WO2020019296A1 - 数据传输方法、装置、设备、系统及存储介质 - Google Patents

数据传输方法、装置、设备、系统及存储介质 Download PDF

Info

Publication number
WO2020019296A1
WO2020019296A1 PCT/CN2018/097422 CN2018097422W WO2020019296A1 WO 2020019296 A1 WO2020019296 A1 WO 2020019296A1 CN 2018097422 W CN2018097422 W CN 2018097422W WO 2020019296 A1 WO2020019296 A1 WO 2020019296A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
information
frequency
data transmission
instruction
Prior art date
Application number
PCT/CN2018/097422
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201880000900.2A priority Critical patent/CN110959300B/zh
Priority to EP18927652.0A priority patent/EP3829233A4/en
Priority to US17/262,200 priority patent/US11910383B2/en
Priority to PCT/CN2018/097422 priority patent/WO2020019296A1/zh
Publication of WO2020019296A1 publication Critical patent/WO2020019296A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a data transmission method, device, device, system, and storage medium.
  • the base station Since the channel for transmitting data between the UE (User Equipment) and the base station is a shared channel, the base station needs to perform resource scheduling on the UE and allocate time-frequency resources to the UE through resource scheduling so that the UE can use the time-frequency resources. Perform data transmission.
  • the data transmission here includes uplink transmission or reception of downlink data.
  • the base station can send a scheduling instruction to the UE.
  • the UE determines a time domain unit and a frequency domain resource according to the scheduling instruction, and performs the operation on the frequency domain resource location in the time domain unit. data transmission.
  • the present disclosure provides a data transmission method, device, device, system, and storage medium.
  • a data transmission method includes:
  • data transmission is performed at a frequency-domain resource position in a time-domain unit indicated by the time-frequency resource.
  • a data transmission method includes:
  • Notifying the UE of the at least two time-frequency resources where the UE is configured to perform data transmission at a frequency-domain resource position in a time-domain unit indicated by the time-frequency resource when the time-frequency resource is occupied .
  • a data transmission device includes:
  • An acquisition module configured to acquire data transmission configuration information
  • a determining module configured to determine at least two time-frequency resources according to the data transmission configuration information obtained by the obtaining module, where the time-frequency resources are used to indicate frequency-domain resources in a time-domain unit;
  • the transmission module is configured to perform data transmission on each time-frequency resource occupied by the user equipment UE at a frequency-domain resource position in a time-domain unit indicated by the time-frequency resource.
  • a data transmission device includes:
  • An allocation module configured to allocate at least two time-frequency resources to the user equipment UE, where the time-frequency resources are used to indicate frequency-domain resources in a time-domain unit;
  • a notification module configured to notify the UE of the at least two time-frequency resources allocated by the allocation module, where the UE is configured to, when occupying the time-frequency resources, indicate the Data transmission in the frequency domain resource location in the time domain unit.
  • a user equipment UE is provided, where the UE includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • data transmission is performed at a frequency-domain resource position in a time-domain unit indicated by the time-frequency resource.
  • a base station is provided, where the base station includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • Notifying the UE of the at least two time-frequency resources where the UE is configured to perform data transmission at a frequency-domain resource position in a time-domain unit indicated by the time-frequency resource when the time-frequency resource is occupied .
  • a data transmission system including the data transmission device according to any one of the third aspect and the data transmission device according to any one of the fourth aspect, or including the fifth The data transmission device according to any one of the aspects and the data transmission device according to any one of the sixth aspects.
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set, or instruction set, and the at least one instruction, the at least one piece
  • the program, the code set or the instruction set is loaded and executed by the processor to implement the data transmission method according to the first aspect, or the at least one instruction, the at least one program, the code set or instruction
  • the set is loaded and executed by the processor to implement the data transmission method as described in the second aspect.
  • the UE may determine at least two time-frequency resources according to the data transmission configuration information. When it occupies a certain time-frequency resource, the UE may perform data transmission at a frequency-domain resource position in a time-domain unit indicated by the time-frequency resource. Because the channel occupation on the unlicensed spectrum is uncertain, when the data transmission configuration information indicates at least two time-frequency resources, the probability of the UE occupying time-frequency resources can be increased, and a scheduling instruction can only indicate one In the case of time-frequency resources, if the UE does not occupy the time-frequency resources, data transmission cannot be performed, thereby achieving the effect of improving the success rate of data transmission.
  • one data transmission configuration information can indicate at least two time-frequency resources, it is resolved that when a scheduling instruction can only indicate one time-frequency resource, the scheduling instruction must be transmitted each time the UE performs data transmission, resulting in a relatively high signaling overhead. Big problems, thus saving signaling overhead.
  • FIG. 1 is a schematic diagram of a resource scheduling method in an LTE system.
  • FIG. 2 is a schematic diagram of resource allocation of unlicensed spectrum.
  • FIG. 3 is a schematic diagram of an implementation environment involved in various embodiments of the present disclosure.
  • Fig. 4 is a flow chart showing a data transmission method according to an exemplary embodiment.
  • Fig. 5 is a flow chart showing a data transmission method according to another exemplary embodiment.
  • Fig. 6 is a flow chart showing a data transmission method according to another exemplary embodiment.
  • Fig. 7 is a flow chart showing a data transmission method according to another exemplary embodiment.
  • Fig. 8 is a schematic diagram illustrating a time-frequency resource for data transmission according to another exemplary embodiment.
  • Fig. 9 is a block diagram of a data transmission device according to an exemplary embodiment.
  • Fig. 10 is a block diagram of a data transmission device according to an exemplary embodiment.
  • Fig. 11 is a block diagram of a data transmission device according to an exemplary embodiment.
  • Fig. 12 is a block diagram of a data transmission device according to an exemplary embodiment.
  • Fig. 13 is a block diagram showing a device for data transmission according to an exemplary embodiment.
  • Fig. 14 is a block diagram showing a data transmission device according to an exemplary embodiment.
  • Fig. 15 is a block diagram showing a data transmission system according to an exemplary embodiment.
  • eMBB enhanced Mobile Broadband, Enhanced Mobile Broadband
  • URLLC Ultra Reliable Low Latency Communication, Ultra High-reliability and ultra-low-latency communication
  • mMTC massive Machine Type Communication
  • one scheduling instruction can only indicate one time-frequency resource, and the time-frequency resource is used to indicate frequency-domain resources in a time-domain unit.
  • the time domain unit referred to here is a unit of time, and may be a time domain unit commonly used in communication systems such as symbols, subframes, time slots, and wireless frames.
  • FIG. 1 illustrates a schematic diagram of a resource scheduling method in an LTE system.
  • a time-domain unit is used as a sub-frame, and a shadow area and a white-filled area form a sub-frame as an example.
  • the shadow area is a downlink control area for transmitting control instructions.
  • the control instructions here include scheduling.
  • one scheduling instruction can only indicate one time-frequency resource, the scheduling instruction must be transmitted each time the UE performs data transmission, resulting in a large signaling overhead.
  • one data transmission configuration information can indicate at least two time-frequency resources, and the at least two time-frequency resource information can be used to carry independent data blocks, that is, the at least two time-frequency resources can be used to Independent data packets are transmitted, so there is no need to transmit data transmission configuration information every time the UE performs data transmission, thereby reducing signaling overhead.
  • Unlicensed spectrum is spectrum that is used by competition. Communication systems of different standards can compete for frequency domain resources on unlicensed spectrum. For example, a WiFi (Wireless Fidelity, wireless fidelity) system and an LTE system can compete to use frequency domain resources on unlicensed spectrum.
  • a WiFi (Wireless Fidelity, wireless fidelity) system and an LTE system can compete to use frequency domain resources on unlicensed spectrum.
  • the time-frequency resources allocated to the UE in the LTE system are time-frequency resources on the unlicensed spectrum, the channel may be occupied by a communication system of another system, that is, the channel occupation is uncertain. Therefore, even if the UE is allocated by a scheduling instruction, For a time-frequency resource, the UE may not successfully occupy the time-frequency resource, resulting in the UE being unable to perform data transmission on the time-frequency resource. Please refer to FIG.
  • the shaded area is a scheduling instruction
  • the white filled area is a time-frequency resource
  • the arrow of the scheduling instruction points to a time-frequency resource allocated to the UE.
  • LBT Listen Before Talk, Carrier Sense
  • the data transmission configuration information transmitted at one time can indicate at least two time-frequency resources, for the at least two time-frequency resources, if the UE does not successfully occupy the first time-frequency resource, it can continue to occupy the next one.
  • Time-frequency resources, and so on which can increase the probability that the UE successfully occupies time-frequency resources, and also improve the success rate of data transmission.
  • the implementation environment may include a UE 301 and at least one base station 302 (only one base station 302 is shown in FIG. 3) ), Where the base station 302 may allocate at least two time-frequency resources to the UE, and notify the UE 301 of the at least two time-frequency resources, and the UE 301 performs data transmission according to the at least two time-frequency resources.
  • Fig. 4 is a flowchart illustrating a data transmission method according to an exemplary embodiment.
  • the data transmission method is applied to the implementation environment shown in Fig. 3.
  • the data transmission method includes the following steps.
  • the base station allocates at least two time-frequency resources to the UE, where the time-frequency resources are used to indicate frequency-domain resources in a time-domain unit.
  • the base station notifies the UE of at least two time-frequency resources.
  • step 403 the UE obtains data transmission configuration information.
  • step 404 the UE determines at least two time-frequency resources according to the data transmission configuration information.
  • step 405 for each time-frequency resource occupied by the UE, the UE performs data transmission at a frequency-domain resource position in a time-domain unit indicated by the time-frequency resource.
  • steps 401-402 can be implemented separately as embodiments on the base station side, and steps 403-405 can be implemented separately as embodiments on the UE side.
  • the UE can determine at least two time-frequency resources according to the data transmission configuration information. When it occupies a certain time-frequency resource, it can be in the time domain indicated by the time-frequency resource.
  • the frequency domain resource location in the unit performs data transmission. Because the channel occupation on the unlicensed spectrum is uncertain, when the data transmission configuration information indicates at least two time-frequency resources, the probability of the UE occupying time-frequency resources can be increased, and a scheduling instruction can only indicate one In the case of time-frequency resources, if the UE does not occupy the time-frequency resources, data transmission cannot be performed, thereby achieving the effect of improving the success rate of data transmission.
  • one data transmission configuration information can indicate at least two time-frequency resources, it is resolved that when a scheduling instruction can only indicate one time-frequency resource, the scheduling instruction must be transmitted each time the UE performs data transmission, resulting in a relatively high signaling overhead. Big problems, thus saving signaling overhead.
  • Fig. 5 is a flowchart illustrating a data transmission method according to another exemplary embodiment.
  • the data transmission method is applied to the implementation environment shown in Fig. 3.
  • the data transmission method includes the following steps.
  • the base station allocates at least two time-frequency resources to the UE, where the time-frequency resources are used to indicate frequency-domain resources in a time-domain unit.
  • a time-frequency resource includes a time-domain unit and a frequency-domain resource.
  • the time-domain unit is a unit of time and may be a time-domain unit commonly used in communication systems such as symbols, subframes, time slots, and radio frames.
  • the time domain may be divided in advance, and a time domain unit identifier is set for each time domain unit obtained.
  • This embodiment does not limit the time domain division manner.
  • the frequency domain can be divided in advance, and a frequency domain resource identifier is set for each obtained frequency domain resource. This embodiment does not limit the frequency domain division method.
  • a time-domain unit identifier and a frequency-domain resource identifier can uniquely identify a time-frequency resource.
  • the base station may allocate at least two time-frequency resources to the UE in any manner, which is not limited in this embodiment.
  • the base station obtains first indication information corresponding to at least two time-frequency resources in a data transmission configuration information set, where the data transmission configuration information set is specified in a communication protocol.
  • the base station is pre-configured with a data transmission configuration information set specified in a communication protocol.
  • the data transmission configuration information set includes at least one piece of data transmission configuration information, and each piece of data transmission configuration information includes at least an index parameter, a time domain unit identification parameter, and a frequency. Domain resource identification parameter.
  • the index parameter is a parameter used to identify the data transmission configuration information.
  • the number of bits of the index parameter can be determined by the number of data transmission configuration information included in the data transmission configuration information set, and the value represented by the index parameter must be greater than or equal to the data. Number of transmitted configuration information. For example, if the data transmission configuration information set includes three pieces of data transmission configuration information, the number of bits of the index parameter may be two bits. For example, the three pieces of data transmission configuration information are represented by 00, 01, and 10. For another example, the data transmission configuration information set includes 8 pieces of data transmission configuration information, and the number of bits of the index parameter may be 3 bits.
  • the time domain unit identification parameter includes at least one time domain unit identification.
  • the time domain unit identifier in the time domain unit identifier parameter is 0, 2, 4, or the time domain unit identifier in the time domain unit identifier parameter is 1, 3, 4, etc., which is not limited in this embodiment.
  • the frequency domain resource identification parameter includes at least one frequency domain resource identification.
  • the frequency domain resource identifier in the frequency domain resource identifier parameter is 1, 2, 3, or the frequency domain resource identifier in the frequency domain resource identifier parameter is 1.
  • the number of time-domain unit identifiers in the time-domain unit identifier parameter and the number of frequency-domain resource identifiers in the frequency-domain resource identifier parameter are both 1, then only one time-frequency resource is indicated in the data transmission configuration information. To avoid this, it can be specified that the number of time domain unit identifiers in the time domain unit identifier parameter and the number of frequency domain resource identifiers in the frequency domain resource identifier parameter cannot be 1 at the same time.
  • the data transmission configuration information may include other parameters in addition to the index parameter, the time domain unit identification parameter, and the frequency domain resource identification parameter.
  • the data transmission configuration information also includes a MCS (Modulation and Coding Scheme) identification parameter.
  • the MCS identification parameter is used to indicate a modulation and encoding strategy when the time-frequency resource performs data transmission, and includes at least one MCS. Identification, for example, the MCS identification in the MCS identification parameter is level 1, 2, and 3 respectively.
  • the value of any parameter in the data transmission configuration information may be an absolute value or an offset value from a reference value.
