WO2019245051A1 - Tire leak detecting method, and tire leak detecting device - Google Patents

Tire leak detecting method, and tire leak detecting device Download PDF

Info

Publication number
WO2019245051A1
WO2019245051A1 PCT/JP2019/024904 JP2019024904W WO2019245051A1 WO 2019245051 A1 WO2019245051 A1 WO 2019245051A1 JP 2019024904 W JP2019024904 W JP 2019024904W WO 2019245051 A1 WO2019245051 A1 WO 2019245051A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
inner bag
gas
test gas
air
Prior art date
Application number
PCT/JP2019/024904
Other languages
French (fr)
Japanese (ja)
Inventor
宮崎 俊弘
雅之 澤村
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2019245051A1 publication Critical patent/WO2019245051A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material

Definitions

  • the present disclosure relates to a tire leak detecting method and a tire leak detecting device for detecting a leak of a test gas supplied to an inner chamber of a tire.
  • a test gas (helium / air mixture) is supplied to a sealed inner chamber formed between an upper plate, a lower plate, a bowl portion and a wheel, while the inner chamber of the wheel is suctioned by a pump.
  • the mass spectrometer leak detector detects whether the test gas leaks from between the upper plate, the lower plate, the bowl-shaped portion and the wheel.
  • the test gas is supplied to the inner chamber and exchanged while expelling a large volume of air that has filled the inner chamber of the tire, so that the test gas and the air are mixed.
  • the concentration of the test gas, especially helium gas decreases.
  • test gas In order to prevent such a leak test from failing, at present, after the leak test is completed, the test gas is released to the atmosphere and discarded, and a new test gas is supplied to the inner chamber every time the leak test is performed. However, if the test gas is discarded every time the leak test is performed, a large amount of the test gas (helium gas) is required every time, and the helium gas is also very expensive, so that the leak test cost is high. There was a problem that would be.
  • the test gas is recovered after the above-described leak test, helium gas is separated from the recovered test gas, and then the separated helium gas and air are mixed to generate a test gas (helium / air mixture). The use of the generated test gas for the next leak test was also studied. However, there is a problem that such a separating operation requires a large and expensive separating device.
  • the present disclosure has an object to provide a method and an apparatus for inspecting a leakage of a tire, which can reduce the cost of the leakage inspection by reducing the amount of the inspection gas used for the leakage inspection.
  • Such an object is achieved by firstly sealing the inner chamber of the tire by a sealing means, storing the inner bag in the sealed inner chamber, and inflating the inner bag by supplying air from the air supply means. And a step of supplying a test gas from a test gas supply unit to an inner chamber between the inner bag and the tire, and a step of detecting leakage of the test gas from the tire by a detector provided outside the tire. This can be achieved by a method for inspecting tire leakage.
  • a sealing means for sealing the inner chamber of the tire, an inner bag stored in the sealed inner chamber, an air supply means for supplying air to the inner bag to inflate the inner bag,
  • a test gas supply means for supplying a test gas to an inner chamber between the tire and the tire, and a tire provided outside the tire and provided with a detector for detecting the test gas and detecting leakage of the test gas from the tire This can be achieved by the leak inspection device described above.
  • air is supplied to an inner bag housed in an inner chamber of a sealed tire to inflate the inner bag, and a test gas is supplied to an inner chamber between the inner bag and the tire.
  • a test gas is supplied to an inner chamber between the inner bag and the tire.
  • the configuration of the second aspect the volume of the inner chamber between the inner bag and the tire at the end of the air supply can be significantly reduced, thereby significantly reducing the amount of the test gas. And a stable test gas concentration can be obtained. Furthermore, if the configuration is made as in the third aspect, the supply time of the air and the test gas can be shortened, and the work efficiency can be easily improved. In addition, the configuration of the fourth aspect makes it possible to use the same amount of test gas for tires of different sizes, and the configuration of the fifth aspect reduces the cost of the test gas. Can be Further, by configuring as in the seventh aspect, it is possible to easily improve the detection accuracy and easily cope with a change in the type of tire.
  • an existing tire vulcanizing bladder can be effectively used.
  • the elevating body, the inner bag can be supported, and the lower ring and the center post can be raised and lowered by the common first lifting mechanism.
  • the entire apparatus can be simplified. And equipment cost can be reduced.
  • reference numeral 11 denotes a fixed frame fixed on a floor surface, and a rotating body 13 rotatable around a vertical axis via a bearing 12 is provided directly above the fixed frame 11.
  • a flange-shaped lower rim 14 is fixed to the upper end of the rotating body 13.
  • a lower bead portion 16 of a vulcanized pneumatic tire 15 which is placed horizontally can be seated in an airtight state at an outer end of the lower rim 14 in the radial direction.
  • the inspection gas (helium / air mixture) is supplied into the inner chamber 17 of the tire 15 surrounded by the tire 15 as described above, and the inspection gas leaking from the tire 15 is leaked. What is detected by a detector is known. As described above, the leak of the inspection gas may occur between the tire 15 and the rim (the lower rim 14 and an upper rim described later).
  • a support 20 supported on the fixed frame 11 so as to be able to move up and down is installed above the rotating body 13.
  • the support 20 has a plurality of vertically extending piston rods 22 of a cylinder 21 as a first elevating mechanism. Are connected, and the head side of these cylinders 21 is connected to the fixed frame 11.
  • An axially central portion of a lifting body 23 having a cylindrical shape coaxial with the support hole 20a is inserted into a vertically extending support hole 20a formed at the center of the support 20.
  • the elevating body 23 is supported so that it can rotate around an axis perpendicular to the supporting body 20 by interposing a plurality of bearings 24 between the elevating body 23 and the supporting body 20.
  • the elevating body 23 installed above the lower rim 14 is supported by the supporting body 20 via the bearing 24, the elevating body 23 can be moved up and down integrally with the supporting body 20 by the operation of the cylinder 21.
  • a flange-shaped upper rim 25 that is paired with the lower rim 14 is fixed to a lower end portion of the elevating body 23 projecting downward from a lower end of the support body 20.
  • the upper bead portion 16 of the tire 15 is seated on the upper rim 25 in an air-tight state when the elevating body 23 is lowered by the operation of the cylinder 21.
  • the sealing means 26 includes the lower rim 14, the upper rim 14. 25, an elevating body 23 and a cylinder 21.
  • Reference numeral 27 denotes a bearing interposed between the support 20 and the upper rim 25.
  • a ring-shaped upper ring 29 is fixedly supported at the lower end of the elevating body 23 below the upper rim 25, here the lower end of the elevating body 23.
  • the upper end of the inner bag 30 that can be expanded and contracted is held in an airtight state on the outer peripheral portion of the upper ring 29.
  • Reference numeral 31 denotes a center post that is inserted into the elevating body 23 and that is supported by the elevating body 23 so as to be able to elevate and extend in the vertical direction.
  • a lower ring 32 paired with the upper ring 29 is fixed to the lower end of the center post 31.
  • the lower end of the inner bag 30 is held in an airtight state by a lower ring 32 provided at the lower end of the center post 31.
  • the sealing means 26 includes the rotating body 13, the lower rim 14, the cylinder 21, the elevating body 23, the upper rim 25, and the center post 31.
  • the sealing means includes a disc-shaped lower rim, an elevating body, a disc-shaped upper rim, and extends downward from the lower surface of the upper rim. It may be configured to include an extension rod which is provided with a supply / discharge passage for supplying air to the inner bag, and an elevating mechanism (cylinder, pinion rack mechanism, etc.) for elevating the elevating body. .
  • a bladder for tire vulcanization which is frequently used in the tire industry can be used. In this way, the existing tire vulcanizing bladders owned by each tire company can be used effectively, equipment costs can be reduced, and changes in the type of tire 15 can be easily dealt with. can do.
  • Reference numeral 33 denotes a cylinder as a second lifting / lowering mechanism, the rod side of which is fixed to the upper end of the lifting / lowering body 23 and extending coaxially with the lifting / lowering body 23 in the vertical direction.
  • the tip of the piston rod 34 of the cylinder 33 is connected to the upper end of the center post 31.
  • the inner bag may be formed of a tire tube-shaped member made of thin rubber, or may be formed of a plurality of rubber balloons that are arranged in the circumferential direction and are spherical when inflated. Good.
  • the first and second lifting mechanisms may be configured by a rack and pinion mechanism or a screw mechanism.
  • Reference numeral 37 denotes an air supply / discharge passage formed in the elevating body 23 and the center post 31.
  • One end of the supply / discharge passage 37 opens to the outer periphery of the lower end of the center post 31 between the upper ring 29 and the lower ring 32.
  • the other end is connected to air supply means 39 such as an air pump via a hose 38 provided with a switching valve in the middle.
  • Reference numeral 40 denotes a supply / discharge passage for the inspection gas formed in the elevating body 23 and the upper rim 25.
  • a supply / discharge port 41 located at one end of the supply / discharge passage 40 is formed on a lower surface of the upper rim 25.
  • the other end is connected to a test gas supply means 43 including a gas cylinder, a gas tank, and the like via a hose 42 provided with a switching valve in the middle.
  • the supply / discharge port 41 of the supply / discharge passage 40 for supplying / discharging the inspection gas to / from the inner chamber 17 between the inner bag 30 and the tire 15 may be formed on the lower surface of the upper rim 25.
  • test gas is composed of a mixed gas of hydrogen gas and nitrogen gas
  • the cost of the test gas can be easily reduced compared to the case where a mixed gas containing helium gas or the like is used as the test gas. it can.
  • inexpensive hydrogen gas generators and nitrogen gas generators are commercially available. Hydrogen gas and nitrogen gas are generated by these generators, and by mixing both gases in consideration of explosion-proof properties, a hydrogen gas-nitrogen gas mixture gas with a high hydrogen gas concentration can be generated.
  • the accuracy of detecting a leak can be easily improved.
  • the pressure of the air supplied into the inner bag 30 and the pressure of the test gas supplied to the inner chamber 17 between the inner bag 30 and the tire 15 are equal pressures, but are usually 0.2 to 0.3 MPa (gauge). Pressure), air and test gas are used.
  • # 46 is a horizontal guide frame fixed to the fixed frame 11 on the side of the sealing means 26 and extending in the radial direction with respect to the tire 15.
  • a slide bearing 49 fixed to the upper end of a vertically extending moving body 48 is slidably engaged with a guide rail 47 attached to the lower surface of the guide frame 46.
  • Reference numeral 50 denotes a screw shaft rotatably supported by the guide frame 46 and extending along the guide rail 47.
  • the screw shaft 50 is screwed into a part of the moving body 48 and connected to a rotating shaft of a motor (not shown). When the motor operates and the screw shaft 50 rotates, the moving body 48 moves in the radial direction of the tire 15 while being guided by the guide rail 47, and approaches and separates from the tire 15.
  • Reference numeral 51 denotes a vertically extending guide rail fixed to the side surface of the moving body 48 on the tire 15 side.
  • a slide bearing 53 fixed to the base end of an upper arm 52 extending toward the tire 15 is slidably engaged with the upper portion of the guide rail 51.
  • a slide bearing 55 fixed to the base end of an L-shaped lower arm 54 is slidably engaged with the lower side of the guide rail 51.
  • Reference numeral 56 denotes an upper screw shaft extending parallel to the guide rail 51 and rotatably supported on the upper part of the moving body 48
  • 57 represents a lower screw shaft coaxial with the upper screw shaft 56 and rotatably supported on the lower part of the moving body 48. It is.
  • the upper screw shaft 56 and the lower screw shaft 57 are reverse screws and are respectively connected to rotating shafts of two motors (not shown).
  • the motor operates to rotate the upper screw shaft 56 and the lower screw shaft 57, the upper arm 52 and the lower arm 54 move in the axial direction (up-down direction) of the tire 15 while being guided by the guide rail 51, and Move closer to and away from 15.
  • Reference numerals 60 and 61 denote upper and lower detectors fixed to the distal ends of the upper arm 52 and the lower arm 54, respectively.
  • the upper detector 60 and the lower detector 61 are provided outside the tire 15 and leak the inspection gas from the tire 15 based on the above-described defect, or cause a leak between the tire 15 and the lower rim 14 and the upper rim 25. A leak of the test gas can be detected.
  • a catalytic combustion sensor can be used for hydrogen gas detection.
  • a mass analyzer can be used for helium gas detection.
  • a gas heat conduction type sensor can be used for detecting argon gas and carbon dioxide gas.
  • measuring means 62 is a plurality of measuring means provided on the upper arm 52 and the lower arm 54. These measuring means 62 measure the outer shape of the tire 15 after air is supplied to the inner bag 30 and the inspection gas is supplied to the inner chamber 17 between the inner bag 30 and the tire 15.
  • a two-dimensional laser sensor or an imaging tube can be used as the above-mentioned measuring means 62.
  • Reference numeral 63 denotes a ring-shaped external gear fixed to the outer periphery of the rotating body 13.
  • An external gear 65 fixed to an output shaft of a drive motor 64 meshes with the external gear 63. Then, air is supplied to the inner bag 30 as described above, and the inspection gas is supplied to the inner chamber 17 between the inner bag 30 and the tire 15 together. Is rotated around a major axis. The outer shape of the rotating tire 15 is measured by the measuring means 62 over the entire area.
  • the result measured by the measuring means 62 is sent to the control means (not shown).
  • the control means performs an operation based on the measurement result, and outputs a control signal to the motor (not shown).
  • the moving body 48, the upper arm 52, and the lower arm 54 move, and move the upper detector 60 and the lower detector 61 to a detection position where leakage of the test gas can be detected.
  • the motor (not shown), the screw shaft 50, the upper screw shaft 56, and the lower screw shaft 57 as a whole move the upper detector 60 and the lower detector 61 to the measurement position based on the measurement result from the measuring means 62.
  • the moving means 68 is constituted.
  • the upper detection can be performed.
  • the detector 60 and the lower detector 61 can be accurately moved to the optimum detection position where the leakage of the test gas can be detected with high accuracy.
  • the upper detector 60 and the lower detector 61 are moved in the meridian direction along the outer shape of the tire 15 while rotating the tire 15, and leakage of the detection gas from the tire 15 is increased. Detection is performed by the detector 60 and the lower detector 61.
  • the piston rod 22 of the cylinder 21 is retracted, the support body 20, the elevating body 23, the upper rim 25, and the upper ring 29 are stopped at the ascending limit, and the piston rod 34 of the cylinder 33 is projected and the center post 31, It is assumed that the inner bag 30 from which the air has been discharged has a substantially cylindrical shape by moving the ring 32 downward. At this time, the guide frame 46, the moving body 48, the upper arm 52, and the lower arm 54 integrally move outward in the radial direction and are separated from the lower rim 14.
  • low-pressure air may be supplied to the inner bag 30 from the air supply means 39 through the supply / discharge passage 37.
  • the operation of the cylinder 21 is stopped and the support 20, the elevating body 23, the upper rim 25, the center
  • the lowering of the post 31 and the cylinder 33 is stopped, and the operation of the cylinder 33 is stopped.
  • the inner chamber 17 of the tire 15 is sealed by the sealing means 26, and the inner bag 30 is stored in the sealed inner chamber 17.
  • air is supplied from the air supply means 39 into the inner bag 30 through the supply / discharge passage 37 to inflate the inner bag 30 in the inner chamber 17 of the tire 15, while the inner space between the tire 15 and the inner bag 30 is increased. Room 17 is open to the atmosphere.
  • the supply / discharge passage from the test gas supply means 43 A test gas of a predetermined pressure (100% pressure) is supplied to the inner chamber 17 between the tire 15 and the inner bag 30 through 40.
  • the pressure of the air at the start of the supply of the test gas is usually lower than the pressure of the test gas, but the pressure on both sides of the inner bag 30, that is, the pressure of the air and the pressure of the test gas are always equal. Therefore, the inner bag 30 contracts to a position where both pressures are balanced.
  • air is supplied into the inner bag 30 until the outer surface of the inner bag 30 contacts the inner surface of the tire 15 over a wide area, and then the inspection gas is supplied to the inner chamber 17 between the inner bag 30 and the tire 15. Even when the tire 15 is supplied, since a large number of ridges are usually formed on the inner surface of the tire 15 at the time of vulcanization, the inner bag 30 is separated from the inner surface of the tire 15 by the supply of the inspection gas.
  • the test gas concentration of the test gas in the inner chamber 17 (here, the hydrogen gas concentration) can be made a stable value.
  • the supply of air to the inner bag 30 and the supply of the test gas to the inner chamber 17 between the inner bag 30 and the tire 15 are performed at least partially at the same time, in other words, the air is supplied.
  • the time during which the test gas is supplied and the time during which the test gas is supplied may partially or entirely overlap. In this case, the time for supplying the air and the test gas can be reduced, and the work time can be reduced. Efficiency can be easily improved. Also, if the original pressure of the above-mentioned air and the test gas is, for example, 10: 1 and the air and the test gas are simultaneously supplied up to a predetermined pressure, the supply amount of the air to the test gas becomes approximately 10: 1, Inspection gas usage can be reduced to almost 1/10.
  • a predetermined amount of a low-pressure (slightly higher than the atmospheric pressure) test gas is supplied to the inner chamber 17 of the tire 15, and after the supply of the test gas, a predetermined pressure of While supplying the air to compress the test gas, the inner bag 30 may be inflated to a position where the pressures of the two are balanced. In this way, it is possible to perform a leak test with a fixed amount of test gas even for tires 15 of different types and sizes, and the amount of test gas used can be uniform regardless of the tire 15.
  • the air is supplied from the air supply unit 39 to the inner bag 30 to inflate the inner bag 30, and the test gas is supplied from the test gas supply unit 43 to the inner chamber 17 between the inner bag 30 and the tire 15. I am trying to supply.
  • the amount of the inspection gas can be reduced by the amount of air supplied into the inner bag 30, and thus the cost of the leakage inspection can be easily reduced.
  • the motor is operated to rotate the screw shaft 50, and the moving body 48, The upper arm 52 and the lower arm 54 are integrally moved radially inward to approach the tire 15.
  • the drive motor 64 is operated to rotate the tire 15 around a vertical axis. While the tire 15 is rotating, the measuring device 62 measures the outer shape of the tire 15 over the entire circumference. The result measured by the measuring means 62 is sent to the control means. At this time, the control means performs an operation based on the measurement result and outputs a control signal to a motor that drives the screw shaft 50, the upper screw shaft 56, and the lower screw shaft 57. Thereby, the screw shaft 50, the upper screw shaft 56, and the lower screw shaft 57 rotate to move the moving body 48, the upper arm 52, and the lower arm 54, and move the upper detector 60 and the lower detector 61 to the detection position. .
  • the present disclosure is applicable to an industrial field for detecting a leak of a test gas supplied to an inner chamber of a tire.

Abstract

This tire leak detecting method includes: a step of hermetically sealing an inner chamber of a tire using a hermetic sealing means, and accommodating an inner bag in the hermetically sealed inner chamber; a step of supplying air to the inner bag from an air supply means to expand the same, and supplying inspection gas into the inner chamber, between the inner bag and the tire, from an inspection gas supply means; and a step of detecting a leak of inspection gas from the tire by means of a detector provided outside the tire.

