WO2019244980A1 - Method for producing bonded multilayer body of polymer and adherend - Google Patents

Method for producing bonded multilayer body of polymer and adherend Download PDF

Info

Publication number
WO2019244980A1
WO2019244980A1 PCT/JP2019/024504 JP2019024504W WO2019244980A1 WO 2019244980 A1 WO2019244980 A1 WO 2019244980A1 JP 2019024504 W JP2019024504 W JP 2019024504W WO 2019244980 A1 WO2019244980 A1 WO 2019244980A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
adhesive
acid
reaction system
adherend
Prior art date
Application number
PCT/JP2019/024504
Other languages
French (fr)
Japanese (ja)
Inventor
敬 大久保
時泰 淺原
井上 豪
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2020525796A priority Critical patent/JP7333080B2/en
Publication of WO2019244980A1 publication Critical patent/WO2019244980A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined

Definitions

  • the present invention relates to a method for producing an adhesive laminate of a polymer and an adherend.
  • Patent Documents 1 and 2 are methods using a modified polymer. However, this method requires special treatment at the stage of polymer synthesis, and has a limited range of application.
  • a method for improving the adhesiveness of the polymer for example, there are physical treatment methods such as corona discharge treatment, plasma discharge treatment, and grafting treatment. However, these methods have problems such as complicated operation, processing cost, and difficulty in controlling the reaction.
  • a chemical surface treatment method there is a method using a heavy metal oxidant, but there is a problem such as a treatment cost of the heavy metal oxidant. Such a problem also applies to the case where the polymer and the object to be bonded are bonded with an adhesive.
  • an object of the present invention is to provide a method for producing an adhesive laminate by improving the adhesion between a polymer and an adherend via an adhesive easily and at low cost.
  • the production method of the present invention is a method for producing an adhesive laminate of a polymer and an adherend, Reacting the polymer with a halogen oxide radical, a surface treatment step, and At least one of the surface of the polymer and the surface of the adherend after the surface treatment step, an adhesive is applied, including an adhesion step of adhering the polymer and the adherend,
  • the polymer is a polymer having an aromatic ring in the main chain.
  • an adhesive laminate in which the adhesion between a polymer and an object to be adhered via an adhesive is improved.
  • FIG. 1 is a diagram schematically showing an example of a surface treatment step in the method for producing an adhesive laminate of the present invention.
  • FIG. 2 is a photograph showing the wettability of the film in Example 1.
  • FIG. 3 is a perspective view schematically illustrating a method of laminating the adhesive body in the first embodiment.
  • the polymer can be modified.
  • the surface treatment step may be referred to as a “modification treatment” or a “modification method”.
  • the surface treatment step can be said to be a method of oxidizing the polymer.
  • the polymer is a liquid crystal polymer.
  • the adhesive is a water-compatible adhesive.
  • the adhesive contains a monomer that is polymerized with water as an initiator.
  • the monomer is a cyanoacrylate monomer.
  • the adhesive is an epoxy-based adhesive.
  • the reaction system in the surface treatment step is a gas reaction system or a liquid reaction system.
  • the halogen oxide radical is a chlorine dioxide radical.
  • the polymer to be subjected to the surface treatment step is selected from the group consisting of a sheet, a film, a plate, a tube, a pipe, a rod, a bead, a block, a woven fabric, a nonwoven fabric, and a yarn. At least one molded body.
  • the adherend is a metal or a polymer.
  • a chain compound eg, alkane, unsaturated aliphatic hydrocarbon, etc.
  • a chain substituent derived from the chain compound eg, an alkyl group, a hydrocarbon group such as an unsaturated aliphatic hydrocarbon group, etc.
  • the number of carbon atoms is not particularly limited. For example, 1 to 40, 1 to 32, 1 to 24, 1 to 18, 1 to 12, 1 to 6
  • the number of carbon atoms is, for example, 2 to 40, 2 to 32, 2 to 24, 2 to 18, 2 to 12, and 2 to 6.
  • a cyclic compound for example, a cyclic saturated hydrocarbon, a non-aromatic cyclic unsaturated hydrocarbon, an aromatic hydrocarbon, a heteroaromatic compound, etc.
  • a cyclic group derived from a cyclic compound for example, cyclic
  • the number of ring members (the number of atoms constituting the ring) of the saturated hydrocarbon group, the non-aromatic cyclic unsaturated hydrocarbon group, the aryl group, the heteroaryl group and the like is not particularly limited, and is, for example, 5 to 32, 5 to 24, 6 to 18, 6 to 12, or 6 to 10.
  • the type of the isomer is not particularly limited.
  • naphthyl group when simply referred to as “naphthyl group”, for example, it may be a 1-naphthyl group or a 2-naphthyl group .
  • the salt is not particularly limited, and may be, for example, an acid addition salt or a base addition salt.
  • the acid forming the acid addition salt may be, for example, an inorganic acid or an organic acid
  • the base forming the base addition salt may be, for example, an inorganic base or an organic base.
  • the inorganic acid is not particularly limited, for example, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypofluoric acid, hypochlorous acid, hypobromous acid, Iodic acid, fluoric acid, chlorous acid, bromous acid, iodic acid, fluoric acid, chloric acid, bromic acid, iodic acid, perfluorinated acid, perchloric acid, perbronic acid, periodic acid, etc. can give.
  • the organic acid is not particularly restricted but includes, for example, p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, p-bromobenzenesulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid and acetic acid.
  • the inorganic base is not particularly limited and includes, for example, ammonium hydroxide, alkali metal hydroxide, alkaline earth metal hydroxide, carbonate, hydrogencarbonate and the like.More specifically, for example, water Examples include sodium oxide, potassium hydroxide, potassium carbonate, sodium carbonate, sodium bicarbonate, potassium bicarbonate, calcium hydroxide and calcium carbonate.
  • the organic base is not particularly restricted but includes, for example, ethanolamine, triethylamine and tris (hydroxymethyl) aminomethane.
  • the production method of the present invention comprises a surface treatment step of reacting a polymer with a halogen oxide radical, and a surface and an adherend of the polymer (hereinafter also referred to as a treated polymer) after the surface treatment step.
  • An adhesive is applied to at least one of the surfaces of the object to include an adhesive step of adhering the treated polymer and the object to be adhered, wherein the polymer is a polymer having an aromatic ring in its main chain.
  • the surface of the polymer can be modified by the surface treatment step, whereby the treated polymer and the adherend can be modified via the adhesive in the bonding step. And the adhesiveness between the treated polymer and the adherend is improved, so that an adhesive laminate can be manufactured.
  • a polymer to be subjected to the surface treatment step (hereinafter, also referred to as a polymer before treatment) is a polymer having an aromatic ring in a main chain. According to the surface treatment step described later, for example, the side chain of the aromatic ring contained in the main chain of the polymer is modified.
  • the type of the aromatic ring is not particularly limited, for example, naphthylene group, anthracenylene group, phenanthrylene group, chrysenylene group, pyrenylene group, benzoanthracenylene group, fluoranthenylene group, benzofluoranthenylene group, peryleneylene group, colonelylene Group, a picenylene group, a diphenylanthracenylene group, a fluorenylene group, a triphenylenylene group, a rubicenylene group, a phenylanthracenylene group, a bisanthracenylene group, a dianthracenylbenzinylene group, a dibenzoanthracenylene group, and the like.
  • Examples thereof include a naphthylene group, an anthracenylene group, a phenanthrylene group, a chrysenylene group, a pyrenylene group, and a benzoanthracenylene group.
  • Examples of the polymer before treatment include engineering plastics, and specific examples include liquid crystal polymers.
  • the present invention is particularly useful for application to the liquid crystal polymer. It is known that the liquid crystal polymer is extremely difficult to bond with an existing adhesive. Since it is difficult for the liquid crystal polymer to be chemically bonded to the object to be bonded, for example, with an adhesive, it is necessary to roughen the molded body of the liquid crystal polymer by physical treatment. Was. However, even if the surface of the molded body is roughened, it is difficult to adhere to the adherend with a sufficient adhesive force with the adhesive.
  • the liquid crystal polymer and the like for example, can be finely molded and have excellent functionality, and thus have been used for various devices such as smartphones, but adhesion is a major issue. According to the present invention, for example, even with the liquid crystal polymer, by performing the surface treatment step, the surface of the liquid crystal polymer can be modified, thereby improving the adhesiveness. No physical treatment is required, and sufficient adhesiveness can be obtained.
  • liquid crystal polymer examples include a polymer having parahydroxybenzoic acid as a monomer, and specific examples thereof include a basic structure represented by the following formula.
  • type I is a polycondensate of phenol, phthalic acid and parahydroxybenzoic acid
  • type II is a polycondensate of 2,6-hydroxynaphthoic acid and parahydroxybenzoic acid
  • Type III is a polycondensate of ethylene terephthalate and parahydroxybenzoic acid.
  • the repeating unit of the monomer structure is not particularly limited.
  • polystyrene resin examples include polycarbonate (PC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyurethane, and aromatic polyamide in addition to the liquid crystal polymer.
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PPS polyphenylene sulfide
  • aromatic polyamide in addition to the liquid crystal polymer.
  • the type of polymer contained in the polymer before treatment is not particularly limited, and may be, for example, one type or a mixture of two or more types.
  • the polymer may be, for example, a polymer alloy or a polymer compound.
  • the polymer before treatment may be, for example, a polymer having fluidity, a semi-solid polymer, or a solid polymer.
  • the polymer before the treatment include a polymer having a melting point of room temperature or higher, a solid, crystalline or amorphous polymer at room temperature, and a solid, crystalline or amorphous polymer at 0 ° C. or higher.
  • the glass transition temperature is not particularly limited, and is, for example, ⁇ 150 ° C. or higher.
  • the polymer before treatment may have a relatively high crystallinity, and the crystallinity is, for example, 20% or more, 30% or more, or 35% or more.
  • the polymerization form of the polymer before treatment is not particularly limited, and may be, for example, a homopolymer (homopolymer) or a copolymer.
  • the copolymer is not particularly limited, and examples thereof include a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer.
  • the number of repeating units (monomers) is, for example, two or more.
  • Examples of the polymer before treatment include a linear polymer, a branched polymer, and a network polymer.
  • the polymer before treatment may further contain, for example, other materials.
  • the other material is not particularly limited, and is, for example, a material contained in a general polymer, and may be an inorganic substance or an organic substance. Examples of the inorganic substance include calcium carbonate, clay, talc, carbon fiber, glass fiber, aramid fiber, silicone, and zinc oxide.
  • the other material may be, for example, an additive such as a flame retardant or an antistatic agent.
  • the form of the polymer before treatment is not particularly limited, and may be a molded article or an unmolded article. In the case of the molded article, for example, after performing the surface treatment step, it may be directly subjected to the next bonding step.
  • the polymer before treatment is an unformed body
  • the polymer of the unformed body (treated polymer) subjected to the surface treatment is molded, for example, prior to the bonding step, and The polymer may be subjected to the following bonding step as a molded article.
  • the unformed body is, for example, a polymer itself, and the formed body is, for example, a formed body formed from the polymer.
  • the molded body is not limited at all, for example, in a molding method, a shape and the like.
  • the molded body can be obtained by a known method using, for example, the polymer to be treated.
  • the molding method generally involves, for example, heat-melting a polymer, shaping the polymer into a desired shape, and cooling. Examples of the molding method include compression molding, transfer molding, extrusion molding, calendar molding, inflation molding, blow molding, vacuum molding, injection molding, casting molding, and the like.
  • the size and shape of the compact are not particularly limited.
  • Examples of the shape include a sheet, a film, a plate, a tube, a pipe, a rod, a bead, a block, a woven fabric, a nonwoven fabric, a thread, a fiber, and the like.
  • a nonporous body or a porous body may be used.
  • the halogen oxide radical is a radical of a halogen oxide, and its type is not particularly limited.
  • F 2 O ⁇ oxygen difluoride radical
  • F 2 O 2 ⁇ Dioxygen difluoride radical
  • ClO 2 ⁇ chlorine dioxide radical
  • BrO 2 ⁇ bromine dioxide radical
  • I 2 O 5 ⁇ iodine oxide (V) radical
  • the halogen oxide radical used in the surface treatment step may be, for example, one type or a combination of two or more types.
  • the halogen oxide radical can be appropriately selected depending on, for example, the type of the polymer to be modified and the reaction conditions.
  • the surface treatment step can be performed, for example, by allowing the halogen oxide radical to coexist in a reaction system in which the polymer before treatment is arranged.
  • the polymer before treatment may be placed in a reaction system containing the halogen oxide.
  • the halogen oxide radical may be included in the reaction system by being generated in the reaction system, for example, or the halogen oxide radical separately generated may be introduced into the reaction system.
  • the method for generating the halogen oxide radical is not particularly limited, and a specific example will be described later.
  • the reaction system may be, for example, a gas reaction system or a liquid reaction system.
  • the reaction system may or may not be irradiated with light.
  • the polymer before treatment and the halogen oxide radical can be reacted with or without irradiating the reaction system with light.
  • the halogen oxide radical generation step and the surface treatment step can be performed in parallel. May go.
  • an example in which light irradiation is performed will be described, but the present invention is not limited thereto.
  • the polymer before treatment is arranged in a gas reaction system containing the halogen oxide radical, and irradiated with light.
  • the type of the gas phase in the gas reaction system is not particularly limited, and is, for example, air, nitrogen, a rare gas, oxygen, or the like.
  • the reactor accommodating the gas reaction system is preferably, for example, a light-transmitting container when light irradiation is performed from the outside, and is not limited to a light-transmitting container when light irradiation is performed from the inside.
  • the halogen oxide radical may be introduced into the gas reaction system prior to the surface treatment step, or may be introduced into the gas reaction system simultaneously with the surface treatment step.
  • the introduction of the halogen oxide radical can be performed, for example, by introducing a gas containing the halogen oxide radical into a gas phase.
  • the gas reaction system can include the chlorine dioxide radical.
  • the introduction of the halogen oxide radical is, for example, as described later, the halogen oxide radical is generated in a reaction system for radical generation in a liquid phase, and the generated halogen oxide radical is transferred to a gas phase. This may be introduced into the gas reaction system.
  • the halogen oxide radical may be generated, for example, in the gas reaction system.
  • the halogen oxide radical is a chlorine dioxide radical, it can be generated in a gas phase by, for example, an electrochemical method.
  • the liquid reaction system includes, for example, an organic phase.
  • the liquid reaction system may be, for example, a one-phase reaction system containing only the organic phase or a two-phase reaction system containing the organic phase and an aqueous phase.
  • the halogen oxide radical is generated in the aqueous phase, and the generated halogen oxide radical is transferred to the organic phase. May be introduced.
  • the generated halogen oxide radical may be separately introduced into the organic phase. Specifically, for example, after separately generating the halogen oxide radical in an aqueous phase, mixing the organic phase with the aqueous phase, and dissolving the halogen oxide radical generated in the aqueous phase in the organic phase ( Extraction), separating the aqueous phase and the organic phase, and preparing the organic phase containing the halogen oxide radical as the one-phase reaction system.
  • the polymer before treatment is arranged in an organic phase containing the halogen oxide radical, and irradiated with light.
  • the reactor accommodating the liquid reaction system is preferably, for example, a light-transmitting container when light irradiation is performed from the outside, and is not limited to a light-transmitting container when light irradiation is performed from the inside.
  • the polymer before treatment is immersed in the organic phase so that, for example, a desired region to be modified comes into contact with the halogen oxide radicals in the organic phase, for example, from the viewpoint of treatment efficiency, It is preferable to fix in the organic phase so as not to be exposed from the phase.
  • the organic phase is, for example, an organic solvent.
  • the organic solvent for example, only one kind may be used, or two or more kinds may be used in combination.
  • the organic solvent is not particularly limited, and examples thereof include a halogenated solvent and a fluorous solvent.
  • the organic solvent is preferably, for example, a solvent that separates from the aqueous solvent constituting the aqueous phase, or a solvent that is hardly soluble or insoluble in the aqueous solvent.
  • Halogenated solvent refers to, for example, a solvent in which all or most of the hydrogen atoms of a hydrocarbon have been substituted with halogens.
  • the halogenated solvent may be, for example, a solvent in which 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more of the number of hydrogen atoms of a hydrocarbon is substituted with a halogen.
  • the halogenated solvent is not particularly limited, and examples thereof include methylene chloride, chloroform, carbon tetrachloride, carbon tetrabromide, and a fluorous solvent described below.
  • Fluorous solvent is one kind of the above-mentioned halogenated solvents, and refers to, for example, a solvent in which all or most of the hydrogen atoms of a hydrocarbon are substituted with fluorine atoms.
  • the fluorous solvent may be, for example, a solvent in which 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more of the hydrogen atoms of the hydrocarbon are substituted with fluorine atoms.
  • the fluorous solvent has, for example, a low reactivity of the solvent itself, so that a side reaction can be further suppressed or prevented.
  • the side reaction is, for example, an oxidation reaction of the solvent, a hydrogen abstraction reaction or a halogenation reaction of the solvent with the halogen oxide radical (for example, a chlorination reaction), and a polymer derived from the polymer before treatment, as described later.
  • a reaction between a radical and the solvent for example, when the hydrocarbon group on the side chain or terminal of the polymer before treatment is an ethyl group, a reaction between an ethyl radical and the solvent
  • the fluorous solvent is hardly miscible with water, it is suitable for forming the two-phase reaction system, for example.
  • the boiling point of the organic solvent is not particularly limited.
  • the organic solvent can be appropriately selected depending on, for example, the temperature conditions in the surface treatment step.
  • a solvent having a relatively high boiling point may be selected as the organic solvent.
  • heating is not essential, and can be performed, for example, at normal temperature and normal pressure.
  • the organic solvent for example, a solvent having a relatively high boiling point can be used from the viewpoint of easy handling.
  • the organic phase may contain, for example, only the polymer before treatment, the halogen oxide radical and the organic solvent, or may further contain other components.
  • the other components are not particularly limited, and include, for example, Bronsted acid, Lewis acid, oxygen (O 2 ), and the like.
  • the other component may be, for example, in a state of being dissolved in the organic solvent or in a state of not being dissolved. In the latter case, for example, the other component may be dispersed or precipitated in the organic solvent.
  • the aqueous phase is, for example, an aqueous solvent phase.
  • the aqueous solvent is, for example, a solvent that separates from the solvent used in the organic phase.
  • examples of the aqueous solvent include water such as H 2 O and D 2 O.
  • the aqueous phase may contain, for example, an arbitrary component such as a Lewis acid, a Bronsted acid, and a radical generating source.
  • these optional components may be, for example, in a state of being dissolved in the aqueous solvent or in a state of not being dissolved. In the latter case, for example, the optional component may be in a dispersed state or a precipitated state in the aqueous solvent.
  • the surface treatment step comprises reacting the polymer before treatment with a halogen oxide radical to form a treated polymer having a modified surface (hereinafter also referred to as a modified polymer). This is the step of obtaining.
  • the surface of the polymer before treatment is reacted with the halogen oxide radical to obtain a modified polymer in which the surface of the polymer before treatment is modified.
  • the degree of modification (for example, the degree of oxidation) of the modified polymer can be adjusted by, for example, the amount of the halogen oxide radical, the length of time of light irradiation, and the like. Further, by adjusting the degree of modification of the modified polymer, for example, it is possible to suppress the decomposition of the polymer in the modified polymer due to excessive modification, the characteristics inherent to the polymer before treatment in the modified polymer Can be maintained.
  • a region to be surface-treated in the polymer before treatment is not particularly limited.
  • a region to be brought into contact with the adherend may be included in a subsequent bonding step. Thereby, since the region of the molded body can be modified, the adhesiveness to the adherend via the adhesive can be improved.
  • the reforming reaction e.g., relative to the pretreatment polymer, oxidation reaction
  • the reforming reaction e.g., relative to the pretreatment polymer, oxidation reaction
  • the pre-treatment polymer may have, for example, a change in a side chain or a change in a main chain (straight chain).
  • the change in the main chain may be, for example, a change in the end of the main chain or a change in the inside of the main chain.
  • the change also referred to as modification
  • the main chain is a chain of carbon atoms and / or heteroatoms
  • the side chain is a chain (branched chain) branched from the main chain, and specifically, a carbon atom or a carbon atom constituting the main chain.
  • conditions for light irradiation are not particularly limited.
  • the wavelength of the irradiation light is not particularly limited, the lower limit is, for example, 200 nm or more, the upper limit is, for example, 800 nm or less, the light irradiation time is not particularly limited, and the lower limit is, for example, 1 second or more.
  • the upper limit is, for example, 1000 hours or less
  • the reaction temperature is not particularly limited
  • the lower limit is, for example, -20 ° C or more
  • the upper limit is, for example, 100 ° C or less, 40 ° C or less. Is, for example, 0 to 100 ° C. and 0 to 40 ° C.
  • the atmosphere pressure during the reaction is not particularly limited, and the lower limit is, for example, 0.1 MPa or more, and the upper limit is, for example, 100 MPa or less, 10 MPa or less, 0.5 MPa or less.
  • the pressure is 1 to 100 MPa, 0.1 to 10 MPa, and 0.1 to 0.5 MPa.
  • the reaction conditions in the surface treatment step include, for example, a temperature of 0 to 100 ° C. or 0 to 40 ° C., and a pressure of 0.1 to 0.5 MPa.
  • the surface treatment step can be performed, for example, at normal temperature (room temperature) and normal pressure (atmospheric pressure) without performing heating, pressurizing, depressurizing, and the like. is there.
  • Root temperature is not particularly limited, and is, for example, 5 to 35 ° C. For this reason, the present invention is applicable even if the polymer before treatment contains, for example, a polymer having low heat resistance. According to the present invention, for example, the surface treatment step or all the steps including the same can be performed in the air without performing inert gas replacement or the like.
  • the light source for the light irradiation is not particularly limited, and for example, visible light contained in natural light such as sunlight can be used. If natural light is used, for example, excitation can be easily performed.
  • a light source such as a xenon lamp, a halogen lamp, a fluorescent lamp, a mercury lamp, and an LED lamp may be used instead of or in addition to the natural light.
  • a filter that cuts a wavelength other than the necessary wavelength may be appropriately used.
  • the polymer before treatment may be irradiated with light only to an arbitrary region.
  • the exposed surface of the polymer before treatment is contacted with a halogen oxide under light irradiation, so that the exposed surface can be modified. Therefore, for example, by irradiating only an arbitrary region on the exposed surface of the polymer before treatment, for example, only the arbitrary region can be modified.
  • the method for selectively controlling light irradiation is not particularly limited. For example, light irradiation may be performed only on an arbitrary region, or masking may be performed only on a region that is not irradiated with light, and the entire region may be irradiated with light.
  • the surface treatment step may be performed in the liquid reaction system, or may be performed in a gas reaction system.
  • the gas phase reaction system Is preferred.
  • the reaction system is the liquid reaction system
  • the surface treatment step for example, at least the organic phase is irradiated with light.
  • the surface treatment step can be performed by irradiating the organic phase with light.
  • the two-phase reaction system for example, of the organic phase and the aqueous phase, only the organic phase may be irradiated with light, or both the organic phase and the aqueous phase may be irradiated with light.
  • the liquid reaction system for example, while contacting the liquid reaction system with air, the liquid reaction system may be irradiated with light, and in the case of the two-phase reaction system, oxygen is dissolved in the aqueous phase. Light irradiation may be performed.
  • the polymer before treatment preferably has, for example, an exposed surface that comes into contact with the halogen oxide radical contained in the reaction system.
  • the exposed surface of the polymer before treatment may be, for example, a surface exposed to the outside of the polymer before treatment, or a surface exposed inside such as a tube or a porous body.
  • the surface treatment step can be said to be, for example, a surface modification step.
  • the polymer before treatment can be modified without using a toxic heavy metal catalyst or the like, and the reaction can be performed, for example, under extremely mild conditions as described above.
  • the polymer layer can be efficiently modified by a method having a very small load on the environment.
  • the method may further include a step of introducing a functional group into the modified region of the modified polymer after the surface treatment step, before the subsequent bonding step, and as described later.
  • a step of introducing a functional group into the modified region of the modified polymer after the surface treatment step, before the subsequent bonding step, and as described later.
  • Adhering step an adhesive is applied to at least one of the surface of the modified polymer after the surface treatment step and the surface of the adherend, and the polymer is adhered to the adherend. I do.
  • the polymer can be modified by the surface treatment step, for example, for a polymer that could not adhere to the adherend even if an adhesive was applied, The affinity is improved, and the adhesion with the adherend by the adhesive becomes possible.
  • the adherend and the adhesive are not particularly limited, and examples thereof include those described below.
  • the adhesive may be applied to either the surface of the modified polymer or the adherend, or may be applied to both.
  • the adhesive When applied to the surface of the modified polymer, for example, the adhesive is applied to a region that is in contact with the adherend and is modified by the surface treatment step, and the surface of the adherend is When the adhesive is applied, for example, the adhesive is applied to a region of the surface of the modified polymer that comes into contact with the modified region.
  • the modified polymer and the adherend may be brought into contact with each other via the adhesive and pressed.
  • the contact between the modified polymer and the adherend is preferably performed, for example, after applying the adhesive and before the applied adhesive is completely cured.
  • the pressure is not particularly limited, and the lower limit is, for example, 0.1 MPa or more, 0.5 MPa or more, 1 MPa or more, 5 MPa or more, or 10 MPa or more, and the upper limit is, for example, 100 MPa or less, 50 MPa or less, It is 40 MPa or less, 30 MPa or less, or 25 MPa or less.
  • the time for applying pressure is not particularly limited.
  • the lower limit is 0.01 minutes or more, 0.1 minutes or more, 3 minutes or more, 5 minutes or more, or 10 minutes or more
  • the upper limit is 60 minutes or less, 45 minutes.
  • the pressing method is not particularly limited, and may be, for example, pressing by a roller, pressing by hand, or the like.
  • the peeling force between the polymer and the object to be bonded is not particularly limited.
  • the lower limit of the peel force for example, 0.001 N / mm 2 or more, 0.01 N / mm 2 or more, 0.1 N / mm 2 or more, 1N / mm 2 or more, 5N / mm 2 or more, or 10 N / mm 2
  • the upper limit is, for example, 1000 N / mm 2 or less, 500 N / mm 2 or less, 100 N / mm 2 or less, 50 N / mm 2 or less, or 20 N / mm 2 or less.
  • Adhesive The adhesive is not particularly limited, and various adhesives can be used. According to the pretreatment step, for example, the modified polymer is modified (for example, oxidized) by a reaction with a halogen oxide radical. For this reason, the affinity with the adhesive can be improved by the functional group (for example, a hydroxy group) formed by the modification contained in the surface of the modified polymer.
  • the adhesive is not particularly limited, and a commercially available adhesive may be used.
  • the adhesive is, for example, a water-friendly adhesive.
  • the modified polymer has a functional group (for example, a hydroxy group) by modification (for example, oxidation), for example, the water-adhesive is preferable.
  • the adhesive may include, for example, a monomer that polymerizes with water as an initiator.
  • the monomer is not particularly limited, and is, for example, a cyanoacrylate monomer.
  • Examples of the adhesive having the cyanoacrylate monomer include Alon Alpha (trade name, manufactured by Toagosei Co., Ltd.) and Cemedine C (trade name, Cemedine Co., Ltd.).
  • the adhesive is not limited to these examples, and includes, for example, an epoxy adhesive, a vinyl acetate resin adhesive, a rubber adhesive, a urea resin adhesive, a melamine resin adhesive, and a phenol resin adhesive.
  • the modified polymer can further introduce a functional group after the modification, the adhesiveness can be used.
  • the object to be adhered is not particularly limited, and examples thereof include metal, polymer, ceramic, glass, cloth, and paper.
  • the metal is not particularly limited, and examples thereof include aluminum, nickel, iron, gold, silver, copper, and the like, and alloys such as duralumin, high-tensile steel, and stainless steel.
  • the polymer may be, for example, the same polymer as the pre-treatment polymer or another different polymer.
  • the ceramic is not particularly limited, and examples thereof include zirconia, aluminum oxide, ferrite, barium titanate, boron nitride, silicon carbide, silicon nitride, and steatite.
  • the other polymer is not particularly limited, for example, polyolefin, polyvinyl chloride, polystyrene, polylactic acid, polyhydroxybutyric acid, silicone-based polymer, natural rubber, phenol resin, epoxy resin, diallyl phthalate resin, polycarbonate (PC), Acrylic polymer, polydimethylsiloxane (PDMS), polyarylate such as amorphous polyarylate, polyether sulfone, polyparaphenylene vinylene, polythiophene, polyfluorene, polyphenylene sulfide (PPS), liquid crystalline polyester, polyparaphenylene (PPP) A composite (PEDOT / PSS) composed of PEDOT (poly (3,4-ethylenedioxythiophene)) and PSS (polystyrenesulfonic acid), polyaniline / polystyrenesulfonic acid, Poly (3-hydroxyalkanoic acid), polyvinylidene chloride, styrene copolymer (eg
  • the polyolefin is, for example, a polymer of an olefin having 2 to 20 carbon atoms, and specific examples include polyethylene (PE) such as low-density polyethylene and high-density polyethylene, and polypropylene (PP).
  • PE polyethylene
  • PP polypropylene
  • the polyolefin may be, for example, a copolymer.
  • a repeating unit (monomer) forming a straight chain has a side chain.
  • the polymer is the copolymer, for example, in each of the repeating units (each monomer) forming a linear chain, one kind of monomer may have a side chain, or two or more kinds of monomers may have a side chain. May have.
  • the polymer includes, for example, polyimide, polyvinyl alcohol, ethylene vinyl alcohol polymer and the like.
  • the shape, size and the like of the object to be bonded are not particularly limited, and examples similar to those of the polymer before treatment can be given.
  • Examples of the shape include a sheet, a film, a plate, a tube, a pipe, a rod, a bead, a block, a woven fabric, a nonwoven fabric, a thread, a fiber, and the like.
  • a nonporous body or a porous body may be used.
  • the combination of the polymer before treatment and the object to be bonded is not particularly limited, and the combination of the polymer before treatment and the adhesive is not particularly limited.
  • the present invention may further include, for example, a generation step of generating the halogen oxide radical.
  • the generation step may be performed, for example, before the surface treatment step, or may be performed simultaneously with the surface treatment step.
  • the method for producing the halogen oxide radical is not particularly limited.
  • the halogen oxide radical may be generated using a radical generation reaction system.
  • the radical generation reaction system is, for example, an aqueous phase containing a source of the halogen oxide radical, and in the generation step, generates the halogen oxide radical from the source.
  • the aqueous phase is, for example, a phase of an aqueous solvent, and the aqueous solvent is the same as described above.
  • the halogen oxide radical generated in the radical generation reaction system may be introduced into, for example, a reaction system (the gas reaction system or the liquid reaction system) in the surface treatment step,
  • the radical generation reaction system may be used as it is in the surface treatment step as the liquid reaction system in the surface treatment step containing the halogen oxide radical.
  • the radical generating reaction system is a two-phase reaction system including the organic phase and the aqueous phase, whereby the halogen oxide radical is converted to the organic phase. Can be migrated.
  • the two-phase reaction system can be used as it is as a liquid reaction system in the pretreatment step, the production step and the surface treatment step can be performed continuously, and a better reaction efficiency can be obtained.
  • the radical generation reaction system is the two-phase reaction system, for example, the halogen oxide radical is generated in the aqueous phase, dissolved (extracted) in the organic phase, and then the aqueous phase is removed.
  • the organic phase may be used as a one-phase reaction system in the surface treatment step.
  • the halogen oxide radical generated in the aqueous phase can transfer to the gas phase, so that the gas phase is used, for example, as a liquid reaction system in the pretreatment step. Can be used.
  • the source of the halogen oxide radical is not particularly limited, and can be appropriately selected depending on, for example, the type of the halogen oxide radical.
  • the source may be, for example, one type or a plurality of types.
  • the source is, for example, a compound containing oxygen and halogen, and specific examples include halogenous acid (HXO 2 ) or a salt thereof.
  • the salt of the halogenous acid is not particularly limited, and examples thereof include metal salts.
  • the metal salt include alkali metal salts, alkaline earth metal salts, and rare earth salts.
  • the source may be, for example, a compound containing oxygen, a halogen, and a Group 1 element (for example, at least one selected from the group consisting of H, Li, Na, K, Rb, and Cs). And the above-mentioned halogenous acid or an alkali metal salt thereof.
  • the halogen oxide radical is the chlorine dioxide radical
  • its source is not particularly limited, and is, for example, chlorite (HClO 2 ) or a salt thereof, and specifically, for example, sodium chlorite ( NaClO 2 ), lithium chlorite (LiClO 2 ), potassium chlorite (KClO 2 ), magnesium chlorite (Mg (ClO 2 ) 2 ), calcium chlorite (Ca (ClO 2 ) 2 ) and the like.
  • sodium chlorite (NaClO 2 ) is preferable from the viewpoint of cost, ease of handling, and the like.
  • the same method can be adopted for other halogen oxide radical sources.
  • the other sources include bromates such as sodium bromite, and iodates such as sodium elementite.
  • the concentration of the source is not particularly limited, and when converted to the halogen oxide ion concentration, for example, the lower limit is 0.0001 mol / L or more, and the upper limit is 1 mol / L or less, and when converted to the number of moles of the halogen oxide ion, for example, the lower limit is 1/100000 or more times the number of moles of the polymer to be pretreated, and the upper limit is 1000 times or less. It is.
  • the source is a halogenous acid or a halogenite (eg, chlorite or chlorite)
  • its concentration is determined by the concentration of a halogenous ion (eg, chlorite ion (ClO 2 ⁇ )).
  • a halogenous ion eg, chlorite ion (ClO 2 ⁇ )
  • the lower limit is 0.0001 mol / L or more and the upper limit is 1 mol / L or less, which is converted into the number of moles of halogenous ion (eg, chlorite ion (ClO 2 ⁇ )).
  • the lower limit is at least 1 / 100,000 times the number of moles of the polymer to be pretreated, and the upper limit is at most 1,000 times.
  • the above concentrations can be used.
  • the aqueous phase may further include, for example, at least one of a Lewis acid and a Bronsted acid, and act on the halogen oxide ion to generate the halogen oxide radical.
  • the Lewis acid and the Bronsted acid include, for example, the Group 1 element.
  • the halogen oxide ion is, for example, chlorite ion (ClO 2 ⁇ ).
  • the aqueous phase may contain, for example, only one or both of the Lewis acid and the Bronsted acid, or one substance may serve as both the Lewis acid and the Bronsted acid.
  • the Lewis acid or the Bronsted acid may be used alone or in combination of two or more.
  • “Lewis acid” refers to, for example, a substance that acts as a Lewis acid for the above-mentioned source.
  • the concentration of at least one of the Lewis acid and the Bronsted acid is not particularly limited, and can be appropriately set according to, for example, the type of the polymer to be pretreated.
  • the lower limit of the concentration is, for example, 0.0001 mol / L or more, and the upper limit is 1 mol / L or less.
  • the Bronsted acid is not particularly limited, and may be, for example, an inorganic acid or an organic acid. Specific examples include, for example, trifluoromethanesulfonic acid, trifluoroacetic acid, acetic acid, hydrofluoric acid, hydrochloric acid, and hydrogen bromide. Acid, hydroiodic acid, sulfuric acid, sulfurous acid, nitric acid, nitrous acid, phosphoric acid, phosphorous acid and the like. Acid dissociation constant pK a of the Bronsted acids are, for example, 10 or less, the lower limit is not particularly limited, for example, it is -10 or more.
  • the aqueous phase contains, for example, the halogen oxide ion and the Bronsted acid.
  • the halogen oxide radical is a chlorine dioxide radical
  • the aqueous phase contains, for example, chlorite ion (ClO 2 ⁇ ) and a Bronsted acid, and specifically, for example, contains the sodium chlorite (NaClO 2). 2
  • the Lewis acid, the Bronsted acid, the generation source, and the like may be in a state of being dissolved or insoluble in the aqueous solvent. In the latter case, these may be, for example, in a state of being dispersed in an aqueous solvent or in a state of precipitation.
  • the halogen oxide radical for example, chlorine dioxide radical
  • the halogen oxide ion for example, chlorite ion
  • the aqueous phase is preferably allowed to stand, for example.
  • the aqueous phase can further promote the generation of the halogen oxide radical, for example, in the presence of at least one of the Lewis acid and the Bronsted acid.
  • the aqueous phase may be irradiated with light or not, and the halogen oxide radical can be generated in any case.
  • FIG. 1 schematically shows an example of the production step and the surface treatment step using the two-phase reaction system.
  • FIG. 1 shows, as specific examples, the chlorine dioxide radical as the halogen oxide radical and a polymer molded body as the polymer before treatment.
  • a lower organic phase 1 and an upper aqueous phase 2 are separated from each other and are in contact with each other at an interface in a reaction vessel.
  • FIG. 1 is a cross-sectional view, but hatches of an organic phase 1 and an aqueous phase 2 are omitted.
  • chlorite ion in the aqueous phase 2 (ClO 2 -) reacts with the acid, chlorine dioxide radical (ClO 2 ⁇ ) is generated.
  • light irradiation to the organic phase 1 comprising chlorine dioxide radical (ClO 2 ⁇ ) by applying light energy, chlorine dioxide radicals in the organic phase 1 (ClO 2 ⁇ ) is decomposed, chlorine radicals (Cl ⁇ ) And oxygen molecules (O 2 ) are generated.
  • the surface of the polymer molded body (polymer before treatment) in the organic phase 1 is modified by oxidation or the like.
  • the two-phase reaction system is not limited to, for example, FIG. 1.
  • the organic phase 1 has a lower density (specific gravity) than the aqueous phase 2, the organic phase 1 is an upper layer.
  • the polymer before treatment is the polymer molded article, for example, the polymer molded article may be immobilized in the reaction vessel so that the polymer molded article is immersed in the organic phase 1.
  • the fixing portion for fixing the polymer molded body may be provided in, for example, the reaction vessel, or may be provided outside the reaction vessel. In the latter case, for example, a form in which the polymer body is suspended from the outside and immersed in the organic phase 1 can be used.
  • Step of introducing a functional group may include, for example, a step of introducing a functional group into the modified region of the modified polymer after the pretreatment step, before the bonding step, and further. Good.
  • the physical properties of the modified polymer layer can be further changed by functionalization.
  • Example 1 The liquid crystal polymer film was modified, and the adhesion to an object to be bonded via an adhesive was confirmed.
  • LCP liquid crystal polymer
  • a small petri dish (diameter 30 mm ⁇ depth 10 mm) was used as a reaction vessel, and a hydrochloric acid-acidic NaClO 2 aqueous solution was put therein.
  • the aqueous solution of hydrochloric acid acidic NaClO 2 was made up of H 2 O (7 mL), NaClO 2 (200 mg), and 35% HClaq. (100 ⁇ L).
  • the small petri dish without the lid and the LCP film were placed in a large petri dish (700 mm diameter ⁇ 180 mm depth). The large petri dish was covered, and preheated by a heater at 90 ° C. for 5 minutes.
  • the light source used was an LED lamp (manufactured by dotAqua) having a wavelength of 365 nm, and the distance between the light source and the lid of the large petri dish was 20 cm.
  • chlorine dioxide radicals are generated from the NaClO 2 aqueous solution in the small petri dish, and the chlorine dioxide radicals are transferred to the gas phase in the large petri dish.
  • the reaction was carried out in the atmosphere under a heating condition of 90 ° C. without pressurizing and depressurizing.
  • the reaction was terminated when the yellow coloring derived from the chlorine dioxide radical in the aqueous NaClO 2 solution disappeared.
  • the LCP film was washed with purified water and dried under reduced pressure overnight. The dried LCP film was used as a modified LCP film in the following steps.
  • the generation of the chlorine dioxide radical has been confirmed by ESR (electron spin resonance).
  • FIG. 2A shows a photograph of the droplet on the unmodified LCP film
  • FIG. 2B shows a photograph of the droplet on the modified LCP film.
  • the improvement in wettability is understood to mean that the modified LCP film has more hydroxyl groups introduced than the unmodified LCP.
  • an aluminum plate (length 50 mm ⁇ width 15 mm ⁇ thickness 2 mm), a copper plate (length 60 mm ⁇ width 20 mm ⁇ thickness 2 mm), and similarly modified An LCP film (length 50 mm ⁇ width 15 mm ⁇ thickness 2 mm) was prepared. Then, as shown in FIG. 3A, on the modified surface of the modified LCP film 10, a cyanoacrylate-based adhesive 11 (trade name: Aron Alpha, Toagosei Co., Ltd.) Co., Ltd.) was applied. The adhesive 11 was uniformly applied at 40 mg per 25 mm 2 . Then, as shown in FIG.
  • the modified LCP film 10 is applied so that the modified LCP film 10 and the adherend 12 are in contact only in the application area.
  • the adherend 12 was laminated thereon. Then, the layered portion was sandwiched between clips and allowed to stand at room temperature for 10 minutes. The laminate after standing was used for the following evaluation.
  • a laminate was similarly manufactured for an untreated LCP film that had not been subjected to a modification treatment, and evaluation was performed.
  • the modified LCP film is sufficiently strong in strength with the adherend. It could be glued.
  • the adhesive applied to the surface of the LCP film solidified in the form of droplets on the surface and peeled off from the LCP film. For this reason, the LCP film and the adherend did not adhere.
  • Example 2 In place of the liquid crystal polymer film, a PET film was modified, and in the same manner as in Example 1, adhesion between the modified PET film and the unmodified PET film as the adherend was confirmed with an adhesive. . As a result, the interface between the unmodified PET film and the adherend (unmodified PET film) was peeled off, whereas the modified PET film was compared with the adherend (unmodified PET film). The adhesive was applied, and the tensile strength was 1.2 MPa (N / mm 2 ).