  • the time domain unit identification parameter is 1, 3, and 4 respectively; if the value is an absolute value, it indicates the time domain unit 1 and the time domain unit respectively. 3 and time domain unit 4; if the value is an offset value from time domain unit 1, it indicates time domain unit 2, time domain unit 4, and time domain unit 5, respectively.
  • the data transmission configuration information includes index parameters, time domain unit identification parameters, frequency domain resource identification parameters, and MCS identification parameters as examples. In other implementations, the table may contain more or more Little configuration information.
  • the base station After determining the at least two time-frequency resources allocated to the UE, the base station can find data transmission configuration information indicating the time-frequency resource in the data transmission configuration information set, and obtain the value of the index parameter in the data transmission configuration information. , Determine the value as the first indication information.
  • the base station may notify the UE of the at least two time-frequency resources through step 503 or step 504.
  • step 503 the base station sends the first indication information to the UE, and sends the data transmission configuration information set to the UE, and executes step 505.
  • the base station in addition to sending the first indication information to the UE, the base station also sends a data transmission configuration information set to the UE.
  • the base station may send the data transmission configuration information set before sending the first indication information.
  • the base station when it executes the method provided in this embodiment for the first time, it can send a data transmission configuration information set to the UE, and the UE stores the data transmission configuration information set; subsequently, the base station executes the data transmission configuration information set provided in this embodiment again. In the method, the data transmission configuration information set can no longer be sent to save transmission resources.
  • the base station may carry the first instruction information in an existing instruction or a new instruction, and send the instruction to the UE.
  • sending the first instruction information to the UE includes: adding the first instruction information to the first scheduling instruction; and sending the first scheduling instruction to the UE.
  • the base station adds the first instruction information to the instruction.
  • the instruction is the first scheduling instruction as an example. If the first instruction information is added to other instructions, the adding method is the same as the two adding methods described below, and details are not described herein.
  • the first instruction information in the first scheduling instruction is fixed, the first instruction information is added to a fixed position in the first scheduling instruction.
  • the fixed position of the first instruction information in the first scheduling instruction includes two cases.
  • the first case is that the number of bits of the first instruction information is fixed.
  • the starting position of the first instruction information in the first scheduling instruction and The end positions are all fixed; the second case is that the number of bits of the first instruction information is not fixed.
  • the start position of the first instruction information in the first scheduling instruction is fixed, the end position is not fixed, or the The end position of the indication information in the first scheduling instruction is fixed, and the start position is not fixed, which is not limited in this embodiment.
  • the location information may be specified in the communication protocol; or the location information may be indicated before the base station sends the first scheduling instruction to the UE for the first time.
  • the UE stores the location information.
  • the base station does not need to indicate the location information before sending the first scheduling instruction to the UE each time; it may also indicate the location information before sending the first scheduling instruction to the UE each time.
  • the position information may include a start position and an end position, or may include a start position and a number of bits, or may include an end position and a number of bits.
  • the starting position or ending position can be specified in the communication protocol.
  • the base station also needs to send the first scheduling instruction every time.
  • the number of bits indicating the first indication information before; or the start position or the end position may be indicated before the base station sends the first scheduling instruction to the UE for the first time, and the base station also needs to indicate in the first scheduling instruction sent each time.
  • the number of bits of the first indication information; or, the base station may indicate the start position and the end position of the first indication information before the first scheduling instruction sent each time.
  • the base station may add the value of the first indication information to the position of bits 5-6 of the first scheduling instruction.
  • the second adding method when the position of the first instruction information in the first scheduling instruction is not fixed, position information is generated, and the location information is used to indicate the position of the first instruction information in the first scheduling instruction this time.
  • the first indication information is added to the position indicated by the position information in the first scheduling instruction.
  • the position of the first instruction information in the first scheduling instruction is not fixed includes two cases.
  • the first case is that the number of bits of the first instruction information is fixed.
  • the first instruction information may be started in the first scheduling instruction.
  • the start position may be inferred, or the start position may be inferred based on the end position of the first instruction information in the first scheduling instruction.
  • the second case is that the number of bits of the first indication information is not fixed. At this time, the start position and the end position of the first indication information in the first scheduling instruction are not fixed.
  • the number of bits of the first indication information is fixed and its position in the first scheduling instruction is not fixed, the number of bits may be specified in the communication protocol, or it may be indicated before the base station sends the first scheduling instruction to the UE for the first time. The number of digits. Thereafter, the base station needs to indicate the start position and / or the end position in the first scheduling instruction sent each time.
  • the base station needs to indicate the start position and end position before sending the first scheduling instruction, or the base station needs to Each time the first scheduling instruction is sent, the start position and the number of bits are indicated, or the base station needs to indicate the end location and the number of bits before each time the first dispatch instruction is sent.
  • the base station may generate position information indicating that the first instruction information is located at positions 5-6 of the first scheduling instruction, and then add the first instruction information to the first scheduling instruction. 5-6 bits.
  • step 504 the base station sends the first indication information to the UE, and executes step 505.
  • the process in which the base station sends the first indication information to the UE is the same as the process in which the base station sends the first indication information to the UE in step 503, and details are not described herein.
  • the UE is pre-configured with a data transmission configuration information set specified in a communication protocol.
  • step 505 the UE acquires the first indication information sent by the base station; acquires data transmission configuration information corresponding to the first indication information in the data transmission configuration information set, and acquires data transmission configuration information.
  • the data transmission configuration information set is sent by the base station; when the base station performs step 504, the data transmission configuration information set is specified in the communication protocol, and the data transmission configuration information set configured in the UE and the base station are configured
  • the data transmission configuration information set is the same.
  • the manner in which the UE obtains the first indication information is the same as the manner in which the base station sends the first indication information. That is, when the base station carries the first instruction information in an existing instruction, the UE obtains the first instruction information from the existing instruction; when the base station carries the first instruction information in a new instruction, the UE obtains the first instruction information from the existing instruction. The first instruction is obtained in the new instruction.
  • obtaining the first instruction information sent by the base station includes: receiving the first scheduling instruction sent by the base station; and obtaining the first instruction information from the first scheduling instruction.
  • the UE Corresponding to the two adding methods for the base station to add the first instruction information to the instruction, the UE also has two obtaining methods for obtaining the first instruction information from the first scheduling instruction.
  • the two obtaining methods are described below respectively.
  • the instruction is the first scheduling instruction as an example. If the first instruction information is added to other instructions, the obtaining method is the same as the two obtaining methods described below, and details are not described herein.
  • the first instruction information in the first scheduling instruction is fixed, the first instruction information is read from a fixed position in the first scheduling instruction.
  • the UE may obtain the location information of the first instruction information in the first scheduling instruction from the communication protocol; The location information is obtained before the first scheduling instruction is sent twice, and the UE stores the location information. Subsequently, the base station does not need to indicate the location information before sending the first scheduling instruction to the UE each time; it may also send the first scheduling every time Get the location information before the instruction.
  • the position information may include a start position and an end position, or may include a start position and a number of bits, or may include an end position and a number of bits. The UE then determines the position of the first indication information in the first scheduling instruction according to the position information, and reads the first indication information from the position.
  • the UE may obtain the starting information of the first instruction information in the first scheduling instruction from the communication protocol, or may The base station obtains the starting position of the first indication information before sending the first scheduling instruction for the first time, and then obtains the number of bits of the first indication information from the first scheduling instruction received this time; or the UE may obtain it from the communication protocol.
  • End information of the first instruction information in the first scheduling instruction, or the end position of the first instruction information may be obtained before the base station sends the first scheduling instruction for the first time, and then obtained from the first scheduling instruction received this time The number of bits of the first indication information; or, the UE may obtain a start position and an end position of the first indication information before the base station sends the first scheduling instruction each time. The UE then determines a position of the first indication information in the first scheduling instruction according to the foregoing information, and reads the first indication information from the position.
  • the UE may read the first indication information from the position of bits 5-6 of the first scheduling instruction.
  • the location information is acquired, and the location information is used to indicate the position of the first instruction information in the first scheduling instruction;
  • the first instruction information is read at a location indicated by the location information in the first scheduling instruction.
  • the UE may obtain the number of bits of the first indication information from the communication protocol, or send the first schedule for the first time at the base station Obtain the number of bits of the first instruction information before the instruction, and then obtain the starting position and / or the end position of the first instruction information from the first scheduling instruction received this time, and determine that the first instruction information is in the first scheduling according to the above information.
  • the position in the instruction, and the first instruction information is read from the position.
  • the UE may obtain the start position and the end position of the first indication information before the base station sends the first scheduling instruction each time; Alternatively, the UE may obtain the start position and the number of bits of the first indication information before the base station sends the first scheduling instruction each time; or the UE may obtain the end position and the number of the first indication information before the base station sends the first scheduling instruction each time Digits. The UE then determines a position of the first indication information in the first scheduling instruction according to the foregoing information, and reads the first indication information from the position.
  • the UE reads the first indication information from the 5th to 6th bits in the first scheduling instruction according to the position information.
  • the UE After obtaining the first indication information, the UE searches the data transmission configuration information set for the data transmission configuration information whose index parameter is the first indication information.
  • step 506 the UE determines at least two time-frequency resources according to the data transmission configuration information.
  • the UE obtains a time domain unit identifier and a frequency domain resource identifier from the data transmission configuration information, and then determines at least two time frequency resources according to the time domain unit identifier and the time domain resource identifier.
  • step 507 for each time-frequency resource occupied by the UE, the UE performs data transmission at a frequency-domain resource position in a time-domain unit indicated by the time-frequency resource.
  • the UE can perform LBT before occupying the time-frequency resource, that is, monitor whether the channel is occupied. If the channel is occupied, the UE gives up transmitting data on the time-frequency resource and waits for the next time-frequency resource. Resources; if the channel is not occupied, the UE occupies the channel and performs data transmission on the time-frequency resource.
  • steps 501-504 can be implemented separately as embodiments on the base station side, and steps 505-507 can be implemented separately as embodiments on the UE side.
  • the UE can determine at least two time-frequency resources according to the data transmission configuration information. When it occupies a certain time-frequency resource, it can be in the time domain indicated by the time-frequency resource.
  • the frequency domain resource location in the unit performs data transmission. Because the channel occupation on the unlicensed spectrum is uncertain, when the data transmission configuration information indicates at least two time-frequency resources, the probability of the UE occupying time-frequency resources can be increased, and a scheduling instruction can only indicate one In the case of time-frequency resources, if the UE does not occupy the time-frequency resources, data transmission cannot be performed, thereby achieving the effect of improving the success rate of data transmission.
  • one data transmission configuration information can indicate at least two time-frequency resources, it is resolved that when a scheduling instruction can only indicate one time-frequency resource, the scheduling instruction must be transmitted each time the UE performs data transmission, resulting in a relatively high signaling overhead. Big problems, thus saving signaling overhead.
  • transmission resources can be saved by reducing the transmitted data.
  • Fig. 6 is a flowchart illustrating a data transmission method according to another exemplary embodiment.
  • the data transmission method is applied to the implementation environment shown in Fig. 3.
  • the data transmission method includes the following steps.
  • the base station allocates at least two time-frequency resources to the UE, where the time-frequency resources are used to indicate frequency-domain resources in a time-domain unit.
  • step 601 For the implementation flow of step 601, refer to the description in step 501.
  • the base station In step 602, the base station generates data transmission configuration information according to at least two time-frequency resources; the data transmission configuration information is carried in a second scheduling instruction and sent to the UE.
  • the data transmission configuration information generated in this step does not include index parameters.
  • the time domain unit identification parameters, frequency domain resource identification parameters, and other parameters included in the step are detailed in step 502. Description.
  • the base station may carry the data transmission configuration information in an existing instruction or a new instruction, and send the instruction to the UE.
  • description is made by taking an example that the instruction is a second scheduling instruction.
  • step 603 the UE receives a second scheduling instruction sent by the base station; and acquires data transmission configuration information from the second scheduling instruction.
  • the manner in which the UE obtains the data transmission configuration information is the same as the manner in which the base station sends the data transmission configuration information. That is, when the base station carries data transmission configuration information in an existing instruction, the UE obtains data transmission configuration information from the existing instruction; when the base station carries the data transmission configuration information in a new instruction, the UE receives This new instruction obtains data transmission configuration information.
  • the instruction is a second scheduling instruction.
  • step 604 the UE determines at least two time-frequency resources according to the data transmission configuration information.
  • step 605 for each time-frequency resource occupied by the UE, the UE performs data transmission at a frequency-domain resource position in a time-domain unit indicated by the time-frequency resource.
  • steps 604-605 The implementation process of steps 604-605 is described in detail in steps 506-507, and will not be described here.
  • steps 601-602 can be implemented separately as embodiments on the base station side, and steps 603-605 can be implemented separately as embodiments on the UE side.
  • the UE can determine at least two time-frequency resources according to the data transmission configuration information. When it occupies a certain time-frequency resource, it can be in the time domain indicated by the time-frequency resource.
  • the frequency domain resource location in the unit performs data transmission. Because the channel occupation on the unlicensed spectrum is uncertain, when the data transmission configuration information indicates at least two time-frequency resources, the probability of the UE occupying time-frequency resources can be increased, and a scheduling instruction can only indicate one In the case of time-frequency resources, if the UE does not occupy the time-frequency resources, data transmission cannot be performed, thereby achieving the effect of improving the success rate of data transmission.
  • one data transmission configuration information can indicate at least two time-frequency resources, it is resolved that when a scheduling instruction can only indicate one time-frequency resource, the scheduling instruction must be transmitted each time the UE performs data transmission, resulting in a relatively high signaling overhead. Big problems, thus saving signaling overhead.
  • Fig. 7 is a flowchart illustrating a data transmission method according to another exemplary embodiment.
  • the data transmission method is applied to the implementation environment shown in Fig. 3.
  • the data transmission method includes the following steps.
  • the base station allocates at least two time-frequency resources to the UE, where the time-frequency resources are used to indicate frequency-domain resources in a time-domain unit.
  • step 701 The implementation flow of step 701 is described in detail in step 501, and is not described herein.
  • the base station may notify the UE of the at least two time-frequency resources through step 702 or step 703.
