WO2020000402A1 - 可移动平台的操控方法、装置及可移动平台 - Google Patents

可移动平台的操控方法、装置及可移动平台 Download PDF

Info

Publication number
WO2020000402A1
WO2020000402A1 PCT/CN2018/093766 CN2018093766W WO2020000402A1 WO 2020000402 A1 WO2020000402 A1 WO 2020000402A1 CN 2018093766 W CN2018093766 W CN 2018093766W WO 2020000402 A1 WO2020000402 A1 WO 2020000402A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
movable platform
information
coordinate system
preset coordinate
Prior art date
Application number
PCT/CN2018/093766
Other languages
English (en)
French (fr)
Inventor
颜江
刘昂
胡骁
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/093766 priority Critical patent/WO2020000402A1/zh
Priority to CN201880031264.XA priority patent/CN110709797A/zh
Publication of WO2020000402A1 publication Critical patent/WO2020000402A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04817Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance using icons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04842Selection of displayed objects or displayed text elements

Definitions

  • the present application relates to the field of control technology, and in particular, to a method, a device, and a movable platform for controlling a movable platform.
  • drones With the popularity of drones, the control methods of drones have also developed in a diversified trend. At present, there are two main types of drone control, one is through the user's handheld remote control, and the other is through the virtual joystick on the terminal device. These two control methods are less interesting .
  • Embodiments of the present invention provide a method and device for controlling a mobile platform, and a mobile platform to improve the fun and user experience of controlling a mobile platform.
  • a first aspect of the embodiments of the present invention is to provide a method, including:
  • the pointing flight mode In the pointing flight mode, detecting a user's click selection operation on the terminal device interface, the pointing flight mode includes a somatosensory control mode;
  • controlling the movable platform Based on the motion information, controlling the movable platform to perform a movement operation corresponding to the motion information.
  • a second aspect of the embodiments of the present invention is to provide a control device for a movable platform, including a memory and a processor;
  • the memory is used to store program code
  • the processor calls the program code, and when the program code is executed, is used to perform the following operations:
  • the pointing flight mode In the pointing flight mode, detecting a user's click selection operation on the terminal device interface, the pointing flight mode includes a somatosensory control mode;
  • the movable platform is controlled to perform a movement operation corresponding to the motion information.
  • a third aspect of the embodiments of the present invention is to provide a mobile platform, including:
  • a power system mounted on the fuselage and configured to provide power to the mobile platform
  • a user's click operation on a terminal device interface is detected, and when the user clicks to select a somatosensory control mode, motion information of the terminal device is acquired, and based on the motion information, the mobile platform is controlled to execute A movement operation corresponding to the motion information. Therefore, the purpose of controlling the movement of the movable platform through the mobile terminal device is achieved.
  • the embodiment of the present invention uses a mobile terminal device to control the movement of the mobile platform. It is interesting and improves the user's experience in manipulating the mobile platform.
  • FIG. 1 is a flowchart of a method for controlling a movable platform according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an interface of a terminal device after entering a pointing flight mode according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing an interface display of a terminal device in a somatosensory control mode according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for controlling a movable platform according to an embodiment of the present invention
  • FIG. 5 is a motion diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 6 is a motion diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 7 is a motion diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a control device for a movable platform according to an embodiment of the present invention.
  • a component when a component is called “fixed to” another component, it may be directly on another component or a centered component may exist. When a component is considered to be “connected” to another component, it can be directly connected to another component or a centered component may exist at the same time.
  • An embodiment of the present invention provides a control method of a movable platform, which is used to provide a somatosensory control mode.
  • the mobile device In the designated flight mode, when the user clicks on the interface of the terminal device to select the somatosensory control mode, the mobile device acquires motion information of the terminal device and controls the movable platform to perform a movement operation corresponding to the motion information based on the motion information. Therefore, the purpose of controlling the movement of the movable platform through a mobile terminal device is achieved.
  • the somatosensory control mode provided by the embodiment of the present invention is more interesting and can improve users. Control experience.
  • FIG. 1 is a flowchart of a method for controlling a movable platform according to an embodiment of the present invention.
  • the method may be executed by a control device of a movable platform (hereinafter referred to as a control device). As shown in FIG. 1, the method It includes the following steps:
  • Step 101 In a pointing flight mode, detecting a user's click selection operation on a terminal device interface, the pointing flight mode includes a somatosensory control mode.
  • the pointing flight mode refers to a flight mode in which a user clicks on a terminal device interface to determine a flight direction, and an unmanned aerial vehicle is flying in that direction.
  • the somatosensory control mode refers to a control mode for controlling the movement of the movable platform by controlling the movement of the terminal device (for example, rotation, translation, etc., but not limited to rotation and translation).
  • the movable platform involved in this embodiment includes, but is not limited to, a drone and a car.
  • the terminal device in this embodiment is provided with an application program that can be used to control the movement of the movable platform.
  • the application program includes a pointing flight mode that can be used to implement a pointing flight function.
  • the pointing flight mode in this embodiment includes at least a somatosensory control mode.
  • the pointing flight mode may even include other preset control modes, such as a virtual joystick-based control mode, an automatic flight mode, and the like, which are not specifically limited in this embodiment.
  • FIG. 2 is a schematic diagram of an interface of a terminal device after entering a pointing flight mode according to an embodiment of the present invention.
  • icon 21 is used to indicate a somatosensory control mode
  • icon 22 is used to indicate another preset. It is necessary to explain here that Figure 2 only uses two control modes as an example. In the actual scene, the pointing flight mode may only include the somatosensory control mode, and may include one or more other than the somatosensory control mode. Preset other control modes.
  • the terminal device enters a somatosensory manipulation mode. At this time, the user controls the movement of the movable platform through the mobile terminal device.
  • Step 102 When the user clicks to select a somatosensory control mode, motion information of the terminal device is acquired.
  • the control device can obtain the motion information of the terminal device through real-time measurement of sensors or measurement modules set on the terminal device in advance.
  • the inertial measurement on the terminal device can be used to measure the mobile platform's coordinate system The three-axis attitude angle, and acceleration and other information.
