WO1989010208A1 - Process for improving surface properties of material and surface-treating apparatus therefor - Google Patents

Process for improving surface properties of material and surface-treating apparatus therefor Download PDF

Info

Publication number
WO1989010208A1
WO1989010208A1 PCT/JP1989/000432 JP8900432W WO8910208A1 WO 1989010208 A1 WO1989010208 A1 WO 1989010208A1 JP 8900432 W JP8900432 W JP 8900432W WO 8910208 A1 WO8910208 A1 WO 8910208A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
treatment
powder
coupling agent
improving
Prior art date
Application number
PCT/JP1989/000432
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Takeda
Kenji Yamazaki
Original Assignee
Isi Ltd. Co.
Tomio Keisha Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP23628588A external-priority patent/JPH0418930A/en
Application filed by Isi Ltd. Co., Tomio Keisha Co., Ltd. filed Critical Isi Ltd. Co.
Publication of WO1989010208A1 publication Critical patent/WO1989010208A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/062Pretreatment
    • B05D3/063Pretreatment of polymeric substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/062Pretreatment
    • B05D3/064Pretreatment involving also the use of a gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate

Definitions

  • the present invention refers to a method for improving the surface properties of a material and a surface treatment apparatus for the method.
  • the fiber when the fiber is compounded in another matrix material, if the coupling agent for the other resin is not properly adhered to the fiber surface, the resin elastomer may be removed.
  • the desired strength is often not exhibited by the phenomenon of fiber penetration, so that the fiber filling ratio must be increased, and conversely the cost increases.
  • good results have not been obtained due to poor soldering characteristics.
  • C-H, C-, C-O, C-F and many other surface groups are partially present on the surface of carbon fiber in addition to the original C-C group.
  • these surface groups may not always have a good affinity for other materials, or may rebound significantly.
  • the disadvantages of powders are that, for example, in the case of finceramics, the precursory molding process of sintered metals or sintered cores such as flat cores, complete uniformity during the wet molding process dispersion
  • trace moisture and 0H groups adhering to the powder surface during the ripening or polymerization process of the compounding may be a destructive factor in the process. It is well known that the powder mixed and dispersed in the polymer re-agglomerates due to thermal shock, or blocks fluidity during blocking and bleeding. Defective, film in film forming process '' / It causes various phenomena such as generation of cracks, separation of the coating agent, and uneven coloring.
  • the surface has various heat resistance, chemical resistance, deterioration resistance, abrasion resistance, pressure resistance, insulation, conductivity, magnetic properties, etc.
  • the coating may be applied to a suitable film.
  • the first material, the powder material has a surface as described above.
  • a surface most suitable for coating the second material is not formed on the powder of the first material. Coating film cannot be obtained.
  • commercially available powders have hardly any such surface treatments.
  • a powder made of a carbon material, a metal material, glass, or any other material exhibiting a special function is used, especially in a cement or stone powder.
  • Mixed with plaster, plaster, water glass and other inorganic adhesives In the case of dispersing, if the wettability is poor, air is entrapped in the kneading system and the viscosity often increases, so various auxiliaries are used as a countermeasure. Auxiliaries have many physical and chemical adverse effects on molding systems
  • physicochemical means include plasma oxidation of the surface, surface oxidation by ultraviolet irradiation in an oxidizing atmosphere such as oxygen or ozone, and activation of the surface coating solution.
  • Examples of the treatment, heat treatment, and chemical means include oxidation and reduction using chemicals such as calcium dichromate. These are generally carbon fibers, substrates, molded articles, and the like.
  • the surface oxidation treatment method for electronic materials is known.
  • publicly known documents that disclose the above-mentioned conventional technologies include Japanese Patent Publication No. 47-33022, Japanese Patent Publication No. 47-24976, and Japanese Patent Application Laid-Open No. 49-91. 8 7 8 9 1, Japanese Patent Application Laid-Open No. 52-144 864, Japanese Patent Application Laid-Open No. 59-85 4 66, Japanese Patent Application Laid-Open No. 61-119 688 And Japanese Unexamined Patent Application Publication No. Sho 62-79253.
  • each of these processing methods has the following disadvantages. Do That is, the plasma method may deteriorate productivity and degrade various properties of the carbon fiber, and the chemical oxidation method may involve complicated post-processing steps of the material, making it difficult to treat waste liquid and the like.
  • the surface of various materials is impure surface such as C—H, C—N, C—O, and C—F in addition to C—C groups.
  • these groups were present, it was found that these surface groups hindered improvements in surface affinity, hydrophilicity, etc., and had to be removed. Therefore, as in the conventional case, the material is directly placed in the processing vessel, and the surface is purified and irradiated with ultraviolet rays in a reactive gas atmosphere such as air, oxygen, oxygen, or C. It was recognized that even after the oxidation treatment, sufficient improvement in affinity, hydrophilicity, etc. was not observed because the above surface groups were not removed.
  • the coating is coated directly with a coating agent such as paint, adhesive, hot melt resin for molding, cement, etc. Molded resin, cement metal foil, film, sheet, board, etc., through a product, a coupling agent, or an adhesive to form a reinforced molded product or laminate fiber.
  • a coating agent such as paint, adhesive, hot melt resin for molding, cement, etc. Molded resin, cement metal foil, film, sheet, board, etc., through a product, a coupling agent, or an adhesive to form a reinforced molded product or laminate fiber.
  • a coating agent such as paint, adhesive, hot melt resin for molding, cement, etc. Molded resin, cement metal foil, film, sheet, board, etc., through a product, a coupling agent, or an adhesive to form a reinforced molded product or laminate fiber.
  • the surface properties inherent to the material are, for example, to make hydrophilic ones more water-soluble, or to coat conductive materials with a coating agent to coat insulating films and various synthetic resins that absorb microorganisms. It is sometimes desirable to bind firmly. It may also be desirable to modify the surface properties of the material to make it suitable for a particular coating agent coating. More specifically, in recent years, when oxidizing or gas reacting like ultra-fine metal particles or intermetallic compounds, they often cause explosions due to the heat generated, resulting in death or injury. Has been reached. Therefore, simply cleaning or oxidizing the surface of the powder may not only be totally counterproductive, but may be the most dangerous operation.
  • fibers and powders are sometimes used alone, but in many cases, they are used as composite materials or molded products.
  • Silane coupling agents, and monoalkoxy / titanate / coupling agents or aluminate-based coupling agents have been used in some cases.
  • HCI causes the inconvenience that occurs on the surface of the material or in the atmosphere.
  • the present invention has been made in view of such circumstances, and solves the disadvantages of the conventional method, improves the surface properties such as excellent hydrophilicity and wettability, and further improves the novel surface properties.
  • the purpose of the present invention is to provide a method for improving the surface properties of a material which can bring about a new product or which can modify the surface properties so as to be suitable for various products and uses such as raw materials for producing various composite products.
  • UV light is applied to the material surface in a vacuum or inert gas atmosphere.
  • the present invention provides a coating agent on the surface of the material which has a greater delamination strength than the conventional method, and a coating agent of a type which was impossible with the conventional method. It provides a method for improving the surface properties of a material that is processed so as to have a new surface property so that it can be applied, after the treatment in the first step or in the first and second steps. It is characterized in that after the treatment, a coating agent is adhered to the surface of the material.
  • the present invention provides a method for improving the surface properties of each material in a group of fine materials such as powders, so that the method can improve the surface characteristics of each material.
  • the method is characterized in that ultraviolet light is irradiated in a state where a large material such as a powder to be processed is rotated or floated.
  • the present invention provides an apparatus for treating the surface of a material for carrying out the above method, in which an inert gas supply pipe and a reaction gas supply pipe are provided on one side of a reaction-closed vessel, respectively. It is connected via a controller and connected to an exhaust device on the other side, an ultraviolet discharger is provided therein, and a material support device is provided for supporting the material to be processed facing the ultraviolet discharger.
  • the present invention provides an apparatus capable of uniformly irradiating the material with ultraviolet rays.
  • the apparatus is provided with an ultraviolet reflector in opposition to an ultraviolet discharger in a closed container of the apparatus.
  • the present invention provides a device which is convenient for processing a long material.
  • a partition is provided in a closed container of the device, and one side thereof is exposed to ultraviolet light in a vacuum or in an inert gas atmosphere.
  • a first process chamber for irradiating the container, and a second process chamber for treating the other room with a reaction gas or a coating agent, and a long material is introduced from outside the one end wall of the closed vessel. It is provided with a guide device for airtightly inserting the partition wall and leading it out of the other end wall.
  • the present invention provides an apparatus suitable for uniformly surface-treating fine materials such as powders and short fibers, such as an ultrasonic generator for rotating or floating the fine materials in a closed container.
  • a power source device is provided.
  • FIG. 1 is a diagram of a lav surface of one example of a surface treatment apparatus for implementing the method of the present invention
  • FIG. 2 is a diagram of a lav surface of another embodiment
  • FIG. 3 is a cross-sectional view of FIG.
  • FIG. 4 is a diagram showing still another embodiment.
  • FIG. 5 shows a side view of still another embodiment.
  • the starting material of the present invention may be of any type and shape.
  • Inorganic materials and organic materials can be used; ceramic materials such as fine ceramics, glass, metals, magnetic materials, carbon materials, synthetic resin materials, natural minerals, etc. , Powder, pellet, film, sheet, plate, various molded products, etc., and single-piece processing raw materials such as metal sintering and ceramic molding Coating products, molded products, laminates, and adsorbents for adsorbing specific bacteria, on the surface of which are firmly bound paint, synthetic resins for various applications, adhesives, coupling agents, etc. All raw materials or processed products that require surface modification, such as synthetic resins via a coupling agent, building materials such as cement, processing raw materials for various composite products such as construction materials, etc. .
  • vacuum ultraviolet rays satisfying each required resonance line of 1,000 A to 30 Q 0 A and satisfying the required energy conditions are mainly used in a vacuum or an inert gas atmosphere in a closed container.
  • the material surface is irradiated with ultraviolet rays at a normal temperature to destroy or remove specific surface groups, and then, as a second step, the ultraviolet rays or
  • the surface modification according to the purpose can be obtained by causing the laser beam to act on the reactive gas to excite it, and reacting the activated ion with the material surface.
  • the surface properties of the material can be modified for the purpose by using a coating bar. Can be
  • a low-pressure mercury discharger made of, for example, high-purity quartz glass is used as a discharger for irradiating ultraviolet rays.
  • the discharge device is a tubular low-pressure mercury discharge tube with a length of 1000 bunks and a diameter of 18.5 mm, and a spiral low-pressure mercury discharge tube with an inner diameter of 10 ⁇ and a length of 30 cm.
  • the power supply is 100 V AC, 50/60 Hz. And two types of high frequency power supply (50-1000 KHz) and 200V.
  • the main ultraviolet characteristic wavelength of this discharge tube is 2537, 1849 A or vacuum ultraviolet light of 1670 A or less by argon is also generated as a continuous vector.
  • reactive gases such as oxygen, ammonia, fluorocarbon, and ethylene were photo-excited using a pulsed excimer laser beam containing a gas such as argon fluoride and the like to act on the carbon fiber surface.
  • the third step which is performed as required, is to coat the carbon fiber or the organic fiber obtained in the second step with a coating agent such as silane force, a '/ printing agent solution, or neoplastic. After spraying or pouring the alkoxy-based printing agent into the solvent solution, the mixture was allowed to settle naturally or forcedly stirred.
  • a coating agent such as silane force, a '/ printing agent solution, or neoplastic.
  • the polarity of the medium for diluting the coupling agent Since the wettability to water may not depend on the characteristics of the fiber surface, the silane coupling agent was diluted with water as much as possible to act on the fiber.
  • a 10,000-filament long fiber carbon fiber bundle is passed through the spiral low-pressure mercury discharge tube from the tube by the above-mentioned processing method.
  • C-H and C-N mainly exist partially on the surface mainly composed of C-C groups at room temperature in an argon atmosphere.
  • the atmosphere is replaced in the treatment vessel, and the ultraviolet radiation intensity at room temperature under atmospheric pressure is 0. It is set to be 5 mW / cm 2 or more, for example, 5 mWZ cm 2, and after removing these atoms,
  • Untreated products are mainly C-H, C-N.
  • the mixed surface group is mainly composed of C1O or COOH.
  • Neoalkoxy titanate Coupling agent Neoalkoxy titanate Coupling agent (LICA) Neoalkoxy zirconate.
  • Untreated product The mixed surface groups are mainly C-H and C-N To
  • Treated product Mixed surface group is mainly composed of C-OH or COOH
  • silane force and / or the wettability of the printing agent and the carbon fiber are not completely wet because they float on the liquid surface in the case of the untreated product, or they do not get wet without forcible agitation.
  • the materials used are as follows.
  • a short fiber carbon fiber having a length of 100 to 3 imn was carbonized at room temperature in an argon atmosphere for 10 minutes using a low-pressure mercury discharge tube with a length of 1 m and an outer diameter of 18.5 mm by the above-mentioned processing method.
  • the surface groups were forcibly destroyed and removed while irradiating the fibers with ultraviolet light.
  • a box type excimer laser generator encapsulating off "/ of Al Gon at room temperature under atmospheric pressure to replace the atmosphere during the processing container, a light beam is irradiated on the carbon fiber surface, while the 0 2 is La radical of 1 While winding at a speed of mZ, a C-10 bond was generated, and the result is as follows.
  • Untreated product Mixed surface groups are mainly C-H, C-N
  • the mixed surface group is mainly composed of C-10 or COOH.
  • the short-fiber carbon fiber with a length of 100 to 3 mm was treated at room temperature in an argon atmosphere for 10 minutes using a low-pressure mercury discharge tube with a length of 1 m and an outer diameter of 18.5 in the above treatment method.
  • setting forced destruction of surface groups while irradiating with ultraviolet rays, after removal, at room temperature after replacing the atmosphere during the processing container, the earthenware pots by the ultraviolet radiation intensity is 5 mW / cm 2 on the surface of the carbon fibers in the Then, the mixture was irradiated for 10 minutes while radicalizing 0 to form C-10 bonds on the surface of the chopped carbon fiber.
  • the result is as follows. '
  • Untreated products The mixed surface groups are mainly C-H and C-N.
  • the mixed surface group is mainly composed of COH.
  • the wettability of the silane coupling agent and the carbon fiber is such that the untreated product floats on the liquid surface and does not get wet without forced agitation, but the treated product is epoxy or poly.
  • the materials used are as follows. Force-upping agent
  • Mill-like carbon fiber of length 3 awake to 0.1 mm was treated with the above-mentioned processing method using a low-pressure mercury discharge tube with a length of 1 m and an outer diameter of 18.5 mm for 10 minutes in an argon atmosphere at room temperature.
  • the atmosphere was replaced with a processing vessel, and at room temperature, the UV radiation intensity was 5 mW / og on the carbon fiber surface. set, 0 2 yielding C 10 bonded to the surface of the irradiated Ji Yo class tap carbon identify Wei 10 minutes while radicalized. The result is as follows.
  • Untreated products are mainly C-H, C-N.
  • cm Mixed surface group is mainly composed of C-10 or COOH
  • the wettability of the silane coupling agent and the carbon fiber is very low if the untreated product floats on the liquid surface and is hardly wet. It does not get wet unless it is agitated, but the processed products are epoxy, polyimide, phenol, polyester, ABS, urethane, PPS, Nylon-6, Nylon-12, etc.
  • the materials used are as follows.
  • the carbon fiber of length 3 to 0.1 is irradiated with ultraviolet rays on the carbon fiber at room temperature in an argon atmosphere for 10 minutes using a low-pressure mercury discharge tube having a length of 1 m and an outer diameter of 18.5.
  • the atmosphere was replaced with a processing vessel, and a beam was applied to the surface of the carbon fiber using a box-shaped excimer laser generator filled with argon fluoride at room temperature under atmospheric pressure. Irradiation was performed for 10 minutes while radicalizing O 2 to form C 1 O bonds on the surface of the chip-like carbon fiber. The result is as follows.
  • Untreated product The mixed surface group is mainly C-H, C-N.
  • Treated product Mixed surface group is mainly C-O or C-OH And.
  • Untreated products are mainly C-H, C-N.
  • the mixed surface group is mainly C100H for CO.
  • Untreated products are mainly C-H, C-N.
  • the mixed surface group is mainly C-F.
  • Untreated product The mixed surface group is mainly C-HC-N.
  • the mixed surface groups are mainly CH2 and CH3.
  • the carbon fiber sheet was exposed to ultraviolet light at room temperature for 10 minutes using a low-pressure mercury discharge tube in a vacuum for 10 minutes without introducing inert gas. After forced destruction and removal, an acrylic water-based paint was applied evenly over the entire sheet surface to obtain a composite product dried at room temperature.
  • Untreated products The mixed surface groups are mainly C-H and C-N.
  • Treated product Mixed surface groups generate radicals (R) of C-paint Subject.
  • the present invention is characterized in that the surface state of carbon fiber is modified by using high-energy short-wavelength ultraviolet light or laser light. Unlike conventional processing methods, various types of coatings can be formed that can modify the surface itself and increase peel strength, and all the processes of the present invention can be carried out at room temperature. It is suitable for upsizing and online processing equipment.
  • the present invention can be expected to have an effect of reducing the unitary unit of carbon fiber.
  • the present invention solves these drawbacks and is extremely significant for the development of dry mix cement and the development of hardened cement containing CF containing no admixture. It is an invention.
  • the present invention is suitable for improving the surface characteristics of carbon fiber (inorganic fiber)
  • the present invention is not limited to carbon fiber but also inorganic fiber such as glass fiber and metal fiber. It is extremely effective in improving the surface properties of fibers, and is also effective in various types of textiles (organic textiles).
  • an example in which the present invention is applied to various types of organic fibers will be described.
  • the fibers to be treated are nylon, polyester, aramide, PP (polypropylene), vinylon, polyethylene, and fluororesin. After selecting and performing the following treatments, wetting, ink staining, and cupping properties were tested.
  • UV ray of 2537 A generated by a UV ray (ultraviolet ray) generator (output: 80 W, power frequency: 60 Hz, 100 V) for 5 minutes continuously (average UV energy intensity: 3 to 4 mW // d)
  • UV ray generator output 80W, power frequency 60Hz, 100V for 10 minutes (average UV energy intensity 6mW / cm)
  • Table 1 shows the test results of each organic fiber.
  • the effect of the present invention when the present invention is applied to an organic fiber is that the one treated according to the present invention has a remarkably improved wettability, and is mixed with a composite material or in a concrete or the like. In this case, the dispersion and kneading can be performed easily and in a single time.
  • the dyeability is improved, and a colorful product can be obtained, which contributes to the improvement of the commercial value.
  • control example shows the contact angle measured when the untreated synthetic resin plate was directly irradiated with ultraviolet rays in an oxygen atmosphere under the same conditions as in the second step.
  • Fig. 1 shows a fiber surface treatment device using a spiral-type low-pressure mercury discharge tube
  • 1 shows a reaction sealed container, and inside it is a high-purity quartz glass as an ultraviolet discharger.
  • a spiral discharge tube 2 is provided, and the discharge tube 2 is connected to a variable frequency high frequency power supply 3.
  • 4 and 5 indicate insulation sockets.
  • the vessel 1 is connected to an external inert gas cylinder and a reactive gas cylinder B such as oxygen via its supply pipes 6 and 7 on its 1 lavatory wall, respectively, to supply the inert gas and the reactive gas, respectively. Make sure that it is supplied in the closed container 1.
  • C is a mass flow controller interposed between supply pipes 6 and 7.
  • D is a quench dryer for quenching and drying the gas passing through the supply pipes 6 and 7, and E is a pressure gauge.
  • An exhaust system F is connected to the other side wall of the container 1.
  • the device shows an on-off control valve interposed in a conduit G, which comprises, for example, an evacuation device such as a vacuum pump connected to an outer end thereof and an on-off control valve interposed in the conduit.
  • a conduit G which comprises, for example, an evacuation device such as a vacuum pump connected to an outer end thereof and an on-off control valve interposed in the conduit.
  • right-way rotating drums 8 and 9 in which a bundle of 10 000 filament long fiber carbon fibers a is stretched.
  • a pair of guide rolls 10 and 11 for supporting the carbon fiber bundle so as to pass through the center of the spiral discharge tube 2 are provided.
  • the exhaust system device F is operated to evacuate the inside of the sealed container 1, and then, argon is flowed into the container 1 from the inert gas cylinder A.
  • the inside of the container 1 is set to an argon gas atmosphere at atmospheric pressure.
  • the power supply 5 is started, the ultraviolet discharge tube 2 is made to emit light, and the center of the discharge tube 2 is moved at a constant speed in one direction, and a carbon fiber monofilament bundle is required. Irradiate with the energy of ⁇ .
  • the long fiber bundle is wound on one of the drums 8 or 9, the first process for destroying and removing the surface group is completed.
  • oxygen is allowed to flow into the closed container 1 from the anti-gas cylinder B, for example.
  • the drums 8 and 9 are rotated to transfer the carbon fiber bundle a, and a second process is performed to combine the active oxygen with the traces of the atoms on the surface where the atoms have been removed.
  • FIGS. 2 and 3 show a surface treatment apparatus in which the surface treatment of the material is carried out as uniformly as possible over the entire surface of the material.
  • a surface treatment of a linear long material a is performed, and a long ultraviolet straight tube lamp 4 parallel to this is provided below the material a stretched over the drums 8 and 9 before and after it.
  • a strip-shaped ultraviolet reflector 12 having a width sufficiently larger than the width of the longitudinal material a and being parallel to the running direction of the material a was provided above the longitudinal material a.
  • the reflecting plate 12 has a surface facing the lamp 4 as an aluminum vapor-deposited surface, and is suspended and supported by a hanging rod 13 from the ceiling of the closed casing 1. It is preferable that the reflector has an arc-shaped surface so as to surround the linear material a.
  • the running long material a for example, a long fiber filament of carbon fiber
  • the lamp 2 is irradiated by the lamp 2 from its lower surface, while its irradiation is performed. Since the ultraviolet rays are reflected on the facing reflector 12 and are reflected to irradiate the upper surface from the opposite side of the linear element, the element is uniformly irradiated with the ultraviolet ray and the first element is uniformly irradiated. Step processing and second step processing can be performed.
  • FIG. 4 shows an apparatus according to still another embodiment. This apparatus performs the first step and the second step processing in the process of moving the material in one direction, and, if necessary, performs the processing.
  • reference numeral 14 denotes a partition that divides the inside of the closed container 1 into at least two first containers 1a and second containers 1b, and 15 denotes the second partition. Shows the coating equipment installed in the downstream lavatory of Vessel 1b.
  • a pair of drums 8 and 9 are disposed outside both ends of the closed container 1, and the supply drum 8 is wound with a sheet material a such as synthetic resin film or woven fabric or non-woven fabric such as carbon fiber.
  • the one-side wall of the container 1, the partition wall 14 and the other end wall are unwrapped with their nuclear penetration holes, and the sheet material a.
  • One end of the drum 9 is wound around the take-up drum 9 so that it runs horizontally.
  • Reference numeral 16 denotes a sealing member for sealing the gap between the poor hole and the material a passing therethrough in an airtight manner.
  • a plurality of long tube lamps 2, 2,... are arranged above and below each other at regular intervals and at an equal distance from the traveling horizontal material a.
  • the lower discharge tube row 2, 2... Has a sufficient length in the width direction of the material a and is longer than its width, and the lower discharge tube row 2, 2,. Either or both could be used.
  • each of the UV discharge tubes 2 has its own high frequency.
  • generator power supply 3 Connected to generator power supply 3.
  • Nozzles 16a, 16a ... arranged at the end in the width direction of the material a surface were provided at a predetermined interval above and facing the material a surface.
  • the drums 8 and 9 are rotated and unwound from the supply drum 8, and the sheet material a travels horizontally in the closed container 1 at a constant speed.
  • the surface a of the material is first destroyed by using a combination of an inert gas at a predetermined pressure and irradiation with high-energy ultraviolet light in the first container 1a.
  • the reactive gas ion such as oxygen is combined with the reactive gas and the ultraviolet ray in the second container 1b to combine with the lack of the surface group, and a new binding group is formed.
  • a coating agent is formed and then, downstream thereof, is sprayed with a coating agent more uniformly on the modified surface than the coating device 15, and active atoms of the nascent surface group, for example, active oxygen Then, the active groups of the coating agent combine to form a strong coating layer, After that, the coating layer is dried by low-temperature drying or the like, wound around the winding drum 9, and a desired surface treatment is performed by a flow operation.
  • the second step treatment was disabled, and after the surface group was destroyed and removed in the first step, Needless to say, it is permissible to perform the switching process.
  • the coating process is suitable outside the container if the material is exposed to the air and can be safely used!
  • the coating process may be performed using the means and materials described in (1).
  • the present invention is applicable to a case where a surface of a mass of carbon powder, mineral powder, fine ceramics, ceramic powder, sintered metal powder, ferrite, or coarse material is used.
  • the surface treatment can be performed uniformly over the entire material in a state where the aggregate is kept stationary, and the first and second process treatments are performed while rotating or floating the group of fine materials. It is characterized by performing.
  • FIG. 5 shows an example of a surface treatment apparatus according to an embodiment of the present invention, in which a tubular discharge tube made of synthetic quartz that transmits at least 40% or more of ultraviolet light having a wavelength of 1800 A or more is used.
  • a glass or aluminum tray 17 is adhered to the bottom of a sealed reaction vessel 1 containing a low-pressure ultraviolet discharge tube 2 inside, and the powder to be treated is supplied from a powder supply device 18 connected to the vessel 1.
  • a. is configured to be supplied intermittently.
  • an inert gas for example, argon
  • a mass flow controller C to stabilize the gas at almost atmospheric pressure
  • the closed reaction vessel 1 has a power of 200 W or more. Placed on a large water ellipse 20 equipped with a powerful ultrasonic generator 19 to transmit ultrasonic vibrations to the powder a via the water 21 to give the powder a rotational or floating motion. It is configured.
  • the low-pressure ultraviolet discharge tube 2 is controlled by using a variable-frequency high-frequency power supply 3 capable of changing the frequency between 50 KHZ and 1 MHz, and can be adjusted by using a matching device 22 as necessary. ing .
  • the discharge tube 2 is about 1000 x 18.5 cm in size, and its electrodes are made of tungsten, iron, copper, fii, zinc, lead, selenium, and other metals in the form of a ribbon or coil. It was used in a shape that allows sufficient light emission, such as a round shape.
  • the gas used for the discharge tube 2 can be freely filled with hydrogen, nitrogen, oxygen, or the like via a connection tube 23, as shown in FIG. And a control device 24 having a low-pressure pump and the like.
  • mercury was sealed for stabilization of discharge and used as a mercury lamp.
  • the powder on the tray 17 is tumbled by the ultrasonic generator 19 in the above apparatus, and the surface is irradiated with ultraviolet rays while an inert gas is applied at about atmospheric pressure.
  • the second step in the same processing system as the first step, — 3.7
  • gaseous hydrocarbons such as CH 4 and ethylene, as well as inorganic gases such as oxygen, hydrogen, nitrogen, ammonia, CF 4 and argon
  • the powder a is injected into the tray 17 at a constant ratio through the above-mentioned tray 25, and is irradiated with ultraviolet light while the scraper 26 is actuated. Acted on.
  • the third step is to add the powder obtained in the second step into a silane coupling agent solution or a neo-alkoxy-based coupling agent solution and then heat and stir. I did power-ups.
  • Silane couplings are diluted with water or alcohol, and neoalkoxy coupling agents are diluted with IPA (isopropyl alcohol), toluene, xylene, etc., or powdered by pretreatment. Acted on the body.
  • IPA isopropyl alcohol
  • the ultraviolet irradiation time is 30 minutes for each of the first step and the second step, and the generated ultraviolet wavelength is, for example, 2537 A.
  • Table 4 shows the results.
  • the UV intensity in the above test was ⁇ ⁇ 10 ⁇ / ' «3 on the powder surface
  • Table 6 shows the results of treating various powders shown in Table 6 below under the conditions shown in the table and substituting and generating organic functional groups on the surface.
  • Example 14A After treating the various powders shown in Table 7 below in the first step and the second step under the same conditions as in Example 14A, the surface was treated with various capping agents. I cut it. The powder treated according to the present invention thus obtained was mixed with various kinds of appropriate organic binders, heated and molded, and the appearance was observed.
  • these surface groups do not necessarily have different affinity for other materials.
  • the terminal in the case of a C-H or C-F bond, the terminal has zero charge and does not tend to wet other materials. Therefore, when converting the surface of the powder to a desired surface group, the energy of the ultraviolet rays is directly applied to the powder ⁇ : to break the bonds of C— ⁇ , C—F, etc., and remove H, F. There must be.
  • cutting and removal of, and F atoms could be performed quickly and favorably.
  • the carbon powder obtained by the above treatment is treated as a second step, for example, in a mixed gas of argon and oxygen, oxygen is radicalized by short-wavelength ultraviolet rays and tends to strongly bind to carbon. An action occurred, and thus, the atom entered the trace where the atom was removed, and bonded to C to form a C-bond, and finally the surface of the carbon powder was modified to an excellent oxidation state. .
  • the carbon powder obtained in this way has a strong affinity for water, so that when it is put into water, all of it instantaneously settles.
  • the powder not subjected to the treatment is only floating on the water surface.
  • the type of silane coupling agent is not limited. Therefore, all surface-treated products have affinity.
  • the first step, the second step, and the third step of the present invention have a remarkable coupling effect even on a material which has conventionally been difficult to force-couple to a surface. .
  • a tan powder has no surface group, and in the case of a fine powder, there is only a small amount of water adhering thereto.
  • a resin such as polyester or nylon which can mix water, even if the water on the surface is removed, further coupling is required. Become . In this case, it has been conventionally known that the silane coupling agent is ineffective.
  • Ketching Brass The static electricity jumping effect of Ketching Black Good dispersibility Acryl emulsion Electrical conductivity improvement In order to transfer the fruit more effectively into the matrix, it is effective for John etc. Neoalkoxy bonding after destruction and oxidation of
  • the surface was treated with a titanate coupling agent.
  • Si the surface of Si'-frite, a raw material for flexible magnets, has a remarkable dispersibility.
  • a polyamide resin has strong magnetic properties. After removing water attached to it, it improves adhesion to isopropyl alcohol. Good mechanical strength is added, water-based groups are formed on the surface using gas, and the amount of resin can be further reduced (in molded products) Surface treatment ability using alkoxy-based coupling agent
  • Sopropyl alcohol forms water radicals and decreases
  • the surface was treated with the agent.
  • the surface After removing the oil and fat adhering to the membrane, the surface is mixed with a net-based material mixed by oxidation, etc., and the silane coupling agent (Neoalkoxy) has good bonding properties.
  • the magnetic powder is known to grow at a remarkable rate when wet with water, or to react with oxygen in the atmosphere and burn.
  • the powder was irradiated with ultraviolet light-The powder was flake-shaped and had a high specific gravity and was difficult to rotate. The main rolling operation was performed with a scrubber, but the particle diameter was coarse, 200 am, and was 30 minutes. Dehydration was sufficiently achieved in the processing time of the above. In addition, since the powder was rapidly cooled at the time of production, the magnetism was reduced when heated. However, it was found that the first step was a good treatment method because no heat was generated.
  • Table 8 shows the results of the surface being coated with various neoalkoxy-based coupling agents immediately after the present powder was treated in the first step.
  • neoalkoxy force-removing agents are good, and even if pellets obtained by kneading with a polyamide resin using a powder obtained by coupling these are simply stearic acid-treated. A remarkable and stronger protection effect was obtained compared to a product coated with this powder.
  • the first step of the present invention and an example of a force-splitting process on high-purity silica submicron particles will be described.
  • submicron particles or ultrafine particles having a strong force have extremely high hygroscopicity, and even if they are completely dry at the time of generation, they will have a weight ratio of about 0.5 to 0.3% in the presence of air. Has been found to absorb moisture.
  • CH 2 CH-CH 2 0- CH 2 0 0
  • a silane coupling agent that is compatible with the polyimide is applied to each of the sily powders obtained in the first step treatment to sufficiently cap the powder. After ringing, the powder was dried to obtain 3% of N-methylpyrrolidone. At this time, the sample in which the coupling agent is not sufficiently bonded to the powder or the sample in which water remains is N-methyl. The dispersion was allowed to stand for 5 days for gelation in pyrrolidone, and the state of the solution was observed.
  • the N-methylpyrrolidone-dispersed silica that had undergone the desired treatment was thoroughly mixed with a wholly aromatic polyamide varnish in a ratio of 1: 2 to obtain a polyamide aliquot.
  • the polyimide solid content was 92.3% and the silica powder was 7.1%.
  • this precursor was stretched extremely smoothly into a stainless steel plate shape using a bar coder, and the initial baking was performed at 100 to 150 for about 1 hour.
  • the specimens whose organic materials were sufficiently degreased by baking were polymerized by heating at 250 to 30 (KC.
  • the results of these film forming processes are shown in Table 9 above.
  • the inside of the closed vessel in the first step is evacuated or made into an inert gas atmosphere, and the ultraviolet ray is irradiated in this state, energy loss that occurs when the ultraviolet ray is irradiated in an oxygen or air atmosphere is avoided.
  • the material surface can be irradiated with a predetermined high energy, and the bond of the surface group can be destroyed and removed with high efficiency.
  • the pressure inside the closed vessel is reduced to about 10 to 0.01 torr to remove air (oxygen). If moisture is attached to the material, it is particularly preferable to remove it with a dry inert gas.
  • inert gas refers to rare gases such as argon, crypton, xenon, and other materials to be treated.
  • inert gas contains inert gas, and nitrogen can be used.
  • the distance between the UV discharge tube and the material surface is preferably as short as 20 ⁇ or less, but the distance between the discharge tube and the material tube can be adjusted by appropriate means according to the type of material to be treated. It may be configured in such a way.
  • the discharge tube absorbs the generated ultraviolet spectrum, even in the case where synthetic quartz sprozil, which has extremely low energy absorption even in the vacuum ultraviolet region, is used as a standard, even in the atmosphere.
  • the 185 nm mercury resonance line showed an extremely strong value of 0.5 to 0.2 mVcm 2 (at 100 V, AC).
  • a low frequency oscillator of 5 to 5 KHZ is used as the ultraviolet ray generator so that the applied power can be controlled.
  • the term “surface group” refers to a chemical bond atom or atomic group that constitutes the material itself, which is present on the surface of the material, is bonded to an atom on the surface of the material or exists between the atoms.
  • the term refers to the bonding state of atoms or atomic groups that are adsorbed or chemically bonded by van der Waals bonds, ion bonds, or the like.
  • surface groups in a bonded state such as C-H, C-F, Si-0H, which are bonded instead of the original atoms, organic materials, such as synthetic resin materials
  • the surface group such as C-CI, C00H or the like, which is bonded at the terminal or side chain of the main chain, or the functional group itself, is destruction or removal of the surface group. Destroying a specific atom or group of atoms. Therefore, the surface group is destroyed and the specific atoms or atomic groups are removed according to the purpose whose surface characteristics are to be modified. At this time, the intensity of the ultraviolet rays, the distance between the discharge tube and the material surface, etc. are appropriately determined accordingly.
  • various specific reactive gas species are selected in accordance with the desired modification of the surface characteristics in the trace of the removal of the atoms or atomic groups of the surface groups removed in the first step. It activates and introduces it to generate new surface groups.
  • Do full Tsu reduction based gas CF 4 hydrogen, nitrogen, chlorine, hydrochloric acid, NH 3, C 0 inorganic gas such as 2, Po Li Lee
  • At least one, or a mixture of two or more of mid, propylene, xylene, toluene, benzene, ethylene, isopropyl alcohol, and any other organic gas can be used.
  • the surface of the material is irradiated with high-energy ultraviolet rays in a closed vessel under vacuum or at least one kind of inert gas atmosphere.
  • a second step at least one specific reactive gas contained in a closed container is irradiated with ultraviolet light or laser.
  • the material was activated with one light beam and brought into contact with the active surface group of the material, so that a material having various surface characteristics according to the purpose can be obtained.
  • the desired surface group can be destroyed, removed and the intensity of the reactive gas set or Combination with selection of types can improve the surface properties of materials and manufacture processed products of new materials with new surface characteristics, and can be carried out at room temperature, and the size of processing equipment can be increased. It has effects such as being suitable for conversion and online conversion.
  • the active surface of the material is used.
  • the base is obtained from a coated material in which the coating agent is firmly coated on the material surface.
  • the material is rotated or floated, particularly in the surface treatment of a group of fine materials such as powder, so that a uniform surface treatment can be achieved throughout. It has an effect that can be achieved.
  • a reaction sealed container is provided with an inert gas supply pipe and an inert gas supply pipe on one side thereof, and a flow control device.
  • the first process was completed in the same container because the exhaust system was connected to the other room and the ultraviolet discharge tube was installed in that container. Thereafter, the second step can be performed, and a device with a small occupied space can be provided.
  • the first process chamber and the second process chamber are partitioned by the partition in the container, the long material is transferred in one direction and continuously. As a result, the first step and the second step can be performed, and the work efficiency can be improved.
  • the coating process can be performed in the closed container.
  • the reflector when the reflector is provided on the facing surface of the ultraviolet lamp provided in the closed container with a passage for the material therebetween, the surface of the material facing the reflector is provided.
  • it has an effect such that a good surface treatment can be performed by irradiating ultraviolet rays.
  • the method for improving the surface properties of a material according to the present invention and the surface treatment apparatus for the method include various methods such as a reinforced plastic molded body, a reinforced cement molded body, a laminate, and a laminate processing.
  • Manufacture of composite products, manufacture of sintered products such as ultrafine metal powders, metal powders, magnetic metal powders, fine ceramics, ceramics, etc., and various industries such as semiconductors, biotechnology, and paints. Suitable for coating process and other various industrial powders.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