Abstract

The present invention provides a method for easily producing a bonded multilayer body at low cost, which improves adhesion between a polymer and an adherend, with an adhesive being interposed therebetween. A production method according to the present invention is a method for producing a bonded multilayer body of a polymer and an adherend, which is characterized by comprising a surface treatment step wherein the polymer is reacted with halogen oxide radicals, and a bonding step wherein the polymer and the adherend are bonded to each other by applying an adhesive to at least one of the surface of the polymer after the surface treatment step or the surface of the adherend, and which is also characterized in that the polymer has an aromatic ring in the main chain.

Description

ポリマーと被接着物との接着積層体の製造方法Method for producing adhesive laminate of polymer and adherend
 本発明は、ポリマーと被接着物との接着積層体の製造方法に関する。 The present invention relates to a method for producing an adhesive laminate of a polymer and an adherend.
 ポリマー層と被接着物とを接着する際、あらかじめ、前記ポリマー層には、接着性を高める処理が行われている(特許文献1、2等)。 (4) When bonding the polymer layer and the object to be bonded, the polymer layer is previously subjected to a treatment for enhancing the adhesiveness (Patent Documents 1 and 2, etc.).
特開2012-251038号公報JP 2012-251038 A 特開2013-091702号公報JP 2013/091702 A
 特許文献1および2の方法は、変性ポリマーを用いる方法である。しかし、この方法は、ポリマー合成の段階で特別な処理が必要であり、適用範囲に限界がある。 方法 The methods of Patent Documents 1 and 2 are methods using a modified polymer. However, this method requires special treatment at the stage of polymer synthesis, and has a limited range of application.
 また、ポリマーの接着性を高める方法として、例えば、コロナ放電処理、プラズマ放電処理、グラフト化処理等の物理的な処理方法がある。しかし、これらの方法は、操作の煩雑さ、処理コスト、反応コントロールの困難性等の問題がある。他方、化学的な表面処理方法は、重金属酸化剤を用いる方法があるが、重金属酸化剤の処理コスト等の問題がある。このような問題は、前記ポリマーと前記被接着物とを接着剤により接着させる場合も同様である。 方法 Further, as a method for improving the adhesiveness of the polymer, for example, there are physical treatment methods such as corona discharge treatment, plasma discharge treatment, and grafting treatment. However, these methods have problems such as complicated operation, processing cost, and difficulty in controlling the reaction. On the other hand, as a chemical surface treatment method, there is a method using a heavy metal oxidant, but there is a problem such as a treatment cost of the heavy metal oxidant. Such a problem also applies to the case where the polymer and the object to be bonded are bonded with an adhesive.
 そこで、本発明は、簡便かつ低コストに、接着剤を介したポリマーと被接着物との接着性を向上させ、接着積層体を製造する方法の提供を目的とする。 Accordingly, an object of the present invention is to provide a method for producing an adhesive laminate by improving the adhesion between a polymer and an adherend via an adhesive easily and at low cost.
 前記目的を達成するために、本発明の製造方法は、ポリマーと被接着物との接着積層体の製造方法であり、
ポリマーをハロゲン酸化物ラジカルと反応させる、表面処理工程、および、
前記表面処理工程後の前記ポリマーの表面および被接着物の表面の少なくとも一方に、接着剤を塗布して、前記ポリマーと前記被接着物とを接着する接着工程を含み、
前記ポリマーが、主鎖に芳香環を有するポリマーであることを特徴とする。
In order to achieve the object, the production method of the present invention is a method for producing an adhesive laminate of a polymer and an adherend,
Reacting the polymer with a halogen oxide radical, a surface treatment step, and
At least one of the surface of the polymer and the surface of the adherend after the surface treatment step, an adhesive is applied, including an adhesion step of adhering the polymer and the adherend,
The polymer is a polymer having an aromatic ring in the main chain.
 本発明によれば、簡便かつ低コストに、接着剤を介したポリマーと被接着物との接着性を向上させた接着積層体を製造できる。 According to the present invention, it is possible to easily and inexpensively manufacture an adhesive laminate in which the adhesion between a polymer and an object to be adhered via an adhesive is improved.
図1は、本発明の接着積層体の製造方法における表面処理工程の一例を模式的に示す図である。FIG. 1 is a diagram schematically showing an example of a surface treatment step in the method for producing an adhesive laminate of the present invention. 図2は、実施例1におけるフィルムの濡れ性を示す写真である。FIG. 2 is a photograph showing the wettability of the film in Example 1. 図3は、実施例1における接着体の積層方法の概略を示す斜視図である。FIG. 3 is a perspective view schematically illustrating a method of laminating the adhesive body in the first embodiment.
 本発明において、前記表面処理工程によれば、前記ポリマーを改質できる。本明細書において、前記表面処理工程を「改質処理」または「改質方法」という場合がある。前記表面処理工程により前記ポリマーを酸化する場合、前記表面処理工程は、前記ポリマーの酸化方法であるということができる。 に お い て In the present invention, according to the surface treatment step, the polymer can be modified. In the present specification, the surface treatment step may be referred to as a “modification treatment” or a “modification method”. When the polymer is oxidized by the surface treatment step, the surface treatment step can be said to be a method of oxidizing the polymer.
 本発明の接着積層体の製造方法は、例えば、前記ポリマーが、液晶ポリマーである。 方法 In the method for producing an adhesive laminate according to the present invention, for example, the polymer is a liquid crystal polymer.
 本発明の接着積層体の製造方法は、例えば、前記接着剤が、水親和性の接着剤である。 方法 In the method for producing an adhesive laminate according to the present invention, for example, the adhesive is a water-compatible adhesive.
 本発明の接着積層体の製造方法は、例えば、前記接着剤が、水を開始剤として重合するモノマーを含む。 は In the method for producing an adhesive laminate of the present invention, for example, the adhesive contains a monomer that is polymerized with water as an initiator.
 本発明の接着積層体の製造方法は、例えば、前記モノマーが、シアノアクリレートモノマーである。 方法 In the method for producing an adhesive laminate of the present invention, for example, the monomer is a cyanoacrylate monomer.
 本発明の接着積層体の製造方法は、例えば、前記接着剤が、エポキシ系接着剤である。 方法 In the method for producing an adhesive laminate of the present invention, for example, the adhesive is an epoxy-based adhesive.
 本発明の接着積層体の製造方法は、例えば、前記表面処理工程の反応系が、気体反応系または液体反応系である。 は In the method for producing an adhesive laminate of the present invention, for example, the reaction system in the surface treatment step is a gas reaction system or a liquid reaction system.
 本発明の接着積層体の製造方法は、例えば、前記ハロゲン酸化物ラジカルが、二酸化塩素ラジカルである。 は In the method for producing an adhesive laminate of the present invention, for example, the halogen oxide radical is a chlorine dioxide radical.
 本発明の接着積層体の製造方法は、例えば、前記表面処理工程に供する前記ポリマーが、シート、フィルム、プレート、チューブ、パイプ、棒、ビーズ、ブロック、織布、不織布および糸からなる群から選択された少なくとも一つの成形体である。 In the method for producing an adhesive laminate of the present invention, for example, the polymer to be subjected to the surface treatment step is selected from the group consisting of a sheet, a film, a plate, a tube, a pipe, a rod, a bead, a block, a woven fabric, a nonwoven fabric, and a yarn. At least one molded body.
 本発明の接着積層体の製造方法は、例えば、前記被接着物が、金属またはポリマーである。 In the method for producing an adhesive laminate according to the present invention, for example, the adherend is a metal or a polymer.
 本発明において、鎖状化合物(例えば、アルカン、不飽和脂肪族炭化水素等)または鎖状化合物から誘導される鎖状置換基(例えば、アルキル基、不飽和脂肪族炭化水素基等の炭化水素基)は、例えば、直鎖状でも分枝状でもよく、その炭素数は、特に限定されず、例えば、1~40、1~32、1~24、1~18、1~12、1~6、1~2であり、不飽和炭化水素基の場合、炭素数は、例えば、2~40、2~32、2~24、2~18、2~12、2~6である。本発明において、環状の化合物(例えば、環状飽和炭化水素、非芳香族環状不飽和炭化水素、芳香族炭化水素、ヘテロ芳香族化合物等)または環状の化合物から誘導される環状の基(例えば、環状飽和炭化水素基、非芳香族環状不飽和炭化水素基、アリール基、ヘテロアリール基等)の環員数(環を構成する原子の数)は、特に限定されず、例えば、5~32、5~24、6~18、6~12、または6~10である。置換基等に異性体が存在する場合、例えば、異性体の種類は、特に制限されず、具体例として、単に「ナフチル基」という場合は、例えば、1-ナフチル基でも2-ナフチル基でもよい。 In the present invention, a chain compound (eg, alkane, unsaturated aliphatic hydrocarbon, etc.) or a chain substituent derived from the chain compound (eg, an alkyl group, a hydrocarbon group such as an unsaturated aliphatic hydrocarbon group, etc.) ) May be, for example, linear or branched, and the number of carbon atoms is not particularly limited. For example, 1 to 40, 1 to 32, 1 to 24, 1 to 18, 1 to 12, 1 to 6 And in the case of an unsaturated hydrocarbon group, the number of carbon atoms is, for example, 2 to 40, 2 to 32, 2 to 24, 2 to 18, 2 to 12, and 2 to 6. In the present invention, a cyclic compound (for example, a cyclic saturated hydrocarbon, a non-aromatic cyclic unsaturated hydrocarbon, an aromatic hydrocarbon, a heteroaromatic compound, etc.) or a cyclic group derived from a cyclic compound (for example, cyclic The number of ring members (the number of atoms constituting the ring) of the saturated hydrocarbon group, the non-aromatic cyclic unsaturated hydrocarbon group, the aryl group, the heteroaryl group and the like is not particularly limited, and is, for example, 5 to 32, 5 to 24, 6 to 18, 6 to 12, or 6 to 10. When an isomer is present in a substituent or the like, for example, the type of the isomer is not particularly limited. As a specific example, when simply referred to as “naphthyl group”, for example, it may be a 1-naphthyl group or a 2-naphthyl group .
 本発明において、塩は、特に制限されず、例えば、酸付加塩でも、塩基付加塩でもよい。前記酸付加塩を形成する酸は、例えば、無機酸でも有機酸でもよく、前記塩基付加塩を形成する塩基は、例えば、無機塩基でも有機塩基でもよい。前記無機酸は、特に限定されず、例えば、硫酸、リン酸、フッ化水素酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜フッ素酸、次亜塩素酸、次亜臭素酸、次亜ヨウ素酸、亜フッ素酸、亜塩素酸、亜臭素酸、亜ヨウ素酸、フッ素酸、塩素酸、臭素酸、ヨウ素酸、過フッ素酸、過塩素酸、過臭素酸、および過ヨウ素酸等があげられる。前記有機酸は、特に限定されず、例えば、p-トルエンスルホン酸、メタンスルホン酸、シュウ酸、p-ブロモベンゼンスルホン酸、炭酸、コハク酸、クエン酸、安息香酸および酢酸等があげられる。前記無機塩基は、特に限定されず、例えば、水酸化アンモニウム、アルカリ金属水酸化物、アルカリ土類金属水酸化物、炭酸塩および炭酸水素塩等があげられ、より具体的には、例えば、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化カルシウムおよび炭酸カルシウム等があげられる。前記有機塩基は、特に限定されず、例えば、エタノールアミン、トリエチルアミンおよびトリス(ヒドロキシメチル)アミノメタン等があげられる。 In the present invention, the salt is not particularly limited, and may be, for example, an acid addition salt or a base addition salt. The acid forming the acid addition salt may be, for example, an inorganic acid or an organic acid, and the base forming the base addition salt may be, for example, an inorganic base or an organic base. The inorganic acid is not particularly limited, for example, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypofluoric acid, hypochlorous acid, hypobromous acid, Iodic acid, fluoric acid, chlorous acid, bromous acid, iodic acid, fluoric acid, chloric acid, bromic acid, iodic acid, perfluorinated acid, perchloric acid, perbronic acid, periodic acid, etc. can give. The organic acid is not particularly restricted but includes, for example, p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, p-bromobenzenesulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid and acetic acid. The inorganic base is not particularly limited and includes, for example, ammonium hydroxide, alkali metal hydroxide, alkaline earth metal hydroxide, carbonate, hydrogencarbonate and the like.More specifically, for example, water Examples include sodium oxide, potassium hydroxide, potassium carbonate, sodium carbonate, sodium bicarbonate, potassium bicarbonate, calcium hydroxide and calcium carbonate. The organic base is not particularly restricted but includes, for example, ethanolamine, triethylamine and tris (hydroxymethyl) aminomethane.
 以下、本発明の実施形態について、例をあげてさらに具体的に説明する。本発明は、以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described more specifically with examples. The present invention is not limited to the following embodiments.
 本発明の製造方法は、前述のように、ポリマーをハロゲン酸化物ラジカルと反応させる、表面処理工程、および、前記表面処理工程後の前記ポリマー(以下、処理済ポリマーともいう)の表面および被接着物の表面の少なくとも一方に、接着剤を塗布して、前記処理済ポリマーと前記被接着物とを接着する接着工程を含み、前記ポリマーが、主鎖に芳香環を有するポリマーであることを特徴とする。本発明の製造方法によれば、例えば、前記表面処理工程によって、前記ポリマーの表面を改質でき、これによって、前記接着工程における、前記接着剤を介した、前記処理済ポリマーと前記被接着物との接着性を向上し、前記処理済ポリマーと前記被接着物との接着性が向上して接着積層体を製造できる。 As described above, the production method of the present invention comprises a surface treatment step of reacting a polymer with a halogen oxide radical, and a surface and an adherend of the polymer (hereinafter also referred to as a treated polymer) after the surface treatment step. An adhesive is applied to at least one of the surfaces of the object to include an adhesive step of adhering the treated polymer and the object to be adhered, wherein the polymer is a polymer having an aromatic ring in its main chain. And According to the production method of the present invention, for example, the surface of the polymer can be modified by the surface treatment step, whereby the treated polymer and the adherend can be modified via the adhesive in the bonding step. And the adhesiveness between the treated polymer and the adherend is improved, so that an adhesive laminate can be manufactured.
(1) ポリマー
 本発明において、前記表面処理工程に供するポリマー(以下、処理前ポリマーともいう。)は、主鎖に芳香環を有するポリマーである。後述する表面処理工程によれば、例えば、前記ポリマーの主鎖に含まれる芳香環の側鎖が、改質される。前記芳香環の種類は、特に制限されず、例えば、ナフチレン基、アントラセニレン基、フェナントリレン基、クリセニレン基、ピレニレン基、ベンゾアントラセニレン基、フルオランテニレン基、ベンゾフルオランテニレン基、ペリレニレン基、コロネリレン基、ピセニレン基、ジフェニルアントラセニレン基、フルオレニレン基、トリフェニリレン基、ルビセニレン基、フェニルアントラセニレン基、ビスアントラセニレン基、ジアントラセニルベンジニレン基、ジベンゾアントラセニレン基等があげられ、好ましくは、ナフチレン基、アントラセニレン基、フェナントリレン基、クリセニレン基、ピレニレン基、ベンゾアントラセニレン基等があげられる。前記処理前ポリマーは、例えば、エンジニアプラスチックがあげられ、具体例として、液晶ポリマーがあげられる。
(1) Polymer In the present invention, a polymer to be subjected to the surface treatment step (hereinafter, also referred to as a polymer before treatment) is a polymer having an aromatic ring in a main chain. According to the surface treatment step described later, for example, the side chain of the aromatic ring contained in the main chain of the polymer is modified. The type of the aromatic ring is not particularly limited, for example, naphthylene group, anthracenylene group, phenanthrylene group, chrysenylene group, pyrenylene group, benzoanthracenylene group, fluoranthenylene group, benzofluoranthenylene group, peryleneylene group, colonelylene Group, a picenylene group, a diphenylanthracenylene group, a fluorenylene group, a triphenylenylene group, a rubicenylene group, a phenylanthracenylene group, a bisanthracenylene group, a dianthracenylbenzinylene group, a dibenzoanthracenylene group, and the like. Examples thereof include a naphthylene group, an anthracenylene group, a phenanthrylene group, a chrysenylene group, a pyrenylene group, and a benzoanthracenylene group. Examples of the polymer before treatment include engineering plastics, and specific examples include liquid crystal polymers.
 本発明は、中でも、前記液晶ポリマーへの適用に有用である。前記液晶ポリマーは、既存の接着剤による接着が極めて困難であることが知られている。前記液晶ポリマーは、例えば、接着剤によって化学的に前記被接着物に接着させることが困難であることから、前記液晶ポリマーの成形体について、物理的な処理で粗面化する等が必要であった。しかし、前記成形体の表面を粗面化しても、前記被接着物に対して前記接着剤により十分な接着力で接着させることが困難である。前記液晶ポリマー等は、例えば、微細な成形が可能であり、機能性にも優れることから、スマートフォン等の様々なデバイスへの利用が図られているが、接着性が大きな課題となっている。本発明によれば、例えば、前記液晶ポリマーであっても、前記表面処理工程を施すことによって、前記液晶ポリマーの表面を改質でき、これによって前記接着性が向上することから、前述のような物理的な処理も不要であり、また、十分な接着性も得ることができる。 The present invention is particularly useful for application to the liquid crystal polymer. It is known that the liquid crystal polymer is extremely difficult to bond with an existing adhesive. Since it is difficult for the liquid crystal polymer to be chemically bonded to the object to be bonded, for example, with an adhesive, it is necessary to roughen the molded body of the liquid crystal polymer by physical treatment. Was. However, even if the surface of the molded body is roughened, it is difficult to adhere to the adherend with a sufficient adhesive force with the adhesive. The liquid crystal polymer and the like, for example, can be finely molded and have excellent functionality, and thus have been used for various devices such as smartphones, but adhesion is a major issue. According to the present invention, for example, even with the liquid crystal polymer, by performing the surface treatment step, the surface of the liquid crystal polymer can be modified, thereby improving the adhesiveness. No physical treatment is required, and sufficient adhesiveness can be obtained.
 前記液晶ポリマーは、例えば、モノマーとしてパラヒドロキシ安息香酸を有するポリマーがあげられ、具体例として、下記式に示す基本構造があげられる。下記式において、例えば、タイプIは、フェノールとフタル酸とパラヒドロキシ安息香酸の重縮合体であり、タイプIIは、2,6-ヒドロキシナフトエ酸とパラヒドロキシ安息香酸との重縮合体であり、タイプIIIは、エチレンテレフタレートとパラヒドロキシ安息香酸との重縮合体である。下記式において、モノマー構造の繰り返し単位は、特に制限されない。
Figure JPOXMLDOC01-appb-C000001
Examples of the liquid crystal polymer include a polymer having parahydroxybenzoic acid as a monomer, and specific examples thereof include a basic structure represented by the following formula. In the following formula, for example, type I is a polycondensate of phenol, phthalic acid and parahydroxybenzoic acid, type II is a polycondensate of 2,6-hydroxynaphthoic acid and parahydroxybenzoic acid, Type III is a polycondensate of ethylene terephthalate and parahydroxybenzoic acid. In the following formula, the repeating unit of the monomer structure is not particularly limited.
Figure JPOXMLDOC01-appb-C000001
 前記処理前ポリマーは、例えば、前記液晶ポリマーの他に、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリフェニレンサルファイド(PPS)、ポリウレタン、芳香族ポリアミド等があげられる。 ポ リ マ ー Examples of the polymer before treatment include polycarbonate (PC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyurethane, and aromatic polyamide in addition to the liquid crystal polymer.