  • this is only an example description for easy understanding, and not the only limitation on the motion information and the method for acquiring the motion information.
  • the motion information designed in this embodiment may include, but is not limited to, posture information of the terminal device in a preset coordinate system, where the posture information includes a tilt angle and a tilt direction of the terminal device in the preset coordinate system, and the terminal The tilt direction of the device in a preset coordinate system and the amount of angular change or tilt speed in the tilt direction.
  • a graphic representing a movable platform may be displayed on the interface of the terminal device, and the posture of the graphic is synchronized with the posture of the movable platform, that is, When the terminal device moves, such as rotation, tilt, etc., the movable platform correspondingly performs a movement corresponding to the motion state of the terminal device according to a preset mapping relationship. At this time, the foregoing image appears movable on the interface of the terminal device.
  • the movement performed by the platform For example, when the mobile platform executes a left yaw operation based on the movement of the terminal device, the graphics on the terminal device also present the left yaw state accordingly.
  • this is only an example description for easy understanding, but not the only limitation.
  • the mapping relationship between the motion state of the terminal device and the mobile platform can be set according to needs. This embodiment does not make specific details. limited.
  • this embodiment may also display the posture information on the interface of the terminal device in real time. In order to enable users to accurately control their own operating conditions, and timely detect inappropriate operations, improve the accuracy and reliability of control.
  • a preset coordinate system may also be displayed on the interface of the terminal device, and the coordinate system is used to display a graphic representing the movable platform, the posture information of the terminal device, and the graphic posture.
  • Corresponding movement control information makes it possible to more vividly reflect the current operating state, and the reference of the coordinate system can also help users to control the mobile platform more accurately.
  • FIG. 3 is a schematic diagram of an interface display of a terminal device in a somatosensory control mode according to an embodiment of the present invention.
  • FIG. 3 includes a first display area 31 and a second display area 32.
  • the first display area 31 is used for For displaying the movement status of the movable platform
  • the figure 310 in the first display area 31 is used to indicate the movable platform
  • the movement status of the figure 310 is synchronized with the movable platform
  • the second display area 32 is used to display the movement status of the terminal device.
  • x, y, and z are respectively three coordinate axes in the preset coordinate system, and the figure 320 is synchronized with the movement state of the terminal device, and is used to indicate the movement state of the terminal device.
  • the attitude information of the terminal device at this time includes the tilt angle and the tilt direction, and the image 320 is tilted to the same tilt direction in the preset coordinate system correspondingly.
  • the image 320 is performing a tilt operation .
  • the amount of change in angle of the oblique direction of the apparatus, the corresponding graph 320 performs tilt action in this direction, the graphical display 320 in real time the amount of change in the tilt angle direction. Since the graphics 320 are synchronized with the actions of the terminal device, the user can achieve precise control of the movable platform by observing the tilt direction and the amount of tilt angle change of the graphics 320.
  • the tilt speed of the terminal device in the tilt direction can also be calculated in real time through a preset algorithm, and the tilt speed is displayed on the second display area 32 at the same time, so that the user can accurately Control the speed of the change of state of the movable platform to avoid danger caused by excessive changes in state.
  • the display mode of the terminal device interface can be set as required, instead of being limited to the display mode of FIG. 3 described above.
  • Step 103 Based on the motion information, control the movable platform to perform a movement operation corresponding to the motion information.
  • an association relationship between motion information of a terminal device and movement control information of a movable platform is set in advance.
  • the association relationship can map the motion information of the terminal device to control information for controlling the movement of the movable platform, so that the movable platform can be controlled to perform corresponding movement according to the control information.
  • the rotation operation of the terminal device along the x-axis in the preset coordinate system can be mapped to yaw control information, and the movable platform is controlled to perform a yaw operation to the left or right according to the yaw control information.
  • this is only an example description for easy understanding, and is not the only limitation on the present invention.
  • the above-mentioned association relationship can be set according to needs, instead of being limited to a fixed form.
  • a user's click operation on a terminal device interface is detected, and when the user clicks to select a somatosensory control mode, motion information of the terminal device is acquired, and based on the motion information, the mobile platform is controlled to execute and The movement operation corresponding to the motion information. Therefore, the purpose of controlling the movement of the movable platform through the mobile terminal device is achieved. Compared with the traditional handheld remote control or the virtual joystick to control the movable platform, the technical solution for controlling the movement of the mobile platform through the mobile terminal device in this embodiment has more interesting, improve the user's experience in manipulating the mobile platform.
  • FIG. 4 is a flowchart of a method for controlling a movable platform according to an embodiment of the present invention. As shown in FIG. 4, based on the above embodiment, the method includes the following steps:
  • Step 201 In a pointing flight mode, detecting a user's click selection operation on a terminal device interface, the pointing flight mode includes a somatosensory control mode.
  • Step 202 When the user clicks to select a somatosensory manipulation mode, motion information of the terminal device is acquired.
  • Step 203 Determine movement control information corresponding to the motion information based on a preset association relationship, where the association relationship is a relationship between the movement information of the terminal device and the movement control information of the movable platform.
  • the association relationship in this embodiment includes an association relationship between the movement information of the terminal device around the first coordinate axis in the preset coordinate system and the roll control information of the movable platform.
  • FIG. 5 is a schematic motion diagram of a terminal device according to an embodiment of the present invention.
  • the first coordinate axis is specifically an x axis of a preset coordinate system.
  • the rotation angle of the terminal device around the x-axis is mapped to the amount of the rolling rod used to control the movable platform.
  • the specific mapping relationship can be expressed as an example:
  • angX is the rotation angle of the middle terminal device about the x axis
  • f (angX) is the corresponding amount of the rolling rod. Rolling the lever will make the original trajectory left or right.
  • the adjusted track direction is NDb, then the track adjustment method is:
  • the intuitive effect is that if the terminal device is rotated around the x axis to the right, the movement trajectory of the movable platform is deviated to the right, and the terminal device is rotated to the left around the x axis to deflect the trajectory of the movable platform to the left.
  • the association relationship in this embodiment includes: an association relationship between the motion information of the terminal device around the second coordinate axis in the preset coordinate system and the yaw control information of the movable platform.
