WO2020000150A1 - 电子烟加热温度的控制方法及装置 - Google Patents

电子烟加热温度的控制方法及装置 Download PDF

Info

Publication number
WO2020000150A1
WO2020000150A1 PCT/CN2018/092702 CN2018092702W WO2020000150A1 WO 2020000150 A1 WO2020000150 A1 WO 2020000150A1 CN 2018092702 W CN2018092702 W CN 2018092702W WO 2020000150 A1 WO2020000150 A1 WO 2020000150A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
duty cycle
current
heating
heating temperature
Prior art date
Application number
PCT/CN2018/092702
Other languages
English (en)
French (fr)
Inventor
朱智鹏
段磊
周军
薛团委
胡鹏
李涛
Original Assignee
深圳市丽福科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市丽福科技有限责任公司 filed Critical 深圳市丽福科技有限责任公司
Priority to PCT/CN2018/092702 priority Critical patent/WO2020000150A1/zh
Publication of WO2020000150A1 publication Critical patent/WO2020000150A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor

Definitions

  • the present invention relates to the field of computer technology, and in particular, to a method and device for controlling the heating temperature of an electronic cigarette.
  • E-cigarette is an electronic product that mimics cigarettes and has a look and taste similar to cigarettes.
  • the heating type electronic cigarette is heating tobacco instead of burning for smokers to smoke, that is, heating the tobacco at low temperature to evaporate nicotine and spices to obtain the same true tobacco aroma and taste as smoking real tobacco.
  • the control of the corresponding heating temperature is very important, because different heating temperatures heat the smokeable materials (such as shredded tobacco) to different degrees, thus corresponding to different Suction taste. If the heating temperature is too low, the corresponding effect may not be achieved, sufficient nicotine, etc.
  • the heating temperature is too high, it may easily cause local tobacco burns and produce harmful substances , Increasing the risk of threatening the health of smokers, at the same time, reducing the user's smoking taste and reducing the user's experience with electronic cigarette products.
  • the output power is increased when the temperature is higher than the target temperature, and the output power is decreased when the temperature is lower than the target temperature.
  • the corresponding The control effect is not good.
  • the temperature control is not accurate enough and the temperature is too low or too high, which greatly reduces the smoking taste of the user.
  • the control of the heating temperature of the heating type electronic cigarette has a problem of insufficient control accuracy.
  • An electronic cigarette heating temperature control method is based on an electronic cigarette device.
  • the electronic cigarette device includes a heating circuit, the heating circuit includes a heating resistor, and an input terminal of the heating circuit is connected to a PWM output terminal.
  • the circuit supplies power to the heating resistor to heat the smokable material placed in the electronic cigarette device for the user to smoke;
  • the method includes:
  • the PWM output from the PWM output terminal is adjusted according to the target duty cycle adjustment value.
  • the obtaining a current heating temperature value of the heating resistor further includes:
  • a temperature value corresponding to the current resistance value is determined as the current heating temperature value according to a preset temperature resistance correspondence between a resistance value and a temperature value.
  • determining the target duty cycle adjustment value according to the current duty cycle value, the current heating temperature value, and a preset target temperature value further includes:
  • the target duty cycle adjustment value is set to 0.
  • the determining the target duty cycle adjustment value according to the current duty cycle value, the current heating temperature value, and a preset target temperature value further includes:
  • the target duty cycle adjustment value is set to the buffer duty cycle value.
  • determining the target duty cycle adjustment value according to the current duty cycle value, the current heating temperature value, and a preset target temperature value further includes:
  • a first difference quantization value, and the first difference quantization value is a value between 0 and 1;
  • the determining the target duty cycle adjustment value according to the current duty cycle value, the first difference quantization value, and the second difference quantization value further includes: :
  • D N D N-1 + 2E N -E N-1
  • D N is the target duty cycle adjustment value
  • D N-1 is the current duty cycle value
  • E N is the first difference quantization value
  • E N-1 is the second difference The value is quantized.
  • the method further includes:
  • the step of obtaining the current heating temperature value of the heating resistor is performed periodically according to a preset time period value.
  • an electronic cigarette heating temperature control device is also proposed.
  • An electronic cigarette heating temperature control device is based on an electronic cigarette device.
  • the electronic cigarette device includes a heating circuit, the heating circuit includes a heating resistor, and an input terminal of the heating circuit is connected to a PWM output terminal.
  • the circuit supplies power to the heating resistor to heat the smokable material placed in the electronic cigarette device for the user to smoke;
  • the device includes:
  • a heating temperature value obtaining module configured to obtain a current heating temperature value of the heating resistor
  • a duty cycle detection module configured to detect that a current duty cycle outputted by the PWM output terminal is a current duty cycle value
  • a duty cycle calculation module configured to determine a target duty cycle adjustment value according to the current duty cycle value, the current heating temperature value, and a preset target temperature value
  • a duty cycle adjustment module configured to adjust a PWM output from the PWM output terminal according to the target duty cycle adjustment value.
  • the heating temperature value acquisition module is further configured to detect a current resistance value at both ends of the heating resistor; and determine a temperature resistance according to a preset temperature resistance correspondence relationship between the resistance value and the temperature value. The temperature value corresponding to the current resistance value is used as the current heating temperature value.
  • the duty cycle calculation module is further configured to perform an operation when the current heating temperature value is greater than the target temperature value and the first difference value exceeds a preset difference value threshold.
  • the current duty cycle value obtained by the PWM output terminal is a buffered duty cycle value; the target duty cycle adjustment value is set to 0.
  • the heating temperature value acquisition module is called; the duty cycle The calculation module is further configured to set the target duty cycle adjustment value as the current duty cycle value when the obtained current heating temperature value is less than or equal to the target temperature value. Cache duty cycle value.
  • the duty cycle calculation module is further configured to calculate a temperature difference between the target temperature value and the current heating temperature value as a first difference value, according to a preset Correspondence between the difference and the quantized value, to obtain a first difference quantized value corresponding to the first difference, and the first difference quantized value is a value between 0 and 1; obtain the last time the PWM was adjusted In the process, the quantized value corresponding to the target temperature value and the temperature difference between the obtained heating temperature value is used as the second difference quantized value; according to the current duty cycle value and the first difference quantized value, all The second difference quantization value determines the target duty cycle adjustment value.
  • the duty cycle calculation module is further configured to:
  • D N D N-1 + 2E N -E N-1
  • D N is the target duty cycle adjustment value
  • D N-1 is the current duty cycle value
  • E N is the first difference quantization value
  • E N-1 is the second difference The value is quantized.
  • the apparatus further includes: periodically calling the heating temperature value acquisition module according to a preset time period value.
  • an electronic cigarette device which includes a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor executes the computer program, the method as described above is implemented.
  • a computer-readable storage medium which includes computer instructions, and when the computer instructions are run on a computer, the computer is caused to execute the method described above.
  • the PWM duty cycle of the output end of the electronic cigarette device that powers the circuit where the heating resistor is located is detected and adjusted; that is, by The difference between the current temperature of the detected heating resistor and the target temperature, and the current PWM duty cycle to determine the direction and specific value of the PWM duty cycle adjustment, so that the PWM duty cycle at the output is determined. Adjust to control the heating temperature of the heating resistor.
