WO2020000148A1 - 机器类通信系统的接入方法、装置及存储介质 - Google Patents

机器类通信系统的接入方法、装置及存储介质 Download PDF

Info

Publication number
WO2020000148A1
WO2020000148A1 PCT/CN2018/092700 CN2018092700W WO2020000148A1 WO 2020000148 A1 WO2020000148 A1 WO 2020000148A1 CN 2018092700 W CN2018092700 W CN 2018092700W WO 2020000148 A1 WO2020000148 A1 WO 2020000148A1
Authority
WO
WIPO (PCT)
Prior art keywords
deployment mode
communication system
mtc
mib
bit
Prior art date
Application number
PCT/CN2018/092700
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201880000869.2A priority Critical patent/CN108886675B/zh
Priority to PCT/CN2018/092700 priority patent/WO2020000148A1/zh
Publication of WO2020000148A1 publication Critical patent/WO2020000148A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an access method, device, and storage medium for a machine-type communication system.
  • Machine type communication refers to the communication between machines without human intervention. It is widely used in smart cities (such as meter reading), smart agriculture (such as temperature and humidity information collection), and smart transportation (such as sharing Bicycle ⁇ Shared Car) and many other fields.
  • a basic MTC communication framework is formed in a Long Term Evolution (LTE) system (mainly release 12 to release 13), which can support features such as low complexity, low cost, enhanced coverage, and power saving.
  • LTE Long Term Evolution
  • the traditional MTC system is deployed in the spectrum of the LTE system and shares frequency resources and some channels with users of the traditional LTE system. Specifically, users of the traditional MTC system and the LTE system share a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • a user equipment when a user equipment (UE) wants to access a cell, it first receives the PSS and SSS for downlink synchronization. After the downlink synchronization is completed, the user continues to receive and demodulate the PBCH It mainly receives the master information block (Master Information Block, MIB). After receiving and demodulating the PBCH successfully, it will continue to receive subsequent corresponding system information block (System Information Block) information, and read related parameters for subsequent random access.
  • MIB Master Information Block
  • the traditional MTC system shares the PSS, SSS, and PBCH of the LTE system, for the user equipment of the LTE system, when accessing the MTC system, after receiving and demodulating the PBCH successfully, it will continue to receive the SIB and Subsequent actions to access the LTE system.
  • the present disclosure provides an access method, device, and storage medium of a machine type communication system.
  • a method for accessing a machine type communication system which is applied to a user equipment of the first communication system.
  • the method includes: in a process of accessing an MTC system, receiving a MIB Obtaining the deployment mode information in the MIB, where the deployment mode information is used to indicate that the MTC system is deployed independently or based on the first communication system;
  • the specified action is abandoned, and the specified action includes an action that needs to be performed after receiving the MIB during the access process of the first communication system.
  • the method further includes:
  • the specified action is continuously performed.
  • the obtaining the deployment mode information in the MIB includes:
  • the deployment mode flag is one or more bits
  • the deployment mode flag is one bit, the deployment mode flag is used to indicate that the MTC system is deployed independently or based on the first communication system;
  • the deployment mode flag bit is used to indicate that the MTC system is deployed independently or based on the first communication system, and the frequency of adjacent first communication systems is relative to The frequency difference range of the current frequency of the MTC system, and the adjacent first communication system is the first communication system whose frequency is closest to the current frequency of the MTC system.
  • the method further includes:
  • the adjacent first communication system is detected according to the frequency difference range.
  • the obtaining the deployment mode information in the MIB includes:
  • the deployment mode flag bit is a bit used to indicate that the MTC system is deployed independently or based on the first communication system; the first communication system location flag bit is used to indicate a relative bit The frequency difference range of the frequency of the neighboring first communication system with respect to the current frequency of the MTC system.
  • the neighboring first communication system is the first connection of the frequency to the current frequency of the MTC system.
  • the method further includes:
  • the adjacent first communication system is detected according to the frequency difference range.
  • the first communication system is a long-term evolution LTE system supporting an MTC system.
  • a method for accessing a machine type communication system which is applied to a base station.
  • the method includes:
  • the MIB includes deployment mode information, and the deployment mode information is used to indicate that the MTC system is deployed independently or based on a first communication system;
  • the generating a MIB according to a deployment mode of the MTC system includes deployment mode information, and the deployment mode information is used to indicate that the MTC system is deployed independently or based on a first communication system, including: :
  • the MIB is generated according to a deployment mode of the MTC system, and a reserved mode bit in the MIB is set with a deployment mode flag bit.
  • the deployment mode flag is one or more bits
  • the deployment mode flag is one bit, the deployment mode flag is used to indicate that the MTC system is deployed independently or based on the first communication system;
  • the deployment mode flag bit is used to indicate that the MTC system is deployed independently or based on the first communication system, and the frequency of adjacent first communication systems is relative to The frequency difference range of the current frequency of the MTC system, and the adjacent first communication system is the first communication system whose frequency is closest to the current frequency of the MTC system.
  • the generating a MIB according to a deployment mode of the MTC system includes deployment mode information, and the deployment mode information is used to indicate that the MTC system is deployed independently or based on a first communication system, including: :
  • the MIB is generated according to a deployment mode of the MTC system, a reserved mode bit in the MIB is provided with a deployment mode flag bit, and a physical hybrid automatic retransmission indicator channel in the MIB is provided with a first communication in a PHICH configuration domain System location flag.
  • the deployment mode flag bit is a bit used to indicate that the MTC system is deployed independently or based on the first communication system; the first communication system location flag bit is used to indicate a relative bit The frequency difference range of the frequency of the neighboring first communication system with respect to the current frequency of the MTC system.
  • the neighboring first communication system is the first connection of the frequency to the current frequency of the MTC system.
  • the first communication system is a long-term evolution LTE system supporting an MTC system.
  • an access device for a machine type communication system which is applied to a user equipment of a first communication system, and the device includes:
  • the information acquisition module is configured to acquire the deployment mode information in the MIB after receiving the MIB during the process of accessing the MTC system, and the deployment mode information is used to indicate that the MTC system is deployed independently or based on A communication system deployment;
  • the execution module is configured to abandon the execution of a specified action when the deployment mode information indicates that the MTC system is independently deployed, and the specified action includes a process that needs to be performed after receiving the MIB during the access process of the first communication system. action.
  • the execution module is further configured to continue to execute the specified action when the deployment mode information indicates that the MTC system is deployed based on the first communication system.
  • the information acquisition module is configured to acquire a value of a deployment mode flag bit set in a reserved bit in the MIB.
  • the deployment mode flag is one or more bits
  • the deployment mode flag is one bit, the deployment mode flag is used to indicate that the MTC system is deployed independently or based on the first communication system;
  • the deployment mode flag bit is used to indicate that the MTC system is deployed independently or based on the first communication system, and the frequency of adjacent first communication systems is relative to The frequency difference range of the current frequency of the MTC system, and the adjacent first communication system is the first communication system whose frequency is closest to the current frequency of the MTC system.
  • the device when the deployment mode flag is a plurality of bits, the device further includes: a detecting module configured to detect the phase according to the frequency difference range after the abandonment of performing a specified action. Neighboring first communication system.
  • the information acquisition module is configured to:
  • the deployment mode flag bit is a bit used to indicate that the MTC system is deployed independently or based on the first communication system; the first communication system location flag bit is used to indicate a relative bit The frequency difference range of the frequency of the neighboring first communication system with respect to the current frequency of the MTC system.
  • the neighboring first communication system is the first connection of the frequency to the current frequency of the MTC system.
  • the apparatus further includes a detection module configured to detect the adjacent first communication system according to the frequency difference range after the abandonment of performing a specified action.
  • the first communication system is a long-term evolution LTE system supporting an MTC system.
  • an access device for a machine type communication system is applied to a base station, and the device includes:
  • a synchronization module configured to send a synchronization signal to the user equipment when the user equipment accesses the MTC system, and the user equipment is the user equipment of the first communication system;
  • a generation module configured to generate a MIB according to a deployment mode of the MTC system, where the MIB includes deployment mode information, and the deployment mode information is used to indicate that the MTC system is deployed independently or based on a first communication system;
  • the sending module is configured to send the MIB to the user equipment.
  • the generating module is configured to:
  • the MIB is generated according to a deployment mode of the MTC system, and a reserved mode bit in the MIB is set with a deployment mode flag bit.
  • the deployment mode flag is one or more bits
  • the deployment mode flag is one bit, the deployment mode flag is used to indicate that the MTC system is deployed independently or based on the first communication system;
  • the deployment mode flag bit is used to indicate that the MTC system is deployed independently or based on the first communication system, and the frequency of adjacent first communication systems is relative to The frequency difference range of the current frequency of the MTC system, and the adjacent first communication system is the first communication system whose frequency is closest to the current frequency of the MTC system.
  • the generating module is configured to generate the MIB according to a deployment mode of the MTC system, a reserved mode bit in the MIB is provided with a deployment mode flag bit, and a physical hybrid in the MIB
  • the PHICH configuration field of the automatic retransmission indication channel is set with a first communication system position flag bit.
  • the deployment mode flag bit is a bit used to indicate that the MTC system is deployed independently or based on the first communication system; the first communication system location flag bit is used to indicate a relative bit The frequency difference range of the frequency of the neighboring first communication system with respect to the current frequency of the MTC system.
  • the neighboring first communication system is the first connection of the frequency to the current frequency of the MTC system.
  • the first communication system is a long-term evolution LTE system supporting an MTC system.
  • an access device for a machine type communication system which is applied to a user equipment of a first communication system, includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to: during the process of accessing the MTC system, after receiving the MIB, obtain the deployment mode information in the MIB, the deployment mode information is used to indicate that the MTC system is independently deployed Or deployment based on the first communication system;
  • the specified action is abandoned, and the specified action includes an action that needs to be performed after receiving the MIB during the access process of the first communication system.
  • a computer-readable storage medium having stored thereon computer program instructions that, when executed by a processor, implement the connection of the machine type communication system provided by the first aspect of the present disclosure. Into the steps of the method.
  • an access device for a machine type communication system which is applied to a base station and includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • the MIB includes deployment mode information, and the deployment mode information is used to indicate that the MTC system is deployed independently or based on a first communication system;
  • a computer-readable storage medium on which computer program instructions are stored, and the program instructions, when executed by a processor, implement the connection of the machine type communication system provided by the second aspect of the present disclosure. Into the steps of the method.
  • the deployment mode information in the MIB is acquired, and the deployment mode information is used to indicate that the MTC system is independently deployed or Deploy based on the first communication system; when the deployment mode information indicates that the MTC system is deployed independently, abandon execution of the specified action, which includes the access process of the first communication system and needs to be performed after receiving the MIB Actions.
  • the subsequent actions are abandoned, and the user equipment using the first communication system can be prevented from accessing the independent After the MTC system is deployed, it continues to try to receive unnecessary power consumption caused by subsequent information. Therefore, when the MTC system is deployed independently, the user equipment using the first communication system can avoid unnecessary power consumption.
  • Fig. 1 is a flow chart showing a method for accessing a machine type communication system according to an exemplary embodiment.
  • Fig. 2 is a flow chart showing another method for accessing a machine type communication system according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing another method for accessing a machine type communication system according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing another method for accessing a machine type communication system according to an exemplary embodiment.
  • Fig. 5 is a flow chart showing another method for accessing a machine type communication system according to an exemplary embodiment.
  • Fig. 6 is a block diagram showing an access device of a machine type communication system according to an exemplary embodiment.
  • Fig. 7 is a block diagram illustrating an access device of another machine type communication system according to an exemplary embodiment.
  • Fig. 8 is a block diagram illustrating another access device of a machine type communication system according to an exemplary embodiment.
  • Fig. 9 is a block diagram illustrating another access device of a machine type communication system according to an exemplary embodiment.