  • FIG. 6 is a schematic motion diagram of a terminal device according to an embodiment of the present invention.
  • the second coordinate axis is specifically a z-axis of a preset coordinate system.
  • the rotation angle of the terminal device around the z-axis is mapped to the amount of yaw stick used to control the movable platform.
  • the specific mapping relationship can be expressed as an example:
  • angZ is the rotation angle of the middle terminal device about the z-axis
  • f (angZ) is the corresponding yaw amount.
  • the amount of yaw will change the original trajectory into a curve that is approximately circular.
  • Set the speed of the current movable platform to Vcur, the maximum allowable tilt angle of the movable platform, tileMax.
  • the movable platform must ensure a certain tilt angle. According to a preset function g (Vcur, tileMax), it can be approximated.
  • r is the radius of the trajectory and w is the angular velocity of the movement.
  • the intuitive effect is that if the terminal device rotates to the right, the movable platform flies to the right, and the terminal device rotates to the left, the movable platform flies to the left.
  • the radius of the circular track is related to the speed of the movable platform at the time of entry.
  • the association relationship in this embodiment includes: the movement information of the terminal device around the third coordinate axis in the preset coordinate system and the pitch control information of the movable platform or the pan / tilt mounted on the movable platform The relationship between them.
  • FIG. 7 is a schematic motion diagram of a terminal device according to an embodiment of the present invention.
  • the third coordinate axis is specifically a y-axis of a preset coordinate system.
  • the rotation angle of the terminal device around the y-axis is mapped to the amount of the pulsator lever.
  • the specific mapping relationship can be expressed as an example:
  • angY is the rotation angle of the middle terminal device about the y-axis
  • f (angY) is the corresponding pulsator lever amount.
  • the amount of the pulsator lever will be used to directly control the tilt angle of the gimbal.
  • the intuitive effect is that when the terminal device rotates outward about the y-axis, the gimbal rotates downward, and the pitch angle increases. Turn it up and the pitch angle decreases.
  • Step 204 Control the mobile platform to move based on the movement control information.
  • This embodiment maps the rotation operation of the terminal device around different coordinate axes into different levers for controlling the movable platform, thereby achieving a tight combination between the movement of the terminal and the movement of the movable platform.
  • PTZ control of movement improves fun and enhances user experience.
  • FIG. 8 is a schematic structural diagram of a control device for a movable platform according to an embodiment of the present invention.
  • the control device 80 includes a memory 81 and a processor 82, where the memory 81 is used to store program code and process The programmer 82 calls the program code.
  • the program code When the program code is executed, it is used to perform the following operations:
  • In the pointing flight mode it is used to detect a click operation on the terminal device interface.
  • the pointing flight mode includes a somatosensory control mode.
  • the control mode motion information of the terminal device is acquired, and based on the motion information, the mobile platform is controlled to perform a movement operation corresponding to the motion information.
  • the processor 82 when the processor 82 acquires the motion information of the terminal device, it performs the following operation: acquiring the posture information of the terminal device in a preset coordinate system.
  • the device further includes: a display component 83, and the display component 83 is communicatively connected to the processor 82, and is configured to display posture information of the terminal device on the terminal device interface.
  • the display component 83 displays the posture information of the terminal device on the terminal device interface
  • the following operation is performed: displaying the preset coordinate system on the terminal device interface, Displaying the attitude information of the terminal device in the preset coordinate system.
  • the posture information includes a tilt angle and a tilt direction of the terminal device in a preset coordinate system; the display component 83 displays the terminal in the preset coordinate system When the posture information of the device is performed, the following operation is performed: displaying the tilt angle and the tilt direction in the preset coordinate system.
  • the posture information includes a tilt direction of the terminal device in a preset coordinate system, and an angle change amount in the tilt direction; the display component 83 is in the preset When the posture information of the terminal device is displayed in the coordinate system, the following operation is performed: displaying the tilt direction and the angle change amount in the preset coordinate system.
  • the processor 82 when the processor 82 acquires the motion information of the terminal device, the processor 82 performs the following operation: acquiring the tilt speed of the terminal device in the tilt direction.
  • the processor 82 controls the movable platform to perform a corresponding movement operation based on the movement information
  • the processor 82 performs the following operation: determining a movement corresponding to the movement information based on a preset association relationship.
  • Control information wherein the association relationship is a relationship between motion information of the terminal device and movement control information of the movable platform; and controlling movement of the movable platform based on the movement control information.
  • the association relationship includes an association relationship between motion information of the terminal device around a first coordinate axis in the preset coordinate system and roll control information of the movable platform. .
  • the association relationship includes an association relationship between motion information of the terminal device around a second coordinate axis in the preset coordinate system and yaw control information of the movable platform. .
  • the association relationship includes: movement information of the terminal device around a third coordinate axis in the preset coordinate system and the movable platform or a cloud carried on the movable platform Correlation between the platform's pitch control information.
  • the display component 83 is configured to display a graphic for representing the movable platform on an interface of the terminal device, and the posture of the graphic is synchronized with the posture of the movable platform.
  • the display component 83 is further configured to display movement control information corresponding to the posture of the graphic on an interface of the terminal device.
  • the control device 80 provided in this embodiment can execute the control method of the movable platform provided in the foregoing embodiments, and the execution manner and beneficial effects thereof are similar, and are not described herein again.
  • An embodiment of the present invention further provides a mobile platform.
  • the mobile platform includes:
  • a power system mounted on the fuselage and configured to provide power to the mobile platform
  • the mobile platform includes at least one of a drone and a car as follows.
  • the disclosed apparatus and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the above integrated unit implemented in the form of a software functional unit may be stored in a computer-readable storage medium.
  • the software functional unit is stored in a storage medium and includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device) or a processor to execute the methods described in the embodiments of the present invention. Some steps.
  • the foregoing storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本发明实施例提供一种可移动平台的操控方法、装置及可移动平台,其中,该方法包括:在指点飞行模式中,检测用户在终端设备界面上的点击选择操作,所述指点飞行模式包括体感操控模式;当用户点击选择体感操控模式时,获取所述终端设备的运动信息;基于所述运动信息,控制可移动平台执行与所述运动信息对应的移动操作。本发明实施例提供的技术方案能够提高操控移动平台的趣味性和用户体验。