A process for improving surface properties of a material comprises irradiating the material with ultraviolet rays in vacuo or in an inert gas atmosphere to destroy atom-to-atom bonds of predetermined surface groups and remove specific atoms, and reacting the activated surface with radicals of a reactive gas or coating agent activated by irradiation with ultraviolet rays or laser beams to thereby produce new surface groups and modify the surface properties according to a particular purpose. An apparatus for conducting this process comprises a closed vessel (1) having an ultraviolet ray discharge tube (2) provided therein and an inert gas feed pipe (6), a reactive gas feed pipe (7) and a degassing apparatus (F) connected thereto to make the inside selectively vacuum or an atmosphere of inert gas or reactive gas.

Description

明 細 書  Specification
素材の表面特性改善方法並にその表面処理装置 技術分野 .  Technology for improving surface properties of materials and surface treatment equipment.
本発明は、 素材の表面特性改善方法並にその表面処理 装置に閲する 。  The present invention refers to a method for improving the surface properties of a material and a surface treatment apparatus for the method.
冃 技術  冃 Technology
近年、 ナイ ロン、 ポ リエステル、 ァラ ミ ド 、 ポ リ ア口 ピレ ン ( P P )、 ビニロ ン、 ポ リエチレン、 フ ッ素樹脂等の 人造繊維に加え、 炭素繊維が脚光を浴び、 各種複合材料 への開発が進め られて いる 。  In recent years, in addition to man-made fibers such as nylon, polyester, aramid, polyarene pyrene (PP), vinylon, polyethylene, and fluororesin, carbon fiber has been in the spotlight and various composite materials Is being developed.
近年、 フ ァ イ ンセ ラ ミ ッ ク ス材料 、 金属材料、 炭素材 料、 磁性材料、 電子材料、 その他天然材料よ り なる粉体 が脚光を浴び、 各種複合材料への開発が進め られて いる 。  In recent years, powders composed of fine ceramics materials, metal materials, carbon materials, magnetic materials, electronic materials, and other natural materials have been spotlighted, and development into various composite materials has been promoted. .
しか しながら 、 これら繊維、 粉体は必ず し も分.散性が 良好でな く 、 しかも親水性や各種材料に対する濡れ性や 接着性 も乏 し い と い う 欠点がある  However, these fibers and powders have the disadvantage that they are not necessarily dispersed, and that they have poor hydrophilicity, poor wettability and adhesion to various materials.
例えば、 炭素繊維やァラ ミ ド繊維は F R P分野では、 主と してェボキ シ樹脂に しか応用されて お らず、 他の樹 脂と の複合化は困難な状況である 。  For example, in the field of FRP, carbon fiber and aramide fiber are mainly applied only to ebox resin, and it is difficult to compound them with other resins.
又、 ポ リエステル繊維等においては染色方法が通常の ウール ( 羊毛 〉 材料と異な り 加圧染色を行 う 必要があ る ため、 その混紡にあ っ て も羊毛が加圧染色工程を必要と しないに も拘らず、 高いコ ス ト な手段で しか染色ができ ない欠点があ り 、 使用でき る染料も限定されて し ま う こ とが多い。 In addition, since the dyeing method for polyester fibers and the like is different from that of ordinary wool (wool) materials, it is necessary to perform pressure dyeing, so even in the case of blending, wool does not require a pressure dyeing step. Nevertheless, it has the disadvantage that it can only be dyed by expensive means, and the dyes that can be used are also limited. And many.
更に、 他のマ ト リ ッ クス材料中に繊維を複合させる場 合相手の樹脂に对するカ ッ プ リ ング剤が繊維表面に適切 に付着されていない場合には、 たと え樹脂エラス トマ一、 ゴム等に混合成形させて も所定の強度が纖維のぬけの現 象によって発現されないこ とが多いため、 繊維の充填比 率を高めねばな らなくな り 、 逆にコス トが上がるばか り かハン ド リ ング特性が低下し良好な結果が得られて いな い。  Furthermore, when the fiber is compounded in another matrix material, if the coupling agent for the other resin is not properly adhered to the fiber surface, the resin elastomer may be removed. However, even when mixed with rubber or the like, the desired strength is often not exhibited by the phenomenon of fiber penetration, so that the fiber filling ratio must be increased, and conversely the cost increases. However, good results have not been obtained due to poor soldering characteristics.
更に、 耐熱性 F R P複合体の開発にあっては、 た と え 縑維表面が力 ッ プリ ング剤に好適なぬれ性を保有 してい て も 、 そのカ ップリ ング剤自体が耐熱性が無ければ製造 工程中で熟分解 して しま う ため、 でき るだけ高温で安定 なカ ブプ リ ング荊を使用する こ と が重要な課題となる 。  Furthermore, in the development of a heat-resistant FRP composite, even if the fibrous surface has wettability suitable for a force-removing agent, if the coupling agent itself does not have heat resistance. It is important to use a coupling bar that is stable at as high a temperature as possible because it decomposes during the manufacturing process.
又、 無機接着剤との混合において例示すれば、 セメ ン ト中に纖維を強化する場合、 織維が濡れないか濡れにく い場合には、 混練時に長時間を要する こ と になつて しま い、 必然的に有機質分散剤や凝結遅延剤を添加せざる を えない上撹拌時に気泡がモルタルヰに多く と り込まれて し まい所定の強度が得られない上セメ ン トペース ト と織 維も付着状態が悪いため、 混合率を上昇 して も良好な結 果がえ られて いない。  In addition, in the case of mixing with an inorganic adhesive, for example, when reinforcing fiber in cement, when the fiber is not wet or hard to wet, it takes a long time to knead. Inevitably, an organic dispersant or setting retarder must be added.Moreover, a large amount of air bubbles are trapped in the mortar during agitation, and a predetermined strength cannot be obtained. Due to poor adhesion, good results have not been obtained even if the mixing ratio is increased.
特に炭素識維の表面に本来の C 一 C基の他に部分的に C 一 H , C - , C - 0 , C 一 Fその他多 く の表面基が 存在 してお り 、 これらの表面基は必ず し も 他の材料に対 して 、 親和性が良好でないばか り か、 著 し く 反発する こ と も あ る 。 In particular, C-H, C-, C-O, C-F and many other surface groups are partially present on the surface of carbon fiber in addition to the original C-C group. When present, these surface groups may not always have a good affinity for other materials, or may rebound significantly.
粉体についての欠点は、 例えば、 フ ァ イ ンセ ラ ミ ッ ク スゃ焼結金属或いはフ ライ 卜 コ ア等の焼結体の前駆的 ' 成形工程においては、 湿式成形工程中に完全な均一分散 The disadvantages of powders are that, for example, in the case of finceramics, the precursory molding process of sintered metals or sintered cores such as flat cores, complete uniformity during the wet molding process dispersion
- 系を構成する こ と が困難だった り 、 成形体等の乾燥工程 において分散性が均一でないためひび割れやそ り が発生 し 、 製品の歩留があ ま り 良好でない点が知られて いる 。 又、 焼成工程において も 、 部分的凝集団塊が多い と 、 焼結異常によ るキ ンク (割れ 〉 等が発生 し 、 性能不良の 原因と なった り する 他、 そ り も発生する 。 これ らの不良 は、 イ ンジェ ク シ ョ ンモールデ ィ ング焼結体について も 同様である 。 -It is known that it is difficult to configure the system, and cracking and warpage occur due to uneven dispersibility in the drying process of the molded product etc., resulting in poor product yield. . Also, in the sintering process, if there is a large amount of partially aggregated aggregates, sintering causes kinks (cracks) and the like, which may cause poor performance and may also cause warpage. The same is true for the injection molding sintered body.
今回、 粉体焼結にあたっては、 如何に製品歩留 り を向 上さすかが最大のテーマであ り 、 言い換えれば粉体を如 何にバイ ンダー、 水、 分散剤と 均一混合するかが最大の 課題と なって いる こ と は周知の通 り である 。  The biggest theme for powder sintering this time is how to improve the product yield, in other words, how to uniformly mix the powder with binder, water and dispersant. It is well known that this is an issue.
更に、 他のマ ト リ ッ クス材料中に粉体を複合させる場 , 合、 複合化の加熟又は重合工程において粉体表面に付着 する微量水分や 0 H基が、 その工程の破壊要素と して働く こ と が多 く 知られてお り 、 ポ リ マー中に混合分散 した粉 体の熱衝撃によ る再凝集、 ある いはブロ ッキ ング、 又べ レタ イ ジング時の流動性不良、 成膜工程における ク ラ '' / ク発生、 コーテ ィ ング剤の分離、 着色ムラ等の各種の現 象の原因と なっている 。 Furthermore, in the case where the powder is compounded in another matrix material, trace moisture and 0H groups adhering to the powder surface during the ripening or polymerization process of the compounding may be a destructive factor in the process. It is well known that the powder mixed and dispersed in the polymer re-agglomerates due to thermal shock, or blocks fluidity during blocking and bleeding. Defective, film in film forming process '' / It causes various phenomena such as generation of cracks, separation of the coating agent, and uneven coloring.
これは一般に力 ッ プ リ ング剤ゃ活剤の粉体に対する コ 一テ ィ ングによ って防止する こ とで抑制でき る と考え ら れているが、 カ ップリ ング剤ゃ活剤の耐熱性、 0 H基に対 する適合性、 ある いは凝集体に対する均質なカ ブ プ リ ン グが必ず し も良好でないか、 材料によ っては全く親和性 が無い場合も少なく 、 問題点が多い  It is generally thought that this can be prevented by preventing the coating of the coupling agent and the activator against the powder, but the heat resistance of the coupling agent and the activator can be reduced. Problems, such as poor compatibility, compatibility with 0H groups, or homogeneous coupling to aggregates is not always good or, depending on the material, often lacks affinity at all. Often
更に、 粉体自体を媒質中において分散系と して使用す る場合、 特に表面に耐熱性、 耐薬品性、 耐劣化性、 耐摩 耗性、 耐圧性、 絶縁性、 導電性、 磁気特性など様々な膜 を コーテ ィ ングする場合がある 。 特にシ リ コ ンオイ ル系 等の高温耐熱分散系や、 各種精密な温度調節の可能なパ ラ フ ィ ン分散系などにおいては、 第 1 素材である粉体材 . 料表面に、 前記のよ う な第 2素材を薄膜コーテ ィ ングす る場合には第 1 素材の粉体上に対 して、 第 2素材を コー テ ィ ングするのに最も適した表面を生成せ しめなければ 好適なコーテ ィ ング膜が得られない。 しか しながら市販 の各種粉体は、 殆どそのよ う な表面処理が行われていな い .  Further, when the powder itself is used as a dispersion system in a medium, the surface has various heat resistance, chemical resistance, deterioration resistance, abrasion resistance, pressure resistance, insulation, conductivity, magnetic properties, etc. In some cases, the coating may be applied to a suitable film. In particular, in the case of high-temperature heat-resistant dispersion systems such as silicone oil systems and various types of paraffin dispersion systems in which precise temperature control can be performed, the first material, the powder material, has a surface as described above. In the case where such a second material is coated with a thin film, it is preferable that a surface most suitable for coating the second material is not formed on the powder of the first material. Coating film cannot be obtained. However, commercially available powders have hardly any such surface treatments.
又 .、 粉体と無機接着剤と の複合材料の製造に当たって は、 特に炭素材料、 金属材料、 ガラス、 その他の特殊機 能を発現させる各種材料よ り なる粉体を、 セメ ン ト 、 石 蓊、 しっ く い、 水ガラス、 その他の無機接着材中に混合 分散させる場合、 濡れ性の悪い ものの場合には混練系に 対するエアーの卷込みが起こ り 、 増粘する こ と が多いた めその対策と して各種の助剤を使用 して いるが、 これ ら 助剤は成形体系に対する物理的且つ化学的な悪影響が多 い In the production of a composite material of a powder and an inorganic adhesive, a powder made of a carbon material, a metal material, glass, or any other material exhibiting a special function is used, especially in a cement or stone powder. Mixed with plaster, plaster, water glass and other inorganic adhesives In the case of dispersing, if the wettability is poor, air is entrapped in the kneading system and the viscosity often increases, so various auxiliaries are used as a countermeasure. Auxiliaries have many physical and chemical adverse effects on molding systems
特にセメ ン ト 2次製品や石膏成形体にあ って は 、 強度 低下やひび割れの原因になって いる し 、 水ガラス系材料 の表面コ ーテ ィ ングも均質に行えないのが現状である 。  Especially in the case of secondary cement products and gypsum moldings, this causes a reduction in strength and cracks, and at present the surface coating of water glass-based materials cannot be performed uniformly. .
特に超微粒子を取扱 う 工業においては上記のよ う な諸 問題は解決されて いない。  In particular, the above-mentioned problems have not been solved in the industry that deals with ultrafine particles.
このよ う な欠点を改善するため、 物理化学的手段と し ては、 表面のプラズマ酸化、 酸素、 オゾンな どの酸化性 雰囲気中での紫外線照射によ る表面酸化、 表面塗液の活 性化処理、 熱処理、 又、 化学的手段と して は、 重ク ロム 酸カ リ などの薬品等によ る酸化、 還元法な どがあげられ るが、 これらは一般に炭素繊維、 基板、 成形体、 電子材 料に対 して その表面酸化処理方法は公知である 。 例えば、 従来の上記の技術を開示 した公知文献と しては、 特公昭 4 7 — 3 3 0 2 2号公報、 特公昭 4 7 - 2 4 9 7 6号公 報、 特開昭 4 9 一 8 7 8 9 1 号公報 、 特開昭 5 2 — 1 4 8 5 6 4号公報、 特開昭 5 9 — 8 5 4 6 6号公報、 特開 昭 6 1 — 1 1 9 7 6 8号公報、 特開昭 6 2 — 7 9 2 3 5 号公報な どがある 。  In order to remedy these drawbacks, physicochemical means include plasma oxidation of the surface, surface oxidation by ultraviolet irradiation in an oxidizing atmosphere such as oxygen or ozone, and activation of the surface coating solution. Examples of the treatment, heat treatment, and chemical means include oxidation and reduction using chemicals such as calcium dichromate. These are generally carbon fibers, substrates, molded articles, and the like. The surface oxidation treatment method for electronic materials is known. For example, publicly known documents that disclose the above-mentioned conventional technologies include Japanese Patent Publication No. 47-33022, Japanese Patent Publication No. 47-24976, and Japanese Patent Application Laid-Open No. 49-91. 8 7 8 9 1, Japanese Patent Application Laid-Open No. 52-144 864, Japanese Patent Application Laid-Open No. 59-85 4 66, Japanese Patent Application Laid-Open No. 61-119 688 And Japanese Unexamined Patent Application Publication No. Sho 62-79253.
しかる に、 これ らの処理方法は、 夫々下記の欠点を有 する 。 即ち、 プラズマ法では生産性が悪い上炭素織維の 諸特性を劣化させる こ とがある し、 化学酸化法では材料 の後処理工程が複雜で、 廃液等の処理が困難である 。 However, each of these processing methods has the following disadvantages. Do That is, the plasma method may deteriorate productivity and degrade various properties of the carbon fiber, and the chemical oxidation method may involve complicated post-processing steps of the material, making it difficult to treat waste liquid and the like.
又、 上記の紫外線照射による表面処理法は、 改善は認 め られるが、 その改善は不十分であ り 、 改善の余地があ り 、 又、 処理過程で有害物質を生ずるなどの問題を有す る こ と が多 く の試驗研究の結果判った。  The surface treatment method by the above-mentioned ultraviolet irradiation has been improved, but the improvement is insufficient, and there is room for improvement, and there are problems such as generation of harmful substances in the treatment process. Many experimental studies have shown that
即ち、 各種の素材、 例えば、 炭素纖維又は粉体の表面 には 、 上記 したよ う に、 C 一 C基の他 C — H , C - N . C 一 O , C 一 Fなどの不純な表面基が存在しているが、 これらの表面基は表面親和性、 親水性な どの改善の妨げ と な り 除丟する必要がある こ と が判った。 従って 、 従来 のよ う に、 素材を直接処理容器内に入れ、 大気、 酸素、 才ゾン .、 C (な どの反応性ガ-ス雰囲気下で紫外線を照射し て 、 その表面を浄化 し且つ表面酸化処理 して も 、 上記の 表面基が除かれて いないので、 充分な親和性、 親水性等 の改善は認められないこ とが認め られた  That is, as described above, the surface of various materials, for example, carbon fiber or powder, is impure surface such as C—H, C—N, C—O, and C—F in addition to C—C groups. Although these groups were present, it was found that these surface groups hindered improvements in surface affinity, hydrophilicity, etc., and had to be removed. Therefore, as in the conventional case, the material is directly placed in the processing vessel, and the surface is purified and irradiated with ultraviolet rays in a reactive gas atmosphere such as air, oxygen, oxygen, or C. It was recognized that even after the oxidation treatment, sufficient improvement in affinity, hydrophilicity, etc. was not observed because the above surface groups were not removed.
纖維、 粉体などの素材を単体で使用する他、 塗料、 接 着剤、 成形用加熱溶融樹脂、 セメ ン トなどのコーテ ィ ン グ剤で直接被覆し、 その剝齄強度の増大した被覆加工品 やカ ッ プリ ング剤や接着剤を介し該成形用合成樹脂、 セ メ ン ト金属箔、 フ ィ ルム、 シー ト 、 ボー ドなどを結着 し て強化成形体やラ ミ ネー ト フ ィ ルム、 積層ボー ドな どの 複合製品を製造する場合、 その素材表面は、 親和性ゃ濡 れ性の改善が要求されるが、 従来の表面処理法では、 素 材表面に親和性、 濡れ性な どを阻害する表面基が存在す るので、 剥離強度、 層間剥離強度の低下 した複合製品を もた らす欠点を有する 。 In addition to using fibers, powders, and other materials alone, the coating is coated directly with a coating agent such as paint, adhesive, hot melt resin for molding, cement, etc. Molded resin, cement metal foil, film, sheet, board, etc., through a product, a coupling agent, or an adhesive to form a reinforced molded product or laminate fiber. When manufacturing composite products such as lumps and laminated boards, the surface of the material must be compatible However, conventional surface treatment methods have surface groups that inhibit the affinity and wettability of the material surface, so composite products with reduced peel strength and delamination strength It has the drawback of bringing about.
素材が本来もつ表面特性を 、 例えば、 親水性の ものを 磲水性にする こ と や、 導電性め ものを コーテ ィ ング剤に よ り 絶縁塗膜や微生物を吸着せ しめる各種の合成樹脂の 被覆を強固に結着する こ と が望まれる こ と がある 。 又、 素材の表面を特定のコーテ ィ ング剤のコー ト に適する よ う にその表面特性を改変する こ と が望まれる場合があ る 。 更に 、 具体的に述べれば、 近年では金属超微粒子や金属 間化合物な どのよ う に酸化或いはガス反応を起こすと そ の発生熱によ って爆発を起こす も のが多 く 、 死傷事故が 発生する に至っ て いる 。 従っ て 、 単に粉体の表面を ク リ 一二ング した り 、 酸化 したのでは全 く 逆効果であるばか り か 、 最 も危険な操作になる こ と も ある 。 , 更に、 繊維や粉体は単体での使用 も あ るが、 多 く は、 複合材料も し く は成形体と して利用 されるが樹脂やゴム に対 しては、 一般にその表面に対 して シラ ンカ ツ プ リ ン グ剤や、 一部でモ ノアルコキ シ · チタ ネー ト · カ ツ プ リ ング剤或いはアル ミ ネー ト系力 ッ プ リ ング剤が用い られ て いる 。  The surface properties inherent to the material are, for example, to make hydrophilic ones more water-soluble, or to coat conductive materials with a coating agent to coat insulating films and various synthetic resins that absorb microorganisms. It is sometimes desirable to bind firmly. It may also be desirable to modify the surface properties of the material to make it suitable for a particular coating agent coating. More specifically, in recent years, when oxidizing or gas reacting like ultra-fine metal particles or intermetallic compounds, they often cause explosions due to the heat generated, resulting in death or injury. Has been reached. Therefore, simply cleaning or oxidizing the surface of the powder may not only be totally counterproductive, but may be the most dangerous operation. In addition, fibers and powders are sometimes used alone, but in many cases, they are used as composite materials or molded products. Silane coupling agents, and monoalkoxy / titanate / coupling agents or aluminate-based coupling agents have been used in some cases.
所が、 粉体の中には未処理第 1 素材のま までは全く こ れらカ ッ プ リ ング剤に濡れない も の も少な く ない . 例え ば炭素織維や炭素粉体の多 く は、 未処理の状態ではシラ ンカ ッ プ リ ング剤に濡れないか、 たと え濡れて もカ ツ プ リ ング効果は薄い。 又同様にモノ アルコキシ ■ チタネー ト · カ ップリ ング剤による効果も著しいわけではない。 更に、 逆に、 最終製品が絶縁材料でなければならない と き にネオアルコキシ · チタネー ト ■ カ ッ プ リ ング剤な どは使用でき ない。 又、 ボロンナイ ト ライ ド粉体に対 し ては水や 0 Hは極めて有害であるが -、 ボロンナイ ト ライ ド に対する物理的表面処理方法は開発されて いないため、 シラン力 ッ プリ ング剤などの対応が困難となって いる 。 従って 、 これらの問題を解決する表面特性の改善方法が 望まれる a However, many of the powders do not get wet with these coupling agents at all until the untreated first material. For example, many carbon fibers and carbon powders do not get wet with the silane coupling agent in the untreated state, or even if they do get wet, the coupling effect is weak. Similarly, the effects of monoalkoxy ■ titanate / coupling agents are not remarkable. Furthermore, conversely, when the final product must be an insulating material, neoalkoxy titanate ■ cupping agents cannot be used. Water and 0H are extremely harmful to boron nitride powder.However, since no physical surface treatment method has been developed for boron nitride, silane-based bonding agents such as It is difficult to respond. Therefore, a method for improving the surface properties that solves these problems is desired.