  • the base station obtains time window information generated before allocating at least two time-frequency resources, where the time window information is used to indicate at least one time-domain unit within a time window; and a frequency is determined according to the at least two time-frequency resources.
  • the domain resource information generates a third scheduling instruction according to the frequency domain resource information, where the frequency domain resource information is used to indicate a frequency domain resource in a time domain unit; the time window information and the third scheduling instruction are sent to the UE, and step 704 is performed.
  • a time window may include at least one time domain unit.
  • the base station first specifies a time window; and then determines at least one time domain unit in the time window, and the at least one time domain unit is a time domain unit among at least two time-frequency resources to be allocated to the UE; and then generates an instruction for indicating Time window information of the at least one time domain unit, to indicate the time domain unit in the at least two time-frequency resources by using the time window information.
  • the frequency domain resource information may include at least one frequency domain resource identifier, as described in detail in step 502.
  • the frequency domain resource information when the time window information indicates a time domain unit within the time window, includes at least two frequency domain resource identifiers; when the time window information indicates at least two time domain units within the time window , The frequency domain resource information includes at least one frequency domain resource identifier to ensure that time window information and frequency domain resource information indicate at least two time frequency resources.
  • This embodiment provides two implementation manners for generating the third scheduling instruction, and these two implementation manners are respectively introduced below.
  • generating the third scheduling instruction according to the frequency domain resource information includes obtaining second instruction information corresponding to the frequency domain resource information from a frequency domain resource information set, where the frequency domain resource information set is a communication protocol. Specified in; generating a third scheduling instruction carrying the second indication information.
  • the base station is pre-configured with a frequency domain resource information set specified in a communication protocol.
  • the frequency domain resource information set includes at least one piece of frequency domain resource information, and each piece of frequency domain resource information includes at least an index parameter and a frequency domain resource identification parameter.
  • the index parameter and the frequency domain resource identification parameter are described in detail in step 502.
  • the frequency domain resource information may include other parameters in addition to the index parameter and the frequency domain resource identification parameter.
  • the frequency domain resource information also includes MCS identification parameters, as described in step 502 for details.
  • the base station may search the frequency-domain resource information for indicating the frequency-domain resources in the time-frequency resource in the frequency-domain resource information set, and obtain the frequency-domain resource information.
  • the base station may carry the second instruction information in an existing instruction or a new instruction, and send the instruction to the UE.
  • the instruction is a third scheduling instruction for example.
  • the process of adding the second instruction information to the third scheduling instruction is the same as the process of adding the first instruction information to the first scheduling instruction. I won't go into details here.
  • the frequency domain resource information set may be sent by the base station to the UE, or may be obtained by the UE from a communication protocol, which is not limited in this embodiment.
  • the base station may send the frequency domain resource information set each time it sends a third scheduling instruction, or it may send the frequency domain to the UE when the method provided in this embodiment is executed for the first time.
  • Resource information set the UE stores the frequency domain resource information set; subsequently, when the base station executes the method provided in this embodiment again, the frequency domain resource information set may not be sent again to save transmission resources.
  • generating the third scheduling instruction according to the frequency domain resource information includes generating a third scheduling instruction carrying the frequency domain resource information.
  • the base station may generate frequency-domain resource information indicating the frequency-domain resources in the time-frequency resource, and carry the frequency-domain resource information in an existing instruction or a new Among the instructions, the instruction is sent to the UE.
  • the instruction is a third scheduling instruction.
  • the base station may send the time window information before sending the third scheduling instruction; it may also send the third scheduling instruction before sending the time window information; it may also send the time window information and the data transmission configuration set at the same time.
  • the sending order of the window information and the third scheduling instruction is limited.
  • the base station determines frequency domain resource information according to the at least two time-frequency resources, and generates a third scheduling instruction according to the frequency domain resource information, where the frequency domain resource information is used to indicate a frequency domain resource in a time domain unit; Three scheduling instructions are sent to the UE, and step 704 is performed.
  • step 702 Compared with step 702, in this step, only the third scheduling instruction is sent, and no time window information is sent.
  • step 704 the UE obtains time window information.
  • the time window information is sent by the base station; when the base station performs step 703, the time window information is specified in the communication protocol.
  • step 705 the UE receives a third scheduling instruction sent by the base station, and obtains frequency domain resource information according to the third scheduling instruction, where the frequency domain resource information is used to indicate a frequency domain resource in a time domain unit.
  • This embodiment provides two implementation manners for acquiring frequency domain resource information, and these two implementation manners are respectively introduced below.
  • acquiring the frequency domain resource information according to the third scheduling instruction includes: acquiring the second instruction information from the third scheduling instruction; and acquiring the frequency domain corresponding to the second instruction information from the frequency domain resource information set.
  • Resource information, the frequency domain resource information set is sent by the base station, or the frequency domain resource information set is specified in a communication protocol.
  • the process of data transmission configuration information corresponding to an indication message is the same, and is not described here.
  • acquiring the frequency domain resource information according to the third scheduling instruction includes: when the third scheduling instruction carries the frequency domain resource information, reading the frequency domain resource information from the third scheduling instruction.
  • the manner in which the UE obtains the frequency domain resource information is the same as the manner in which the base station sends the frequency domain resource information. That is, when the base station carries the frequency domain resource information in an existing instruction, the UE obtains the frequency domain resource information from the existing instruction; when the base station carries the frequency domain resource information in the new instruction, the UE receives The new instruction acquires frequency domain resource information.
  • the instruction is a third scheduling instruction.
  • step 706 the UE determines at least two time-frequency resources according to the data transmission configuration information.
  • step 707 for each time-frequency resource occupied by the UE, the UE performs data transmission at a frequency-domain resource position in a time-domain unit indicated by the time-frequency resource.
  • steps 706-707 The implementation process of steps 706-707 is described in detail in steps 506-507, and will not be described here.
  • the UE fails to successfully occupy the first two time-frequency resources, and cannot transmit data on the first two time-frequency resources. If the UE successfully occupies the third time-frequency resource, it can transmit data on the third time-frequency resource.
  • steps 701-703 can be implemented separately as embodiments on the base station side, and steps 704-707 can be implemented separately as embodiments on the UE side.
  • the UE can determine at least two time-frequency resources according to the data transmission configuration information. When it occupies a certain time-frequency resource, it can be in the time domain indicated by the time-frequency resource.
  • the frequency domain resource location in the unit performs data transmission. Because the channel occupation on the unlicensed spectrum is uncertain, when the data transmission configuration information indicates at least two time-frequency resources, the probability of the UE occupying time-frequency resources can be increased, and a scheduling instruction can only indicate one In the case of time-frequency resources, if the UE does not occupy the time-frequency resources, data transmission cannot be performed, thereby achieving the effect of improving the success rate of data transmission.
  • one data transmission configuration information can indicate at least two time-frequency resources, it is resolved that when a scheduling instruction can only indicate one time-frequency resource, the scheduling instruction must be transmitted each time the UE performs data transmission, resulting in a relatively high signaling overhead. Big problems, thus saving signaling overhead.
  • Fig. 9 is a block diagram of a data transmission device according to an exemplary embodiment.
  • the data transmission device is applied to the UE 301 shown in Fig. 3.
  • the data transmission device includes: an obtaining module 910, and a determination.
  • the obtaining module 910 is configured to obtain data transmission configuration information
  • the determining module 920 is configured to determine at least two time-frequency resources according to the data transmission configuration information obtained by the obtaining module 910, where the time-frequency resources are used to indicate frequency-domain resources in a time-domain unit;
  • the transmission module 930 is configured to perform data transmission for each time-frequency resource occupied by the UE at a frequency-domain resource position in a time-domain unit indicated by the time-frequency resource.
  • an embodiment of the present disclosure further provides another data transmission device.
  • an acquisition module 910 may include: At least one of a combination of the first acquisition submodule 911 and the second acquisition submodule 912, a combination of the first reception submodule 913 and the third acquisition submodule 914, and a combination of the fourth acquisition submodule 915 and the second reception submodule 916 A combination is shown in FIG. 10 by taking a data transmission device including these three combinations as an example.
  • the obtaining module 910 includes: a first obtaining sub-module 911 and a second obtaining sub-module 912;
  • the first acquisition submodule 911 is configured to acquire first indication information sent by a base station
  • the second acquisition submodule 912 is configured to acquire data transmission configuration information corresponding to the first instruction information acquired by the first acquisition submodule 911 from the data transmission configuration information set, and the data transmission configuration information set is sent by the base station. Or, the data transmission configuration information set is specified in the communication protocol.
  • the first obtaining submodule 911 is further configured to: receive a first scheduling instruction sent by a base station; and obtain first instruction information from the first scheduling instruction.
  • the first obtaining submodule 911 is further configured to: when the position of the first instruction information in the first scheduling instruction is fixed, read from the fixed location in the first scheduling instruction The first instruction information; or, when the position of the first instruction information in the first scheduling instruction is not fixed, obtaining location information, and the location information is used to indicate the position of the first instruction information in the first scheduling instruction; The first instruction information is read at a position indicated by the location information in a dispatch instruction.
  • the obtaining module 910 includes: a first receiving sub-module 913 and a third obtaining sub-module 914;
  • the first receiving submodule 913 is configured to receive a second scheduling instruction sent by a base station
  • the third obtaining sub-module 914 is configured to obtain data transmission configuration information from a second scheduling instruction received by the first receiving sub-module 913.
  • the obtaining module 910 when the data transmission configuration information includes time window information and frequency domain resource information, includes: a fourth obtaining sub-module 915 and a second receiving sub-module 916;
  • the fourth acquisition submodule 915 is further configured to acquire time window information, where the time window information is used to indicate at least one time domain unit within a time window, and the time window information is sent by the base station, or the time window information is a communication protocol. Specified in
  • the second receiving submodule 916 is further configured to receive a third scheduling instruction sent by the base station, and obtain frequency domain resource information according to the third scheduling instruction, where the frequency domain resource information is used to indicate frequency domain resources in a time domain unit.
  • the second receiving submodule 916 is further configured to: obtain the second instruction information from the third scheduling instruction; and obtain the frequency corresponding to the second instruction information from the frequency domain resource information set.
  • the domain resource information and the frequency domain resource information set are sent by the base station, or the frequency domain resource information set is specified in the communication protocol.
  • the second receiving submodule 916 is further configured to: when the third scheduling instruction carries frequency domain resource information, read the frequency domain resource information from the third scheduling instruction.
  • the UE can determine at least two time-frequency resources according to the data transmission configuration information. When it occupies a certain time-frequency resource, it can be in the time domain indicated by the time-frequency resource.
  • the frequency domain resource location in the unit performs data transmission. Because the channel occupation on the unlicensed spectrum is uncertain, when the data transmission configuration information indicates at least two time-frequency resources, the probability of the UE occupying time-frequency resources can be increased, and a scheduling instruction can only indicate one In the case of time-frequency resources, if the UE does not occupy the time-frequency resources, data transmission cannot be performed, thereby achieving the effect of improving the success rate of data transmission.
  • one data transmission configuration information can indicate at least two time-frequency resources, it is resolved that when a scheduling instruction can only indicate one time-frequency resource, the scheduling instruction must be transmitted each time the UE performs data transmission, resulting in a relatively high signaling overhead. Big problems, thus saving signaling overhead.
  • Fig. 11 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • the data transmission apparatus is applied to the base station 302 shown in Fig. 3.
  • the data transmission apparatus includes: an allocation module 1110 and Notification module 1120.
  • the allocation module 1110 is configured to allocate at least two time-frequency resources for the UE, where the time-frequency resources are used to indicate frequency-domain resources in a time-domain unit;
  • the notification module 1120 is configured to notify the UE of at least two time-frequency resources allocated by the allocation module 1110, and the UE is configured to, when the time-frequency resource is occupied, a frequency-domain resource location in a time-domain unit indicated by the time-frequency resource Data transfer.
  • an embodiment of the present disclosure further provides another data transmission device.
  • the notification module 1120 may include: A combination of one of the module 1122 and the second transmission sub-module 1123 and the first acquisition sub-module 1121, a combination of the first generation sub-module 1124 and the third transmission sub-module 1125, a second generation sub-module 1126 and the first At least one combination of the combination of the determination submodule 1127 and the fourth transmission submodule 1128, and the combination of the second determination submodule 1129 and the fifth transmission submodule 1130.
  • the data transmission device includes these four combinations as an example. Draw.
  • the notification module 1120 includes: one of a first acquisition submodule 1121, a first transmission submodule 1122, and a second transmission submodule 1123;
  • the first obtaining submodule 1121 is configured to obtain first indication information corresponding to at least two time-frequency resources in a data transmission configuration information set, where the data transmission configuration information set is specified in a communication protocol;
  • the first sending sub-module 1122 is configured to send the first instruction information obtained by the first obtaining sub-module 1121 to the UE, and send the data transmission configuration information set to the UE.
  • the UE is configured to send the first instruction information and data according to the first instruction information
  • the transmission configuration information set determines at least two time-frequency resources; or
  • the second sending sub-module 1123 is configured to send the first indication information obtained by the first obtaining sub-module 1121 to the UE, and the UE is configured to obtain a set of data transmission configuration information specified in the communication protocol.
  • the data transmission configuration information set determines at least two time-frequency resources.
  • the first sending sub-module 1122 is further configured to: add the first instruction information to the first scheduling instruction; and send the first scheduling instruction to the UE.
  • the first sending submodule 1122 is further configured to: when the position of the first instruction information in the first scheduling instruction is fixed, add the first instruction information to the first scheduling instruction. A fixed position; or, when the position of the first instruction information in the first scheduling instruction is not fixed, the first instruction information is added to a position in the first scheduling instruction, and the position information is generated according to the position. To indicate the position of the first instruction information in the first scheduling instruction this time.
  • the second sending sub-module 1123 is further configured to: add the first instruction information to the first scheduling instruction; and send the first scheduling instruction to the UE.
  • the second sending submodule 1123 is further configured to: when the position of the first instruction information in the first scheduling instruction is fixed, add the first instruction information to the first scheduling instruction. A fixed position; or, when the position of the first instruction information in the first scheduling instruction is not fixed, position information is generated, and the location information is used to indicate the position of the first instruction information in the first scheduling instruction, and the first An indication information is added to the position indicated by the position information in the first scheduling instruction.