  • This application scenario may include an MTC system, which may be deployed based on other communication systems, such as LTE-based system deployment (also known as LTE in-band deployment, that is, deployment within the LTE system's spectrum), or may be based on subsequent further Evolved communication systems (such as 5G communication systems), or they can be deployed independently.
  • LTE-based system deployment also known as LTE in-band deployment, that is, deployment within the LTE system's spectrum
  • Evolved communication systems such as 5G communication systems
  • the LTE system is taken as an example, that is, the MTC system may be deployed based on the LTE system or independently deployed.
  • the user equipment when a user equipment needs to access the LTE system (that is, when it wants to access a certain cell), the user equipment needs to first receive PSS and SSS signals for downlink synchronization.
  • the LTE system whether it is a Frequency Division Duplexing (FDD) LTE system or a Time Division Duplexing (TDD) LTE system, the structures of the PSS and SSS signals are the same, but in the frame, The domain locations are different.
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the PSS is sent in the last symbol of the first slot (slot) in subframes 0 and 5; the SSS and PSS are also sent in the same slot in subframes 0 and 5, However, SSS is located in the penultimate symbol, one symbol ahead of PSS.
  • the symbol refers to Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • PSS is sent in the third symbol of subframes 1 and 6 (that is, DwPTS, downlink pilot time slot); while SSS is sent in the last symbol of subframes 0 and 5, which is three times ahead of PSS. symbol.
  • PSS and SSS are located on the 72 subcarriers in the center, and do not include direct current (DC) subcarriers.
  • the user equipment will try to receive PSS and SSS near the center frequency of the LTE frequency it supports. After receiving PSS and SSS, you can get the physical cell identity (PCI) of the cell, the position of subframe 0 in the system frame, whether the cell is operating in FDD or TDD mode, and so on. This information is downlink synchronized.
  • PCI physical cell identity
  • the PBCH is used to transmit the master information block (Master Information Block, MIB) of the system.
  • MIB contains 24 bits of information, including: the downlink system bandwidth of the cell (3 bits), the physical hybrid automatic retransmission indicator channel (Physical Hybrid ARQ). Indicator Channel (PHICH) configuration (3 bits), system time information (such as system frame number) (8 bits), subsequent system message scheduling information (5 bits), and several bits of spare bits (spare bits) (5 bits).
  • the PBCH is located in the first 4 symbols of the second slot of subframe 0 in the time domain and occupies 72 center subcarriers (excluding the DC subcarrier) in the frequency domain.
  • the PBCH is repeatedly transmitted 4 times in a period of 40ms, that is, 40ms is a period, and the MIB is transmitted once in each period. In a period, the last three times are repeated transmissions.
  • the received MIB carries the high 8 bits of the System Frame Number (SFN), and the complete SFN is 10 bits. The remaining 2 bits need to be obtained through blind detection of the PBCH.
  • the PBCH repeats transmission 4 times in a cycle.
  • Each transmission carries the same decoded information (coded bit), that is, each time can be decoded independently. Therefore, when the channel quality is good enough, the user equipment may only After receiving one of these 40ms, the remaining 2 bits can be successfully decoded; if not, soft merge with the content of the next transmission, and then decode until the PBCH is successfully decoded to complete the PBCH reception and demodulation.
  • the PBCH in addition to transmitting the PBCH in the first 4 symbols of the second slot of subframe 0, the PBCH needs to be repeatedly transmitted on subframe 9 and the remaining physical resources of subframe 0. Therefore, for the LTE system, the PBCH can be received and demodulated by combining the first 4 symbols of the second slot of subframe 0 in 40ms. For the MTC system, all resources of subframe 9 and subframe 0 can be combined to perform PBCH reception and demodulation.
  • the independently deployed MTC system is configured with independent spectrum, dedicated channels and signals, and independent PSS, SSS, and PBCH
  • the above-mentioned method is still adopted for receiving the PSS, SSS, and PBCH of the independently deployed MTC system. Therefore, regardless of whether the MTC system is deployed based on the LTE system or independently deployed, when a user equipment needs to access the MTC system or the LTE system, the user equipment needs to first receive PSS and SSS signals for downlink synchronization, and after the downlink synchronization Receive and demodulate the PBCH.
  • the access method of the machine type communication system provided by the present disclosure is described below.
  • Fig. 1 is a flowchart illustrating a method for accessing a machine-type communication system according to an exemplary embodiment. As shown in Fig. 1, the method is used in a user equipment of a first communication system, and may include the following steps.
  • step S11 in the process of accessing the MTC system, after receiving the MIB, the deployment mode information in the MIB is acquired, and the deployment mode information is used to indicate that the MTC system is deployed independently or based on the first communication system.
  • step S12 when the deployment mode information indicates that the MTC system is independently deployed, the specified action is abandoned, and the specified action includes an action that needs to be performed after the MIB is received in the access process of the first communication system.
  • the first communication system may be an LTE system supporting an MTC system, or may be a subsequent further evolved next-generation communication system, such as a 5G communication system.
  • the LTE system is taken as an example.
  • the MTC system can be deployed independently, with dedicated spectrum, dedicated channels and signals, and independent PSS, SSS, and PBCH; it can also be deployed based on the LTE system, that is, deployed in the spectrum of the LTE system and reused. PSS, SSS and PBCH in LTE systems.
  • the MTC system when a user equipment needs to access the MTC system or the LTE system, the user equipment needs to first receive PSS and SSS signals for downlink synchronization, and perform downlink synchronization Then receive and demodulate the PBCH.
  • the difference is that if the MTC system is deployed independently, when the user equipment of the LTE system accesses the MTC system, it receives PSS and SSS signals for downlink synchronization, and performs downlink PBCH reception and synchronization after downlink synchronization.
  • the user equipment After demodulation, according to the access process of the LTE system, the user equipment will continue to receive subsequent SIBs, but since the MTC system is deployed independently, in fact, at the current frequency where the MTC system is located, there is no subsequent For the transmission of SIBs for LTE users, the user equipment will make multiple attempts to receive the SIB (at the current frequency point where the MTC system is located), and eventually fails, resulting in the user equipment doing useless work and causing unnecessary power consumption.
  • the deployment mode information is set in the MIB to instruct the MTC system to be deployed independently or based on the LTE system. Therefore, after acquiring the MIB, the user equipment of the LTE system can determine whether the MTC system is deployed independently or based on the LTE system according to the deployment mode information therein.
  • the user equipment When the user equipment determines that the MTC system is independently deployed according to the deployment mode information, the user equipment can know that at the current frequency where the MTC system is located, there is no subsequent transmission for LTE users, so the user equipment can give up the implementation of the LTE system.
  • the actions that need to be performed after receiving the MIB such as receiving the SIB and subsequent actions. Thereby, unnecessary power consumption can be avoided.
  • the user equipment after the user equipment quits performing subsequent actions, the user equipment can continue to detect other possible frequency points in an attempt to receive PSS and SSS signals of the LTE system in order to access the LTE system.
  • the deployment mode information in the MIB is obtained, and the deployment mode information is used to indicate that the MTC system is deployed independently or based on the first communication system; when the deployment mode The information indicates that when the MTC system is deployed independently, the specified action is abandoned, and the specified action includes an action that needs to be performed after receiving the MIB during the access process of the first communication system.
  • FIG. 2 is a flowchart illustrating another method for accessing a machine type communication system according to an exemplary embodiment. As shown in FIG. 2, the method is used in user equipment. The method may further include the following steps.
  • step S13 when the deployment mode information indicates that the MTC system is deployed based on the first communication system, the designated action is continuously performed.
  • the first communication system is an LTE system as an example.
  • the deployment mode information indicates that the MTC system is deployed based on the LTE system, it indicates the current frequency where the MTC system is located, and subsequent transmissions for users of the LTE system.
  • the user equipment does not need to go to other frequencies to re-detect the LTE system. Therefore, after acquiring the MIB, the user equipment needs to perform subsequent actions, that is, to continue to receive the SIB, so as to acquire subsequent related parameters used for random access.
  • the deployment mode information may be a value of a deployment mode flag bit set in a reserved bit in the MIB.
  • FIG. 3 illustrates another machine class according to an exemplary embodiment. A flowchart of an access method of a communication system is shown in FIG. 3. The method is used in a user equipment. The step of obtaining the deployment mode information in the MIB described in step S11 may include the following steps.
  • step S111 a value of a deployment mode flag in a reserved bit set in the MIB is acquired.
  • the deployment mode flag there are 5 reserved bits in the current MIB, so one or more of them can be selected to set the signature mode information, which is called the deployment mode flag.
  • the deployment mode flag bit is one bit
  • the deployment mode flag bit is used to indicate that the MTC system is deployed independently or based on the first communication system.
  • step S12 becomes: when the value of the deployment mode flag bit indicates that the MTC system is independently deployed, the specified action is abandoned, and the specified action includes the access process of the first communication system.
  • step S13 The action to be performed after receiving the MIB; step S13 becomes: when the value of the deployment mode flag bit indicates that the MTC system is deployed based on the first communication system, the specified action is continuously performed.
  • the method may further include: after abandoning the specified action, detecting the adjacent first communication system according to the frequency difference range.
  • the deployment mode flag bit can occupy 1 bit in the reserved bit of the MIB, and then the value of the deployment mode flag bit can use a binary number to represent MTC.
  • the system is deployed independently or based on the LTE system. For example, when the deployment mode flag is 0, the MTC system is deployed based on the LTE system. When the deployment mode flag is 1, the MTC system is deployed independently.
  • the deployment mode flag is multiple bits, taking 3 bits as an example, as shown in Table 1, the deployment mode flag can occupy 3 bits in the reserved bits of the MIB, then the deployment mode
  • the value of the flag bit can be a three-digit binary number to indicate the deployment mode, and the frequency position of the LTE system near the current frequency (of the MTC system) (that is, the frequency of the adjacent LTE system is relative to the current frequency of the MTC system). Point frequency range).
  • the three-bit representation method for the deployment mode flags described above is exemplary, including but not limited to this.
  • two bits, four bits, or five bits may also be used according to actual requirements.
  • a 4-bit solution can be used as an example, as shown in Table 2.
  • 4 bits are used to indicate the deployment mode flag, which can represent up to 16 cases. Therefore, in addition to the several cases shown in Table 2, more cases can be added as needed, which are not listed here.
  • the deployment mode flag bit indicates that the MTC system is deployed based on the LTE system
  • the operation of receiving the SIB is continued; when the deployment mode flag bit indicates that the MTC system is deployed independently, the user equipment gives up performing the subsequent reception of the SIB.
  • the deployment mode information may be a value of a deployment mode flag bit set in a reserved bit in the MIB, and a first communication system location flag set in a PHICH configuration field in the MIB.
  • the value of the bit correspondingly, FIG. 4 is a flowchart illustrating another method for accessing a machine type communication system according to an exemplary embodiment. As shown in FIG. 4, the method is used in a user equipment. This step S11 The step of obtaining the deployment mode information in the MIB may include the following steps.
  • step S112 the value of the deployment mode flag in the reserved bits set in the MIB and the value of the first communication system location flag set in the PHICH configuration field in the MIB are acquired.
  • the deployment mode flag bit is a bit used to indicate that the MTC system is deployed independently or based on the first communication system; the first communication system location flag bit is used to indicate the neighboring first communication system.
  • the adjacent first communication system is the first communication system whose frequency point is closest to the current frequency point of the MTC system.
  • step S12 becomes: when the value of the deployment mode flag bit indicates that the MTC system is independently deployed, the specified action is abandoned, and the specified action includes the access process of the first communication system,
  • the action to be performed after receiving the MIB step S13 becomes: when the value of the deployment mode flag bit indicates that the MTC system is deployed based on the first communication system, the designated action is continuously performed.
  • the method may further include: step S14, after abandoning the execution of the specified action, detecting an adjacent first communication system according to the frequency difference range indicated by the value of the position flag of the first communication system.