更に又、 被処理物の表面を直接 C F 4 , F又は C Iガスで 表面酸化処理する と き は、 素材に付着又は吸着 している 水分、 0 H、 Hな どが C Iと反応 し 、 H F、 H C Iを素材の表面 又は雰囲気中に生ずる不都合を もたらす。 . Furthermore, when the surface of the object is directly oxidized with CF 4 , F or CI gas, water, 0 H, H, etc. adhering or adsorbing to the material react with CI to form HF, HCI causes the inconvenience that occurs on the surface of the material or in the atmosphere. .
発明の開示 Disclosure of the invention
本発明は、 このよ う な事情に鑑みてなされた もので、 従来法の不都合を解消'し、 更に優れた親水性、 濡れ性な どの表面特性に改善し、 更には、 新規な表面特性を もつ 新 しい製品を もたら し、 或いは各種の複合品の製造原料 など各種の製品や用途に適する よ う に した表面特性を改 変 し得る素材の表面特性改善方法を提供する こ と を 目的 と し、 紫外線を、 素材表面に真空中或いは不活性ガス雰 囲気中において 、 所定時間照射 し 、 表面に存在する所定 の表面基を破壊、 除去する第 1 工程と 、 次で、 紫外線及 びレーザー光線の う ちの少な く と も一方を照射 しながら 、 少な く と も一種の反応性ガスを光ラ ジカル化させイ オン ポテンシャルを高め、 該素材表面に特定のガスイ オンを 化学結合させ新規な化学結合を もつ素材表面に生成せ し める第 2 工程と から成る こ と を特徴と する 。 The present invention has been made in view of such circumstances, and solves the disadvantages of the conventional method, improves the surface properties such as excellent hydrophilicity and wettability, and further improves the novel surface properties. The purpose of the present invention is to provide a method for improving the surface properties of a material which can bring about a new product or which can modify the surface properties so as to be suitable for various products and uses such as raw materials for producing various composite products. UV light is applied to the material surface in a vacuum or inert gas atmosphere. A first step of irradiating for a predetermined time in an atmosphere to destroy or remove a predetermined surface group present on the surface, and then irradiating with at least one of ultraviolet rays and a laser beam while irradiating at least one of them. And the second step of photo-radicalizing a reactive gas to increase the ion potential and chemically bonding a specific gas ion to the surface of the material to form it on the surface of the material having a new chemical bond. This is the feature.
更に、 本発明は、 その素材表面にコーテ ィ ング剤を従 来法に比 し層間剥離強度の大き い強固な塗層や従来法で は不可能であった種類のコーテ ィ ング剤を強固に塗着 し 得る よ う に新規な表面特性を もつよ う に加工する素材の 表面特性の改善方法を提供する もので、 前記の第 1 工程 での処理後又は第 1 工程と 第 2 工程での処理後に、 その 素材の表面にコーテ ィ ング剤を付着せ しめる こ と を特徴 と する 。  Furthermore, the present invention provides a coating agent on the surface of the material which has a greater delamination strength than the conventional method, and a coating agent of a type which was impossible with the conventional method. It provides a method for improving the surface properties of a material that is processed so as to have a new surface property so that it can be applied, after the treatment in the first step or in the first and second steps. It is characterized in that after the treatment, a coating agent is adhered to the surface of the material.
更に、 本発明は、 粉体な どの細かい素材の集団におけ る各素材の表面処理を良好に行 う よ う に した素材の表面 特性の改善方法を提供する もので、 前記の第 1 工程及び 第 2 工程において 、 処理すべき 粉体な どの綳かい素材を 回転又は浮遊せ しめた状態において紫外線を照射する こ と を特徴と する 。  Further, the present invention provides a method for improving the surface properties of each material in a group of fine materials such as powders, so that the method can improve the surface characteristics of each material. In the second step, the method is characterized in that ultraviolet light is irradiated in a state where a large material such as a powder to be processed is rotated or floated.
更に、 本発明は、 上記の方法を実施する素材の表面処 理装置を提供する もので、 反応密閉容器の 1 側に、 不活 性ガス供給管 と 反応ガス供給管と を夫々 のマス フ ローコ ン ト ローラ を介 して接続する と共にその他側に排気装置 に接続し、 その内部に紫外線放電器を設け、 被処理素材 を紫外線放電器に対面させ支持する素材支持装置を設け て成る 。 Furthermore, the present invention provides an apparatus for treating the surface of a material for carrying out the above method, in which an inert gas supply pipe and a reaction gas supply pipe are provided on one side of a reaction-closed vessel, respectively. It is connected via a controller and connected to an exhaust device on the other side, an ultraviolet discharger is provided therein, and a material support device is provided for supporting the material to be processed facing the ultraviolet discharger.
更に、 本発明は、 素材を均一に紫外線を照射し得る よ う に した装置を提供する もので、 前記の装置の密閉容器 内の紫外線放電器と対向させて紫外線反射板を設けて成 る 。  Further, the present invention provides an apparatus capable of uniformly irradiating the material with ultraviolet rays. The apparatus is provided with an ultraviolet reflector in opposition to an ultraviolet discharger in a closed container of the apparatus.
更に、 本発明は、 長尺の素材を処理する に便利な装置 を提供する もので、 前記の装置の密閉容器内に隔壁を設 け、 その 1 側を真空中又は不活性ガス雰囲気中で紫外線 を照射する第 1 工程室と し、 その他厠を反応ガス又はコ 一テ ィ ング剤で処理する第 2工程室と し 、 該密閉容器の 一端壁の外部から長尺の素材を導入し、 該隔壁を気密に 挿通しその他端壁から外部へ導出する ガイ ド装置を設け て成る 。 '  Further, the present invention provides a device which is convenient for processing a long material. A partition is provided in a closed container of the device, and one side thereof is exposed to ultraviolet light in a vacuum or in an inert gas atmosphere. A first process chamber for irradiating the container, and a second process chamber for treating the other room with a reaction gas or a coating agent, and a long material is introduced from outside the one end wall of the closed vessel. It is provided with a guide device for airtightly inserting the partition wall and leading it out of the other end wall. '
更に、 本発明は、 粉体、 短纖維などの細かい素材を均 一に表面処理する に適した装置を提供する もので、 密閉 容器内に細かい素材を回転又は浮遊せ しめる超音波発生 装置などの動源装置を設ける こ と を特徴とする 。  Further, the present invention provides an apparatus suitable for uniformly surface-treating fine materials such as powders and short fibers, such as an ultrasonic generator for rotating or floating the fine materials in a closed container. A power source device is provided.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明の方法を実施する 1 例の表面処理装 置の厠面線図、 第 2 図は、 他の実施例の厠面線図、 第 3 図は、 第 2 図の横断面線図、 第 4 図は、 更に他の実施例 の厠面線図、 第 5 図は、 更に他の実施例の側面線図を示 す。 FIG. 1 is a diagram of a lav surface of one example of a surface treatment apparatus for implementing the method of the present invention, FIG. 2 is a diagram of a lav surface of another embodiment, and FIG. 3 is a cross-sectional view of FIG. FIG. 4 is a diagram showing still another embodiment. FIG. 5 shows a side view of still another embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
次に本発明を詳細に説明する 。  Next, the present invention will be described in detail.
本発明の出発材料である素材は、 材料の種類、 形体を 問わない。 無機材料、 有機材料のいずれでも よ く 、 フ ァ イ ンセ ラ ミ ッ クスな どの窯業材料、 ガラス 、 金属、 磁性 材料、 炭素材料、 合成樹脂材料、 天然鉱物な ど任意であ り 、 形体も繊維状、 粉状、 ペレ ッ ト状、 フ ィ ルム 、 シー 卜 、 板状、 各種の成形体な ど任意であ り 、 金属焼結加工、 セ ラ ミ ッ ク成形加工のよ う な単品加工原料、 その表面に 塗料、 各種用途の合成樹脂、 接着剤、 カ ッ プ リ ング剤な どを強固に結着させて成る塗装製品、 成形体、 積層体、 特定の細菌を吸着するための吸着剤、 カ ッ プ リ ング剤を 介 して の合成樹脂、 セメ ン トな どの建築、 構築材な どの 各種複合品の加工原料な ど'表面改質を要する全て の原料 又は加工品が対象と なる 。  The starting material of the present invention may be of any type and shape. Inorganic materials and organic materials can be used; ceramic materials such as fine ceramics, glass, metals, magnetic materials, carbon materials, synthetic resin materials, natural minerals, etc. , Powder, pellet, film, sheet, plate, various molded products, etc., and single-piece processing raw materials such as metal sintering and ceramic molding Coating products, molded products, laminates, and adsorbents for adsorbing specific bacteria, on the surface of which are firmly bound paint, synthetic resins for various applications, adhesives, coupling agents, etc. All raw materials or processed products that require surface modification, such as synthetic resins via a coupling agent, building materials such as cement, processing raw materials for various composite products such as construction materials, etc. .
以下、 本発明を炭素繊維の表面特性改善に適用 した場 合の実施例について詳細に説明する 。  Hereinafter, examples in which the present invention is applied to the improvement of the surface characteristics of carbon fibers will be described in detail.
第 1 工程と して 、 密閉容器内の真空中又は不活性ガス 雰囲気中で、 1 000 A 〜 30 Q 0 A の各所要の共鳴線で且つ所 要のエネルギー条件を満足する真空紫外線を主体と する 紫外線を常温の状態で素材表面に照射 し 、 特定の表面基 の破壊、 除去を行い 、 次で第 2 工程と して該紫外線又は レーザー光線を反応性ガスに作用させて励起させ、 活性 ィ匕したイ オンを素材表面と反応させる こ と によ り 目的に 応じた表面の改質が得られる 。 更に必要に応 じ 、 該第 1 工程での処理後或いは第 1 、 第 2 工程での処理後、 コ ー テ ィ ング荊を用い、 その素材表面特性をその目的に応 じ た改質が得られる 。 As the first step, vacuum ultraviolet rays satisfying each required resonance line of 1,000 A to 30 Q 0 A and satisfying the required energy conditions are mainly used in a vacuum or an inert gas atmosphere in a closed container. The material surface is irradiated with ultraviolet rays at a normal temperature to destroy or remove specific surface groups, and then, as a second step, the ultraviolet rays or The surface modification according to the purpose can be obtained by causing the laser beam to act on the reactive gas to excite it, and reacting the activated ion with the material surface. Further, if necessary, after the treatment in the first step or after the treatment in the first and second steps, the surface properties of the material can be modified for the purpose by using a coating bar. Can be
この場合、 紫外線を照射する放電器は、 例えば、 高純 度石英ガラスの低圧水銀放電器を使用する 。 該放鼋器は、 長さ 1000膽、 径 18.5顯の管状低圧水銀放電管と 内径 10αη 長さ 30cmのスパイ ラル型低圧水銀放電管で、 その電源は 1 0 0 V . AC、 50 /60H Z と高周波電源 ( 50- 1000 KHz ) 、 2 0 0Vの 2種類を用いた。 この放電管の主要な紫外線特 性波長は 2537, 1849 A又はアルゴンによる 1670 A以下の 真空紫外線も連続スべク トルと して発生する .  In this case, a low-pressure mercury discharger made of, for example, high-purity quartz glass is used as a discharger for irradiating ultraviolet rays. The discharge device is a tubular low-pressure mercury discharge tube with a length of 1000 bunks and a diameter of 18.5 mm, and a spiral low-pressure mercury discharge tube with an inner diameter of 10αη and a length of 30 cm. The power supply is 100 V AC, 50/60 Hz. And two types of high frequency power supply (50-1000 KHz) and 200V. The main ultraviolet characteristic wavelength of this discharge tube is 2537, 1849 A or vacuum ultraviolet light of 1670 A or less by argon is also generated as a continuous vector.
第 2 工程と しては、 フ ッ化アル ゴンなどのガスを封入 Lたパルスエキシマレーザー光線を用いて酸素、 アンモ ニァ、 フルォロカーボン、 エチレンな どの反応性ガスを 光励起させ炭素纖維表面に作用させた。  In the second step, reactive gases such as oxygen, ammonia, fluorocarbon, and ethylene were photo-excited using a pulsed excimer laser beam containing a gas such as argon fluoride and the like to act on the carbon fiber surface.
必要に応 じて施される第 3 工程と しては、 第 2工程で 得られた炭素繊維や有機纖維に、 コーテ ィ ング剤と して 例えばシラン力 、'/プ リ ング剤溶液やネオアルコキシ系力 ップ リ ング剤を吹き 付けた り 、 その溶剤溶液中に投入後、 自然沈降させるか、 強制撹拌させた。  The third step, which is performed as required, is to coat the carbon fiber or the organic fiber obtained in the second step with a coating agent such as silane force, a '/ printing agent solution, or neoplastic. After spraying or pouring the alkoxy-based printing agent into the solvent solution, the mixture was allowed to settle naturally or forcedly stirred.
ただし 、 カ ッ プリ ング剤を希釈する媒質の極性ゃ錁維 に対する濡れ性が .、 繊維表面の特性を選ばない場合があ るためシラ ンカ ッ プ リ ング剤はでき る限 り 水で希釈 して 繊維に作用させた。 However, the polarity of the medium for diluting the coupling agent Since the wettability to water may not depend on the characteristics of the fiber surface, the silane coupling agent was diluted with water as much as possible to act on the fiber.
実施例 1  Example 1
10, 000フ ィ ラメ ン ト の長纖維炭素織維の束を上記処理 方法においてスパイ ラル形低圧水銀放電管の中を管か ら A 10,000-filament long fiber carbon fiber bundle is passed through the spiral low-pressure mercury discharge tube from the tube by the above-mentioned processing method.
10譲位離 して 、 1 m Z分の速度で通 しながら 、 ァルゴン 雰囲気中において室温で C 一 C基を主体と する表面に部 分的に存在する C 一 H, C 一 N を主体と する混在表面基 の強制破壊によ り H , N を主体と する原子の除去を行つ た後、 大気を処理容器中に置換させ大気圧下室温で紫外 線放射強度が炭素繊維表面上で 0 . 5mW/ cm2以上、 例えば 5 mWZ cm2になる よ う に設定 し 、 これら原子の除去後に、While passing through at a speed of 1 mZ with 10 concessions away, C-H and C-N mainly exist partially on the surface mainly composed of C-C groups at room temperature in an argon atmosphere. After the removal of atoms mainly composed of H and N by forced destruction of the mixed surface groups, the atmosphere is replaced in the treatment vessel, and the ultraviolet radiation intensity at room temperature under atmospheric pressure is 0. It is set to be 5 mW / cm 2 or more, for example, 5 mWZ cm 2, and after removing these atoms,
0 z を ラ ジカル化させながら 1 m Z分の速度で移行する 過程で、 これら原子の除去跡に 0 を結合させ生成せ し め た。 その結果は次の通 り である 。 In the process of moving at a speed of 1 mZ while radicalizing 0 z, 0 was bonded to the traces of removal of these atoms to form them. The result is as follows.
無処理品 混在表面基は C 一 H , C — N を主体と す る 。  Untreated products The mixed surface groups are mainly C-H, C-N.
処理品 混在表面基は C 一 O又は C O O H を主体 と する 。  Treated product The mixed surface group is mainly composed of C1O or COOH.
この 2種類を 、 ネオアルコキ シチタ ネー ト系カ ツ プ リ ング剤、 およびネオアルコキ シジルコネ一 卜系力 ッ プ リ ング剤、 ジルコネー ト系シラ ン力 ッ プ リ ング剤溶液に入 れて撹拌 した と ころ次の結果が得られた。 カ ッ プ リ ング剤と炭素繊維の濡れ性は、 無処理品では 液面上に浮いて しまい全く 濡れないが、 処理品ではポリ イ ミ ド 、 フ エ ノール、 P V C、 ポリエステル、 A B S 、 ウレタ ン、 P P S 、 ナイ ロン一 6 な どの樹脂に好適なシ ラ ンカ ツプ リ ング剤溶液に瞬間的に沈降し完全に濡れ、 力 ッ プ リ ングが極めて容易であった。 使用 した材料は次 の通 り である 。 These two types were mixed in a neoalkoxycitane-based coupling agent, a neoalkoxyzirconate-based coupling agent, and a zirconate-based silane coupling agent solution and stirred. The following results were obtained. The wettability of the coupling agent and carbon fiber floats on the liquid surface of the untreated product and does not wet at all, but the treated product has polyimide, phenol, PVC, polyester, ABS, urethane. It instantaneously settled in a silane coupling agent solution suitable for resins such as PPS, Nylon-16, etc., and was completely wetted, making it extremely easy to perform power ringing. The materials used are as follows.
力 ッ プ リ ング剤 Force printing agent
ケン リ ツチ ■ ペ ト ロケ ミ カル社製  Ken Ritsuichi ■ Petrochemical Co., Ltd.
ネオアルコキシ · チタ ネー ト . カ ッ プ リ ング剤( L I C A ) ネオアルコキシ · ジルコネー ト 。 力 、、; プリ ング剤( L Z ) 炭素繊維  Neoalkoxy titanate Coupling agent (LICA) Neoalkoxy zirconate. Printing agent (LZ) Carbon fiber
三菱レイ ヨ ン製 P A N系畏鐡維炭素繊維  Mitsubishi Rayon P AN-based carbon fiber
実施例 2 Example 2
1 0 , 000フ ィ ラ メ ン トの長緻維炭素繊維の束を上記処理 方法においてスパィ ラル形低圧水銀放電管の中を 1 m / 分の速度で通しながら 、 アルゴン雰囲気中において室温 で前記と 同様の表面基の強制破壊と原子除去を行った後、 大気を処理容器中に置換させ大気圧下室温でフ ツ化アル ゴンを封入 した箱形エキシマレーザー発生装置を用い、 光線を炭素織維表面上に照射 し、 0 2 を ラジカル化させ ながら 1 m Z分の速度で卷き取 り ながら 、 C 一 0結合を 生成せ しめた。 その結果は次の通り である 。 While passing a bundle of 10 000 filament long fiber carbon fibers through a spiral low-pressure mercury discharge tube at a speed of 1 m / min in the above-described treatment method, the bundle was heated at room temperature in an argon atmosphere. After the forced destruction of the surface groups and the removal of atoms in the same manner as above, the air was replaced with a processing vessel and the light was carbon-woven using a box-shaped excimer laser generator in which fluorine fluoride was sealed at room temperature under atmospheric pressure. irradiating the維表plane, a 0 2 while Ri preparative plated at a rate of 1 m Z min while radicalized and tighten not generate C 10 bonds. The results are as follows.
無処理品 混在表面基は C 一 H , C 一 Nを主体とす る Untreated product The mixed surface groups are mainly C-H and C-N To
処理品 混在表面基は C 一 〇又は C O O H を主体 と する  Treated product Mixed surface group is mainly composed of C-OH or COOH
この 2 種類を 、 シラ ンカ ッ プ リ ング剤の水溶液或いは アルコール溶液に入れて撹袢 した と こ ろ次の結果が得 ら れた。  These two types were stirred in an aqueous solution or an alcohol solution of a silane coupling agent, and the following results were obtained.
シラ ン力 、/ プ リ ング剤と 炭素繊維の濡れ性は、 無処理 品では液面上に浮いて しま い全 く 濡れないか、 強制撹拌 しない と 濡れないが、 処理品ではェポキ シ、 ポ リ イ ミ ド 、 フ エ ノ ール 、 ポ リ エス テル、 A B S 、 ウ レ タ ン 、 P P S 、 ナイ ロ ン 一 6 、 ナイ ロ ン一 12な どに好適なシラ ン力 ッ プ リ ング剤溶液に瞬間的に沈降 し完全に濡れ 、 力 ッ プ リ ン グが極めて容易であった。 使用 した材料は次の通 り であ る 。  The silane force and / or the wettability of the printing agent and the carbon fiber are not completely wet because they float on the liquid surface in the case of the untreated product, or they do not get wet without forcible agitation. Suitable silane coupling agent solution for polyimide, phenol, polyester, ABS, urethane, PPS, Nylon-16, Nylon-12, etc. It settled instantaneously and became completely wet, making it extremely easy to power-up. The materials used are as follows.
力 ッ プ リ ング剤 Force printing agent
東芝シ リ コーン製  Made of Toshiba silicon corn
T S L - 8031 , 8802, 8303, 8331 , 8340, 8350, 8380, 8845 炭素繊維  T S L-8031, 8802, 8303, 8331, 8340, 8350, 8380, 8845 Carbon fiber
大阪ガス製ピ ッチ系長繊維炭素繊維  Osaka Gas pitch-type long fiber carbon fiber
実施例 3 Example 3
長さ 1 0 0〜 3 imnの短纖維炭素繊維を上記処理方法にお いて長さ 1 m 、 外径 18.5顯の低圧水銀放電管によ り 10分 間、 アルゴン雰囲気で中において室温で炭素緻維に紫外 線を照射 しながら表面基の強制破壊、 除去を行っ た後、 大気を処理容器中に置換させ大気圧下室温でフ "/化アル ゴンを封入した箱形エキシマレーザー発生装置を用い、 光線を炭素繊維表面上に照射し、 02 をラ ジカル化させ ながら 1 m Z分の速度で卷き取 り ながら 、 C一 0結合を 生成せしめた。 その結果は次のと お り である 。 A short fiber carbon fiber having a length of 100 to 3 imn was carbonized at room temperature in an argon atmosphere for 10 minutes using a low-pressure mercury discharge tube with a length of 1 m and an outer diameter of 18.5 mm by the above-mentioned processing method. After the surface groups were forcibly destroyed and removed while irradiating the fibers with ultraviolet light, Using a box type excimer laser generator encapsulating off "/ of Al Gon at room temperature under atmospheric pressure to replace the atmosphere during the processing container, a light beam is irradiated on the carbon fiber surface, while the 0 2 is La radical of 1 While winding at a speed of mZ, a C-10 bond was generated, and the result is as follows.
無処理品 混在表面基は C一 H , C— Nを主体と す る  Untreated product Mixed surface groups are mainly C-H, C-N
処理品 混在表面基は C一 0又は C O O Hを主体 とする 。  Treated product The mixed surface group is mainly composed of C-10 or COOH.
この 2種類を 、 チタネー ト系ネオァ'ルコキシ力 ップリ ング剤のアルコール溶液に入れて撹拌したと ころ次の結 果が得られた。 チタ ネー ト系ネオアルコキシカ ッ プリ ン グ剤と炭素繊維の濡れ性は、 無処理品では徐々 に濡れな がら沈降するが、 処理品ではボ リ イ ミ ド、 P V C、 ポリ エステル、 A B S、 ウレタ ン、 P P S、 ナイ ロン一 6 、 ナイ ロン一 12などに好適なネオアルコキシ · チタネー ト 系カ ップリ ング剤溶液に瞬間的に沈降し完全に濡れ、 力 ップ リ ングが極めて容易であつた。 使用 した材料は次の 通 り である 。  The following two results were obtained when these two types were placed in an alcoholic solution of a titanate-based neoalkoxy force printing agent and stirred. The wettability of the titanate-based neoalkoxy coupling agent and carbon fiber sediments while gradually getting wet in the untreated product, but in the treated product, polyimide, PVC, polyester, ABS, urethane It instantaneously sedimented in a neoalkoxy-titanate-based coupling agent solution suitable for carbon dioxide, PPS, Nylon-1-6, Nylon-1-12, etc., and was completely wetted, making it extremely easy to apply force. The materials used are as follows.