Description

タイヤの漏れ検出方法およびタイヤの漏れ検出装置Tire leak detection method and tire leak detection device
 本開示は、タイヤの内室に供給された検査ガスの漏れを検出するタイヤの漏れ検出方法およびタイヤの漏れ検出装置に関する。 The present disclosure relates to a tire leak detecting method and a tire leak detecting device for detecting a leak of a test gas supplied to an inner chamber of a tire.
 従来の漏れ検出方法としては、例えば特表2000-501833号公報に記載されているようなものが知られている。 As a conventional leak detection method, for example, a method described in Japanese Patent Application Laid-Open No. 2000-501833 is known.
 この方法では、上部板、下部板、わん形部分とホイールとの間に形成される密閉された内室に検査ガス(ヘリウム/空気混合気)を供給する一方、ホイールの内部室をポンプにより吸引して真空とするが、このとき、質量分析計漏れ検出器により検査ガスが上部板、下部板、わん形部分とホイールとの間から漏れているか否かを検出するようにしたものである。そして、この方法は、前述した上部板、下部板、わん形部分をタイヤに置き換えることで、タイヤの漏れ検査に容易に適用されることができる。 In this method, a test gas (helium / air mixture) is supplied to a sealed inner chamber formed between an upper plate, a lower plate, a bowl portion and a wheel, while the inner chamber of the wheel is suctioned by a pump. At this time, the mass spectrometer leak detector detects whether the test gas leaks from between the upper plate, the lower plate, the bowl-shaped portion and the wheel. This method can be easily applied to a tire leak test by replacing the above-described upper plate, lower plate, and bowl-shaped portion with a tire.
 ここで、前述のような漏れ検査終了後にタイヤの内室から検査ガスを回収し、該回収した検査ガスをそのまま次回の漏れ検査に再度用いることも考えられる。しかしながら、このようにすると、今までタイヤの内室に充満していた大容量のエアを追い出しながら検査ガスが内室に供給され交換されることになるため、検査ガスとエアとが混合して検査ガス、特にヘリウムガスの濃度が低下する。この結果、再利用の検査ガスを用いると、タイヤに漏れが生じている場合でも、さらにヘリウムガス濃度が低くなるために検査ガスの検出を行うことができず、漏れの検出に失敗することがあるという問題があった。このような漏れ検査の失敗を防止するため、現在では漏れ検査終了後に検査ガスを大気に放出廃棄するとともに、漏れ検査の度に新規の検査ガスを内室に供給することが行われている。しかしながら、このように漏れ検査の度に検査ガスを廃棄するようにすると、大量の検査ガス(ヘリウムガス)が毎回必要になるとともに、そのヘリウムガスも非常に高価であるため、漏れ検査費用が高価となってしまうという課題があった。なお、前述の漏れ検査後に検査ガスを回収するとともに、回収した検査ガスからヘリウムガスを分離し、その後、分離したヘリウムガスと空気とを混合して検査ガス(ヘリウム/空気混合気)を生成し、該生成された検査ガスを次回の漏れ検査に用いることも検討された。しかしながら、このような分離作業には大型で高価な分離装置が必要となるという問題がある。 Here, it is conceivable to collect the inspection gas from the inner chamber of the tire after the above-described leakage inspection is completed, and use the collected inspection gas again for the next leakage inspection. However, in this case, the test gas is supplied to the inner chamber and exchanged while expelling a large volume of air that has filled the inner chamber of the tire, so that the test gas and the air are mixed. The concentration of the test gas, especially helium gas, decreases. As a result, when the reused test gas is used, even if the tire has a leak, the test gas cannot be detected because the helium gas concentration is further lowered, and the leak detection may fail. There was a problem. In order to prevent such a leak test from failing, at present, after the leak test is completed, the test gas is released to the atmosphere and discarded, and a new test gas is supplied to the inner chamber every time the leak test is performed. However, if the test gas is discarded every time the leak test is performed, a large amount of the test gas (helium gas) is required every time, and the helium gas is also very expensive, so that the leak test cost is high. There was a problem that would be. The test gas is recovered after the above-described leak test, helium gas is separated from the recovered test gas, and then the separated helium gas and air are mixed to generate a test gas (helium / air mixture). The use of the generated test gas for the next leak test was also studied. However, there is a problem that such a separating operation requires a large and expensive separating device.
 本開示は、漏れ検査に使用する検査ガス量を少量とすることで漏れ検査費用を安価とすることができるタイヤの漏れ検査方法および装置を提供することを目的とする。 The present disclosure has an object to provide a method and an apparatus for inspecting a leakage of a tire, which can reduce the cost of the leakage inspection by reducing the amount of the inspection gas used for the leakage inspection.
 このような目的は、第1に、タイヤの内室を密閉手段によって密閉し、該密閉された内室に内袋を収納する工程と、前記内袋にエア供給手段からエアを供給して膨張させるとともに、内袋とタイヤとの間の内室に検査ガス供給手段から検査ガスを供給する工程と、タイヤ外に設けられた検出器により検査ガスのタイヤからの漏れを検出する工程とを備えたタイヤの漏れ検査方法により、達成することができる。 Such an object is achieved by firstly sealing the inner chamber of the tire by a sealing means, storing the inner bag in the sealed inner chamber, and inflating the inner bag by supplying air from the air supply means. And a step of supplying a test gas from a test gas supply unit to an inner chamber between the inner bag and the tire, and a step of detecting leakage of the test gas from the tire by a detector provided outside the tire. This can be achieved by a method for inspecting tire leakage.
 第2に、タイヤの内室を密閉する密閉手段と、該密閉された内室に収納される内袋と、前記内袋にエアを供給して内袋を膨張させるエア供給手段と、内袋とタイヤとの間の内室に検査ガスを供給する検査ガス供給手段と、タイヤ外に設けられ、検査ガスを検出することでタイヤからの検査ガスの漏れを検出する検出器とを備えたタイヤの漏れ検査装置により、達成することができる。 Secondly, a sealing means for sealing the inner chamber of the tire, an inner bag stored in the sealed inner chamber, an air supply means for supplying air to the inner bag to inflate the inner bag, A test gas supply means for supplying a test gas to an inner chamber between the tire and the tire, and a tire provided outside the tire and provided with a detector for detecting the test gas and detecting leakage of the test gas from the tire This can be achieved by the leak inspection device described above.
 第1、第6の態様においては、密閉されたタイヤの内室に収納されている内袋にエアを供給して膨張させるとともに、前記内袋とタイヤとの間の内室に検査ガスを供給し、タイヤ外に設けられた検出器により検査ガスのタイヤからの漏れを検出するようにしたので、検査ガス量を内袋内に供給されたエア量分だけ少なくすることができ、これにより、漏れ検査費用を容易に安価とすることができる。 In the first and sixth aspects, air is supplied to an inner bag housed in an inner chamber of a sealed tire to inflate the inner bag, and a test gas is supplied to an inner chamber between the inner bag and the tire. However, since the leak of the inspection gas from the tire is detected by a detector provided outside the tire, the amount of the inspection gas can be reduced by the amount of air supplied into the inner bag. Leak inspection costs can be easily reduced.
 また、第2の態様のように構成すれば、エア供給終了時における内袋とタイヤとの間の内室容積を大幅に小さくすることができ、これにより、検査ガス量を大幅に減少させることができるとともに、安定した検査ガス濃度とすることもできる。さらに、第3の態様のように構成すれば、エア、検査ガスの供給時間を短縮することができ、作業能率を容易に向上させることができる。また、第4の態様のように構成すれば、異なるサイズのタイヤに対しても検査ガス使用量を一律とすることができ、第5の態様のように構成すれば、検査ガスの値段を低廉化することができる。さらに、第7の態様のように構成すれば、検出精度を容易に向上させることができるとともに、タイヤの種類の変更に容易に対処することができる。また、第8の態様のように構成すれば、既存のタイヤ加硫用ブラダを有効利用することができる。さらに、第9の態様のように構成すれば、昇降体、内袋を支持する上、下リング、センターポストを共用の第1昇降機構により昇降させることができ、この結果、装置全体を簡略化することができるとともに、設備費用を安価とすることができる。また、第10の態様のように構成すれば、上方から落下してくる塵埃が検査ガスに混入する事態を効果的に抑制することができる。 In addition, according to the configuration of the second aspect, the volume of the inner chamber between the inner bag and the tire at the end of the air supply can be significantly reduced, thereby significantly reducing the amount of the test gas. And a stable test gas concentration can be obtained. Furthermore, if the configuration is made as in the third aspect, the supply time of the air and the test gas can be shortened, and the work efficiency can be easily improved. In addition, the configuration of the fourth aspect makes it possible to use the same amount of test gas for tires of different sizes, and the configuration of the fifth aspect reduces the cost of the test gas. Can be Further, by configuring as in the seventh aspect, it is possible to easily improve the detection accuracy and easily cope with a change in the type of tire. Further, with the configuration as in the eighth aspect, an existing tire vulcanizing bladder can be effectively used. Further, according to the ninth aspect, the elevating body, the inner bag can be supported, and the lower ring and the center post can be raised and lowered by the common first lifting mechanism. As a result, the entire apparatus can be simplified. And equipment cost can be reduced. Further, according to the configuration of the tenth aspect, it is possible to effectively suppress the situation where dust falling from above is mixed into the inspection gas.
この発明の実施形態1を示す一部が破断された正面図である。It is the front view which showed some Embodiment 1 of this invention which was partly broken. 図1のA部拡大図である。It is the A section enlarged view of FIG.
 以下、この発明の実施形態1を図面に基づいて説明する。
