其中,驱动控制电路CTRL基于第一输入端AC1的电压、第二输入端AC2的电压、电压输出端Vo的电压和接地端GND的电压的大小在不同时段开启第一半导体开关M1和第三半导体开关M2。第一输入端AC1和第二输入端AC2的电流信号为周期信号,比如,驱动控制电路CTRL可以在每个周期的前半周期开启第一半导体开关M1,在后半周期开启第三半导体开关M2,进而在整个周期内都可以给负载提供电流,这样一来,便具备了全桥class E整流器的特点,该整流器的功能与图6所示的全桥class E整流器的功能类似。且由于第二半导体开关M3和第四半导体开关M4始终开启,所以该整流器的开关频次较低,开关损耗较小;
在第二工作模式下,在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭,两个半导体开关组中一个半导体开关组包括第三半导体开关M2和第二半导体开关M3,另一个半导体开关组包括第一半导体开关M1和第四半导体开关M4,两个桥臂组中一个桥臂组包括第一下桥臂002和第二上桥臂003,另一个桥臂组包括第二下桥臂004和第一上桥臂001。在该工作模式下,第一电感L1对于第一输入端AC1的电信号中的交流分量来说,是低阻通路,即对交流分量有较小的阻碍作用,且第二电感L2对于第二输入端AC2的电信号中的交流分量来说,也是低阻通路,其中,驱动控制电路CTRL基于第一输入端AC1的电压、第二输入端AC2的电压、电压输出端Vo的电压和接地端GND的电压的大小在不同时段开启两个半导体开关组。第一输入端AC1和第二输入端AC2的电流信号为周期信号,比如,驱动控制电路CTRL可以在每个周期的前半周期开启第三半导体开关M2和第二半导体开关M3,在后半周期开启第一半导体开关M1和第四半导体开关M4,进而在整个周期内都可以给负载提供电流,这样一来,便具备了全桥class D整流器的特点,该整流器的功能与图2所示的全桥class D整流器的功能类似。
综上所述,本发明实施例提供的整流器具有第一工作模式和第二工作模式,在第一工作模式下,第二半导体开关M3始终导通第一下桥臂,第四半导体开关M4始终导通第二下桥臂,并在不同时段,第一半导体开关M1导通第一上桥臂,第三半导体开关M2导通第二上桥臂,以具备全桥class E整流器的特点,适用于高工作频率;在第二工作模式下,在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭,以具备全桥class D整流器的特点,适用于低工作频率,该整流器能够在第一工作模式和第二工作模式之间切换,进而适应不同的场景。
图15是本发明实施例在图14所示的整流器的基础上提供的另一种整流器的电路结构示意图,该整流器为全桥整流器,参见图15,该整流器包括第一桥臂、第二桥臂、第一电感L1和第二电感L2。第一桥臂包括第一上桥臂001和第一下桥臂002,第一上桥臂001耦合在第一输入端AC1与电压输出端Vo之间,第一下桥臂002耦合在第一输入端AC1与接地端GND之间。第二桥臂包括第二上桥臂003和第二下桥臂004,第二上桥臂003耦合在第二输入端AC2与电压输出端Vo之间,第二下桥臂004耦合在第二输入端AC2与接地端GND之间。
第一上桥臂001上设置有第一半导体开关M1,第一半导体开关M1用于导通或关闭第 一上桥臂001。
第一下桥臂002上设置有第二半导体开关M3,第二半导体开关M3用于导通或关闭第一下桥臂002。
第一电感L1设置在第一下桥臂002上且与第二半导体开关M3串联。第一电感L1可以设置在第一输入端AC1和第二半导体开关M3之间,也可以设置在第二半导体开关M3和接地端之间。
第二上桥臂003上设置有第三半导体开关M2,第三半导体开关M2用于导通或关闭第二上桥臂003。
第二下桥臂004上设置有第四半导体开关M4,第四半导体开关M4用于导通或关闭第二下桥臂004。
第二电感L2设置在第二下桥臂004上且与第四半导体开关M4串联。第二电感L2可以设置在第二输入端AC2和第四半导体开关M4之间,也可以设置在第四半导体开关M4和接地端之间。
该整流器具有第一工作模式和第二工作模式,第一工作模式适用于高工作频率,第二工作模式适用于低工作频率。
可选的,参见图15,该整流器还可以包括第二电容C P2和第三电容C P3。其中,第二电容C P2设置在第一上桥臂001上且与第一半导体开关M1并联,第三电容C P3设置在第二上桥臂003上且与第三半导体开关M2并联。第二电容C P2与第一电感L1形成谐振电路,第三电容C P3与第二电感L2形成谐振电路,通过谐振电路达到减小EMI噪声的目的。
在本发明实施例中,由于第一半导体开关M1并联有第二电容C P2,第三半导体开关M2并联有第三电容C P3,所以第一半导体开关M1和第三半导体开关M2可以采用较小尺寸,从而减小了整流器的占用空间。
参见图15,该整流器还包括驱动控制电路CTRL,该整流器在驱动控制电路CTRL的控制下具有第一工作模式和第二工作模式,驱动控制电路CTRL用于:
在第一工作模式下,开启第二半导体开关M3以使第一下桥臂002始终导通,开启第四半导体开关M4以使第二下桥臂004始终导通,并在不同时段开启第一半导体开关M1和第三半导体开关M2,以使同一时段内第一上桥臂001和第二上桥臂003中一个导通,另一个关闭,具备了全桥class E整流器的特点,该整流器的功能与图6所示的全桥class E整流器的功能类似;
在第二工作模式下,在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭,两个半导体开关组中一个半导体开关组包括第三半导体开关M2和第二半导体开关M3,另一个半导体开关组包括第一半导体开关M1和第四半导体开关M4,两个桥臂组中一个桥臂组包括第一下桥臂002和第二上桥臂003,另一个桥臂组包括第二下桥臂004和第一上桥臂001,具备了全桥class D整流器的特点,该整流器的功能与图2所示的全桥class D整流器的功能类似。