Description

可移动平台的操控方法、装置及可移动平台 技术领域
本申请涉及控制技术领域,尤其涉及一种可移动平台的操控方法、装置及可移动平台。
背景技术
随着无人机的普及,无人机的操控方法也呈多样化的趋势发展。目前无人机的操控是主要有两种,一种是通过用户端的手持遥控器来进行操控,另一种是通过终端设备上的虚拟摇杆进行操控,这两种操控方式的趣味性较差。
发明内容
本发明实施例提供一种可移动平台的操控方法、装置及可移动平台,用以提高操控移动平台的趣味性和用户体验。
本发明实施例的第一方面是提供一种,包括:
在指点飞行模式中,检测用户在终端设备界面上的点击选择操作,所述指点飞行模式包括体感操控模式;
当用户点击选择体感操控模式时,获取所述终端设备的运动信息;
基于所述运动信息,控制可移动平台执行与所述运动信息对应的移动操作。
本发明实施例的第二方面是提供一种可移动平台的操控装置,包括存储器和处理器;
所述存储器用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
在指点飞行模式中,检测用户在终端设备界面上的点击选择操作,所述指点飞行模式包括体感操控模式;
当用户点击选择体感操控模式时,获取所述终端设备的运动信息;
基于所述运动信息,控制可移动平台执行与所述运动信息对应的移动 操作。
本发明实施例的第三方面是提供一种移动平台,包括:
机身;
动力系统,安装在所述机身,用于为所述移动平台提供动力;
以及上述第二方面提供的移动装置。
本发明实施例,通过在指点飞行模式中,检测用户在终端设备界面上的点击操作,当用户点击选择体感操控模式时,获取终端设备的运动信息,并基于该运动信息,控制可移动平台执行与该运动信息对应的移动操作。从而实现了通过移动终端设备控制可移动平台移动的目的,相比于传统的手持遥控器或者虚拟摇杆控制可移动平台的方案,本发明实施例通过移动终端设备控制移动平台移动的技术方案更加具有趣味性,提高了用户操控可移动平台的体验。
附图说明
图1是本发明实施例提供的一种可移动平台的操控方法的流程图;
图2为本发明实施例提供的一种进入指点飞行模式后终端设备的界面示意图;
图3是本发明实施例提供的一种在体感操控模式终端设备的界面显示示意图;
图4是本发明实施例提供的一种可移动平台的操控方法的流程图;
图5是本发明实施例提供的一种终端设备的运动示意图;
图6是本发明实施例提供的一种终端设备的运动示意图;
图7是本发明实施例提供的一种终端设备的运动示意图;
图8是本发明实施例提供的一种可移动平台的操控装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种可移动平台的操控方法,该方法用于提供一种体感操控模式。在指定飞行模式中,当用户在终端设备的界面上点击选择体感操控模式时,通过获取终端设备的运动信息,并基于该运动信息来控制可移动平台执行与该运动信息相对应的移动操作。从而实现通过移动终端设备来控制可移动平台移动的目的,相较于现有的基于手持遥控器或虚拟摇杆的操控方式,本发明实施例提供的体感操控模式更加具有趣味性,能够提高用户的操控体验。
下面对本发明实施例中的可移动平台的操控方法进行举例描述。
图1是本发明实施例提供的一种可移动平台的操控方法的流程图,该方法可以由一种可移动平台的操控装置(以下简称操控装置)来执行,如图1所示,该方法包括如下步骤:
步骤101、在指点飞行模式中,检测用户在终端设备界面上的点击选择操作,所述指点飞行模式包括体感操控模式。
其中,指点飞行模式是指,用户在终端设备界面点击确定飞行的方向,无人飞行器朝向该方向飞行的飞行模式。
体感操控模式是指,通过操控终端设备移动(比如,旋转、平移等,但不局限于旋转和平移)来控制可移动平台移动的操控模式。其中,本实施例中涉及的可移动平台包括但不局限于:无人机和汽车。
在本实施例中的终端设备中设置有可用于控制可移动平台移动的应用程序,该应用程序包括可用于实现指点飞行功能的指点飞行模式,本实施例中的指点飞行模式至少包括体感操控模式,在一些其他的场景中指点飞行模式甚至还可以包括预设的其他操控模式,比如,基于虚拟摇杆的操控模式、自动飞行模式等等,本实施例中不做具体限定。
当用户启动上述应用程序并进入指点飞行功能时,终端设备的界面上显示指点飞行模式下可选择的操控模式,其中就包括体感操控模式。示例的,图2为本发明实施例提供的一种进入指点飞行模式后终端设备的界面示意图,在图2中,图标21,用于表示体感操控模式,图标22用于表示预设的另一种操控模式,这里需要说明的是,图2中仅为以两种操控模式为例,实际场景中,指点飞行模式下可以只包括体感操控模式,也可以包括除体感操控模式以外的一个或多个预设的其他操控模式。进一步的,当检测到用户对界面上的图标21执行了点击选择操作,则终端设备进入体感操控模式,此时,用户通过移动终端设备来控制可移动平台移动。
步骤102、当用户点击选择体感操控模式时,获取所述终端设备的运动信息。
在进入体感操控模式后,操控装置可以通过预先设置在终端设备上的传感器或者测量模块实时测量获得终端设备的运动信息,比如,可以通过终端设备上的惯性测量测量可移动平台在机身坐标系下的三轴姿态角,以及加速度等信息。当然这里仅是为方便理解所做的示例说明而不是对运动信息以及运动信息获取方法的唯一限定。实际上本实施例中设计的运动信息可以包括但又不局限于包括终端设备在预设坐标系下的姿态信息,其中姿态信息包括终端设备在预设坐标系下的倾斜角和倾斜方向、终端设备在预设坐标系下的倾斜方向以及在该倾斜方向上的角度变化量或者倾斜速度。