 図1、2において、11は床面上に固定された固定フレームであり、この固定フレーム11の直上には軸受12を介して垂直な軸線回りに回転可能な回転体13が設けられている。この回転体13の上端部には鍔状の下リム14が固定される。この下リム14の半径方向外端部には、横置きである加硫済み空気入りタイヤ15の下側ビード部16が気密状態で着座可能である。ここで、前述のようなタイヤ15は、石、木くず等の異物がゴムに混入したり、ゴムの内部に空洞が形成されたり、さらには、加硫不足でゴムが泡状となることが稀にあるので、このような欠陥が生じたタイヤ15は検査によって排除することが望ましい。このための検査としては、例えば、前述のようにタイヤ15により囲まれたタイヤ15の内室17内に検査ガス(ヘリウム/空気混合気)を供給するとともに、タイヤ15から漏れた検査ガスを漏れ検出器により検出するものが知られている。なお、検査ガスの漏れは前述のようにタイヤ15とリム(下リム14および後述の上リム)との間から生じることもある。
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
In FIGS. 1 and 2, reference numeral 11 denotes a fixed frame fixed on a floor surface, and a rotating body 13 rotatable around a vertical axis via a bearing 12 is provided directly above the fixed frame 11. A flange-shaped lower rim 14 is fixed to the upper end of the rotating body 13. A lower bead portion 16 of a vulcanized pneumatic tire 15 which is placed horizontally can be seated in an airtight state at an outer end of the lower rim 14 in the radial direction. Here, in the tire 15 as described above, it is rare that foreign matters such as stones and wood chips are mixed in the rubber, a cavity is formed in the rubber, and the rubber is foamed due to insufficient vulcanization. Therefore, it is desirable that the tire 15 having such a defect be removed by inspection. As an inspection for this purpose, for example, the inspection gas (helium / air mixture) is supplied into the inner chamber 17 of the tire 15 surrounded by the tire 15 as described above, and the inspection gas leaking from the tire 15 is leaked. What is detected by a detector is known. As described above, the leak of the inspection gas may occur between the tire 15 and the rim (the lower rim 14 and an upper rim described later).
 前記回転体13の上方には前記固定フレーム11に昇降可能に支持された支持体20が設置され、この支持体20には上下方向に延びる複数の第1昇降機構としてのシリンダ21のピストンロッド22の先端(下端)が連結され、これらシリンダ21のヘッド側は前記固定フレーム11に連結されている。前記支持体20の中央部に形成された上下方向に延びる支持孔20aには、該支持孔20aと同軸の円筒状を呈する昇降体23の軸方方向中央部が挿入されている。この昇降体23は、該昇降体23と支持体20との間に複数の軸受24が介装されることにより、支持体20に垂直な軸線回りに回転できるよう支持されている。このように下リム14の上方に設置された昇降体23は軸受24を介して支持体20に支持されているので、前記シリンダ21の作動により支持体20と一体的に昇降可能となる。前記支持体20の下端より下方に突出した昇降体23の下端部には、前記下リム14と対をなす鍔状の上リム25が固定されている。この上リム25には、前記昇降体23がシリンダ21の作動により下降することで、タイヤ15の上ビード部16が気密状態で着座する。そして、前述のようにタイヤ15の下ビード部16が下リム14に着座し、一方、シリンダ21の作動により上リム25がタイヤ15の上ビード部16に着座したとき、タイヤ15の内室17は密閉される。このため、これら下リム14、上リム25、昇降体23、シリンダ21は、タイヤ15の内室17を密閉する密閉手段26の一部を構成、即ち、密閉手段26は下リム14、上リム25、昇降体23、シリンダ21を有することになる。なお、27は前記支持体20と上リム25との間に介装された軸受である。 A support 20 supported on the fixed frame 11 so as to be able to move up and down is installed above the rotating body 13. The support 20 has a plurality of vertically extending piston rods 22 of a cylinder 21 as a first elevating mechanism. Are connected, and the head side of these cylinders 21 is connected to the fixed frame 11. An axially central portion of a lifting body 23 having a cylindrical shape coaxial with the support hole 20a is inserted into a vertically extending support hole 20a formed at the center of the support 20. The elevating body 23 is supported so that it can rotate around an axis perpendicular to the supporting body 20 by interposing a plurality of bearings 24 between the elevating body 23 and the supporting body 20. Since the elevating body 23 installed above the lower rim 14 is supported by the supporting body 20 via the bearing 24, the elevating body 23 can be moved up and down integrally with the supporting body 20 by the operation of the cylinder 21. A flange-shaped upper rim 25 that is paired with the lower rim 14 is fixed to a lower end portion of the elevating body 23 projecting downward from a lower end of the support body 20. The upper bead portion 16 of the tire 15 is seated on the upper rim 25 in an air-tight state when the elevating body 23 is lowered by the operation of the cylinder 21. When the lower bead portion 16 of the tire 15 is seated on the lower rim 14 as described above, while the upper rim 25 is seated on the upper bead portion 16 of the tire 15 by the operation of the cylinder 21, the inner chamber 17 of the tire 15 Is sealed. For this reason, the lower rim 14, the upper rim 25, the elevating body 23, and the cylinder 21 constitute a part of the sealing means 26 for sealing the inner chamber 17 of the tire 15, that is, the sealing means 26 includes the lower rim 14, the upper rim 14. 25, an elevating body 23 and a cylinder 21. Reference numeral 27 denotes a bearing interposed between the support 20 and the upper rim 25.
 前記上リム25より下方の昇降体23、ここでは昇降体23の下端には、リング状の上リング29が固定支持されている。この上リング29の外周部には、膨張収縮可能な内袋30の上端が気密状態で保持されている。31は前記昇降体23内に挿入されるとともに、該昇降体23に昇降可能に支持された上下方向に延びるセンターポストである。このセンターポスト31の下端部には、前記上リング29と対をなす下リング32が固定されている。そして、このセンターポスト31の下端部に設けられた下リング32には、前記内袋30の下端が気密状態で保持されている。この結果、前記内袋30は密閉された内室17に収納されることになる。このように、この実施形態においては、前記密閉手段26は、回転体13、下リム14、シリンダ21、昇降体23、上リム25、センターポスト31から構成されている。なお、本開示においては、密閉手段を、円板状の下リムと、昇降体と、円板状の上リムと、前記上リムの下面から下方に延び、先端部に内袋を気密状態で保持するとともに、内部に前記内袋にエアを供給する給排通路が設けられた延長ロッドと、昇降体を昇降させる昇降機構(シリンダ、ピニオン・ラック機構等)とから構成するようにしてもよい。また、前述の内袋30として、タイヤ業界で多用されているタイヤ加硫用ブラダを用いることができる。このようにすれば、各タイヤ会社が保有している既存のタイヤ加硫用ブラダを有効利用することができ、設備費用を安価とすることができるとともに、タイヤ15の種類の変更に容易に対処することができる。 リ ン グ A ring-shaped upper ring 29 is fixedly supported at the lower end of the elevating body 23 below the upper rim 25, here the lower end of the elevating body 23. The upper end of the inner bag 30 that can be expanded and contracted is held in an airtight state on the outer peripheral portion of the upper ring 29. Reference numeral 31 denotes a center post that is inserted into the elevating body 23 and that is supported by the elevating body 23 so as to be able to elevate and extend in the vertical direction. A lower ring 32 paired with the upper ring 29 is fixed to the lower end of the center post 31. The lower end of the inner bag 30 is held in an airtight state by a lower ring 32 provided at the lower end of the center post 31. As a result, the inner bag 30 is stored in the closed inner chamber 17. As described above, in this embodiment, the sealing means 26 includes the rotating body 13, the lower rim 14, the cylinder 21, the elevating body 23, the upper rim 25, and the center post 31. In the present disclosure, the sealing means includes a disc-shaped lower rim, an elevating body, a disc-shaped upper rim, and extends downward from the lower surface of the upper rim. It may be configured to include an extension rod which is provided with a supply / discharge passage for supplying air to the inner bag, and an elevating mechanism (cylinder, pinion rack mechanism, etc.) for elevating the elevating body. . Further, as the inner bag 30 described above, a bladder for tire vulcanization which is frequently used in the tire industry can be used. In this way, the existing tire vulcanizing bladders owned by each tire company can be used effectively, equipment costs can be reduced, and changes in the type of tire 15 can be easily dealt with. can do.
 33は昇降体23の上端にロッド側が固定され該昇降体23と同軸で上下方向に延びる第2昇降機構としてのシリンダである。このシリンダ33のピストンロッド34の先端は、前記センターポスト31の上端に連結されている。そして、前記シリンダ33が作動すると、センターポスト31は昇降体23と別個に昇降する。このとき、下リング32も昇降して上リング29に接近離隔する。一方、前記シリンダ33の作動が停止しているときにシリンダ21が作動すると、昇降体23に加え、内袋30を保持する上、下リング29、32およびセンターポスト31も一体となって昇降する。このため、シリンダ21は、これらに共用の昇降機構としても機能する。この結果、検査装置全体を簡略化することができるとともに、設備費用を安価とすることができる。なお、本開示においては、内袋を、薄肉ゴムからなるタイヤチューブ状のものから構成したり、また、周方向に離れて配置され膨張時に球状となる複数のゴムバルーンから構成したりしてもよい。また、本開示においては、前記第1、第2昇降機構をラック・ピニオン機構やねじ機構から構成するようにしてもよい。 Reference numeral 33 denotes a cylinder as a second lifting / lowering mechanism, the rod side of which is fixed to the upper end of the lifting / lowering body 23 and extending coaxially with the lifting / lowering body 23 in the vertical direction. The tip of the piston rod 34 of the cylinder 33 is connected to the upper end of the center post 31. When the cylinder 33 operates, the center post 31 moves up and down separately from the elevating body 23. At this time, the lower ring 32 also moves up and down to approach and separate from the upper ring 29. On the other hand, when the cylinder 21 is operated while the operation of the cylinder 33 is stopped, in addition to the elevating body 23, the inner ring 30 is held, and the lower rings 29, 32 and the center post 31 are also integrally moved up and down. . For this reason, the cylinder 21 also functions as an elevating mechanism shared by them. As a result, the entire inspection apparatus can be simplified, and equipment costs can be reduced. In the present disclosure, the inner bag may be formed of a tire tube-shaped member made of thin rubber, or may be formed of a plurality of rubber balloons that are arranged in the circumferential direction and are spherical when inflated. Good. Further, in the present disclosure, the first and second lifting mechanisms may be configured by a rack and pinion mechanism or a screw mechanism.