 前記処理前ポリマーに含まれるポリマーの種類は、特に制限されず、例えば、一種類でも、二種類以上の混合物でもよい。前記ポリマーは、例えば、ポリマーアロイ、ポリマーコンパウンドでもよい。 種類 The type of polymer contained in the polymer before treatment is not particularly limited, and may be, for example, one type or a mixture of two or more types. The polymer may be, for example, a polymer alloy or a polymer compound.
 前記処理前ポリマーは、例えば、流動性を有するポリマー、半固体状のポリマー、固体状のポリマーでもよい。前記処理前ポリマーは、例えば、室温以上の融点を有するポリマー、室温で固体状、結晶状またはアモルファス状のポリマー、0℃以上で固体状、結晶状またはアモルファス状のポリマー等があげられる。前記処理前ポリマーがガラス転移温度を有する場合、前記ガラス転移温度は、特に限定されず、例えば、-150℃以上である。前記処理前ポリマーは、例えば、結晶化度が相対的に高いものでもよく、前記結晶化度は、例えば、20%以上、30%以上、35%以上である。 The polymer before treatment may be, for example, a polymer having fluidity, a semi-solid polymer, or a solid polymer. Examples of the polymer before the treatment include a polymer having a melting point of room temperature or higher, a solid, crystalline or amorphous polymer at room temperature, and a solid, crystalline or amorphous polymer at 0 ° C. or higher. When the polymer before treatment has a glass transition temperature, the glass transition temperature is not particularly limited, and is, for example, −150 ° C. or higher. For example, the polymer before treatment may have a relatively high crystallinity, and the crystallinity is, for example, 20% or more, 30% or more, or 35% or more.
 前記処置前ポリマーの重合形態は、特に制限されず、例えば、単独重合体(ホモポリマー)でも、共重合体でもよい。前記共重合体は、特に限定されず、例えば、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体等があげられる。前記共重合体において、繰り返し単位(モノマー)は、例えば、2種類以上である。前記処理前ポリマーは、例えば、線状ポリマー、分岐状ポリマー、網目状ポリマー等があげられる。 The polymerization form of the polymer before treatment is not particularly limited, and may be, for example, a homopolymer (homopolymer) or a copolymer. The copolymer is not particularly limited, and examples thereof include a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer. In the copolymer, the number of repeating units (monomers) is, for example, two or more. Examples of the polymer before treatment include a linear polymer, a branched polymer, and a network polymer.
 前記処理前ポリマーは、例えば、さらに、その他の材料を含んでもよい。前記他の材料は、特に限定されず、例えば、一般的なポリマーに含有されている材料であり、無機物でも有機物でもよい。前記無機物は、例えば、炭酸カルシウム、クレイ、タルク、炭素繊維、ガラス繊維、アラミド繊維、シリコーン、酸化亜鉛等があげられる。前記他の材料は、例えば、難燃剤、帯電防止剤等の添加剤でもよい。 ポ リ マ ー The polymer before treatment may further contain, for example, other materials. The other material is not particularly limited, and is, for example, a material contained in a general polymer, and may be an inorganic substance or an organic substance. Examples of the inorganic substance include calcium carbonate, clay, talc, carbon fiber, glass fiber, aramid fiber, silicone, and zinc oxide. The other material may be, for example, an additive such as a flame retardant or an antistatic agent.
 前記処理前ポリマーの形態は、特に制限されず、成形体でも未成形体でもよい。前記成形体の場合、例えば、前記表面処理工程を施した後、そのまま、つぎの接着工程に供すればよい。また、前記処理前ポリマーが未成形体の場合、取り扱い性の点から、前記表面処理を施した前記未成形体のポリマー(処理済ポリマー)を、例えば、前記接着工程に先立って成形し、前記処理済ポリマーの成形体として、次の接着工程に供してもよい。前記未成形体は、例えば、ポリマーそのものであり、前記成形体は、例えば、前記ポリマーから成形された成形体である。 The form of the polymer before treatment is not particularly limited, and may be a molded article or an unmolded article. In the case of the molded article, for example, after performing the surface treatment step, it may be directly subjected to the next bonding step. In the case where the polymer before treatment is an unformed body, from the viewpoint of handleability, the polymer of the unformed body (treated polymer) subjected to the surface treatment is molded, for example, prior to the bonding step, and The polymer may be subjected to the following bonding step as a molded article. The unformed body is, for example, a polymer itself, and the formed body is, for example, a formed body formed from the polymer.
 前記成形体は、例えば、成形方法、形状等、何ら制限されない。前記成形体は、例えば、前記処理対象ポリマーを用いて、公知の方法により得ることができる。前記成形方法は、例えば、一般的に、ポリマーを熱溶融し、所望の形状に整え、冷却する等である。前記成形方法は、例えば、圧縮成形、トランスファ成形、押出成形、カレンダー成形、インフレーション成形、ブロー成形、真空成形、射出成形、注型成形等があげられる。 The molded body is not limited at all, for example, in a molding method, a shape and the like. The molded body can be obtained by a known method using, for example, the polymer to be treated. The molding method generally involves, for example, heat-melting a polymer, shaping the polymer into a desired shape, and cooling. Examples of the molding method include compression molding, transfer molding, extrusion molding, calendar molding, inflation molding, blow molding, vacuum molding, injection molding, casting molding, and the like.
 前記成形体の大きさおよび形状等は、特に制限されない。前記形状は、例えば、シート、フィルム、プレート、チューブ、パイプ、棒、ビーズ、ブロック、織布、不織布、糸、ファイバー等があげられ、例えば、非多孔体でも、多孔体でもよい。 大 き The size and shape of the compact are not particularly limited. Examples of the shape include a sheet, a film, a plate, a tube, a pipe, a rod, a bead, a block, a woven fabric, a nonwoven fabric, a thread, a fiber, and the like. For example, a nonporous body or a porous body may be used.
(2)ハロゲン酸化物ラジカル
 前記ハロゲン酸化物ラジカルは、ハロゲン酸化物のラジカルであって、その種類は特に制限されず、例えば、F(二フッ化酸素ラジカル)、F (二フッ化二酸素ラジカル)、ClO (二酸化塩素ラジカル)、BrO (二酸化臭素ラジカル)、I5 (酸化ヨウ素(V)ラジカル)等があげられる。
(2) Halogen oxide radical The halogen oxide radical is a radical of a halogen oxide, and its type is not particularly limited. For example, F 2 O · (oxygen difluoride radical), F 2 O 2 · (Dioxygen difluoride radical), ClO 2 · (chlorine dioxide radical), BrO 2 · (bromine dioxide radical), I 2 O 5 · (iodine oxide (V) radical) and the like.
 前記表面処理工程において使用する前記ハロゲン酸化物ラジカルは、例えば、一種類でもよいし、二種類以上を併用してもよい。前記ハロゲン酸化物ラジカルは、例えば、改質対象の処理前ポリマーの種類、反応条件等に応じて、適宜選択できる。 前 記 The halogen oxide radical used in the surface treatment step may be, for example, one type or a combination of two or more types. The halogen oxide radical can be appropriately selected depending on, for example, the type of the polymer to be modified and the reaction conditions.
(3)反応系
 前記表面処理工程は、例えば、前記処理前ポリマーを配置した反応系に、前記ハロゲン酸化物ラジカルを共存させることで行うことができる。前記処理前ポリマーは、前記ハロゲン酸化物を含む反応系に配置すればよい。前記ハロゲン酸化物ラジカルは、例えば、前記反応系において生成させることで、前記反応系に含ませてもよいし、別途生成させた前記ハロゲン酸化物ラジカルを前記反応系に導入してもよい。前記ハロゲン酸化物ラジカルの発生方法は、特に制限されず、具体例を後述する。前記反応系は、例えば、気体反応系でも、液体反応系でもよい。
(3) Reaction system The surface treatment step can be performed, for example, by allowing the halogen oxide radical to coexist in a reaction system in which the polymer before treatment is arranged. The polymer before treatment may be placed in a reaction system containing the halogen oxide. The halogen oxide radical may be included in the reaction system by being generated in the reaction system, for example, or the halogen oxide radical separately generated may be introduced into the reaction system. The method for generating the halogen oxide radical is not particularly limited, and a specific example will be described later. The reaction system may be, for example, a gas reaction system or a liquid reaction system.
 前記表面処理工程は、例えば、さらに、前記反応系に光照射を行ってもよいし、行わなくてもよい。前記表面処理工程において、例えば、前記反応系に光照射を行っても行わなくても、前記処理前ポリマーと前記ハロゲン酸化物ラジカルとを反応できる。後述するように、例えば、同じ反応系で、光照射により前記ハロゲン酸化物ラジカルを発生させる場合は、前記ハロゲン酸化物ラジカルの発生工程と前記表面処理工程とを並行して行えるため、光照射を行ってもよい。以下、光照射を行った例をあげて説明するが、本発明は、これには何ら制限されない。 In the surface treatment step, for example, the reaction system may or may not be irradiated with light. In the surface treatment step, for example, the polymer before treatment and the halogen oxide radical can be reacted with or without irradiating the reaction system with light. As will be described later, for example, when the halogen oxide radical is generated by light irradiation in the same reaction system, the halogen oxide radical generation step and the surface treatment step can be performed in parallel. May go. Hereinafter, an example in which light irradiation is performed will be described, but the present invention is not limited thereto.
(3-1)気体反応系
 前記気体反応系の場合、例えば、前記ハロゲン酸化物ラジカルを含む気体反応系中に、前記処理前ポリマーを配置し、光照射する。前記気体反応系における気相の種類は、特に制限されず、例えば、空気、窒素、希ガス、酸素等である。前記気体反応系を収容する反応器は、例えば、光照射を外部から行う場合、光透過性の容器が好ましく、光照射を内部から行う場合、光透過性の容器には限られない。
(3-1) Gas Reaction System In the case of the gas reaction system, for example, the polymer before treatment is arranged in a gas reaction system containing the halogen oxide radical, and irradiated with light. The type of the gas phase in the gas reaction system is not particularly limited, and is, for example, air, nitrogen, a rare gas, oxygen, or the like. The reactor accommodating the gas reaction system is preferably, for example, a light-transmitting container when light irradiation is performed from the outside, and is not limited to a light-transmitting container when light irradiation is performed from the inside.
 前記ハロゲン酸化物ラジカルは、前記表面処理工程に先立って、前記気体反応系に導入してもよいし、前記表面処理工程と同時に、前記気体反応系に導入してもよい。前記ハロゲン酸化物ラジカルの導入は、例えば、前記ハロゲン酸化物ラジカルを含むガスを気相に導入することで行える。具体例として、前記ハロゲン酸化物ラジカルが前記二酸化塩素ラジカルの場合、例えば、前記気相に二酸化塩素ガスを導入することによって、前記気体反応系に前記二酸化塩素ラジカルを含ませることができる。また、前記ハロゲン酸化物ラジカルの導入は、例えば、後述するように、液相のラジカル生成用反応系で前記ハロゲン酸化物ラジカルを発生させ、前記発生したハロゲン酸化物ラジカルを、気相に移行させることで、前記気体反応系に導入してもよい。 The halogen oxide radical may be introduced into the gas reaction system prior to the surface treatment step, or may be introduced into the gas reaction system simultaneously with the surface treatment step. The introduction of the halogen oxide radical can be performed, for example, by introducing a gas containing the halogen oxide radical into a gas phase. As a specific example, when the halogen oxide radical is the chlorine dioxide radical, for example, by introducing a chlorine dioxide gas into the gas phase, the gas reaction system can include the chlorine dioxide radical. In addition, the introduction of the halogen oxide radical is, for example, as described later, the halogen oxide radical is generated in a reaction system for radical generation in a liquid phase, and the generated halogen oxide radical is transferred to a gas phase. This may be introduced into the gas reaction system.
 前記ハロゲン酸化物ラジカルは、例えば、前記気体反応系において発生させてもよい。具体例として、前記ハロゲン酸化物ラジカルが二酸化塩素ラジカルの場合、例えば、電気化学的方法により気相中に発生させることもできる。 The halogen oxide radical may be generated, for example, in the gas reaction system. As a specific example, when the halogen oxide radical is a chlorine dioxide radical, it can be generated in a gas phase by, for example, an electrochemical method.
(3-2)液体反応系
 前記液体反応系は、例えば、有機相を含む。前記液体反応系は、例えば、前記有機相のみを含む一相反応系でも、前記有機相と水相とを含む二相反応系でもよい。
(3-2) Liquid reaction system The liquid reaction system includes, for example, an organic phase. The liquid reaction system may be, for example, a one-phase reaction system containing only the organic phase or a two-phase reaction system containing the organic phase and an aqueous phase.
 前記二相反応系の場合、例えば、前記水相で前記ハロゲン酸化物ラジカルを生成させ、生成した前記ハロゲン酸化物ラジカルを、前記有機相に移行させることで、前記有機相に前記ハロゲン酸化物ラジカルを導入してもよい。また、前記一相反応系の場合、例えば、別途、生成させた前記ハロゲン酸化物ラジカルを前記有機相に導入してもよい。具体的には、例えば、別途、水相で前記ハロゲン酸化物ラジカルを生成した後、前記水相に前記有機相を混合し、前記水相で生成したハロゲン酸化物ラジカルを前記有機相に溶解(抽出)し、前記水相と前記有機相とを分離し、前記ハロゲン酸化物ラジカルを含む有機相を、前記一相反応系として調製してもよい。 In the case of the two-phase reaction system, for example, the halogen oxide radical is generated in the aqueous phase, and the generated halogen oxide radical is transferred to the organic phase. May be introduced. In the case of the one-phase reaction system, for example, the generated halogen oxide radical may be separately introduced into the organic phase. Specifically, for example, after separately generating the halogen oxide radical in an aqueous phase, mixing the organic phase with the aqueous phase, and dissolving the halogen oxide radical generated in the aqueous phase in the organic phase ( Extraction), separating the aqueous phase and the organic phase, and preparing the organic phase containing the halogen oxide radical as the one-phase reaction system.
 前記液体反応系の場合、例えば、前記ハロゲン酸化物ラジカルを含む有機相中に、前記処理前ポリマーを配置し、光照射する。前記液体反応系を収容する反応器は、例えば、光照射を外部から行う場合、光透過性の容器が好ましく、光照射を内部から行う場合、光透過性の容器には限られない。 、 In the case of the liquid reaction system, for example, the polymer before treatment is arranged in an organic phase containing the halogen oxide radical, and irradiated with light. The reactor accommodating the liquid reaction system is preferably, for example, a light-transmitting container when light irradiation is performed from the outside, and is not limited to a light-transmitting container when light irradiation is performed from the inside.
 前記処理前ポリマーは、例えば、処理の効率の点から、例えば、改質させる所望の領域が、前記有機相中の前記ハロゲン酸化物ラジカルと接触するように、前記有機相に浸漬させ、前記有機相中から露出しないように、前記有機相中に固定することが好ましい。 The polymer before treatment is immersed in the organic phase so that, for example, a desired region to be modified comes into contact with the halogen oxide radicals in the organic phase, for example, from the viewpoint of treatment efficiency, It is preferable to fix in the organic phase so as not to be exposed from the phase.
 前記有機相は、例えば、有機溶媒である。前記有機溶媒は、例えば、1種類のみ用いてもよいし、2種類以上を併用してもよい。前記有機溶媒は、特に制限されず、例えば、ハロゲン化溶媒、フルオラス溶媒等があげられる。前記液体反応系が前記二相反応系の場合、前記有機溶媒は、例えば、前記水相を構成する水性溶媒と分離する溶媒、前記水性溶媒に難溶性または非溶性の溶媒が好ましい。 The organic phase is, for example, an organic solvent. As the organic solvent, for example, only one kind may be used, or two or more kinds may be used in combination. The organic solvent is not particularly limited, and examples thereof include a halogenated solvent and a fluorous solvent. When the liquid reaction system is the two-phase reaction system, the organic solvent is preferably, for example, a solvent that separates from the aqueous solvent constituting the aqueous phase, or a solvent that is hardly soluble or insoluble in the aqueous solvent.
 「ハロゲン化溶媒」は、例えば、炭化水素の水素原子の全てまたは大部分が、ハロゲンに置換された溶媒をいう。前記ハロゲン化溶媒は、例えば、炭化水素の水素原子数の50%以上、60%以上、70%以上、80%以上、または90%以上が、ハロゲンに置換された溶媒でもよい。前記ハロゲン化溶媒は、特に限定されず、例えば、塩化メチレン、クロロホルム、四塩化炭素、四臭化炭素、および後述するフルオラス溶媒等があげられる。 << "Halogenated solvent" refers to, for example, a solvent in which all or most of the hydrogen atoms of a hydrocarbon have been substituted with halogens. The halogenated solvent may be, for example, a solvent in which 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more of the number of hydrogen atoms of a hydrocarbon is substituted with a halogen. The halogenated solvent is not particularly limited, and examples thereof include methylene chloride, chloroform, carbon tetrachloride, carbon tetrabromide, and a fluorous solvent described below.
 「フルオラス溶媒」は、前記ハロゲン化溶媒の1種であり、例えば、炭化水素の水素原子の全てまたは大部分がフッ素原子に置換された溶媒をいう。前記フルオラス溶媒は、例えば、炭化水素の水素原子数の50%以上、60%以上、70%以上、80%以上、または90%以上がフッ素原子に置換された溶媒でもよい。前記フルオラス溶媒は、例えば、前記溶媒自体の反応性が低いため、副反応を、より抑制または防止できる。前記副反応は、例えば、前記溶媒の酸化反応、前記ハロゲン酸化物ラジカルによる前記溶媒の水素引き抜き反応またはハロゲン化反応(例えば、塩素化反応)、および、後述するような、前記処理前ポリマー由来のラジカルと前記溶媒との反応(例えば、前記処理前ポリマーの側鎖または末端の炭化水素基がエチル基の場合、エチルラジカルと前記溶媒との反応)等があげられる。前記フルオラス溶媒は、水と混和しにくいため、例えば、前記二相反応系の形成に適している。 "Fluorous solvent" is one kind of the above-mentioned halogenated solvents, and refers to, for example, a solvent in which all or most of the hydrogen atoms of a hydrocarbon are substituted with fluorine atoms. The fluorous solvent may be, for example, a solvent in which 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more of the hydrogen atoms of the hydrocarbon are substituted with fluorine atoms. The fluorous solvent has, for example, a low reactivity of the solvent itself, so that a side reaction can be further suppressed or prevented. The side reaction is, for example, an oxidation reaction of the solvent, a hydrogen abstraction reaction or a halogenation reaction of the solvent with the halogen oxide radical (for example, a chlorination reaction), and a polymer derived from the polymer before treatment, as described later. A reaction between a radical and the solvent (for example, when the hydrocarbon group on the side chain or terminal of the polymer before treatment is an ethyl group, a reaction between an ethyl radical and the solvent) and the like. Since the fluorous solvent is hardly miscible with water, it is suitable for forming the two-phase reaction system, for example.
 前記フルオラス溶媒は、例えば、下記化学式(F1)~(F6)で表される溶媒等があげられ、下記化学式(F1)におけるn=4のCF(CFCF等が好ましい。 Examples of the fluorous solvent include solvents represented by the following chemical formulas (F1) to (F6), and preferably CF 3 (CF 2 ) 4 CF 3 where n = 4 in the following chemical formula (F1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記有機溶媒の沸点は、特に限定されない。前記有機溶媒は、例えば、前記表面処理工程の温度条件によって、適宜選択できる。前記表面処理工程において、反応温度を相対的に高温に設定する場合、前記有機溶媒は、例えば、相対的に高い沸点の溶媒を選択してもよい。本発明において、前記表面処理工程は、例えば、後述するように、加熱が必須ではなく、例えば、常温常圧で行える。このため、前記有機溶媒は、例えば、取扱い易さの観点から、沸点が相対的に高くない溶媒が使用できる。 沸 The boiling point of the organic solvent is not particularly limited. The organic solvent can be appropriately selected depending on, for example, the temperature conditions in the surface treatment step. When the reaction temperature is set to a relatively high temperature in the surface treatment step, for example, a solvent having a relatively high boiling point may be selected as the organic solvent. In the present invention, in the surface treatment step, for example, as described later, heating is not essential, and can be performed, for example, at normal temperature and normal pressure. For this reason, as the organic solvent, for example, a solvent having a relatively high boiling point can be used from the viewpoint of easy handling.