参见图15,该整流器还可以包括:第二交流信号开关模块131和第三交流信号开关模块132。第二交流信号开关模块131与第一电感L1并联,且与驱动控制电路CTRL连接,第三交流信号开关模块132与第二电感L2并联,且与驱动控制电路CTRL连接。相应的,驱动控制电路CTRL还用于:
在第二工作模式下,开启第二交流信号开关模块131,以使第一输入端AC1的电信号中低频分量经过第一电感L1,高频分量经过第二交流信号开关模块131;开启第三交流信号开关模块132,以使第二输入端AC2的电信号中低频分量经过第二电感L2,高频分量经过第三交流信号开关模块132。在第二工作模式下,第二交流信号开关模块131和第三交流信号开关模块132始终开启;
在第一工作模式下,关闭第二交流信号开关模块131和第三交流信号开关模块132。
参见图15,在第二工作模式下,第二电容C P2与第一电感L1形成的谐振电路会导致第一输入端AC1的电压信号的波形出现减幅振铃现象,第三电容C P3与第二电感L2形成的谐振电路会导致第二输入端AC2的电压信号的波形出现减幅振铃现象。而本发明实施例通过第二交流信号开关模块可以消除第一输入端AC1的电压信号的波形出现的减幅振铃现象,通过第三交流信号开关模块可以消除第二输入端AC2的电压信号的波形出现的减幅振铃现象,进而能够保证整流器正常工作,提高整流器的工作稳定性。
示例的,当第一半导体开关M1和第三半导体开关M2的尺寸较大时,第一半导体开关M1无需并联第二电容C P2,第三半导体开关M2无需并联第三电容C P3,在这种情况下,第一半导体开关M1的寄生电容与第一电感L1形成谐振电路,第三半导体开关M2的寄生电容与第二电感L2形成谐振电路,而在第二工作模式下,第一半导体开关M1的寄生电容与第一电感L1形成的谐振电路会对第一输入端AC1的电信号中的高频分量产生影响,第一电感L1对高频分量有较大的阻碍作用,导致第一输入端AC1的电压信号的波形出现减幅振铃现象,同时,第三半导体开关M2的寄生电容与第二电感L2形成的谐振电路会对第二输入端AC2的电信号中的高频分量产生影响,第二电感L2对高频分量也有较大的阻碍作用,导致第二输入端AC2的电压信号的波形出现减幅振铃现象。而当第一输入端AC1和第二输入端AC2的电压信号的波形出现减幅振铃现象时,会直接影响整流器正常工作,整流器工作状态较不稳定。本发明实施例通过第二交流信号开关模块和第三交流信号开关模块,使得高频率的交流分量经过第二交流信号开关模块和第三交流信号开关模块,进而避免了高频分量被阻碍,消除了第一输入端AC1和第二输入端AC2的电压信号的波形出现的减幅振铃现象,进而能够保证整流器正常工作,提高整流器的工作稳定性。
如图15所示,第二交流信号开关模块131可以包括:串联的第六半导体开关M6和第二旁路电容C2,第六半导体开关M6与驱动控制电路CTRL连接,驱动控制电路CTRL用于:
在第二工作模式下,开启第六半导体开关M6,以开启第二交流信号开关模块131;
在第一工作模式下,关闭第六半导体开关M6,以关闭第二交流信号开关模块131。
第三交流信号开关模块132可以包括:串联的第七半导体开关M7和第三旁路电容C3,第七半导体开关M7与驱动控制电路CTRL连接,驱动控制电路CTRL用于:
在第二工作模式下,开启第七半导体开关M7,以开启第三交流信号开关模块132;
在第一工作模式下,关闭第七半导体开关M7,以关闭第三交流信号开关模块132。
在本发明实施例中,在第二工作模式下,第六半导体开关M6和第七半导体开关M7始终开启,第二旁路电容C2对于第一输入端AC1的电信号中高频分量来说,是低阻通路,使得第一输入端AC1的电信号中低频分量经过第一电感L1,高频分量经过第二旁路电容C2;第三旁路电容C3对于第二输入端AC2的电信号中高频分量来说,也是低阻通路,使 得第二输入端AC2的电信号中低频分量经过第二电感L2,高频分量经过第三旁路电容C3。
在第一工作模式下,第六半导体开关M6和第七半导体开关M7始终关闭,第二旁路电容C2和第三旁路电容C3对高频分量的低阻通路作用被解除,进而具备了全桥class E整流器的特点,该整流器的功能与图4所示的全桥class E整流器的功能类似。
综上所述,本发明实施例提供的整流器具有第一工作模式和第二工作模式,在第一工作模式下,第二半导体开关M3始终导通第一下桥臂,第四半导体开关M4始终导通第二下桥臂,并在不同时段,第一半导体开关M1导通第一上桥臂,第三半导体开关M2导通第二上桥臂,以具备全桥class E整流器的特点,适用于高工作频率;在第二工作模式下,在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭,以具备全桥class D整流器的特点,适用于低工作频率,该整流器能够在第一工作模式和第二工作模式之间切换,进而适应不同的场景。且该整流器通过第二交流信号开关模块消除了第一输入端AC1的电压信号的波形出现的减幅振铃现象,通过第三交流信号开关模块消除了第二输入端AC2的电压信号的波形出现的减幅振铃现象,进而能够保证整流器正常工作,提高整流器的工作稳定性。
需要补充说明的是,本发明实施例涉及的半导体开关可以是单独的半导体开关器件,也可以是包括多个电路元件的具有半导体开关功能的半导体开关器件。