  • the PID is used to adjust the heating temperature.
  • the stability of the target temperature can be better controlled, and the fluctuation range of the overshoot amount can be controlled, that is, Before the temperature stabilizes again, the temperature waveform will appear in a small copy similar to a sawtooth wave, so that the heating temperature can be controlled in a stable range, which improves the accuracy of the heating temperature control and improves the user's accuracy.
  • FIG. 1 is a schematic structural diagram of an electronic cigarette device according to an embodiment
  • FIG. 2 is a schematic flowchart of a method for controlling a heating temperature of an electronic cigarette in an embodiment
  • FIG. 3 is a schematic flowchart of obtaining a heating temperature of an electronic cigarette device according to an embodiment
  • FIG. 4 is a schematic diagram of a circuit for obtaining a heating temperature in an electronic cigarette device according to an embodiment
  • FIG. 5 is a schematic structural diagram of a control device for heating temperature of an electronic cigarette in an embodiment.
  • a method for controlling the heating temperature of the electronic cigarette is proposed.
  • the implementation of this method may depend on A computer program that can be run on a computer system based on the Von Neumann system.
  • the computer program can be an application program based on the heating temperature control of an electronic cigarette device, for example, integrated into a single chip microcomputer of an electronic cigarette rod. Control program to control heating temperature.
  • the implementation and execution of the above-mentioned method for controlling the heating temperature of an electronic cigarette are based on an electronic cigarette device, which can be an electronic cigarette rod of a heating type electronic cigarette, which can accommodate a smokeable material such as shredded tobacco, and can The smokable material is heated for suction by a user.
  • the electronic cigarette device includes a heating circuit, and the heating circuit includes a heating resistor, for example, a thermistor or a load resistor. And, the heating resistor is powered by a heating circuit, so that the heating electrons generate heat to heat the smokable material placed in the electronic cigarette device for the user to smoke.
  • the power supply of the heating circuit is realized by PWM (Pulse Width Modulation, pulse width modulation) output, that is, the power supply circuit connected to the heating circuit outputs PWM pulses to heat
  • PWM Pulse Width Modulation, pulse width modulation
  • the method for controlling the heating temperature of the electronic cigarette includes the following steps S102-S108:
  • Step S102 Obtain a current heating temperature value of the heating resistor.
  • the resistor because for the heating resistor, because the resistor is a thermistor, it corresponds to different resistance values under different temperature conditions, that is, there is a difference between the resistance value and the heating temperature. One correspondence. Therefore, in this embodiment, the current resistance value of the heating resistor can be obtained by measuring the resistance value.
  • the step of obtaining the current heating temperature value of the heating resistor further includes steps S1021-S1022 as shown in FIG. 3:
  • Step S1021 detecting a current resistance value at both ends of the heating resistor
  • Step S1022 Determine a temperature value corresponding to the current resistance value as the current heating temperature value according to a preset temperature resistance correspondence between a resistance value and a temperature value.
  • the calculation of the temperature is performed by measuring the resistance value of the resistor, and the heating resistor itself is a thermistor, so the temperature can be obtained by measuring the resistance value of the heating resistor.
  • the resistance and temperature of the heating resistor can be measured by a circuit as shown in FIG. 4.
  • RL is the load (heating material), and the R_DET_EN terminal is usually low voltage.
  • R_DET_EN When detecting the load resistance, R_DET_EN is controlled by the chip to high voltage, Q2 is turned on, and the chip reads the ADC at V_OUT and V_OUT_DET. The values are N 1 and N 2 respectively . After reading, R_DET_EN is low voltage to close Q2, and then pass
  • the purpose of detecting the current heating temperature value of the heating resistor is to control the heating temperature of the electronic cigarette, and in order to improve the control accuracy, the current heating temperature value needs to be detected in real time or at a higher frequency.
  • the obtaining of the heating resistance is performed periodically according to a preset time period value.
  • step S102 is performed at a cycle of 100 mS.
  • Step S104 Detect a current output duty ratio of the PWM output terminal to a current duty cycle value.
  • the output PWM duty cycle determines the output power, that is, different PWM duty cycles correspond to different heating powers for the heating circuit, that is, different heating temperatures. Therefore, when there is a gap between the current heating temperature value and the preset target temperature value, the output power can be controlled by controlling the PWM duty cycle to achieve the control of the heating temperature.
  • the current situation of the PWM duty cycle needs to be known first, and then the PWM duty cycle is adjusted.
  • the detection of the current PWM duty cycle is performed by measuring the duty cycle of the PWM currently output by the PWM output terminal, that is, the current duty cycle value.
  • Step S106 Determine a target duty cycle adjustment value according to the current duty cycle value, the current heating temperature value, and a preset target temperature value.
  • Step S108 Adjust the PWM output from the PWM output terminal according to the target duty cycle adjustment value.
  • the PWM duty cycle For adjusting the PWM duty cycle, it is necessary to consider both the difference between the current heating temperature value and the target temperature value and the specific value, and also the current PWM duty cycle. Therefore, When determining the specific adjustment of the PWM duty cycle adjustment currently required, the PWM duty cycle needs to be determined according to the current duty cycle value and current heating temperature value determined in steps S102 and S104, and a preset target temperature value. Adjusted target duty cycle adjustment value.
  • the target duty cycle adjustment value may be a target value for adjusting the PWM duty cycle in this adjustment.
  • the PWM output at the PWM output can be adjusted according to the target duty cycle adjustment value, that is, the magnitude of the PWM duty cycle after adjustment is the target duty cycle adjustment value .
  • the target temperature value is a preset temperature value for optimal suction taste.
  • the target temperature value can be set to 320 degrees, or the user can also customize settings according to his own requirements for suction taste.
  • the target temperature value for example, for users who like heavy taste, you can set a higher target temperature value, such as 360 degrees.
  • the specific process of adjusting the PWM duty cycle may be determined according to the current duty cycle and the specific size and situation of the current heating temperature value.
  • the current heating temperature value is greater than the target temperature value, and the first difference value exceeds a preset difference value threshold, obtain a current output of the PWM output terminal.
  • the empty ratio value is a buffered duty cycle value; the target duty cycle adjustment value is set to 0.
  • the specific process of adjusting the PWM duty cycle is: when the current duty cycle value is 0 and the acquired current heating temperature value is less than or equal to the target temperature value, the target is occupied.
  • the ratio adjustment value is set to the buffer duty cycle value.
  • the specific size of the current PWM duty cycle needs to be stored, so that when the specific value of the PWM duty cycle is set later, it can be determined that it is closer to the target temperature value.
  • the PWM duty cycle improves the user experience. Therefore, in the case of a duty cycle of 0, if the detected current heating temperature value is greater than or equal to the target temperature value, the PWM duty cycle is maintained at 0; if the detected current heating temperature value is less than or equal to the target Temperature, you need to adjust the PWM duty cycle, so set the target duty cycle adjustment value to the buffered duty cycle value, that is, the stored duty cycle before the last PWM duty clear operation Value.
  • the target duty cycle adjustment value D N It is set as the buffered duty cycle value D ′, that is, the PWM duty cycle is adjusted to a size corresponding to the buffered duty cycle value D ′, so as to control the heating temperature of the electronic cigarette to the optimal target temperature.