 前記有機相は、例えば、前記処理前ポリマー、前記ハロゲン酸化物ラジカルおよび前記有機溶媒のみを含んでもよいし、さらに、他の成分を含んでもよい。前記他の成分は、特に限定されず、例えば、ブレーンステッド酸、ルイス酸、および酸素(O)等があげられる。前記有機相において、前記他の成分は、例えば、前記有機溶媒に溶解した状態でもよいし、溶解していない状態でもよい。後者の場合、前記他の成分は、例えば、前記有機溶媒に、分散された状態でもよいし、沈殿した状態でもよい。 The organic phase may contain, for example, only the polymer before treatment, the halogen oxide radical and the organic solvent, or may further contain other components. The other components are not particularly limited, and include, for example, Bronsted acid, Lewis acid, oxygen (O 2 ), and the like. In the organic phase, the other component may be, for example, in a state of being dissolved in the organic solvent or in a state of not being dissolved. In the latter case, for example, the other component may be dispersed or precipitated in the organic solvent.
 前記水相は、例えば、水性溶媒の相である。前記水性溶媒は、例えば、前記有機相で使用する溶媒と分離する溶媒である。前記水性溶媒は、例えば、HO、DO等の水があげられる。 The aqueous phase is, for example, an aqueous solvent phase. The aqueous solvent is, for example, a solvent that separates from the solvent used in the organic phase. Examples of the aqueous solvent include water such as H 2 O and D 2 O.
 前記水相は、例えば、ルイス酸、ブレーンステッド酸、ラジカル発生源等の任意の成分を含んでもよい。前記水相において、これらの任意の成分は、例えば、前記水性溶媒に溶解した状態でもよいし、溶解していない状態でもよい。後者の場合、前記任意の成分は、例えば、前記水性溶媒に、分散された状態でもよいし、沈殿した状態でもよい。 The aqueous phase may contain, for example, an arbitrary component such as a Lewis acid, a Bronsted acid, and a radical generating source. In the aqueous phase, these optional components may be, for example, in a state of being dissolved in the aqueous solvent or in a state of not being dissolved. In the latter case, for example, the optional component may be in a dispersed state or a precipitated state in the aqueous solvent.
(4)表面処理工程
 前記表面処理工程は、前述のとおり、前記処理前ポリマーをハロゲン酸化物ラジカルと反応させて、その表面が改質された処理済ポリマー(以下、改質ポリマーともいう)を得る工程である。本発明の表面処理工程によれば、前記処理前ポリマーの表面を前記ハロゲン酸化物ラジカルと反応させることで、前記処理前ポリマーの表面が改質された改質ポリマーが得られる。前記改質ポリマーの改質の程度(例えば、酸化の程度)は、例えば、前記ハロゲン酸化物ラジカルの量、光照射の時間の長さ等により調整できる。また、前記改質ポリマーの改質の程度を調整することで、例えば、過剰な改質による前記改質ポリマーにおけるポリマーの分解を抑制でき、前記改質ポリマーにおける前記処理前ポリマーが本来有する特性を維持できる。
(4) Surface Treatment Step As described above, the surface treatment step comprises reacting the polymer before treatment with a halogen oxide radical to form a treated polymer having a modified surface (hereinafter also referred to as a modified polymer). This is the step of obtaining. According to the surface treatment step of the present invention, the surface of the polymer before treatment is reacted with the halogen oxide radical to obtain a modified polymer in which the surface of the polymer before treatment is modified. The degree of modification (for example, the degree of oxidation) of the modified polymer can be adjusted by, for example, the amount of the halogen oxide radical, the length of time of light irradiation, and the like. Further, by adjusting the degree of modification of the modified polymer, for example, it is possible to suppress the decomposition of the polymer in the modified polymer due to excessive modification, the characteristics inherent to the polymer before treatment in the modified polymer Can be maintained.
 前記処理前ポリマーにおいて表面処理する領域は、特に制限されず、例えば、前記成形体の場合、後の接着工程において、前記被接着物と接触させる領域を含めばよい。これによって、前記成形体の前記領域を改質できるため、前記接着剤を介した前記被接着物との接着性を向上できる。 領域 A region to be surface-treated in the polymer before treatment is not particularly limited. For example, in the case of the molded body, a region to be brought into contact with the adherend may be included in a subsequent bonding step. Thereby, since the region of the molded body can be modified, the adhesiveness to the adherend via the adhesive can be improved.
 前記表面処理工程において、例えば、前記ハロゲン酸化物ラジカルから、前記ハロゲンのラジカル(例えば、塩素原子ラジカルCl)および酸素分子Oが発生し、前記処理前ポリマーに対する改質反応(例えば、酸化反応)を行い、前記ポリマーを改質できる。 In the surface treatment step, for example, from the halogen oxide radicals, radicals of the halogen (e.g., chlorine atom radical Cl ·) and oxygen molecules O 2 are generated, the reforming reaction (e.g., relative to the pretreatment polymer, oxidation reaction ) To modify the polymer.
 前記表面処理工程により、前記処理前ポリマーは、例えば、側鎖が変化しても、主鎖(直鎖)が変化してもよい。主鎖の変化は、例えば、主鎖の末端の変化でも、主鎖の内部の変化でもよい。前記変化(改変ともいう)は、例えば、酸化、ハロゲン化等があげられる。例えば、前記主鎖は、炭素原子および/またはヘテロ原子の連鎖であり、前記側鎖は、主鎖から枝分かれした鎖(分岐鎖)であり、具体的には、主鎖を構成する炭素原子またはヘテロ原子に連結した、前記主鎖から枝分かれした鎖である。 に よ り By the surface treatment step, the pre-treatment polymer may have, for example, a change in a side chain or a change in a main chain (straight chain). The change in the main chain may be, for example, a change in the end of the main chain or a change in the inside of the main chain. The change (also referred to as modification) includes, for example, oxidation, halogenation, and the like. For example, the main chain is a chain of carbon atoms and / or heteroatoms, and the side chain is a chain (branched chain) branched from the main chain, and specifically, a carbon atom or a carbon atom constituting the main chain. A chain branched from the main chain, linked to a hetero atom.
 具体例として、前記処理前ポリマーが、主鎖の芳香環としてベンゼン環を有する場合、前記ベンゼン環の=CH-の水素が、水酸基(-OH)に酸化される。これは、以下のメカニズムが推測される。すなわち、例えば、前記処理前ポリマーにおける前記芳香環(ベンゼン環)部位から、二酸化塩素の光励起状態へ電子移動が起こり、その後、反応系中の水由来の水酸化物イオン(OH)の付加反応と脱水素反応とが起こる。その結果、前記芳香環(ベンゼン環)が水酸化され、フェノール基(=C-OH)となる。 As a specific example, when the polymer before treatment has a benzene ring as an aromatic ring of the main chain, hydrogen of CHCH— of the benzene ring is oxidized to a hydroxyl group (—OH). This is presumed to be due to the following mechanism. That is, for example, electron transfer occurs from the aromatic ring (benzene ring) site in the polymer before treatment to a photoexcited state of chlorine dioxide, and thereafter, an addition reaction of a hydroxide ion (OH ) derived from water in the reaction system. And a dehydrogenation reaction occur. As a result, the aromatic ring (benzene ring) is hydroxylated to form a phenol group (= C-OH).
 前記表面処理工程において、光照射の条件は、特に制限されない。照射光の波長は、特に限定されず、下限は、例えば、200nm以上であり、上限は、例えば、800nm以下であり、光照射時間は、特に限定されず、下限は、例えば、1秒以上であり、上限は、例えば、1000時間以下であり、反応温度は、特に限定されず、下限は、例えば、-20℃以上であり、上限は、例えば、100℃以下、40℃以下であり、範囲は、例えば、0~100℃、0~40℃である。反応時の雰囲気圧は、特に限定されず、下限は、例えば、0.1MPa以上であり、上限は、例えば、100MPa以下、10MPa以下、0.5MPa以下、であり、範囲は、例えば、0.1~100MPa、0.1~10MPa、0.1~0.5MPaである。前記表面処理工程の反応条件は、例えば、温度0~100℃または0~40℃、圧力0.1~0.5MPaが例示できる。本発明において、前記表面処理工程は、例えば、加熱、加圧、減圧等を行うことなく、常温(室温)および常圧(大気圧)下で行うことができ、また、他の工程も同様である。「室温」とは、特に限定されず、例えば、5~35℃である。このため、前記処理前ポリマーが、例えば、耐熱性が低いポリマーを含んでいても、本発明を適用可能である。本発明によれば、例えば、不活性ガス置換等を行うことなく、大気中で、前記表面処理工程またはそれを含めた全ての工程を行なうこともできる。 に お い て In the surface treatment step, conditions for light irradiation are not particularly limited. The wavelength of the irradiation light is not particularly limited, the lower limit is, for example, 200 nm or more, the upper limit is, for example, 800 nm or less, the light irradiation time is not particularly limited, and the lower limit is, for example, 1 second or more. Yes, the upper limit is, for example, 1000 hours or less, the reaction temperature is not particularly limited, the lower limit is, for example, -20 ° C or more, and the upper limit is, for example, 100 ° C or less, 40 ° C or less. Is, for example, 0 to 100 ° C. and 0 to 40 ° C. The atmosphere pressure during the reaction is not particularly limited, and the lower limit is, for example, 0.1 MPa or more, and the upper limit is, for example, 100 MPa or less, 10 MPa or less, 0.5 MPa or less. The pressure is 1 to 100 MPa, 0.1 to 10 MPa, and 0.1 to 0.5 MPa. The reaction conditions in the surface treatment step include, for example, a temperature of 0 to 100 ° C. or 0 to 40 ° C., and a pressure of 0.1 to 0.5 MPa. In the present invention, the surface treatment step can be performed, for example, at normal temperature (room temperature) and normal pressure (atmospheric pressure) without performing heating, pressurizing, depressurizing, and the like. is there. “Room temperature” is not particularly limited, and is, for example, 5 to 35 ° C. For this reason, the present invention is applicable even if the polymer before treatment contains, for example, a polymer having low heat resistance. According to the present invention, for example, the surface treatment step or all the steps including the same can be performed in the air without performing inert gas replacement or the like.
 前記光照射の光源は、特に限定されず、例えば、太陽光等の自然光に含まれる可視光が利用できる。自然光を利用すれば、例えば、励起を簡便に行うことができる。前記光源は、例えば、前記自然光に代えて、または前記自然光に加え、キセノンランプ、ハロゲンランプ、蛍光灯、水銀ランプ、LEDランプ等の光源を使用してもよい。前記光照射は、例えば、さらに、必要波長以外の波長をカットするフィルターを適宜用いてもよい。 The light source for the light irradiation is not particularly limited, and for example, visible light contained in natural light such as sunlight can be used. If natural light is used, for example, excitation can be easily performed. As the light source, for example, a light source such as a xenon lamp, a halogen lamp, a fluorescent lamp, a mercury lamp, and an LED lamp may be used instead of or in addition to the natural light. For the light irradiation, for example, a filter that cuts a wavelength other than the necessary wavelength may be appropriately used.
 前記表面処理工程は、例えば、前記処理前ポリマーに対して、任意の領域にのみに光照射を行ってもよい。前述のように、前記表面処理工程によれば、例えば、光照射下、前記処理前ポリマーの露出面にハロゲン酸化物が接触することで、前記露出面について、改質を行うことができる。このため、例えば、前記処理前ポリマーの露出表面について、任意の領域のみに光照射を行うことで、例えば、前記任意の領域のみを改質できる。選択的な光照射の制御方法は、特に制限されず、例えば、任意の領域のみに光照射してもよいし、光照射しない領域のみマスキングして、全体に光照射してもよい。 In the surface treatment step, for example, the polymer before treatment may be irradiated with light only to an arbitrary region. As described above, according to the surface treatment step, for example, the exposed surface of the polymer before treatment is contacted with a halogen oxide under light irradiation, so that the exposed surface can be modified. Therefore, for example, by irradiating only an arbitrary region on the exposed surface of the polymer before treatment, for example, only the arbitrary region can be modified. The method for selectively controlling light irradiation is not particularly limited. For example, light irradiation may be performed only on an arbitrary region, or masking may be performed only on a region that is not irradiated with light, and the entire region may be irradiated with light.
 前記表面処理工程は、前述のように、前記液体反応系で行っても、気体反応系で行ってもよく、前記処理前ポリマーが、液体媒体に溶解し易い場合、例えば、前記気相反応系が好ましい。前記反応系が前記液体反応系の場合、前記表面処理工程において、例えば、少なくとも前記有機相に光照射する。前記一相反応系の場合、例えば、前記有機相に光照射することで、前記表面処理工程を実施できる。前記二相反応系の場合、例えば、前記有機相および前記水相のうち、前記有機相のみに光照射してもよいし、前記有機相と前記水相の両方に光照射してもよい。前記液体反応系の場合、例えば、前記液体反応系を空気に接触させながら、前記液体反応系に光照射してもよく、前記二相反応系の場合、前記水相に酸素が溶解した状態で光照射してもよい。 As described above, the surface treatment step may be performed in the liquid reaction system, or may be performed in a gas reaction system. When the polymer before treatment is easily dissolved in a liquid medium, for example, the gas phase reaction system Is preferred. When the reaction system is the liquid reaction system, in the surface treatment step, for example, at least the organic phase is irradiated with light. In the case of the one-phase reaction system, for example, the surface treatment step can be performed by irradiating the organic phase with light. In the case of the two-phase reaction system, for example, of the organic phase and the aqueous phase, only the organic phase may be irradiated with light, or both the organic phase and the aqueous phase may be irradiated with light. In the case of the liquid reaction system, for example, while contacting the liquid reaction system with air, the liquid reaction system may be irradiated with light, and in the case of the two-phase reaction system, oxygen is dissolved in the aqueous phase. Light irradiation may be performed.
 前記表面処理工程において、前記処理前ポリマーは、例えば、前記反応系に含まれる前記ハロゲン酸化物ラジカルに接触する露出面を有していることが好ましい。前記処理前ポリマーにおける露出面は、例えば、前記処理前ポリマーの外部に露出した表面でも、チューブや多孔体等のように、内部において露出した表面でもよい。前記表面処理工程は、例えば、表面改質工程ともいえる。 In the surface treatment step, the polymer before treatment preferably has, for example, an exposed surface that comes into contact with the halogen oxide radical contained in the reaction system. The exposed surface of the polymer before treatment may be, for example, a surface exposed to the outside of the polymer before treatment, or a surface exposed inside such as a tube or a porous body. The surface treatment step can be said to be, for example, a surface modification step.
 前記表面処理工程によれば、例えば、有毒な重金属触媒等を用いずに、前記処理前ポリマーを改質でき、また、前述のように、例えば、極めて温和な条件下で反応が行える。このため、前記表面処理工程によれば、例えば、環境への負荷がきわめて小さい方法で、前記ポリマー層の改質を、効率よく行える。 According to the surface treatment step, for example, the polymer before treatment can be modified without using a toxic heavy metal catalyst or the like, and the reaction can be performed, for example, under extremely mild conditions as described above. For this reason, according to the surface treatment step, for example, the polymer layer can be efficiently modified by a method having a very small load on the environment.
 前記表面処理工程の後、続く接着工程の前、さらに、後述するように、前記改質ポリマーの改質された領域に、官能基を導入する工程を含んでもよい。本発明によれば、前記表面処理によって、改質されるため、例えば、使用する接着剤に応じて、前記接着剤に親和性を示す官能基を導入することで、より接着性を向上することもできる。 The method may further include a step of introducing a functional group into the modified region of the modified polymer after the surface treatment step, before the subsequent bonding step, and as described later. According to the present invention, since the surface treatment is modified, for example, according to the adhesive used, by introducing a functional group showing an affinity to the adhesive, to further improve the adhesiveness You can also.
(5)接着工程
 前記接着工程は、前記表面処理工程後の前記改質ポリマーの表面および被接着物の表面の少なくとも一方に、接着剤を塗布して、前記ポリマーと前記被接着物とを接着する。本発明によれば、前述のように、前記表面処理工程により前記ポリマーを改質できるため、例えば、接着剤を塗布しても前記被接着物と接着できなかったポリマーについて、前記接着剤との親和性が向上し、前記接着剤による前記被接着物との接着が可能になる。前記被接着物および前記接着剤は、特に制限されず、後述のようなものが例示できる。
(5) Adhering step In the adhering step, an adhesive is applied to at least one of the surface of the modified polymer after the surface treatment step and the surface of the adherend, and the polymer is adhered to the adherend. I do. According to the present invention, as described above, since the polymer can be modified by the surface treatment step, for example, for a polymer that could not adhere to the adherend even if an adhesive was applied, The affinity is improved, and the adhesion with the adherend by the adhesive becomes possible. The adherend and the adhesive are not particularly limited, and examples thereof include those described below.
 前記接着剤は、前記改質ポリマーと前記被接着物のいずれの表面に塗布してもよく、両方に塗布してもよい。前記改質ポリマーの表面に塗布する場合、例えば、前記接着剤は、前記被接着物と接触する領域であって、前記表面処理工程によって改質された領域に塗布し、前記被接着物の表面に塗布する場合、例えば、前記接着剤は、前記改質ポリマーの表面における前記改質された領域と接触する領域に塗布する。 The adhesive may be applied to either the surface of the modified polymer or the adherend, or may be applied to both. When applied to the surface of the modified polymer, for example, the adhesive is applied to a region that is in contact with the adherend and is modified by the surface treatment step, and the surface of the adherend is When the adhesive is applied, for example, the adhesive is applied to a region of the surface of the modified polymer that comes into contact with the modified region.
 前記接着剤を塗布した後、例えば、前記改質ポリマーと前記被接着体とを前記接着剤を介して接触させ、圧着すればよい。前記改質ポリマーと前記被接着体との接触は、例えば、前記接着剤を塗布後、塗布した前記接着剤が完全に硬化する前に、行うことが好ましい。 後 After applying the adhesive, for example, the modified polymer and the adherend may be brought into contact with each other via the adhesive and pressed. The contact between the modified polymer and the adherend is preferably performed, for example, after applying the adhesive and before the applied adhesive is completely cured.
 前記圧着において、圧力は、特に限定されず、下限は、例えば、0.1MPa以上、0.5MPa以上、1MPa以上、5MPa以上、または10MPa以上であり、上限は、例えば、100MPa以下、50MPa以下、40MPa以下、30MPa以下、または25MPa以下である。圧力をかける時間は、特に限定されず、例えば、下限は、0.01分間以上、0.1分間以上、3分間以上、5分間以上、または10分間以上、上限は、60分間以下、45分間以下、30分間以下、または20分間以下である。圧着方法は、特に限定されず、例えば、ローラーによる圧着、手による圧着等でもよい。 In the pressure bonding, the pressure is not particularly limited, and the lower limit is, for example, 0.1 MPa or more, 0.5 MPa or more, 1 MPa or more, 5 MPa or more, or 10 MPa or more, and the upper limit is, for example, 100 MPa or less, 50 MPa or less, It is 40 MPa or less, 30 MPa or less, or 25 MPa or less. The time for applying pressure is not particularly limited. For example, the lower limit is 0.01 minutes or more, 0.1 minutes or more, 3 minutes or more, 5 minutes or more, or 10 minutes or more, and the upper limit is 60 minutes or less, 45 minutes. Hereinafter, it is 30 minutes or less, or 20 minutes or less. The pressing method is not particularly limited, and may be, for example, pressing by a roller, pressing by hand, or the like.