 37は前記昇降体23およびセンターポスト31に形成されたエアの給排通路である。この給排通路37の一端は、上リング29と下リング32との間でセンターポスト31の下端部外周に開口している。一方、その他端は、途中に切換弁が設けられたホース38を介してエアポンプ等のエア供給手段39に連結されている。この結果、前記エア供給手段39からホース38、給排通路37を通じてエア(低酸素濃度のエアを含む)が内袋30内に供給されると、該内袋30はタイヤ15の内室17内において膨張する。40は前記昇降体23および上リム25に形成された検査ガスの給排通路である。この給排通路40の一端に位置する給排口41は、上リム25の下面に形成されている。一方、その他端は、途中に切換弁が設けられたホース42を介してガスボンベ、ガスタンク等からなる検査ガス供給手段43に連結されている。この結果、前記検査ガス供給手段43からホース42、給排通路40、給排口41を通じて検査ガスが内袋30とタイヤ15との間の内室17に供給されると、該内袋30とタイヤ15との間の内室17は検査ガスにより充満される。ここで、前述のように内袋30とタイヤ15との間の内室17に対し検査ガスを給排する給排通路40の給排口41を上リム25の下面に形成するようにすれば、上方から落下してくる塵埃が検査ガスに混入する事態を効果的に抑制することができ、給排通路40の詰まりによる作業の中断を抑制することができる。 Reference numeral 37 denotes an air supply / discharge passage formed in the elevating body 23 and the center post 31. One end of the supply / discharge passage 37 opens to the outer periphery of the lower end of the center post 31 between the upper ring 29 and the lower ring 32. On the other hand, the other end is connected to air supply means 39 such as an air pump via a hose 38 provided with a switching valve in the middle. As a result, when air (including air having a low oxygen concentration) is supplied from the air supply means 39 through the hose 38 and the supply / discharge passage 37 into the inner bag 30, the inner bag 30 is moved into the inner chamber 17 of the tire 15. Expands at Reference numeral 40 denotes a supply / discharge passage for the inspection gas formed in the elevating body 23 and the upper rim 25. A supply / discharge port 41 located at one end of the supply / discharge passage 40 is formed on a lower surface of the upper rim 25. On the other hand, the other end is connected to a test gas supply means 43 including a gas cylinder, a gas tank, and the like via a hose 42 provided with a switching valve in the middle. As a result, when the test gas is supplied from the test gas supply means 43 to the inner chamber 17 between the inner bag 30 and the tire 15 through the hose 42, the supply / discharge passage 40, and the supply / discharge port 41, the inner bag 30 The inner chamber 17 between the tires 15 is filled with a test gas. Here, as described above, the supply / discharge port 41 of the supply / discharge passage 40 for supplying / discharging the inspection gas to / from the inner chamber 17 between the inner bag 30 and the tire 15 may be formed on the lower surface of the upper rim 25. In addition, it is possible to effectively suppress the situation where dust falling from above enters the inspection gas, and it is possible to suppress the interruption of the work due to the clogging of the supply / discharge passage 40.
 このように密閉されたタイヤ15の内室17に収納されている内袋30にエアを供給して膨張させるとともに、前記内袋30とタイヤ15との間の内室17に検査ガスを供給する一方、タイヤ15の外に設けられた後述の検出器により検査ガスのタイヤ15からの漏れを検出するようにすれば、先行技術に比較してタイヤ15内に供給される検査ガスの量を内袋30内に供給されたエア量分だけ少なくすることができ、これにより、漏れ検査費用を容易に安価とすることができる。ここで、前述の検査ガスとしては、ヘリウムガス、水素ガス、アルゴンガス、二酸化炭素ガスのいずれか1種または複数種の混合ガスや、これらのガスに窒素ガス等を加えた混合ガスを用いることができ、この実施形態では、市販されている防爆性に優れた 5%水素ガス、95%窒素ガスの混合ガスを用いている。 Supplying air to the inner bag 30 housed in the inner chamber 17 of the tire 15 thus sealed and inflating it, and supplying a test gas to the inner chamber 17 between the inner bag 30 and the tire 15 On the other hand, if the leak of the test gas from the tire 15 is detected by a detector described later provided outside the tire 15, the amount of the test gas supplied into the tire 15 can be reduced compared to the prior art. The amount of air supplied into the bag 30 can be reduced, so that the cost of leak inspection can be easily reduced. Here, as the above-mentioned inspection gas, a mixture gas of one or more of helium gas, hydrogen gas, argon gas and carbon dioxide gas, or a mixture gas obtained by adding nitrogen gas or the like to these gases is used. In this embodiment, a commercially available mixed gas of 5% hydrogen gas and 95% nitrogen gas, which is excellent in explosion-proof properties, is used.
 このように検査ガスを水素ガスと窒素ガスとの混合ガスから構成すれば、検査ガスとしてヘリウムガス等を含む混合ガスを用いた場合に比較し、検査ガスの値段を容易に低廉化することができる。ここで、近年、安価な水素ガス生成装置、窒素ガス生成装置が市販されている。これら発生装置により水素ガス、窒素ガスを生成するとともに、防爆性を考慮しながら両ガスを混合することで、水素ガスの濃度を高くした水素ガス-窒素ガスの混合ガスを生成するようにすれば、漏れの検出精度を容易に向上させることができる。また、内袋30内に供給されるエア、および、内袋30とタイヤ15との間の内室17に供給される検査ガスの圧力は等圧であるが、通常、0.2~0.3MPa(ゲージ圧)の範囲のエア、検査ガスが用いられる。 If the test gas is composed of a mixed gas of hydrogen gas and nitrogen gas, the cost of the test gas can be easily reduced compared to the case where a mixed gas containing helium gas or the like is used as the test gas. it can. Here, in recent years, inexpensive hydrogen gas generators and nitrogen gas generators are commercially available. Hydrogen gas and nitrogen gas are generated by these generators, and by mixing both gases in consideration of explosion-proof properties, a hydrogen gas-nitrogen gas mixture gas with a high hydrogen gas concentration can be generated. In addition, the accuracy of detecting a leak can be easily improved. The pressure of the air supplied into the inner bag 30 and the pressure of the test gas supplied to the inner chamber 17 between the inner bag 30 and the tire 15 are equal pressures, but are usually 0.2 to 0.3 MPa (gauge). Pressure), air and test gas are used.
 46は、前記密閉手段26の側方において固定フレーム11に固定され、前記タイヤ15に対して半径方向に延びる水平なガイドフレームである。このガイドフレーム46の下面に取り付けられたガイドレール47には、上下方向に延びる移動体48の上端に固定されたスライドベアリング49が摺動可能に係合している。50は前記ガイドフレーム46に回転可能に支持され、ガイドレール47に沿って延びるねじ軸である。このねじ軸50は、移動体48の一部にねじ込まれるとともに、図示していないモータの回転軸に連結されている。そして、前記モータが作動してねじ軸50が回転すると、移動体48はガイドレール47にガイドされながらタイヤ15の半径方向に移動し該タイヤ15に接近離隔する。51は移動体48のタイヤ15側の側面に固定された上下方向に延びるガイドレールである。このガイドレール51の上側部には、タイヤ15に向かって延びる上アーム52の基端に固定されたスライドベアリング53が摺動可能に係合している。一方、前記ガイドレール51の下側部には、L字形を呈する下アーム54の基端に固定されたスライドベアリング55が摺動可能に係合している。56はガイドレール51に平行に延び移動体48の上部に回転可能に支持された上ねじ軸、57は前記上ねじ軸56と同軸で移動体48の下部に回転可能に支持された下ねじ軸である。これら上ねじ軸56、下ねじ軸57は逆ねじであるとともに、図示していない2台のモータの回転軸にそれぞれ連結されている。そして、前記モータが作動して上ねじ軸56、下ねじ軸57が回転すると、上アーム52、下アーム54は、ガイドレール51にガイドされながらタイヤ15の軸方向(上下方向)に移動しタイヤ15に接近離隔する。 # 46 is a horizontal guide frame fixed to the fixed frame 11 on the side of the sealing means 26 and extending in the radial direction with respect to the tire 15. A slide bearing 49 fixed to the upper end of a vertically extending moving body 48 is slidably engaged with a guide rail 47 attached to the lower surface of the guide frame 46. Reference numeral 50 denotes a screw shaft rotatably supported by the guide frame 46 and extending along the guide rail 47. The screw shaft 50 is screwed into a part of the moving body 48 and connected to a rotating shaft of a motor (not shown). When the motor operates and the screw shaft 50 rotates, the moving body 48 moves in the radial direction of the tire 15 while being guided by the guide rail 47, and approaches and separates from the tire 15. Reference numeral 51 denotes a vertically extending guide rail fixed to the side surface of the moving body 48 on the tire 15 side. A slide bearing 53 fixed to the base end of an upper arm 52 extending toward the tire 15 is slidably engaged with the upper portion of the guide rail 51. On the other hand, a slide bearing 55 fixed to the base end of an L-shaped lower arm 54 is slidably engaged with the lower side of the guide rail 51. Reference numeral 56 denotes an upper screw shaft extending parallel to the guide rail 51 and rotatably supported on the upper part of the moving body 48, and 57 represents a lower screw shaft coaxial with the upper screw shaft 56 and rotatably supported on the lower part of the moving body 48. It is. The upper screw shaft 56 and the lower screw shaft 57 are reverse screws and are respectively connected to rotating shafts of two motors (not shown). When the motor operates to rotate the upper screw shaft 56 and the lower screw shaft 57, the upper arm 52 and the lower arm 54 move in the axial direction (up-down direction) of the tire 15 while being guided by the guide rail 51, and Move closer to and away from 15.