  • the foregoing is preset according to the current duty cycle value and the current heating temperature value.
  • the process of determining the target duty cycle adjustment value by the target temperature value is: calculating a temperature difference between the target temperature value and the current heating temperature value as a first difference value, and according to a preset difference value and a quantized value Corresponding relationship, obtain a first difference quantization value corresponding to the first difference value, and the first difference quantization value is a value between 0 and 1; obtain the target during the last adjustment of PWM and the target The quantized value corresponding to the obtained temperature difference between the temperature value and the heating temperature value is used as the second difference quantized value; according to the current duty cycle value, the first difference quantized value, and the second difference quantized value Determining the target duty cycle adjustment value.
  • the determining the target duty cycle adjustment value according to the current duty cycle value, the first difference quantization value, and the second difference quantization value is specifically:
  • D N D N-1 + 2E N -E N-1
  • D N is the target duty cycle adjustment value
  • D N-1 is the current duty cycle value
  • E N is the first difference quantization value
  • E N-1 is the second difference The value is quantized.
  • the PWM The air-ratio is adjusted, but the amplitude of the adjustment is the current duty cycle value plus twice the difference quantization value, and subtracting the previous difference quantization value.
  • the difference quantized value is a quantified value between 0 and 1 based on the difference between the detected current heating temperature value and the target temperature value. For example, if the difference is 5 ° C, the The difference quantization value is set to 2%.
  • the first difference quantization value E N represents the difference between the detected current heating temperature value and the target temperature value in this adjustment (that is, the N-th adjustment).
  • the second difference quantization value E N-1 represents the current heating temperature value and the target temperature value detected in this adjustment (that is, the N-1th adjustment or the last adjustment)
  • the determination of the target duty cycle adjustment value can be determined according to the following formula:
  • the adjustment range of the PWM duty cycle is added to the original PWM duty cycle.
  • the twice the quantized value of the temperature difference detected during the current adjustment and subtracting the quantized value of the temperature difference detected during the last adjustment is PID (proportion-integral-derivative, ratio, integral, Differential control) adjustment.
  • PID proportion-integral-derivative, ratio, integral, Differential control
  • the correspondence between the difference between the current heating temperature value and the target temperature value and the difference quantization value may be, for example, a linear function or a non-linear function, or Step function.
  • the difference between the current heating temperature value and the target temperature value can be a step function.
  • function definition For example, use the following function definition:
  • E is the difference quantization value
  • the correspondence between the difference between the current heating temperature value and the target temperature value, and the difference quantization value may use any positive correlation function.
  • the electronic cigarette device includes a heating circuit, the heating circuit includes a heating resistor, an input terminal of the heating circuit is connected to a PWM output terminal, and the heating resistor is powered by the heating circuit to supply the electronic cigarette
  • the smokable material in the device is heated for suction by the user.
  • the above-mentioned electronic cigarette heating temperature control device includes a heating temperature value acquisition module 102, a duty cycle detection module 104, a duty cycle calculation module 106, and a duty cycle adjustment module 108, where:
  • a heating temperature value obtaining module 102 configured to obtain a current heating temperature value of the heating resistor
  • a duty cycle detection module 104 configured to detect that a current duty cycle outputted by the PWM output terminal is a current duty cycle value
  • a duty cycle calculation module 106 configured to determine a target duty cycle adjustment value according to the current duty cycle value, the current heating temperature value, and a preset target temperature value;
  • the duty cycle adjustment module 108 is configured to adjust the PWM output from the PWM output terminal according to the target duty cycle adjustment value.
  • the heating temperature value acquisition module 102 is further configured to detect a current resistance value at both ends of the heating resistor; and is determined according to a preset temperature resistance correspondence relationship between the resistance value and the temperature value. A temperature value corresponding to the current resistance value is used as the current heating temperature value.
  • the duty cycle calculation module 106 is further configured to: when the current heating temperature value is greater than the target temperature value, and the first difference value exceeds a preset difference value threshold In the case of obtaining the current duty cycle value of the PWM output terminal, the duty cycle value of the buffer is obtained; and the target duty cycle adjustment value is set to 0.
  • the heating temperature value acquisition module 102 is called; the duty cycle The ratio calculation module 106 is further configured to set the target duty cycle adjustment value to be when the current duty cycle value is 0 and the acquired current heating temperature value is less than or equal to the target temperature value.
  • the buffered duty cycle value is the target duty cycle adjustment value.
  • the duty cycle calculation module 106 is further configured to calculate a temperature difference between the target temperature value and the current heating temperature value as a first difference value, according to a preset Corresponding relationship between the difference value and the quantization value, to obtain a first difference quantization value corresponding to the first difference value, and the first difference quantization value is a value between 0 and 1; During the adjustment, the quantized value corresponding to the temperature difference between the target temperature value and the obtained heating temperature value is used as the second difference quantized value; according to the current duty cycle value and the first difference quantized value, The second difference quantization value determines the target duty cycle adjustment value.
  • the duty cycle calculation module 106 is further configured to:
  • D N D N-1 + 2E N -E N-1
  • D N is the target duty cycle adjustment value
  • D N-1 is the current duty cycle value
  • E N is the first difference quantization value
  • E N-1 is the second difference The value is quantized.
  • the heating temperature value obtaining module 102 is periodically called according to a preset time period value.
  • the PWM duty cycle of the output end of the electronic cigarette device that powers the circuit where the heating resistor is located is detected and adjusted; that is, by The difference between the current temperature of the detected heating resistor and the target temperature, and the current PWM duty cycle to determine the direction and specific value of the PWM duty cycle adjustment, so that the PWM duty cycle at the output is determined. Adjust to control the heating temperature of the heating resistor.
  • the PID is used to adjust the heating temperature.
  • the stability of the target temperature can be better controlled, and the fluctuation range of the overshoot amount can be controlled, that is, Before the temperature stabilizes again, the temperature waveform will appear in a small copy similar to a sawtooth wave, so that the heating temperature can be controlled in a stable range, which improves the accuracy of the heating temperature control and improves the user's accuracy.
  • all or part of them may be implemented by software, hardware, firmware, or any combination thereof.
  • a software program When implemented using a software program, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.
  • the electronic cigarette device that implements the method and device for controlling the heating temperature of the electronic cigarette includes a memory, a processor, and a memory, and a computer program that can be run on the processor is stored in the memory, When the processor executes the corresponding computer program, the related functions of the method and device for controlling the heating temperature of the electronic cigarette are realized.