 このようにして得られる前記ポリマーと前記被接着物との接着積層体において、例えば、前記ポリマーと前記被接着物との剥離力は、特に制限されない。前記剥離力の下限は、例えば、0.001N/mm以上、0.01N/mm以上、0.1N/mm以上、1N/mm以上、5N/mm以上、または10N/mm以上であり、その上限は、例えば、1000N/mm以下、500N/mm以下、100N/mm以下、50N/mm以下、または20N/mm以下である。 In the thus obtained adhesive laminate of the polymer and the object to be bonded, for example, the peeling force between the polymer and the object to be bonded is not particularly limited. The lower limit of the peel force, for example, 0.001 N / mm 2 or more, 0.01 N / mm 2 or more, 0.1 N / mm 2 or more, 1N / mm 2 or more, 5N / mm 2 or more, or 10 N / mm 2 The upper limit is, for example, 1000 N / mm 2 or less, 500 N / mm 2 or less, 100 N / mm 2 or less, 50 N / mm 2 or less, or 20 N / mm 2 or less.
(6)接着剤
 前記接着剤は、特に限定されず、様々な接着剤が利用できる。前記前処理工程によれば、例えば、前記改質ポリマーは、ハロゲン酸化物ラジカルとの反応によって、改質(例えば、酸化)される。このため、前記改質ポリマーの表面に含まれる改質により形成された官能基(例えば、ヒドロキシ基等)によって、前記接着剤との親和性を向上することができる。接着剤は、特に限定されず、市販のものを用いてもよい。
(6) Adhesive The adhesive is not particularly limited, and various adhesives can be used. According to the pretreatment step, for example, the modified polymer is modified (for example, oxidized) by a reaction with a halogen oxide radical. For this reason, the affinity with the adhesive can be improved by the functional group (for example, a hydroxy group) formed by the modification contained in the surface of the modified polymer. The adhesive is not particularly limited, and a commercially available adhesive may be used.
 前記接着剤は、例えば、水親和性の接着剤があげられる。前記改質ポリマーが、改質(例えば、酸化)により官能基(例えば、ヒドロキシ基等)を有する場合、例えば、前記水親和性の接着剤が好ましい。前記接着剤は、例えば、水を開始剤として重合するモノマーを含んでもよい。前記モノマーは、特に限定されず、例えば、シアノアクリレートモノマー等である。前記シアノアクリレートモノマーを有する接着剤は、例えば、アロンアルファ(商品名、東亞合成株式会社製)、セメダインC(商品名、セメダイン株式会社)等があげられる。 The adhesive is, for example, a water-friendly adhesive. When the modified polymer has a functional group (for example, a hydroxy group) by modification (for example, oxidation), for example, the water-adhesive is preferable. The adhesive may include, for example, a monomer that polymerizes with water as an initiator. The monomer is not particularly limited, and is, for example, a cyanoacrylate monomer. Examples of the adhesive having the cyanoacrylate monomer include Alon Alpha (trade name, manufactured by Toagosei Co., Ltd.) and Cemedine C (trade name, Cemedine Co., Ltd.).
 前記接着剤は、これらの例には制限されず、例えば、エポキシ系接着剤、酢酸ビニル樹脂系接着剤、ゴム系接着剤、ユリア樹脂系接着剤、メラミン樹脂系接着剤、フェノール樹脂系接着剤、酢酸ビニル樹脂系接着剤、EVA樹脂系エマルジョン形接着剤、アクリル樹脂系エマルジョン形接着剤、水性高分子─イソシアネート系接着剤、エポキシ樹脂系接着剤、シアノアクリレート系接着剤、酢酸ビニル樹脂系接着剤、ポリウレタン系接着剤、変性シリコーン系接着剤、シリル化ウレタン系接着剤、ニトロセルロース系接着剤、でんぷん系接着剤、ポリビニルアルコール系接着剤、ポリビニルピロリドン系接着剤、ビニル樹脂系接着剤、スチレン樹脂系接着剤、シリコーン樹脂系接着剤、ポルトランドセメント、しっくい、せっこう、マグネシウムセメント、リサージセメント、歯科用セメント、アスファルト、にかわ、カゼイン、大豆蛋白等も使用できる。前記改質ポリマーは、前述のように、改質後、さらに官能基を導入できるため、使用する接着剤に応じて、適宜、前記官能基を導入することで、より接着性を向上できる。 The adhesive is not limited to these examples, and includes, for example, an epoxy adhesive, a vinyl acetate resin adhesive, a rubber adhesive, a urea resin adhesive, a melamine resin adhesive, and a phenol resin adhesive. , Vinyl acetate resin adhesive, EVA resin emulsion adhesive, acrylic resin emulsion adhesive, aqueous polymer-isocyanate adhesive, epoxy resin adhesive, cyanoacrylate adhesive, vinyl acetate resin adhesive Agents, polyurethane adhesives, modified silicone adhesives, silylated urethane adhesives, nitrocellulose adhesives, starch adhesives, polyvinyl alcohol adhesives, polyvinylpyrrolidone adhesives, vinyl resin adhesives, styrene Resin adhesives, silicone resin adhesives, Portland cement, plaster, plaster, magne Umm cement, litharge cement, dental cement, asphalt, glue, casein, also soy protein and the like can be used. As described above, since the modified polymer can further introduce a functional group after the modification, the adhesiveness can be further improved by appropriately introducing the functional group according to the adhesive to be used.
(7)被接着体
 前記被接着物は、特に限定されず、例えば、金属、ポリマー、セラミック、ガラス、布、紙等があげられる。前記金属は、特に限定されず、例えば、アルミニウム、ニッケル、鉄、金、銀、銅等、また、ジュラルミン、高張力鋼、ステンレス鋼などの合金等があげられる。前記ポリマーは、例えば、前記処理前ポリマーと同じポリマーでもよいし、その他の異なるポリマーでもよい。前記セラミックは、特に限定されず、例えば、ジルコニア、酸化アルミニウム、フェライト、チタン酸バリウム、窒化ホウ素、炭化ケイ素、窒化ケイ素、ステアタイト等があげられる。
(7) Object to be adhered The object to be adhered is not particularly limited, and examples thereof include metal, polymer, ceramic, glass, cloth, and paper. The metal is not particularly limited, and examples thereof include aluminum, nickel, iron, gold, silver, copper, and the like, and alloys such as duralumin, high-tensile steel, and stainless steel. The polymer may be, for example, the same polymer as the pre-treatment polymer or another different polymer. The ceramic is not particularly limited, and examples thereof include zirconia, aluminum oxide, ferrite, barium titanate, boron nitride, silicon carbide, silicon nitride, and steatite.
 前記他のポリマーは、特に限定されず、例えば、ポリオレフィン、ポリ塩化ビニル、ポリスチレン、ポリ乳酸、ポリヒドロキシ酪酸、シリコーン系ポリマー、天然ゴム、フェノール樹脂、エポキシ樹脂、ジアリルフタレート樹脂、ポリカーボネート(PC)、アクリル系ポリマー、ポリジメチルシロキサン(PDMS)、非晶ポリアリレート等のポリアリレート、ポリエーテルスルホン、ポリパラフェニレンビニレン、ポリチオフェン、ポリフルオレン、ポリフェニレンサルファイド(PPS)、液晶性ポリエステル、ポリパラフェニレン(PPP)、PEDOT(ポリ(3,4-エチレンジオキシチオフェン))とPSS(ポリスチレンスルホン酸)とからなる複合体(PEDOT/PSS)、ポリアニリン/ポリスチレンスルホン酸、ポリ(3-ヒドロキシアルカン酸)、ポリ塩化ビニリデン、スチレン共重合体(例えば、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、アクリロニトリル-スチレン共重合樹脂(AS)、スチレンブタジエン共重合体等)、メタクリル樹脂、ポリイミド、ポリエーテルイミド、ポリ(トランス-1,4-イソプレン)、尿素樹脂、ポリエステル(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカプロラクトン、ポリエチレンナフタレート等)、ポリアミド、ポリエーテルエーテルケトン、環状シクロオレフィンポリマー、ポリエチレンオキシド、ポリプロピレンオキシド、ポリアセタール、フッ素含有ポリマー(例えば、テフロン(登録商標)、フッ素含有合成ゴム等)、およびタンパク質(例えば、フィブロネクチン、アルブミン、フィブリン、ケラチン、シトクロム、サイトカイン等)等があげられる。前記アクリル系ポリマーは、例えば、ポリメチルメタクリレート(PMMA)等があげられる。前記ポリアミドは、例えば、ナイロン(商品名)であり、具体例として、6-ナイロン、6,6-ナイロン等があげられる。 The other polymer is not particularly limited, for example, polyolefin, polyvinyl chloride, polystyrene, polylactic acid, polyhydroxybutyric acid, silicone-based polymer, natural rubber, phenol resin, epoxy resin, diallyl phthalate resin, polycarbonate (PC), Acrylic polymer, polydimethylsiloxane (PDMS), polyarylate such as amorphous polyarylate, polyether sulfone, polyparaphenylene vinylene, polythiophene, polyfluorene, polyphenylene sulfide (PPS), liquid crystalline polyester, polyparaphenylene (PPP) A composite (PEDOT / PSS) composed of PEDOT (poly (3,4-ethylenedioxythiophene)) and PSS (polystyrenesulfonic acid), polyaniline / polystyrenesulfonic acid, Poly (3-hydroxyalkanoic acid), polyvinylidene chloride, styrene copolymer (eg, acrylonitrile-butadiene-styrene copolymer (ABS), acrylonitrile-styrene copolymer resin (AS), styrene-butadiene copolymer, etc.), Methacrylic resin, polyimide, polyetherimide, poly (trans-1,4-isoprene), urea resin, polyester (eg, polyethylene terephthalate, polybutylene terephthalate, polycaprolactone, polyethylene naphthalate, etc.), polyamide, polyetheretherketone, Cyclic cycloolefin polymer, polyethylene oxide, polypropylene oxide, polyacetal, fluorine-containing polymer (eg, Teflon (registered trademark), fluorine-containing synthetic rubber, etc.), and protein (eg, If, fibronectin, albumin, fibrin, keratin, cytochrome, cytokines, etc.) and the like. Examples of the acrylic polymer include polymethyl methacrylate (PMMA). The polyamide is, for example, nylon (trade name), and specific examples include 6-nylon and 6,6-nylon.
 前記ポリオレフィンは、例えば、炭素数2~20のオレフィンの重合体があげられ、具体例として、低密度ポリエチレンおよび高密度ポリエチレン等のポリエチレン(PE)、ポリプロピレン(PP)等があげられる。前記ポリオレフィンは、例えば、共重合体でもよい。 The polyolefin is, for example, a polymer of an olefin having 2 to 20 carbon atoms, and specific examples include polyethylene (PE) such as low-density polyethylene and high-density polyethylene, and polypropylene (PP). The polyolefin may be, for example, a copolymer.
 前記ポリマーが前記単独重合体の場合、例えば、直鎖を形成する繰り返し単位(モノマー)が、側鎖を有する。前記ポリマーが前記共重合体の場合、例えば、直鎖を形成する各繰り返し単位(各モノマー)は、1種類のモノマーが側鎖を有してもよいし、2種類以上のモノマーが側鎖を有してもよい。 場合 When the polymer is the homopolymer, for example, a repeating unit (monomer) forming a straight chain has a side chain. When the polymer is the copolymer, for example, in each of the repeating units (each monomer) forming a linear chain, one kind of monomer may have a side chain, or two or more kinds of monomers may have a side chain. May have.
 前記ポリマーは、例えば、ポリイミド、ポリビニルアルコール、エチレンビニルアルコールポリマー等があげられる The polymer includes, for example, polyimide, polyvinyl alcohol, ethylene vinyl alcohol polymer and the like.
 前記被接着物の形状、大きさ等は、特に限定されず、前記処理前ポリマーと同様の例示ができる。前記形状は、例えば、シート、フィルム、プレート、チューブ、パイプ、棒、ビーズ、ブロック、織布、不織布、糸、ファイバー等があげられ、例えば、非多孔体でも、多孔体でもよい。 形状 The shape, size and the like of the object to be bonded are not particularly limited, and examples similar to those of the polymer before treatment can be given. Examples of the shape include a sheet, a film, a plate, a tube, a pipe, a rod, a bead, a block, a woven fabric, a nonwoven fabric, a thread, a fiber, and the like. For example, a nonporous body or a porous body may be used.
 前記処理前ポリマーと前記前記被接着物との組み合わせは、特に限定されず、また、前記処理前ポリマーと前記接着剤との組み合わせも、特に制限されない。 組 み 合 わ せ The combination of the polymer before treatment and the object to be bonded is not particularly limited, and the combination of the polymer before treatment and the adhesive is not particularly limited.
(8)ハロゲン酸化物ラジカルの生成工程
 本発明は、例えば、さらに、前記ハロゲン酸化物ラジカルを生成させる生成工程を含んでもよい。前記生成工程は、例えば、前記表面処理工程の前に行ってもよいし、前記表面処理工程と同時に行ってもよい。前記ハロゲン酸化物ラジカルの生成方法は、特に制限されない。
(8) Generation Step of Halogen Oxide Radical The present invention may further include, for example, a generation step of generating the halogen oxide radical. The generation step may be performed, for example, before the surface treatment step, or may be performed simultaneously with the surface treatment step. The method for producing the halogen oxide radical is not particularly limited.
 前記ハロゲン酸化物ラジカル生成工程は、例えば、ラジカル生成用反応系を使用して、前記ハロゲン酸化物ラジカルを発生させてもよい。前記ラジカル生成用反応系は、例えば、前記ハロゲン酸化物ラジカルの発生源を含む水相であり、前記生成工程において、前記発生源から前記ハロゲン酸化物ラジカルを生成させる。前記水相は、例えば、水性溶媒の相であり、前記水性溶媒は、前述と同様である。 In the halogen oxide radical generation step, for example, the halogen oxide radical may be generated using a radical generation reaction system. The radical generation reaction system is, for example, an aqueous phase containing a source of the halogen oxide radical, and in the generation step, generates the halogen oxide radical from the source. The aqueous phase is, for example, a phase of an aqueous solvent, and the aqueous solvent is the same as described above.
 前記ラジカル生成用反応系で発生させた前記ハロゲン酸化物ラジカルは、前述のように、例えば、前記表面処理工程の反応系(前記気体反応系または前記液体反応系)に導入してもよいし、前記ラジカル生成用反応系を、前記ハロゲン酸化物ラジカルを含む前記表面処理工程の前記液体反応系として、そのまま前記表面処理工程に使用してもよい。 As described above, the halogen oxide radical generated in the radical generation reaction system may be introduced into, for example, a reaction system (the gas reaction system or the liquid reaction system) in the surface treatment step, The radical generation reaction system may be used as it is in the surface treatment step as the liquid reaction system in the surface treatment step containing the halogen oxide radical.
 前記ハロゲン酸化物ラジカルが疎水性の場合、例えば、前記ラジカル生成用反応系を、前記有機相と前記水相とを含む二相反応系とすることで、前記ハロゲン酸化物ラジカルを前記有機相に移行できる。この場合、例えば、前記二相反応系は、そのまま前記前処理工程の液体反応系として使用できるため、前記生成工程と前記表面処理工程とを連続的に行うことができ、より良い反応効率が得られる。また、前記ラジカル生成用反応系が前記二相反応系の場合、例えば、前記ハロゲン酸化物ラジカルを前記水相で発生させ、前記有機相に溶解(抽出)させた後、前記水相を除去し、前記有機相を、前記表面処理工程の一相反応系として使用してもよい。 When the halogen oxide radical is hydrophobic, for example, the radical generating reaction system is a two-phase reaction system including the organic phase and the aqueous phase, whereby the halogen oxide radical is converted to the organic phase. Can be migrated. In this case, for example, since the two-phase reaction system can be used as it is as a liquid reaction system in the pretreatment step, the production step and the surface treatment step can be performed continuously, and a better reaction efficiency can be obtained. Can be When the radical generation reaction system is the two-phase reaction system, for example, the halogen oxide radical is generated in the aqueous phase, dissolved (extracted) in the organic phase, and then the aqueous phase is removed. The organic phase may be used as a one-phase reaction system in the surface treatment step.
 前記ハロゲン酸化物ラジカルが疎水性の場合、例えば、前記水相で発生した前記ハロゲン酸化物ラジカルは、前記気相に移行できることから、前記気相を、例えば、前記前処理工程の液体反応系として使用できる。 When the halogen oxide radical is hydrophobic, for example, the halogen oxide radical generated in the aqueous phase can transfer to the gas phase, so that the gas phase is used, for example, as a liquid reaction system in the pretreatment step. Can be used.
 前記ハロゲン酸化物ラジカルの発生源(ラジカル生成源)は、特に制限されず、例えば、前記ハロゲン酸化物ラジカルの種類によって、適宜選択できる。前記発生源は、例えば、1種類でも、複数種類を併用してもよい。 The source of the halogen oxide radical (radical generation source) is not particularly limited, and can be appropriately selected depending on, for example, the type of the halogen oxide radical. The source may be, for example, one type or a plurality of types.
 前記発生源は、例えば、酸素とハロゲンとを含む化合物であり、具体例として、例えば、亜ハロゲン酸(HXO)またはその塩があげられる。前記亜ハロゲン酸の塩は、特に限定されず、例えば、金属塩があげられ、前記金属塩は、例えば、アルカリ金属塩、アルカリ土類金属塩、希土類塩等があげられる。前記発生源は、例えば、酸素と、ハロゲンと、1族元素(例えば、H、Li、Na、K、Rb、およびCsからなる群から選択された少なくとも一つ)とを含む化合物でもよく、例えば、前記亜ハロゲン酸またはそのアルカリ金属塩である。前記ハロゲン酸化物ラジカルが前記二酸化塩素ラジカルの場合、その発生源は、特に限定されず、例えば、亜塩素酸(HClO)またはその塩であり、具体的には、例えば、亜塩素酸ナトリウム(NaClO)、亜塩素酸リチウム(LiClO)、亜塩素酸カリウム(KClO)、亜塩素酸マグネシウム(Mg(ClO)、亜塩素酸カルシウム(Ca(ClO)等である。中でも、コスト、取扱い易さ等の観点から、亜塩素酸ナトリウム(NaClO)が好ましい。他のハロゲン酸化物ラジカルの発生源についても、同様の方法が採用できる。前記他の発生源は、例えば、亜臭素酸ナトリウム等の臭素酸塩類、亜要素酸ナトリウム等の亜ヨウ素酸塩類等があげられる。 The source is, for example, a compound containing oxygen and halogen, and specific examples include halogenous acid (HXO 2 ) or a salt thereof. The salt of the halogenous acid is not particularly limited, and examples thereof include metal salts. Examples of the metal salt include alkali metal salts, alkaline earth metal salts, and rare earth salts. The source may be, for example, a compound containing oxygen, a halogen, and a Group 1 element (for example, at least one selected from the group consisting of H, Li, Na, K, Rb, and Cs). And the above-mentioned halogenous acid or an alkali metal salt thereof. When the halogen oxide radical is the chlorine dioxide radical, its source is not particularly limited, and is, for example, chlorite (HClO 2 ) or a salt thereof, and specifically, for example, sodium chlorite ( NaClO 2 ), lithium chlorite (LiClO 2 ), potassium chlorite (KClO 2 ), magnesium chlorite (Mg (ClO 2 ) 2 ), calcium chlorite (Ca (ClO 2 ) 2 ) and the like. . Among them, sodium chlorite (NaClO 2 ) is preferable from the viewpoint of cost, ease of handling, and the like. The same method can be adopted for other halogen oxide radical sources. Examples of the other sources include bromates such as sodium bromite, and iodates such as sodium elementite.
 前記ラジカル生成用反応系の水相において、前記発生源の濃度は、特に限定されず、前記ハロゲン酸化物イオン濃度に換算した場合、例えば、下限が0.0001mol/L以上であり、上限が、1mol/L以下であり、また、前記ハロゲン酸化物イオンのモル数に換算した場合、例えば、下限が、前処理対象のポリマーのモル数の1/100000倍以上であり、上限が、1000倍以下である。前記発生源が亜ハロゲン酸または亜ハロゲン酸塩(例えば、亜塩素酸または亜塩素酸塩)の場合、その濃度は、亜ハロゲン酸イオン(例えば、亜塩素酸イオン(ClO ))の濃度に換算した場合、例えば、下限が0.0001mol/L以上であり、上限が、1mol/L以下であり、亜ハロゲン酸イオン(例えば、亜塩素酸イオン(ClO ))のモル数に換算した場合、例えば、下限が、前処理対象のポリマーのモル数の1/100000倍以上であり、上限が、1000倍以下である。他の発生源についても、例えば、前記濃度が援用できる。 In the aqueous phase of the radical generation reaction system, the concentration of the source is not particularly limited, and when converted to the halogen oxide ion concentration, for example, the lower limit is 0.0001 mol / L or more, and the upper limit is 1 mol / L or less, and when converted to the number of moles of the halogen oxide ion, for example, the lower limit is 1/100000 or more times the number of moles of the polymer to be pretreated, and the upper limit is 1000 times or less. It is. When the source is a halogenous acid or a halogenite (eg, chlorite or chlorite), its concentration is determined by the concentration of a halogenous ion (eg, chlorite ion (ClO 2 )). When converted to, for example, the lower limit is 0.0001 mol / L or more and the upper limit is 1 mol / L or less, which is converted into the number of moles of halogenous ion (eg, chlorite ion (ClO 2 )). In this case, for example, the lower limit is at least 1 / 100,000 times the number of moles of the polymer to be pretreated, and the upper limit is at most 1,000 times. For other sources, for example, the above concentrations can be used.