力 ッ プ リ ング剤 Force printing agent
ケン リ ッチ - ペ ト ロケ ミ カル社製  Ken Rich-Petrochemical
ネオアルコキシ · チタ ネー ト · カ ッ プ リ ング剤( L I CA ) 炭素繊維  Neoalkoxy, titanate, coupling agent (LICA) Carbon fiber
三菱レイ ヨ ン製 P A N系チ ヨ ップ状炭素織維 実施例 4 Mitsubishi Rayon's PAN type carbon fiber carbon fiber Example 4
長さ 1 0 0〜 3 咖の短繊維炭素繊維を上記処理方法にお いて長さ 1 m 、 外径 18.5励 の低圧水銀放電管によ り 10分 間、 アルゴン雰囲気で中において室温で炭素繊維に紫外 線を照射 しながら表面基の強制破壊、 除去を行っ た後、 大気を処理容器中に置換 した後室温で、 紫外線放射強度 が炭素繊維表面上で 5mW/cm2になる よ う に設定 し 、 0 を ラ ジカル化させながら 10分間照射 しチ ヨ ッ プ状炭素繊維 の表面に C 一 0結合を生成せ しめた。 その結果は次の と お り である 。 ' The short-fiber carbon fiber with a length of 100 to 3 mm was treated at room temperature in an argon atmosphere for 10 minutes using a low-pressure mercury discharge tube with a length of 1 m and an outer diameter of 18.5 in the above treatment method. setting forced destruction of surface groups while irradiating with ultraviolet rays, after removal, at room temperature after replacing the atmosphere during the processing container, the earthenware pots by the ultraviolet radiation intensity is 5 mW / cm 2 on the surface of the carbon fibers in the Then, the mixture was irradiated for 10 minutes while radicalizing 0 to form C-10 bonds on the surface of the chopped carbon fiber. The result is as follows. '
無処理品 混在表面基は C — H , C — N を主体と す る 。  Untreated products The mixed surface groups are mainly C-H and C-N.
処理品 混在表面基は C 一 0スは C O O H を主体 と する 。  Treated product The mixed surface group is mainly composed of COH.
この 2 種類を 、 シラ ンカ ッ プ リ ング剤の水溶液或いは アルコ ール溶液に入れて撹拌 した と こ ろ次の結果が得ら れた。  When these two types were put into an aqueous solution of a silane coupling agent or an alcohol solution and stirred, the following results were obtained.
シラ ンカ ッ プ リ ング剤と 炭素織維の濡れ性は、 無処理 品では液面上に浮いて し ま った り 、 強制撹拌 しなければ 濡れないが、 処理品ではエポキ シ、 ポ リ イ ミ ド 、 フ エ ノ ール 、 ポ リ エステル、 A B S 、 ウ レ タ ン 、 P P S 、 ナイ ロ ン一 6 、 ナイ ロ ン一 12な どに好適なシラ ン力 ッ プ リ ン グ剤溶液に瞬間的に沈降 し完全に濡れ、 カ ツ ァ リ ングが 極めて容易であった。 使用 した材料は次の通 り である 。 力 ッ プリ ング剤 The wettability of the silane coupling agent and the carbon fiber is such that the untreated product floats on the liquid surface and does not get wet without forced agitation, but the treated product is epoxy or poly. Instantaneous silane coupling agent solution suitable for mid, phenol, polyester, ABS, urethane, PPS, Nylon-16, Nylon-12, etc. It settled down completely and got completely wet, and cutting was extremely easy. The materials used are as follows. Force-upping agent
東芝シ リ コーン製  Made of Toshiba silicon corn
T S L - 8031 , 8802, 8303, 8331, 8340, 8350, 8380, 8845 炭素織維  T S L-8031, 8802, 8303, 8331, 8340, 8350, 8380, 8845 Carbon fiber
大阪ガス製ピ 、 7チ系短縑維炭素繊維  Osaka Gas Pi, 7-inch short fiber carbon fiber
実施例 5 Example 5
長さ 3 醒 〜 0 . 1歸の ミ ル ド状炭素織維を上記処理方法 において長さ 1 m、 外径 18.5顯の低圧水銀放電管によ り 10分間、 アルゴン雰囲気中において室温で炭素繊維に紫 外線を照射 しながら表面基の強制破壊、 除去を行った後、 大気を処理容器中に置換したあ と室温で、 紫外線放射強 度が炭素纖維表面上で 5m W/ogになる よ う に設定し 、 0 2 をラジカル化させながら 10分間照射 しチ ヨ ツプ状炭素識 維の表面に C 一 0結合を生成せしめた。 その結果は次の 通 り である 。 Mill-like carbon fiber of length 3 awake to 0.1 mm was treated with the above-mentioned processing method using a low-pressure mercury discharge tube with a length of 1 m and an outer diameter of 18.5 mm for 10 minutes in an argon atmosphere at room temperature. After the surface groups were forcibly destroyed and removed while irradiating ultraviolet rays to the atmosphere, the atmosphere was replaced with a processing vessel, and at room temperature, the UV radiation intensity was 5 mW / og on the carbon fiber surface. set, 0 2 yielding C 10 bonded to the surface of the irradiated Ji Yo class tap carbon identify Wei 10 minutes while radicalized. The result is as follows.
無処理品 混在表面基は C 一 H , C — N を主体とす る 。  Untreated products The mixed surface groups are mainly C-H, C-N.
処理 Π  Processing Π
cm 混在表面基は C 一 0又は C O O Hを主体 とする  cm Mixed surface group is mainly composed of C-10 or COOH
この 2種類を 、 シラ ンカ ップ リ ング剤の水溶液或いは アル コ ール溶液に入れて撹拌した と ころ次の結果が得ら れた。  When these two types were put into an aqueous solution of a silane coupling agent or an alcohol solution and stirred, the following results were obtained.
シランカ ッ プ リ ング剤と炭素纖維の濡れ性は、 無処理 品では液面上に浮いて しまい極めて濡れに く いか、 強制 撹拌 しなければ濡れないが、 処理品ではエポキ シ、 ポ リ イ ミ ド 、 フ エ ノ ール、 ポ リ エステル、 A B S 、 ウ レ タ ン 、 P P S 、 ナイ ロン— 6 、 ナイ ロ ン 一 12などに好適なシラ ン力 ッ プ リ ング剤溶液に瞬間的に沈降 し完全に濡れ、 力 ッ プ リ ングが極めて容易であった。 使用 した材料は次の 通 り である 。 The wettability of the silane coupling agent and the carbon fiber is very low if the untreated product floats on the liquid surface and is hardly wet. It does not get wet unless it is agitated, but the processed products are epoxy, polyimide, phenol, polyester, ABS, urethane, PPS, Nylon-6, Nylon-12, etc. The sedimentation instantaneously settled in the silane coupling agent solution which was suitable for the coating, and was completely wetted, and the coupling was extremely easy. The materials used are as follows.
力 ッ プ リ ング剤 Force printing agent
東芝シ リ コ ー ン製  Made by Toshiba Silicon
T S L - 8031 , 8802, 8303, 8331 , 8340, 8350, 8380, 8845 炭素繊維  T S L-8031, 8802, 8303, 8331, 8340, 8350, 8380, 8845 Carbon fiber
大阪ガス製ピ 、、 /チ系短鈸維炭素繊維  Osaka Gas Co., Ltd.
実施例 6 Example 6
長さ 3 讓 〜 0 . 1誦 の炭素纖維を上記処理方法において 長さ 1 m 、 外径 18.5誦 の低圧水銀放電管によ り 10分間、 アルゴン雰囲気中において室温で炭素繊維に紫外線を照 射 しながら表面基の強制破壊、 除去を行った後 、 大気を 処理容器中に置換させ大気圧下室温でフ ッ化アルゴンを 封入 した箱形エキ シマレーザー発生装置を用い、 光線を 炭素纖維表面上に照射し、 0 2 を ラ ジカル化させながら 10分間照射 しチ ヨ ッ プ状炭素繊維の表面に C 一 O結合を 生成せ しめた。 その結果は次の通 り であ る 。 According to the above-mentioned processing method, the carbon fiber of length 3 to 0.1 is irradiated with ultraviolet rays on the carbon fiber at room temperature in an argon atmosphere for 10 minutes using a low-pressure mercury discharge tube having a length of 1 m and an outer diameter of 18.5. After forced destruction and removal of the surface groups, the atmosphere was replaced with a processing vessel, and a beam was applied to the surface of the carbon fiber using a box-shaped excimer laser generator filled with argon fluoride at room temperature under atmospheric pressure. Irradiation was performed for 10 minutes while radicalizing O 2 to form C 1 O bonds on the surface of the chip-like carbon fiber. The result is as follows.
無処理品 混在表面基は C 一 H , C — N を主体と す · る 。  Untreated product The mixed surface group is mainly C-H, C-N.
処理品 混在表面基は C 一 O又は C 0 0 H を主体 とする 。 Treated product Mixed surface group is mainly C-O or C-OH And.
この 2種類を 、 シランカ ッ プリ ング剤の水溶液或いは アルコール溶液に入れて撹拌 した と ころ次の結果が得ら れた。 シラ ンカ ッ プリ ング剤と炭素饑維の濡れ性は、 無 処理品では液面上に浮いて しまい全く 濡れないか、 強制 撹拌しない と濡れないが、 処理品ではェポキ シ、 ポ リ ィ ミ ド、 フ エ ノール、 ポ リエステル、 A B S 、 ウレタ ン、 P P S 、 ナイ ロン一 6 、 ナイ ロン一 12などに好適なシラ ン力 ツ プ リ ング剤溶液に瞬間的に沈降 し完全に濡れ、 力 ップ リ ングが極めて容易であった。 使用 した材料は次の 通 り である 。  The following two results were obtained when these two types were stirred in an aqueous solution or an alcohol solution of the silane coupling agent. The wettability of the silane coupling agent and carbon starvation shows that the untreated product floats on the liquid surface and does not get wet at all, or does not get wet without forced agitation, but the treated product does not get wet. Suitable for phenol, polyester, ABS, urethane, PPS, Nylon-16, Nylon-12, etc. The ring was extremely easy. The materials used are as follows.
力 Ύプ リ ング荊 Force coupling thorn
東芝シ リ コーン製  Made of Toshiba silicon corn
T S L - 8031, 8802, 8303, 8331, 8351, 8350, 8380, 8845 炭素繊維  T S L-8031, 8802, 8303, 8331, 8351, 8350, 8380, 8845 Carbon fiber
大阪ガス製 ミ ル ド状炭素繊維  Osaka Gas Milled Carbon Fiber
実施例 7 Example 7
10, 000フ ィ ラメ ン トの長繊維炭素繊維の束を上記処理 方法においてスパイ ラル形泜圧水銀放電管の中を 1 m Z 分の速度で通しながら 、 アルゴン雰囲気中において室温 で表面基の強制破壊、 除去を行った後、 アンモニアをァ ノレゴンにバラ ンスさせながら処理容器中に導き 、 大気圧 下室温で紫外線放射強度が炭素繊維表面上で 5f^/cm2にな る よ う に設定し、 0 2 をラジカル化させながら 1 m Z分 の速度で卷き 取 り ながら 、 C 一 0結合を生成せ しめた。 その結果は次の通 り である 。 While passing a bundle of 10,000 filament long fiber carbon fibers through the spiral type low pressure mercury discharge tube at a speed of 1 mZ in the above-described processing method, the surface-based forced breaking, after removal, ammonia led to § Noregon during processing vessel while balance, set to ultraviolet radiation intensity at room temperature under atmospheric pressure cormorants by ing to 5f ^ / cm 2 on the surface of the carbon fibers And radicalize 0 2 for 1 mZ While winding at a speed of, a C-10 bond was generated. The result is as follows.
無処理品 混在表面基は C 一 H , C— N を主体と す る 。  Untreated products The mixed surface groups are mainly C-H, C-N.
処理品 混在表面基は C 一 Oスは C 0 0 H を主体 とする 。  Treated product The mixed surface group is mainly C100H for CO.
この 2種類を 、 N H基に好適なシラ ンカ ッ プ リ ング剤 の水溶液或いはアルコール溶液に入れて撹拌 した と こ ろ 次の結果が得られた。 シラ ン力 ッ プ リ ング剤と 炭素繊維 の濡れ性は、 無処理品では液面上に浮いて し ま い全 く 濡 れないが、 処理品では沈降 し良好にカ ツ プ リ ングでき た。 実施例 8  When these two types were stirred in an aqueous solution or an alcohol solution of a silane coupling agent suitable for the NH group, the following results were obtained. The wettability of the silane coupling agent and carbon fiber floated on the liquid surface and did not get wet at all with the untreated product, but settled well with the treated product and could be cut well. . Example 8
1 0, 0 0 0フ ィ ラメ ン トの長繊維炭素繊維の束を上記処理 方法においてスパイ ラル形低圧水銀放電管の中を 1 m Z 分の速度で通 しながら 、 アルゴン雰囲気中において室温 で表面基の強制破壊、 除去を行った後、 フルォロカーボ ンをアルゴンにバラ ンス させながら処理容器中に導き 、 大気圧下室温で紫外線放射強度が炭素繊維表面上で、 5 m W / cm2になる よ う に設定 し 、 C F 4 を ラ ジカル化させなが ら l m Z分の速度で卷き 取 り ながら 、 C 一 F結合を生成 せ しめた。 その結果は次の通 り である 。 While passing a bundle of 100,000 filament long fiber carbon fibers at a speed of 1 mZ through a spiral low-pressure mercury discharge tube in the above-described processing method, the mixture was heated at room temperature in an argon atmosphere. forced destruction of surface groups, after removal, lead to Furuorokabo emissions during processing chamber while balance argon, ultraviolet radiation intensity on the surface of the carbon fibers at room temperature under atmospheric pressure becomes 5 m W / cm 2 set cormorants, but such is La radical of the CF 4 while Ri preparative plated at a rate of al lm Z min were accounted not generate C one F bond. The result is as follows.
無処理品 混在表面基は C 一 H , C — N を主体と す る 。  Untreated products The mixed surface groups are mainly C-H, C-N.
処理品 混在表面基は C 一 F を主体と する 。 実施例 9 Treated product The mixed surface group is mainly C-F. Example 9
1 0 , 0 00フ ィ ラメ ン ト の長識維炭素繊維の束を上記処理 方法において スパイ ラル形低圧水銀放電管の中を 1 m Z 分の速度で通しながら 、 アルゴン雰囲気中において室温 で表面基の強制破壊を行った後、 エチレンガスをァルゴ ン及び水素ガスにバラ ンスさせながら処理容器中に導き 大気圧下室温で紫外線放射強度が炭素緻維表面上で、 5 m W/ciu2になる よ う に設定し、 エチレンをラジカル化させな がら 1 m 分の速度で卷き取 り ながら 、 炭素繊維を改変 せ しめた。 While passing a bundle of 100,000 filament filament fibers through the spiral low-pressure mercury discharge tube at the speed of 1 mZ in the above-mentioned processing method, the surface was heated at room temperature in an argon atmosphere. after the forced destruction of groups, the ethylene gas ultraviolet radiation intensity on carbon緻維surface under atmospheric pressure at room temperature leads in the processing vessel while balance to Arugo emissions and hydrogen gas, to 5 m W / ciu 2 The carbon fiber was modified while winding at a speed of 1 m while radicalizing ethylene.
F T I Rによる表面解析結果は次の通 り である 。  The results of the surface analysis by FTIR are as follows.
無処理品 混在表面基は C 一 H C— Nを主体とす る 。  Untreated product The mixed surface group is mainly C-HC-N.
処理品 混在表面基は C H 2 , C H 3 を主体とす る 。  Treated product The mixed surface groups are mainly CH2 and CH3.
実施例 1 0 Example 10
炭素纖維のシー ト を泜圧水銀放電管によ り 1 0分間、 真 空中で不活性ガスの導入な しに、. 1 0分間、 室温で該シー トに紫外線を照射しながら 、 表面基の強制破壊、 除去を 行った後、 このシー ト面全面にアク リ ル系水性塗料を均 一に塗布 し、 常温で乾燥した複合製品を得た。  The carbon fiber sheet was exposed to ultraviolet light at room temperature for 10 minutes using a low-pressure mercury discharge tube in a vacuum for 10 minutes without introducing inert gas. After forced destruction and removal, an acrylic water-based paint was applied evenly over the entire sheet surface to obtain a composite product dried at room temperature.
無処理品 混在表面基は C 一 H , C 一 Nを主体とす る 。  Untreated products The mixed surface groups are mainly C-H and C-N.
処理品 混在表面基は C 一塗料のラジカル( R )を 主体と する 。 Treated product Mixed surface groups generate radicals (R) of C-paint Subject.
本法処理によ り 、 層間剥離強度の改善が認め られた。 炭素繊維に本発明を適用 した場合の発明の効果は次の 通 り である 。  Improvement of the delamination strength was observed by the treatment of this method. The effects of the invention when the present invention is applied to carbon fibers are as follows.
本発明は、 高エネルギーの短波長紫外線又はレーザー 光線を用いて 、 炭素繊維の表面状態を改変させる こ と に 特徴があ り 、 才ゾン単独、 過熱工程を加えた紫外線照射、 プラズマェ ツチングな どによ る従来の処理方法と異な り 、 その表面自体を改質でき る と 共に剥離強度の増大 した各 種のコーテ ィ ングができ る 又本発明の全工程は、 常温 状態で実施でき るので、 処理設備の大型化やオンライ ン 化に好適である 。  The present invention is characterized in that the surface state of carbon fiber is modified by using high-energy short-wavelength ultraviolet light or laser light. Unlike conventional processing methods, various types of coatings can be formed that can modify the surface itself and increase peel strength, and all the processes of the present invention can be carried out at room temperature. It is suitable for upsizing and online processing equipment.
この効果は、 現在までに公開も し く は公告された特許 公報には確認されてお らず、 更に最近のプラズマ化学に 関する研究報告に も認め られて いない。  This effect has not been confirmed to date in published or published patent gazettes, nor has it been observed in recent research reports on plasma chemistry.
従来はエポキ シ系のレジンによ ってのみ開発されて い た炭素繊維複合材の応用製品開発が、 本発明によれば、 シラ ン力 ッ プ リ ング剤及びネオアルコキ シ系力 ッ プ リ ン グ剤を も直接使用でき る こ と から 、 ナイ ロン、 ポ リ イ ミ ド 、 ポ リ アセタール、 P P S 、 その他のエンジニア リ ン グプラスチ ッ ク及び S B R 、 N B R 、 A B S その他のゴ ムな どと の極めて高性能な複合材開発が非常に安価に達 成でき る 。'  According to the present invention, application products of carbon fiber composite materials, which had been conventionally developed only with epoxy resins, have been developed using a silane coupling agent and a neo-alkoxy resin. Because it can be used directly, it can be used for Nylon, Polyimide, Polyacetal, PPS, other engineering plastics and SBR, NBR, ABS and other rubbers. High-performance composite materials can be developed at very low cost. '
更に、 従来は複合材料の物理特性を上げるために、 チ タ ネー ト系な どの力 '、/プ リ ング剤を用い必要以上に炭素 織維を添加 して いたが、 本発明によ り 、 炭素纖維の原単 位が削減でき る効果が期待でき 、 トータルコス トの削減 が大幅に達成でき る効果がある他、 他のガス種をイ オン 化させ炭素饑維に作用させる こ と によ り 、 安価に絶緣性 表面基や、 はつ水性表面基を得る こ と ができ る 。 Furthermore, conventionally, to improve the physical properties of the composite material, Although carbon fibers were added more than necessary by using a force such as a tantalum or a printing agent, the present invention can be expected to have an effect of reducing the unitary unit of carbon fiber. In addition to the effect of greatly reducing the total cost, it is also possible to ionize other gas species to act on carbon starvation, thereby providing inexpensive surface and water-based surface groups at low cost. Can be obtained.
又、 炭素識維をセメ ン トゃ石胥などの無機接着剤中に 混合使用する場合に も 、 現在までは混合及び混練条件が 複雜なため、 その工程を安易にするために 、 メチルセル ローズやその他の有機系混和剤及び減水剤を利用 して い るが、 こめ方法はモルタルやコンク リ ー 卜の強度を劣化 させる欠点があるほか、 十分緻密な成形体も得られて い ない。  In addition, when carbon fiber is mixed and used in an inorganic adhesive such as cement cement, the mixing and kneading conditions are complicated up to now. Although other organic admixtures and water reducing agents are used, the rice filling method has the disadvantage of deteriorating the strength of the mortar and concrete, and it has not been possible to obtain a sufficiently dense molded product.
本発明は、 このよ う な欠点を改善 し、 他の混和剤も必 要と しないよ う な ド ライ アレ ミ ッ クスセメ ン トの開発及 び C F入 り 石菁硬化体の開発に極めて有意義な発明であ る 。  The present invention solves these drawbacks and is extremely significant for the development of dry mix cement and the development of hardened cement containing CF containing no admixture. It is an invention.
以上、 本発明を炭素纖維 (無機織維) の表面特性改善 に適 した場合の種々の実施例を開示 したが、 本発明は炭 素纖維のみでなく 、 ガラス織維、 金属繊維などの無機纖 維の表面特性の改善に も極めて有効であ り 、 更には各種 織維 (有機織維) に も有効であるので、 次に各種有機纖 維に適用 した場合の実施例を次に説明する  As described above, various embodiments in which the present invention is suitable for improving the surface characteristics of carbon fiber (inorganic fiber) have been disclosed. However, the present invention is not limited to carbon fiber but also inorganic fiber such as glass fiber and metal fiber. It is extremely effective in improving the surface properties of fibers, and is also effective in various types of textiles (organic textiles). Next, an example in which the present invention is applied to various types of organic fibers will be described.
実施例 1 1 この実施例ではナイ ロ ン、 ボ リ エステル、 ァラ ミ ド 、 P P ( ボ リ プロ ピ レ ン ) 、 ビニロ ン、 ポ リ エチ レ ン、 フ ッ素樹脂の各繊維を被処理繊維と して選び、 次の処理を 行った後、 濡れ性、 イ ンク染色及びカ ッ プ リ ング性のテ ス ト を行った。 Example 1 1 In this embodiment, the fibers to be treated are nylon, polyester, aramide, PP (polypropylene), vinylon, polyethylene, and fluororesin. After selecting and performing the following treatments, wetting, ink staining, and cupping properties were tested.
処理方法 Processing method
第 1 工程、 ( アルゴン雰囲気下 )  1st process, (under argon atmosphere)
A タ イ プ A type
U V線 ( 紫外線 〉 発生器 ( 出力 80W、 電源周 波数 60Hz, 100V ) で発生させた 2537 A の U V線 を 5 分間連続照射 ( 平均 U Vエネルギー強度 3 〜 4 mW// d )  UV ray of 2537 A generated by a UV ray (ultraviolet ray) generator (output: 80 W, power frequency: 60 Hz, 100 V) for 5 minutes continuously (average UV energy intensity: 3 to 4 mW // d)
B タ イ プ  B type
U V線発生器 ( 出力 80W、 電源周波数 60Hz, 1 0 0V ) で発生させた 2537A及び 1849A の U V 線を 10分間連続照射 ( 平均 U Vエネルギー強度 6 m W / cm )  Continuous irradiation of UV rays of 2537A and 1849A generated by a UV ray generator (output 80W, power frequency 60Hz, 100V) for 10 minutes (average UV energy intensity 6mW / cm)
第 2 工程、 ( Cf4 バラ ンス アルゴンベース雰囲気下 ) 2nd process, (Cf 4 balance under argon base atmosphere)
U V線発生器 ( 出力 1 5 0W、 200KHZ, 2 0 0 V ) で発生させた 2537 A及び 1849 A の U V線を 5 分 間連続照射 ( 平均 U Vエネルギー強度 6 W/^ ) 試験方法  Continuous irradiation of UV rays of 2537 A and 1849 A generated by a UV ray generator (output 150 W, 200 KHZ, 200 V) for 5 minutes (average UV energy intensity 6 W / ^) Test method