Abstract

本发明实施例公开了一种电子烟加热温度的控制方法,基于一电子烟设备,电子烟设备包括加热电路,加热电路包括加热电阻,加热电路的输入端与PWM输出端连接;通过加热电路给加热电阻供电以给放置在电子烟设备中的可抽吸材料加热以供用户进行抽吸;该方法包括:获取所述加热电阻的当前加热温度值;检测所述PWM输出端当前输出的占空比大小为当前占空比值;根据所述当前占空比值和所述当前加热温度值、预设的目标温度值确定目标占空比调节值;根据所述目标占空比调节值对所述PWM输出端输出的PWM进行调节。采用本发明,可提高烤烟型电子烟的加热温度值的准确定,提升用户体验。

Description

电子烟加热温度的控制方法及装置 技术领域
本发明涉及计算机技术领域,尤其涉及一种电子烟加热温度的控制方法及装置。
背景技术
电子烟是一种模仿卷烟的电子产品,有着与卷烟类似的外观和味道。而加热型电子烟是对烟草进行加热来取代燃烧,以供吸烟者进行吸食,即对烟草进行低温加热来蒸发出尼古丁以及香料,以得到与抽真烟一样的真实烟草香味和口感。也就是说,对于加热型电子烟来讲,其对应的加热温度的控制是非常重要的,因为不同的加热温度对可抽吸材料(如烟丝)进行加热的程度不一样,从而对应了不同的抽吸口感。如果加热温度过低,则可能达不到相应的效果,不能产生足够的尼古丁等,达不到相应的抽吸口感;反之,若加热温度过高,则容易导致烟草局部烤焦,产生有害物质,增加威胁吸烟者的健康的风险,同时,也降低了用户的吸烟口感,降低了用户对于电子烟产品的使用体验。
而在相关技术方案中,对于加热温度的控制,多采用温度大于目标温度时,输出功率增加,小于目标温度时,输出功率减小的办法,对于这种温度控制的方案来讲,其对应的控制效果不佳,对于温度的控制不够准确并且容易过线温度过低或过高的情况,极大的降低了用户的吸烟口感。
也就是说,在相关技术方案中,对于加热型电子烟的加热温度的控制存在控制准确率不足的问题。
发明内容
基于此,为解决传统技术中对加热型电子烟的加热温度的控制存在控制准 确率不足的技术问题,特提出了一种电子烟加热温度的控制方法。
一种电子烟加热温度的控制方法,基于一电子烟设备,所述电子烟设备包括加热电路,所述加热电路包括加热电阻,所述加热电路的输入端与PWM输出端连接;通过所述加热电路给所述加热电阻供电以给放置在所述电子烟设备中的可抽吸材料加热以供用户进行抽吸;
所述方法包括:
获取所述加热电阻的当前加热温度值;
检测所述PWM输出端当前输出的占空比大小为当前占空比值;
根据所述当前占空比值和所述当前加热温度值、预设的目标温度值确定目标占空比调节值;
根据所述目标占空比调节值对所述PWM输出端输出的PWM进行调节。
可选的,在其中一个实施例中,所述获取所述加热电阻的当前加热温度值,还包括:
检测所述加热电阻两端的当前电阻值;
根据预设的电阻值与温度值之间的温阻对应关系确定与所述当前电阻值对应的温度值作为所述当前加热温度值。
可选的,在其中一个实施例中,所述根据所述当前占空比值和所述当前加热温度值、预设的目标温度值确定目标占空比调节值,还包括:
在所述当前加热温度值大于所述目标温度值、且所述第一差值超过预设的差值阈值的情况下,获取所述PWM输出端当前输出的占空比值为缓存占空比值;
将所述目标占空比调节值设置为0。
可选的,在其中一个实施例中,在所述根据所述目标占空比调节值对所述PWM输出端输出的PWM进行调节之后,执行所述获取所述加热电阻的当前加热温度值的步骤;
所述根据所述当前占空比值和所述当前加热温度值、预设的目标温度值确定目标占空比调节值,还包括:
在所述当前占空比值为0、且所述获取到的当前加热温度值小于或等于所述 目标温度值的情况下,将所述目标占空比调节值设置为所述缓存占空比值。
可选的,在其中一个实施例中,所述根据所述当前占空比值和所述当前加热温度值、预设的目标温度值确定目标占空比调节值,还包括:
计算所述目标温度值与所述当前加热温度值之间的温度差值作为第一差值,根据预设的差值与量化值之间的对应关系,获取与所述第一差值对应的第一差值量化值,第一差值量化值为0到1之间的数值;
获取上一次对PWM进行调节的过程中与所述目标温度值与获取到的加热温度值的温度差值对应的量化值作为第二差值量化值;
根据所述当前占空比值和所述第一差值量化值、所述第二差值量化值确定所述目标占空比调节值。
可选的,在其中一个实施例中,所述根据所述当前占空比值和所述第一差值量化值、所述第二差值量化值确定所述目标占空比调节值,还包括:
根据公式
D N=D N-1+2E N-E N-1
计算所述目标占空比调节值,其中,D N为目标占空比调节值,D N-1为当前占空比值,E N为第一差值量化值,E N-1为第二差值量化值。
可选的,在其中一个实施例中,所述方法还包括:
按照预设的时间周期值,周期性的执行所述获取所述加热电阻的当前加热温度值的步骤。
此外,为解决传统技术中对加热型电子烟的加热温度的控制存在控制准确率不足的技术问题,还提出了一种电子烟加热温度的控制装置。
一种电子烟加热温度的控制装置,基于一电子烟设备,所述电子烟设备包括加热电路,所述加热电路包括加热电阻,所述加热电路的输入端与PWM输出端连接;通过所述加热电路给所述加热电阻供电以给放置在所述电子烟设备中的可抽吸材料加热以供用户进行抽吸;
所述装置包括:
加热温度值获取模块,用于获取所述加热电阻的当前加热温度值;
占空比检测模块,用于检测所述PWM输出端当前输出的占空比大小为当前占空比值;
占空比计算模块,用于根据所述当前占空比值和所述当前加热温度值、预设的目标温度值确定目标占空比调节值;
占空比调节模块,用于根据所述目标占空比调节值对所述PWM输出端输出的PWM进行调节。
可选的,在其中一个实施例中,所述加热温度值获取模块还用于检测所述加热电阻两端的当前电阻值;根据预设的电阻值与温度值之间的温阻对应关系确定与所述当前电阻值对应的温度值作为所述当前加热温度值。
可选的,在其中一个实施例中,所述占空比计算模块还用于在所述当前加热温度值大于所述目标温度值、且所述第一差值超过预设的差值阈值的情况下,获取所述PWM输出端当前输出的占空比值为缓存占空比值;将所述目标占空比调节值设置为0。
可选的,在其中一个实施例中,在所述根据所述目标占空比调节值对所述PWM输出端输出的PWM进行调节之后,调用所述加热温度值获取模块;所述占空比计算模块还用于在所述当前占空比值为0、且所述获取到的当前加热温度值小于或等于所述目标温度值的情况下,将所述目标占空比调节值设置为所述缓存占空比值。
可选的,在其中一个实施例中,所述占空比计算模块还用于计算所述目标温度值与所述当前加热温度值之间的温度差值作为第一差值,根据预设的差值与量化值之间的对应关系,获取与所述第一差值对应的第一差值量化值,第一差值量化值为0到1之间的数值;获取上一次对PWM进行调节的过程中与所述目标温度值与获取到的加热温度值的温度差值对应的量化值作为第二差值量化值;根据所述当前占空比值和所述第一差值量化值、所述第二差值量化值确定所述目标占空比调节值。
可选的,在其中一个实施例中,所述占空比计算模块还用于根据公式
D N=D N-1+2E N-E N-1
计算所述目标占空比调节值,其中,D N为目标占空比调节值,D N-1为当前占空比值,E N为第一差值量化值,E N-1为第二差值量化值。
可选的,在其中一个实施例中,所述装置还包括:按照预设的时间周期值,周期性的调用所述加热温度值获取模块。
在另一个可选的实施例中,还提供了一种电子烟设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如前所述所述的方法。
在另一个可选的实施例中,还提供了一种计算机可读存储介质,包括计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如前所述的方法。
实施本发明实施例,将具有如下有益效果:
采用了上述电子烟加热温度的控制方法和装置之后,在用户使用烤烟型电子烟设备时,在通过加热电阻对放置在电子烟设备中的例如烟丝等可抽吸材料进行加热的过程中,通过对加热电阻的温度的检测以及与目标温度之间的差值的考虑,对电子烟设备中的对加热电阻所在的电路进行供电的输出端的PWM占空比进行检测和调节;也就是说,通过检测到的加热电阻目前的温度与目标温度之间的差距、以及当前输出的PWM占空比大小来确定对PWM占空比进行调节的方向以及具体值,从而对输出端的PWM占空比大小进行调节,实现对加热电阻的加热温度的控制。
也就是说,在本实施例中,通过PID算法对加热温度进行调节,在温度上升或者温度产生扰动时,能较好的控制目标温度的稳定性,并且控制超调量的波动范围,即,在温度再次稳定之前,温度波形会以较小复制的类似于锯齿波的形式出现,从而将加热温度在允许的范围内稳定的得到控制,提高了对加热温度控制的准确度,提升了用户在使用电子烟设备中的抽吸口感,提升用户体验。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为一个实施例中一种电子烟设备的结构示意图;
图2为一个实施例中一种电子烟加热温度的控制方法的流程示意图;
图3为一个实施例中电子烟设备的加热温度获取的流程示意图;
图4为一个实施例中电子烟设备中加热温度获取的电路示意图;
图5为一个实施例中一种电子烟加热温度的控制装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为解决传统技术中对加热型电子烟的加热温度的控制存在控制准确率不足的技术问题,在本实施例中,特提出了一种电子烟加热温度的控制方法,该方法的实现可依赖于计算机程序,该计算机程序可运行于基于冯诺依曼体系的计算机系统之上,该计算机程序可以是基于电子烟设备的加热温度控制的应用程序,例如,集成在电子烟烟杆的单片机中对加热温度进行控制的控制程序。
具体的,上述电子烟加热温度的控制方法的实现和执行基于一电子烟设备,该电子烟设备可以是加热型电子烟的电子烟烟杆,可以容纳例如烟丝等可抽吸材料,并且可以对该可抽吸材料进行加热以供用户进行抽吸。如图1所示,该电子烟设备包括加热电路,所述加热电路包括加热电阻,例如,为热敏电阻或负载电阻。并且,通过加热电路给加热电阻供电,从而使得所述加热电子发热 以给放置在所述电子烟设备中的可抽吸材料加热以供用户进行抽吸。需要说明的是,在本实施例中,加热电路的供电是通过PWM(Pulse Width Modulation,脉冲宽度调制)输出来实现的,也就是说,与加热电路连接的供电电路通过输出PWM脉冲来给加热电路供电,也就是说,加热电路的输入端与PWM输出端(即供电电路的输出端)连接。
需要说明的是,在本实施例中,不同的PWM脉宽对应了不同的输出功率,从而对加热电路的输出功率也不相同,因此,在需要对加热电路的功率进行调节的时候可以通过PWM脉宽的调节来对加热电路的功率,从而实现对加热电阻的温度的调节。
具体的,如图2所示,上述电子烟加热温度的控制方法包括如下步骤S102-S108:
步骤S102:获取所述加热电阻的当前加热温度值。
在一个具体的实施例中,因为对于加热电阻来讲,因为电阻为热敏电阻,其在不同的温度情况下,对应了不同的阻值,也就是说,电阻值与加热温度之间存在一一对应关系。因此,在本实施例中,可以通过电阻值的测量来获取加热电阻当前的电阻值。
在一个具体的实施例中,上述获取所述加热电阻的当前加热温度值的步骤还包括如图3所示的步骤S1021-S1022:
步骤S1021:检测所述加热电阻两端的当前电阻值;
步骤S1022:根据预设的电阻值与温度值之间的温阻对应关系确定与所述当前电阻值对应的温度值作为所述当前加热温度值。
也就是说,在本实施例中,温度的计算是通过对电阻的电阻值的测算来完成的,而加热电阻本身为热敏电阻,因此可以通过测量加热电阻的电阻值来获知其温度。
在一个具体的实施例中,可以通过如图4所示的电路来实现对加热电阻的电阻以及温度的测量。如图4所示,图中RL为负载(发热材料),平时R_DET_EN端为低电压,检测负载电阻时,R_DET_EN被芯片控制为高电压,Q2导通,芯 片读取V_OUT和V_OUT_DET两处的ADC值分别为N 1、N 2,读取完毕马上R_DET_EN端为低电压关闭Q2,然后通过
Figure PCTCN2018092702-appb-000001
计算负载电阻值,然后在根据做成负载的发热材料的温阻关系计算出对应的温度,此温度即为发热电阻当前的温度值。
在本实施例中,对加热电阻当前加热温度值进行检测的目的是为了对电子烟的加热温度进行控制,而为了提高控制精度,需要实时地或者较高频率的对当前加热温度值进行检测。例如,在一个实施例中,为了提高温度控制的有效性和精准度,按照预设的时间周期值,周期性的执行所述获取所述加热电阻的
当前加热温度值的步骤,例如,按照100mS的周期执行上述步骤S102。
步骤S104:检测所述PWM输出端当前输出的占空比大小为当前占空比值。
输出的PWM占空比决定了输出的功率,也就是说,不同的PWM占空比对于加热电路来讲对应了不同的加热功率,也即对应了不同的加热温度。因此,在当前加热温度值与预设的目标温度值之间存在差距的情况下,可以通过控制PWM占空比来控制输出功率从而来实现对于加热温度的控制。
而对于PWM占空比的控制和调节,首先需要获知当前的PWM占空比的情况,然后对PWM占空比进行调节。
在本实施例中,对于当前的PWM占空比的检测是通过对PWM输出端当前输出的PWM的占空比大小来完成的,即当前占空比值。
步骤S106:根据所述当前占空比值和所述当前加热温度值、预设的目标温度值确定目标占空比调节值。
步骤S108:根据所述目标占空比调节值对所述PWM输出端输出的PWM进行调节。
在本实施例中,对PWM占空比的调节,既需要考虑到当前加热温度值以及目标温度值之间的差值以及具体的值,还需要考虑当前的PWM占空比的大小,因此,在确定当前需要对PWM占空比调节的具体调节时,需要根据步骤S102 以及步骤S104中确定的当前占空比值以及当前加热温度值、以及预设的目标温度值来确定需要进行PWM占空比调节的目标占空比调节值。例如,目标占空比调节值可以为在本次调节中对PWM占空比进行调节的目标值。
在目标占空比调节值确定之后,即可根据目标占空比调节值对PWM输出端输出的PWM进行调节,也就是说,调节之后的PWM占空比的大小即为目标占空比调节值。
其中,需要指出的是,目标温度值为预设的最佳抽吸口感的温度值,例如,可以设置目标温度值为320度,或者用户还可以根据自己对于抽吸口感的要求,自定义设置目标温度值,例如,对于喜欢浓重口感的用户,可以设置一个比较高的目标温度值,如360度。
如下,对PWM占空比的调节的具体过程可以根据当前的占空比的大小以及当前加热温度值的具体大小、分情况进行确定。
在一个具体的实施例中,在所述当前加热温度值大于所述目标温度值、且所述第一差值超过预设的差值阈值的情况下,获取所述PWM输出端当前输出的占空比值为缓存占空比值;将所述目标占空比调节值设置为0。
也就是说,在当前占空比值D N-1≠0,且当前加热温度值T N-1>T t+T E的情况下(其中,T t为目标温度值,T E为预设的差值阈值),将目标占空比调节值设置为0,即将PWM输出清0,以便降低加热电阻的温度。
在占空比为0或者将占空比的设置为0之后,在据所述当前占空比值和所述当前加热温度值、预设的目标温度值确定目标占空比调节值的过程中,对PWM占空比进行调节的具体过程为:在所述当前占空比值为0、且所述获取到的当前加热温度值小于或等于所述目标温度值的情况下,将所述目标占空比调节值设置为所述缓存占空比值。
也就是说,在将PWM占空比清零之前,还需要将当前的PWM占空比的具体大小进行存储,以便后续在设置PWM占空比的具体值时,能确定与目标温度值较为接近的PWM占空比,提高用户的使用体验。因此,在占空比为0的情况 下,如果检测到的当前加热温度值大于或等于目标温度值,则保持PWM占空比为0的状态;如果检测到的当前加热温度值小于或等于目标温度值,则需要对PWM占空比进行调节,因此,将目标占空比调节值设置为缓存的占空比值,即为上一次对PWM占空比执行清零操作之前的存储的占空比的值。