 前記水相は、例えば、さらに、ルイス酸およびブレーンステッド酸の少なくとも一方を含み、これを前記ハロゲン酸化物イオンに作用させて前記ハロゲン酸化物ラジカルを生成させてもよい。前記ルイス酸およびブレーンステッド酸は、例えば、前記1族元素を含む。前記ハロゲン酸化物イオンは、例えば、亜塩素酸イオン(ClO )である。前記水相は、例えば、前記ルイス酸および前記ブレーンステッド酸の一方のみを含んでも、両方を含んでも、1つの物質が、前記ルイス酸および前記ブレーンステッド酸の両方を兼ねてもよい。前記ルイス酸または前記ブレーンステッド酸は、それぞれ1種類のみを用いてもよいし、複数種類を併用してもよい。本発明において、「ルイス酸」は、例えば、前記発生源に対してルイス酸として働く物質をいう。 The aqueous phase may further include, for example, at least one of a Lewis acid and a Bronsted acid, and act on the halogen oxide ion to generate the halogen oxide radical. The Lewis acid and the Bronsted acid include, for example, the Group 1 element. The halogen oxide ion is, for example, chlorite ion (ClO 2 ). The aqueous phase may contain, for example, only one or both of the Lewis acid and the Bronsted acid, or one substance may serve as both the Lewis acid and the Bronsted acid. The Lewis acid or the Bronsted acid may be used alone or in combination of two or more. In the present invention, “Lewis acid” refers to, for example, a substance that acts as a Lewis acid for the above-mentioned source.
 前記水相において、前記ルイス酸および前記ブレーンステッド酸の少なくとも一方の濃度は、特に限定されず、例えば、前記前処理対象のポリマーの種類等に応じて、適宜設定できる。前記濃度は、例えば、下限が0.0001mol/L以上であり、上限が1mol/L以下である。 濃度 In the aqueous phase, the concentration of at least one of the Lewis acid and the Bronsted acid is not particularly limited, and can be appropriately set according to, for example, the type of the polymer to be pretreated. The lower limit of the concentration is, for example, 0.0001 mol / L or more, and the upper limit is 1 mol / L or less.
 前記ブレーンステッド酸は、特に限定されず、例えば、無機酸でも有機酸でもよく、具体例として、例えば、トリフルオロメタンスルホン酸、トリフルオロ酢酸、酢酸、フッ化水素酸、塩化水素酸、臭化水素酸、ヨウ化水素酸、硫酸、亜硫酸、硝酸、亜硝酸、リン酸、亜リン酸等があげられる。前記ブレーンステッド酸の酸解離定数pKは、例えば、10以下であり、その下限値は、特に限定されず、例えば、-10以上である。 The Bronsted acid is not particularly limited, and may be, for example, an inorganic acid or an organic acid. Specific examples include, for example, trifluoromethanesulfonic acid, trifluoroacetic acid, acetic acid, hydrofluoric acid, hydrochloric acid, and hydrogen bromide. Acid, hydroiodic acid, sulfuric acid, sulfurous acid, nitric acid, nitrous acid, phosphoric acid, phosphorous acid and the like. Acid dissociation constant pK a of the Bronsted acids are, for example, 10 or less, the lower limit is not particularly limited, for example, it is -10 or more.
 前記水相は、例えば、前記ハロゲン酸化物イオンと前記ブレーンステッド酸とを含み、具体的には、例えば、前記発生源の化合物とブレーンステッド酸(例えば、塩酸)とが水性溶媒に溶解した水相である。前記ハロゲン酸化物ラジカルが二酸化塩素ラジカルの場合、前記水相は、例えば、亜塩素酸イオン(ClO )とブレーンステッド酸とを含み、具体的には、例えば、前記亜塩素酸ナトリウム(NaClO)と前記ブレーンステッド酸(例えば塩酸)とが水性溶媒に溶解した水相である。 The aqueous phase contains, for example, the halogen oxide ion and the Bronsted acid. Specifically, for example, water in which the source compound and a Bronsted acid (for example, hydrochloric acid) are dissolved in an aqueous solvent Phase. When the halogen oxide radical is a chlorine dioxide radical, the aqueous phase contains, for example, chlorite ion (ClO 2 ) and a Bronsted acid, and specifically, for example, contains the sodium chlorite (NaClO 2). 2 ) An aqueous phase in which the Bronsted acid (for example, hydrochloric acid) is dissolved in an aqueous solvent.
 前記水相において、例えば、前記ルイス酸、前記ブレーンステッド酸、前記発生源等は、前記水性溶媒に溶解した状態でも、非溶解の状態でもよい。後者の場合、これらは、例えば、水性溶媒に分散した状態でも、沈殿した状態でもよい。 に お い て In the aqueous phase, for example, the Lewis acid, the Bronsted acid, the generation source, and the like may be in a state of being dissolved or insoluble in the aqueous solvent. In the latter case, these may be, for example, in a state of being dispersed in an aqueous solvent or in a state of precipitation.
 前記生成工程は、例えば、前記水性溶媒に前記発生源を含有させることによって、前記ハロゲン酸化物イオン(例えば、亜塩素酸イオン)から前記ハロゲン酸化物ラジカル(例えば、二酸化塩素ラジカル)を自然発生できる。前記水相は、例えば、静置させることが好ましい。前記水相は、例えば、さらに、前記ルイス酸および前記ブレーンステッド酸の少なくとも一方の共存によって、前記ハロゲン酸化物ラジカルの発生をさらに促進できる。前記生成工程は、例えば、前記水相に光照射してもよいし、光照射しなくてもよく、いずれでも前記ハロゲン酸化物ラジカルを発生できる。 In the generation step, for example, the halogen oxide radical (for example, chlorine dioxide radical) can be spontaneously generated from the halogen oxide ion (for example, chlorite ion) by adding the source to the aqueous solvent. . The aqueous phase is preferably allowed to stand, for example. The aqueous phase can further promote the generation of the halogen oxide radical, for example, in the presence of at least one of the Lewis acid and the Bronsted acid. In the generation step, for example, the aqueous phase may be irradiated with light or not, and the halogen oxide radical can be generated in any case.
 前記水相において、前記ハロゲン酸化物イオンから前記ハロゲン酸化物ラジカルが発生するメカニズムは、例えば、以下のように推測される。ただし、この説明は例示であって、本発明を何ら限定しない。 メ カ ニ ズ ム The mechanism by which the halogen oxide radicals are generated from the halogen oxide ions in the aqueous phase is presumed, for example, as follows. However, this description is an example and does not limit the present invention in any way.
 図1に、前記二相反応系を用いた、前記生成工程および前記表面処理工程の一例を模式的に示す。図1は、前記ハロゲン酸化物ラジカルとして前記二酸化塩素ラジカル、前記処理前ポリマーとしてポリマー成形体を、具体例として示す。前記二相反応系は、反応容器中において、下層の有機相1と上層の水相2とが分離して、界面で接触している。図1は、断面図であるが、有機相1および水相2のハッチは省略する。まず、水相2中の亜塩素酸イオン(ClO )が酸と反応して、二酸化塩素ラジカル(ClO )が発生する。二酸化塩素ラジカル(ClO )は、水に難溶であるため、有機相1に溶解する。つぎに、二酸化塩素ラジカル(ClO )を含む有機相1に光照射し、光エネルギーを与えることで、有機相1中の二酸化塩素ラジカル(ClO )が分解して、塩素ラジカル(Cl)および酸素分子(O)が発生する。これにより、有機相1中のポリマー成形体(処理前ポリマー)の表面が酸化等により改質される。 FIG. 1 schematically shows an example of the production step and the surface treatment step using the two-phase reaction system. FIG. 1 shows, as specific examples, the chlorine dioxide radical as the halogen oxide radical and a polymer molded body as the polymer before treatment. In the two-phase reaction system, a lower organic phase 1 and an upper aqueous phase 2 are separated from each other and are in contact with each other at an interface in a reaction vessel. FIG. 1 is a cross-sectional view, but hatches of an organic phase 1 and an aqueous phase 2 are omitted. First, chlorite ion in the aqueous phase 2 (ClO 2 -) reacts with the acid, chlorine dioxide radical (ClO 2 ·) is generated. Chlorine dioxide radical (ClO 2 ·), since the water is poorly soluble, are dissolved in the organic phase 1. Next, light irradiation to the organic phase 1 comprising chlorine dioxide radical (ClO 2 ·), by applying light energy, chlorine dioxide radicals in the organic phase 1 (ClO 2 ·) is decomposed, chlorine radicals (Cl · ) And oxygen molecules (O 2 ) are generated. Thereby, the surface of the polymer molded body (polymer before treatment) in the organic phase 1 is modified by oxidation or the like.
 前記二相反応系は、例えば、図1には制限されず、例えば、有機相1が水相2より密度(比重)が低い場合、有機相1が上層になる。前記処理前ポリマーが前記ポリマー成形体の場合、例えば、有機相1中に前記ポリマー成形体が浸漬するように、前記反応容器中で固定化してもよい。前記ポリマー成形体を固定する固定部は、例えば、前記反応容器中に設けてもよいし、前記反応容器の外部に設けてもよい。後者の場合、例えば、外部から前記ポリマー体を吊るし、有機相1中に浸漬させる形態等があげられる。 (1) The two-phase reaction system is not limited to, for example, FIG. 1. For example, when the organic phase 1 has a lower density (specific gravity) than the aqueous phase 2, the organic phase 1 is an upper layer. When the polymer before treatment is the polymer molded article, for example, the polymer molded article may be immobilized in the reaction vessel so that the polymer molded article is immersed in the organic phase 1. The fixing portion for fixing the polymer molded body may be provided in, for example, the reaction vessel, or may be provided outside the reaction vessel. In the latter case, for example, a form in which the polymer body is suspended from the outside and immersed in the organic phase 1 can be used.
(9)官能基を導入する工程
 本発明は、例えば、前記前処理工程後、前記接着工程の前、さらに、前記改質ポリマーの改質された領域に、官能基を導入する工程を含んでもよい。本発明によれば、さらに、官能基化することによって、前記改質ポリマー層の物性をさらに変えることもできる。
(9) Step of introducing a functional group The present invention may include, for example, a step of introducing a functional group into the modified region of the modified polymer after the pretreatment step, before the bonding step, and further. Good. According to the present invention, the physical properties of the modified polymer layer can be further changed by functionalization.
 以下、本発明の実施例について説明する。ただし、本発明は、以下の実施例には限定されない。 Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following examples.
[実施例1]
 液晶ポリマーフィルムを改質し、接着剤を介した被接着物との接着性を確認した。
[Example 1]
The liquid crystal polymer film was modified, and the adhesion to an object to be bonded via an adhesive was confirmed.
(1)改質フィルターの調製
 長さ50mm×幅15mm×厚み2mmの液晶ポリマー(LCP)フィルム(商品名UENO LCP、6030G-MF、上野製薬社製)を準備し、一方の表面に、以下に示すようにして改質処理を行った。
(1) Preparation of Modified Filter A liquid crystal polymer (LCP) film (trade name UENO LCP, 6030G-MF, manufactured by Ueno Pharmaceutical Co., Ltd.) having a length of 50 mm × a width of 15 mm × a thickness of 2 mm was prepared. The reforming treatment was performed as shown.
 反応容器として、小シャーレ(直径30mm×深さ10mm)を用い、その中に、塩酸酸性NaClO水溶液を入れた。前記塩酸酸性NaClO水溶液は、HO(7mL)、NaClO(200mg)、および35%HClaq.(100μL)を混合して調製した。大シャーレ(直径700mm×深さ180mm)の中に、蓋をしていない前記小シャーレと、前記LCPフィルムとを入れた。前記大シャーレに蓋をして、ヒータにより、90℃で5分間予備加熱した。その後、前記大シャーレの蓋の上方から、出力60Wで5分間光照射した。光源は、波長365nmのLEDランプ(dotAqua社製)を使用し、前記光源と前記大シャーレの蓋との距離は20cmとした。この光照射により、前記小シャーレ内の前記NaClO水溶液から二酸化塩素ラジカルを発生させ、二酸化塩素ラジカルを前記大シャーレ内の気相に移行させ、前記大シャーレ内の気相中で、前記LCPフィルムの表面を二酸化塩素ラジカルと反応させて、表面処理した。前記反応は、大気中、加圧および減圧を行なわず、90℃の加熱条件下で行った。前記NaClO水溶液の二酸化塩素ラジカル由来の黄色の着色が消失したことをもって、反応終了とした。反応終了後、前記LCPフィルムを精製水で洗浄し、減圧下で一晩乾燥した。乾燥後の前記LCPフィルムを、改質された改質LCPフィルムとして、以下の工程に使用した。なお、前記二酸化塩素ラジカルの発生は、ESR(電子スピン共鳴)により確認済みである。 A small petri dish (diameter 30 mm × depth 10 mm) was used as a reaction vessel, and a hydrochloric acid-acidic NaClO 2 aqueous solution was put therein. The aqueous solution of hydrochloric acid acidic NaClO 2 was made up of H 2 O (7 mL), NaClO 2 (200 mg), and 35% HClaq. (100 μL). The small petri dish without the lid and the LCP film were placed in a large petri dish (700 mm diameter × 180 mm depth). The large petri dish was covered, and preheated by a heater at 90 ° C. for 5 minutes. Thereafter, light irradiation was performed at an output of 60 W for 5 minutes from above the lid of the large petri dish. The light source used was an LED lamp (manufactured by dotAqua) having a wavelength of 365 nm, and the distance between the light source and the lid of the large petri dish was 20 cm. By this light irradiation, chlorine dioxide radicals are generated from the NaClO 2 aqueous solution in the small petri dish, and the chlorine dioxide radicals are transferred to the gas phase in the large petri dish. Was reacted with chlorine dioxide radicals to perform a surface treatment. The reaction was carried out in the atmosphere under a heating condition of 90 ° C. without pressurizing and depressurizing. The reaction was terminated when the yellow coloring derived from the chlorine dioxide radical in the aqueous NaClO 2 solution disappeared. After completion of the reaction, the LCP film was washed with purified water and dried under reduced pressure overnight. The dried LCP film was used as a modified LCP film in the following steps. The generation of the chlorine dioxide radical has been confirmed by ESR (electron spin resonance).
(2)濡れ性評価
 前記改質LCPフィルムと未改質LCPフィルムとについて、それぞれの表面の濡れ性を確認した。具体的には、各フィルムの表面に、水5μLを滴下して、水滴の形状から濡れ性を判断した。図2(A)に、前記未改質LCPフィルム上の液滴の写真を示し、図2(B)に、前記改質LCPフィルム上の液滴の写真を示す。図2に示すように、前記改質LCPフィルムの液滴は接触角が、前記未改質LCPフィルムよりも小さくなっていることから、濡れ性が向上したといえる。そして、濡れ性の向上は、前記改質LCPフィルムにおいて、前記未改質LCPよりも水酸基が多く導入されていることを意味すると解される。
(2) Evaluation of wettability The wettability of each surface of the modified LCP film and the unmodified LCP film was confirmed. Specifically, 5 μL of water was dropped on the surface of each film, and the wettability was determined from the shape of the water drop. FIG. 2A shows a photograph of the droplet on the unmodified LCP film, and FIG. 2B shows a photograph of the droplet on the modified LCP film. As shown in FIG. 2, since the contact angle of the droplet of the modified LCP film is smaller than that of the unmodified LCP film, it can be said that the wettability has been improved. The improvement in wettability is understood to mean that the modified LCP film has more hydroxyl groups introduced than the unmodified LCP.
(3)被接着物との接着
 図3の斜視図に示すように、前記改質LCPフィルムと前記被接着物とを接着させ、積層体を製造した。
(3) Adhesion with an adherend As shown in the perspective view of FIG. 3, the modified LCP film and the adherend were adhered to each other to produce a laminate.
 具体的には、前記被接着物として、アルミ板(長さ50mm×幅15mm×厚み2mm)、銅板(長さ60mm×幅20mm×厚み2mm)、同様にして前記改質処理を施した改質LCPフィルム(長さ50mm×幅15mm×厚み2mm)を準備した。そして、図3(A)に示すように、改質LCPフィルム10の改質表面において、長手方向の一端の15mm×15mmの領域に、シアノアクリレート系接着剤11(商品名アロンアルファ、東亞合成株式会社製)を塗布した。接着剤11は、25mmあたり40mgを均等に塗布した。そして、図3(B)に示すように、前記塗布領域においてのみ、改質LCPフィルム10と被接着物12とが接触するように、接着剤11の塗布後、ただちに、改質LCPフィルム10の上に被接着物12を積層した。そして、積層箇所をクリップで挟み、室温で10分間静置した。静置後の積層体を、以下の評価に使用した。また、比較例として、改質処理を施していない未処理LCPフィルムについても、同様に積層体を製造し、評価を行った。 Specifically, as the object to be adhered, an aluminum plate (length 50 mm × width 15 mm × thickness 2 mm), a copper plate (length 60 mm × width 20 mm × thickness 2 mm), and similarly modified An LCP film (length 50 mm × width 15 mm × thickness 2 mm) was prepared. Then, as shown in FIG. 3A, on the modified surface of the modified LCP film 10, a cyanoacrylate-based adhesive 11 (trade name: Aron Alpha, Toagosei Co., Ltd.) Co., Ltd.) was applied. The adhesive 11 was uniformly applied at 40 mg per 25 mm 2 . Then, as shown in FIG. 3B, immediately after the application of the adhesive 11, the modified LCP film 10 is applied so that the modified LCP film 10 and the adherend 12 are in contact only in the application area. The adherend 12 was laminated thereon. Then, the layered portion was sandwiched between clips and allowed to stand at room temperature for 10 minutes. The laminate after standing was used for the following evaluation. In addition, as a comparative example, a laminate was similarly manufactured for an untreated LCP film that had not been subjected to a modification treatment, and evaluation was performed.
(4)引張強度
 前記積層体について、図3(B)に示すように、前記改質LCPフィルムの端部と前記被接着物の端部とを、それぞれ反対方向に30N/minの強さで引張り、引張強度(せん断応力)を測定した。この結果を、下記表1に示す。
(4) Tensile Strength As shown in FIG. 3 (B), the end of the modified LCP film and the end of the adherend are each subjected to a tensile strength of 30 N / min in opposite directions. Tensile and tensile strength (shear stress) were measured. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 前記表1に示すように、前記改質LCPフィルムは、表面が酸化により改質されていることから、前記接着剤との親和性が上がり、その結果、十分に強い強度で前記被接着物と接着することができた。他方、前記改質処理をしていないLCPフィルムを使用した場合、前記LCPフィルムの表面に塗布した接着剤は、前記表面上で液滴状のまま固化し、前記LCPフィルムから剥がれ落ちた。このため、前記LCPフィルムと前記被接着物は、接着しなかった。 As shown in Table 1, since the surface of the modified LCP film is modified by oxidation, the affinity with the adhesive is increased, and as a result, the modified LCP film is sufficiently strong in strength with the adherend. It could be glued. On the other hand, when the LCP film not subjected to the modification treatment was used, the adhesive applied to the surface of the LCP film solidified in the form of droplets on the surface and peeled off from the LCP film. For this reason, the LCP film and the adherend did not adhere.
 また、前記接着剤として、エポキシ系接着剤(アラルダイトラピッド、AR-R30、ニチバン社製)を用いた以外、同様にして、前記アルミ板と前記改質LCPフィルムとを接着し、引張強度を測定した。この結果を下記表2に示す。 In addition, the aluminum plate and the modified LCP film were bonded in the same manner as above, except that an epoxy-based adhesive (Araldit Rapid, AR-R30, manufactured by Nichiban) was used as the adhesive, and the tensile strength was measured. did. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[実施例2]
 前記液晶ポリマーフィルムに代えて、PETフィルムを改質し、前記実施例1と同様にして、改質PETフィルムと、前記被接着物である未改質PETフィルムとの接着剤による接着を確認した。その結果、前記未改質PETフィルムは、被接着物(未改質PETフィルム)との界面が剥離したのに対して、前記改質PETフィルムは、被接着物(未改質PETフィルム)と接着し、引張強度は1.2MPa(N/mm)であった。
[Example 2]
In place of the liquid crystal polymer film, a PET film was modified, and in the same manner as in Example 1, adhesion between the modified PET film and the unmodified PET film as the adherend was confirmed with an adhesive. . As a result, the interface between the unmodified PET film and the adherend (unmodified PET film) was peeled off, whereas the modified PET film was compared with the adherend (unmodified PET film). The adhesive was applied, and the tensile strength was 1.2 MPa (N / mm 2 ).
 以上、実施形態を参照して本発明を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をできる。 Although the present invention has been described with reference to the exemplary embodiments, the present invention is not limited to the exemplary embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2018年6月20日に出願された日本出願特願2018―117172を基礎とする優先権を主張し、その開示のすべてをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2018-117172 filed on June 20, 2018, the entire disclosure of which is incorporated herein.
 以上のように、本発明によれば、簡便かつ低コストに、接着剤を介したポリマーと被接着物との接着性を向上させた接着積層体を製造できる。 As described above, according to the present invention, it is possible to easily and at low cost manufacture an adhesive laminate in which the adhesion between a polymer and an object to be bonded via an adhesive is improved.
1 有機相
2 水相
10 改質LCPフィルム
11 接着剤
12 被接着物
DESCRIPTION OF SYMBOLS 1 Organic phase 2 Water phase 10 Modified LCP film 11 Adhesive 12 Adhesive