  • the deployment mode flag bit can occupy 1 bit in the reserved bit of the MIB, and then the value of the deployment mode flag bit can use one bit
  • the binary number indicates that the MTC system is deployed independently or based on the LTE system. For example, when the deployment mode flag is 0, the MTC system is deployed based on the LTE system. When the deployment mode flag is 1, the MTC system is independent. deploy.
  • the PHICH configuration field in the MIB is still used to indicate PHICH channel configuration information.
  • the three bits of the PHICH configuration domain can be used to determine the frequency position of the LTE system near the current frequency (of the MTC system) (that is, the frequency of adjacent LTE systems relative to the MTC). The frequency difference range of the current frequency of the system). That is, the three bits of the PHICH configuration field are used as the location flag of the first communication system, and the value can be represented by a three-digit binary number, which respectively represents the different situations of the frequency position of the nearby LTE system. as shown in Table 3:
  • the method for indicating the frequency position of a nearby LTE system by using three bits in the PHICH configuration domain as the LTE system position flag is exemplary, including but not limited to this. For example, it may also be adopted according to actual requirements. 2 bits.
  • the deployment mode flag bit indicates that the MTC system is deployed based on the LTE system
  • the operation of receiving the SIB is continued; when the deployment mode flag bit indicates that the MTC system is deployed independently, the user equipment gives up performing the subsequent reception of the SIB.
  • the user equipment gives up performing the subsequent reception of the SIB.
  • the frequency difference range of the frequency points of the adjacent LTE system relative to the current frequency point of the MTC system can be obtained according to the value of the PHICH configuration domain, so that the detection can be performed more quickly.
  • the deployment mode information in the MIB is obtained, and the deployment mode information is used to indicate that the MTC system is deployed independently or based on the first communication system; when the deployment mode The information indicates that when the MTC system is deployed independently, the specified actions are abandoned, and the specified actions include actions that need to be performed after receiving the MIB during the access process of the first communication system.
  • Fig. 5 is a flow chart showing another method for accessing a machine type communication system according to an exemplary embodiment. As shown in Fig. 5, the method is used in a base station and may include the following steps.
  • Step S21 When the user equipment accesses the MTC system, a synchronization signal is sent to the user equipment, and the user equipment is the user equipment of the first communication system.
  • the first communication system may be an LTE system supporting an MTC system, and the synchronization signal includes the PSS and SSS described above, and is used by the user equipment to perform downlink synchronization when receiving the synchronization signal.
  • the process of receiving the PSS and SSS by the user equipment has been described in the foregoing application scenario introduction, and is not repeated here.
  • Step S22 Generate a MIB according to the deployment mode of the MTC system.
  • the MIB includes deployment mode information, and the deployment mode information is used to indicate that the MTC system is deployed independently or based on the first communication system.
  • Step S23 Send the MIB to the user equipment.
  • the base station After the MIB is generated, the base station transmits the MIB through the PBCH, and the user equipment receives the MIB by detecting the PBCH.
  • the method for receiving the MIB by the user equipment has been described in the foregoing application scenario introduction, and is not repeated here.
  • the user equipment After receiving the MIB, the user equipment can determine whether the MTC system is deployed independently or based on the first communication system by acquiring the deployment mode information in the MIB. After the user equipment determines whether the MTC system is deployed independently or based on the first communication system, it can execute steps S12 or S13 accordingly.
  • the MIB is generated according to the deployment mode of the MTC system described in step S22, and the MIB includes deployment mode information, which is used to indicate that the MTC system is deployed independently or based on the first communication system Can include:
  • the MIB is generated according to the deployment mode of the MTC system, and a reserved mode bit in the MIB is set with a deployment mode flag bit.
  • the deployment mode flag may be one bit or multiple bits. Because there are 5 reserved bits in the current MIB, one or more of them can be selected as the deployment mode flag.
  • the deployment mode flag When the deployment mode flag is one bit, the deployment mode flag is used to indicate that the MTC system is deployed independently or based on the first communication system; when the deployment mode flag is multiple bits, the deployment mode flag is It is used to indicate whether the MTC system is deployed independently or based on the first communication system, and the frequency difference range of the frequency points of adjacent first communication systems with respect to the current frequency of the MTC system.
  • the system is the first communication system whose frequency point is closest to the current frequency point of the MTC system.
  • the deployment mode flag bit can occupy 1 bit in the reserved bit of the MIB, and then the value of the deployment mode flag bit can use a binary number to represent MTC.
  • the system is deployed independently or based on the LTE system. For example, when the deployment mode flag is 0, the MTC system is deployed based on the LTE system. When the deployment mode flag is 1, the MTC system is deployed independently. Therefore, when the base station generates the MIB, the value of the deployment mode flag in the MIB can be set to 0 or 1 according to whether the actual deployment mode of the MTC system is independent deployment or deployment based on the LTE system. Alternatively, the deployment mode flag bit can occupy 3 bits in the reserved bits of the MIB.
  • the implementation shown in Table 1 indicates both the deployment mode of the MTC system and the current frequency (of the MTC system).
  • the frequency position of the nearby LTE system that is, the frequency difference range of the frequency of the adjacent LTE system relative to the current frequency of the MTC system.
  • the three-bit representation method of the deployment mode flag bit described above is exemplary, including but not limited to this.
  • two bits, four bits, or five bits may also be used according to actual requirements.
  • a 4-bit solution can be used here as an example, as shown in Table 2 above.
  • the deployment mode flag bit in the MIB sent by the base station indicates that the MTC system is deployed based on the LTE system
  • the user equipment continues to perform the action of receiving the SIB; when the deployment mode flag bit indicates that the MTC system is independently deployed , The user equipment gives up performing the subsequent action of receiving the SIB, and tries to detect the LTE system at other frequencies, and when the deployment mode flag bit is multiple bits, the deployment mode flag bit can also instruct the user equipment to obtain according to the deployment mode flag bit
  • the frequency difference range of the frequency points of the adjacent LTE system relative to the current frequency of the MTC system so that the user equipment can detect the LTE system more quickly.
  • the MIB is generated according to the deployment mode of the MTC system described in step S22, and the MIB includes deployment mode information, which is used to indicate that the MTC system is independently deployed or based on the first communication system Deployment can include:
  • a MIB is generated according to the deployment mode of the MTC system.
  • a reserved mode bit in the MIB is provided with a deployment mode flag bit, and a PHICH configuration field in the MIB is provided with a first communication system location flag bit.
  • the deployment mode flag is a bit used to indicate that the MTC system is deployed independently or based on the first communication system; the first communication system location flag is used to indicate adjacent first communications.
  • the adjacent first communication system is the first communication system whose frequency is closest to the current frequency of the MTC system.
  • the deployment mode flag bit can occupy 1 bit in the reserved bits of the MIB.
  • the value of the deployment mode flag bit can use a binary number to indicate that the MTC system is independent. Deployment or deployment based on LTE system. For example, when the deployment mode flag is 0, the MTC system is deployed based on the LTE system. When the deployment mode flag is 1, the MTC system is deployed independently. Therefore, when the base station generates the MIB, the value of the deployment mode flag in the MIB can be set to 0 or 1 according to whether the actual deployment mode of the MTC system is independent deployment or deployment based on the LTE system.
  • the PHICH configuration field in the MIB can still be used to indicate PHICH channel configuration information.
  • the three bits of the PHICH configuration domain can be used as LTE system position flags, and the frequency position of the LTE system near the current frequency (of the MTC system) (that is, the adjacent LTE system) (The frequency difference range of the frequency point relative to the current frequency point of the MTC system).
  • the three-bit representation method of the deployment mode flag bit described above is exemplary, including but not limited to this. For example, two bits may be adopted according to actual requirements.
  • the base station may set the value of the PHICH configuration field according to the frequency point position of the adjacent LTE system, that is, the value of the LTE system position flag.
  • the user equipment when the deployment mode flag bit in the MIB sent by the base station indicates that the MTC system is deployed based on the LTE system, the user equipment continues to perform the action of receiving the SIB; when the deployment mode flag bit indicates that the MTC system is independently deployed , The user equipment abandons the subsequent action of receiving the SIB, and tries to detect the LTE system at other frequency points, and the user equipment can obtain the frequency point of the adjacent LTE system relative to the current frequency point of the MTC system according to the value of the PHICH configuration domain. Frequency difference range, so that LTE systems can be detected more quickly.
  • Fig. 6 is a block diagram showing an access device of a machine type communication system according to an exemplary embodiment.
  • the apparatus may be applied to user equipment of a first communication system.
  • the apparatus 600 includes an information acquisition module 601 and an execution module 602.
  • the information acquisition module 601 is configured to, during the process of accessing the MTC system, after receiving the MIB, acquire the deployment mode information in the MIB, and the deployment mode information is used to indicate that the MTC system is independently deployed or based on the first communication System deployment
  • the execution module 602 is configured to abandon the specified action when the deployment mode information indicates that the MTC system is independently deployed, and the specified action includes an action that needs to be performed after receiving the MIB during the access process of the first communication system.
  • the execution module 602 is further configured to continue to perform the specified action when the deployment mode information indicates that the MTC system is deployed based on the first communication system.
  • the information acquisition module 601 is configured to acquire a value of a deployment mode flag in a reserved bit set in the MIB.
  • the deployment mode flag is one or more bits
  • the deployment mode flag is one bit, the deployment mode flag is used to indicate that the MTC system is deployed independently or based on the first communication system;
  • the deployment mode flag bit is used to indicate that the MTC system is deployed independently or based on the first communication system, and that the frequency of an adjacent first communication system is relative to the MTC system.
  • the frequency difference range of the current frequency point, the adjacent first communication system is the first communication system whose frequency point is closest to the current frequency point of the MTC system.
  • FIG. 7 is a block diagram of an access device for another machine type communication system according to an exemplary embodiment.
  • the device 500 when the deployment mode flag bit is multiple bits, the device 500 It also includes a detection module 603 configured to detect the adjacent first communication system according to the frequency difference range after the abandonment of the specified action.
  • the information acquisition module 601 is configured to:
  • a value of a deployment mode flag bit set in a reserved bit in the MIB and a value of a first communication system position flag bit set in a PHICH configuration field in the MIB are acquired.
  • the deployment mode flag bit is a bit used to indicate that the MTC system is deployed independently or based on the first communication system; the first communication system position flag bit is used to indicate an adjacent first The frequency difference range of the frequency of a communication system with respect to the current frequency of the MTC system.
  • the adjacent first communication system is the first communication system whose frequency is closest to the current frequency of the MTC system.
  • the detection module 603 is further configured to detect the adjacent first communication system according to the frequency difference range after the abandonment of performing a specified action.
  • the first communication system is an LTE system supporting an MTC system.
  • the deployment mode information in the MIB is obtained, and the deployment mode information is used to indicate that the MTC system is deployed independently or based on the first communication system; when the deployment mode The information indicates that when the MTC system is deployed independently, the specified actions are abandoned, and the specified actions include actions that need to be performed after receiving the MIB during the access process of the first communication system.
  • Fig. 8 is a block diagram illustrating another access device of a machine type communication system according to an exemplary embodiment.
  • the apparatus may be applied to a base station.
  • the apparatus 800 includes a synchronization module 801, a generation module 802, and a sending module 803.
  • the synchronization module 801 is configured to send a synchronization signal to the user equipment when the user equipment accesses the MTC system, and the user equipment is the user equipment of the first communication system;
  • the generating module 802 is configured to generate a MIB according to a deployment mode of the MTC system, the MIB includes deployment mode information, and the deployment mode information is used to indicate that the MTC system is deployed independently or based on the first communication system;
  • the sending module 803 is configured to send an MIB to the user equipment.
  • the generating module 802 is configured to:
  • the MIB is generated according to the deployment mode of the MTC system, and a reserved mode bit in the MIB is set with a deployment mode flag bit.