上述实施例中,半导体开关可以为晶体管。示例的,晶体管可以为场效应晶体管或双极结型晶体管(Bipolar Junction Transistor,BJT)等。比如当晶体管为场效应晶体管时,晶体管可以为结型场效应晶体管(junction FET,JFET),或者可以为MOSFET。晶体管又分为P型晶体管和N型晶体管,在本发明实施例中,晶体管可以为P型晶体管,也可以为N型晶体管,本发明实施例对晶体管的类型不做限定。通常,晶体管有三个极,当晶体管为场效应晶体管时,晶体管的三个极分别为源极(Source)、栅极(Gate)和漏极(Drain),当晶体管为双极结型晶体管时,晶体管的三个极分别为发射极(Emitter)、基极(Base)和集电极(Collector)。上述实施例中所示的各整流器的电路结构均以半导体开关为N型MOSFET为例进行说明。
上述各实施例所示的整流器中的输出电容Co用于对整理器转换得到的直流信号进行稳压处理,使电压输出端Vo输出的电压更加平稳。
上述实施例中,半导体开关的控制极均与驱动控制电路的输出端连接,该输出端用于输出控制信号,该控制信号用于控制半导体开关开启或关闭。假设半导体开关为晶体管,当晶体管为场效应晶体管时,晶体管的栅极为控制极,栅极与驱动控制电路的输出端连接;当晶体管为双极结型晶体管时,晶体管的基极为控制极,基极与驱动控制电路的输出端连接。
可选的,上述各实施例提供的整流器中的驱动控制电路CTRL内部还包括鉴频器,该鉴频器用于根据输入端的电信号的频率确定待进入的工作模式。其中,待进入的工作模式为第一工作模式或第二工作模式。驱动控制电路CTRL用于根据鉴频器确定的待进入的工作模式,通过控制整流器中各半导体开关的开启或关闭来实现AC-DC整流。输入端为第一输入端,或者,输入端为第一输入端和第二输入端。
在本申请各实施例中,驱动控制电路CTRL内部的鉴频器确定了待进入的工作模式之后,驱动控制电路CTRL通过控制整流器中各半导体器件开关的开启或关闭来实现AC-DC 整流。
当整流器为半桥整流器时,该鉴频器与第一输入端AC1连接;当整流器为全桥整流器时,该鉴频器与第一输入端AC1和第二输入端AC2连接。
进一步的,该驱动控制电路CTRL还包括电压比较器,该电压比较器与电压输出端Vo连接,用于检测电压输出端的电压是否大于预设电压,并当电压输出端的电压大于预设电压时,指示鉴频器根据输入端的电信号的频率确定待进入的工作模式。
示例的,整流器为图8A所示的整流器,当鉴频器确定的待进入的工作模式为第一工作模式时,驱动控制电路CTRL开启第一半导体开关M1以使第一上桥臂001始终导通,并周期性开启或关闭第二半导体开关M3;当鉴频器确定的待进入的工作模式为第二工作模式时,驱动控制电路CTRL在不同时段开启第一半导体开关M1和第二半导体开关M3,以使同一时段内第一上桥臂001和第一下桥臂002中一个导通,另一个关闭。
示例的,整流器为图10A所示的整流器,当鉴频器确定的待进入的工作模式为第一工作模式时,驱动控制电路CTRL开启第二半导体开关M3以使第一下桥臂002始终导通,并周期性开启或关闭第一半导体开关M1;当鉴频器确定的待进入的工作模式为第二工作模式时,驱动控制电路CTRL在不同时段开启第一半导体开关M1和第二半导体开关M3,以使同一时段内第一上桥臂001和第一下桥臂002中一个导通,另一个关闭。
示例的,整流器为图12A所示的整流器,当鉴频器确定的待进入的工作模式为第一工作模式时,驱动控制电路CTRL开启第一半导体开关M1以使第一上桥臂001始终导通,开启第三半导体开关M2以使第二上桥臂003始终导通,并在不同时段开启第二半导体开关M3和第四半导体开关M4,以使同一时段内第一下桥臂002和第二下桥臂004中一个导通,另一个关闭;当鉴频器确定的待进入的工作模式为第二工作模式时,驱动控制电路CTRL在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭,两个半导体开关组中一个半导体开关组包括第三半导体开关M2和第二半导体开关M3,另一个半导体开关组包括第一半导体开关M1和第四半导体开关M4,两个桥臂组中一个桥臂组包括第一下桥臂002和第二上桥臂003,另一个桥臂组包括第二下桥臂004和第一上桥臂001。
示例的,整流器为图14所示的整流器,当鉴频器确定的待进入的工作模式为第一工作模式时,驱动控制电路CTRL开启第二半导体开关M3以使第一下桥臂001始终导通,开启第四半导体开关M4以使第二下桥臂004始终导通,并在不同时段开启第一半导体开关M1和第三半导体开关M2,以使同一时段内第一上桥臂001和第二上桥臂003中一个导通,另一个关闭;当鉴频器确定的待进入的工作模式为第二工作模式时,驱动控制电路CTRL在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭,两个半导体开关组中一个半导体开关组包括第三半导体开关M2和第二半导体开关M3,另一个半导体开关组包括第一半导体开关M1和第四半导体开关M4,两个桥臂组中一个桥臂组包括第一下桥臂002和第二上桥臂003,另一个桥臂组包括第二下桥臂004和第一上桥臂001。
本发明实施例还提供了一种整流器的驱动方法,用于整流器,该整流器可以为图8A或图10A所示的整流器,如图16所示,该方法可以包括:
步骤1601、根据第一输入端的电信号的频率确定待进入的工作模式,待进入的工作模式为第一工作模式或第二工作模式。
当电压输出端的电压大于预设电压时,整流器根据第一输入端的电信号的频率确定待进入的工作模式。
第一工作模式适用于高工作频率,第二工作模式适用于低工作频率。示例的,第一工作模式适用于6.78MHz的工作频率;第二工作模式适用于100~205KHz的工作频率。每种工作模式对应一种WPT技术,比如,第一工作模式对应磁共振技术,第二工作模式对应磁感应技术。
步骤1602、根据确定的待进入的工作模式,控制第一上桥臂以及第一下桥臂的导通或关闭。
可选的,当整流器为图8A所示的整流器时,根据确定的待进入的工作模式,控制第一上桥臂以及第一下桥臂的导通或关闭,可以包括:
1)在第一工作模式下,通过驱动控制电路开启第一半导体开关M1以使第一上桥臂001始终导通,并周期性开启或关闭第二半导体开关M3。
2)在第二工作模式下,通过驱动控制电路在不同时段开启第一半导体开关M1和第二半导体开关M3,以使同一时段内第一上桥臂001和第一下桥臂002中一个导通,另一个关闭。
当整流器为图10A所示的整流器时,根据确定的待进入的工作模式,控制第一上桥臂以及第一下桥臂的导通或关闭,可以包括:
1)在第一工作模式下,通过驱动控制电路开启第二半导体开关M3以使第一下桥臂002始终导通,并周期性开启或关闭第一半导体开关M1。
2)在第二工作模式下,通过驱动控制电路在不同时段开启第一半导体开关M1和第二半导体开关M3,以使同一时段内第一上桥臂001和第一下桥臂002中一个导通,另一个关闭。
可选的,如图9和图11所示,整流器还可以包括:第一交流信号开关模块91,该驱动方法还可以包括:在第二工作模式下,通过驱动控制电路开启第一交流信号开关模块,以使第一输入端AC1的电信号中低频分量经过第一电感L1,高频分量经过第一交流信号开关模块;在第一工作模式下,通过驱动控制电路关闭第一交流信号开关模块。
综上所述,本发明实施例提供的整流器的驱动方法,能够根据第一输入端的电信号的频率确定的待进入的工作模式,并根据确定的待进入的工作模式控制第一上桥臂以及第一下桥臂的导通或关闭,使得整流器在第一工作模式下实现半桥class E整流器的功能,以适用于高工作频率,使得整流器在第二工作模式下具备半桥class D整流器的特点,以适用于低工作频率,该整流器能够在第一工作模式和第二工作模式之间切换,进而适应不同的场景。且通过该驱动方法,能够消除第一输入端AC1的电压信号的波形出现的减幅振铃现象,进而能够保证整流器正常工作,提高整理器的工作稳定性。
本发明实施例还提供了一种整流器的驱动方法,用于整流器,该整流器可以为图12A、图12B或图14所示的整流器,该方法可以包括:
1、当电压输出端的电压大于预设电压时,根据第一输入端和第二输入端的电信号的频 率确定待进入的工作模式,待进入的工作模式为第一工作模式或第二工作模式。
第一工作模式适用于高工作频率,第二工作模式适用于低工作频率。
2、根据确定的待进入的工作模式,控制第一上桥臂以及第一下桥臂的导通或关闭。
3、根据确定的待进入的工作模式,控制第二上桥臂以及第二下桥臂的导通或关闭。
示例的,当整流器为图12A或图12B所示的整流器时,根据确定的当前的工作模式,控制第一上桥臂,第一下桥臂,第二上桥臂,以及第二下桥臂的导通或关闭,可以包括:
1)在第一工作模式下,通过驱动控制电路开启第一半导体开关M1以使第一上桥臂001始终导通,开启第三半导体开关M2以使第二上桥臂003始终导通,并在不同时段开启第二半导体开关M3和第四半导体开关M4,以使同一时段内第一下桥臂002和第二下桥臂004中一个导通,另一个关闭。
2)在第二工作模式下,通过驱动控制电路在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭,两个半导体开关组中一个半导体开关组包括第三半导体开关M2和第二半导体开关M3,另一个半导体开关组包括第一半导体开关M1和第四半导体开关M4,两个桥臂组中一个桥臂组包括第一下桥臂002和第二上桥臂003,另一个桥臂组包括第二下桥臂004和第一上桥臂001。
示例的,当整流器为图14所示的整流器时,根据确定的待进入的工作模式,控制第一上桥臂,第一下桥臂,第二上桥臂,以及第二下桥臂的导通或关闭,可以包括:
1)在第一工作模式下,通过驱动控制电路开启第二半导体开关M3以使第一下桥臂001始终导通,开启第四半导体开关M4以使第二下桥臂004始终导通,并在不同时段开启第一半导体开关M1和第三半导体开关M2,以使同一时段内第一上桥臂001和第二上桥臂003中一个导通,另一个关闭。
2)在第二工作模式下,通过驱动控制电路在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭,两个半导体开关组中一个半导体开关组包括第三半导体开关M2和第二半导体开关M3,另一个半导体开关组包括第一半导体开关M1和第四半导体开关M4,两个桥臂组中一个桥臂组包括第一下桥臂002和第二上桥臂003,另一个桥臂组包括第二下桥臂004和第一上桥臂001。
可选的,如图13A和图15所示,整流器还可以包括:第二交流信号开关模块131和第三交流信号开关模块132,该驱动方法还可以包括:在第二工作模式下,通过驱动控制电路开启第二交流信号开关模块131,以使第一输入端AC1的电信号中低频分量经过第一电感L1,高频分量经过第二交流信号开关模块;通过驱动控制电路开启第三交流信号开关模块132,以使第二输入端AC2的电信号中低频分量经过第二电感L2,高频分量经过第三交流信号开关模块132;在第一工作模式下,通过驱动控制电路关闭第二交流信号开关模块131和第三交流信号开关模块132。
综上所述,本发明实施例提供的整流器的驱动方法,能够根据第一输入端和第二输入端的电信号的频率确定的待进入的工作模式,并根据确定的待进入的工作模式控制第一上桥臂,第一下桥臂,第二上桥臂,以及第二下桥臂的导通或关闭,使得整流器在第一工作模式下具备全桥class E整流器的特点,以适用于高工作频率,使得整流器在第二工作模式下具备全桥class D整流器的特点,以适用于低工作频率,该整流器能够在第一工作模式和第二工作模式之间切换,进而适应不同的场景。且通过该驱动方法,能够消除第一输入端 AC1和第二输入端AC2的电压信号的波形出现的减幅振铃现象,进而能够保证整流器正常工作,提高整流器的工作稳定性。
需要说明的是,本发明实施例提供的整流器的驱动方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