也即,在当前占空比值D N-1=0,且当前加热温度值T N-1<T t的情况下(其中,T t为目标温度值),将目标占空比调节值D N设置为缓存的占空比值D′,即将PWM占空比调节为与缓存的占空比值D′对应的大小,以便控制电子烟的加热温度在最佳的目标温度左右。
在另一个可选的实施例中,当前加热温度值小于或等于目标温度值且占空比不为0的情况下,上述根据所述当前占空比值和所述当前加热温度值、预设的目标温度值确定目标占空比调节值的过程为:计算所述目标温度值与所述当前加热温度值之间的温度差值作为第一差值,根据预设的差值与量化值之间的对应关系,获取与所述第一差值对应的第一差值量化值,第一差值量化值为0到1之间的数值;获取上一次对PWM进行调节的过程中与所述目标温度值与获取到的加热温度值的温度差值对应的量化值作为第二差值量化值;根据所述当前占空比值和所述第一差值量化值、所述第二差值量化值确定所述目标占空比调节值。
且,其中,根据所述当前占空比值和所述第一差值量化值、所述第二差值量化值确定所述目标占空比调节值,具体为:
根据公式
D N=D N-1+2E N-E N-1
计算所述目标占空比调节值,其中,D N为目标占空比调节值,D N-1为当前占空比值,E N为第一差值量化值,E N-1为第二差值量化值。
也就是说,在当前占空比值不为0,且当前加热温度值小于目标温度值或者没有超过目标温度一定范围(例如,比目标温度值大了不到5℃)的情况下,对PWM占空比进行调节,但是调节的幅度为当前占空比值加上两倍的差值量化 值、并减去上一次的差值量化值。其中,差值量化值为根据检测到的当前加热温度值与目标温度值之间的差值给出的一个0到1之间的量化值,例如,在差值为5℃的情况下,将差值量化值设置为2%。
需要说明的是,在本实施例中,第一差值量化值E N代表的是本次调节(即第N次调节)中,检测到的当前加热温度值与目标温度值之间的差值所对应的差值量化值;第二差值量化值E N-1代表的是本次调节(即第N-1次调节或上一次调节)中,检测到的当前加热温度值与目标温度值之间的差值所对应的差值量化值。
如前所述,目标占空比调节值的确定可以按照如下公式进行确定:
Figure PCTCN2018092702-appb-000002
也就是说,在当前的PWM占空比不为0且加热电阻当前的温度不超过目标温度一定范围的情况下,对PWM占空比的调节幅度为在原来的PWM占空比的基础上加上两倍的本次调节的检测到的温度差值的量化值并减去上一次调节的过程中检测到的温度差值的量化值,即为PID(proportion-integral-derivative,比例、积分、微分控制)调节。而在加热电阻的温度超过目标温度一定范围的情况下,将PWM占空比设置为0;且在当前PWM占空比不为0的情况下,获取该PWM占空比的具体值为缓存值。而在PWM占空比清零之后,当加热电阻的温度下降到目标温度时,价格清零之前的PWM占空比进行恢复,并重新启动PID调节。
在一个具体的实施例中,可以对当前加热温度值与目标温度值之间的差值值、与差值量化值之间的对应关系,例如,可以为线性函数或者非线性函数,也可以为阶梯函数。
在一个具体的实施例中,为了避免细微的温度差别所带来的频繁的PWM占空比的调节对电子烟处理器所带来的负担,当前加热温度值与目标温度值之间的差值值、与差值量化值之间的对应关系可以采用阶梯函数。例如,采用如下 的函数定义:
Figure PCTCN2018092702-appb-000003
其中,E为差值量化值,ΔT为目标温度值与当前加热温度值之间的差值,即:ΔT=T t-T N
在其他实施例中,当前加热温度值与目标温度值之间的差值值、与差值量化值之间的对应关系可以采用任何的正相关的函数。
此外,为解决传统技术中对加热型电子烟的加热温度的控制存在控制准确率不足的技术问题,,在一个实施例中,如图5所示,还提出了一种电子烟加热温度的控制装置,该电子烟设备包括加热电路,所述加热电路包括加热电阻,所述加热电路的输入端与PWM输出端连接;通过所述加热电路给所述加热电阻供电以给放置在所述电子烟设备中的可抽吸材料加热以供用户进行抽吸。
具体的,如图5所示,上述电子烟加热温度的控制装置包括加热温度值获取模块102、占空比检测模块104、占空比计算模块106、占空比调节模块108,其中:
加热温度值获取模块102,用于获取所述加热电阻的当前加热温度值;
占空比检测模块104,用于检测所述PWM输出端当前输出的占空比大小为当前占空比值;
占空比计算模块106,用于根据所述当前占空比值和所述当前加热温度值、预设的目标温度值确定目标占空比调节值;
占空比调节模块108,用于根据所述目标占空比调节值对所述PWM输出端输出的PWM进行调节。
可选的,在其中一个实施例中,所述加热温度值获取模块102还用于检测所述加热电阻两端的当前电阻值;根据预设的电阻值与温度值之间的温阻对应关系确定与所述当前电阻值对应的温度值作为所述当前加热温度值。
可选的,在其中一个实施例中,所述占空比计算模块106还用于在所述当前加热温度值大于所述目标温度值、且所述第一差值超过预设的差值阈值的情况下,获取所述PWM输出端当前输出的占空比值为缓存占空比值;将所述目标占空比调节值设置为0。
可选的,在其中一个实施例中,在所述根据所述目标占空比调节值对所述PWM输出端输出的PWM进行调节之后,调用所述加热温度值获取模块102;所述占空比计算模块106还用于在所述当前占空比值为0、且所述获取到的当前加热温度值小于或等于所述目标温度值的情况下,将所述目标占空比调节值设置为所述缓存占空比值。
可选的,在其中一个实施例中,所述占空比计算模块106还用于计算所述目标温度值与所述当前加热温度值之间的温度差值作为第一差值,根据预设的差值与量化值之间的对应关系,获取与所述第一差值对应的第一差值量化值,第一差值量化值为0到1之间的数值;获取上一次对PWM进行调节的过程中与所述目标温度值与获取到的加热温度值的温度差值对应的量化值作为第二差值量化值;根据所述当前占空比值和所述第一差值量化值、所述第二差值量化值确定所述目标占空比调节值。
可选的,在其中一个实施例中,所述占空比计算模块106还用于根据公式
D N=D N-1+2E N-E N-1
计算所述目标占空比调节值,其中,D N为目标占空比调节值,D N-1为当前占空比值,E N为第一差值量化值,E N-1为第二差值量化值。
可选的,在其中一个实施例中,按照预设的时间周期值,周期性的调用所述加热温度值获取模块102。
实施本发明实施例,将具有如下有益效果:
采用了上述电子烟加热温度的控制方法和装置之后,在用户使用烤烟型电子烟设备时,在通过加热电阻对放置在电子烟设备中的例如烟丝等可抽吸材料进行加热的过程中,通过对加热电阻的温度的检测以及与目标温度之间的差值 的考虑,对电子烟设备中的对加热电阻所在的电路进行供电的输出端的PWM占空比进行检测和调节;也就是说,通过检测到的加热电阻目前的温度与目标温度之间的差距、以及当前输出的PWM占空比大小来确定对PWM占空比进行调节的方向以及具体值,从而对输出端的PWM占空比大小进行调节,实现对加热电阻的加热温度的控制。
也就是说,在本实施例中,通过PID算法对加热温度进行调节,在温度上升或者温度产生扰动时,能较好的控制目标温度的稳定性,并且控制超调量的波动范围,即,在温度再次稳定之前,温度波形会以较小复制的类似于锯齿波的形式出现,从而将加热温度在允许的范围内稳定的得到控制,提高了对加热温度控制的准确度,提升了用户在使用电子烟设备中的抽吸口感,提升用户体验。
在上述实施例中,可以全部或部分的通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或半导体介质(例如固态硬盘Solid State Disk(SSD))等。
进一步的,在本实施例中,实现上述电子烟加热温度的控制方法和装置的电子烟设备包括存储器、处理器及存储器,并且在存储器上存储有可在所述处理器上运行的计算机程序,在处理器执行相应的计算机程序时实现实现上述电子烟加热温度的控制方法和装置的相关功能。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