  • the notification module 1120 a first generating submodule 1124 and a third sending submodule 1125;
  • the first generating sub-module 1124 is configured to generate data transmission configuration information according to at least two time-frequency resources;
  • the third sending sub-module is configured to carry the data transmission configuration information generated by the first generating sub-module 1124 in a second scheduling instruction and send it to the UE.
  • the notification module 1120 includes: a second generation submodule 1126, a first determination submodule 1127, and a fourth transmission submodule 1128;
  • the second generation submodule 1126 is configured to obtain time window information generated before allocating at least two time-frequency resources, where the time window information is used to indicate at least one time domain unit within a time window;
  • the first determining submodule 1127 is configured to determine frequency domain resource information according to at least two time-frequency resources, and generate a third scheduling instruction according to the frequency domain resource information.
  • the frequency domain resource information is used to indicate a frequency domain resource in a time domain unit. ;
  • the fourth sending submodule 1128 is configured to send the time window information generated by the second generating submodule 1126 and the third scheduling instruction determined by the first determining submodule 1127 to the UE.
  • the UE is configured to use the time window information and the third scheduling instruction
  • the scheduling instruction determines at least two time-frequency resources.
  • the notification module 1120 includes: a second determining submodule 1129 and a fifth sending submodule 1130:
  • the second determining submodule 1129 is configured to determine frequency domain resource information according to at least two time-frequency resources, and generate a third scheduling instruction according to the frequency domain resource information.
  • the frequency domain resource information is used to indicate a frequency domain resource in a time domain unit. ;
  • the fifth sending sub-module 1130 is configured to send the third scheduling instruction determined by the second determining sub-module 1129 to the UE.
  • the UE is used to obtain time window information specified in the communication protocol, and the time window information is used to indicate a time window.
  • time window information is used to indicate a time window.
  • at least two time-frequency resources are determined according to the time window information and the third scheduling instruction.
  • the first determining sub-module 1127 is further configured to obtain second instruction information corresponding to the frequency domain resource information from the frequency domain resource information set, and the frequency domain resource information set is a communication protocol. Specified in; generating a third scheduling instruction carrying the second indication information.
  • the first determining submodule 1127 is further configured to generate a third scheduling instruction carrying frequency domain resource information.
  • the UE may determine at least two time-frequency resources according to the data transmission configuration information.
  • the frequency domain resource location in the unit performs data transmission. Because the channel occupation on the unlicensed spectrum is uncertain, when the data transmission configuration information indicates at least two time-frequency resources, the probability of the UE occupying time-frequency resources can be increased, and a scheduling instruction can only indicate one In the case of time-frequency resources, if the UE does not occupy the time-frequency resources, data transmission cannot be performed, thereby achieving the effect of improving the success rate of data transmission.
  • one data transmission configuration information can indicate at least two time-frequency resources, it is resolved that when a scheduling instruction can only indicate one time-frequency resource, the scheduling instruction must be transmitted each time the UE performs data transmission, resulting in a relatively high signaling overhead. Big problems, thus saving signaling overhead.
  • An exemplary embodiment of the present disclosure provides a UE capable of implementing the data transmission method provided by the present disclosure.
  • the UE includes: a processor and a memory for storing processor-executable instructions;
  • the processor is configured to:
  • data transmission is performed at a frequency-domain resource position in a time-domain unit indicated by the time-frequency resource.
  • An exemplary embodiment of the present disclosure provides a base station capable of implementing the data transmission method provided by the present disclosure.
  • the base station includes a processor and a memory for storing processor-executable instructions.
  • the processor is configured to:
  • the UE is configured to perform data transmission at a frequency-domain resource location in a time-domain unit indicated by the time-frequency resources when the time-frequency resources are occupied.
  • Fig. 13 is a block diagram of a device 1300 for data transmission according to an exemplary embodiment.
  • the device 1300 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • the device 1300 may include one or more of the following components: a processing component 1302, a memory 1304, a power component 1306, a multimedia component 1308, an audio component 1310, an input / output (I / O) interface 1312, a sensor component 1314, And communication component 1316.
  • a processing component 1302 a memory 1304, a power component 1306, a multimedia component 1308, an audio component 1310, an input / output (I / O) interface 1312, a sensor component 1314, And communication component 1316.
  • the processing component 1302 generally controls the overall operations of the device 1300, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing element 1302 may include one or more processors 1320 to execute instructions to complete all or part of the steps of the method described above.
  • the processing component 1302 may include one or more modules to facilitate the interaction between the processing component 1302 and other components.
  • the processing component 1302 may include a multimedia module to facilitate the interaction between the multimedia component 1308 and the processing component 1302.
  • the memory 1304 is configured to store various types of data to support operation at the device 1300. Examples of such data include instructions for any application or method operating on the device 1300, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 1304 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 1306 provides power to various components of the device 1300.
  • the power component 1306 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 1300.
  • the multimedia component 1308 includes a screen that provides an output interface between the device 1300 and a user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect duration and pressure related to the touch or slide operation.
  • the multimedia component 1308 includes a front camera and / or a rear camera. When the device 1300 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1310 is configured to output and / or input audio signals.
  • the audio component 1310 includes a microphone (MIC) that is configured to receive an external audio signal when the device 1300 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in the memory 1304 or transmitted via the communication component 1316.
  • the audio component 1310 further includes a speaker for outputting audio signals.
  • the I / O interface 1312 provides an interface between the processing component 1302 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor component 1314 includes one or more sensors for providing status assessment of various aspects of the device 1300.
  • the sensor component 1314 can detect the on / off state of the device 1300, and the relative positioning of the components, such as the display and keypad of the device 1300.