另外,在一种可能的设计中,当终端设备进入体感操控模式时,还可以在终端设备的界面上显示用于表示可移动平台的图形,该图形的姿态与可移动平台的姿态同步,即终端设备发生移动比如旋转、倾斜等,可移动平台相应的也会根据预设的映射关系,执行与终端设备的运动状态相对应的移动,此时在终端设备的界面上前述图像呈现出可移动平台所执行的移 动。比如当可移动平台基于终端设备的移动执行左偏航操作时,终端设备上的图形此时也相应的呈现左偏航的状态。当然这里仅为便于理解所做的示例说明,而不是唯一限定,实际上终端设备的运动状态与可移动平台移动状态之间的映射关系,可以根据需要进行设定,本实施例中不做具体限定。
进一步的,为了便于用户清楚详细的了解到当前操作终端设备的状态,本实施例在获得终端设备在预设坐标系下的姿态信息后,还可以在终端设备的界面上实时显示该姿态信息,以使用户能够精确的掌控自己的操作状态,及时发现不恰当的操作,提高控制的精确性和可靠性。
或者,在另一种可能的设计中,在终端设备的界面上还可以显示预设的坐标系,在该坐标系中显示用于表示可移动平台的图形、终端设备的姿态信息以及与图形姿态相对应的移动控制信息,使得能够更加形象的体现当前的操作状态,同时有坐标系的参考也能帮助用户对可移动平台进行更加精确的控制。
示例的,图3是本发明实施例提供的一种在体感操控模式终端设备的界面显示示意图,在图3中包括第一显示区域31和第二显示区域32,其中,第一显示区域31用于显示可移动平台的移动状态,其中第一显示区域31中的图形310用于表示可移动平台,图形310的移动状态与可移动平台同步,第二显示区域32用于显示终端设备的运动状态,在第二显示区域32中,x、y、z分别为预设坐标系中的三个坐标轴,图形320与终端设备的运动状态同步,用于表示终端设备的运动状态,比如当终端设备朝某个方向倾斜时,此时终端设备的姿态信息包括倾斜角度和倾斜方向,图像320相应在预设坐标系中向该倾斜方向倾斜相同的倾斜角度,与此同时,图像320在执行倾斜操作时,可以在预设坐标系中显示倾斜方向和倾斜角度,或者在前述场景的基础上,还可以根据预设算法计算终端设备的在该倾斜方向上的角度变化量,相应的图形320在该方向上执行倾斜动作时,实时显示图形320在倾斜方向上的角度变化量。由于图形320与终端设备的动作同步,用户通过观察图形320的倾斜方向和倾斜角度变化量,就能实现对可移动平台的精确控制。又或者,在前述场景的基础上,还可以通过预设算法实时计算终端设备在倾斜方向上的倾斜速度,同时在第二显示 区域32上显示该倾斜速度,以使用户能够通过终端设备精确的控制可移动平台的状态变化速度,避免状态变化过于猛烈造成危险。
当然上述仅是以图3为例进行的示例说明,而不是对本发明的唯一限定。实际上,终端设备界面的显示方式可以根据需要进行设定,而不是只局限于上述图3的显示方式。
步骤103、基于所述运动信息,控制可移动平台执行与所述运动信息对应的移动操作。
其中,为了实现体感操控,本实施例预先设定了终端设备的运动信息和可移动平台的移动控制信息之间的关联关系。该关联关系可以将终端设备的运动信息映射成用于控制可移动平台移动的控制信息,从而据该控制信息即可控制可移动平台进行相应的移动。比如,在一个可能的场景中可以将终端设备沿预设坐标系中x轴的转动操作映射为偏航控制信息,根据该偏航控制信息控制可移动平台向左或向右执行偏航操作。当然这里仅为为了便于理解所进行的示例说明,而不是对本发明的唯一限定,实际上上述关联关系可以根据需要进行设定,而不是仅限于一种固定的形式。
本实施例,通过在指点飞行模式中,检测用户在终端设备界面上的点击操作,当用户点击选择体感操控模式时,获取终端设备的运动信息,并基于该运动信息,控制可移动平台执行与该运动信息对应的移动操作。从而实现了通过移动终端设备控制可移动平台移动的目的,相比于传统的手持遥控器或者虚拟摇杆控制可移动平台的方案,本实施例通过移动终端设备控制移动平台移动的技术方案更加具有趣味性,提高了用户操控可移动平台的体验。
图4是本发明实施例提供的一种可移动平台的操控方法的流程图,如图4所示,在上述实施例的基础上,该方法包括如下步骤:
步骤201、在指点飞行模式中,检测用户在终端设备界面上的点击选择操作,所述指点飞行模式包括体感操控模式。
步骤202、当用户点击选择体感操控模式时,获取所述终端设备的运动信息。
步骤203、基于预设的关联关系,确定所述运动信息对应的移动控制信息,其中,所述关联关系为所述终端设备的运动信息和所述可移动平台 的移动控制信息之间的关系。
其中,在一种可能的设计中本实施例中的关联关系包括:终端设备围绕预设坐标系中第一坐标轴的运动信息与可移动平台的横滚控制信息之间的关联关系。示例的,图5是本发明实施例提供的一种终端设备的运动示意图,在图5中示例性的将第一坐标轴具体为预设坐标系的x轴。在图5中当终端设备围绕x轴转动时,终端设备围绕x轴的旋转角度被映射为用于控制可移动平台的滚转杆量,其具体映射关系可示例的表达为:
Figure PCTCN2018093766-appb-000001
其中,angX为中终端设备围绕x轴的旋转角度,f(angX)为对应的滚转杆量。滚转杆量将会使原来的移动轨迹左偏或者右偏。设当前的轨迹方向在可移动平台机身坐标系下的投影为:
Figure PCTCN2018093766-appb-000002
调整后的轨迹方向为NDb,则轨迹的调整方式为:
Figure PCTCN2018093766-appb-000003
直观的效果就是如果终端设备围绕x轴向右旋转则可移动平台的移动轨迹往右偏,终端设备围绕x轴向左旋转则可移动平台的轨迹往左偏。
在又一种可能的设计中本实施例中的关联关系包括:终端设备围绕预设坐标系中第二坐标轴的运动信息与可移动平台的偏航控制信息之间的关联关系。示例的,图6是本发明实施例提供的一种终端设备的运动示意图,在图6中示例性的将第二坐标轴具体为预设坐标系的z轴。在图6中当终端设备围绕z轴转动时,终端设备围绕z轴的旋转角度被映射为用于控制可移动平台的偏航杆量,其具体映射关系可示例的表达为:
Figure PCTCN2018093766-appb-000004
其中,angZ为中终端设备围绕z轴的旋转角度,f(angZ)为对应的偏航杆量。偏航杆量将会使原来的移动轨迹变为近似为圆的曲线。设当前可移动平台的速度大小为Vcur,可移动平台的最大允许倾斜角tileMax,可移动平台要保持当前的速度飞行必须保证一定的倾斜角,根据有预设函数g(Vcur,tileMax)可近似得到当前速度下可移动平台的剩余可用倾斜角,进一步可得到可移动平台能提供的最大向心加速度为aMax=9.8*tan(g(Vcur,tileMax)),从而得到圆轨迹的参数为:
Figure PCTCN2018093766-appb-000005
其中,r为轨迹的半径,w为移动的角速度。直观的效果就是如果终端设备往右旋转则可移动平台往右绕圆飞行,终端设备往左旋转则可移动平台往左绕圆飞行,圆轨迹的半径与进入时刻的可移动平台的速度有关。
在又一种可能的设计中,本实施例中的关联关系包括:终端设备围绕预设坐标系中第三坐标轴的运动信息与可移动平台或可移动平台上搭载的云台的俯仰控制信息之间的关联关系。示例的,图7是本发明实施例提供的一种终端设备的运动示意图,在图7中示例性的将第三坐标轴具体为预设坐标系的y轴。在图7中当终端设备围绕y轴转动时,终端设备围绕y轴的旋转角度被映射为波轮杆量,其具体映射关系可示例的表达为:
Figure PCTCN2018093766-appb-000006
其中,angY为中终端设备围绕y轴的旋转角度,f(angY)为对应的波轮杆量。波轮杆量将会直接用来控制云台的俯仰角,直观的效果就是当终端设备围绕y轴向外旋转时云台向下转动,俯仰角增大,当终端设备向内旋转时云台向上转动,俯仰角减小。可在指点飞行过程中转动终端设备实现云台控制,使相机对准想要拍摄的对象。
步骤204、基于所述移动控制信息,控制所述可移动平台移动。
本实施例通过将终端设备围绕不同坐标轴的旋转操作映射成用于控制可移动平台的不同杆量,从而实现了终端运动与可移动平台运动之间的紧密结合,同时也实现了基于中终端运动的云台控制,提高了趣味性,增强了用户体验。
图8是本发明实施例提供的一种可移动平台的操控装置的结构示意图,如图8所示,操控装置80包括,存储器81和处理器82,其中,存储器81用于存储程序代码,处理器82调用程序代码,当程序代码被执行时,用于执行以下操作:在指点飞行模式中,检测用于在终端设备界面上的点击操作,指点飞行模式包括体感操控模式,当用户点击选择体感操控模式时,获取终端设备的运动信息,基于所述运动信息,控制可移动平台执行与所述运动信息对应的移动操作。
在一种可能的设计中,所述处理器82获取终端设备的运动信息时,执行如下操作:获取终端设备在预设坐标系下的姿态信息。
在又一种可能的设计中,所述装置还包括:显示组件83,显示组件83与处理器82通信连接,用于在所述终端设备界面上显示所述终端设备的姿态信息。
在又一种可能的设计中,所述显示组件83在所述终端设备界面上显示所述终端设备的姿态信息时,执行如下操作:在所述终端设备界面上显示所述预设坐标系,在所述预设坐标系中显示所述终端设备的姿态信息。
在又一种可能的设计中,所述所述姿态信息包括所述终端设备在预设坐标系下的倾斜角度和倾斜方向;所述显示组件83在所述预设坐标系中显示所述终端设备的姿态信息时,执行如下操作:在所述预设坐标系中显示所述倾斜角度和倾斜方向。
在又一种可能的设计中,所述姿态信息包括所述终端设备在预设坐标系下的倾斜方向,以及在所述倾斜方向上的角度变化量;所述显示组件83在所述预设坐标系中显示所述终端设备的姿态信息时,执行如下操作:在所述预设坐标系中显示所述倾斜方向和所述角度变化量。
在又一种可能的设计中,所述处理器82获取终端设备的运动信息时, 执行如下操作:获取所述终端设备在所述倾斜方向上的倾斜速度。
在又一种可能的设计中,所述处理器82基于所述运动信息,控制可移动平台执行相应的移动操作时,执行如下操作:基于预设的关联关系,确定所述运动信息对应的移动控制信息,其中,所述关联关系为所述终端设备的运动信息和所述可移动平台的移动控制信息之间的关系;基于所述移动控制信息,控制所述可移动平台移动。
在又一种可能的设计中,所述关联关系包括:所述终端设备围绕所述预设坐标系中第一坐标轴的运动信息与所述可移动平台的横滚控制信息之间的关联关系。
在又一种可能的设计中,所述关联关系包括:所述终端设备围绕所述预设坐标系中第二坐标轴的运动信息与所述可移动平台的偏航控制信息之间的关联关系。
在又一种可能的设计中,所述关联关系包括:所述终端设备围绕所述预设坐标系中第三坐标轴的运动信息与所述可移动平台或所述可移动平台上搭载的云台的俯仰控制信息之间的关联关系。
在又一种可能的设计中,显示组件83,用于在所述终端设备的界面上显示用于表示所述可移动平台的图形,所述图形的姿态与所述可移动平台的姿态同步。
在又一种可能的设计中,所述显示组件83还用于在所述终端设备的界面上显示与所述图形的姿态相对应的移动控制信息。
本实施例提供的操控装置80能够执行前述实施例提供的可移动平台的操控方法,其执行方式和有益效果类似,在这里不再赘述。
本发明实施例还提供一种移动平台,该移动平台包括:
机身;
动力系统,安装在所述机身,用于为所述移动平台提供动力;
以及上述实施例提供的操控装置。
在一种可能的设计中,所述移动平台至少包括如下的一种无人机、汽车。
本实施例提供的移动平台其执行方式和有益效果与前述实施例提供 的操控装置类似,在这里不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的 普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (28)