i ) 濡れ性  i) wettability
繊維と ソルベン ト を添加 したボ リ マー又はシ リ コ ンオイ ルをマグネチ ッ クスターラー (撹拌機) 内に 入れ、 撹拌機の状態を見、 織維が浮いた状態の時は 不良、 沈んだ状態の時は良好と した。 Polymer or silica with added fiber and solvent The oil was placed in a magnetic stirrer (stirrer), and the condition of the stirrer was checked. When the fiber was floating, it was judged as bad, and when it was sinking, it was judged as good.
ii ) イ ンク染色性  ii) Ink stainability
イ ンク を入れた容器中に識維浸漬し、 6 (TCで 30分 乾燥 し'てから着色の状態を見て 、 部分着色状態の時 は不良、 均一着色の時は良好と した  After immersion in the container containing the ink, 6 (dried with TC for 30 minutes), the coloration was observed, and it was determined that the partial coloration was poor and the uniform coloration was good.
iii ) カ ップ リ ング性  iii) Coupling properties
カ ッ プ リ ング剤と希默液 (水、 アルコール) を入 れたマグネチ ッ クスターラー内に織維を入れ、 撹袢 後の状態を見て、 繊維が浮いた状態の時は不良、 沈 んだ状態の時は良好と した。 ' 試験結菜  Put the textile in a magnetic stirrer containing a coupling agent and a neat liquid (water, alcohol), and observe the condition after stirring. It was considered good when it was out of order. '' Test Yuna
各有機識維の試験結果は第 1 表の通 り であった。 Table 1 shows the test results of each organic fiber.
l 表 l Table
Figure imgf000029_0001
Figure imgf000029_0001
◎ 好 適 〇 良 好 Δ 場合により良好 、:. 不 適 ◎ Good 良 Good Good Δ Better in some cases :: Not suitable
有機繊維に本発明を適用 した場合の発明の効果は、 本 発明によ り処理した ものは濡れ性が著し く 向上し、 複合 材を製造する場合や、 コ ンク リ ー ト等に配合する場合、 簡単且つ単時間で分散混練させる こ と が可能と なる 。 The effect of the present invention when the present invention is applied to an organic fiber is that the one treated according to the present invention has a remarkably improved wettability, and is mixed with a composite material or in a concrete or the like. In this case, the dispersion and kneading can be performed easily and in a single time.
又、 染色性が向上し、 カラ フルな製品が得られ、 商品 価値向上に資する こ と ろ大である 。  In addition, the dyeability is improved, and a colorful product can be obtained, which contributes to the improvement of the commercial value.
実施例 1 2 Example 1 2
下記第 2表に示す各種のプラスチ、 ク板の夫々 にっき 密閉容器を内部を隔壁で 2分 して区劃形成した第 1 密閉 容器内に収容し、 アルゴン雰囲気中で、 2537 Aの紫外線 でその表面を 1 0分間照射 (平均 U Vエネルギー強度 4 m W / d ) した第 1 工程処理後第 2密閉室に導き 、 酸素アルゴ ンベース雰囲気中で 2537 A及び 1 849 Aの紫外線を 1 0分間 照射 (平均 U Vェネルギー強度 6 m W/ou2 ) した第 2工程処 理を終了 した。 その処理前、 第 1 工程処理後及び第 2ェ 程処理後の夫々の水と の接触角を測定した ¾ その結果を 第 2表に示す。 Each of the plastics and plates shown in Table 2 below was placed in a first sealed container, which was divided into two sections with a partition and the inside of the sealed container was placed in a first sealed container, which was exposed to ultraviolet light at 2537 A in an argon atmosphere. The surface was irradiated for 10 minutes (average UV energy intensity: 4 mW / d). After treatment in the first step, it was led to the second closed chamber, and irradiated with ultraviolet rays of 2537 A and 1849 A for 10 minutes in an oxygen argon-based atmosphere ( The second step processing with an average UV energy intensity of 6 mW / ou 2 ) was completed. As a pretreatment, ¾ The results are shown in Table 2 were measured contact angle with water of each of the processed enough and the second E after the first step process.
第 2表  Table 2
Figure imgf000030_0001
上記表中、 対照例は、 未処理の上記の各合成樹脂板に 直接前記の第 2工程と 同 じ条件で、 酸素雰囲気下で紫外 線照射を行った場合に測定 した接触角を示す。
Figure imgf000030_0001
In the above table, the control example shows the contact angle measured when the untreated synthetic resin plate was directly irradiated with ultraviolet rays in an oxygen atmosphere under the same conditions as in the second step.
尚、 比較のため、 P E T、 P P A、 P E I 、 ァラ ミ ド 、 P E E K , P I な どの合成樹脂板につき 、 対照例と 同様 に直接第 2工程処理を行った所、 変色、 失透が認め られ た。  For comparison, discoloration and devitrification were observed when synthetic resin plates such as PET, PPA, PEI, ALAMID, PEEK, and PI were directly subjected to the second step treatment as in the control example. .
これに対 し、 本発明では、 予め表面基の破壊、 除去処 理で、 例えば、 構成分子中の H原子を除去処理を行つ た 後、 酸素原子を結合させる と き は、 失透、 変色が全く 乃 至殆ど認め られなかった。  On the other hand, according to the present invention, devitrification and discoloration occur when the oxygen atoms are bonded after the H atoms in the constituent molecules are removed and the surface groups are previously destroyed and removed. However, it was hardly recognized at all.
実施例 13 Example 13
下記第 3 表に示す各種の金属板の濡れ性改善のため、 これら を密閉容器内に収容 し、 大気圧のアル ゴ ン雰囲気 中で 2537 Aの紫外線でその表面を 10分間照射 ( 平均 U V ェネルギー強度 4mW/cii ) した第 1 工程処理後、 該ァル ゴ ン雰囲気を除去 し 、 該容器内を酸素雰囲気に変え る と 共 に紫外線を 10分間照射 ( 平均 U Vエネルギー強度 6mW/cm2 ) した第 2工程処理を行った。 その処理前、 第 1 工程処理 及び第 2工程処理後の夫々の水 と の接触角を測定 した。 そめ結果を第 3 表に示す。 0 第 3表 In order to improve the wettability of the various metal plates shown in Table 3 below, they are housed in a sealed container, and their surfaces are irradiated with ultraviolet rays of 2537 A for 10 minutes in an atmosphere of argon at atmospheric pressure (average UV energy). After the first step treatment with an intensity of 4 mW / cii), the argon atmosphere was removed, the vessel was changed to an oxygen atmosphere, and ultraviolet rays were irradiated for 10 minutes (average UV energy intensity 6 mW / cm 2 ). A second step treatment was performed. Before the treatment, the contact angles with water after the first-step treatment and after the second-step treatment were measured. Table 3 shows the results. 0 Table 3
Figure imgf000032_0001
上記の各種金属板を直接酸素中で同 じ強度の紫外線を
Figure imgf000032_0001
The above various metal plates are directly irradiated with ultraviolet light of the same intensity in oxygen.
1 0分間照射した所、 水との接触角は 1 0〜 2 0 程度にと ど ま った。 After irradiation for 10 minutes, the contact angle with water remained at about 10 to 20.
次に、 本発明の方法を実施する表面処理装置について 例示する 。  Next, a surface treatment apparatus for performing the method of the present invention will be exemplified.
第 1 図は、 スパイ ラル型低圧水銀放電管によ る繊維の 表面処理装置を示し、 1 は、 反応密閉容器を示 し、 その 内部には紫外線放電器と して 、 高純度の石英ガラスで作 られたスパイ ラル放電管 2 を具備し、 その放電管 2は可 変周波数高周波電源 3 に接続している 。 4及び 5 は、 絶 縁ソ ケ ブ ト を示す。 該容器 1 は、 その 1 厠壁において外 部の不活性ガスボンべ Α と酸素などの反応性ガスボンベ B と に夫々の供給管 6 , 7 を介して接続し、 夫々不活性 ガス及び反応性ガスを密閉容器 1 内に供給される よ う に する 。 Cは各供耠管 6 , 7 に介在させたマス フ ローコ ン ト ローラ 、 Dは各供給管 6 , 7 内を通る ガスを急冷乾燥 する急冷乾燥器、 Eは圧力計を示す。 該容器 1 の他側壁 には、 排気系装置 F を接続されて いる 。 該装置は、 例え ば排気用導管 と その外端に接続の真空ポンプな どの排 気装置 と 該導管 に介在する開閉調節弁 と から成る 導管 Gに介在させた開閉調節弁を示す。 更に該容器 1 内 には、 該放電管 2 の両側に、 1 0 , 000フ ィ ラ メ ン ト の長繊 維炭素繊維 a の束を張 り 渡 した正道回動 ド ラム 8 , 9 を 配設する と 共に、 該炭素繊維束を .、 該スパイ ラル型放電 管 2 の中心を通る よ う 支承案内する一対のガイ ド ロール 1 0 , 1 1を配設する 。 Fig. 1 shows a fiber surface treatment device using a spiral-type low-pressure mercury discharge tube, 1 shows a reaction sealed container, and inside it is a high-purity quartz glass as an ultraviolet discharger. A spiral discharge tube 2 is provided, and the discharge tube 2 is connected to a variable frequency high frequency power supply 3. 4 and 5 indicate insulation sockets. The vessel 1 is connected to an external inert gas cylinder and a reactive gas cylinder B such as oxygen via its supply pipes 6 and 7 on its 1 lavatory wall, respectively, to supply the inert gas and the reactive gas, respectively. Make sure that it is supplied in the closed container 1. C is a mass flow controller interposed between supply pipes 6 and 7. D is a quench dryer for quenching and drying the gas passing through the supply pipes 6 and 7, and E is a pressure gauge. An exhaust system F is connected to the other side wall of the container 1. The device shows an on-off control valve interposed in a conduit G, which comprises, for example, an evacuation device such as a vacuum pump connected to an outer end thereof and an on-off control valve interposed in the conduit. Further, inside the vessel 1, on both sides of the discharge tube 2, there are disposed right-way rotating drums 8 and 9 in which a bundle of 10 000 filament long fiber carbon fibers a is stretched. At the same time, a pair of guide rolls 10 and 11 for supporting the carbon fiber bundle so as to pass through the center of the spiral discharge tube 2 are provided.
該装置を用い本法を実施する には、 先ず該排気系装置 F を作動 して 、 密閉容器 1 内部を排気真空と した後、 不 活性ガスボンベ A よ り アルゴンを容器 1 内に流入 して 、 容器 1 内を大気圧のアルゴンガス雰囲気と する 。 こ の状 態で、 該電源 5 を始動 し 、 紫外線放電管 2 を発光させ、 該放電管 2 の中心を 1 方向に一定の速度で移行せ しめる 炭素繊維モ ノ フ ィ ラメ ン 卜束に所要の髙エネルギーで照 射する 。 かく して 、 その長纖維束を一方の ド ラム 8又は 9 に卷き 取る間に、 表面基の破壊、 除去する第 1 工程処 理を完了する 。 次に排気装置 F によ り アルゴンを吸引除 丟後、 反 ガスボンベ B よ り 、 例えば、 酸素を密閉容器 1 内に流入せ しめ、 その所定濃度の雰囲気下で紫外線を これに照射 し て酸素を活性化せ しめ、 前記と 反対方向に ドラム 8 , 9 を回転 して炭素識維束 a を移行せ しめて 、 先に の表面の原子の除かれた跡に、 該活性酸素を結合 せしめる第 2工程処理を行い、 その表面特性の改善作業 を完了する In order to carry out the present method using the device, first, the exhaust system device F is operated to evacuate the inside of the sealed container 1, and then, argon is flowed into the container 1 from the inert gas cylinder A. The inside of the container 1 is set to an argon gas atmosphere at atmospheric pressure. In this state, the power supply 5 is started, the ultraviolet discharge tube 2 is made to emit light, and the center of the discharge tube 2 is moved at a constant speed in one direction, and a carbon fiber monofilament bundle is required. Irradiate with the energy of 髙. Thus, while the long fiber bundle is wound on one of the drums 8 or 9, the first process for destroying and removing the surface group is completed. Next, after the argon is removed by the exhaust device F, oxygen is allowed to flow into the closed container 1 from the anti-gas cylinder B, for example. Activate in the opposite direction The drums 8 and 9 are rotated to transfer the carbon fiber bundle a, and a second process is performed to combine the active oxygen with the traces of the atoms on the surface where the atoms have been removed. Complete
第 2 図及び第 3 図は、 素材の表面処理をその素材全面 に亘 り 可及的に均一に行う よ う に した表面処理装置を示 し、 その密閉容器 1 内にその長手のこの実施例では、 線 状の長手の素材 aの表面処理を行う もので、 その前後の ドラム 8 , 9 に張 り渡した素材 aの下方にこれに平行す る長手の紫外線直管ラ ンプ 4 を設ける と共に、 その反対 方向にその長手素材 aの上方にその幅よ り も充分大き い 幅を有 し、 且つ該素材 aの走行方向に平行に帯状の紫外 線反射板 12を設置した。 該反射板 1 2は、 そのラ ンプ 4 に 対向する面をアルミ蒸着面と した もので、 密閉容器 1 の 天井よ り の吊杆 1 3によ り 懸吊支持されて いる 。 尚、 その 反射板には、 線状素材 a を囲う よ う に円弧状面とする こ と が好ま しい。  FIGS. 2 and 3 show a surface treatment apparatus in which the surface treatment of the material is carried out as uniformly as possible over the entire surface of the material. In this method, a surface treatment of a linear long material a is performed, and a long ultraviolet straight tube lamp 4 parallel to this is provided below the material a stretched over the drums 8 and 9 before and after it. In the opposite direction, a strip-shaped ultraviolet reflector 12 having a width sufficiently larger than the width of the longitudinal material a and being parallel to the running direction of the material a was provided above the longitudinal material a. The reflecting plate 12 has a surface facing the lamp 4 as an aluminum vapor-deposited surface, and is suspended and supported by a hanging rod 13 from the ceiling of the closed casing 1. It is preferable that the reflector has an arc-shaped surface so as to surround the linear material a.
かく して 、 この装置の作動において 、 走行する該長手 素材 a 、 例えば、 炭素繊維の長纖維フ ィ ラメ ン トは、 そ の下面よ り該ラ ンプ 2 によ り 照射される一方、 その照射 紫外線は対面する反射板 1 2に当た り 反射して その線状素 材 の反対面よ り その上面を照射されるので、 その素材 は全面均一に紫外線照射を受けて良好な前記の第 1 工程 処理及び第 2 工程処理を行う こ と ができ る 。 第 4 図は、 更に他の実施例の装置を示 し 、 この装置は 素材を 1 方向に移行させる過程で、 第 1 工程と 第 2 工程 処理を行 う よ う に し、 必要に応 じその第 1 工程処理後又 は第 1 又は第 2 工程処理後に、 コーテ ィ ング処理を密閉 容器内で行 う よ う に構成されて いる 。 即ち、 図面におい て 、 1 4は、 密閉容器 1 の内部を少な く と も 2 つの第 1 容 器 1 aと 第 2 容器 1 bに区割する隔壁を示 し 、 1 5は、 該第 2 容器 1 bの下流厠に位置 して設けたコーテ ィ ング装置を示 す。 Thus, in the operation of this device, the running long material a, for example, a long fiber filament of carbon fiber, is irradiated by the lamp 2 from its lower surface, while its irradiation is performed. Since the ultraviolet rays are reflected on the facing reflector 12 and are reflected to irradiate the upper surface from the opposite side of the linear element, the element is uniformly irradiated with the ultraviolet ray and the first element is uniformly irradiated. Step processing and second step processing can be performed. FIG. 4 shows an apparatus according to still another embodiment. This apparatus performs the first step and the second step processing in the process of moving the material in one direction, and, if necessary, performs the processing. After the first step treatment or after the first or second step treatment, the coating treatment is performed in a closed container. That is, in the drawing, reference numeral 14 denotes a partition that divides the inside of the closed container 1 into at least two first containers 1a and second containers 1b, and 15 denotes the second partition. Shows the coating equipment installed in the downstream lavatory of Vessel 1b.
該密閉容器 1 の両端外部に、 一対の ド ラム 8 , 9 を配 設 し、 その供給用 ド ラム 8 に合成樹脂フ ィ ルム 、 炭素纖 維などの織布又は不織布など面状素材 a を卷き 付けて用 意 し、 その容器 1 の一端壁、 隔壁 1 4及びその他端壁をそ の核貫通孔でその卷き 解 した面状素材 a. を気密に揷通せ しめ、 その前方の卷き 取 り ドラム 9 にその一端を卷き 付 けて水平に走行する よ う に用意する 。 1 6は、 該貧通孔は これを揷通する素材 a と の間隙を気密に封口する封口部 材である 。 核密閉容器 1 a , 1 b内には夫々 その上下に複数 本の長管ラ ンプ 2 , 2 …を相互間に一定間隔を存 し且つ 走行する水平面状素材 aから等 しい距離を存 して その素 材 aの幅方向にその幅よ り は充分に長さ を も ち、 配設 さ れ、 その下位の放電管列 2 , 2 …スはその上位の放電管 列 2 , 2 のいずれか一方又は両方を使用 し得る よ う に し た。 図示 しないが、 その各 U V放電管 2 は夫々 の高周波 発生電源 3 に接続されている 。 該第 2容器の内部空間の 後半の下流厠には、 外部のコーテ ィ ング剤調整タ ンクに ポンプを介 して接続する コーテ ィ ング剤の噴霧装置 1 5を 容器 1 b内に導入し、 その先端に素材 a面の幅方向に配設 したノズル 1 6 a , 1 6 a…を素材 a面に向けてその上方に 所定の間隔を存 して設けた。 A pair of drums 8 and 9 are disposed outside both ends of the closed container 1, and the supply drum 8 is wound with a sheet material a such as synthetic resin film or woven fabric or non-woven fabric such as carbon fiber. The one-side wall of the container 1, the partition wall 14 and the other end wall are unwrapped with their nuclear penetration holes, and the sheet material a. One end of the drum 9 is wound around the take-up drum 9 so that it runs horizontally. Reference numeral 16 denotes a sealing member for sealing the gap between the poor hole and the material a passing therethrough in an airtight manner. In the nuclear enclosures 1a, 1b, a plurality of long tube lamps 2, 2,... Are arranged above and below each other at regular intervals and at an equal distance from the traveling horizontal material a. The lower discharge tube row 2, 2... Has a sufficient length in the width direction of the material a and is longer than its width, and the lower discharge tube row 2, 2,. Either or both could be used. Although not shown, each of the UV discharge tubes 2 has its own high frequency. Connected to generator power supply 3. In the downstream lavatory in the latter half of the internal space of the second container, a spraying device 15 for the coating agent, which is connected via a pump to an external coating agent adjustment tank, was introduced into the container 1b. Nozzles 16a, 16a ... arranged at the end in the width direction of the material a surface were provided at a predetermined interval above and facing the material a surface.
該装置によ り 、 ドラム 8 , 9 の回動でその供耠用 ドラ ム 8 よ り卷き 解され一定速度で面状素材 aが密閉容器 1 を水平に走行し、 該 ドラム 9 によ り卷き 取られる過程で、 該素材 a面は、 先ず、 第 1 容器 1 a内で所定の気圧の不活 性ガス と高エネルギーの紫外線照射と の併用によ り 、 素 材面表面基の破壊、 除去処理を受け、 次で、 第 2容器 1 b において反応性ガス と紫外線と の併用によ り 酸素などの 反応ガスイ オンが該表面基の欠除跡に結合 して新たな結 合基が生成され、 次でその下流において 、 か ゝ る改質表 面に該コーテ ィ ング装置 1 5よ り均一にコーテ ィ ング剤が 吹き 付けられ、 その新生の表面基の活性原子、 例えば活 性酸素に、 該コ ーテ ィ ング剤の活性基が結合 して強固な コーテ ィ ング層を生成され、 外部に導出後、 低温乾燥な どによ り そのコーテ ィ ング層を乾燥して 、 卷き 取 り ドラ ム 9 に卷き付け、 流れ作業によ り所望の表面処理が遂行 される 。  According to the device, the drums 8 and 9 are rotated and unwound from the supply drum 8, and the sheet material a travels horizontally in the closed container 1 at a constant speed. During the winding process, the surface a of the material is first destroyed by using a combination of an inert gas at a predetermined pressure and irradiation with high-energy ultraviolet light in the first container 1a. Then, after the removal treatment, the reactive gas ion such as oxygen is combined with the reactive gas and the ultraviolet ray in the second container 1b to combine with the lack of the surface group, and a new binding group is formed. A coating agent is formed and then, downstream thereof, is sprayed with a coating agent more uniformly on the modified surface than the coating device 15, and active atoms of the nascent surface group, for example, active oxygen Then, the active groups of the coating agent combine to form a strong coating layer, After that, the coating layer is dried by low-temperature drying or the like, wound around the winding drum 9, and a desired surface treatment is performed by a flow operation.
尚、 表面処理の 目的に応 じて 、 第 2工程処理を不作動 と し、 第 1 工程による表面基の破壊、 除去後、 コーテ ィ ング処理を行 う よ う に して も よ いこ と は言 う までもない。 コーテ ィ ング処理は、 素材を大気中に曝 し差 し支えない 場合は、 容器外で適!:の手段と 材料でコーテ ィ ング処理 する よ う に して も よ い。 In accordance with the purpose of the surface treatment, the second step treatment was disabled, and after the surface group was destroyed and removed in the first step, Needless to say, it is permissible to perform the switching process. The coating process is suitable outside the container if the material is exposed to the air and can be safely used! The coating process may be performed using the means and materials described in (1).
本発明は、 炭素粉粒、 鉱物粉粒、 フ ァ イ ンセ ラ ミ ッ ク ス、 セラ ミ ッ クス粉、 焼結金属粉、 フ ェ ライ ト 、 粗粒の 細かい素材のマスを表面処理する場合、 その集合体を靜 置 した状態では素材全体に亘 り均一な表面処理を行え る よ う に した も ので、 その細かい素材の集団を 回転又は浮 遊させながら前記の第 1 及び第 2 工程処理を行 う こ と を 特徴と する 。  The present invention is applicable to a case where a surface of a mass of carbon powder, mineral powder, fine ceramics, ceramic powder, sintered metal powder, ferrite, or coarse material is used. The surface treatment can be performed uniformly over the entire material in a state where the aggregate is kept stationary, and the first and second process treatments are performed while rotating or floating the group of fine materials. It is characterized by performing.
以下、 本発明を粉体の表面特性改善に適用 した場合の 実施例について詳細に説明する 。  Hereinafter, examples in which the present invention is applied to the improvement of powder surface characteristics will be described in detail.