  • the deployment mode flag is one or more bits
  • the deployment mode flag When the deployment mode flag is one bit, the deployment mode flag is used to indicate that the MTC system is deployed independently or based on the first communication system; when the deployment mode flag is multiple bits, the deployment mode flag is It is used to indicate whether the MTC system is deployed independently or based on the first communication system, and the frequency difference range of the frequency points of adjacent first communication systems with respect to the current frequency of the MTC system.
  • the system is the first communication system whose frequency point is closest to the current frequency point of the MTC system.
  • the generating module 802 may be further configured to generate a MIB according to a deployment mode of the MTC system, a reserved mode bit in the MIB is set with a deployment mode flag bit, and a PHICH configuration field in the MIB A first communication system position flag is set.
  • the deployment mode flag bit is a bit used to indicate that the MTC system is deployed independently or based on the first communication system; the first communication system position flag bit is used to indicate an adjacent first The frequency difference range of the frequency of a communication system with respect to the current frequency of the MTC system.
  • the adjacent first communication system is the first communication system whose frequency is closest to the current frequency of the MTC system.
  • the first communication system is an LTE system supporting an MTC system.
  • the base station when the user equipment accesses the MTC system, the base station sets deployment mode information in the MIB sent to the user, and the deployment mode information is used to indicate that the MTC system is deployed independently or based on the first communication system;
  • the deployment mode information indicates that the MTC system is deployed independently, the user equipment is given up to perform a specified action, and the specified action includes an action that needs to be performed after receiving the MIB during the access process of the first communication system.
  • the present disclosure also provides a computer-readable storage medium having stored thereon computer program instructions that, when executed by a processor, implement the steps of the method for accessing a machine-type communication system provided by the present disclosure.
  • Fig. 9 is a block diagram illustrating another access device of a machine type communication system according to an exemplary embodiment.
  • the device 900 may be a user equipment of an LTE system, such as a mobile phone, computer, digital broadcasting terminal, messaging device, game console, tablet device, medical device, fitness equipment, personal digital assistant, etc. that supports LTE, or the device 900 may be a base station.
  • LTE Long Term Evolution
  • the device 900 may be a base station.
  • the device 900 may include one or more of the following components: a processing component 902, a memory 904, a power component 906, a multimedia component 908, an audio component 910, an input / output (I / O) interface 912, a sensor component 914, And communication components 916.
  • the processing component 902 generally controls the overall operations of the device 900, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 902 may include one or more processors 920 to execute instructions to complete all or part of the steps of the method for accessing a machine type communication system described above.
  • the processing component 902 may include one or more modules to facilitate the interaction between the processing component 902 and other components.
  • the processing component 902 may include a multimedia module to facilitate the interaction between the multimedia component 908 and the processing component 902.
  • the memory 904 is configured to store various types of data to support operation at the device 900. Examples of such data include instructions for any application or method operating on the device 900, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 904 may be implemented by any type of volatile or non-volatile storage devices or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 906 provides power to various components of the device 900.
  • the power component 906 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 900.
  • the multimedia component 908 includes a screen that provides an output interface between the device 900 and a user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 908 includes a front camera and / or a rear camera. When the device 900 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 910 is configured to output and / or input audio signals.
  • the audio component 910 includes a microphone (MIC).
  • the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 904 or transmitted via the communication component 916.
  • the audio component 910 further includes a speaker for outputting audio signals.
  • the I / O interface 912 provides an interface between the processing component 902 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons can include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor component 914 includes one or more sensors for providing status assessment of various aspects of the device 900.
  • the sensor component 914 can detect the on / off state of the device 900 and the relative positioning of the components, such as the display and keypad of the device 900, and the sensor component 914 can also detect the change in the position of the device 900 or a component of the device 900 , The presence or absence of the user's contact with the device 900, the orientation or acceleration / deceleration of the device 900, and the temperature change of the device 900.
  • the sensor component 914 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 914 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 914 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 916 is configured to facilitate wired or wireless communication between the device 900 and other devices.
  • the device 900 may access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 916 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 916 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth
  • the device 900 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable It is implemented by a gate array (FPGA), a controller, a microcontroller, a microprocessor, or other electronic components, and is used to execute the access method of the above-mentioned machine type communication system.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable It is implemented by a gate array (FPGA), a controller, a microcontroller, a microprocessor, or other electronic components, and is used to execute the access method of the above-mentioned machine type communication system.