本发明实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或存储有程序指令,用于实现上述实施例所提供的整流器的驱动方法。
本发明实施例还提供了一种芯片,参见图7,包括整流器021,以及与整流器021连接的谐振电路022和输出电容Co。
整流器021为上述实施例所提供的任一整流器,比如,可以为图8A,图8B,图9,图10A,图10B,图11,图12A,图12B,图13A,图14或图15所示的整流器。
谐振电路022用于接收发送端设备发送的电信号,并将该电信号提供给整流器的输入端,输入端为第一输入端,或者,输入端为第一输入端和第二输入端。谐振电路022可以包括接收线圈L R和谐振电容C R
输出电容Co用于将整流器021转换得到的直流电信号进行稳压处理,并提供给负载。
本发明实施例还提供了一种电子设备,所述电子设备装载有图7所示的芯片。
本领域普通技术人员可以理解实现上述实施例中的驱动方法中的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (28)

  1. 一种整流器,其特征在于,包括第一桥臂和第一电感,所述第一桥臂包括第一上桥臂和第一下桥臂,所述第一上桥臂耦合在第一输入端与电压输出端之间,所述第一下桥臂耦合在所述第一输入端与接地端之间,
    所述第一上桥臂上设置有第一半导体开关;
    所述第一下桥臂上设置有第二半导体开关;
    所述第一电感设置在所述第一上桥臂上且与所述第一半导体开关串联,或者,所述第一电感设置在所述第一下桥臂上且与所述第二半导体开关串联。
  2. 根据权利要求1所述的整流器,其特征在于,所述整流器还包括驱动控制电路,所述整流器在所述驱动控制电路的控制下具有第一工作模式和第二工作模式,所述驱动控制电路用于:
    在所述第一工作模式下,当所述第一电感设置在所述第一上桥臂上时,开启所述第一半导体开关,并周期性开启或关闭所述第二半导体开关;当所述第一电感设置在所述第一下桥臂时,开启所述第二半导体开关,并周期性开启或关闭所述第一半导体开关;
    在所述第二工作模式下,在不同时段开启所述第一半导体开关和所述第二半导体开关。
  3. 根据权利要求1所述的整流器,其特征在于,所述整流器还包括第二桥臂和第二电感,所述第二桥臂包括第二上桥臂和第二下桥臂,所述第二上桥臂耦合在第二输入端与所述电压输出端之间,所述第二下桥臂耦合在所述第二输入端与所述接地端之间,
    所述第二上桥臂上设置有第三半导体开关;
    所述第二下桥臂上设置有第四半导体开关;
    所述第一电感和所述第二电感的设置符合下面情况中的一个:
    所述第一电感设置在所述第一上桥臂上,所述第二电感设置在所述第二上桥臂上且与所述第三半导体开关串联;或者,
    所述第一电感设置在所述第一下桥臂上,所述第二电感设置在所述第二下桥臂上且与所述第四半导体开关串联。
  4. 根据权利要求3所述的整流器,其特征在于,所述整流器还包括驱动控制电路,所述整流器在所述驱动控制电路的控制下具有第一工作模式和第二工作模式,所述驱动控制电路用于:
    在所述第一工作模式下,当所述第一电感设置在所述第一上桥臂上,所述第二电感设置在所述第二上桥臂上时,开启所述第一半导体开关,开启所述第三半导体开关,并在不同时段开启所述第二半导体开关和所述第四半导体开关;当所述第一电感设置在所述第一下桥臂上,所述第二电感设置在所述第二下桥臂上时,开启所述第二半导体开关,开启所述第四半导体开关,并在不同时段开启所述第一半导体开关和所述第三半导体开关;
    在所述第二工作模式下,在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭,所述两个半导体开关组中一个半导体开关组包括所述第三半导 体开关和所述第二半导体开关,另一个半导体开关组包括所述第一半导体开关和所述第四半导体开关,两个桥臂组中一个桥臂组包括所述第一下桥臂和所述第二上桥臂,另一个桥臂组包括所述第二下桥臂和所述第一上桥臂。
  5. 根据权利要求2所述的整流器,其特征在于,所述整流器还包括:第一交流信号开关模块,所述第一交流信号开关模块与所述第一电感并联,且与所述驱动控制电路连接。
  6. 根据权利要求5所述的整流器,其特征在于,所述驱动控制电路还用于:
    在所述第二工作模式下,开启所述第一交流信号开关模块,以使所述第一输入端的电信号中低频分量经过所述第一电感,高频分量经过所述第一交流信号开关模块;
    在所述第一工作模式下,关闭所述第一交流信号开关模块。
  7. 根据权利要求5所述的整流器,其特征在于,所述第一交流信号开关模块包括:串联的第五半导体开关和第一旁路电容,所述第五半导体开关与所述驱动控制电路连接。
  8. 根据权利要求7所述的整流器,其特征在于,所述驱动控制电路用于:
    在所述第二工作模式下,开启所述第五半导体开关,以开启所述第一交流信号开关模块;
    在所述第一工作模式下,关闭所述第五半导体开关,以关闭所述第一交流信号开关模块。
  9. 根据权利要求1、2、5、6、7或8所述的整流器,其特征在于,所述整流器还包括第一电容,
    所述第一电感设置在所述第一上桥臂上,所述第一电容设置在所述第一下桥臂上且与所述第二半导体开关并联。
  10. 根据权利要求1、2、5、6、7或8所述的整流器,其特征在于,所述整流器还包括第一电容,
    所述第一电感设置在所述第一下桥臂上,所述第一电容设置在所述第一上桥臂上且与所述第一半导体开关并联。
  11. 根据权利要求4所述的整流器,其特征在于,所述整流器还包括:第二交流信号开关模块和第三交流信号开关模块,
    所述第二交流信号开关模块与所述第一电感并联,且与所述驱动控制电路连接,