  • the sensor component 1314 can also detect the change in the position of the device 1300 or a component of the device 1300 , The presence or absence of the user's contact with the device 1300, the orientation or acceleration / deceleration of the device 1300, and the temperature change of the device 1300.
  • the sensor component 1314 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 1314 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1314 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 1316 is configured to facilitate wired or wireless communication between the device 1300 and other devices.
  • the device 1300 may access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication section 1316 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 1316 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth
  • the device 1300 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component is implemented to perform the above method.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component is implemented to perform the above method.
  • a non-transitory computer-readable storage medium including instructions may be executed by the processor 1320 of the device 1300 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • a non-transitory computer-readable storage medium when instructions in the storage medium are executed by a processor of a mobile terminal, enable the mobile terminal to execute the above-mentioned data transmission method.
  • Fig. 14 is a block diagram of a data transmission device 1400 according to an exemplary embodiment.
  • the data transmission device 1400 may be a base station.
  • the data transmission device 1400 may include a processor 1401, a receiver 1402, a transmitter 1403, and a memory 1404.
  • the receiver 1402, the transmitter 1403, and the memory 1404 are connected to the processor 1401 through a bus, respectively.
  • the processor 1401 includes one or more processing cores, and the processor 1401 executes a method performed by a base station in a data transmission method provided by an embodiment of the present disclosure by running software programs and modules.
  • the memory 1404 may be used to store software programs and modules. Specifically, the memory 1404 may store an operating system 14041 and an application program module 14042 required for at least one function.
  • the receiver 1402 is configured to receive communication data sent by other devices, and the transmitter 1403 is configured to send communication data to other devices.
  • Fig. 15 is a block diagram of a data transmission system according to an exemplary embodiment. As shown in Fig. 15, the data transmission system includes a base station 1501 and a UE 1502.
  • the base station 1501 is configured to perform a data transmission method performed by the base station in the embodiments shown in FIGS. 4 to 7.
  • the UE 1502 is configured to perform the data transmission method performed by the UE in the embodiments shown in FIGS. 4 to 7.
  • An exemplary embodiment of the present disclosure provides a computer-readable storage medium, where the storage medium stores at least one instruction, at least one program, code set, or instruction set, the at least one instruction, the at least one program, The code set or instruction set is loaded and executed by the processor to implement the data transmission method as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开关于一种数据传输方法、装置、设备、系统及存储介质,属于通信技术领域。所述方法包括:获取数据传输配置信息;根据所述数据传输配置信息确定至少两个时频资源,所述时频资源用于指示时域单元中的频域资源;对于被用户设备UE占用的各个时频资源,在所述时频资源所指示的时域单元中的频域资源位置进行数据传输。本公开既解决了一个调度指令只能指示一个时频资源时,若UE占用不到该时频资源,则无法进行数据传输的问题,从而达到了提高数据传输的成功率的效果;也解决了一个调度指令只能指示一个时频资源时,在UE每次进行数据传输时都要传输调度指令,导致信令开销较大的问题,从而节省了信令开销。

Description

数据传输方法、装置、设备、系统及存储介质 技术领域
本公开涉及通信技术领域,特别涉及一种数据传输方法、装置、设备、系统及存储介质。
背景技术
由于UE(User Equipment,用户设备)与基站之间传输数据的信道是共享信道,所以,基站需要对UE进行资源调度,通过资源调度为UE分配时频资源,以便于UE在该时频资源上进行数据传输,这里的数据传输包括上行的发送或下行数据的接收。
在LTE(Long Term Evolution,长期演进)系统中,基站可以向UE发送调度指令,UE根据该调度指令确定一个时域单元和一个频域资源,在该时域单元中的频域资源位置上进行数据传输。
发明内容
为解决相关技术中的问题,本公开提供了一种数据传输方法、装置、设备、系统及存储介质。
根据本公开实施例的第一方面,提供一种数据传输方法,所述方法包括:
获取数据传输配置信息;
根据所述数据传输配置信息确定至少两个时频资源,所述时频资源用于指示时域单元中的频域资源;
对于被用户设备UE占用的各个时频资源,在所述时频资源所指示的时域单元中的频域资源位置进行数据传输。
根据本公开实施例的第二方面,提供一种数据传输方法,所述方法包括:
为用户设备UE分配至少两个时频资源,所述时频资源用于指示时域单元中的频域资源;
将所述至少两个时频资源通知给所述UE,所述UE用于在占用所述时频 资源时,在所述时频资源所指示的时域单元中的频域资源位置进行数据传输。
根据本公开实施例的第三方面,提供一种数据传输装置,所述装置包括:
获取模块,被配置为获取数据传输配置信息;
确定模块,被配置为根据所述获取模块获取到的所述数据传输配置信息确定至少两个时频资源,所述时频资源用于指示时域单元中的频域资源;
传输模块,被配置为对于被用户设备UE占用的各个时频资源,在所述时频资源所指示的时域单元中的频域资源位置进行数据传输。
根据本公开实施例的第四方面,提供一种数据传输装置,所述装置包括:
分配模块,被配置为为用户设备UE分配至少两个时频资源,所述时频资源用于指示时域单元中的频域资源;
通知模块,被配置为将所述分配模块分配的所述至少两个时频资源通知给所述UE,所述UE用于在占用所述时频资源时,在所述时频资源所指示的时域单元中的频域资源位置进行数据传输。
根据本公开实施例的第五方面,提供一种用户设备UE,所述UE包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取数据传输配置信息;
根据所述数据传输配置信息确定至少两个时频资源,所述时频资源用于指示时域单元中的频域资源;
对于被所述UE占用的各个时频资源,在所述时频资源所指示的时域单元中的频域资源位置进行数据传输。
根据本公开实施例的第六方面,提供一种基站,所述基站包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
为用户设备UE分配至少两个时频资源,所述时频资源用于指示时域单元 中的频域资源;
将所述至少两个时频资源通知给所述UE,所述UE用于在占用所述时频资源时,在所述时频资源所指示的时域单元中的频域资源位置进行数据传输。
根据本公开实施例的第七方面,提供一种数据传输系统,包括上述第三方面任一所述的数据传输装置和上述第四方面任一所述的数据传输装置,或者,包括上述第五方面任一所述的数据传输装置和上述第六方面任一所述的数据传输装置。
根据本公开实施例的第八方面,提供一种计算机可读存储介质,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如第一方面所述的数据传输方法,或者,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如第二方面所述的数据传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
UE可以根据数据传输配置信息确定至少两个时频资源,在其占用某个时频资源时,即可在该时频资源所指示的时域单元中的频域资源位置进行数据传输。由于在非授权频谱上,信道占用具有不确定性,所以,通过数据传输配置信息指示至少两个时频资源时,可以提高UE占用到时频资源的概率,解决了一个调度指令只能指示一个时频资源时,若UE占用不到该时频资源,则无法进行数据传输的问题,从而达到了提高数据传输的成功率的效果。另外,由于一个数据传输配置信息可以指示至少两个时频资源,解决了一个调度指令只能指示一个时频资源时,在UE每次进行数据传输时都要传输调度指令,导致信令开销较大的问题,从而节省了信令开销。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本公开说明书的一部分,示出了符合本 公开的实施例,并与说明书一起用于解释本公开的原理。
图1是LTE系统中的资源调度方法的示意图。
图2是非授权频谱的资源分配的示意图。
图3是本公开各个实施例涉及的实施环境的示意图。
图4是根据一示例性实施例示出的一种数据传输方法的流程图。
图5是根据另一示例性实施例示出的一种数据传输方法的流程图。
图6是根据另一示例性实施例示出的一种数据传输方法的流程图。
图7是根据另一示例性实施例示出的一种数据传输方法的流程图。
图8是根据另一示例性实施例示出的一种数据传输的时频资源的示意图。
图9是根据一示例性实施例示出的一种数据传输装置的框图。
图10是根据一示例性实施例示出的一种数据传输装置的框图。
图11是根据一示例性实施例示出的一种数据传输装置的框图。
图12是根据一示例性实施例示出的一种数据传输装置的框图。
图13是根据一示例性实施例示出的一种用于数据传输的装置的框图。
图14是根据一示例性实施例示出的一种数据传输装置的框图。
图15是根据一示例性实施例示出的一种数据传输系统的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
诸如AR(Augmented Reality,增强现实)/VR(Virtual Reality,虚拟现实)、车车通信等新型互联网应用的不断涌现对无线通信技术提出了更高的要求,驱使无线通信技术不断进行演进以满足应用的需求。目前,蜂窝移动通信技术正在处于新一代技术的演进阶段。这里所说的新一代技术的一个重要特点就是支持多种业务类型的灵活配置。由于不同的业务类型对于无线通信技术有不同的要求,如eMBB(enhanced Mobile Broad Band,增强移动宽带)业务类型主要的要求侧重在大带宽,高速率等方面;URLLC(Ultra Reliable Low Latency  Communication,超高可靠超低时延通信)业务类型主要的要求侧重在较高的可靠性以及低的时延方面;mMTC(massive Machine Type Communication,大型机器类通信)业务类型主要的要求侧重在大的连接数方面。因此,新一代的无线通信系统需要灵活和可配置的设计来支持多种业务类型的传输。
对于LTE系统中的动态调度来说,一个调度指令只能指示一个时频资源,该时频资源用于指示时域单元中的频域资源。这里所说的时域单元是时间上的单位,可以是符号、子帧、时隙、无线帧等通信系统中常用的时域单元。请参考图1,其示出了LTE系统中的资源调度方法的示意图。图1中以时域单元为子帧,且一个阴影区域和一个白色填充区域组成一个子帧为例进行说明,其中,阴影区域是下行控制区域,用于传输控制指令,这里的控制指令包括调度指令,以指示UE在其箭头所指示的一个时频资源上进行数据传输;白色填充区域是下行数据区域,即调度指令的箭头所指示的时频资源,用于供UE进行数据传输。
由于一个调度指令只能指示一个时频资源,那么,在UE每次进行数据传输时都要传输调度指令,导致信令开销较大。本实施例中,由于一个数据传输配置信息可以指示至少两个时频资源,且该至少两个时频资源信息可以用于承载独立的数据块,即,该至少两个时频资源可以用来传输独立的数据包,所以,不必在UE每次进行数据传输时都要传输数据传输配置信息,从而减少了信令开销。
非授权频谱是竞争使用的频谱。多个不同制式的通信系统可以竞争使用非授权频谱上的频域资源。比如,WiFi(Wireless Fidelity,无线保真)系统和LTE系统可以竞争使用非授权频谱上的频域资源。若LTE系统中为UE分配的时频资源是非授权频谱上的时频资源,由于该信道可能被其他制式的通信系统占用,即信道占用具有不确定性,所以,即使通过调度指令为UE分配了一个时频资源,UE可能并不能成功占用该时频资源,导致UE无法在该时频资源上进行数据传输。请参考图2,其示出了非授权频谱的资源分配的示意图,其中,阴影区域是调度指令,白色填充区域是时频资源,调度指令的箭头指向的是分配给UE的一个时频资源,UE占用该时频资源之前需要进行LBT(Listen Before Talk,载波监听),即黑色填充区域。当监听到该信道被占用,即LBT失败时,UE无法占用该时频资源。
本实施例中,由于一次传输的数据传输配置信息可以指示至少两个时频资源,对于该至少两个时频资源,若UE未成功占用到第一个时频资源,则可以继续占用下一个时频资源,依此类推,这样可以提高UE成功占用时频资源的概率,也就提高了数据传输的成功率。
下面将对本公开实施例提供的数据传输方法所涉及到的实施环境进行简要的说明。
图3为本公开实施例提供的数据传输方法所涉及到的实施环境的示意图,如图1所示,该实施环境可以包括UE 301和至少一个基站302(图3中仅示出了一个基站302),其中,基站302可以为UE分配至少两个时频资源,并将该至少两个时频资源通知给UE301,UE301根据该至少两个时频资源进行数据传输。
图4是根据一示例性实施例示出的一种数据传输方法的流程图,该数据传输方法应用于图3所示的实施环境中,如图4所示,该数据传输方法包括以下步骤。
在步骤401中,基站为UE分配至少两个时频资源,该时频资源用于指示时域单元中的频域资源。
在步骤402中,基站将至少两个时频资源通知给UE。
在步骤403中,UE获取数据传输配置信息。
在步骤404中,UE根据数据传输配置信息确定至少两个时频资源。
在步骤405中,对于被UE占用的各个时频资源,UE在时频资源所指示的时域单元中的频域资源位置进行数据传输。
其中,步骤401-402可以单独实现成为基站侧的实施例,步骤403-405可以单独实现成为UE侧的实施例。
综上所述,本公开提供的数据传输方法,UE可以根据数据传输配置信息确定至少两个时频资源,在其占用某个时频资源时,即可在该时频资源所指示的时域单元中的频域资源位置进行数据传输。由于在非授权频谱上,信道占用具有不确定性,所以,通过数据传输配置信息指示至少两个时频资源时,可以提高UE占用到时频资源的概率,解决了一个调度指令只能指示一个时频资源时,若UE占用不到该时频资源,则无法进行数据传输的问题,从而达到了提 高数据传输的成功率的效果。另外,由于一个数据传输配置信息可以指示至少两个时频资源,解决了一个调度指令只能指示一个时频资源时,在UE每次进行数据传输时都要传输调度指令,导致信令开销较大的问题,从而节省了信令开销。
本公开中,UE获取数据传输配置信息的实现方式有三种,下面分别以三个实施例对这三种实现方式进行详细说明。
图5是根据另一示例性实施例示出的一种数据传输方法的流程图,该数据传输方法应用于图3所示的实施环境中,如图5所示,该数据传输方法包括如下步骤。