  • a non-transitory computer-readable storage medium including instructions such as a memory 904 including instructions, may be executed by the processor 920 of the device 900 to complete the above-mentioned machine-type communication system. Access method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及一种机器类通信系统的接入方法、装置及存储介质,该方法包括:在 MTC 系统的过程中,在接收到 MIB 后,获取 MIB 中的部署模式信息,部署模式信息用于指示 MTC 系统为独立部署或基于第一通信系统部署;当部署模式信息指示 MTC 系统为独立部署时,放弃执行指定动作,指定动作包括第一通信系统的接入过程中,在接收到 MIB 后需要执行的动作。本公开提供的技术方案,在接收到 MIB 后如果根据 MIB 中的部署模式信息确定 MTC 系统为独立部署时,则放弃执行后续动作,能够避免使用第一通信系统的用户设备在接入独立部署的 MTC 系统之后,继续尝试接收后续信息造成的不必要的功率消耗。

Description

机器类通信系统的接入方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种机器类通信系统的接入方法、装置及存储介质。
背景技术
机器类通信(Machine Type Communication,MTC)是指无人为干涉的机器之间的通信,广泛用于智慧城市(例如抄表)、智慧农业(例如温度湿度等信息的采集),智慧交通(例如共享单车\共享汽车)等诸多领域。目前在长期演进(Long Term Evolution,LTE)系统(主要是release 12~release 13)中形成了基本的MTC通信框架,能够支持低复杂度、低造价、覆盖增强和功率节省等特性。传统的MTC系统是部署在LTE系统的频谱内的,和传统的LTE系统用户共用频率资源和部分信道。具体来说,传统MTC系统和LTE系统用户共用主同步信号(Primary synchronization signal,PSS)、辅同步信号(Secondary synchronization signal,SSS)和物理广播信道(Physical broadcast channel,PBCH)。
目前,对于传统的LTE系统,用户设备(User Equipment,UE)想要接入某个小区时,首先会进行接收PSS和SSS进行下行同步,当下行同步完成后,用户会继续接收和解调PBCH,其主要是进行主信息块(Master Information Block,MIB)的接收。当接收和解调PBCH成功后,会继续接收后续相应的系统信息块(System Information Block,系统消息块)信息,读取后续进行随机接入的相关参数。而由于传统的MTC系统共用了LTE系统的PSS、SSS和PBCH,因此对于LTE系统的用户设备而言,在进行MTC系统的接入时,在接收和解调PBCH成功后,会继续接收SIB以及后续的动作,以接入LTE系统中。
但是由于考虑到目前MTC系统需要基于LTE系统进行部署的方式缺乏灵活性,因此目前业界已经开始考虑将MTC系统进行独立部署,例如为独立部署的MTC系统分配独立的频谱、专用的信道/信号,以及独立传输 PSS/SSS和PBCH等等。但是对于传统的LTE系统的用户而言,其在接收和解调PBCH成功后还是会继续进行SIB的接收动作,而实际上独立部署的MTC系统并没有后续的SIB传输,因此传统的LTE系统的用户会进行多次尝试接收并最终失败,造成不必要的功率消耗。
发明内容
为克服相关技术中存在的问题,本公开提供一种机器类通信系统的接入方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种机器类通信系统的接入方法,应用于第一通信系统的用户设备,所述方法包括:在接入MTC系统的过程中,在接收到MIB后,获取所述MIB中的部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署;
当所述部署模式信息指示所述MTC系统为独立部署时,放弃执行指定动作,所述指定动作包括第一通信系统的接入过程中,在接收到MIB后需要执行的动作。
可选地,所述方法还包括:
当所述部署模式信息指示所述MTC系统为基于第一通信系统部署时,继续执行所述指定动作。
可选地,所述获取所述MIB中的部署模式信息,包括:
获取设置于所述MIB中的预留比特位中的部署模式标志位的值。
可选地,所述部署模式标志位为一个比特或多个比特;
当所述部署模式标志位为一个比特时,所述部署模式标志位用于指示所述MTC系统为独立部署或基于第一通信系统部署;
当所述部署模式标志位为多个比特时,所述部署模式标志位用于指示所述MTC系统为独立部署或基于第一通信系统部署,以及相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
可选地,当所述部署模式标志位为多个比特时,所述方法还包括:
在所述放弃执行指定动作之后,根据所述频率差值范围检测所述相邻的 第一通信系统。
可选地,所述获取所述MIB中的部署模式信息,包括:
获取设置于所述MIB中的预留比特位中的部署模式标志位的值,以及设置于所述MIB中的物理混合自动重传指示信道PHICH配置域的第一通信系统位置标志位的值。
可选地,所述部署模式标志位为一个比特,用于指示所述MTC系统为独立部署或基于第一通信系统部署;所述第一通信系统位置标志位为多个比特,用于指示相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
可选地,所述方法还包括:
在所述放弃执行指定动作之后,根据所述频率差值范围检测所述相邻的第一通信系统。
可选地,所述第一通信系统为:支持MTC系统的长期演进LTE系统。
根据本公开实施例的第二方面,提供一种机器类通信系统的接入方法,应用于基站,所述方法包括:
在用户设备进行MTC系统接入时,向所述用户设备发送同步信号,所述用户设备为第一通信系统的用户设备;
根据所述MTC系统的部署模式生成MIB,所述MIB中包含部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署;
向所述用户设备发送所述MIB。
可选地,所述根据所述MTC系统的部署模式生成MIB,所述MIB中包含部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署,包括:
根据所述MTC系统的部署模式生成所述MIB,在所述MIB中的预留比特位设置有部署模式标志位。
可选地,所述部署模式标志位为一个比特或多个比特;
当所述部署模式标志位为一个比特时,所述部署模式标志位用于指示所 述MTC系统为独立部署或基于第一通信系统部署;
当所述部署模式标志位为多个比特时,所述部署模式标志位用于指示所述MTC系统为独立部署或基于第一通信系统部署,以及相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
可选地,所述根据所述MTC系统的部署模式生成MIB,所述MIB中包含部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署,包括:
根据所述MTC系统的部署模式生成所述MIB,所述MIB中的预留比特位中设置有部署模式标志位,所述MIB中的物理混合自动重传指示信道PHICH配置域设置有第一通信系统位置标志位。
可选地,所述部署模式标志位为一个比特,用于指示所述MTC系统为独立部署或基于第一通信系统部署;所述第一通信系统位置标志位为多个比特,用于指示相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
可选地,所述第一通信系统为:支持MTC系统的长期演进LTE系统。
根据本公开实施例的第三方面,提供一种机器类通信系统的接入装置,应用于第一通信系统的用户设备,所述装置包括:
信息获取模块,被配置为在接入MTC系统的过程中,在接收到MIB后,获取所述MIB中的部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署;
执行模块,被配置为当所述部署模式信息指示所述MTC系统为独立部署时,放弃执行指定动作,所述指定动作包括第一通信系统的接入过程中,在接收到MIB后需要执行的动作。
可选地,所述执行模块,还被配置为当所述部署模式信息指示所述MTC系统为基于第一通信系统部署时,继续执行所述指定动作。
可选地,所述信息获取模块,被配置为:获取设置于所述MIB中的预留比特位中的部署模式标志位的值。
可选地,所述部署模式标志位为一个比特或多个比特;
当所述部署模式标志位为一个比特时,所述部署模式标志位用于指示所述MTC系统为独立部署或基于第一通信系统部署;
当所述部署模式标志位为多个比特时,所述部署模式标志位用于指示所述MTC系统为独立部署或基于第一通信系统部署,以及相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
可选地,当所述部署模式标志位为多个比特时,所述装置还包括:检测模块,被配置为:在所述放弃执行指定动作之后,根据所述频率差值范围检测所述相邻的第一通信系统。
可选地,所述信息获取模块,被配置为:
获取设置于所述MIB中的预留比特位中的部署模式标志位的值,以及设置于所述MIB中的物理混合自动重传指示信道PHICH配置域的第一通信系统位置标志位的值。
可选地,所述部署模式标志位为一个比特,用于指示所述MTC系统为独立部署或基于第一通信系统部署;所述第一通信系统位置标志位为多个比特,用于指示相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
可选地,所述装置还包括:检测模块,被配置为:在所述放弃执行指定动作之后,根据所述频率差值范围检测所述相邻的第一通信系统。
可选地,所述第一通信系统为:支持MTC系统的长期演进LTE系统。
根据本公开实施例的第四方面,提供一种机器类通信系统的接入装置应用于基站,所述装置包括:
同步模块,被配置为在用户设备进行MTC系统接入时,向所述用户设备发送同步信号,所述用户设备为第一通信系统的用户设备;
生成模块,被配置为根据所述MTC系统的部署模式生成MIB,所述MIB中包含部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署;
发送模块,被配置为向所述用户设备发送所述MIB。
可选地,所述生成模块,被配置为:
根据所述MTC系统的部署模式生成所述MIB,在所述MIB中的预留比特位设置有部署模式标志位。
可选地,所述部署模式标志位为一个比特或多个比特;
当所述部署模式标志位为一个比特时,所述部署模式标志位用于指示所述MTC系统为独立部署或基于第一通信系统部署;
当所述部署模式标志位为多个比特时,所述部署模式标志位用于指示所述MTC系统为独立部署或基于第一通信系统部署,以及相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
可选地,所述生成模块,被配置为:根据所述MTC系统的部署模式生成所述MIB,所述MIB中的预留比特位中设置有部署模式标志位,所述MIB中的物理混合自动重传指示信道PHICH配置域设置有第一通信系统位置标志位。
可选地,所述部署模式标志位为一个比特,用于指示所述MTC系统为独立部署或基于第一通信系统部署;所述第一通信系统位置标志位为多个比特,用于指示相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
可选地,所述第一通信系统为:支持MTC系统的长期演进LTE系统。
根据本公开实施例的第五方面,提供一种机器类通信系统的接入装置,应用于第一通信系统的用户设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:在接入MTC系统的过程中,在接收到MIB后,获取所述MIB中的部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署;
当所述部署模式信息指示所述MTC系统为独立部署时,放弃执行指定 动作,所述指定动作包括第一通信系统的接入过程中,在接收到MIB后需要执行的动作。
根据本公开实施例的第六方面,提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开第一方面所提供的机器类通信系统的接入方法的步骤。
根据本公开实施例的第七方面,提供一种机器类通信系统的接入装置,应用于基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在用户设备进行MTC系统接入时,向所述用户设备发送同步信号,所述用户设备为第一通信系统的用户设备;
根据所述MTC系统的部署模式生成MIB,所述MIB中包含部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署;
向所述用户设备发送所述MIB。
根据本公开实施例的第八方面,提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开第二方面所提供的机器类通信系统的接入方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开的实施例提供的技术方案中,在MTC系统的过程中,在接收到MIB后,获取所述MIB中的部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署;当所述部署模式信息指示所述MTC系统为独立部署时,放弃执行指定动作,所述指定动作包括第一通信系统的接入过程中,在接收到MIB后需要执行的动作。通过本公开提供的上述技术方案,在接收到MIB后,如果根据MIB中的部署模式信息确定MTC系统为独立部署,则放弃执行后续动作,能够避免使用第一通信系统的用户设备在接入独立部署的MTC系统之后,继续尝试接收后续信息导致的不必要的功率消耗,因此能够在MTC系统是独立部署的情况下,使 使用第一通信系统的用户设备避免不必要的功率消耗。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种机器类通信系统的接入方法的流程图。
图2是根据一示例性实施例示出的另一种机器类通信系统的接入方法的流程图。
图3是根据一示例性实施例示出的又一种机器类通信系统的接入方法的流程图。
图4是根据一示例性实施例示出的又一种机器类通信系统的接入方法的流程图。
图5是根据一示例性实施例示出的又一种机器类通信系统的接入方法的流程图。
图6是根据一示例性实施例示出的一种机器类通信系统的接入装置的框图。
图7是根据一示例性实施例示出的另一种机器类通信系统的接入装置的框图。
图8是根据一示例性实施例示出的又一种机器类通信系统的接入装置的框图。
图9是根据一示例性实施例示出的又一种机器类通信系统的接入装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的 要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在介绍本公开提供的机器类通信系统的接入方法之前,首先对本公开的各个实施例所涉及的应用场景进行介绍。该应用场景可以包括MTC系统,该MTC系统可以是基于其他通信系统部署的,例如基于LTE系统部署(或者称为LTE带内部署,即在LTE系统的频谱内部署),也可能基于后续的进一步演进的通信系统(例如5G通信系统),或者也可以是独立部署的。本公开的各个实施例中以LTE系统为例,即MTC系统可以是基于LTE系统部署或独立部署。