第 5 図は本発明の実施の 1 例の表面処理装置を示す も ので、 1 800 A 以上の波長の紫外線を少な く と も 4 0 %以上 透過する合成石英で作られた管状放電管を用いた低圧紫 外線放電管 2 を内装 した密閉反応容器 1 の底部にガラス 、 アル ミ ニウムな どの ト レー 1 7を接着 して設け、 容器 1 に 接続 した粉体供給装置 1 8から被処理粉体 a. を断続的に供 給する よ う に構成されて いる 。  FIG. 5 shows an example of a surface treatment apparatus according to an embodiment of the present invention, in which a tubular discharge tube made of synthetic quartz that transmits at least 40% or more of ultraviolet light having a wavelength of 1800 A or more is used. A glass or aluminum tray 17 is adhered to the bottom of a sealed reaction vessel 1 containing a low-pressure ultraviolet discharge tube 2 inside, and the powder to be treated is supplied from a powder supply device 18 connected to the vessel 1. a. is configured to be supplied intermittently.
又、 不活性ガス (例えばァル ゴン ) を ボンべ Aから 、 マス フ ローコ ン ト ローラ C を通 じて定量的に注入 し 、 ほ ぼ大気圧で安定させる よ う になつ て いる 。  In addition, an inert gas (for example, argon) is quantitatively injected from a cylinder A through a mass flow controller C to stabilize the gas at almost atmospheric pressure.
そ して 、 前記密閉反応容器 1 は出力 2 0 0 W以上の強力 な超音波発生装置 19を装備した大型水楕 20上に載置して 水 21を介 して超音波振動を粉体 a に伝達させて、 粉体に 回転運動や浮遊運動を与える よ う に構成されて いる。 The closed reaction vessel 1 has a power of 200 W or more. Placed on a large water ellipse 20 equipped with a powerful ultrasonic generator 19 to transmit ultrasonic vibrations to the powder a via the water 21 to give the powder a rotational or floating motion. It is configured.
低圧紫外線放電管 2は 50KHZ 〜 1 MHz の間で周波数を 変化させる こ と のでき る可変周波数高周波電源 3 を用い て制御 し、 必要に応じて整合器 22を用いて調整し得る よ う になつている 。  The low-pressure ultraviolet discharge tube 2 is controlled by using a variable-frequency high-frequency power supply 3 capable of changing the frequency between 50 KHZ and 1 MHz, and can be adjusted by using a matching device 22 as necessary. ing .
又、 放電管 2は 1000膽 X 18.5腦 の大き さで、 その電 極はタ ングステン、 鉄、 銅、 fi i、 亜鉛、 鉛、 セレン 、 そ の他の金属を リ ボン状も し く はコイ ル状など発光が十分 可能な形状と して使用 した。  The discharge tube 2 is about 1000 x 18.5 cm in size, and its electrodes are made of tungsten, iron, copper, fii, zinc, lead, selenium, and other metals in the form of a ribbon or coil. It was used in a shape that allows sufficient light emission, such as a round shape.
放電管 2 に使用するガスは、 接続管 23を介 して 、 図示 の場合は、 アルゴンをその他水素、 窒素、 酸素などが自 由に封入でき 、 且つ内部圧もガス流量計及び絶対圧圧力 計と ロー夕 リ一ポンプ等を持つ制御装置 24によ り コ ン ト ロールでき る よ う になつている 。 実施例の場合、 放電の 安定のために水銀を封入して 、 水銀ランプと して 使用し た。  As shown in the figure, the gas used for the discharge tube 2 can be freely filled with hydrogen, nitrogen, oxygen, or the like via a connection tube 23, as shown in FIG. And a control device 24 having a low-pressure pump and the like. In the case of the embodiment, mercury was sealed for stabilization of discharge and used as a mercury lamp.
この場合の放電管の発光スペク トルは、 水銀による 18 49A 、 2537Aの他、 電極毎の特性スペク トルが発生する 。  In this case, in the light emission spectrum of the discharge tube, in addition to 1849A and 2537A due to mercury, a characteristic spectrum for each electrode is generated.
第 1 工程は、 以上の装置において 、 ト レー 17上の粉体 を超音波発生装置 19で転動させ不活性ガスを大気圧程度 で作用させ乍ら紫外線を表面に照射する ものである  In the first step, the powder on the tray 17 is tumbled by the ultrasonic generator 19 in the above apparatus, and the surface is irradiated with ultraviolet rays while an inert gas is applied at about atmospheric pressure.
第 2工程と しては、 第 1 工程と 同 じ処理系において 、 — 3 . 7 反応容器 1 中にボンべ B から酸素、 水素 、 窒素、 アン モ ニァ、 C F 4 , アルゴンな どの無機ガスの他に C H 4 、 ェチ レンな どのガス状炭化水素をガス混合器 2 5を介 して一定 の比率で注入 し、 粉体 a を前記 ト レー 1 7中で、 ス ク レー パ 2 6を作用させながら紫外線を照射 し 、 反応性ガス を光 励起させ粉体表面に作用させた。 As the second step, in the same processing system as the first step, — 3.7 In the reaction vessel 1, gaseous hydrocarbons such as CH 4 and ethylene, as well as inorganic gases such as oxygen, hydrogen, nitrogen, ammonia, CF 4 and argon The powder a is injected into the tray 17 at a constant ratio through the above-mentioned tray 25, and is irradiated with ultraviolet light while the scraper 26 is actuated. Acted on.
必要に応 じて加え る第 3 工程は、 第 2 工程で得られた 粉体を シラ ン力 ッ プ リ ング剤溶液やネオアルコキ シ系力 ッ プ リ ング剤の溶液中に投入後、 加熱撹拌するなど し て 力 ッ プ リ ング した。  The third step, if necessary, is to add the powder obtained in the second step into a silane coupling agent solution or a neo-alkoxy-based coupling agent solution and then heat and stir. I did power-ups.
シラ ンカ ッ プ リ ング剂は水又はアルコール、 ネオアル コキ シ系カ ッ プリ ング剤は I P A ( イ ソ プロピルァル コ一 ル 〉 や トルエン、 キシレンな どで希釈 した り 、 前処理操 作を して粉体に作用させた。  Silane couplings are diluted with water or alcohol, and neoalkoxy coupling agents are diluted with IPA (isopropyl alcohol), toluene, xylene, etc., or powdered by pretreatment. Acted on the body.
次に、 上記の装置を用い、 前記の第 1 工程及び第 2 ェ 程から成る本発明の方法の各種実施例に就いて詳細に説 明する 。  Next, various embodiments of the method of the present invention comprising the above-mentioned first step and second step using the above-mentioned apparatus will be described in detail.
実施例 1 4一 A Example 14 A
下記第 4 表に示す各種の粉体を 、 該表に示す条件で表 面処理 し、 水に対する分散性の改善を行った。 紫外線照 射時間は、 第 1 工程及び第 2 工程において各 3 0分、 又発 生紫外線波長は、 、 2 5 3 7 A な どであ る 。  Various powders shown in Table 4 below were subjected to surface treatment under the conditions shown in the table to improve dispersibility in water. The ultraviolet irradiation time is 30 minutes for each of the first step and the second step, and the generated ultraviolet wavelength is, for example, 2537 A.
その結果を第 4 表に示す。 第 4 表 Table 4 shows the results. Table 4
Figure imgf000040_0001
Figure imgf000040_0001
実施例 — B Example — B
下記第 5 表に示す各種の粉体を該表に示す条件で処理 し 、 その表面に挠水基を付着せ しめた。 この際、 使用ガ スは、 すべて完全 ド ライ と し、 かつ第 1 工程において 、 素材表面に付着の水分の除去を行 う と 共に特に混在表面 基である 0 H基の破壊と Hの除去を行った。 その第 5 表に 示す。 Various powders shown in the following Table 5 were treated under the conditions shown in the table, and dehydrated groups were adhered to the surfaces thereof. At this time, the gas used should be completely dry, and in the first step, the removal of water adhering to the material surface and the destruction of 0H groups and H removal, which are mixed surface groups, in particular, were also performed. went. The results are shown in Table 5.
第 5 表 Table 5
Figure imgf000042_0001
以上の試験の紫外線強度は粉体表層で β〜10ιιιΗ/'«3とした,
Figure imgf000042_0001
The UV intensity in the above test was β ~ 10ιιιΗ / '«3 on the powder surface,
4 実施例 1 4一 C 4 Example 1 41 C
下記第 6 表に記載の各種の粉体を該表に記載の条件で 処理 し、 その表面に有機官能基を置換生成せ しめた そ の結果を第 6 表に示す。  Table 6 shows the results of treating various powders shown in Table 6 below under the conditions shown in the table and substituting and generating organic functional groups on the surface.
第 6 表  Table 6
Figure imgf000043_0001
次に上記第 3 工程を付加 した本発明の実施例について 詳細に説明する 。
Figure imgf000043_0001
Next, an example of the present invention to which the third step is added will be described in detail.
実施例 1 5 Example 15
下記第 7 表に示す各種の粉体を前記第 1 工程及び第 2 工程を前記実施例 1 4一 A と 同 じ条件で処理 した後、 その 表面を各種カ ッ プ リ ング剤によ って カ ツ プ リ ング した。 このよ う に して得た本発明処理 した粉体を 、 適当な各種 の有機バイ ンダ一 と混合 し加熱成形 して その様子を観察 した。  After treating the various powders shown in Table 7 below in the first step and the second step under the same conditions as in Example 14A, the surface was treated with various capping agents. I cut it. The powder treated according to the present invention thus obtained was mixed with various kinds of appropriate organic binders, heated and molded, and the appearance was observed.
この実施例は、 その 目的、 処理の方法、 期待する表面 改善の所要件などについて 、 十分な理解が必要であ り 、 現在発明者らが課題と して いる各テーマについての概要 説明を行う と次の通 り である 。 This example requires a thorough understanding of its purpose, treatment method, and expected surface improvement requirements, and outlines the themes that the inventors are currently working on. The explanation is as follows.
例えば、 炭素粉体はその表面に C = C 、 , C 一 C以外 に C — N , C - H , C 一 0 , C — Fなど様々 な化学結合 を持っている 。  For example, carbon powder has various chemical bonds on its surface, such as C-N, C-H, C-10, C-F, in addition to C = C, C-C.
しかる に、 これらの表面基は、 必ず し も他の材料に対 する親和性は一樣でない。 特に C 一 H又は C 一 Fの結合 の場合端末は電荷がゼロ と なってお り 、 他の材料に対 し て濡れよ う と しない。 従って 、 所望の表面基に粉体の表 面を変換さす場合、 紫外線のもつエネルギーを直接粉 ίΦ: に作用させて 、 C — Η , C — F等の結合を切断し H , F を除去 しなければな らない。 本発明の第 1 工程において 粉体を処理した と ころ 、 切断と Η , F原子の除去が迅速 且つ良好に行う こ と ができ た。  However, these surface groups do not necessarily have different affinity for other materials. In particular, in the case of a C-H or C-F bond, the terminal has zero charge and does not tend to wet other materials. Therefore, when converting the surface of the powder to a desired surface group, the energy of the ultraviolet rays is directly applied to the powder ίΦ: to break the bonds of C—Η, C—F, etc., and remove H, F. There must be. When the powder was treated in the first step of the present invention, cutting and removal of, and F atoms could be performed quickly and favorably.
更に、 上記処理によ って得た炭素粉末を第 2 工程と し て例えば、 アルゴン酸素混合気体中において処理を行う と 、 短波長紫外線によって酸素がラジカル化し 、 強く 炭 素と結合 しょ う とする作用が起こ り 、 従って 、 前記の原 子が除かれた跡に入 り C と結合 し 、 C 一 Ο結合が生成 し、 最終的には炭素粉末の表面は優れた酸化状態に改質され た。  Furthermore, when the carbon powder obtained by the above treatment is treated as a second step, for example, in a mixed gas of argon and oxygen, oxygen is radicalized by short-wavelength ultraviolet rays and tends to strongly bind to carbon. An action occurred, and thus, the atom entered the trace where the atom was removed, and bonded to C to form a C-bond, and finally the surface of the carbon powder was modified to an excellent oxidation state. .
又、 このよ う に して得られた炭素粉末は水に対 して強 い親和力を持っため水中に投入した場合にはすべて瞬間 的に沈降する 。 これに対し本法処理を行わない粉末は水 面に浮いているばか り である 。 更に、 このよ う に表面処理 した炭素粉末に対 して 、 第 3 工程と して 、 シラ ンカ ッ プ リ ング剤を作用させた場合、 シラ ン力 ッ プ リ ング剤の種類がいかなる ものであ って 、 表面処理 した ものはすべて親和力を有する 。 このよ う に 本発明の第 1 工程、 第 2 工程及び第 3 工程は、 従来表面 に力 ッ プ リ ングする こ と は困難と されて いた材料につい て も カ ッ プ リ ング効果が著 しい。 Also, the carbon powder obtained in this way has a strong affinity for water, so that when it is put into water, all of it instantaneously settles. On the other hand, the powder not subjected to the treatment is only floating on the water surface. Further, when a silane coupling agent is allowed to act on the surface-treated carbon powder as the third step, the type of silane coupling agent is not limited. Therefore, all surface-treated products have affinity. As described above, the first step, the second step, and the third step of the present invention have a remarkable coupling effect even on a material which has conventionally been difficult to force-couple to a surface. .
次に、 本法を重質炭酸カルシウム ( タ ンカル ) につい て実施 した場合につき 詳述する 。  Next, the case where the present method is applied to heavy calcium carbonate (tancar) will be described in detail.
一般にタ ンカル粉末は表面基を もたない もの と して知 られてお り 、 微粉末の場合には付着水が存在する程度で ある 。 しか し、 タ ンカル微粉末をポ リ エステルやナイ 口 ン等の水の混入を き ら う 樹脂に複合させる場合には表面 の水分を除去 して も 尚、 更にカ ッ プ リ ングが必要と なる 。 この場合、 シラ ンカ ッ プ リ ング剤は効果が薄いこ と が従 来から知られて いる 。  It is generally known that a tan powder has no surface group, and in the case of a fine powder, there is only a small amount of water adhering thereto. However, in the case where the fine powder of tancar is combined with a resin such as polyester or nylon which can mix water, even if the water on the surface is removed, further coupling is required. Become . In this case, it has been conventionally known that the silane coupling agent is ineffective.
然る に、 本発明では第 1 工程において 、 付着水及び 0 H 基の除去を実施 した。 その結果非常に流動性に富むタ ン カル粉体が得られ、 更に第 2 工程と して 、 イ ソ プロ ピル アルコールのガスを乾燥 した窒素にバラ ンス させて本粉 体に紫外線照射 しながら作用させた と こ ろ短時間ではつ 水性に表面が改質でき た。 この粉体は水に対 して親和力 が全く ないため、 上記のよ う な水を混入させてはいけな い樹脂に複合させる場合、 更に第 3 工程と して ネオアル コキシチタ ネー 卜力 ッ ブリ ング剤を前記の方法で得られ た粉体に作用させ、 流動性、 耐熱衝撃性等を もた らせる こ と ができ優れた表面特性が付与でき る こ と が判明 した。 Therefore, in the present invention, in the first step, adhering water and 0H groups were removed. As a result, a very fluid tanker powder was obtained, and in the second step, isopropyl alcohol gas was balanced with dry nitrogen to act while irradiating the powder with ultraviolet light. In a short time, the surface could be modified to be water-repellent. Since this powder has no affinity for water, when it is combined with a resin that must not be mixed with water as described above, neo-Al It has been found that a coxi titanate rubbing agent can be applied to the powder obtained by the above-mentioned method to impart fluidity, thermal shock resistance, etc., and to impart excellent surface properties. did.
このほかの粉体について 本法を実施した場合の概要 を第 7表に示す。 Table 7 summarizes the results of this method for other powders.
第 7 表 項 目 目的、 および処理方法 力ッァリング効果 有機バインダーとの その他の要 (牛 粉体の種類、' 接着性 Table 7 Item Purpose and treatment method Powering effect Other requirements with organic binder (type of cow powder, 'adhesion
( 1 ) 単結晶アルミナ スぺ—サ— の 徐 tこ対する非;择龟 子の こ >m ill 良お  (1) Single crystal alumina spacer
おいて、 第 1工程で表面の付着水及び OH基を除去 非凝集  In the first step, water and OH groups attached to the surface are removed.
したのち第 2工程でランカップリング剤を 0H基を 分級性能向上  After that, in the second step, the classification of the run coupling agent from the 0H group was improved.
(2 ) ケツチングブラ ケッチングブラックのもつ静電気のジャピング効 分散性良好 ァクリルエマル 電気伝導性向上 ック 果をより効果的にマ卜リック中に伝達するために、 ジョン等によく 原単位削減効果大 表面基の破壊と酸化を行つた後にネオアルコキシ 接着している (2) Ketching Brass The static electricity jumping effect of Ketching Black Good dispersibility Acryl emulsion Electrical conductivity improvement In order to transfer the fruit more effectively into the matrix, it is effective for John etc. Neoalkoxy bonding after destruction and oxidation of
チタネートカップリング剤で表面処理をした。  The surface was treated with a titanate coupling agent.
(3) 球晶ピッチ 表而に存存寸る: ¾蒱結^1某 除≠した ί糸に餘 し 勒件向 1- ■!ヽ ノ 、 機 fe¾的 rfeiト 更にその表面にポリイミド耐摩耗膜を形成するた カップリング つて成膜可能 すべり特性大 め、 シランカツプリング剤で表面処理した。 性が向上した。 (3) Spherulite pitch Exist in the surface: ¾ 蒱 ^ 1某 某 某 某----------ヽ- Coupling can be used to form the film. The surface was treated with a silane coupling agent to increase the slip characteristics. Improved.
( 4 ) S i、ーフ ライ アラスチック磁石用原料の Si'—フヱライ卜の表面 分散性が著し ポリアミド樹脂 磁気特性が強くな 付着水を除去したのち、 ィソプロピルアルコール く向上 との接着性良く 機械強度が增加し ガスを用いて表面にはつ水基を形成し、 さらにネ 樹脂量の削減可 (成形体において〉 オアルコキシ系カップリング剤を用いて表面処理 能  (4) Si, the surface of Si'-frite, a raw material for flexible magnets, has a remarkable dispersibility. A polyamide resin has strong magnetic properties. After removing water attached to it, it improves adhesion to isopropyl alcohol. Good mechanical strength is added, water-based groups are formed on the surface using gas, and the amount of resin can be further reduced (in molded products) Surface treatment ability using alkoxy-based coupling agent
した。  did.
(Γ. ) タンカル ナイ口ン、 ポリエステルの強化樹脂成形 の製造 一 i &W-—…― ' 'MiVz iWUx '' 耐衝^性等向上 において タンカルの付着水を除去したのち ィ 粘性係数の いる  (Γ.) Production of reinforced resin moldings of tancar nay polyester and polyester i & W --------- '' MiVz iWUx '' To improve impact resistance etc., remove water adhering to tancar and have viscosity coefficient
ソプロピルアルコールによりはつ水基を形成し、 低下  Sopropyl alcohol forms water radicals and decreases
さらにネオアルコキシチタネ一卜系力ッアリング  In addition, neoalkoxy titanate system power ringing
剤を用いて表面処理した。  The surface was treated with the agent.
(6) 金属アルミ -ゥ 導電性樹脂成形体を製造するのに対して、 金属ァ いずれも良好 P V C、 E V A ネオアルコキ  (6) Metallic aluminum- の Good for manufacturing conductive resin molded products, but good for metallurgy PVC, EVA Neoalkoxy
ム ルミ二ゥムの付着油脂を除去した後、 表面を酸化 などに混合した ネ一ト系カッァリ させさらにシランカツプリング剤ゃネオアルコキ が接合性は良好 グ剤が電気的に シ系カップリング剤を用いて表面処理した„ である After removing the oil and fat adhering to the membrane, the surface is mixed with a net-based material mixed by oxidation, etc., and the silane coupling agent (Neoalkoxy) has good bonding properties. Surface-treated using
次に第 1 工程後直接コーテ ィ ング剤で処理する発明の 実施例について述べる 。 Next, an embodiment of the invention in which the first step is followed by direct treatment with a coating agent will be described.
実施例 1 6— A Example 16—A
こ ゝ ではネオジゥムボロン鉄系磁性粉昧について 、 実 施した例を示す。  Here, an example in which the neodymium boron-based magnetic powder is applied will be described.
第 1 工程と しては、 本磁性粉体は水に濡れる と著 しい 速度で鲭びた り 、 大気中で酸素と 反応して燃焼する こ と が知られて いるため、 アルゴン雰囲気中で本粉体に紫外 線照射を行った - 本粉末はフレーク状であ り 比重が重く 回転 しにく いため、 主たる転動操作はスク レーバで行つ たが、 粒子径が 200 a m と粗いため 30分の処理時間で十 分に脱水ができ た。 又、 本粉末は製造時に急冷してある ため、 加熱する と磁性が低下して しま う が、 本第 1 工程 では熱も発生しないため良好な処理方法である こ と が判 つた。  As the first step, the magnetic powder is known to grow at a remarkable rate when wet with water, or to react with oxygen in the atmosphere and burn. The powder was irradiated with ultraviolet light-The powder was flake-shaped and had a high specific gravity and was difficult to rotate.The main rolling operation was performed with a scrubber, but the particle diameter was coarse, 200 am, and was 30 minutes. Dehydration was sufficiently achieved in the processing time of the above. In addition, since the powder was rapidly cooled at the time of production, the magnetism was reduced when heated. However, it was found that the first step was a good treatment method because no heat was generated.
次に、 本粉体を上記第 1 工程で処理 した直後各種ネオ アルコキシ系カ ップ リ ング剤によって 、 その表面をカ ツ プリ ングしたその結果を第 8表に示す。 Next, Table 8 shows the results of the surface being coated with various neoalkoxy-based coupling agents immediately after the present powder was treated in the first step.
第 8表 Table 8
Figure imgf000049_0001
こ こ で LICA 09 :ネオペンチル · ( ダイ ァ リ ル ) ォキ シ
Figure imgf000049_0001
Here LICA 09: Neopentyl (diary) ox
■ ト リ ( ドデシル ) ベンゼン 一 スル フ ォ ニ ノレチタ ネ ー 卜 ■ Tri (dodecyl) benzene sulfonole retinitanet
LICA 44 :ネオペンチル.' ( ダイ ァ リ ル ) ォキ シ • ト リ ( Ν—エチ レ ン . デ ィ · ァ ミ ノ ) ェチル ' チタ ネー ト  LICA 44: Neopentyl. '(Diallyl) Oxy • Tri (Ethylene. D. Amino) Ethyl' Titanate
LZ 44:ネオペンチル . ( ダイ ァ リ ノレ ) ォキ シ  LZ44: Neopentyl.
' ト リ ( Ν —エチレ ン ' デ ィ ' ァ ミ ノ 〉 ェチル ■ ジルコ ネ一 卜  'Tri (Ν-Ethylene' D 'Amino) Etil ■ Zirconet
11 97:ネオペンチル . ( ダイ ァ リ ル ) ォキ シ  11 97: Neopentyl.
' ト リ ( πι — ァ ミ ノ ) ペンチル . ジル コ ネ一 卜  'Tri (πι-amino) pentyl. Zirconet
であ る 。 It is.
上記結果の う ち LICA 09 は ΡΗも 低 く 鲭の発生 も考え ら れる上、 粉体と 反応し易いが、 これは構造中に存在する Of the above results, LICA 09 is low and low And easily react with the powder, but this is present in the structure
0 0
11  11
— Z r ( 0 一 S一 )〉一 2 H 2 5 ) 3 - Z r (0 one S I)> A 2 H 2 5) 3
!1  ! 1
0 のよ う な反応基が影響する と考え られる 。  It is thought that a reactive group such as 0 has an effect.