在步骤501中,基站为UE分配至少两个时频资源,该时频资源用于指示时域单元中的频域资源。
一个时频资源包括一个时域单元和一个频域资源,其中,时域单元是时间上的单位,可以是符号、子帧、时隙、无线帧等通信系统中常用的时域单元。
本实施例中,可以预先对时域进行划分,为得到的每个时域单元设置一个时域单元标识,本实施例不限定时域的划分方式。同理,可以预先对频域进行划分,为得到的每个频域资源设置一个频域资源标识,本实施例不限定频域的划分方式。此时,一个时域单元标识和一个频域资源标识可以唯一地标识一个时频资源。
其中,基站可以通过任何方式为UE分配至少两个时频资源,本实施例不作限定。
在步骤502中,基站在数据传输配置信息集合中获取与至少两个时频资源对应的第一指示信息,该数据传输配置信息集合是通信协议中指定的。
基站中预先配置有通信协议中指定的数据传输配置信息集合,该数据传输配置信息集合中包括至少一条数据传输配置信息,且每条数据传输配置信息至少包括索引参数、时域单元标识参数和频域资源标识参数。
索引参数是用于标识数据传输配置信息的参数,索引参数的位数可以由数据传输配置信息集合中所包括的数据传输配置信息的条数确定,且需保证索引参数所表示的数值大于等于数据传输配置信息的条数。比如,数据传输配置信息集合中包括3条数据传输配置信息,则索引参数的位数可以是2比特,如分别用00、01和10表示这三条数据传输配置信息。又比如,数据传输配置信息 集合中包括8条数据传输配置信息,则索引参数的位数可以是3比特。
时域单元标识参数包括至少一个时域单元标识。比如,时域单元标识参数中时域单元标识分别是0、2、4,或,时域单元标识参数中时域单元标识分别是1、3、4等等,本实施例不作限定。
频域资源标识参数包括至少一个频域资源标识。比如,频域资源标识参数中频域资源标识分别是1、2、3,或,频域资源标识参数中频域资源标识是1。
需要说明的是,若时域单元标识参数中时域单元标识的数量和频域资源标识参数中频域资源标识的数量同时为1,则该数据传输配置信息中只指示了一个时频资源,为了避免这种情况,可以规定时域单元标识参数中时域单元标识的数量和频域资源标识参数中频域资源标识的数量不能同时为1。
可选的,数据传输配置信息除了包括索引参数、时域单元标识参数和频域资源标识参数之外,还可以包括其他参数。比如,数据传输配置信息还包括MCS(Modulation and Coding Scheme,调制与编码策略)标识参数,该MCS标识参数用于指示在该时频资源进行数据传输时的调制与编码策略,其包括至少一个MCS标识,比如,MCS标识参数中MCS标识分别是等级1、2、3。
需要说明的是,数据传输配置信息中任一参数的数值可以是一个绝对值,也可以是相对于某个参考值的偏移值。以时域单元标识参数为例,假设时域单元标识参数中的时域单元标识分别是1、3、4;若该数值是绝对值,则其指示的分别是时域单元1、时域单元3和时域单元4;若该数值是相对于时域单元1的偏移值,则其指示的分别是时域单元2、时域单元4和时域单元5。
请参考下表一,其以数据传输配置信息包括索引参数、时域单元标识参数、频域资源标识参数和MCS标识参数为例进行说明,在其他实现方式中,该表格可以包含更多或更少的配置信息。
表一
Figure PCTCN2018097422-appb-000001
基站在确定为UE分配的至少两个时频资源后,可以在数据传输配置信息集合中查找用于指示该时频资源的数据传输配置信息,并获取该数据传输配置 信息中的索引参数的数值,将该数值确定为第一指示信息。
可选的,基站可以通过步骤503或步骤504向UE通知该至少两个时频资源。
在步骤503中,基站将第一指示信息发送给UE,并将数据传输配置信息集合发送给UE,执行步骤505。
在本步骤中,基站除了向UE发送第一指示信息之外,还向UE发送数据传输配置信息集合。其中,基站可以先发送数据传输配置信息集合,再发送第一指示信息。
需要说明的是,在基站第一次执行本实施例提供的方法时,可以向UE发送数据传输配置信息集合,UE对该数据传输配置信息集合进行存储;后续,基站再次执行本实施例提供的方法时,可以不再发送数据传输配置信息集合,以节省传输资源。
基站可以将第一指示信息携带在已有的指令或新的指令中,将该指令发送给UE。其中,当该指令是第一调度指令时,将第一指示信息发送给UE,包括:将第一指示信息添加到第一调度指令中;将第一调度指令发送给UE。
下面对基站将第一指示信息添加到指令中的添加方式进行介绍。本实施例中以指令为第一调度指令为例,若将第一指示信息添加到其他指令中,其添加方式与下面所述的两种添加方式相同,此处不作赘述。
在第一种添加方式中,当第一指示信息在第一调度指令中的位置固定时,将第一指示信息添加到第一调度指令中固定的位置处。
第一指示信息在第一调度指令中的位置固定包括两种情况:第一种情况是第一指示信息的位数固定,此时,第一指示信息在第一调度指令中的起始位置和结束位置均固定;第二种情况是第一指示信息的位数不固定,此时,可以是第一指示信息在第一调度指令中的起始位置固定,结束位置不固定,也可以是第一指示信息在第一调度指令中的结束位置固定,起始位置不固定,本实施例不作限定。
若第一指示信息的位数固定,且其在第一调度指令中的位置固定,则可以在通信协议中指定位置信息;也可以在基站第一次向UE发送第一调度指令之前指示位置信息,UE对该位置信息进行存储,后续,基站不需要每次向UE发送第一调度指令之前指示该位置信息;也可以在基站每次向UE发送第一调度指令之前指示该位置信息。其中,位置信息可以包括起始位置和结束位置, 或,可以包括起始位置和位数,或,可以包括结束位置和位数。
若第一指示信息的位数不固定,且其在第一调度指令中的位置固定,则可以在通信协议中指定该起始位置或结束位置,基站还需要在每次发送的第一调度指令之前指示第一指示信息的位数;或者,也可以在基站第一次向UE发送第一调度指令之前指示该起始位置或结束位置,基站还需要在每次发送的第一调度指令中指示第一指示信息的位数;或者,基站可以在每次发送的第一调度指令之前指示第一指示信息的起始位置和结束位置。
以第一指示信息的位数固定,且其在第一调度指令中的位置固定为例,假设第一指示信息在第一调度指令中的起始位置是第5比特,位数是2,则基站可以将该第一指示信息的数值添加到第一调度指令中第5-6比特的位置处。
在第二种添加方式中,当第一指示信息在第一调度指令中的位置不固定时,生成位置信息,位置信息用于指示本次第一指示信息在第一调度指令中的位置,将第一指示信息添加到第一调度指令中位置信息所指示的位置处。
第一指示信息在第一调度指令中的位置不固定包括两种情况:第一种情况是第一指示信息的位数固定,此时,可以根据第一指示信息在第一调度指令中的起始位置推断出结束位置,或者,可以根据第一指示信息在第一调度指令中的结束位置推断出起始位置。第二种情况是第一指示信息的位数不固定,此时,第一指示信息在第一调度指令中的起始位置和结束位置均不固定。
若第一指示信息的位数固定,且其在第一调度指令中的位置不固定,则可以在通信协议中指定该位数,也可以在基站第一次向UE发送第一调度指令之前指示该位数。此后,基站需要在每次发送的第一调度指令中指示该起始位置和/或结束位置。
若第一指示信息的位数不固定,且其在第一调度指令中的位置不固定,则基站需要在每次发送第一调度指令之前指示该起始位置和结束位置,或者,基站需要在每次发送第一调度指令之前指示该起始位置和位数,或者,基站需要在每次发送第一调度指令之前指示该结束位置和位数。
以第一指示信息的位数不固定,且其在第一调度指令中的位置不固定为例,假设第一指示信息为2比特,且基站将要将其添加到第一调度指令中的第5-6比特的位置处,则基站可以生成用于指示本次第一指示信息位于第一调度指令中第5-6比特的位置信息,再将第一指示信息添加到第一调度指令中的第5-6比特的位置处。
在步骤504中,基站将第一指示信息发送给UE,执行步骤505。
其中,基站将第一指示信息发送给UE的流程与步骤503中基站将第一指示信息发送给UE的流程相同,此处不作赘述。
在本步骤中,UE中预先配置有通信协议中指定的数据传输配置信息集合。
在步骤505中,UE获取基站发送的第一指示信息;在数据传输配置信息集合中获取与第一指示信息对应的数据传输配置信息获取数据传输配置信息。
当基站执行步骤503时,数据传输配置信息集合是基站发送的;当基站执行步骤504时,数据传输配置信息集合是通信协议中指定的,且UE中配置的数据传输配置信息集合与基站中配置的数据传输配置信息集合相同。
其中,UE获取第一指示信息的方式与基站发送第一指示信息的方式相同。即,当基站将第一指示信息携带在已有的指令中时,UE从该已有的指令中获取第一指示信息;当基站将该第一指示信息携带在新的指令中时,UE从该新的指令中获取第一指示信息。当指令是第一调度指令时,获取基站发送的第一指示信息,包括:接收基站发送的第一调度指令;从第一调度指令中获取第一指示信息。
对应于基站将第一指示信息添加到指令中的两种添加方式,UE从第一调度指令中获取第一指示信息也有两种获取方式,下面分别对这两种获取方式进行介绍。本实施例中以指令为第一调度指令为例,若将第一指示信息添加到其他指令中,其获取方式与下面所述的两种获取方式相同,此处不作赘述。
在第一种获取方式中,当第一指示信息在第一调度指令中的位置固定时,从第一调度指令中固定的位置处读取第一指示信息。
若第一指示信息的位数固定,且其在第一调度指令中的位置固定,则UE可以从通信协议中获取第一指示信息在第一调度指令中的位置信息;也可以在基站第一次发送第一调度指令之前获取该位置信息,UE对该位置信息进行存储,后续,基站不需要每次向UE发送第一调度指令之前指示该位置信息;还可以在基站每次发送第一调度指令之前获取该位置信息。其中,位置信息可以包括起始位置和结束位置,或,可以包括起始位置和位数,或,可以包括结束位置和位数。UE再根据上述位置信息确定第一指示信息在第一调度指令中的位置,从该位置处读取第一指示信息。
若第一指示信息的位数不固定,且其在第一调度指令中的位置固定,则UE可以从通信协议中获取第一指示信息在第一调度指令中的起始信息,或, 可以在基站第一次发送第一调度指令之前获取第一指示信息的起始位置,再从本次接收到的第一调度指令中获取第一指示信息的位数;或者,UE可以从通信协议中获取第一指示信息在第一调度指令中的结束信息,或,可以在基站第一次发送第一调度指令之前获取第一指示信息的结束位置,再从本次接收到的第一调度指令中获取第一指示信息的位数;或者,UE可以在基站每次发送第一调度指令之前获取第一指示信息的起始位置和结束位置。UE再根据上述信息确定第一指示信息在第一调度指令中的位置,从该位置处读取第一指示信息。
以第一指示信息的位数固定,且其在第一调度指令中的位置固定为例,假设第一指示信息在第一调度指令中的起始位置是第5比特,位数是2,则UE可以从第一调度指令中第5-6比特的位置处读取第一指示信息。
在第二种获取方式中,当第一指示信息在第一调度指令中的位置不固定时,获取位置信息,位置信息用于指示本次第一指示信息在第一调度指令中的位置;从第一调度指令中位置信息所指示的位置处读取第一指示信息。
若第一指示信息的位数固定,且其在第一调度指令中的位置不固定,则UE可以从通信协议中获取第一指示信息的位数,或,在基站第一次发送第一调度指令之前获取第一指示信息的位数,再从本次接收到的第一调度指令中获取第一指示信息的起始位置和/或结束位置,根据上述信息确定第一指示信息在第一调度指令中的位置,从该位置处读取第一指示信息。
若第一指示信息的位数不固定,且其在第一调度指令中的位置不固定,则UE可以在基站每次发送第一调度指令之前获取第一指示信息的起始位置和结束位置;或者,UE可以在基站每次发送第一调度指令之前获取第一指示信息的起始位置和位数;或者,UE可以在基站每次发送第一调度指令之前获取第一指示信息的结束位置和位数。UE再根据上述信息确定第一指示信息在第一调度指令中的位置,从该位置处读取第一指示信息。
以第一指示信息的位数不固定,且其在第一调度指令中的位置不固定为例,假设第一指示信息为2比特,且位置信息指示第一指示信息添加到第一调度指令中的第5-6比特的位置处,则UE根据该位置信息从第一调度指令中第5-6比特处读取第一指示信息。
UE在得到第一指示信息后,从数据传输配置信息集合中查找索引参数为该第一指示信息的数据传输配置信息。
在步骤506中,UE根据数据传输配置信息确定至少两个时频资源。
UE从数据传输配置信息中获取时域单元标识和频域资源标识,再根据时域单元标识和时域资源标识确定至少两个时频资源。
在步骤507中,对于被UE占用的各个时频资源,UE在时频资源所指示的时域单元中的频域资源位置进行数据传输。
对于每个时频资源,UE可以在占用该时频资源之前进行LBT,即监听该信道是否被占用,若该信道被占用,则UE放弃在该时频资源上传输数据,等待下一个时频资源;若该信道未被占用,则UE占用该信道,在该时频资源上进行数据传输。
其中,步骤501-504可以单独实现成为基站侧的实施例,步骤505-507可以单独实现成为UE侧的实施例。
综上所述,本公开提供的数据传输方法,UE可以根据数据传输配置信息确定至少两个时频资源,在其占用某个时频资源时,即可在该时频资源所指示的时域单元中的频域资源位置进行数据传输。由于在非授权频谱上,信道占用具有不确定性,所以,通过数据传输配置信息指示至少两个时频资源时,可以提高UE占用到时频资源的概率,解决了一个调度指令只能指示一个时频资源时,若UE占用不到该时频资源,则无法进行数据传输的问题,从而达到了提高数据传输的成功率的效果。另外,由于一个数据传输配置信息可以指示至少两个时频资源,解决了一个调度指令只能指示一个时频资源时,在UE每次进行数据传输时都要传输调度指令,导致信令开销较大的问题,从而节省了信令开销。
通过传输第一指示信息,而不是传输时域单元标识和频域资源标识,可以通过减少所传输的数据来节省传输资源。
图6是根据另一示例性实施例示出的一种数据传输方法的流程图,该数据传输方法应用于图3所示的实施环境中,如图6所示,该数据传输方法包括如下步骤。
在步骤601中,基站为UE分配至少两个时频资源,该时频资源用于指示时域单元中的频域资源。
其中,步骤601的实现流程详见步骤501中的描述。
在步骤602中,基站根据至少两个时频资源生成数据传输配置信息;将数 据传输配置信息携带在第二调度指令中发送给UE。
与步骤502中的数据传输配置信息相比,本步骤中生成的数据传输配置信息不包含索引参数,其所包括的时域单元标识参数、频域资源标识参数以及其他参数的内容详见步骤502中的描述。
其中,基站可以将数据传输配置信息携带在已有的指令或新的指令中,将该指令发送给UE。本实施例中,以指令是第二调度指令为例进行说明。
在步骤603中,UE接收基站发送的第二调度指令;从第二调度指令中获取数据传输配置信息。
UE获取数据传输配置信息的方式与基站发送数据传输配置信息的方式相同。即,当基站将数据传输配置信息携带在已有的指令中时,UE从该已有的指令中获取数据传输配置信息;当基站将该数据传输配置信息携带在新的指令中时,UE从该新的指令中获取数据传输配置信息。本实施例中,以指令是第二调度指令为例进行说明。
在步骤604中,UE根据数据传输配置信息确定至少两个时频资源。
在步骤605中,对于被UE占用的各个时频资源,UE在时频资源所指示的时域单元中的频域资源位置进行数据传输。
其中,步骤604-605的实现流程详见步骤506-507中的描述,此处不作赘述。
其中,步骤601-602可以单独实现成为基站侧的实施例,步骤603-605可以单独实现成为UE侧的实施例。
综上所述,本公开提供的数据传输方法,UE可以根据数据传输配置信息确定至少两个时频资源,在其占用某个时频资源时,即可在该时频资源所指示的时域单元中的频域资源位置进行数据传输。由于在非授权频谱上,信道占用具有不确定性,所以,通过数据传输配置信息指示至少两个时频资源时,可以提高UE占用到时频资源的概率,解决了一个调度指令只能指示一个时频资源时,若UE占用不到该时频资源,则无法进行数据传输的问题,从而达到了提高数据传输的成功率的效果。另外,由于一个数据传输配置信息可以指示至少两个时频资源,解决了一个调度指令只能指示一个时频资源时,在UE每次进行数据传输时都要传输调度指令,导致信令开销较大的问题,从而节省了信令开销。
图7是根据另一示例性实施例示出的一种数据传输方法的流程图,该数据传输方法应用于图3所示的实施环境中,如图7所示,该数据传输方法包括如下步骤。
在步骤701中,基站为UE分配至少两个时频资源,该时频资源用于指示时域单元中的频域资源。
其中,步骤701的实现流程详见步骤501中的描述,此处不作赘述。
本实施例中,基站可以通过步骤702或步骤703向UE通知该至少两个时频资源。
在步骤702中,基站获取在分配至少两个时频资源之前生成的时间窗口信息,该时间窗口信息用于指示一个时间窗口内的至少一个时域单元;根据该至少两个时频资源确定频域资源信息,根据频域资源信息生成第三调度指令,该频域资源信息用于指示时域单元中的频域资源;将时间窗口信息和第三调度指令发送给UE,执行步骤704。
一个时间窗口内可以包括至少一个时域单元。基站先指定一个时间窗口;再在该时间窗口中确定至少一个时域单元,该至少一个时域单元即为将要为UE分配的至少两个时频资源中的时域单元;再生成用于指示该至少一个时域单元的时间窗口信息,以通过该时间窗口信息来指示该至少两个时频资源中的时域单元。
频域资源信息可以包括至少一个频域资源标识,详见步骤502中的描述。
需要说明的是,当时间窗口信息指示该时间窗口内的一个时域单元时,频域资源信息包括至少两个频域资源标识;当时间窗口信息指示该时间窗口内的至少两个时域单元时,频域资源信息包括至少一个频域资源标识,以保证时间窗口信息和频域资源信息指示至少两个时频资源。
本实施例提供了生成第三调度指令的两种实现方式,下面分别对这两种实现方式进行介绍。
在第一种实现方式中,根据频域资源信息生成第三调度指令,包括:在频域资源信息集合中获取与频域资源信息对应的第二指示信息,该频域资源信息集合是通信协议中指定的;生成携带有第二指示信息的第三调度指令。
基站中预先配置有通信协议中指定的频域资源信息集合,该频域资源信息集合中包括至少一条频域资源信息,且每条频域资源信息至少包括索引参数和频域资源标识参数。其中,索引参数和频域资源标识参数详见步骤502中的描 述。
可选的,频域资源信息除了包括索引参数和频域资源标识参数之外,还可以包括其他参数。比如,频域资源信息还包括MCS标识参数,详见步骤502中的描述。
基站在确定为UE分配的至少两个时频资源后,可以在频域资源信息集合中查找用于指示该时频资源中的频域资源的频域资源信息,并获取该频域资源信息中的索引参数的数值,将该数值确定为第二指示信息。
基站在得到第二指示信息后,可以将第二指示信息携带在已有的指令或新的指令中,将该指令发送给UE。本实施例中以指令是第三调度指令为例进行说明,此时,将第二指示信息添加到第三调度指令中的流程与将第一指示信息添加到第一调度指令中的流程相同,此处不作赘述。
需要说明的是,频域资源信息集合可以由基站发送给UE,也可以由UE从通信协议中获取,本实施例不作限定。当频域资源信息集合由基站发送给UE时,基站可以每次发送第三调度指令时发送频域资源信息集合,也可以在第一次执行本实施例提供的方法时,向UE发送频域资源信息集合,UE对该频域资源信息集合进行存储;后续,基站再次执行本实施例提供的方法时,可以不再发送频域资源信息集合,以节省传输资源。
在第二种实现方式中,根据频域资源信息生成第三调度指令,包括:生成携带有频域资源信息的第三调度指令。
基站在确定为UE分配的至少两个时频资源后,可以生成用于指示该时频资源中的频域资源的频域资源信息,将该频域资源信息携带在已有的指令或新的指令中,将该指令发送给UE。本实施例中,以指令是第三调度指令为例进行说明。