 60、61は前記上アーム52、下アーム54の先端部にそれぞれ固定された上、下検出器である。これらの上検出器60、下検出器61は、タイヤ15外に設けられ、前述した欠陥に基づくタイヤ15からの検査ガスの漏れや、タイヤ15と下リム14、上リム25との間からの検査ガスの漏れを検出することができる。ここで、前述した上検出器60、下検出器61としては、例えば、水素ガス検出には接触燃焼式センサを用いることができる。ヘリウムガス検出には質量分析器を用いることができる。アルゴンガス、二酸化炭素ガス検出には気体熱伝導式センサを用いることができる。62は前記上アーム52、下アーム54に設けられた複数の計測手段である。これらの計測手段62は、内袋30にエアが、内袋30とタイヤ15との間の内室17に検査ガスが共に供給された後に、タイヤ15の外形形状を計測する。ここで、前述の計測手段62としては、例えば、二次元レーザーセンサや撮像管を用いることができる。63は前記回転体13の外周に固定されたリング状の外歯車であり、この外歯車63には駆動モータ64の出力軸に固定された外歯車65が噛み合っている。そして、前述のように内袋30にエアが供給され、内袋30とタイヤ15との間の内室17に検査ガスが共に供給された後、駆動モータ64が作動して前記タイヤ15が垂直な軸線回りに回転される。この回転中のタイヤ15の外形形状を計測手段62により全域に亘って計測する。 Reference numerals 60 and 61 denote upper and lower detectors fixed to the distal ends of the upper arm 52 and the lower arm 54, respectively. The upper detector 60 and the lower detector 61 are provided outside the tire 15 and leak the inspection gas from the tire 15 based on the above-described defect, or cause a leak between the tire 15 and the lower rim 14 and the upper rim 25. A leak of the test gas can be detected. Here, as the above-described upper detector 60 and lower detector 61, for example, a catalytic combustion sensor can be used for hydrogen gas detection. A mass analyzer can be used for helium gas detection. A gas heat conduction type sensor can be used for detecting argon gas and carbon dioxide gas. 62 is a plurality of measuring means provided on the upper arm 52 and the lower arm 54. These measuring means 62 measure the outer shape of the tire 15 after air is supplied to the inner bag 30 and the inspection gas is supplied to the inner chamber 17 between the inner bag 30 and the tire 15. Here, as the above-mentioned measuring means 62, for example, a two-dimensional laser sensor or an imaging tube can be used. Reference numeral 63 denotes a ring-shaped external gear fixed to the outer periphery of the rotating body 13. An external gear 65 fixed to an output shaft of a drive motor 64 meshes with the external gear 63. Then, air is supplied to the inner bag 30 as described above, and the inspection gas is supplied to the inner chamber 17 between the inner bag 30 and the tire 15 together. Is rotated around a major axis. The outer shape of the rotating tire 15 is measured by the measuring means 62 over the entire area.
 このようにして計測手段62により計測された結果は図示していない制御手段に送られる。このとき、該制御手段は前記計測結果を基に演算を行い、前述の図示していないモータに制御信号を出力する。これにより、移動体48、上アーム52、下アーム54が移動し、上検出器60、下検出器61を検査ガスの漏れを検出できる検出位置まで移動させる。前述した図示していないモータ、ねじ軸50、上ねじ軸56、下ねじ軸57は全体として、計測手段62からの計測結果を基に上検出器60、下検出器61を計測位置まで移動させる移動手段68を構成する。そして、このような計測手段62、移動手段68を設けるようにすれば、タイヤ15の種類、例えばサイズに変更があったときでも、このような変更に容易に対処することができるとともに、上検出器60、下検出器61を、検査ガスの漏れを高精度で検出することができる最適の検出位置まで、正確に移動させることができる。このようにして準備が整うと、タイヤ15を回転させながら上検出器60、下検出器61をタイヤ15の外形形状に沿って子午線方向に移動させ、タイヤ15からの検出ガスの漏れを該上検出器60、下検出器61により検出する。 結果 The result measured by the measuring means 62 is sent to the control means (not shown). At this time, the control means performs an operation based on the measurement result, and outputs a control signal to the motor (not shown). As a result, the moving body 48, the upper arm 52, and the lower arm 54 move, and move the upper detector 60 and the lower detector 61 to a detection position where leakage of the test gas can be detected. The motor (not shown), the screw shaft 50, the upper screw shaft 56, and the lower screw shaft 57 as a whole move the upper detector 60 and the lower detector 61 to the measurement position based on the measurement result from the measuring means 62. The moving means 68 is constituted. If such measuring means 62 and moving means 68 are provided, even if the type, for example, the size of the tire 15 is changed, such a change can be easily dealt with and the upper detection can be performed. The detector 60 and the lower detector 61 can be accurately moved to the optimum detection position where the leakage of the test gas can be detected with high accuracy. When the preparation is completed in this way, the upper detector 60 and the lower detector 61 are moved in the meridian direction along the outer shape of the tire 15 while rotating the tire 15, and leakage of the detection gas from the tire 15 is increased. Detection is performed by the detector 60 and the lower detector 61.
 次に、前記実施形態1の作用について説明する。
 今、シリンダ21のピストンロッド22が引っ込んで支持体20、昇降体23、上リム25、上リング29が上昇限で停止しているとともに、シリンダ33のピストンロッド34が突出してセンターポスト31、下リング32が下方に移動することで、エアが排出された内袋30が略円筒状となっているとする。このとき、ガイドフレーム46、移動体48、上アーム52、下アーム54は一体となって半径方向外側に移動し、下リム14から離隔している。この状態で横置きのタイヤ15が下リム14と上リム25との間に搬入されるとともに、該タイヤ15の下側ビード部16が下リム14に着座されると、シリンダ21のピストンロッド22が突出して支持体20、昇降体23、上リム25、上リング29、センターポスト31、シリンダ33が一体的に下降するが、この下降は下リング32が下リム14に当接した後も継続して行われる。このとき、シリンダ33のピストンロッド34が引っ込むことで上リング29と下リング32との間の距離が徐々に減少し、これにより、内袋30が軸方向に潰れる。なお、このとき、エア供給手段39から給排通路37を通じて低圧のエアを内袋30に供給するようにしてもよい。そして、上リム25がタイヤ15に接触し、該タイヤ15の上側ビード部16が上リム25に着座されると、シリンダ21の作動を停止し支持体20、昇降体23、上リム25、センターポスト31、シリンダ33の下降を停止させるとともに、シリンダ33の作動を停止させる。この結果、タイヤ15の内室17は密閉手段26によって密閉され、この密閉された内室17に内袋30が収納される。
Next, the operation of the first embodiment will be described.
Now, the piston rod 22 of the cylinder 21 is retracted, the support body 20, the elevating body 23, the upper rim 25, and the upper ring 29 are stopped at the ascending limit, and the piston rod 34 of the cylinder 33 is projected and the center post 31, It is assumed that the inner bag 30 from which the air has been discharged has a substantially cylindrical shape by moving the ring 32 downward. At this time, the guide frame 46, the moving body 48, the upper arm 52, and the lower arm 54 integrally move outward in the radial direction and are separated from the lower rim 14. In this state, a horizontally placed tire 15 is carried between the lower rim 14 and the upper rim 25, and when the lower bead portion 16 of the tire 15 is seated on the lower rim 14, the piston rod 22 of the cylinder 21 Protrudes and the support 20, the elevating body 23, the upper rim 25, the upper ring 29, the center post 31, and the cylinder 33 descend integrally, but this descending continues even after the lower ring 32 contacts the lower rim 14. It is done. At this time, the distance between the upper ring 29 and the lower ring 32 gradually decreases due to the retraction of the piston rod 34 of the cylinder 33, whereby the inner bag 30 is crushed in the axial direction. At this time, low-pressure air may be supplied to the inner bag 30 from the air supply means 39 through the supply / discharge passage 37. Then, when the upper rim 25 comes into contact with the tire 15 and the upper bead portion 16 of the tire 15 is seated on the upper rim 25, the operation of the cylinder 21 is stopped and the support 20, the elevating body 23, the upper rim 25, the center The lowering of the post 31 and the cylinder 33 is stopped, and the operation of the cylinder 33 is stopped. As a result, the inner chamber 17 of the tire 15 is sealed by the sealing means 26, and the inner bag 30 is stored in the sealed inner chamber 17.