其中,以传统的LTE系统为例,当某一用户设备需要接入LTE系统时(即想要接入某一个小区时),该用户设备需要先接收PSS和SSS信号进行下行同步。在LTE系统中,无论是频分双工(Frequency Division Duplexing,FDD)LTE系统还是时分双工(Time Division Duplexing,TDD)LTE系统,其PSS和SSS信号的结构是相同的,但在帧中时域位置有所不同。其中,对于FDD LTE而言,PSS在子帧0和5的第一个时隙(slot)的最后一个符号(symbol)中发送;SSS与PSS也在子帧0和5的同一时隙发送,但SSS位于倒数第二个符号中,比PSS提前一个符号,其中符号是指正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。TDD LTE而言,PSS在子帧1和6(即DwPTS,下行导频时隙)的第三个符号中发送;而SSS在子帧0和5的最后一个符号中发送,比PSS提前三个符号。
用户设备开机时并不知道系统带宽的大小,但它知道自己支持的频带和带宽。为了使用户设备能够尽快检测到系统的频率和符号同步信息,无论系统带宽大小,PSS和SSS都位于中心的72个子载波上,不包含直流(DC)子载波。用户设备会在其支持的LTE频率的中心频点附近去尝试接收PSS和SSS。在接收到PSS和SSS,就可以得到小区的物理小区标识(Physical-layer Cell Identity,PCI)、系统帧中子帧0所在的位置、小区是工作在FDD还是TDD模式下等信息,从而可以根据这些信息进行下行同步。
在下行同步完成后,该用户设备会继续进行接收和解调PBCH。其中 PBCH用于传输系统的主信息块(MasterInformationBlock,MIB),该MIB包含了24比特(bit)信息,其中包括:小区的下行系统带宽(3bit)、物理混合自动重传指示信道(Physical Hybrid ARQ Indicator Channel,PHICH)配置(3bit)、系统时间信息(如系统帧号)(8bit)、后续系统消息调度信息(5bit),以及若干比特的预留比特位(spare bit)(5bit)。
其中,PBCH时域上位于子帧0的第2个时隙的前4个符号,频域上占据72个中心子载波(不含DC子载波)。在LTE系统中,PBCH在时长40ms的周期内重复传输4次,即40ms为一个周期,每个周期传输一次MIB,在一个周期内,后三次为重复传输,与第一次传输的MIB内容相同。其中,需要说明的是,接收到的MIB中携带的是系统帧号(System Frame Number,SFN)的高8bit,而完整的SFN为10bit,剩余的2bit需要通过盲检PBCH得到的。其中,PBCH一个周期内重复传输4次中的进行每一次传输都携带相同的解码信息(coded bit),即每一次都是可以独自解码,因此在信道质量足够好的情况下,用户设备可能只接收这40ms内的其中一个,就能够成功解码出剩余的2bit;如果不行,就与下一次传输的内容进行软合并,再进行解码,直到成功解码出PBCH,从而完成PBCH的接收和解调。
而在MTC系统中,除了上述的PBCH传输过程外,还需要进行额外的PBCH重复传输。即除了在子帧0的第2个时隙的前4个符号传输PBCH外,还需要在子帧9和子帧0剩余物理资源上对PBCH进行重复传输。因此对于LTE系统,可以通过在40ms合并子帧0的第2个时隙的前4个符号即可进行PBCH的接收和解调。对于MTC系统,则可以合并子帧9和子帧0的所有资源来进行PBCH的接收和解调。
虽然为独立部署的MTC系统配置了独立的频谱、专用的信道和信号,以及独立的PSS、SSS和PBCH,但是对于独立部署的MTC系统的PSS、SSS和PBCH的接收还是采用了上述的方法。因此,无论MTC系统是基于LTE系统部署还是独立部署,当某一用户设备需要接入MTC系统或是LTE系统时,该用户设备均需要首先接收PSS和SSS信号进行下行同步,并且在下行同步后进行PBCH的接收和解调。基于上述的应用场景,下面对本公开提供的机器类通信系统的接入方法进行介绍。
图1是根据一示例性实施例示出的一种机器类通信系统的接入方法的流程图,如图1所示,该方法用于第一通信系统的用户设备中,可以包括以下步骤。
在步骤S11中,在接入MTC系统的过程中,在接收到MIB后,获取MIB中的部署模式信息,该部署模式信息用于指示MTC系统为独立部署或基于第一通信系统部署。
在步骤S12中,当该部署模式信息指示MTC系统为独立部署时,放弃执行指定动作,该指定动作包括第一通信系统的接入过程中,在接收到MIB后需要执行的动作。
其中,在本公开各个实施例中,该第一通信系统可以是支持MTC系统的LTE系统,也可以是后续的进一步演进的下一代通信系统,例如5G通信系统。在本实施例中,以该LTE系统为例。该MTC系统可以是独立部署的,设置有专属的频谱、专用的信道和信号,以及独立的PSS、SSS和PBCH;也可以是基于LTE系统部署的,即部署在LTE系统的频谱内,复用LTE系统中的PSS、SSS和PBCH。
虽然,无论MTC系统是基于LTE系统部署还是独立部署的,当某一用户设备需要接入MTC系统或是LTE系统时,该用户设备均需要首先接收PSS和SSS信号进行下行同步,并且在下行同步后进行PBCH的接收和解调。但是不同之处在于,如果MTC系统是独立部署的,那么对于LTE系统的用户设备而言在接入MTC系统时,在接收PSS和SSS信号进行下行同步,并且在下行同步后进行PBCH的接收和解调之后,按照LTE系统的接入过程,该用户设备会继续进行后续SIB的接收动作,但是由于MTC系统是独立部署的,因此实际上,在该MTC系统所在的当前频点,后续并没有针对LTE用户的SIB的传输,因此该用户设备会(在该MTC系统所在的当前频点)进行多次尝试接收SIB,并最终失败,从而导致该用户设备做无用功,造成不必要的功率消耗。
因此,在MIB中设置该部署模式信息,用于指示MTC系统为独立部署或基于LTE系统部署。从而LTE系统的用户设备在获取MIB后,根据其中的部署模式信息即可确定该MTC系统是独立部署还是基于LTE系统部署的。
当用户设备根据部署模式信息确定该MTC系统是独立部署时,该用户设备就可以知道在在该MTC系统所在的当前频点,没有针对LTE用户的后续传输,因此该用户设备可以放弃执行LTE系统的接入过程中,在接收到MIB后需要执行的动作,如接收SIB以及后续的动作。从而可以避免不必要的功率消耗。另外,还需要说明的是,该用户设备在放弃执行后续动作后,该用户设备可以继续检测其他的可能的频点,以尝试接收LTE系统的PSS和SSS信号,以便接入LTE系统中。
可见上述技术方案中,在MTC系统的过程中,通过在接收到MIB后,获取MIB中的部署模式信息,部署模式信息用于指示MTC系统为独立部署或基于第一通信系统部署;当部署模式信息指示MTC系统为独立部署时,放弃执行指定动作,该指定动作包括第一通信系统的接入过程中,在接收到MIB后需要执行的动作。通过本公开提供的上述技术方案,能够在MTC系统是独立部署的情况下,使使用第一通信系统的用户设备避免不必要的功率消耗。
进一步的,图2是根据一示例性实施例示出的另一种机器类通信系统的接入方法的流程图,如图2所示,该方法用于用户设备中,在图1所示方法的基础上该方法还可以包括以下步骤。
在步骤S13中,当该部署模式信息指示MTC系统为基于第一通信系统部署时,继续执行该指定动作。
其中,还是以第一通信系统为LTE系统为例,当该部署模式信息指示MTC系统是基于LTE系统部署时,则说明该MTC系统所在的当前频点,后续还有针对LTE系统用户的后续传输,用户设备不用再去其他频点重新检测LTE系统。因此,用户设备在获取MIB后,需要执行后续的动作,即继续接收SIB,以获取后续用于进行随机接入的相关参数。
下面对部署模式信息的设置方法进行介绍:
在一种实现方式中,该部署模式信息可以为设置于MIB中的预留比特位中的部署模式标志位的值,相应的,图3是根据一示例性实施例示出的又一种机器类通信系统的接入方法的流程图,如图3所示,该方法用于用户设备中,该步骤S11所述的获取MIB中的部署模式信息的步骤可以包括以下 步骤。
在步骤S111中,获取设置于MIB中的预留比特位中的部署模式标志位的值。
如前文所述,在目前的MIB中设置有5个比特的预留比特位,因此可以选取其中的一个或多个比特位来设置署模式信息,称为部署模式标志位。
其中,当该部署模式标志位为一个比特时,该部署模式标志位用于指示MTC系统为独立部署或基于第一通信系统部署。
当该部署模式标志位为多个比特时,该部署模式标志位用于指示MTC系统为独立部署或基于第一通信系统部署,以及相邻的第一通信系统的频点相对于MTC系统的当前频点的频率差值范围,该相邻的第一通信系统为频点与MTC系统的当前频点最近接的第一通信系统。因此,相应的,如图3所示,步骤S12变为:当该部署模式标志位的值指示MTC系统为独立部署时,放弃执行指定动作,该指定动作包括第一通信系统的接入过程中,在接收到MIB后需要执行的动作;步骤S13变为:当该部署模式标志位的值指示MTC系统为基于第一通信系统部署时,继续执行该指定动作。并且,在部署模式标志位为多个比特时,该方法还可以包括:在放弃执行该指定动作之后,根据该频率差值范围检测该相邻的第一通信系统。
示例的,以第一通信系统为LTE系统为例,该部署模式标志位可以在MIB的预留比特位中占用1个比特,则该部署模式标志位的值可以使用一位二进制数来表示MTC系统为独立部署或基于LTE系统部署,如当该部署模式标志位为0时,表示MTC系统为基于LTE系统部署;当该部署模式标志位为1时,表示MTC系统为独立部署。
对于该部署模式标志位为多个比特的情况,以3个比特为例,可以如表1所示,该部署模式标志位可以在MIB的预留比特位中占用3个比特,则该部署模式标志位的值可以采用三位二进制数来表示部署模式,以及对(MTC系统的)当前频点附近的LTE系统的频点位置(即相邻的LTE系统的频点相对于MTC系统的当前频点的频率差值范围)进行指示。
表1
Figure PCTCN2018092700-appb-000001
其中,需要说明的是,上述的该部署模式标志位采用3个比特的表示方法是示例性的,包括但不限于此,例如也可以根据实际需求采用2个比特、4个比特或5个比特。这里可以采用4个比特的方案为例,如表2所示。
表2
Figure PCTCN2018092700-appb-000002
其中,采用4个比特来表示该部署模式标志位,最多可以表示16种情况,因此除了表2中所示的几种情况,还可以根据需要添加更多的情况,在此不一一列举。
综上所述,当该部署模式标志位指示MTC系统为基于LTE系统部署时,继续执行接收SIB的动作;当该部署模式标志位指示MTC系统为独立部署时,用户设备放弃执行后续的接收SIB的动作,并在其他频点尝试检测LTE系统,并且在部署模式标志位为多个比特时,还可以根据部署模式标志位获取相邻的LTE系统的频点相对于MTC系统的当前频点的频率差值范围,从 而可以更快速地检测到LTE系统。
在另一种实现方式中,该部署模式信息可以为设置于MIB中的预留比特位中的部署模式标志位的值,以及设置于所述MIB中的PHICH配置域的第一通信系统位置标志位的值,相应的,图4是根据一示例性实施例示出的又一种机器类通信系统的接入方法的流程图,如图4所示,该方法用于用户设备中,该步骤S11所述的获取MIB中的部署模式信息的步骤可以包括以下步骤。
在步骤S112中,获取设置于MIB中的预留比特位中的部署模式标志位的值,以及设置于MIB中的PHICH配置域的第一通信系统位置标志位的值。
其中,该部署模式标志位为一个比特,用于指示MTC系统为独立部署或基于第一通信系统部署;第一通信系统位置标志位为多个比特,用于指示相邻的第一通信系统的频点相对于MTC系统的当前频点的频率差值范围,该相邻的第一通信系统为频点与MTC系统的当前频点最近接的第一通信系统。
则相应的,如图4所示,步骤S12变为:当该部署模式标志位的值指示MTC系统为独立部署时,放弃执行指定动作,该指定动作包括第一通信系统的接入过程中,在接收到MIB后需要执行的动作;步骤S13变为:当该部署模式标志位的值指示MTC系统为基于第一通信系统部署时,继续执行该指定动作。并且,在步骤S12之后,还可以包括:步骤S14,在放弃执行指定动作之后,根据第一通信系统位置标志位的值指示的该频率差值范围检测相邻的第一通信系统。
以第一通信系统为LTE系统为例,与步骤S111中的方法相似,该部署模式标志位可以在MIB的预留比特位中占用1个比特,则该部署模式标志位的值可以使用一位二进制数来表示MTC系统为独立部署或基于LTE系统部署,如当该部署模式标志位为0时,表示MTC系统为基于LTE系统部署;当该部署模式标志位为1时,表示MTC系统为独立部署。
另一方面,如果该MTC系统为基于LTE系统部署,则MIB中的PHICH配置域依然用于指示PHICH信道配置信息。但是对于独立部署的MTC系统,则可以利用该PHICH配置域的3个比特,对(MTC系统的)当前频点附近 的LTE系统的频点位置(即相邻的LTE系统的频点相对于MTC系统的当前频点的频率差值范围)进行指示。即将PHICH配置域的3个比特作为该第一通信系统位置标志位,其值可以用三位二进制数来表示,分别表示附近的LTE系统的频点位置的不同情况下。如表3所示:
表3
Figure PCTCN2018092700-appb-000003
其中,上述的通过采用PHICH配置域中的3个比特作为LTE系统位置标志位来指示附近的LTE系统的频点位置的方法是示例性的,包括但不限于此,例如也可以根据实际需求采用2个比特。
综上所述,当该部署模式标志位指示MTC系统为基于LTE系统部署时,继续执行接收SIB的动作;当该部署模式标志位指示MTC系统为独立部署时,用户设备放弃执行后续的接收SIB的动作,并在其他频点尝试检测LTE 系统,并且可以根据PHICH配置域的值获取相邻的LTE系统的频点相对于MTC系统的当前频点的频率差值范围,从而可以更快速地检测到LTE系统。
在上述技术方案中,在MTC系统的过程中,通过在接收到MIB后,获取MIB中的部署模式信息,部署模式信息用于指示MTC系统为独立部署或基于第一通信系统部署;当部署模式信息指示MTC系统为独立部署时,放弃执行指定动作,指定动作包括第一通信系统的接入过程中,在接收到MIB后需要执行的动作。通过本公开提供的上述技术方案,能够在MTC系统是独立部署的情况下,使使用第一通信系统的用户设备避免不必要的功率消耗。
图5是根据一示例性实施例示出的又一种机器类通信系统的接入方法的流程图,如图5所示,该方法用于基站中,可以包括以下步骤。
步骤S21,在用户设备进行MTC系统接入时,向该用户设备发送同步信号,该用户设备为第一通信系统的用户设备。
其中,该第一通信系统可以是支持MTC系统的LTE系统,该同步信号包括上述的PSS和SSS,用于该用户设备在接收到该同步信号时,进行下行同步。其中关于用户设备对PSS和SSS的接收过程已经在前文的应用场景介绍中进行了描述,此处不再赘述。
步骤S22,根据该MTC系统的部署模式生成MIB,该MIB中包含部署模式信息,该部署模式信息用于指示该MTC系统为独立部署或基于第一通信系统部署。
步骤S23,向该用户设备发送该MIB。
在生成MIB之后,基站通过PBCH传输该MIB,该用户设备通过检测PBCH接收该MIB,其中用户设备接收该MIB的方法已经在前文的应用场景介绍中进行了描述,此处不再赘述。
用户设备在接收到该MIB后,通过获取MIB中的该部署模式信息,即可确定该MTC系统是独立部署还是基于第一通信系统部署的。用户设备在确定该MTC系统是独立部署或是基于第一通信系统部署的之后,即可相应地执行步骤S12或S13。
在一种实现方式中,步骤S22所述的根据该MTC系统的部署模式生成MIB,该MIB中包含部署模式信息,该部署模式信息用于指示该MTC系统 为独立部署或基于第一通信系统部署,可以包括:
根据该MTC系统的部署模式生成MIB,在该MIB中的预留比特位设置有部署模式标志位。
其中,该部署模式标志位可以为一个比特或多个比特。由于目前的MIB中设置有5个比特的预留比特位,因此可以选取其中的一个或多个比特作为该部署模式标志位。
当该部署模式标志位为一个比特时,该部署模式标志位用于指示该MTC系统为独立部署或基于第一通信系统部署;当该部署模式标志位为多个比特时,该部署模式标志位用于指示该MTC系统为独立部署或基于第一通信系统部署,以及相邻的第一通信系统的频点相对于该MTC系统的当前频点的频率差值范围,该相邻的第一通信系统为频点与该MTC系统的当前频点最近接的第一通信系统。