其中,基站可以先发送时间窗口信息,再发送第三调度指令;也可以先发送第三调度指令,再发送时间窗口信息;还可以同时发送时间窗口信息和数据传输配置集合,本实施例不对时间窗口信息和第三调度指令的发送顺序作限定。
在步骤703中,基站根据该至少两个时频资源确定频域资源信息,根据频域资源信息生成第三调度指令,该频域资源信息用于指示时域单元中的频域资源;将第三调度指令发送给UE,执行步骤704。
与步骤702相比,本步骤中只发送第三调度指令,不发送时间窗口信息。
在步骤704中,UE获取时间窗口信息。
其中,当基站执行步骤702时,时间窗口信息是基站发送的;当基站执行步骤703时,时间窗口信息是通信协议中指定的。
在步骤705中,UE接收基站发送的第三调度指令,根据第三调度指令获取频域资源信息,该频域资源信息用于指示时域单元中的频域资源。
本实施例提供了获取频域资源信息的两种实现方式,下面分别对这两种实现方式进行介绍。
在第一种实现方式中,根据第三调度指令获取频域资源信息,包括:从第三调度指令中获取第二指示信息;在频域资源信息集合中获取与第二指示信息对应的频域资源信息,该频域资源信息集合是基站发送的,或,该频域资源信息集合是通信协议中指定的。
其中,UE获取第二指示信息以及从频域资源信息集合中获取与第二指示信息对应的频域资源信息的流程,与,UE获取第一指示信息以及从数据传输配置信息集合中获取与第一指示信息对应的数据传输配置信息的流程相同,此处不作赘述。
在第二种实现方式中,根据第三调度指令获取频域资源信息,包括:当第三调度指令中携带有频域资源信息时,从第三调度指令中读取频域资源信息。
UE获取频域资源信息的方式与基站发送频域资源信息的方式相同。即,当基站将频域资源信息携带在已有的指令中时,UE从该已有的指令中获取频域资源信息;当基站将该频域资源信息携带在新的指令中时,UE从该新的指令中获取频域资源信息。本实施例中,以指令是第三调度指令为例进行说明。
在步骤706中,UE根据数据传输配置信息确定至少两个时频资源。
在步骤707中,对于被UE占用的各个时频资源,UE在时频资源所指示的时域单元中的频域资源位置进行数据传输。
其中,步骤706-707的实现流程详见步骤506-507中的描述,此处不作赘述。
请参考图8,UE未能成功占用前两个时频资源,不能在前两个时频资源上传输数据。UE成功占用了第三个时频资源,则可以在第三个时频资源上传输数据。
其中,步骤701-703可以单独实现成为基站侧的实施例,步骤704-707可以单独实现成为UE侧的实施例。
综上所述,本公开提供的数据传输方法,UE可以根据数据传输配置信息确定至少两个时频资源,在其占用某个时频资源时,即可在该时频资源所指示的时域单元中的频域资源位置进行数据传输。由于在非授权频谱上,信道占用具有不确定性,所以,通过数据传输配置信息指示至少两个时频资源时,可以提高UE占用到时频资源的概率,解决了一个调度指令只能指示一个时频资源时,若UE占用不到该时频资源,则无法进行数据传输的问题,从而达到了提高数据传输的成功率的效果。另外,由于一个数据传输配置信息可以指示至少两个时频资源,解决了一个调度指令只能指示一个时频资源时,在UE每次进行数据传输时都要传输调度指令,导致信令开销较大的问题,从而节省了信令开销。
图9是根据一示例性实施例示出的一种数据传输装置的框图,该数据传输装置应用于图3所示的UE301中,如图9所示,该数据传输装置包括:获取模块910、确定模块920和传输模块930。
该获取模块910,被配置为获取数据传输配置信息;
该确定模块920,被配置为根据获取模块910获取到的数据传输配置信息确定至少两个时频资源,时频资源用于指示时域单元中的频域资源;
该传输模块930,被配置为对于被UE占用的各个时频资源,在时频资源所指示的时域单元中的频域资源位置进行数据传输。
如图10所示,本公开实施例还提供了另一种数据传输装置,该数据传输装置中除了可以包括获取模块910、确定模块920和传输模块930之外,其中的获取模块910可以包括:第一获取子模块911和第二获取子模块912的组合、第一接收子模块913和第三获取子模块914的组合、第四获取子模块915和第二接收子模块916的组合中的至少一种组合,图10中以数据传输装置包括这三种组合为例进行绘制。
在本公开的一个实施例中,该获取模块910,包括:第一获取子模块911和第二获取子模块912;
该第一获取子模块911,被配置为获取基站发送的第一指示信息;
该第二获取子模块912,被配置为在数据传输配置信息集合中获取与第一获取子模块911获取到的第一指示信息对应的数据传输配置信息,数据传输配置信息集合是基站发送的,或,数据传输配置信息集合是通信协议中指定的。
在本公开的一个实施例中,该第一获取子模块911,还被配置为:接收基站发送的第一调度指令;从第一调度指令中获取第一指示信息。
在本公开的一个实施例中,该第一获取子模块911,还被配置为:当第一指示信息在第一调度指令中的位置固定时,从第一调度指令中固定的位置处读取第一指示信息;或者,当第一指示信息在第一调度指令中的位置不固定时,获取位置信息,位置信息用于指示本次第一指示信息在第一调度指令中的位置;从第一调度指令中位置信息所指示的位置处读取第一指示信息。
在本公开的一个实施例中,该获取模块910,包括:第一接收子模块913和第三获取子模块914;
该第一接收子模块913,被配置为接收基站发送的第二调度指令;
该第三获取子模块914,被配置为从第一接收子模块913接收到的第二调度指令中获取数据传输配置信息。
在本公开的一个实施例中,当数据传输配置信息包括时间窗口信息和频域资源信息时,该获取模块910,包括:第四获取子模块915和第二接收子模块916;
该第四获取子模块915,还被配置为获取时间窗口信息,时间窗口信息用于指示一个时间窗口内的至少一个时域单元,时间窗口信息是基站发送的,或,时间窗口信息是通信协议中指定的;
该第二接收子模块916,还被配置为接收基站发送的第三调度指令,根据第三调度指令获取频域资源信息,频域资源信息用于指示时域单元中的频域资源。
在本公开的一个实施例中,该第二接收子模块916,还被配置为:从第三调度指令中获取第二指示信息;在频域资源信息集合中获取与第二指示信息对应的频域资源信息,频域资源信息集合是基站发送的,或,频域资源信息集合是通信协议中指定的。
在本公开的一个实施例中,该第二接收子模块916,还被配置为:当第三调度指令中携带有频域资源信息时,从第三调度指令中读取频域资源信息。
综上所述,本公开提供的数据传输装置,UE可以根据数据传输配置信息确定至少两个时频资源,在其占用某个时频资源时,即可在该时频资源所指示的时域单元中的频域资源位置进行数据传输。由于在非授权频谱上,信道占用具有不确定性,所以,通过数据传输配置信息指示至少两个时频资源时,可以 提高UE占用到时频资源的概率,解决了一个调度指令只能指示一个时频资源时,若UE占用不到该时频资源,则无法进行数据传输的问题,从而达到了提高数据传输的成功率的效果。另外,由于一个数据传输配置信息可以指示至少两个时频资源,解决了一个调度指令只能指示一个时频资源时,在UE每次进行数据传输时都要传输调度指令,导致信令开销较大的问题,从而节省了信令开销。
图11是根据一示例性实施例示出的一种数据传输装置的框图,该数据传输装置应用于图3所示的基站302中,如图11所示,该数据传输装置包括:分配模块1110和通知模块1120。
该分配模块1110,被配置为为UE分配至少两个时频资源,时频资源用于指示时域单元中的频域资源;
该通知模块1120,被配置为将分配模块1110分配的至少两个时频资源通知给UE,UE用于在占用时频资源时,在时频资源所指示的时域单元中的频域资源位置进行数据传输。
如图12所示,本公开实施例还提供了另一种数据传输装置,该数据传输装置中除了可以包括分配模块1110和通知模块1120之外,其中的通知模块1120可以包括:第一发送子模块1122和第二发送子模块1123这两者中的一个和第一获取子模块1121的组合、第一生成子模块1124和第三发送子模块1125的组合、第二生成子模块1126和第一确定子模块1127和第四发送子模块1128的组合、第二确定子模块1129和第五发送子模块1130的组合中的至少一种组合,图12中以数据传输装置包括这四种组合为例进行绘制。
在本公开的一个实施例中,该通知模块1120,包括:第一获取子模块1121,第一发送子模块1122和第二发送子模块1123这两者中的一个;
该第一获取子模块1121,被配置为在数据传输配置信息集合中获取与至少两个时频资源对应的第一指示信息,数据传输配置信息集合是通信协议中指定的;
该第一发送子模块1122,被配置为将第一获取子模块1121获取到的第一指示信息发送给UE,并将数据传输配置信息集合发送给UE,UE用于根据第一指示信息和数据传输配置信息集合确定至少两个时频资源;或者,
该第二发送子模块1123,被配置为将第一获取子模块1121获取到的第一 指示信息发送给UE,UE用于获取通信协议中指定的数据传输配置信息集合,根据第一指示信息和数据传输配置信息集合确定至少两个时频资源。
在本公开的一个实施例中,该第一发送子模块1122,还被配置为:将第一指示信息添加到第一调度指令中;将第一调度指令发送给UE。
在本公开的一个实施例中,该第一发送子模块1122,还被配置为:当第一指示信息在第一调度指令中的位置固定时,将第一指示信息添加到第一调度指令中固定的位置处;或者,当第一指示信息在第一调度指令中的位置不固定时,将第一指示信息添加到第一调度指令中的一个位置处,根据位置生成位置信息,位置信息用于指示本次第一指示信息在第一调度指令中的位置。
在本公开的一个实施例中,该第二发送子模块1123,还被配置为:将第一指示信息添加到第一调度指令中;将第一调度指令发送给UE。
在本公开的一个实施例中,该第二发送子模块1123,还被配置为:当第一指示信息在第一调度指令中的位置固定时,将第一指示信息添加到第一调度指令中固定的位置处;或者,当第一指示信息在第一调度指令中的位置不固定时,生成位置信息,位置信息用于指示本次第一指示信息在第一调度指令中的位置,将第一指示信息添加到第一调度指令中位置信息所指示的位置处。
在本公开的一个实施例中,该通知模块1120:第一生成子模块1124和第三发送子模块1125;
该第一生成子模块1124,被配置为根据至少两个时频资源生成数据传输配置信息;
该第三发送子模块,被配置为将第一生成子模块1124生成的数据传输配置信息携带在第二调度指令中发送给UE。
在本公开的一个实施例中,该通知模块1120,包括:第二生成子模块1126、第一确定子模块1127和第四发送子模块1128;
该第二生成子模块1126,被配置为获取在分配至少两个时频资源之前生成的时间窗口信息,时间窗口信息用于指示一个时间窗口内的至少一个时域单元;
该第一确定子模块1127,被配置为根据至少两个时频资源确定频域资源信息,根据频域资源信息生成第三调度指令,频域资源信息用于指示时域单元中的频域资源;
该第四发送子模块1128,被配置为将第二生成子模块1126生成的时间窗 口信息和第一确定子模块1127确定的第三调度指令发送给UE,UE用于根据时间窗口信息和第三调度指令确定至少两个时频资源。
在本公开的一个实施例中,该通知模块1120,包括:第二确定子模块1129和第五发送子模块1130:
该第二确定子模块1129,被配置为根据至少两个时频资源确定频域资源信息,根据频域资源信息生成第三调度指令,频域资源信息用于指示时域单元中的频域资源;
该第五发送子模块1130,被配置为将第二确定子模块1129确定的第三调度指令发送给UE,UE用于获取通信协议中指定的时间窗口信息,时间窗口信息用于指示一个时间窗口内的至少一个时域单元,根据时间窗口信息和第三调度指令确定至少两个时频资源。
在本公开的一个实施例中,该第一确定子模块1127,还被配置为:在频域资源信息集合中获取与频域资源信息对应的第二指示信息,频域资源信息集合是通信协议中指定的;生成携带有第二指示信息的第三调度指令。
在本公开的一个实施例中,该第一确定子模块1127,还被配置为:生成携带有频域资源信息的第三调度指令。
综上所述,本公开提供的数据传输装置,UE可以根据数据传输配置信息确定至少两个时频资源,在其占用某个时频资源时,即可在该时频资源所指示的时域单元中的频域资源位置进行数据传输。由于在非授权频谱上,信道占用具有不确定性,所以,通过数据传输配置信息指示至少两个时频资源时,可以提高UE占用到时频资源的概率,解决了一个调度指令只能指示一个时频资源时,若UE占用不到该时频资源,则无法进行数据传输的问题,从而达到了提高数据传输的成功率的效果。另外,由于一个数据传输配置信息可以指示至少两个时频资源,解决了一个调度指令只能指示一个时频资源时,在UE每次进行数据传输时都要传输调度指令,导致信令开销较大的问题,从而节省了信令开销。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例提供了一种UE,能够实现本公开提供的数据传输方法,该UE包括:处理器、用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
获取数据传输配置信息;
根据数据传输配置信息确定至少两个时频资源,时频资源用于指示时域单元中的频域资源;
对于被UE占用的各个时频资源,在时频资源所指示的时域单元中的频域资源位置进行数据传输。
本公开一示例性实施例提供了一种基站,能够实现本公开提供的数据传输方法,该基站包括:处理器、用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
为UE分配至少两个时频资源,时频资源用于指示时域单元中的频域资源;
将至少两个时频资源通知给UE,UE用于在占用时频资源时,在时频资源所指示的时域单元中的频域资源位置进行数据传输。
图13是根据一示例性实施例示出的一种用于数据传输的装置1300的框图。例如,装置1300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图13,装置1300可以包括以下一个或多个组件:处理组件1302,存储器1304,电源组件1306,多媒体组件1308,音频组件1310,输入/输出(I/O)的接口1312,传感器组件1314,以及通信组件1316。
处理组件1302通常控制装置1300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理元件1302可以包括一个或多个处理器1320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1302可以包括一个或多个模块,便于处理组件1302和其他组件之间的交互。例如,处理部件1302可以包括多媒体模块,以方便多媒体组件1308和处理组件1302之间的交互。
存储器1304被配置为存储各种类型的数据以支持在设备1300的操作。这些数据的示例包括用于在装置1300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存 储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件1306为装置1300的各种组件提供电力。电力组件1306可以包括电源管理系统,一个或多个电源,及其他与为装置1300生成、管理和分配电力相关联的组件。
多媒体组件1308包括在所述装置1300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1308包括一个前置摄像头和/或后置摄像头。当设备1300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1310被配置为输出和/或输入音频信号。例如,音频组件1310包括一个麦克风(MIC),当装置1300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1304或经由通信组件1316发送。在一些实施例中,音频组件1310还包括一个扬声器,用于输出音频信号。
I/O接口1312为处理组件1302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1314包括一个或多个传感器,用于为装置1300提供各个方面的状态评估。例如,传感器组件1314可以检测到设备1300的打开/关闭状态,组件的相对定位,例如所述组件为装置1300的显示器和小键盘,传感器组件1314还可以检测装置1300或装置1300一个组件的位置改变,用户与装置1300接触的存在或不存在,装置1300方位或加速/减速和装置1300的温度变化。传感器组件1314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1314 还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1316被配置为便于装置1300和其他设备之间有线或无线方式的通信。装置1300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件1316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信部件1316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1304,上述指令可由装置1300的处理器1320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行上述数据传输方法。
图14是根据一示例性实施例示出的一种数据传输装置1400的框图。例如,数据传输装置1400可以是基站。如图14所示,数据传输装置1400可以包括:处理器1401、接收机1402、发射机1403和存储器1404。接收机1402、发射机1403和存储器1404分别通过总线与处理器1401连接。
其中,处理器1401包括一个或者一个以上处理核心,处理器1401通过运行软件程序以及模块以执行本公开实施例提供的数据传输方法中基站所执行的方法。存储器1404可用于存储软件程序以及模块。具体的,存储器1404可存储操作系统14041、至少一个功能所需的应用程序模块14042。接收机1402用于接收其他设备发送的通信数据,发射机1403用于向其他设备发送通信数据。
图15是根据一示例性实施例示出的一种数据传输系统的框图,如图15所示,该数据传输系统包括基站1501和UE 1502。
基站1501用于执行图4至7所示实施例中基站所执行的数据传输方法。
UE 1502用于执行图4至7所示实施例中UE所执行的数据传输方法。
本公开一示例性实施例提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如上所述的数据传输方法。
本领域技术人员在考虑说明书及实践这里的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (23)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    获取数据传输配置信息;
    根据所述数据传输配置信息确定至少两个时频资源,所述时频资源用于指示时域单元中的频域资源;
    对于被用户设备UE占用的各个时频资源,在所述时频资源所指示的时域单元中的频域资源位置进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述获取数据传输配置信息,包括:
    获取基站发送的第一指示信息;
    在数据传输配置信息集合中获取与所述第一指示信息对应的数据传输配置信息,所述数据传输配置信息集合是所述基站发送的,或,所述数据传输配置信息集合是通信协议中指定的。