    所述第三交流信号开关模块与所述第二电感并联,且与所述驱动控制电路连接。
  12. 根据权利要求11所述的整流器,其特征在于,所述驱动控制电路还用于:
    在所述第二工作模式下,开启所述第二交流信号开关模块,以使所述第一输入端的电信号中低频分量经过所述第一电感,高频分量经过所述第二交流信号开关模块;开启所述第三交流信号开关模块,以使所述第二输入端的电信号中低频分量经过所述第二电感,高频分量经过所述第三交流信号开关模块;
    在所述第一工作模式下,关闭所述第二交流信号开关模块和所述第三交流信号开关模块。
  13. 根据权利要求11所述的整流器,其特征在于,
    所述第二交流信号开关模块包括:串联的第六半导体开关和第二旁路电容,所述第六半导体开关与所述驱动控制电路连接;
    所述第三交流信号开关模块包括:串联的第七半导体开关和第三旁路电容,所述第七半导体开关与所述驱动控制电路连接。
  14. 根据权利要求13所述的整流器,其特征在于,
    所述驱动控制电路用于:在所述第二工作模式下,开启所述第六半导体开关,以开启所述第二交流信号开关模块;在所述第一工作模式下,关闭所述第六半导体开关,以关闭所述第二交流信号开关模块;
    所述驱动控制电路用于:在所述第二工作模式下,开启所述第七半导体开关,以开启所述第三交流信号开关模块;在所述第一工作模式下,关闭所述第七半导体开关,以关闭所述第三交流信号开关模块。
  15. 根据权利要求3、4、11、12、13或14所述的整流器,其特征在于,所述整流器还包括第二电容和第三电容,
    所述第一电感设置在所述第一上桥臂上,所述第二电感设置在所述第二上桥臂上,所述第二电容设置在所述第一下桥臂上且与所述第二半导体开关并联,所述第三电容设置在所述第二下桥臂上且与所述第四半导体开关并联。
  16. 根据权利要求3、4、11、12、13或14所述的整流器,其特征在于,所述整流器还包括第二电容和第三电容,
    所述第一电感设置在所述第一下桥臂上,所述第二电感设置在所述第二下桥臂上,所述第二电容设置在所述第一上桥臂上且与所述第一半导体开关并联,所述第三电容设置在所述第二上桥臂上且与所述第三半导体开关并联。
  17. 根据权利要求3、4、11、12、13、14、15或16所述的整流器,其特征在于,所述第一半导体开关,第二半导体开关,第三半导体开关或第四半导体开关为晶体管。
  18. 根据权利要求2、4、5、6、7、8、11、12、13、14、15、16或17所述的整流器,其特征在于,所述半导体开关的控制极均与所述驱动控制电路的输出端连接,所述输出端用于输出控制信号,所述控制信号用于控制所述半导体开关开启或关闭。
  19. 根据权利要求2、4、5、6、7、8、11、12、13、14、15、16、17或18所述的整流器,其特征在于,所述驱动控制电路内部包括鉴频器,
    所述鉴频器用于根据所述输入端的电信号的频率确定待进入的工作模式,所述待进入的工作模式为所述第一工作模式或所述第二工作模式,所述输入端为所述第一输入端,或者, 所述输入端为所述第一输入端和所述第二输入端。
  20. 一种整流器的驱动方法,其特征在于,用于整流器中,所述整流器包括第一桥臂和第一电感,所述第一桥臂包括第一上桥臂和第一下桥臂,所述第一上桥臂耦合在第一输入端与电压输出端之间,所述第一下桥臂耦合在所述第一输入端与接地端之间,所述第一上桥臂上设置有第一半导体开关,所述第一下桥臂上设置有第二半导体开关,所述第一电感设置在所述第一上桥臂或所述第一下桥臂上,
    所述方法包括:
    根据输入端的电信号的频率确定待进入的工作模式,所述待进入的工作模式为所述第一工作模式或所述第二工作模式,所述输入端包括第一输入端;
    根据确定的所述待进入的工作模式,控制所述第一上桥臂以及所述第一下桥臂的导通或关闭。
  21. 根据权利要求20所述的方法,其特征在于,所述整流器还包括驱动控制电路,
    所述根据确定的所述待进入的工作模式,控制所述第一上桥臂以及所述第一下桥臂的导通或关闭,包括:
    在所述第一工作模式下,当所述第一电感设置在所述第一上桥臂上时,通过所述驱动控制电路开启所述第一半导体开关,并周期性开启或关闭所述第二半导体开关;当所述第一电感设置在所述第一下桥臂时,通过所述驱动控制电路开启所述第二半导体开关,并周期性开启或关闭所述第一半导体开关;
    在所述第二工作模式下,通过所述驱动控制电路在不同时段开启所述第一半导体开关和所述第二半导体开关。
  22. 根据权利要求20所述的方法,其特征在于,所述整流器还包括第二桥臂和第二电感,所述第二桥臂包括第二上桥臂和第二下桥臂,所述第二上桥臂耦合在第二输入端与所述电压输出端之间,所述第二下桥臂耦合在所述第二输入端与所述接地端之间,所述第二上桥臂上设置有第三半导体开关,所述第二下桥臂上设置有第四半导体开关,所述第一电感和所述第二电感的设置符合下面情况中的一个:所述第一电感设置在所述第一上桥臂上,所述第二电感设置在所述第二上桥臂上且与所述第三半导体开关串联;或者,所述第一电感设置在所述第一下桥臂上,所述第二电感设置在所述第二下桥臂上且与所述第四半导体开关串联,所述输入端还包括所述第二输入端,
    所述方法还包括:
    根据确定的所述待进入的工作模式,控制所述第二上桥臂以及所述第二下桥臂的导通或关闭。
  23. 根据权利要求22所述的方法,其特征在于,所述整流器还包括驱动控制电路,
    根据确定的所述待进入的工作模式,控制所述第一上桥臂,所述第一下桥臂,所述第二上桥臂,以及所述第二下桥臂的导通或关闭,包括:
    在所述第一工作模式下,当所述第一电感设置在所述第一上桥臂上,所述第二电感设置 在所述第二上桥臂上时,通过所述驱动控制电路开启所述第一半导体开关,开启所述第三半导体开关,并在不同时段开启所述第二半导体开关和所述第四半导体开关;当所述第一电感设置在所述第一下桥臂上,所述第二电感设置在所述第二下桥臂上时,通过所述驱动控制电路开启所述第二半导体开关,开启所述第四半导体开关,并在不同时段开启所述第一半导体开关和所述第三半导体开关;
    在所述第二工作模式下,通过所述驱动控制电路在不同时段开启两个半导体开关组,以使同一时段内两个桥臂组中一个导通,另一个关闭,所述两个半导体开关组中一个半导体开关组包括所述第三半导体开关和所述第二半导体开关,另一个半导体开关组包括所述第一半导体开关和所述第四半导体开关,两个桥臂组中一个桥臂组包括所述第一下桥臂和所述第二上桥臂,另一个桥臂组包括所述第二下桥臂和所述第一上桥臂。
  24. 根据权利要求21所述的方法,其特征在于,所述整流器还包括:第一交流信号开关模块,
    所述方法还包括:
    在所述第二工作模式下,通过所述驱动控制电路开启所述第一交流信号开关模块,以使所述第一输入端的电信号中低频分量经过所述第一电感,高频分量经过所述第一交流信号开关模块;
    在所述第一工作模式下,通过所述驱动控制电路关闭所述第一交流信号开关模块。
  25. 根据权利要求23所述的方法,其特征在于,所述整流器还包括:第二交流信号开关模块和第三交流信号开关模块,
    所述方法还包括:
    在所述第二工作模式下,通过所述驱动控制电路开启所述第二交流信号开关模块,以使所述第一输入端的电信号中低频分量经过所述第一电感,高频分量经过所述第二交流信号开关模块;通过所述驱动控制电路开启所述第三交流信号开关模块,以使所述第二输入端的电信号中低频分量经过所述第二电感,高频分量经过所述第三交流信号开关模块;
    在所述第一工作模式下,通过所述驱动控制电路关闭所述第二交流信号开关模块和所述第三交流信号开关模块。
  26. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或存储有程序指令,用于实现如权利要求20至25任一所述的整流器的驱动方法。
  27. 一种芯片,其特征在于,包括整流器,以及与所述整流器连接的谐振电路和输出电容,
    所述整流器为权利要求1至19任一所述的整流器;
    所述谐振电路用于接收发送端设备发送的电信号,并将所述电信号提供给所述整流器的输入端,所述输入端为第一输入端,或者,所述输入端为第一输入端和第二输入端;
    所述输出电容用于将所述整流器转换得到的直流电信号进行稳压处理,并提供给负载。
  28. 一种电子设备,其特征在于,所述电子设备装载有权利要求27所述的芯片。
PCT/CN2018/093916 2018-06-30 2018-06-30 整流器及其驱动方法、芯片、电力设备 WO2020000481A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880091474.8A CN111869085B (zh) 2018-06-30 2018-06-30 整流器及其驱动方法、芯片、电力设备
PCT/CN2018/093916 WO2020000481A1 (zh) 2018-06-30 2018-06-30 整流器及其驱动方法、芯片、电力设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093916 WO2020000481A1 (zh) 2018-06-30 2018-06-30 整流器及其驱动方法、芯片、电力设备

Publications (1)

Publication Number Publication Date
WO2020000481A1 true WO2020000481A1 (zh) 2020-01-02

Family

ID=68984427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093916 WO2020000481A1 (zh) 2018-06-30 2018-06-30 整流器及其驱动方法、芯片、电力设备

Country Status (2)

Country Link
CN (1) CN111869085B (zh)
WO (1) WO2020000481A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130234531A1 (en) * 2012-03-09 2013-09-12 Auckland Uniservices Limited Shorting period control in inductive power transfer systems
CN204465378U (zh) * 2014-08-28 2015-07-08 深圳维普创新科技有限公司 推挽逆变器
CN105186705A (zh) * 2015-08-04 2015-12-23 宁波微鹅电子科技有限公司 一种高效率的电能发射端、非接触电能传输装置和电能传输方法
CN105703450A (zh) * 2016-04-15 2016-06-22 中国计量大学 基于低频pwm整流器及补偿电容的无线充电装置
CN107888106A (zh) * 2017-12-04 2018-04-06 黑龙江大学 小功率高频双向ac‑dc双管变换器及无线充电方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441691B (zh) * 2013-07-19 2015-10-28 浙江大学 一种谐振型电力电子变流器及变流器装置