  1. 一种可移动平台的操控方法,其特征在于,包括:
    在指点飞行模式中,检测用户在终端设备界面上的点击选择操作,所述指点飞行模式包括体感操控模式;
    当用户点击选择体感操控模式时,获取所述终端设备的运动信息;
    基于所述运动信息,控制可移动平台执行与所述运动信息对应的移动操作。
  2. 根据权利要求1所述的方法,其特征在于,所述获取终端设备的运动信息,包括:
    获取终端设备在预设坐标系下的姿态信息。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述终端设备界面上显示所述终端设备的姿态信息。
  4. 根据权利要求3所述的方法,其特征在于,所述在所述终端设备界面上显示所述终端设备的姿态信息,包括:
    在所述终端设备界面上显示所述预设坐标系,在所述预设坐标系中显示所述终端设备的姿态信息。
  5. 根据权利要求4所述的方法,其特征在于,所述姿态信息包括所述终端设备在预设坐标系下的倾斜角度和倾斜方向;
    所述在所述预设坐标系中显示所述终端设备的姿态信息,包括:
    在所述预设坐标系中显示所述倾斜角度和倾斜方向。
  6. 根据权利要求4所述的方法,其特征在于,所述姿态信息包括所述终端设备在预设坐标系下的倾斜方向,以及在所述倾斜方向上的角度变化量;
    所述在所述预设坐标系中显示所述终端设备的姿态信息,包括:
    在所述预设坐标系中显示所述倾斜方向和所述角度变化量。
  7. 根据权利要求5或6所述的方法,其特征在于,所述获取终端设备的运动信息,还包括:
    获取所述终端设备在所述倾斜方向上的倾斜速度。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述基于所述运动信息,控制可移动平台执行相应的移动操作,包括:
    基于预设的关联关系,确定所述运动信息对应的移动控制信息,其中,所述关联关系为所述终端设备的运动信息和所述可移动平台的移动控制信息之间的关系;
    基于所述移动控制信息,控制所述可移动平台移动。
  9. 根据权利要求8所述的方法,其特征在于,所述关联关系包括:
    所述终端设备围绕所述预设坐标系中第一坐标轴的运动信息与所述可移动平台的横滚控制信息之间的关联关系。
  10. 根据权利要求8所述的方法,其特征在于,所述关联关系包括:
    所述终端设备围绕所述预设坐标系中第二坐标轴的运动信息与所述可移动平台的偏航控制信息之间的关联关系。
  11. 根据权利要求8所述的方法,其特征在于,所述关联关系包括:
    所述终端设备围绕所述预设坐标系中第三坐标轴的运动信息与所述可移动平台或所述可移动平台上搭载的云台的俯仰控制信息之间的关联关系。
  12. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    在所述终端设备的界面上显示用于表示所述可移动平台的图形,所述图形的姿态与所述可移动平台的姿态同步。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括,在所述终端设备的界面上显示与所述图形的姿态相对应的移动控制信息。
  14. 一种可移动平台的操控装置,其特征在于,包括存储器和处理器;
    所述存储器用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    在指点飞行模式中,检测用户在终端设备界面上的点击选择操作,所述指点飞行模式包括体感操控模式;
    当用户点击选择体感操控模式时,获取所述终端设备的运动信息;
    基于所述运动信息,控制可移动平台执行与所述运动信息对应的移动操作。
  15. 根据权利要求14所述的装置,其特征在于,所述处理器获取终端设备的运动信息时,执行如下操作:
    获取终端设备在预设坐标系下的姿态信息。
  16. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    显示组件,用于在所述终端设备界面上显示所述终端设备的姿态信息。
  17. 根据权利要求16所述的装置,其特征在于,所述显示组件在所述终端设备界面上显示所述终端设备的姿态信息时,执行如下操作:
    在所述终端设备界面上显示所述预设坐标系,在所述预设坐标系中显示所述终端设备的姿态信息。
  18. 根据权利要求17所述的装置,其特征在于,所述所述姿态信息包括所述终端设备在预设坐标系下的倾斜角度和倾斜方向;
    所述显示组件在所述预设坐标系中显示所述终端设备的姿态信息时,执行如下操作:
    在所述预设坐标系中显示所述倾斜角度和倾斜方向。
  19. 根据权利要求17所述的装置,其特征在于,所述姿态信息包括所述终端设备在预设坐标系下的倾斜方向,以及在所述倾斜方向上的角度变化量;
    所述显示组件在所述预设坐标系中显示所述终端设备的姿态信息时,执行如下操作:
    在所述预设坐标系中显示所述倾斜方向和所述角度变化量。
  20. 根据权利要求18或19所述的装置,其特征在于,所述处理器获取终端设备的运动信息时,执行如下操作:
    获取所述终端设备在所述倾斜方向上的倾斜速度。
  21. 根据权利要求14-20中任一项所述的装置,其特征在于,所述处理器基于所述运动信息,控制可移动平台执行相应的移动操作时,执行如下操作:
    基于预设的关联关系,确定所述运动信息对应的移动控制信息,其中,所述关联关系为所述终端设备的运动信息和所述可移动平台的移动控制信息之间的关系;
    基于所述移动控制信息,控制所述可移动平台移动。
  22. 根据权利要求21所述的装置,其特征在于,所述关联关系包括:
    所述终端设备围绕所述预设坐标系中第一坐标轴的运动信息与所述 可移动平台的横滚控制信息之间的关联关系。
  23. 根据权利要求21所述的装置,其特征在于,所述关联关系包括:
    所述终端设备围绕所述预设坐标系中第二坐标轴的运动信息与所述可移动平台的偏航控制信息之间的关联关系。
  24. 根据权利要求21所述的装置,其特征在于,所述关联关系包括:
    所述终端设备围绕所述预设坐标系中第三坐标轴的运动信息与所述可移动平台或所述可移动平台上搭载的云台的俯仰控制信息之间的关联关系。
  25. 根据权利要求21所述的装置,其特征在于,显示组件,用于在所述终端设备的界面上显示用于表示所述可移动平台的图形,所述图形的姿态与所述可移动平台的姿态同步。
  26. 根据权利要求25所述的装置,其特征在于,所述显示组件还用于在所述终端设备的界面上显示与所述图形的姿态相对应的移动控制信息。
  27. 一种移动平台,其特征在于,包括:
    机身;
    动力系统,安装在所述机身,用于为所述移动平台提供动力;
    以及如权利要求14-26中任一项所述的装置。
  28. 根据权利要求27所述的移动平台,其特征在于,所述移动平台至少包括如下的一种无人机、汽车。
PCT/CN2018/093766 2018-06-29 2018-06-29 可移动平台的操控方法、装置及可移动平台 WO2020000402A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/093766 WO2020000402A1 (zh) 2018-06-29 2018-06-29 可移动平台的操控方法、装置及可移动平台
CN201880031264.XA CN110709797A (zh) 2018-06-29 2018-06-29 可移动平台的操控方法、装置及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093766 WO2020000402A1 (zh) 2018-06-29 2018-06-29 可移动平台的操控方法、装置及可移动平台