示例的,以第一通信系统为LTE系统为例,该部署模式标志位可以在MIB的预留比特位中占用1个比特,则该部署模式标志位的值可以使用一位二进制数来表示MTC系统为独立部署或基于LTE系统部署,如当该部署模式标志位为0时,表示MTC系统为基于LTE系统部署;当该部署模式标志位为1时,表示MTC系统为独立部署。因此,基站在生成MIB时,可以根据该MTC系统的实际的部署模式是独立部署还是基于LTE系统部署,来将MIB中的部署模式标志位的值设置为0或1。或者,该部署模式标志位可以在MIB的预留比特位中占用3个比特,例如表1所示的实现方式,既对MTC系统的部署模式进行指示,也对(MTC系统的)当前频点附近的LTE系统的频点位置(即相邻的LTE系统的频点相对于MTC系统的当前频点的频率差值范围)进行指示,可参见前文表1所示的内容,不再赘述。另外,上述的该部署模式标志位采用3个比特的表示方法是示例性的,包括但不限于此,例如也可以根据实际需求采用2个比特、4个比特或5个比特。这里可以采用4个比特的方案为例,如前文表2所示。
在上述实现方式中,当基站发送的MIB中的该部署模式标志位指示MTC系统为基于LTE系统部署时,用户设备继续执行接收SIB的动作;当该部署模式标志位指示MTC系统为独立部署时,用户设备放弃执行后续的 接收SIB的动作,并在其他频点尝试检测LTE系统,并且在部署模式标志位为多个比特时,该部署模式标志位还可以指示用户设备根据部署模式标志位获取相邻的LTE系统的频点相对于MTC系统的当前频点的频率差值范围,从而使用户设备能够更快速地检测到LTE系统。
在另一种实现方式中,步骤S22所述的根据该MTC系统的部署模式生成MIB,该MIB中包含部署模式信息,该部署模式信息用于指示该MTC系统为独立部署或基于第一通信系统部署,可以包括:
根据该MTC系统的部署模式生成MIB,该MIB中的预留比特位中设置有部署模式标志位,该MIB中的PHICH配置域设置有第一通信系统位置标志位。
其中,该部署模式标志位为一个比特,用于指示该MTC系统为独立部署或基于第一通信系统部署;该第一通信系统位置标志位为多个比特,用于指示相邻的第一通信系统的频点相对于该MTC系统的当前频点的频率差值范围,该相邻的第一通信系统为频点与该MTC系统的当前频点最近接的第一通信系统。
以第一通信系统为LTE系统为例,该部署模式标志位可以在MIB的预留比特位中占用1个比特,则该部署模式标志位的值可以使用一位二进制数来表示MTC系统为独立部署或基于LTE系统部署,如当该部署模式标志位为0时,表示MTC系统为基于LTE系统部署;当该部署模式标志位为1时,表示MTC系统为独立部署。因此,基站在生成MIB时,可以根据该MTC系统的实际的部署模式是独立部署还是基于LTE系统部署,来将MIB中的部署模式标志位的值设置为0或1。
另一方面,如果该MTC系统为基于LTE系统部署,则MIB中的PHICH配置域依然可以用于指示PHICH信道配置信息。但是对于独立部署的MTC系统,则可以利用该PHICH配置域的3个比特作为LTE系统位置标志位,对(MTC系统的)当前频点附近的LTE系统的频点位置(即相邻的LTE系统的频点相对于MTC系统的当前频点的频率差值范围)进行指示。可参见前文表3所示的内容,不再赘述。另外,上述的该部署模式标志位采用3个比特的表示方法是示例性的,包括但不限于此,例如也可以根据实际需求采 用2个比特。
因此,基站在生成MIB时,可以根据相邻LTE系统的频点位置来设置该PHICH配置域的值,也即该LTE系统位置标志位的值。
在上述实现方式中,当基站发送的MIB中的该部署模式标志位指示MTC系统为基于LTE系统部署时,用户设备继续执行接收SIB的动作;当该部署模式标志位指示MTC系统为独立部署时,用户设备放弃执行后续的接收SIB的动作,并在其他频点尝试检测LTE系统,并且可以使用户设备根据PHICH配置域的值获取相邻的LTE系统的频点相对于MTC系统的当前频点的频率差值范围,从而可以更快速地检测到LTE系统。
图6是根据一示例性实施例示出的一种机器类通信系统的接入装置的框图。该装置可以应用于第一通信系统的用户设备,参照图6,该装置600包括信息获取模块601和执行模块602。
信息获取模块601,被配置为在接入MTC系统的过程中,在接收到MIB后,获取该MIB中的部署模式信息,该部署模式信息用于指示该MTC系统为独立部署或基于第一通信系统部署;
执行模块602,被配置为当该部署模式信息指示该MTC系统为独立部署时,放弃执行指定动作,该指定动作包括第一通信系统的接入过程中,在接收到MIB后需要执行的动作。
可选地,执行模块602,还被配置为当该部署模式信息指示该MTC系统为基于第一通信系统部署时,继续执行该指定动作。
可选地,信息获取模块601,被配置为:获取设置于该MIB中的预留比特位中的部署模式标志位的值。
可选地,该部署模式标志位为一个比特或多个比特;
当该部署模式标志位为一个比特时,该部署模式标志位用于指示该MTC系统为独立部署或基于第一通信系统部署;
当该部署模式标志位为多个比特时,该部署模式标志位用于指示该MTC系统为独立部署或基于第一通信系统部署,以及相邻的第一通信系统的频点相对于该MTC系统的当前频点的频率差值范围,该相邻的第一通信系统为频点与该MTC系统的当前频点最近接的第一通信系统。
可选地,图7是根据一示例性实施例示出的另一种机器类通信系统的接入装置的框图,如图7所示,当该部署模式标志位为多个比特时,该装置500还包括:检测模块603,被配置为:在该放弃执行指定动作之后,根据该频率差值范围检测该相邻的第一通信系统。
可选地,信息获取模块601,被配置为:
获取设置于该MIB中的预留比特位中的部署模式标志位的值,以及设置于该MIB中的PHICH配置域的第一通信系统位置标志位的值。
可选地,该部署模式标志位为一个比特,用于指示该MTC系统为独立部署或基于第一通信系统部署;该第一通信系统位置标志位为多个比特,用于指示相邻的第一通信系统的频点相对于该MTC系统的当前频点的频率差值范围,该相邻的第一通信系统为频点与该MTC系统的当前频点最近接的第一通信系统。
可选地,该检测模块603,还被配置为:在该放弃执行指定动作之后,根据该频率差值范围检测该相邻的第一通信系统。
其中,该第一通信系统为:支持MTC系统的LTE系统。
在上述技术方案中,在MTC系统的过程中,通过在接收到MIB后,获取MIB中的部署模式信息,部署模式信息用于指示MTC系统为独立部署或基于第一通信系统部署;当部署模式信息指示MTC系统为独立部署时,放弃执行指定动作,指定动作包括第一通信系统的接入过程中,在接收到MIB后需要执行的动作。通过本公开提供的上述技术方案,能够在MTC系统是独立部署的情况下,使使用第一通信系统的用户设备避免不必要的功率消耗。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图8是根据一示例性实施例示出的又一种机器类通信系统的接入装置的框图。该装置可以应用于基站,参照图8,该装置800包括同步模块801、生成模块802和发送模块803。
同步模块801,被配置为在用户设备进行MTC系统接入时,向该用户设备发送同步信号,该用户设备为第一通信系统的用户设备;
生成模块802,被配置为根据该MTC系统的部署模式生成MIB,该MIB 中包含部署模式信息,该部署模式信息用于指示该MTC系统为独立部署或基于第一通信系统部署;
发送模块803,被配置为向该用户设备发送MIB。
可选地,该生成模块802,被配置为:
根据该MTC系统的部署模式生成MIB,在该MIB中的预留比特位设置有部署模式标志位。
可选地,该部署模式标志位为一个比特或多个比特;
当该部署模式标志位为一个比特时,该部署模式标志位用于指示该MTC系统为独立部署或基于第一通信系统部署;当该部署模式标志位为多个比特时,该部署模式标志位用于指示该MTC系统为独立部署或基于第一通信系统部署,以及相邻的第一通信系统的频点相对于该MTC系统的当前频点的频率差值范围,该相邻的第一通信系统为频点与该MTC系统的当前频点最近接的第一通信系统。
或者,可选地,该生成模块802,还可以被配置为:根据该MTC系统的部署模式生成MIB,该MIB中的预留比特位中设置有部署模式标志位,该MIB中的PHICH配置域设置有第一通信系统位置标志位。
可选地,该部署模式标志位为一个比特,用于指示该MTC系统为独立部署或基于第一通信系统部署;该第一通信系统位置标志位为多个比特,用于指示相邻的第一通信系统的频点相对于该MTC系统的当前频点的频率差值范围,该相邻的第一通信系统为频点与该MTC系统的当前频点最近接的第一通信系统。
其中,该第一通信系统为:支持MTC系统的LTE系统。
在上述技术方案中,在用户设备进行MTC系统接入时,基站在向用户发送的MIB中设置部署模式信息,该部署模式信息用于指示MTC系统为独立部署或基于第一通信系统部署;用于当部署模式信息指示MTC系统为独立部署时,使用户设备放弃执行指定动作,指定动作包括第一通信系统的接入过程中,在接收到MIB后需要执行的动作。通过本公开提供的上述技术方案,能够在MTC系统是独立部署的情况下,使使用第一通信系统的用户设备避免不必要的功率消耗。
本公开还提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开提供的机器类通信系统的接入方法的步骤。
图9是根据一示例性实施例示出的又一种机器类通信系统的接入装置的框图。例如,装置900可以是LTE系统的用户设备,例如支持LTE的移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等,或者该装置900可以是基站。
参照图9,装置900可以包括以下一个或多个组件:处理组件902,存储器904,电力组件906,多媒体组件908,音频组件910,输入/输出(I/O)的接口912,传感器组件914,以及通信组件916。
处理组件902通常控制装置900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件902可以包括一个或多个处理器920来执行指令,以完成上述的机器类通信系统的接入方法的全部或部分步骤。此外,处理组件902可以包括一个或多个模块,便于处理组件902和其他组件之间的交互。例如,处理组件902可以包括多媒体模块,以方便多媒体组件908和处理组件902之间的交互。
存储器904被配置为存储各种类型的数据以支持在装置900的操作。这些数据的示例包括用于在装置900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件906为装置900的各种组件提供电力。电力组件906可以包括电源管理系统,一个或多个电源,及其他与为装置900生成、管理和分配电力相关联的组件。
多媒体组件908包括在所述装置900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入 信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件908包括一个前置摄像头和/或后置摄像头。当装置900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件910被配置为输出和/或输入音频信号。例如,音频组件910包括一个麦克风(MIC),当装置900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器904或经由通信组件916发送。在一些实施例中,音频组件910还包括一个扬声器,用于输出音频信号。
I/O接口912为处理组件902和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件914包括一个或多个传感器,用于为装置900提供各个方面的状态评估。例如,传感器组件914可以检测到装置900的打开/关闭状态,组件的相对定位,例如所述组件为装置900的显示器和小键盘,传感器组件914还可以检测装置900或装置900一个组件的位置改变,用户与装置900接触的存在或不存在,装置900方位或加速/减速和装置900的温度变化。传感器组件914可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件914还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件914还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件916被配置为便于装置900和其他设备之间有线或无线方式的通信。装置900可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件916经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所 述通信组件916还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述的机器类通信系统的接入方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器904,上述指令可由装置900的处理器920执行以完成上述的机器类通信系统的接入方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践本公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (34)

  1. 一种机器类通信系统的接入方法,其特征在于,应用于第一通信系统的用户设备,所述方法包括:
    在接入机器类通信MTC系统的过程中,在接收到主信息块MIB后,获取所述MIB中的部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署;
    当所述部署模式信息指示所述MTC系统为独立部署时,放弃执行指定动作,所述指定动作包括第一通信系统的接入过程中,在接收到MIB后需要执行的动作。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述部署模式信息指示所述MTC系统为基于第一通信系统部署时,继续执行所述指定动作。
  3. 根据权利要求1所述的方法,其特征在于,所述获取所述MIB中的部署模式信息,包括:
    获取设置于所述MIB中的预留比特位中的部署模式标志位的值。
  4. 根据权利要求3所述的方法,其特征在于,所述部署模式标志位为一个比特或多个比特;
    当所述部署模式标志位为一个比特时,所述部署模式标志位用于指示所述MTC系统为独立部署或基于第一通信系统部署;
    当所述部署模式标志位为多个比特时,所述部署模式标志位用于指示所述MTC系统为独立部署或基于第一通信系统部署,以及相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
  5. 根据权利要求4所述的方法,其特征在于,当所述部署模式标志位为多个比特时,所述方法还包括:
    在所述放弃执行指定动作之后,根据所述频率差值范围检测所述相邻的第一通信系统。
  6. 根据权利要求1所述的方法,其特征在于,所述获取所述MIB中的部署模式信息,包括:
    获取设置于所述MIB中的预留比特位中的部署模式标志位的值,以及设置于所述MIB中的物理混合自动重传指示信道PHICH配置域的第一通信系统位置标志位的值。
  7. 根据权利要求6所述的方法,其特征在于,所述部署模式标志位为一个比特,用于指示所述MTC系统为独立部署或基于第一通信系统部署;所述第一通信系统位置标志位为多个比特,用于指示相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    在所述放弃执行指定动作之后,根据所述频率差值范围检测所述相邻的第一通信系统。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一通信系统为:支持MTC系统的长期演进LTE系统。
  10. 一种机器类通信系统的接入方法,其特征在于,应用于基站,所述方法包括:
    在用户设备进行机器类通信MTC系统接入时,向所述用户设备发送同步信号,所述用户设备为第一通信系统的用户设备;
    根据所述MTC系统的部署模式生成主信息块MIB,所述MIB中包含部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署;