  3. 根据权利要求2所述的方法,其特征在于,所述获取基站发送的第一指示信息,包括:
    接收所述基站发送的第一调度指令;
    从所述第一调度指令中获取所述第一指示信息。
  4. 根据权利要求3所述的方法,其特征在于,所述从所述第一调度指令中获取所述第一指示信息,包括:
    当所述第一指示信息在所述第一调度指令中的位置固定时,从所述第一调度指令中固定的位置处读取所述第一指示信息;或者,
    当所述第一指示信息在所述第一调度指令中的位置不固定时,获取位置信息,所述位置信息用于指示本次所述第一指示信息在所述第一调度指令中的位置;从所述第一调度指令中所述位置信息所指示的位置处读取所述第一指示信息。
  5. 根据权利要求1所述的方法,其特征在于,所述获取数据传输配置信息, 包括:
    接收基站发送的第二调度指令;
    从所述第二调度指令中获取所述数据传输配置信息。
  6. 根据权利要求1所述的方法,其特征在于,当所述数据传输配置信息包括时间窗口信息和频域资源信息时,所述获取数据传输配置信息,包括:
    获取所述时间窗口信息,所述时间窗口信息用于指示一个时间窗口内的至少一个时域单元,所述时间窗口信息是所述基站发送的,或,所述时间窗口信息是通信协议中指定的;
    接收基站发送的第三调度指令,根据所述第三调度指令获取所述频域资源信息,所述频域资源信息用于指示所述时域单元中的频域资源。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述第三调度指令获取所述频域资源信息,包括:
    从所述第三调度指令中获取第二指示信息;
    在频域资源信息集合中获取与所述第二指示信息对应的频域资源信息,所述频域资源信息集合是所述基站发送的,或,所述频域资源信息集合是通信协议中指定的。
  8. 根据权利要求6所述的方法,其特征在于,所述根据所述第三调度指令获取所述频域资源信息,包括:
    当第三调度指令中携带有所述频域资源信息时,从所述第三调度指令中读取所述频域资源信息。
  9. 一种数据传输方法,其特征在于,所述方法包括:
    为用户设备UE分配至少两个时频资源,所述时频资源用于指示时域单元中的频域资源;
    将所述至少两个时频资源通知给所述UE,所述UE用于在占用所述时频资源时,在所述时频资源所指示的时域单元中的频域资源位置进行数据传输。
  10. 根据权利要求9所述的方法,其特征在于,所述将所述至少两个时频 资源通知给所述UE,包括:
    在数据传输配置信息集合中获取与所述至少两个时频资源对应的第一指示信息,所述数据传输配置信息集合是通信协议中指定的;
    将所述第一指示信息发送给所述UE,并将所述数据传输配置信息集合发送给所述UE,所述UE用于根据所述第一指示信息和所述数据传输配置信息集合确定所述至少两个时频资源;或者,
    将所述第一指示信息发送给所述UE,所述UE用于获取通信协议中指定的数据传输配置信息集合,根据所述第一指示信息和所述数据传输配置信息集合确定所述至少两个时频资源。
  11. 根据权利要求10所述的方法,其特征在于,所述将所述第一指示信息发送给所述UE,包括:
    将所述第一指示信息添加到第一调度指令中;
    将所述第一调度指令发送给所述UE。
  12. 根据权利要求11所述的方法,其特征在于,所述将所述第一指示信息添加到第一调度指令中,包括:
    当所述第一指示信息在所述第一调度指令中的位置固定时,将所述第一指示信息添加到所述第一调度指令中固定的位置处;或者,
    当所述第一指示信息在所述第一调度指令中的位置不固定时,生成位置信息,所述位置信息用于指示本次所述第一指示信息在所述第一调度指令中的位置,将所述第一指示信息添加到所述第一调度指令中所述位置信息所指示的位置处。
  13. 根据权利要求9所述的方法,其特征在于,所述将所述至少两个时频资源通知给所述UE,包括:
    根据所述至少两个时频资源生成数据传输配置信息;
    将所述数据传输配置信息携带在第二调度指令中发送给所述UE。
  14. 根据权利要求9所述的方法,其特征在于,所述将所述至少两个时频资源通知给所述UE,包括:
    获取在分配所述至少两个时频资源之前生成的时间窗口信息,所述时间窗口信息用于指示一个时间窗口内的至少一个时域单元;
    根据所述至少两个时频资源确定频域资源信息,根据所述频域资源信息生成第三调度指令,所述频域资源信息用于指示所述时域单元中的频域资源;
    将所述时间窗口信息和所述第三调度指令发送给所述UE,所述UE用于根据所述时间窗口信息和所述第三调度指令确定所述至少两个时频资源。
  15. 根据权利要求9所述的方法,其特征在于,所述将所述至少两个时频资源通知给所述UE,包括:
    根据所述至少两个时频资源确定频域资源信息,根据所述频域资源信息生成第三调度指令,所述频域资源信息用于指示时域单元中的频域资源;
    将所述第三调度指令发送给所述UE,所述UE用于获取通信协议中指定的时间窗口信息,所述时间窗口信息用于指示一个时间窗口内的至少一个时域单元,根据所述时间窗口信息和所述第三调度指令确定所述至少两个时频资源。
  16. 根据权利要求14或15所述的方法,其特征在于,所述根据所述频域资源信息生成第三调度指令,包括:
    在频域资源信息集合中获取与所述频域资源信息对应的第二指示信息,所述频域资源信息集合是通信协议中指定的;
    生成携带有所述第二指示信息的第三调度指令。
  17. 根据权利要求14或15所述的方法,其特征在于,所述根据所述频域资源信息生成第三调度指令,包括:
    生成携带有所述频域资源信息的第三调度指令。
  18. 一种数据传输装置,其特征在于,所述装置包括:
    获取模块,被配置为获取数据传输配置信息;
    确定模块,被配置为根据所述获取模块获取到的所述数据传输配置信息确定至少两个时频资源,所述时频资源用于指示时域单元中的频域资源;
    传输模块,被配置为对于被用户设备UE占用的各个时频资源,在所述时频资源所指示的时域单元中的频域资源位置进行数据传输。
  19. 一种数据传输装置,其特征在于,所述装置包括:
    分配模块,被配置为为用户设备UE分配至少两个时频资源,所述时频资源用于指示时域单元中的频域资源;
    通知模块,被配置为将所述分配模块分配的所述至少两个时频资源通知给所述UE,所述UE用于在占用所述时频资源时,在所述时频资源所指示的时域单元中的频域资源位置进行数据传输。
  20. 一种用户设备UE,其特征在于,所述UE包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    获取数据传输配置信息;
    根据所述数据传输配置信息确定至少两个时频资源,所述时频资源用于指示时域单元中的频域资源;
    对于被所述UE占用的各个时频资源,在所述时频资源所指示的时域单元中的频域资源位置进行数据传输。
  21. 一种基站,其特征在于,所述基站包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    为用户设备UE分配至少两个时频资源,所述时频资源用于指示时域单元中的频域资源;
    将所述至少两个时频资源通知给所述UE,所述UE用于在占用所述时频资源时,在所述时频资源所指示的时域单元中的频域资源位置进行数据传输。
  22. 一种数据传输系统,其特征在于,所述数据传输系统包括如权利要求18所述的数据传输装置和如权利要求19所述的数据传输装置,或者,所述数据传输系统包括如权利要求20所述的用户设备UE和如权利要求21所述的基站。
  23. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现权利要求1至8任一所述的数据传输方法,或者,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现权利要求9至17任一所述的数据传输方法。
PCT/CN2018/097422 2018-07-27 2018-07-27 数据传输方法、装置、设备、系统及存储介质 WO2020019296A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880000900.2A CN110959300B (zh) 2018-07-27 2018-07-27 数据传输方法、装置、设备、系统及存储介质
EP18927652.0A EP3829233A4 (en) 2018-07-27 2018-07-27 DATA TRANSMISSION METHOD, DEVICE, EQUIPMENT, SYSTEM, AND STORAGE MEDIA
US17/262,200 US11910383B2 (en) 2018-07-27 2018-07-27 Data transmission method, device, equipment, system and storage medium
PCT/CN2018/097422 WO2020019296A1 (zh) 2018-07-27 2018-07-27 数据传输方法、装置、设备、系统及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097422 WO2020019296A1 (zh) 2018-07-27 2018-07-27 数据传输方法、装置、设备、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2020019296A1 true WO2020019296A1 (zh) 2020-01-30

Family

ID=69181094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097422 WO2020019296A1 (zh) 2018-07-27 2018-07-27 数据传输方法、装置、设备、系统及存储介质

Country Status (4)

Country Link
US (1) US11910383B2 (zh)
EP (1) EP3829233A4 (zh)
CN (1) CN110959300B (zh)
WO (1) WO2020019296A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727585A (zh) * 2020-04-29 2020-09-29 北京小米移动软件有限公司 数据传输调度方法、装置、通信设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901892A (zh) * 2020-06-12 2020-11-06 中兴通讯股份有限公司 数据传输方法、装置、发射机、接收机及存储介质
CN117956605A (zh) * 2022-10-18 2024-04-30 北京紫光展锐通信技术有限公司 通信方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304349A (zh) * 2015-05-22 2017-01-04 中兴通讯股份有限公司 数据传输方法及装置
WO2017133621A1 (zh) * 2016-02-05 2017-08-10 联发科技(新加坡)私人有限公司 接收下行信道信号的方法和用户设备
CN107734520A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 一种资源配置方法及装置
CN108307413A (zh) * 2016-09-30 2018-07-20 华为技术有限公司 接入方法、终端设备和基站

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7200129B2 (en) 2004-03-12 2007-04-03 Motorola, Inc. Method of signaling reverse channel information with minimal voice/data delay
CN101287281A (zh) 2007-04-11 2008-10-15 北京三星通信技术研究有限公司 无线通信系统中下行调度控制信令的传输设备和方法
CN105515747B (zh) 2007-04-27 2019-04-19 华为技术有限公司 资源请求指示信息的时频资源分配方法、装置及基站
US8254942B2 (en) * 2007-11-27 2012-08-28 Futurewei Technologies, Inc. System and method for resource allocation in a wireless communications system
US8245092B2 (en) * 2008-11-03 2012-08-14 Apple Inc. Method for efficient control signaling of two codeword to one codeword transmission
CN102170702B (zh) 2010-02-25 2014-07-30 华为技术有限公司 一种数据传输方法、基站和通信系统
CN104081872B (zh) * 2013-01-25 2018-01-23 华为技术有限公司 解调参考信号传输方法、用户设备和基站
WO2015180043A1 (zh) * 2014-05-27 2015-12-03 华为技术有限公司 一种传输资源的确定方法、接入点及站点
CN106465356B (zh) 2014-06-16 2019-11-22 华为技术有限公司 分配时频资源的方法和装置
EP3793294A1 (en) * 2015-03-06 2021-03-17 NEC Corporation Configuration for short transmission time interval
CN106255208A (zh) 2015-09-01 2016-12-21 北京智谷睿拓技术服务有限公司 资源分配方法、传输方法、及其装置
CN107801243B (zh) 2016-08-29 2021-01-29 华为技术有限公司 一种下行传输方法及装置
CN108024347B (zh) 2016-11-04 2022-02-08 华为技术有限公司 下行信息传输方法、装置和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304349A (zh) * 2015-05-22 2017-01-04 中兴通讯股份有限公司 数据传输方法及装置
WO2017133621A1 (zh) * 2016-02-05 2017-08-10 联发科技(新加坡)私人有限公司 接收下行信道信号的方法和用户设备
CN107734520A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 一种资源配置方法及装置
CN108307413A (zh) * 2016-09-30 2018-07-20 华为技术有限公司 接入方法、终端设备和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3829233A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727585A (zh) * 2020-04-29 2020-09-29 北京小米移动软件有限公司 数据传输调度方法、装置、通信设备及存储介质

Also Published As

Publication number Publication date
US20210307043A1 (en) 2021-09-30
EP3829233A1 (en) 2021-06-02
CN110959300A (zh) 2020-04-03
CN110959300B (zh) 2023-12-05
US11910383B2 (en) 2024-02-20
EP3829233A4 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
US11424869B2 (en) Method, device, and system for transmitting information, and storage medium
US20210058948A1 (en) Uplink transmission method and apparatus
CN106888079B (zh) 资源分配方法及装置
JP7282909B2 (ja) 伝送指示方法及び装置
JP7175378B2 (ja) スロットフォーマット指示方法、装置、機器、システム及び記憶媒体
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
CN107223358B (zh) 一种业务复用传输方法、装置及计算机可读存储介质
US11166306B2 (en) Data transmission method and device and computer-readable storage medium
US11950224B2 (en) Resource indication method on unlicensed spectrum, and terminal
WO2020019296A1 (zh) 数据传输方法、装置、设备、系统及存储介质
US11722283B2 (en) Information transmission method, device, system, and storage medium
US11382125B2 (en) Data transmission method, device and computer readable storage medium
US11963158B2 (en) Transmission configuration method and apparatus, device, system, and storage medium
US11937180B2 (en) Carrier activation method, device, apparatus, system, and storage medium
WO2020019258A1 (zh) 下行控制信息发送方法、接收方法、装置及存储介质
US10999002B2 (en) Method and apparatus for determining modulation and coding scheme
US11190298B2 (en) Methods and apparatuses for determining number of times of blind decoding schedule signaling, user equipment and base station
US20230412332A1 (en) Data transmission method and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018927652

Country of ref document: EP

Effective date: 20210223