 次に、エア供給手段39から給排通路37を通じて内袋30内にエアを供給し該内袋30をタイヤ15の内室17内において膨張させる一方、タイヤ15と内袋30との間の内室17は大気に開放しておく。そして、エア供給手段39からの内袋30に対する所定量のエア供給が終了してエアの圧力が一定圧、例えば検査ガス圧力の95%程度となった後に、検査ガス供給手段43から給排通路40を通じてタイヤ15と内袋30との間の内室17に所定圧( 100%圧力)の検査ガスを供給する。ここで、検査ガスの供給開始時におけるエアの圧力は、通常、検査ガスの圧力より低いが、内袋30の両側の圧力、即ち、エアの圧力と検査ガスの圧力とは常に等圧となるため、内袋30は両者の圧力がバランスする位置まで収縮する。ここで、内袋30の外表面がタイヤ15の内表面に広範囲で接触するまで該内袋30内にエアを供給し、その後、内袋30とタイヤ15との間の内室17に検査ガスを供給するようにしても、前記タイヤ15の内表面には通常、加硫時に多数の突条が形成されているので、検査ガスの供給により内袋30はタイヤ15の内表面から離れ、この結果、タイヤ15と内袋30との間にはほぼ均等に検査ガスの薄い層が形成されるのである。このように前述の順序でエア、検査ガスを供給するようにすれば、タイヤ15の全範囲での漏れ検査を問題なく行うことができるとともに、タイヤ15内への検査ガスの供給量を大幅に減少させることができ、さらに、前記内室17における検査ガスのガス濃度(ここでは水素ガス濃度)を安定した値とすることができる。 Next, air is supplied from the air supply means 39 into the inner bag 30 through the supply / discharge passage 37 to inflate the inner bag 30 in the inner chamber 17 of the tire 15, while the inner space between the tire 15 and the inner bag 30 is increased. Room 17 is open to the atmosphere. Then, after the supply of a predetermined amount of air from the air supply means 39 to the inner bag 30 is completed and the air pressure becomes a constant pressure, for example, about 95% of the test gas pressure, the supply / discharge passage from the test gas supply means 43 A test gas of a predetermined pressure (100% pressure) is supplied to the inner chamber 17 between the tire 15 and the inner bag 30 through 40. Here, the pressure of the air at the start of the supply of the test gas is usually lower than the pressure of the test gas, but the pressure on both sides of the inner bag 30, that is, the pressure of the air and the pressure of the test gas are always equal. Therefore, the inner bag 30 contracts to a position where both pressures are balanced. Here, air is supplied into the inner bag 30 until the outer surface of the inner bag 30 contacts the inner surface of the tire 15 over a wide area, and then the inspection gas is supplied to the inner chamber 17 between the inner bag 30 and the tire 15. Even when the tire 15 is supplied, since a large number of ridges are usually formed on the inner surface of the tire 15 at the time of vulcanization, the inner bag 30 is separated from the inner surface of the tire 15 by the supply of the inspection gas. As a result, a thin layer of the test gas is formed almost evenly between the tire 15 and the inner bag 30. By supplying the air and the test gas in the order described above, it is possible to perform the leak test on the entire range of the tire 15 without any problem, and to significantly reduce the supply amount of the test gas into the tire 15. The gas concentration of the test gas in the inner chamber 17 (here, the hydrogen gas concentration) can be made a stable value.
 なお、本開示においては、内袋30に対するエアの供給と、内袋30とタイヤ15との間の内室17に対する検査ガスの供給とを、少なくとも一部で同時に行う、換言すれば、エアを供給している時間と、検査ガスを供給している時間とが部分的あるいは全部で重複していてもよく、このようにすれば、エア、検査ガスの供給時間を短縮することができ、作業能率を容易に向上させることができる。また、前述のエアと検査ガスとの元圧を、例えば10: 1として所定圧までこれらエア、検査ガスを同時に供給するようにすれば、エア対検査ガスの供給量は概ね10対 1となり、検査ガス使用量をほぼ1/10まで低減させることができる。ここで、前述のような重複の形態としては、
(1)エアの供給と検査ガスの供給を同時に開始するとともに、これらエア、ガスの供給終了も同時とする形態、(2)エアの供給途中から検査ガスを供給する点では共通するが、両者の供給終了を同時とする、あるいは、エアの供給終了後、検査ガスの供給終了とする、または、検査ガスの供給終了後、エアの供給終了とする形態、(3)検査ガスの供給途中からエアを供給する点では共通するが、両者の供給終了を同時とする、あるいは、エアの供給終了後、検査ガスの供給終了とする、または、検査ガスの供給終了後、エアの供給終了とする形態を挙げることができる。また、本開示においては、タイヤ15の内室17に対し低圧(大気圧より若干高い圧力)の検査ガスを一定量だけ供給し、該検査ガスの供給終了後、内袋30内に所定圧のエアを供給して前記検査ガスを圧縮しながら内袋30を両者の圧力がバランスする位置まで膨張させるようにしてもよい。このようにすれば、異なる種類、サイズのタイヤ15に対しても一定量の検査ガスで漏れ検査を行うことが可能で、検査ガスの使用量をタイヤ15に拘わらず一律とすることができる。
In the present disclosure, the supply of air to the inner bag 30 and the supply of the test gas to the inner chamber 17 between the inner bag 30 and the tire 15 are performed at least partially at the same time, in other words, the air is supplied. The time during which the test gas is supplied and the time during which the test gas is supplied may partially or entirely overlap. In this case, the time for supplying the air and the test gas can be reduced, and the work time can be reduced. Efficiency can be easily improved. Also, if the original pressure of the above-mentioned air and the test gas is, for example, 10: 1 and the air and the test gas are simultaneously supplied up to a predetermined pressure, the supply amount of the air to the test gas becomes approximately 10: 1, Inspection gas usage can be reduced to almost 1/10. Here, as a form of duplication as described above,
(1) The supply of air and the supply of test gas are started at the same time, and the supply of these air and gas is completed at the same time. (2) The supply of test gas from the middle of air supply is common, but both are common. The supply of test gas at the same time, or the supply of test gas after the supply of air, or the supply of air after the supply of test gas, (3) during the supply of test gas Although the supply of air is common, the supply of both is terminated at the same time, or the supply of test gas is terminated after the supply of air is terminated, or the supply of air is terminated after the supply of test gas is terminated. A form can be mentioned. Further, in the present disclosure, a predetermined amount of a low-pressure (slightly higher than the atmospheric pressure) test gas is supplied to the inner chamber 17 of the tire 15, and after the supply of the test gas, a predetermined pressure of While supplying the air to compress the test gas, the inner bag 30 may be inflated to a position where the pressures of the two are balanced. In this way, it is possible to perform a leak test with a fixed amount of test gas even for tires 15 of different types and sizes, and the amount of test gas used can be uniform regardless of the tire 15.
 このように、本開示では、前記内袋30にエア供給手段39からエアを供給して膨張させるとともに、内袋30とタイヤ15との間の内室17に検査ガス供給手段43から検査ガスを供給するようにしている。このようにすれば、検査ガスの量を内袋30内に供給されたエア量分だけ少なくすることができ、これにより、漏れ検査費用を容易に安価とすることができる。そして、内袋30に対するエアの供給、および、内袋30とタイヤ15との間の内室17に対する検査ガスの供給が終了すると、モータを作動してねじ軸50を回転させ、移動体48、上アーム52、下アーム54を一体的に半径方向内側に移動させタイヤ15に接近させる。このとき、駆動モータ64を作動してタイヤ15を垂直な軸線回りに回転させる。このタイヤ15の回転中に計測手段62によって該タイヤ15の外形形状を全周に亘って計測する。このようにして計測手段62により計測された結果は制御手段に送られる。このとき、該制御手段は前記計測結果を基に演算を行い、ねじ軸50、上ねじ軸56、下ねじ軸57を駆動するモータに制御信号を出力する。これにより、ねじ軸50、上ねじ軸56、下ねじ軸57が回転して移動体48、上アーム52、下アーム54が移動し、上検出器60、下検出器61を検出位置まで移動させる。その後、タイヤ15を回転させながら上検出器60、下検出器61をタイヤ15の外形形状に沿って子午線方向に移動させることで、漏れが生じる可能性のある箇所を通過させ、タイヤ15からの検出ガスの漏れを該上検出器60、下検出器61により検出する。 As described above, in the present disclosure, the air is supplied from the air supply unit 39 to the inner bag 30 to inflate the inner bag 30, and the test gas is supplied from the test gas supply unit 43 to the inner chamber 17 between the inner bag 30 and the tire 15. I am trying to supply. In this manner, the amount of the inspection gas can be reduced by the amount of air supplied into the inner bag 30, and thus the cost of the leakage inspection can be easily reduced. When the supply of air to the inner bag 30 and the supply of the inspection gas to the inner chamber 17 between the inner bag 30 and the tire 15 are completed, the motor is operated to rotate the screw shaft 50, and the moving body 48, The upper arm 52 and the lower arm 54 are integrally moved radially inward to approach the tire 15. At this time, the drive motor 64 is operated to rotate the tire 15 around a vertical axis. While the tire 15 is rotating, the measuring device 62 measures the outer shape of the tire 15 over the entire circumference. The result measured by the measuring means 62 is sent to the control means. At this time, the control means performs an operation based on the measurement result and outputs a control signal to a motor that drives the screw shaft 50, the upper screw shaft 56, and the lower screw shaft 57. Thereby, the screw shaft 50, the upper screw shaft 56, and the lower screw shaft 57 rotate to move the moving body 48, the upper arm 52, and the lower arm 54, and move the upper detector 60 and the lower detector 61 to the detection position. . Thereafter, by moving the upper detector 60 and the lower detector 61 in the meridian direction along the outer shape of the tire 15 while rotating the tire 15, it passes through a location where leakage may occur, and The detection gas leak is detected by the upper detector 60 and the lower detector 61.
 本開示は、タイヤの内室に供給された検査ガスの漏れを検出する産業分野に適用できる。 The present disclosure is applicable to an industrial field for detecting a leak of a test gas supplied to an inner chamber of a tire.
 2018年6月22日に出願された日本国特許出願2018-119288号の開示は、その全体が参照される。
 本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照されることが具体的かつ個々に記された場合と同程度に、本明細書中に参照される。
The disclosure of Japanese Patent Application No. 2018-119288 filed on June 22, 2018 is referred to in its entirety.
All publications, patent applications, and technical standards referred to in this specification are to the same extent as if each individual publication, patent application, or technical standard was specifically and individually stated to be referenced. Referenced in the specification.