Publications (1)

Publication Number Publication Date
WO2020000402A1 true WO2020000402A1 (zh) 2020-01-02

Family

ID=68984592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093766 WO2020000402A1 (zh) 2018-06-29 2018-06-29 可移动平台的操控方法、装置及可移动平台

Country Status (2)

Country Link
CN (1) CN110709797A (zh)
WO (1) WO2020000402A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022134299A1 (zh) * 2020-12-25 2022-06-30 深圳市大疆创新科技有限公司 控制方法、设备、系统及计算机可读存储介质
WO2022134321A1 (zh) * 2020-12-25 2022-06-30 深圳市大疆创新科技有限公司 可移动平台的控制方法、体感遥控器及存储介质
CN117980844A (zh) * 2021-11-12 2024-05-03 深圳市大疆创新科技有限公司 可移动平台的控制方法、装置、系统及控制终端
CN114510075A (zh) * 2022-01-26 2022-05-17 维沃移动通信有限公司 控制飞行组件的方法和装置、终端和可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808675A (zh) * 2015-03-03 2015-07-29 广州亿航智能技术有限公司 基于智能终端的体感飞行操控系统及终端设备
CN105469579A (zh) * 2015-12-31 2016-04-06 北京臻迪机器人有限公司 体感遥控器、体感遥控飞行系统和方法
KR20170046454A (ko) * 2015-10-21 2017-05-02 한국해양대학교 산학협력단 차량 통신 시스템을 활용한 무인비행체 및 이를 이용한 무인비행체 경로 제어 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976128A (zh) * 2010-10-11 2011-02-16 庄永基 数字书绘实时数据采集仿真系统及其采集方法
CN203069788U (zh) * 2012-12-10 2013-07-17 中山大学 浮式及半潜式移动平台方位及三维姿态监测显示系统
CN106603901A (zh) * 2015-10-14 2017-04-26 诺基亚技术有限公司 用于场景匹配的方法和装置
CN105391939B (zh) * 2015-11-04 2017-09-29 腾讯科技(深圳)有限公司 无人机拍摄控制方法和装置、无人机拍摄方法和无人机
CN105857595A (zh) * 2016-04-23 2016-08-17 北京工业大学 一种基于云台的小型飞行器系统
KR101989332B1 (ko) * 2016-09-30 2019-06-14 가부시키가이샤 고마쓰 세이사쿠쇼 작업 기계의 표시 시스템 및 작업 기계
WO2018098784A1 (zh) * 2016-12-01 2018-06-07 深圳市大疆创新科技有限公司 无人机的控制方法、装置、设备和无人机的控制系统
CN107074348B (zh) * 2016-12-30 2021-06-15 深圳市大疆创新科技有限公司 控制方法、装置、设备及无人飞行器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808675A (zh) * 2015-03-03 2015-07-29 广州亿航智能技术有限公司 基于智能终端的体感飞行操控系统及终端设备
KR20170046454A (ko) * 2015-10-21 2017-05-02 한국해양대학교 산학협력단 차량 통신 시스템을 활용한 무인비행체 및 이를 이용한 무인비행체 경로 제어 방법
CN105469579A (zh) * 2015-12-31 2016-04-06 北京臻迪机器人有限公司 体感遥控器、体感遥控飞行系统和方法

Also Published As

Publication number Publication date
CN110709797A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
US10567497B2 (en) Reticle control and network based operation of an unmanned aerial vehicle
WO2020000402A1 (zh) 可移动平台的操控方法、装置及可移动平台
US10551834B2 (en) Method and electronic device for controlling unmanned aerial vehicle
US11504620B2 (en) Method for controlling game character and electronic device and computer storage medium
US10674062B2 (en) Control method for photographing using unmanned aerial vehicle, photographing method using unmanned aerial vehicle, mobile terminal, and unmanned aerial vehicle
US9947230B2 (en) Planning a flight path by identifying key frames
US11513511B2 (en) Techniques for image recognition-based aerial vehicle navigation
WO2018177170A1 (zh) 游戏画面的显示控制方法及装置、存储介质、电子设备
WO2018098784A1 (zh) 无人机的控制方法、装置、设备和无人机的控制系统
US20170039764A1 (en) Interface for planning flight path
JP6670794B2 (ja) 情報処理プログラム、情報処理システム、情報処理装置、および、情報処理方法
US20160357017A1 (en) Head-mounted display, information processing device, display control method, and program
US9554040B2 (en) Multi-viewpoint image capturing method and image display method
US20200169666A1 (en) Target observation method, related device and system
JP7491300B2 (ja) 情報処理装置、情報処理方法、及びコンピュータが読み取り可能な記録媒体
US11697063B2 (en) Storage medium having stored therein information processing program, information processing apparatus, information processing system, and information processing method
WO2019119441A1 (zh) 体感控制器控制云台的方法、云台、体感控制器和系统
WO2020226847A1 (en) Capture indicator for a virtual world
JP6450226B2 (ja) カメラ制御装置及びそのプログラム
JP7435599B2 (ja) 情報処理装置、情報処理方法、及びプログラム
JP7067897B2 (ja) 情報処理装置、飛行制御指示方法、プログラム、及び記録媒体
WO2020042186A1 (zh) 可移动平台的控制方法、可移动平台、终端设备和系统
WO2022134036A1 (zh) 可移动平台及其控制方法、装置
JPWO2021064982A1 (ja) 情報処理装置および情報処理方法
WO2022070851A1 (ja) 方法、システムおよびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924393

Country of ref document: EP

Kind code of ref document: A1