Claims (10)

  1. ポリマーをハロゲン酸化物ラジカルと反応させる、表面処理工程、および、
    前記表面処理工程後の前記ポリマーの表面および被接着物の表面の少なくとも一方に、接着剤を塗布して、前記ポリマーと前記被接着物とを接着する接着工程を含み、
    前記ポリマーが、主鎖に芳香環を有するポリマーであることを特徴とする前記ポリマーと前記被接着物との接着積層体の製造方法。
    Reacting the polymer with a halogen oxide radical, a surface treatment step, and
    At least one of the surface of the polymer and the surface of the adherend after the surface treatment step, an adhesive is applied, including an adhesion step of adhering the polymer and the adherend,
    The method for producing an adhesive laminate of the polymer and the adherend, wherein the polymer is a polymer having an aromatic ring in a main chain.
  2. 前記ポリマーが、液晶ポリマーである、請求項1に記載の接着積層体の製造方法。 The method for producing an adhesive laminate according to claim 1, wherein the polymer is a liquid crystal polymer.
  3. 前記接着剤が、水親和性の接着剤である、請求項1に記載の接着積層体の製造方法。 The method according to claim 1, wherein the adhesive is a water-compatible adhesive.
  4. 前記接着剤が、水を開始剤として重合するモノマーを含む、請求項1に記載の接着積層体の製造方法。 The method for producing an adhesive laminate according to claim 1, wherein the adhesive includes a monomer that polymerizes with water as an initiator.
  5. 前記モノマーが、シアノアクリレートモノマーである、請求項4に記載の接着積層体の製造方法。 The method for producing an adhesive laminate according to claim 4, wherein the monomer is a cyanoacrylate monomer.
  6. 前記接着剤が、エポキシ系接着剤である、請求項1から4のいずれか一項に記載の接着積層体の製造方法。 The method for producing an adhesive laminate according to any one of claims 1 to 4, wherein the adhesive is an epoxy-based adhesive.
  7. 前記表面処理工程の反応系が、気体反応系または液体反応系である、請求項1から6のいずれか一項に記載の接着積層体の製造方法。 The method according to any one of claims 1 to 6, wherein the reaction system in the surface treatment step is a gas reaction system or a liquid reaction system.
  8. 前記ハロゲン酸化物ラジカルが、二酸化塩素ラジカルである、請求項1から7のいずれか一項に記載の接着積層体の製造方法。 The method for manufacturing an adhesive laminate according to any one of claims 1 to 7, wherein the halogen oxide radical is a chlorine dioxide radical.
  9. 前記表面処理工程に供する前記ポリマーが、シート、フィルム、プレート、チューブ、パイプ、棒、ビーズ、ブロック、織布、不織布および糸からなる群から選択された少なくとも一つの成形体である、請求項1から8のいずれか一項に記載の接着積層体の製造方法。 The polymer to be subjected to the surface treatment step is at least one compact selected from the group consisting of a sheet, a film, a plate, a tube, a pipe, a rod, a bead, a block, a woven fabric, a nonwoven fabric, and a yarn. 9. The method for producing an adhesive laminate according to any one of items 1 to 8.
  10. 前記被接着物が、金属またはポリマーである、請求項1から9のいずれか一項に記載の接着積層体の製造方法。 The method for producing an adhesive laminate according to any one of claims 1 to 9, wherein the adherend is a metal or a polymer.
PCT/JP2019/024504 2018-06-20 2019-06-20 Method for producing bonded multilayer body of polymer and adherend WO2019244980A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020525796A JP7333080B2 (en) 2018-06-20 2019-06-20 Method for producing adhesive laminate of polymer and adherend