Claims (10)

  1.  タイヤの内室を密閉手段によって密閉し、該密閉された内室に内袋を収納する工程と、前記内袋にエア供給手段からエアを供給して膨張させるとともに、内袋とタイヤとの間の内室に検査ガス供給手段から検査ガスを供給する工程と、タイヤ外に設けられた検出器により検査ガスのタイヤからの漏れを検出する工程とを備えたタイヤの漏れ検出方法。 Sealing the inner chamber of the tire by a sealing means, storing the inner bag in the sealed inner chamber, and supplying air from the air supply means to the inner bag to inflate the inner bag; A method for detecting leakage of a tire, comprising: a step of supplying a test gas from a test gas supply means to an inner chamber of the tire; and a step of detecting leakage of the test gas from the tire by a detector provided outside the tire.
  2.  前記内袋に対するエアの供給が終了した後、内袋とタイヤとの間の内室に検査ガスを供給するようにした請求項1記載のタイヤの漏れ検出方法。 The method according to claim 1, wherein after the supply of air to the inner bag is completed, a test gas is supplied to an inner chamber between the inner bag and the tire.
  3.  前記内袋に対するエアの供給と、内袋とタイヤとの間の内室に対する検査ガスの供給とを少なくとも一部で同時に行うようにした請求項1記載のタイヤの漏れ検出方法。 The tire leak detection method according to claim 1, wherein the supply of air to the inner bag and the supply of the inspection gas to the inner chamber between the inner bag and the tire are performed at least partially at the same time.
  4.  前記タイヤの内室に対する検査ガスの供給が終了した後、内袋にエアを供給し、検査ガスを圧縮しながら内袋を膨張させるようにした請求項1記載のタイヤの漏れ検出方法。 4. The method according to claim 1, wherein after the supply of the test gas to the inner chamber of the tire is completed, air is supplied to the inner bag to expand the inner bag while compressing the test gas.
  5.  前記検査ガスを水素ガスと窒素ガスとの混合ガスから構成した請求項1~4のいずれか一項に記載のタイヤの漏れ検出方法。 The tire leak detection method according to any one of claims 1 to 4, wherein the inspection gas is a mixed gas of hydrogen gas and nitrogen gas.
  6.  タイヤの内室を密閉する密閉手段と、該密閉された内室に収納される内袋と、前記内袋にエアを供給して内袋を膨張させるエア供給手段と、内袋とタイヤとの間の内室に検査ガスを供給する検査ガス供給手段と、タイヤ外に設けられ、検査ガスを検出することでタイヤからの検査ガスの漏れを検出する検出器とを備えたタイヤの漏れ検出装置。 Sealing means for sealing the inner chamber of the tire, an inner bag housed in the sealed inner chamber, air supply means for supplying air to the inner bag to inflate the inner bag, and A tire leak detection device including a test gas supply means for supplying a test gas to an inner chamber between the tires, and a detector provided outside the tire and detecting a test gas leak from the tire by detecting the test gas. .
  7.  内袋にエアが、内袋とタイヤとの間の内室に検査ガスが共に供給された後、タイヤの外形形状を計測する計測手段を設けるとともに、前記計測手段による計測結果を基に検出器を検出位置まで移動させる移動手段を設けるようにした請求項6記載のタイヤの漏れ検出装置。 After the air is supplied to the inner bag and the test gas is supplied to the inner chamber between the inner bag and the tire, a measuring means for measuring the outer shape of the tire is provided, and a detector is provided based on the measurement result by the measuring means. 7. The tire leak detecting device according to claim 6, wherein a moving means for moving the tire to the detection position is provided.
  8.  前記内袋としてタイヤ加硫用ブラダを用いた請求項6または7記載のタイヤの漏れ検出装置。 The tire leak detecting device according to claim 6 or 7, wherein a tire vulcanizing bladder is used as the inner bag.
  9.  前記密閉手段は、横置きのタイヤの下側ビード部が気密状態で着座可能な下リムと、下リムの上方に設置され昇降可能な昇降体と、該昇降体に固定された上リムと、前記昇降体を下降させることで、前記タイヤの上ビード部に上リムを気密状態で着座させる第1昇降機構とを有する一方、前記上リムより下方の昇降体に支持され、前記内袋の上端を気密状態で保持する上リングと、前記昇降体に昇降可能に支持され、上下方向に延びるセンターポストと、前記センターポストの下端部に設けられ、内袋の下端を気密状態で保持する下リングと、前記センターポストを昇降体と別個に昇降させる第2昇降機構とを備えた請求項6~8のいずれか一項に記載のタイヤの漏れ検出装置。 The sealing means is a lower rim that allows the lower bead portion of the horizontally placed tire to be seated in an airtight state, an elevating body that is installed above the lower rim and that can move up and down, and an upper rim fixed to the elevating body. A first elevating mechanism for lowering the elevating body so that the upper rim is seated in an airtight state on the upper bead portion of the tire, while being supported by an elevating body below the upper rim, and an upper end of the inner bag. An upper ring that holds the lower end of the inner bag in an air-tight state, a center post that is supported by the elevating body so as to be able to move up and down, and that extends vertically. The tire leak detecting device according to any one of claims 6 to 8, further comprising: a second elevating mechanism that elevates and lowers the center post independently of the elevating body.
  10.  前記内袋とタイヤとの間の内室に対し検査ガスを給排する給排口を前記上リムの下面に形成した請求項9記載のタイヤの漏れ検出装置。 The tire leak detecting device according to claim 9, wherein a supply / discharge port for supplying / discharging the inspection gas to / from the inner chamber between the inner bag and the tire is formed on a lower surface of the upper rim.
PCT/JP2019/024904 2018-06-22 2019-06-24 Tire leak detecting method, and tire leak detecting device WO2019245051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018119288A JP2019219364A (en) 2018-06-22 2018-06-22 Tire leak detection method and device
JP2018-119288 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019245051A1 true WO2019245051A1 (en) 2019-12-26