  1. 一种电子烟加热温度的控制方法,基于一电子烟设备,其特征在于,所述电子烟设备包括加热电路,所述加热电路包括加热电阻,所述加热电路的输入端与PWM输出端连接;通过所述加热电路给所述加热电阻供电以给放置在所述电子烟设备中的可抽吸材料加热以供用户进行抽吸;
    所述方法包括:
    获取所述加热电阻的当前加热温度值;
    检测所述PWM输出端当前输出的占空比大小为当前占空比值;
    根据所述当前占空比值和所述当前加热温度值、预设的目标温度值确定目标占空比调节值;
    根据所述目标占空比调节值对所述PWM输出端输出的PWM进行调节。
  2. 根据权利要求1所述的电子烟加热温度的控制方法,其特征在于,所述获取所述加热电阻的当前加热温度值,还包括:
    检测所述加热电阻两端的当前电阻值;
    根据预设的电阻值与温度值之间的温阻对应关系确定与所述当前电阻值对应的温度值作为所述当前加热温度值。
  3. 根据权利要求1所述的电子烟加热温度的控制方法,其特征在于,所述根据所述当前占空比值和所述当前加热温度值、预设的目标温度值确定目标占空比调节值,还包括:
    在所述当前加热温度值大于所述目标温度值、且所述第一差值超过预设的差值阈值的情况下,获取所述PWM输出端当前输出的占空比值为缓存占空比值;
    将所述目标占空比调节值设置为0。
  4. 根据权利要求3所述的电子烟加热温度的控制方法,其特征在于,在所 述根据所述目标占空比调节值对所述PWM输出端输出的PWM进行调节之后,执行所述获取所述加热电阻的当前加热温度值的步骤;
    所述根据所述当前占空比值和所述当前加热温度值、预设的目标温度值确定目标占空比调节值,还包括:
    在所述当前占空比值为0、且所述获取到的当前加热温度值小于或等于所述目标温度值的情况下,将所述目标占空比调节值设置为所述缓存占空比值。
  5. 根据权利要求1所述的电子烟加热温度的控制方法,其特征在于,所述根据所述当前占空比值和所述当前加热温度值、预设的目标温度值确定目标占空比调节值,还包括:
    计算所述目标温度值与所述当前加热温度值之间的温度差值作为第一差值,根据预设的差值与量化值之间的对应关系,获取与所述第一差值对应的第一差值量化值,第一差值量化值为0到1之间的数值;
    获取上一次对PWM进行调节的过程中与所述目标温度值与获取到的加热温度值的温度差值对应的量化值作为第二差值量化值;
    根据所述当前占空比值和所述第一差值量化值、所述第二差值量化值确定所述目标占空比调节值。
  6. 根据权利要求5所述的电子烟加热温度的控制方法,其特征在于,所述根据所述当前占空比值和所述第一差值量化值、所述第二差值量化值确定所述目标占空比调节值,还包括:
    根据公式
    D N=D N-1+2E N-E N-1
    计算所述目标占空比调节值,其中,D N为目标占空比调节值,D N-1为当前占空比值,E N为第一差值量化值,E N-1为第二差值量化值。
  7. 根据权利要求1至6任一所述的电子烟加热温度的控制方法,其特征在 于,所述方法还包括:
    按照预设的时间周期值,周期性的执行所述获取所述加热电阻的当前加热温度值的步骤。
  8. 一种电子烟加热温度的控制装置,基于一电子烟设备,其特征在于,所述电子烟设备包括加热电路,所述加热电路包括加热电阻,所述加热电路的输入端与PWM输出端连接;通过所述加热电路给所述加热电阻供电以给放置在所述电子烟设备中的可抽吸材料加热以供用户进行抽吸;
    所述装置包括:
    加热温度值获取模块,用于获取所述加热电阻的当前加热温度值;
    占空比检测模块,用于检测所述PWM输出端当前输出的占空比大小为当前占空比值;
    占空比计算模块,用于根据所述当前占空比值和所述当前加热温度值、预设的目标温度值确定目标占空比调节值;
    占空比调节模块,用于根据所述目标占空比调节值对所述PWM输出端输出的PWM进行调节。
  9. 一种电子烟设备,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1-7中任一项权利要求所述的方法。
  10. 一种计算机可读存储介质,包括计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-7所述的方法。
PCT/CN2018/092702 2018-06-25 2018-06-25 电子烟加热温度的控制方法及装置 WO2020000150A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092702 WO2020000150A1 (zh) 2018-06-25 2018-06-25 电子烟加热温度的控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092702 WO2020000150A1 (zh) 2018-06-25 2018-06-25 电子烟加热温度的控制方法及装置