    向所述用户设备发送所述MIB。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述MTC系统的部署模式生成MIB,所述MIB中包含部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署,包括:
    根据所述MTC系统的部署模式生成所述MIB,在所述MIB中的预留比特位设置有部署模式标志位。
  12. 根据权利要求11所述的方法,其特征在于,所述部署模式标志位为一个比特或多个比特;
    当所述部署模式标志位为一个比特时,所述部署模式标志位用于指示所述MTC系统为独立部署或基于第一通信系统部署;
    当所述部署模式标志位为多个比特时,所述部署模式标志位用于指示所述MTC系统为独立部署或基于第一通信系统部署,以及相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
  13. 根据权利要求10所述的方法,其特征在于,所述根据所述MTC系统的部署模式生成MIB,所述MIB中包含部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署,包括:
    根据所述MTC系统的部署模式生成所述MIB,所述MIB中的预留比特位中设置有部署模式标志位,所述MIB中的物理混合自动重传指示信道PHICH配置域设置有第一通信系统位置标志位。
  14. 根据权利要求13所述的方法,其特征在于,所述部署模式标志位为一个比特,用于指示所述MTC系统为独立部署或基于第一通信系统部署;所述第一通信系统位置标志位为多个比特,用于指示相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
  15. 根据权利要求10-14中任一项所述的方法,其特征在于,所述第一通信系统为:支持MTC系统的长期演进LTE系统。
  16. 一种机器类通信系统的接入装置,其特征在于,应用于用户设备,所述装置包括:
    信息获取模块,被配置为在接入机器类通信MTC系统的过程中,在接收到主信息块MIB后,获取所述MIB中的部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署;
    执行模块,被配置为当所述部署模式信息指示所述MTC系统为独立部署时,放弃执行指定动作,所述指定动作包括第一通信系统的接入过程中,在接收到MIB后需要执行的动作。
  17. 根据权利要求16所述的装置,其特征在于,
    所述执行模块,还被配置为当所述部署模式信息指示所述MTC系统为基于第一通信系统部署时,继续执行所述指定动作。
  18. 根据权利要求16所述的装置,其特征在于,所述信息获取模块,被配置为:获取设置于所述MIB中的预留比特位中的部署模式标志位的值。
  19. 根据权利要求18所述的装置,其特征在于,所述部署模式标志位为一个比特或多个比特;
    当所述部署模式标志位为一个比特时,所述部署模式标志位用于指示所述MTC系统为独立部署或基于第一通信系统部署;
    当所述部署模式标志位为多个比特时,所述部署模式标志位用于指示所述MTC系统为独立部署或基于第一通信系统部署,以及相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
  20. 根据权利要求19所述的装置,其特征在于,当所述部署模式标志位为多个比特时,所述装置还包括:检测模块,被配置为:在所述放弃执行指定动作之后,根据所述频率差值范围检测所述相邻的第一通信系统。
  21. 根据权利要求16所述的装置,其特征在于,所述信息获取模块,被配置为:
    获取设置于所述MIB中的预留比特位中的部署模式标志位的值,以及设置于所述MIB中的物理混合自动重传指示信道PHICH配置域的第一通信系统位置标志位的值。
  22. 根据权利要求21所述的装置,其特征在于,所述部署模式标志位为一个比特,用于指示所述MTC系统为独立部署或基于第一通信系统部署;所述第一通信系统位置标志位为多个比特,用于指示相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
  23. 根据权利要求22所述的装置,其特征在于,所述装置还包括:检测模块,被配置为:在所述放弃执行指定动作之后,根据所述频率差值范围检测所述相邻的第一通信系统。
  24. 根据权利要求16-23中任一项所述的装置,其特征在于,所述第一通信系统为:支持MTC系统的长期演进LTE系统。
  25. 一种机器类通信系统的接入装置,其特征在于,应用于基站,所述装置包括:
    同步模块,被配置为在用户设备进行机器类通信MTC系统接入时,向所述用户设备发送同步信号,所述用户设备为第一通信系统的用户设备;
    生成模块,被配置为根据所述MTC系统的部署模式生成主信息块MIB,所述MIB中包含部署模式信息,所述部署模式信息用于指示所述MTC系统 为独立部署或基于第一通信系统部署;
    发送模块,被配置为向所述用户设备发送所述MIB。
  26. 根据权利要求25所述的装置,其特征在于,所述生成模块,被配置为:
    根据所述MTC系统的部署模式生成所述MIB,在所述MIB中的预留比特位设置有部署模式标志位。
  27. 根据权利要求26所述的装置,其特征在于,所述部署模式标志位为一个比特或多个比特;
    当所述部署模式标志位为一个比特时,所述部署模式标志位用于指示所述MTC系统为独立部署或基于第一通信系统部署;
    当所述部署模式标志位为多个比特时,所述部署模式标志位用于指示所述MTC系统为独立部署或基于第一通信系统部署,以及相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
  28. 根据权利要求25所述的装置,其特征在于,所述生成模块,被配置为:
    根据所述MTC系统的部署模式生成所述MIB,所述MIB中的预留比特位中设置有部署模式标志位,所述MIB中的物理混合自动重传指示信道PHICH配置域设置有第一通信系统位置标志位。
  29. 根据权利要求28所述的装置,其特征在于,所述部署模式标志位为一个比特,用于指示所述MTC系统为独立部署或基于第一通信系统部署;所述第一通信系统位置标志位为多个比特,用于指示相邻的第一通信系统的频点相对于所述MTC系统的当前频点的频率差值范围,所述相邻的第一通信系统为频点与所述MTC系统的当前频点最近接的第一通信系统。
  30. 根据权利要求25-29中任一项所述的装置,其特征在于,所述第一通信系统为:支持MTC系统的长期演进LTE系统。
  31. 一种机器类通信系统的接入装置,其特征在于,应用于第一通信系统的用户设备,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:在接入机器类通信MTC系统的过程中,在接收到主信息块MIB后,获取所述MIB中的部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署;
    当所述部署模式信息指示所述MTC系统为独立部署时,放弃执行指定动作,所述指定动作包括第一通信系统的接入过程中,在接收到MIB后需要执行的动作。
  32. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,该程序指令被处理器执行时实现权利要求1至9中任一项所述方法的步骤。
  33. 一种机器类通信系统的接入装置,其特征在于,应用于基站,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    在用户设备进行机器类通信MTC系统接入时,向所述用户设备发送同步信号,所述用户设备为第一通信系统的用户设备;
    根据所述MTC系统的部署模式生成主信息块MIB,所述MIB中包含部署模式信息,所述部署模式信息用于指示所述MTC系统为独立部署或基于第一通信系统部署;
    向所述用户设备发送所述MIB。
  34. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,该程序指令被处理器执行时实现权利要求10至15中任一项所述方法的步骤。
PCT/CN2018/092700 2018-06-25 2018-06-25 机器类通信系统的接入方法、装置及存储介质 WO2020000148A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880000869.2A CN108886675B (zh) 2018-06-25 2018-06-25 机器类通信系统的接入方法、装置及存储介质
PCT/CN2018/092700 WO2020000148A1 (zh) 2018-06-25 2018-06-25 机器类通信系统的接入方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092700 WO2020000148A1 (zh) 2018-06-25 2018-06-25 机器类通信系统的接入方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2020000148A1 true WO2020000148A1 (zh) 2020-01-02

Family

ID=64324991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092700 WO2020000148A1 (zh) 2018-06-25 2018-06-25 机器类通信系统的接入方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN108886675B (zh)
WO (1) WO2020000148A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105635018A (zh) * 2014-11-07 2016-06-01 中兴通讯股份有限公司 功能指示的方法、装置及系统
CN106954263A (zh) * 2016-01-07 2017-07-14 上海贝尔股份有限公司 用于在窄带物联网中配置多频带通信的方法和装置
WO2017186525A1 (en) * 2016-04-29 2017-11-02 Gemalto M2M Gmbh Method for transmitting system information by a base node
CN107852257A (zh) * 2015-07-22 2018-03-27 三星电子株式会社 用于在蜂窝系统中操作物联网的方法及其系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11533675B2 (en) * 2015-07-27 2022-12-20 Apple Inc. System and methods for system operation for narrowband-LTE for cellular IoT
WO2017039374A1 (en) * 2015-09-02 2017-03-09 Lg Electronics Inc. Method and apparatus for performing random access procedure in nb-iot carrier in wireless communication system
EP3342229A4 (en) * 2015-09-30 2019-03-20 MediaTek Singapore Pte Ltd. METHOD AND DEVICE FOR DECODING DL-PHY CHANNELS IN A NARROW BAND SYSTEM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105635018A (zh) * 2014-11-07 2016-06-01 中兴通讯股份有限公司 功能指示的方法、装置及系统
CN107852257A (zh) * 2015-07-22 2018-03-27 三星电子株式会社 用于在蜂窝系统中操作物联网的方法及其系统
CN106954263A (zh) * 2016-01-07 2017-07-14 上海贝尔股份有限公司 用于在窄带物联网中配置多频带通信的方法和装置
WO2017186525A1 (en) * 2016-04-29 2017-11-02 Gemalto M2M Gmbh Method for transmitting system information by a base node

Also Published As

Publication number Publication date
CN108886675B (zh) 2021-04-13
CN108886675A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
US11424869B2 (en) Method, device, and system for transmitting information, and storage medium
US11523369B2 (en) Signal reception method and apparatus
US11159294B2 (en) Method for obtaining time-frequency resource position of common control resource set of remaining system information
CN112953610B (zh) 上行传输的方法及装置
WO2019222877A1 (zh) 唤醒信号的发送方法及装置、寻呼解调方法及装置
US11096173B2 (en) Method and apparatus for transmitting and acquiring common downlink control information
WO2020082307A1 (zh) 混合自动重传请求harq反馈方法及装置
CN106851840B (zh) 一种发送关键系统信息方法、装置和系统
WO2019237255A1 (zh) 传输mtc下行控制信息的方法、装置、基站及用户设备
WO2020010549A1 (zh) 参考信号的发送和接收方法及装置、基站和用户设备
CN110771248B (zh) 搜索空间配置、随机接入方法和装置、存储介质
US11218287B2 (en) Signal transmission method and device
WO2018058519A1 (zh) 通信方法及装置
WO2020042116A1 (zh) 指示、确定传输单元的传输方向的方法、装置及存储介质
WO2019010632A1 (zh) 小区间信号干扰控制方法、装置、用户设备及基站
JP2022533350A (ja) 制御情報伝送方法及び装置
WO2020061929A1 (zh) 传输同步指示信息的方法及装置
WO2020019296A1 (zh) 数据传输方法、装置、设备、系统及存储介质
WO2020014878A1 (zh) 数据传输方法、装置及存储介质
WO2019241950A1 (zh) 传输mtc系统信息的方法、装置、基站及终端
WO2020000148A1 (zh) 机器类通信系统的接入方法、装置及存储介质
EP3735059B1 (en) Method and device for determining transmission direction information
WO2020168513A1 (zh) 数据传输方法、装置、系统及存储介质
WO2019127183A1 (zh) 传输混合自动重传请求信息的方法及装置
WO2018201336A1 (zh) 下行控制信道的接收、发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923992

Country of ref document: EP

Kind code of ref document: A1