Family

ID=68984138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024904 WO2019245051A1 (en) 2018-06-22 2019-06-24 Tire leak detecting method, and tire leak detecting device

Country Status (2)

Country Link
JP (1) JP2019219364A (en)
WO (1) WO2019245051A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189111A (en) * 2018-04-26 2019-10-31 ヤマハファインテック株式会社 Wheeled tire and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115371896B (en) * 2022-10-27 2023-01-17 山东上元再生资源有限公司 Air tightness detection device for automobile disassembly part

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821134A (en) * 1981-07-29 1983-02-07 Nippon Kokan Kk <Nkk> Detection of leakage of container
JPH0275930A (en) * 1988-09-12 1990-03-15 Fujitsu Ltd Method for testing airtightness
JP2001255229A (en) * 2000-02-14 2001-09-21 Goodyear Tire & Rubber Co:The Leakage detection method for expansion vessel
US6330822B1 (en) * 1998-08-10 2001-12-18 Mtd Products Inc Tire testing apparatus and method
US6718818B2 (en) * 2002-07-19 2004-04-13 The Goodyear Tire & Rubber Company Method of sensing air leaks in tires and tire testing machines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821134A (en) * 1981-07-29 1983-02-07 Nippon Kokan Kk <Nkk> Detection of leakage of container
JPH0275930A (en) * 1988-09-12 1990-03-15 Fujitsu Ltd Method for testing airtightness
US6330822B1 (en) * 1998-08-10 2001-12-18 Mtd Products Inc Tire testing apparatus and method
JP2001255229A (en) * 2000-02-14 2001-09-21 Goodyear Tire & Rubber Co:The Leakage detection method for expansion vessel
US6718818B2 (en) * 2002-07-19 2004-04-13 The Goodyear Tire & Rubber Company Method of sensing air leaks in tires and tire testing machines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189111A (en) * 2018-04-26 2019-10-31 ヤマハファインテック株式会社 Wheeled tire and method of manufacturing the same
JP7064758B2 (en) 2018-04-26 2022-05-11 ヤマハファインテック株式会社 Gas leak inspection method for tires with wheels and manufacturing method for tires with wheels

Also Published As

Publication number Publication date
JP2019219364A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
WO2019245051A1 (en) Tire leak detecting method, and tire leak detecting device
CN107389280B (en) Dry-type air tightness detector of filter and testing method thereof
CN104614134B (en) A method of detection aluminium alloy wheel hub air-tightness
CN105928668A (en) Device for quickly and automatically detecting crack of shaft sleeve of mechanical sealing part
JPH0646173B2 (en) Fuel tank leak detection method and device
US9757913B2 (en) Apparatus for correcting shape of green tire
CN207318020U (en) A kind of dry type air tightness detection machine of filter
KR101769996B1 (en) Tyre inflating station and method for inflating tyres
US5719331A (en) Bead width adjusting apparatus for tire uniformity machines
US3266296A (en) Method and apparatus for inspecting annular workpieces
CN207946202U (en) A kind of novel air bleeding valve gear combined test stand
JP6440829B2 (en) Inspection device for tire inflating device
TWI506260B (en) Airtight detection device
CN105466648B (en) A kind of air tightness detection mechanism of damper bonding machine
ZA202306327B (en) A gas tightness testing device for motor flange end covers
CN106184938A (en) A kind of glove air-leakage test and palming system
CN106482671B (en) Symmetry detection device and method for curing capsule
KR20120137887A (en) Leak test system of compressor for vehicle
CN213580075U (en) Safety valve checking platform
CN210834059U (en) Wrapping bag gas leakage detection device
CN215893932U (en) Brush direct current motor complete machine test fixture
CN209417026U (en) Tire curing bladder damages early stage on-line measuring device
CN216791549U (en) A gas tightness detection device for rim processing
CN217505134U (en) Sealing test device of bellows
CN210603255U (en) Step appearance takes precautions against earthquakes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823444

Country of ref document: EP

Kind code of ref document: A1