又その他のネオアルコキシ力 ッ プリ ング剤は良好であ り 、 これら をカ ップリ ングさせた粉体を用いて 、 ポ リ ア ミ ド樹脂と混練後ペレタイ ジングしたペレ ツ トでも単に ステア リ ン酸を本粉体にコーテ ィ ング した ものに比べ著 し く 防鐯効果が強く 得られた。  In addition, other neoalkoxy force-removing agents are good, and even if pellets obtained by kneading with a polyamide resin using a powder obtained by coupling these are simply stearic acid-treated. A remarkable and stronger protection effect was obtained compared to a product coated with this powder.
実施例 1 6— B Example 16- B
高純度シ リ カサブミ ク ロ ン粒子に対して、 本発明の第 1 工程及び力 ッ プリ ング処理例について説明する 。  The first step of the present invention and an example of a force-splitting process on high-purity silica submicron particles will be described.
一般にシ リ 力のサブミ ク ロン粒子或いは超微粒子は極 めて吸湿性が高く 、 生成時に絶乾状態であった と して も 大気が存在する と 0 . 5〜 0 . 3 %程度の重量比で吸湿する こ と が判明 して いる 。  In general, submicron particles or ultrafine particles having a strong force have extremely high hygroscopicity, and even if they are completely dry at the time of generation, they will have a weight ratio of about 0.5 to 0.3% in the presence of air. Has been found to absorb moisture.
と ころで、 この付着水分或いは、 元来初生的に表面に 存在する 0 H基、 結晶水はシ リ カ粉体を他の有機バイ ンダ 一中に混合させる場合著しい妨害作用を発揮する こ とが あ る 。 これは、 特に水を嫁 う 樹脂などに特有であるほか に、 近年開発め活発な極薄膜フ ィ ルムに も 同様に言え る こ と が発明者等の研究で実証されて いる 。 このため、 本 実施例では、 特にボ リ ミ ド フ ィ ルム系の耐熱フ ィ ルムを 成膜する工程中に適用 した例を述べる 。 However, the attached moisture, or the 0H groups originally present on the surface from the beginning, and the water of crystallization exert a remarkable obstructive effect when the silica powder is mixed with other organic binders. But is there . In addition to being peculiar to water-borne resins, the inventors' research has demonstrated that the same can be said for ultra-thin films that have been developed recently and are active. For this reason, in this embodiment, an example in which the present invention is applied particularly during a process of forming a heat-resistant film of a polyimide film type will be described.
先ず、 第 1 工程において 、 数種の粒度分布がサブ ミ ク ロ ン領域に含まれる シ リ カ を用いて表面に付着する(HI基 、 結晶水、 付着水の除去を行った。 この結果は第 9 表に示 す通 り である 。 First, in the first step, several types of particle size distribution adhere to the surface using silica contained in the sub-micron region (HI group, crystallization water, and attached water were removed. This is as shown in Table 9.
第 9 表 Table 9
Figure imgf000052_0001
Figure imgf000052_0001
尚、 上記 LICA38, 及び LICA97の構造式は次の通 り (LICA38) The structural formulas of LICA38 and LICA97 are as follows (LICA38)
CH2 = CH-CH20- C H2 0 0 CH 2 = CH-CH 2 0- CH 2 0 0
I Ιί II  I Ιί II
CH3 C H2 -C-CH2 -0-T i (0-P-O-P (0C8 H 17 ), ), CH 3 CH 2 -C-CH2 -0-T i (0-POP (0C 8 H 17 ),),
I I CH2 = CH-CH20- C H2 OH II CH 2 = CH-CH 2 0- CH 2 OH
(LICA97) (LICA97)
Figure imgf000053_0001
Figure imgf000053_0001
CH3 C H2 -C-CH2 -O-Ti (0-C 6 H 4 - HZ )3
Figure imgf000053_0002
本実験では、 処理時間を一定と したために、 材料の種 類によ っては、 処理裡が不十分な も の も ある こ と が判明 したが、 傾向 と しては例外を除けば一様に良好な状況に あ 。
CH 3 CH 2 -C-CH2 -O-Ti (0-C 6 H 4 -H Z ) 3
Figure imgf000053_0002
In this experiment, the treatment time was fixed, and it was found that some of the materials were not sufficiently treated, but the tendency was uniform except for exceptions. In a good situation.
次に、 これら第 1 工程処理によ り得られた各々 のシ リ 力粉体に対 してポ リ イ ミ ドに適合する シラ ンカ ッ プ リ ン グ剤を作用 させて十分にカ ッ プ リ ング した後乾燥粉体と な し、 これを N—メチルピロ リ ド ン中に各々 3 %分散さ せた。 この時、 カ ッ プ リ ング剤が粉体と 十分に接着 して いない試料或いは水が残存 して いる も のは、 N—メ チル ピロ リ ドン中において ゲル化するため 5 日間分散液を静 置 して溶液の状態を観察 した。 Next, a silane coupling agent that is compatible with the polyimide is applied to each of the sily powders obtained in the first step treatment to sufficiently cap the powder. After ringing, the powder was dried to obtain 3% of N-methylpyrrolidone. At this time, the sample in which the coupling agent is not sufficiently bonded to the powder or the sample in which water remains is N-methyl. The dispersion was allowed to stand for 5 days for gelation in pyrrolidone, and the state of the solution was observed.
更に、 目的の処理を経た N —メチルピロ リ ドン分散シ リ カ を全芳香族ポリ ア ミ ドワニス と 1 : 2の比率で十分混 合 してポ リ イ ミ ドアリ カーサ一と した。 この う ち、 ポリ ィ ミ ド固开 分は 92 . 3 %、 シ リ カ粉体は 7 . 1 %であった。  Furthermore, the N-methylpyrrolidone-dispersed silica that had undergone the desired treatment was thoroughly mixed with a wholly aromatic polyamide varnish in a ratio of 1: 2 to obtain a polyamide aliquot. Of these, the polyimide solid content was 92.3% and the silica powder was 7.1%.
次にこのプリ カーサ一をバーコーダ一でステ ンレス板 状に極めて平滑に引き 伸 し、 初期べ一キ ングを 1 0 0〜 1 5 0 で約 1 時間実施した。 次に、 ベーキングで十分に有 機用材が脱脂された供試体を 2 5 0〜 3 0 (KCで加熱重合 し た。 これらの成膜工程に関する結果を上記第 9 表に示す。  Next, this precursor was stretched extremely smoothly into a stainless steel plate shape using a bar coder, and the initial baking was performed at 100 to 150 for about 1 hour. Next, the specimens whose organic materials were sufficiently degreased by baking were polymerized by heating at 250 to 30 (KC. The results of these film forming processes are shown in Table 9 above.
上記の通 り 、 ポリ イ ミ ド フ ィ ルムの製造にあっては、 粉体を混合する場合には粉体表面の付着水が成膜に対し て著 しい阻害要因と なる こ と が判明 している 。 又、 カ ツ プリ ング剤を用いない場合、 た と え本発明の第 1 工程の みの処理を した粉体を用いて も 、 ベーキング中の熟衝撃 によ って プロ ッキングやク ラ ッ クが発生し フ ィ ルムは得 られないこ と がわかる 。  As described above, in the production of polyimide films, it has been found that when powder is mixed, water adhering to the powder surface is a significant inhibitory factor for film formation. ing . In addition, when a cutting agent is not used, even if a powder treated only in the first step of the present invention is used, blocking or cracking may occur due to ripening during baking. It can be seen that no film was obtained due to the occurrence of.
次に参考のため、 各種の粉体を前記第 1 工程の処理方 法のみを適用 して処理し、 表面の微量水分及び 0 H基の除 去を行った。 その結果を第 1 0表に示す。 第 10 表 Next, for reference, various powders were treated by applying only the treatment method of the first step to remove trace water and 0H groups on the surface. The results are shown in Table 10. Table 10
Figure imgf000055_0001
以上の試験の紫外線強度は粉体表面上で 8 10niW 'd?とした,
Figure imgf000055_0001
The UV intensity of the above test was 8 10niW 'd? On the powder surface,
このよ う に、 粉体な どの細かい素材の集団は、 上記の よ う に、 第 1 工程及び第 2工程での処理において振動な どを与えて 、 転動、 浮遊を強制的に与える こ と によ り 、 不活性ガスの接触、 紫外線の照射、 反応性ガス と の化学 結合反応が良好且つ均一に行われて 、 その表面特性の改 変が高能率且つ良好にでき る 。 In this way, as described above, a group of fine materials such as powders is given a vibration or the like in the processing in the first step and the second step to forcibly apply rolling and floating. Thereby, the contact of the inert gas, the irradiation of the ultraviolet ray, and the chemical bonding reaction with the reactive gas are carried out satisfactorily and uniformly, so that the surface characteristics can be modified with high efficiency.
更に、 本発明の方法並びに装置につき説明する 。  Further, the method and apparatus of the present invention will be described.
該第 1 工程における密閉容器内を真空と し或いは不活 性ガス雰囲気と し、 この状態で紫外線を照射する と 、 酸 素又は大気雰囲気中で紫外線を照射する場合に生ずるェ ネルギ一の損失な しに、 所定の高エネルギーで素材表面 を照射でき 、 高能率に表面基の結合の破壊、 除去を行う こ と ができ る 。 又、 密閉容器内を 1 0〜 0 . 0 1卜ール程度に 減圧し、 空気 (酸素 ) を除去する 。 素材に水分が付着 し て いる場合は、 特に乾燥 した不活性ガスによ り 除去する " こ と が好ま しい。 密閉容器内の不活性ガスの雰囲気は、 If the inside of the closed vessel in the first step is evacuated or made into an inert gas atmosphere, and the ultraviolet ray is irradiated in this state, energy loss that occurs when the ultraviolet ray is irradiated in an oxygen or air atmosphere is avoided. In addition, the material surface can be irradiated with a predetermined high energy, and the bond of the surface group can be destroyed and removed with high efficiency. Further, the pressure inside the closed vessel is reduced to about 10 to 0.01 torr to remove air (oxygen). If moisture is attached to the material, it is particularly preferable to remove it with a dry inert gas. "
0 . 1トール程度から大気圧までの間で適当に調節する この場合、 不活性ガズ と は、 アルゴン、 ク リ プ ト ン、 キ セノ ンなどの希ガスのほか、 処理すべき素材の材質に対 し不活性であるガスを も含み、 窒素なども使用でき る 。Adjust appropriately between about 0.1 Torr and atmospheric pressure. In this case, inert gas refers to rare gases such as argon, crypton, xenon, and other materials to be treated. On the other hand, it contains inert gas, and nitrogen can be used.
U V放電管と素材面との距離は、 通常 20 αα以下の至近距 離が好ま しいが、 処理すべき素材の種類に応じて 、 放電 管と素材管の距離を適当な手段で調節でき る よ う に構成 する よ う に して も よい。 又、 放電管は、 発生する紫外線のスぺク トルを吸収す るため、 特に、 真空紫外域において もエネルギーの吸収 の極めて少ない合成石英スプロジルを標準的に用いる と き は、 大気中でさ え も管から 5 〜 1 Οαη離れた距離で 185 n . mの水銀共鳴線が 0.5 〜 0.2 mV cm2 ( 100 V、 A Cの場 合 〉 と 極めて強い値を示 した。 Usually, the distance between the UV discharge tube and the material surface is preferably as short as 20αα or less, but the distance between the discharge tube and the material tube can be adjusted by appropriate means according to the type of material to be treated. It may be configured in such a way. In addition, since the discharge tube absorbs the generated ultraviolet spectrum, even in the case where synthetic quartz sprozil, which has extremely low energy absorption even in the vacuum ultraviolet region, is used as a standard, even in the atmosphere. Also, at a distance of 5 to 1 5αη from the tube, the 185 nm mercury resonance line showed an extremely strong value of 0.5 to 0.2 mVcm 2 (at 100 V, AC).
紫外線の共鳴線や強度などは、 素材の種類、 表面特性 の改変の 目的な どによ り 任意撰択される こ と は言 う まで もない。  It goes without saying that the resonance line and intensity of ultraviolet rays are arbitrarily selected depending on the type of material and the purpose of modifying the surface properties.
又、 該紫外線発生装置と しては、 5 〜 "! 5 KHZ の低周波 発振機を使用 し 、 印加電力 も コ ン ト ロールでき る よ う に する こ と が好ま しい。  It is preferable that a low frequency oscillator of 5 to 5 KHZ is used as the ultraviolet ray generator so that the applied power can be controlled.
本発明において表面基と は、 素材自体を構成 して いる 化学的結合の原子又は原子団の う ち素材表面に存在 して いる もの、 該素材の表面の原子と 結合 し又は原子間に存 在 し 、 フ ァ ンデルワールス結合、 イ オン結合な どで吸着 又は化学結合 して いる原子又は原子団の結合状態を指称 する 。 例えば、 上記 した炭素やシ リ カの素材では、 本来 の原子ではな く 結合 して いる C 一 H , C — F , S i— 0Hな どの結合状態の表面基、 有機素材、 例えば合成樹脂素材 の場合は、 その主鎖の末端又は側鎖で結合する C 一 C I , C00H等の表面基、 或いはその官能基自体を意味する ,, ス、 表面基の破壞、 除去と は、 表面基の結合を破壊 しその特 定の原子又は原子団を除去する こ と を意味する 。 従って 、 表面特性を改変すべき 目的に応 じ、 その目的 に応 じた表面基の破壊と その特定の原子や原子団の除去 を行う 。 この際、 これに応じて、 紫外線の強度、 放電管 と素材面の距離なども適当に定め られる 。 In the present invention, the term “surface group” refers to a chemical bond atom or atomic group that constitutes the material itself, which is present on the surface of the material, is bonded to an atom on the surface of the material or exists between the atoms. In addition, the term refers to the bonding state of atoms or atomic groups that are adsorbed or chemically bonded by van der Waals bonds, ion bonds, or the like. For example, in the above-mentioned carbon and silica materials, surface groups in a bonded state, such as C-H, C-F, Si-0H, which are bonded instead of the original atoms, organic materials, such as synthetic resin materials In the case of, the surface group such as C-CI, C00H or the like, which is bonded at the terminal or side chain of the main chain, or the functional group itself, is destruction or removal of the surface group. Destroying a specific atom or group of atoms. Therefore, the surface group is destroyed and the specific atoms or atomic groups are removed according to the purpose whose surface characteristics are to be modified. At this time, the intensity of the ultraviolet rays, the distance between the discharge tube and the material surface, etc. are appropriately determined accordingly.
従って 、 これに伴い第 2工程において 、 第 1 工程で除 かれた表面基の原子又は原子団の除去跡に、 目的とする 表面特性の改変に応 じて各種の特定の反応性ガス種を撰 択し、 これを活性化し導入し、 新 しい表面基を生成せし める ものである 。 その反応性ガス と しては、 大気、 02 、 オゾン、 C F 4 のよ う なフ ッ化系ガス、 水素、 窒素、 塩素、 塩酸、 N H 3 、 C 02 などの無機ガス、 ポ リ イ ミ ド 、 プロピ レ ン、 キ シレン、 卜 レエン、 ベンゼン、 エチレ ン、 イ ソ プロピルアルコールその他任意の有機ガスなどが少な く と も 1 種又は 2種又はそれ以上の混合ガスが使用でき る 。 Accordingly, in the second step, various specific reactive gas species are selected in accordance with the desired modification of the surface characteristics in the trace of the removal of the atoms or atomic groups of the surface groups removed in the first step. It activates and introduces it to generate new surface groups. Is a reactive gas, air, 0 2, ozone, Yo I Do full Tsu reduction based gas CF 4, hydrogen, nitrogen, chlorine, hydrochloric acid, NH 3, C 0 inorganic gas such as 2, Po Li Lee At least one, or a mixture of two or more of mid, propylene, xylene, toluene, benzene, ethylene, isopropyl alcohol, and any other organic gas can be used.
このよ う に本発明による と き は、 第 1 工程において 、 密閉容器内で真空下又は少な く と も 1 種の不活性ガス雰 囲気下で高エネルギーの紫外線の照射によ り素材の表面 を照射し、 特定の表面基を破壊 し、 特定の原子又は原子 団を除去 した後、 第 2工程において 、 密閉容器内に入れ た特定の少な く と も 1 種の反応性ガスを紫外線又はレー ザ一光線で活性化せしめ、 これを前記の素材の活性表面 基と接触させたので、 目的に応じた種々の表面特性を も つ素材が得られる 。 かく して 、 素材の使用目的に応じて 、 所望の表面基の破壊、 除去と反応性ガスの強度の設定や 種類の撰択と の組み合わせな どによ り 、 素材の表面特性 の改善や新規な表面特性を持つ新規素材の加工品の製造 を可能と し 、 又常温状態で実施でき 、 又処理設備の大型 化やオンライ ン化に好適である等の効果を有する 。 As described above, according to the present invention, in the first step, the surface of the material is irradiated with high-energy ultraviolet rays in a closed vessel under vacuum or at least one kind of inert gas atmosphere. After irradiating, destroying specific surface groups and removing specific atoms or atomic groups, in a second step, at least one specific reactive gas contained in a closed container is irradiated with ultraviolet light or laser. The material was activated with one light beam and brought into contact with the active surface group of the material, so that a material having various surface characteristics according to the purpose can be obtained. Thus, depending on the intended use of the material, the desired surface group can be destroyed, removed and the intensity of the reactive gas set or Combination with selection of types can improve the surface properties of materials and manufacture processed products of new materials with new surface characteristics, and can be carried out at room temperature, and the size of processing equipment can be increased. It has effects such as being suitable for conversion and online conversion.
更に、 本発明によ る と き は、 前記の第 1 工程で処理 し た素材の表面に、 目的に応 じた所望のコーテ ィ ング剤を 付着せ しめる と き は、 該素材の該活性表面基にはそのコ 一テ ィ ング剤が素材表面に強固に被覆された被覆素材で 得られる 。  Further, according to the present invention, when a desired coating agent for the purpose is attached to the surface of the material treated in the first step, the active surface of the material is used. The base is obtained from a coated material in which the coating agent is firmly coated on the material surface.
又、 本発明によ る と き は、 前記の第 1 工程と 第 2 工程 の処理を行った後、 前記の各種の 目的に応 じたコーテ ィ ング剤を付着する と き は、 前記と 同様に強固な被覆材が 得られ、 更には、 これまで素材面に結着が困難又は不可 能であった各種コーテ ィ ング剤で被覆された新規な被覆 加ェ品が得られる 。  Further, according to the present invention, after performing the treatment in the first step and the second step, when applying the coating agent corresponding to the above-mentioned various purposes, the same as above is applied. Thus, a novel coating material coated with various coating agents, which has been difficult or impossible to bind to the material surface, can be obtained.
更に、 本発明によ る と き は、 特に素材が粉体な どの細 かい素材の集団の表面処理において 、 素材を 回転又は浮 遊させる よ う に したので、 全体に亘 り 均一な表面処理が でき る効果を有する 。  Furthermore, according to the present invention, the material is rotated or floated, particularly in the surface treatment of a group of fine materials such as powder, so that a uniform surface treatment can be achieved throughout. It has an effect that can be achieved.
更に、 本発明によ る と き は、 上記の方法を実施する処 理装置と して 、 反応密閉容器にその 1 側に不活性ガス供 袷管と 不活性ガス供給管と を流量制御装置を介 して接続 する一方、 その他厠に排気装置を接続 し、 その容器内に 紫外線放電管を設けたので、 同 じ容器内で第 1 工程終了 後、 第 2 工程を行う こ と ができ 、 占有空間の小さ い装置 を提供でき る 。 又、 本発明によれば、 該容器内を第 1 ェ 程処理室と第 2工程処理室と を隔壁によ り 区割形成する と き は、 長尺の素材を 1 方向に移行せ しめ連続 して第 1 工程と 第 2工程を行う こ と ができ 、 作業能率を向上し得 る 。 Further, according to the present invention, as a processing device for carrying out the above method, a reaction sealed container is provided with an inert gas supply pipe and an inert gas supply pipe on one side thereof, and a flow control device. The first process was completed in the same container because the exhaust system was connected to the other room and the ultraviolet discharge tube was installed in that container. Thereafter, the second step can be performed, and a device with a small occupied space can be provided. Further, according to the present invention, when the first process chamber and the second process chamber are partitioned by the partition in the container, the long material is transferred in one direction and continuously. As a result, the first step and the second step can be performed, and the work efficiency can be improved.
更に、 該密閉容器内に、 コーテ ィ ング処理空間又は隔 離壁を設ける と き は、 密閉容器内でコーテ ィ ング処理を 行う こ とができ る 。  Further, when a coating space or a separating wall is provided in the closed container, the coating process can be performed in the closed container.
更に、 本発明によれば、 密閉容器内に設けた紫外線ラ ンプの対向目面に、 その間に素材の通路を存 して反射板 を配設する と き は、 反射板に向いた素材の表面を も紫外 線照射を行い良好な表面処理を行う こ と ができ る等の効 果を有する 。  Further, according to the present invention, when the reflector is provided on the facing surface of the ultraviolet lamp provided in the closed container with a passage for the material therebetween, the surface of the material facing the reflector is provided. In addition, it has an effect such that a good surface treatment can be performed by irradiating ultraviolet rays.
産業上の利甩可能性 Industrial availability
以上のよ う に、 本発明にかかる素材の表面特性改善方 法並びにその表面処理装置は、 強化プラスチ ッ ク ス成形 体、 補強セメ ン ト成形体、 積層体、 ラ ミ ネー ト加工など の各種複合製品の製造、 金属超微粉、 金属粉、 磁性金属 粉、 フ ァ イ ンセラ ミ タス、 セラ ミ クスなどの焼結体の製 造、 半導体、 バイ オテク ノ ロジー、 塗料などの各種の産 業における コーテ ィ ング処理その他の各種の広い産業粉 に用いるのに適して いる 。  As described above, the method for improving the surface properties of a material according to the present invention and the surface treatment apparatus for the method include various methods such as a reinforced plastic molded body, a reinforced cement molded body, a laminate, and a laminate processing. Manufacture of composite products, manufacture of sintered products such as ultrafine metal powders, metal powders, magnetic metal powders, fine ceramics, ceramics, etc., and various industries such as semiconductors, biotechnology, and paints. Suitable for coating process and other various industrial powders.