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018117172 2018-06-20
JP2018-117172 2018-06-20

Publications (1)

Publication Number Publication Date
WO2019244980A1 true WO2019244980A1 (en) 2019-12-26

Family

ID=68983185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024504 WO2019244980A1 (en) 2018-06-20 2019-06-20 Method for producing bonded multilayer body of polymer and adherend

Country Status (2)

Country Link
JP (1) JP7333080B2 (en)
WO (1) WO2019244980A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680125A (en) * 2020-12-28 2021-04-20 无锡市立帆绝缘材料科技有限公司 Preparation method of polyaryl fiber-polyester composite film
EP3792300A4 (en) * 2018-05-18 2021-06-09 Osaka University Processed-polymer-product production method, polymer, metal-plated polymer, and bonded laminate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB923846A (en) * 1961-02-28 1963-04-18 Du Pont Surface treatment of films and other polymeric shaped structures
WO1989010208A1 (en) * 1988-04-27 1989-11-02 Isi Ltd. Co. Process for improving surface properties of material and surface-treating apparatus therefor
JPH06340759A (en) * 1993-04-09 1994-12-13 Tokai Univ Method for surface treatment of plastic material containing c-h bond
JPH07509750A (en) * 1992-08-07 1995-10-26 バイエル・アクチエンゲゼルシヤフト Decolorization of polyaspartates and polyaspartate copolymers
JP2000109584A (en) * 1998-10-06 2000-04-18 Japan Vilene Co Ltd Surface modification
JP2008291168A (en) * 2007-05-28 2008-12-04 Sumitomo Chemical Co Ltd Method for producing liquid crystal polymer film and substrate for printed circuit board
WO2012117850A1 (en) * 2011-03-01 2012-09-07 Jx日鉱日石金属株式会社 Liquid crystal polymer film based copper-clad laminate, and method for producing same
WO2017104798A1 (en) * 2015-12-18 2017-06-22 株式会社エースネット Method for producing oxidation reaction product of hydrocarbon or derivative thereof, and method for producing oxidation reaction product of olefin

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB923846A (en) * 1961-02-28 1963-04-18 Du Pont Surface treatment of films and other polymeric shaped structures
WO1989010208A1 (en) * 1988-04-27 1989-11-02 Isi Ltd. Co. Process for improving surface properties of material and surface-treating apparatus therefor
JPH07509750A (en) * 1992-08-07 1995-10-26 バイエル・アクチエンゲゼルシヤフト Decolorization of polyaspartates and polyaspartate copolymers
JPH06340759A (en) * 1993-04-09 1994-12-13 Tokai Univ Method for surface treatment of plastic material containing c-h bond
JP2000109584A (en) * 1998-10-06 2000-04-18 Japan Vilene Co Ltd Surface modification
JP2008291168A (en) * 2007-05-28 2008-12-04 Sumitomo Chemical Co Ltd Method for producing liquid crystal polymer film and substrate for printed circuit board
WO2012117850A1 (en) * 2011-03-01 2012-09-07 Jx日鉱日石金属株式会社 Liquid crystal polymer film based copper-clad laminate, and method for producing same
WO2017104798A1 (en) * 2015-12-18 2017-06-22 株式会社エースネット Method for producing oxidation reaction product of hydrocarbon or derivative thereof, and method for producing oxidation reaction product of olefin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3792300A4 (en) * 2018-05-18 2021-06-09 Osaka University Processed-polymer-product production method, polymer, metal-plated polymer, and bonded laminate
EP3789441A4 (en) * 2018-05-18 2021-07-07 Osaka University Surface-treated polymer production method, polymer, metal-plated polymer, bonded laminate, and production methods therefor
CN112680125A (en) * 2020-12-28 2021-04-20 无锡市立帆绝缘材料科技有限公司 Preparation method of polyaryl fiber-polyester composite film

Also Published As

Publication number Publication date
JP7333080B2 (en) 2023-08-24
JPWO2019244980A1 (en) 2021-07-26

Similar Documents

Publication Publication Date Title
Sun et al. Functionalized wood with tunable tribopolarity for efficient triboelectric nanogenerators
WO2019244980A1 (en) Method for producing bonded multilayer body of polymer and adherend
JP6931836B2 (en) Polymer modification method, method for producing modified polymer using it, and modified polymer
JP4963781B2 (en) Method for producing polysilsesquioxane graft copolymer, pressure-sensitive adhesive, and pressure-sensitive adhesive sheet
KR20160140829A (en) Method for plasma-initiated adhesive bonding
Takacs et al. Vacuum UV Surface Photo‐Oxidation of Polymeric and Other Materials for Improving Adhesion: A Critical Review
WO2003051966A1 (en) Improved process for modifying a polymeric surface
US11326035B2 (en) Method for selectively binding target molecule to polymer molded body and method for producing target molecule-bound polymer molded body using the same
CN112154175B (en) Method for producing surface-treated polymer, metal-plated polymer, adhesive laminate, and methods for producing these
JP2019218485A (en) Polymer body, and manufacturing method therefor
JP5100060B2 (en) Stretchable polymer film, method for producing the same, method for producing film with graft polymerized film, and photograft polymerization apparatus
JP7100846B2 (en) Manufacturing method of molding mold
US11279778B2 (en) Polydifluoroacetylene, method for producing polydifluoroacetylene, precursor polymer, molded article and powder
JP2011189223A (en) Cation exchange membrane, hydrogen ion permselective membrane and method of recovering acid
Muftuoglu et al. Photografting of polymeric materials
JP2019218491A (en) Method for producing optical material
Pinson Functionalization of Polymers by Reaction of Radicals, Nitrenes, and Carbenes
JP2019218493A (en) Method for producing modified membrane
JP2022105304A (en) Surface-modified polymer, metal-plated polymer, method for producing surface-modified polymer, method for producing metal-plated polymer, and method for modifying polymer surface
JPH07138381A (en) Production of crosslinked silicone film
JP2021140867A (en) Laminate and method for manufacturing the same
WO2024074906A1 (en) Anion exchange separation article, methods of making, and methods of using

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525796

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823658

Country of ref document: EP

Kind code of ref document: A1