CN104883038B (zh) * 2015-06-15 2017-12-12 山东大学 一种应用负压关断半桥电路驱动器的半桥电路及其方法
CN106208788A (zh) * 2016-08-29 2016-12-07 东北电力大学 一种基于aac的多模块电压源型逆变器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130234531A1 (en) * 2012-03-09 2013-09-12 Auckland Uniservices Limited Shorting period control in inductive power transfer systems
CN204465378U (zh) * 2014-08-28 2015-07-08 深圳维普创新科技有限公司 推挽逆变器
CN105186705A (zh) * 2015-08-04 2015-12-23 宁波微鹅电子科技有限公司 一种高效率的电能发射端、非接触电能传输装置和电能传输方法
CN105703450A (zh) * 2016-04-15 2016-06-22 中国计量大学 基于低频pwm整流器及补偿电容的无线充电装置
CN107888106A (zh) * 2017-12-04 2018-04-06 黑龙江大学 小功率高频双向ac‑dc双管变换器及无线充电方法

Also Published As

Publication number Publication date
CN111869085B (zh) 2022-02-18
CN111869085A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
US9853460B2 (en) Power conversion circuit, power transmission system, and power conversion system
US11750033B2 (en) Wireless power transfer control apparatus and method
US10554115B2 (en) Harmonic reduction apparatus for wireless power transfer systems
US10566840B2 (en) Wireless power feeding system
US10340807B2 (en) Gate drive apparatus for resonant converters
US10177602B2 (en) Wireless power receiver with programmable power path
EP2950423B1 (en) Power transmitting device and wireless power transmission system
US11011936B2 (en) Single-stage transmitter for wireless power transfer
US20180337610A1 (en) PWM Controlled Resonant Converter
US20120068548A1 (en) Wireless power supply apparatus
US11437854B2 (en) Variable wireless power transfer system
WO2014125392A1 (en) Dynamic resonant matching circuit for wireless power receivers
US20190067997A1 (en) Wireless power transmitting apparatus and method thereof
Sun et al. Inductor design and ZVS control for a GaN-based high efficiency CRM totem-pole PFC converter
KR20200071286A (ko) 무선 전력 수신기
US11569757B2 (en) System for transferring electrical power to an electrical load
US20240171010A1 (en) Structures for In-Band Communications in Wireless Charging
WO2020000481A1 (zh) 整流器及其驱动方法、芯片、电力设备
WO2023020051A1 (zh) 谐振变换器、谐振变换器的控制方法及电源适配器
CN113328534B (zh) 一种无线电能接收端的主副线圈联合电压装置
CN108400625B (zh) 基于ddq磁结构的均流电路
Kasper et al. Hybrid fixed/variable frequency TCM average current control method enabling ZVS MHz operation of GaN HEMTs in PFC stages
CN111987897A (zh) 用于pfc拓扑的高压启动电路、pfc电路和ac/dc变换器
CN216774387U (zh) 一种电流型无线充电发射端和设备
CN110993279B (zh) 一种平面变压器及开关电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924262

Country of ref document: EP

Kind code of ref document: A1