Publications (1)

Publication Number Publication Date
WO2020000150A1 true WO2020000150A1 (zh) 2020-01-02

Family

ID=68985286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092702 WO2020000150A1 (zh) 2018-06-25 2018-06-25 电子烟加热温度的控制方法及装置

Country Status (1)

Country Link
WO (1) WO2020000150A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114281130A (zh) * 2021-12-30 2022-04-05 天津同阳科技发展有限公司 温度控制方法及装置
CN114489177A (zh) * 2021-12-30 2022-05-13 重庆阿泰可科技股份有限公司 一种温度控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315317A (ja) * 2005-05-13 2006-11-24 Japan Steel Works Ltd:The 射出成形機の温度制御装置
CN103974638A (zh) * 2011-12-30 2014-08-06 菲利普莫里斯生产公司 具有气流检测功能的气溶胶产生装置
CN104010530A (zh) * 2011-12-30 2014-08-27 菲利普莫里斯生产公司 浮质产生装置中的浮质形成基质的检测
CN104902595A (zh) * 2015-06-15 2015-09-09 深圳葆威道科技有限公司 一种电子烟发热体的温度控制系统
CN104950953A (zh) * 2015-06-09 2015-09-30 昂纳自动化技术(深圳)有限公司 一种电子烟及其温度控制方法
CN106274361A (zh) * 2016-08-27 2017-01-04 重庆瑞阳科技股份有限公司 一种用于电动汽车的空调制热控制方法及系统
CN106942791A (zh) * 2017-03-22 2017-07-14 东莞市哈维电子科技有限公司 电子吸烟装置及其温度控制方法
CN108873981A (zh) * 2018-06-25 2018-11-23 深圳市丽福科技有限责任公司 电子烟加热温度的控制方法及装置
CN108873976A (zh) * 2018-06-25 2018-11-23 深圳市丽福科技有限责任公司 电子烟的温度控制系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315317A (ja) * 2005-05-13 2006-11-24 Japan Steel Works Ltd:The 射出成形機の温度制御装置
CN103974638A (zh) * 2011-12-30 2014-08-06 菲利普莫里斯生产公司 具有气流检测功能的气溶胶产生装置
CN104010530A (zh) * 2011-12-30 2014-08-27 菲利普莫里斯生产公司 浮质产生装置中的浮质形成基质的检测
CN104950953A (zh) * 2015-06-09 2015-09-30 昂纳自动化技术(深圳)有限公司 一种电子烟及其温度控制方法
CN104902595A (zh) * 2015-06-15 2015-09-09 深圳葆威道科技有限公司 一种电子烟发热体的温度控制系统
CN106274361A (zh) * 2016-08-27 2017-01-04 重庆瑞阳科技股份有限公司 一种用于电动汽车的空调制热控制方法及系统
CN106942791A (zh) * 2017-03-22 2017-07-14 东莞市哈维电子科技有限公司 电子吸烟装置及其温度控制方法
CN108873981A (zh) * 2018-06-25 2018-11-23 深圳市丽福科技有限责任公司 电子烟加热温度的控制方法及装置
CN108873976A (zh) * 2018-06-25 2018-11-23 深圳市丽福科技有限责任公司 电子烟的温度控制系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114281130A (zh) * 2021-12-30 2022-04-05 天津同阳科技发展有限公司 温度控制方法及装置
CN114489177A (zh) * 2021-12-30 2022-05-13 重庆阿泰可科技股份有限公司 一种温度控制方法
CN114489177B (zh) * 2021-12-30 2023-05-09 重庆阿泰可科技股份有限公司 一种温度控制方法

Similar Documents

Publication Publication Date Title
CN108873981B (zh) 电子烟加热温度的控制方法及装置
CN109247621B (zh) 基于电子烟的加热温度控制方法及装置、电子烟设备
WO2019174479A1 (zh) 电子烟的控制方法和装置
WO2020038322A1 (zh) 电子烟的温度控制方法、电子烟及计算机存储介质
US9603386B2 (en) Method and device for heating control of an electronic cigarette
WO2016082136A1 (zh) 一种电子烟及其烟雾量控制方法
WO2020000150A1 (zh) 电子烟加热温度的控制方法及装置
JP7105891B2 (ja) 電気式エアロゾル生成システム
KR102376515B1 (ko) 에어로졸 생성 장치 및 방법
KR102389828B1 (ko) 에어로졸 생성 장치 및 이를 제어하는 방법
WO2019228155A1 (zh) 电子烟的控制方法和装置
WO2021047423A1 (zh) 一种电子烟具及其加热方法、计算机存储介质
CN108181951B (zh) 电子烟控制电路及方法
US11849770B2 (en) Method for detecting the number of puffs of an electronic cigarette, and electronic cigarette
EP4360485A1 (en) Aerosol forming apparatus and vaping detection method therefor, and computer storage medium
CN106028857A (zh) 电子烟及其控制方法
WO2023134358A1 (zh) 气溶胶产生装置及其控制方法、控制装置和存储介质
WO2021120694A1 (zh) 一种动态功率补偿方法及雾化式电子烟
US20200008474A1 (en) Electrically Operated Aerosol Generation System
WO2021047654A1 (zh) 电子烟控制方法及电子烟
US20200037666A1 (en) Electrically Operated Aerosol Generation System
CN112369723A (zh) 智能调温方法、装置及可读存储介质
US20200085099A1 (en) Electrically Operated Aerosol Generation System
US20190364971A1 (en) Electrically Operated Aerosol Generation System
WO2021103289A1 (zh) 一种电子烟及其加热控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18924714

Country of ref document: EP

Kind code of ref document: A1