Claims

請 求 の 範 囲 The scope of the claims
. 紫外線を素材表面に、 真空中又は、 少な く と も 1 種 の不活性ガス雰囲気中において 、 所定時間照 し、 表面 に存在する所定の表面基の破壊、 除去を行 う よ う に し た第 1 工程と 次で紫外線及びレーザー光線の う ちの少 な く と も一方を照射 し乍ら 、 少な く と も 1 種の反応性 ガスを光ラ ジカル化させイ オンポテ ンシ ャ ルを高め、 該素材表面に特定のガスイ オンを化学結合させ新規な 化学結合を もつ素材表面に生成せ しめる第 2 工程 と か ら成る こ と を特徴と する素材の表面特性改善方法。. 該第 1 工程でめ処理後、 その素材の表面にコーテ ィ ング剤を付着せ しめる こ と を特徴と する請求の範囲第 1 項記載の素材の表面特性改善方法。 Irradiation of ultraviolet light on the surface of the material, in a vacuum or in at least one kind of inert gas atmosphere, for a predetermined period of time, in order to destroy or remove predetermined surface groups present on the surface. In the first and subsequent steps, while irradiating at least one of ultraviolet light and laser light, at least one kind of reactive gas is converted into a photo-radical to enhance ion potential, and A method for improving the surface properties of a material, comprising a second step of chemically bonding a specific gas ion to the surface to form the material surface having a new chemical bond. 2. The method for improving the surface characteristics of a material according to claim 1, wherein a coating agent is attached to the surface of the material after the treatment in the first step.
. 該第 1 工程及び第 2 工程での処理後、 その素材の表 面にコーテ ィ ング剤を付着せ しめる こ と を特徴と する 請求の範囲第 1 項記載の素材の表面特性改善方法。. 該素材は、 繊維、 粉体などの細かい素材の他、 フ ィ ルム状、 板状その他の所望の形状の固形物である請求 の範囲第 1 項記載の素材の表面特性改善方法。2. The method for improving surface properties of a material according to claim 1, wherein a coating agent is attached to a surface of the material after the treatment in the first step and the second step. The method for improving the surface properties of a material according to claim 1, wherein the material is a film, a plate, or a solid having a desired shape in addition to a fine material such as fiber or powder.
. 該第 1 工程及び第 2 工程の夫々 において 、 細かい素 材の集団を回転又は浮遊せ しめた状態において処理す る こ と を特徴と する請求の範囲第 1 項、 第 2項及び第Claims 1, 2, and 3, wherein in each of the first step and the second step, a group of fine materials is processed while being rotated or suspended.
3 項のいずれか 1 つに記載の素材の表面特性改善方法. 密閉空間において 、 各共鳴線の紫外線強度が 0 . 5 ffl W / cig以上の真空紫外線及び短波長紫外線を織維表面に至 近距離から真空中又は不活性ガス雰囲気中において所 定の時間照射し、 纖維表面に存在する表面基を破壊、 除去する第 1 工程と 、 次で当該空間において該表面に、 該紫外線及びレーザー光線の う ちの少なく と も一方を 照射しながら少なく と も 1 種の反応性ガスを作甩させ て 、 該ガス種を光ラジカル化させイ オンポテンシャル を高め、 繊維表面と化学反応させ、 所望の新規化学結 合を織維表面に生成せしめる第 2工程から成る こ と を 特徴と する請求の範囲第 1項記載の素材の表面特性改 善方法。 The method for improving surface properties of a material according to any one of the items 3. In a closed space, the ultraviolet intensity of each resonance line is 0.5 ffl W / a first step of irradiating the textile surface with vacuum ultraviolet rays and short wavelength ultraviolet rays of a cig or more from a short distance in a vacuum or in an inert gas atmosphere for a predetermined time to destroy and remove surface groups existing on the fiber surface; Next, at least one of the ultraviolet light and the laser beam is irradiated on the surface in the space to generate at least one reactive gas, and the gas species is photo-radicalized to form an ion. 2. The method for improving the surface properties of a material according to claim 1, comprising a second step of increasing a potential, causing a chemical reaction with a fiber surface, and generating a desired new chemical bond on a textile surface. .
7. 該第 1 工程での処理後、 該纖維の表面に、 シラン力 ッ プ リ ング剤、 ネオアルコキシ ■ チタ ネー ト ■ カ ップ リ ング剤、 ネオアルコキシ ' ジルコネー ト · カ ツ プリ ング剤の う ち、 その少な く と も 1 種カ ップリ ング斉 IJを コーテ ィ ング処理する こ と を特徴とする請求の範囲第 6項記載の素材の表面特性改善方法。  7. After the treatment in the first step, silane coupling agent, neoalkoxy ■ titanate ■ coupling agent, neoalkoxy 'zirconate cutting agent, is applied to the surface of the fiber. 7. The method for improving surface properties of a material according to claim 6, wherein at least one kind of the coupling IJ is coated.
8 . 該第 1 工程及び第 2工程での処理後、 該識維の表面 に、 シランカ ップリ ング剤、 ネオアルコキシ . チタネ ー ト ■ カ ップリ ング剤、 ネオアルコキシ ■ ジルコネ一 ト - カ ップリ ング剤の う ち、 その少な く と も 1 種カ ツ プリ ング剤を コーテ ィ ング処理する こ と を特徴とする 請求の範囲第 6 項記载の素材の表面特性改善方法。  8. After the treatment in the first step and the second step, a silane coupling agent, a neoalkoxy.titanate ■ coupling agent, a neoalkoxy ■ a zirconate-coupling agent is applied to the surface of the fiber. 7. The method for improving the surface properties of a material according to claim 6, wherein at least one kind of a cutting agent is coated.
9. 密閉空間において 、 各共鳴線の紫外線強度が 0 . 5 m / cm2以上の真空紫外線及び短波長紫外線を回転又は浮遊 する粉体表面に至近距離から真空中又は不活性ガス雰 囲気中において所定の時間照射 し、 粉体表面に存在す る表面基を破壊、 除去する第 1 工程と 、 次で、 当該空 間において該表面に該紫外線を照射 しながら少な く と 1 種の反応性ガス を作用 させ、 該ガスを前記紫外線 によ り光ラ ジカル化させて イ オンポテンシャルを高め、 粉体表面と 化学反応させ所望の新規化学結合を粉体表 面に生成せ しめる第 2 工程と から成る こ と を特徴と す る請求の範囲第 1 項又は第 5 項記載の素材の表面特性 改善方法。9. In an enclosed space, the UV intensity of each resonance line is 0.5 m / Irradiate vacuum or short-wavelength ultraviolet light of cm 2 or more to the rotating or floating powder surface from a short distance in a vacuum or in an inert gas atmosphere for a predetermined time to destroy the surface groups present on the powder surface, A first step of removing, and then, irradiating the surface with the ultraviolet rays in the space to cause at least one reactive gas to act thereon, and the gas is photoradicalized by the ultraviolet rays. The second step of increasing the ion potential and causing a chemical reaction with the powder surface to form a desired new chemical bond on the powder surface. Claims 1 or 5 characterized by the above-mentioned. How to improve the surface properties of the described material.
. 該第 1 工程での処理後、 該粉体の表面に、 シラ ン力 ッ プ リ ング剤、 ネオアルコキ シ ■ チタ ネー ト · カ ツ フ。 リ ング剤、 ネオアルコ キ シ ■ ジルコ ネー ト ■ カ ツ プ リ ング剤中の 1 種以上のカ ッ プ リ ング剤を コーテ ィ ング 処理する こ と を特徴とする請求の範囲第 9 項記載の素 材の表面特性改善方法。After the treatment in the first step, the surface of the powder is coated with a silane coupling agent and a neoalkoxy titanate cutoff. 10. A coating agent according to claim 9, wherein one or more of the coupling agents in the coupling agent, neoalkoxy, zirconate, and coupling agent are subjected to a coating treatment. A method for improving the surface properties of materials.
. 該第 1 工程及び第 2 工程での処理後、 該粉体の表面 に 、 シラ ンカ ッ プ リ ング剤、 ネオアルコキ シ ' チタ ネ ー ト · カ ッ プ リ ング剤、 ネオアルコキ シ · ジルコネ一 ト - カ ッ プ リ ング剤の う ち、 その少な く と も 1 種カ ツ プ リ ング剤をコーテ ィ ング処理する こ と を特徴と する 請求の範囲第 9項記載の素材の表面特性改善方法。After the treatment in the first step and the second step, a silane coupling agent, a neoalkoxy 'titanate coupling agent, and a neoalkoxy zirconate are coated on the surface of the powder. 10. The method for improving surface properties of a material according to claim 9, wherein at least one of the coupling agents is subjected to a coating treatment. .
. 反応密閉容器(1 ) の 1 側に、 不活性ガス供耠管(6 ) と反応性ガス供耠管(7) と を夫々流量制御装置(C) を 介 して接続する と共に、 その他側に排気装置(F) に接 続し、 その密閉容器(1 ) 内部に、 紫外線放電管(2) を 設け、 更に被処理素材(a) を紫外線放電管(2) に対面 させ支持する素材支持装置(10) (11 )又は(17)を設けて 成る素材の表面処理装置。 An inert gas supply pipe (6) is provided on one side of the closed reaction vessel (1). And the reactive gas supply pipe (7) are connected via the flow control device (C), respectively, and the other side is connected to the exhaust device (F). A material surface treatment device comprising a discharge tube (2) and a material support device (10) (11) or (17) for supporting the material (a) to be treated facing the ultraviolet discharge tube (2).
13. 長手の素材(a) の両端を卷き 付けた正逆回転自在の ドラム (8) (9)を設けて成る請求の範囲第 12項記載の素 材の表面処理装置。  13. The apparatus for treating a surface of a material according to claim 12, comprising a forward-reverse rotatable drum (8) (9) having both ends of a longitudinal material (a) wound thereon.
14. 密閉容器(1 ) 内に隔壁(14)を設けてその 1 側を真空 中又は不活性ガス雰囲気中で紫外線を照射する第 1 ェ 程室( 1 a )と し、 その他厠を反応性ガスを紫外線照射で 活性化せ しめ、 これを素材の表面に作用せしめる第 2 工程室い と し、 該密閉容器(1 ) の一端壁の外部から 長尺の素材(a) を導入 し、 該隔壁(14)を気密に挿通し その他端壁の外部へ導出するガイ ドロール(10) (11 )と ドラム (8 ) (9)と を設けて成る素材の表面処理装置。 14. Provide a partition (14) inside the closed vessel (1), and use one side as the first process chamber (1a) for irradiating ultraviolet rays in a vacuum or in an inert gas atmosphere. The gas is activated by ultraviolet irradiation, and this is used as a second process chamber for acting on the surface of the material. A long material (a) is introduced from outside the one end wall of the closed vessel (1), A surface treatment device for a raw material comprising a guide roll (10) (11) and a drum (8) (9) for hermetically inserting a partition wall (14) through the other end wall.
15. 該第 2工程室(1b)の下流厠空間にコーテ ィ ング装置 (16)を設けて成る請求の範囲第 14項記載の素材の表面 処理装置。 15. The material surface treatment device according to claim 14, wherein a coating device (16) is provided in a downstream lavatory space of the second process chamber (1b).
16. 該密閉容器(1 ) 内に、 紫外線放電器(2) に対面 して 紫外線反射板(12)を設け、 これら放電器(2) 及び反射 板(12)と の間に長手の線状素材(a) を揷通せ しめる よ う に して成る請求の範囲第 12項又は第 14項記載の素材 の表面処理装置。 16. In the closed container (1), an ultraviolet reflector (12) is provided so as to face the ultraviolet discharger (2), and a long linear line is provided between the discharger (2) and the reflector (12). A material according to claim 12 or 14, wherein the material (a) is passed through. Surface treatment equipment.
17. 該密閉容器(1) 内に、 細かい素材 (a) 集団を転動、 浮遊させる超音波発生装置(19)と その上面に水槽(20) と ト レー (17)と を順次載置 し て成る請求の範囲第 12項 又は第 14項記載の素材の表面処理装置。  17. In the closed container (1), a fine material (a) An ultrasonic generator (19) that rolls and floats a group, and a water tank (20) and a tray (17) are placed in this order on the upper surface. 15. The material surface treatment apparatus according to claim 12 or claim 14, comprising:
18. 該紫外線放電器(2 ) は、 高純度の石英ガラスから成 るスパイ ラル状スは直状の放電管から成る請求の範囲 第 12項又は第 14項記載の素材の表面処理装置。  18. The apparatus according to claim 12, wherein the ultraviolet discharger (2) is a spiral discharge tube made of high-purity quartz glass and a straight discharge tube.
19. 該紫外線放電器(2 ) は、 可変周波高周波電源(3) に 接続 して成る素材の表面処理装置。  19. An apparatus for treating a surface of a material, wherein the ultraviolet discharger (2) is connected to a variable frequency high frequency power supply (3).
20. 該放電器(2 ) と素材(a) 面と の距離は、 約 20cm以下 である請求の範囲第 12項スは第 14項記載の素材の表面 処理装置。  20. The apparatus according to claim 12, wherein the distance between the discharger (2) and the surface of the material (a) is about 20 cm or less.
PCT/JP1989/000432 1988-04-27 1989-04-25 Process for improving surface properties of material and surface-treating apparatus therefor WO1989010208A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10261788 1988-04-27
JP63/102617 1988-04-27
JP23628588A JPH0418930A (en) 1988-09-22 1988-09-22 Method for improving surface characteristic of powder
JP63/236285 1988-09-22

Publications (1)

Publication Number Publication Date
WO1989010208A1 true WO1989010208A1 (en) 1989-11-02

Family

ID=26443303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000432 WO1989010208A1 (en) 1988-04-27 1989-04-25 Process for improving surface properties of material and surface-treating apparatus therefor

Country Status (1)

Country Link
WO (1) WO1989010208A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003876A (en) * 1998-06-15 2000-01-07 Asahi Optical Co Ltd Semiconductor material manufacturing apparatus
JP2002294548A (en) * 2001-03-29 2002-10-09 Nsk Warner Kk Friction material and surface processing method for friction material
JP2007289963A (en) * 2001-10-26 2007-11-08 Calsonic Compressor Inc Fluorine-based resin coating method, and sliding member and gas compressor using the method
WO2014109199A1 (en) * 2013-01-09 2014-07-17 株式会社村田製作所 Processed liquid crystal polymer powder, paste including same, and liquid crystal polymer sheet using said powder and paste, laminated body, and method for producing processed liquid crystal polymer powder
WO2019151535A1 (en) * 2018-02-05 2019-08-08 株式会社エースネット Method for selectively binding target molecule to polymer molded body and method for producing target molecule-bound polymer molded body using same
WO2019244980A1 (en) * 2018-06-20 2019-12-26 国立大学法人大阪大学 Method for producing bonded multilayer body of polymer and adherend

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4980387A (en) * 1972-12-01 1974-08-02
JPS4987891A (en) * 1972-12-28 1974-08-22
JPS616265A (en) * 1984-06-21 1986-01-11 Mitsubishi Heavy Ind Ltd Surface hardening treatment
JPS6380525A (en) * 1986-09-24 1988-04-11 Semiconductor Energy Lab Co Ltd Formation of coat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4980387A (en) * 1972-12-01 1974-08-02
JPS4987891A (en) * 1972-12-28 1974-08-22
JPS616265A (en) * 1984-06-21 1986-01-11 Mitsubishi Heavy Ind Ltd Surface hardening treatment
JPS6380525A (en) * 1986-09-24 1988-04-11 Semiconductor Energy Lab Co Ltd Formation of coat

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003876A (en) * 1998-06-15 2000-01-07 Asahi Optical Co Ltd Semiconductor material manufacturing apparatus
JP2002294548A (en) * 2001-03-29 2002-10-09 Nsk Warner Kk Friction material and surface processing method for friction material
JP2007289963A (en) * 2001-10-26 2007-11-08 Calsonic Compressor Inc Fluorine-based resin coating method, and sliding member and gas compressor using the method
WO2014109199A1 (en) * 2013-01-09 2014-07-17 株式会社村田製作所 Processed liquid crystal polymer powder, paste including same, and liquid crystal polymer sheet using said powder and paste, laminated body, and method for producing processed liquid crystal polymer powder
CN104968713A (en) * 2013-01-09 2015-10-07 株式会社村田制作所 Processed liquid crystal polymer powder, paste including same, and liquid crystal polymer sheet using said powder and paste, laminated body, and method for producing processed liquid crystal polymer powder
US10233294B2 (en) 2013-01-09 2019-03-19 Murata Manufacturing Co., Ltd. Treated liquid crystal polymer powders, paste containing the same, and liquid crystal polymer sheet including the former, stack, and method of manufacturing treated liquid crystal polymer powders
WO2019151535A1 (en) * 2018-02-05 2019-08-08 株式会社エースネット Method for selectively binding target molecule to polymer molded body and method for producing target molecule-bound polymer molded body using same
JPWO2019151535A1 (en) * 2018-02-05 2021-01-28 株式会社 エースネット A method for selectively binding a target molecule to a polymer molded product, and a method for producing a target molecule-bound polymer molded product using the same method.
US11326035B2 (en) 2018-02-05 2022-05-10 Earth Corporation Method for selectively binding target molecule to polymer molded body and method for producing target molecule-bound polymer molded body using the same
WO2019244980A1 (en) * 2018-06-20 2019-12-26 国立大学法人大阪大学 Method for producing bonded multilayer body of polymer and adherend
JPWO2019244980A1 (en) * 2018-06-20 2021-07-26 国立大学法人大阪大学 Method for manufacturing an adhesive laminate of a polymer and an object to be adhered
JP7333080B2 (en) 2018-06-20 2023-08-24 国立大学法人大阪大学 Method for producing adhesive laminate of polymer and adherend

Similar Documents

Publication Publication Date Title
US5705233A (en) Fiber-reinforced cementitious composites
Wan et al. Covalent polymer functionalization of graphene for improved dielectric properties and thermal stability of epoxy composites
JP2589599B2 (en) Blow-out type surface treatment device
JP5725635B1 (en) Graphene powder manufacturing method and graphene powder manufactured by the manufacturing method
US5234723A (en) Continous plasma activated species treatment process for particulate
KR101356828B1 (en) Enhanced boron nitride composition and compositions made therewith
US20140248442A1 (en) Installation and method for the functionalization of particulate and powdered products
Amin Methods for preparation of nano-composites for outdoor insulation applications
K Mohanapriya et al. Zeolite 4A filled poly (3, 4-ethylenedioxythiophene):(polystyrenesulfonate)(PEDOT: PSS) and polyvinyl alcohol (PVA) blend nanocomposites as high-k dielectric materials for embedded capacitor applications
Wu et al. Effect of a vinyl ester-carbon nanotubes sizing agent on interfacial properties of carbon fibers reinforced unsaturated polyester composites
US20070148463A1 (en) Method of coating the surface of an inorganic substrate with an organic material and the product obtained
CA2997796A1 (en) Process for coating a substrate with a carbon-based material
US10174424B2 (en) Methods for the photo-initiated chemical vapor deposition (PICVD) of coatings and coatings produced by these methods
WO1989010208A1 (en) Process for improving surface properties of material and surface-treating apparatus therefor
Sun et al. Preparation and properties of transparent zinc oxide/silicone nanocomposites for the packaging of high‐power light‐emitting diodes
Saman et al. Application of cold plasma in nanofillers surface modification for enhancement of insulation characteristics of polymer nanocomposites: a review
Ding et al. Bioinspired strategies for making superior graphene composite coatings
Gao et al. Synthesis of aluminum nitride nanoparticles by a facile urea glass route and influence of urea/metal molar ratio
TW202346447A (en) Glass cloth, prepreg, and printed wiring board
CN112778878B (en) Modified graphene oxide water-based anticorrosive paint and preparation method thereof
CN1559974A (en) Preparation process of modified china-clay for inserted layer
Zendejo-Covarrubias et al. Surface modification of graphene nanoparticles with ethylene plasma in rotary plasma reactor for the preparation of GnP/HDPE nanocomposites
RU2345886C2 (en) Method for manufacture of products from composite materials, mostly cement wood
SOLTANI et al. Photocatalysis of formaldehyde in the aqueous phase over ZnO/diatomite nanocomposite
Liu et al. Fabrication of conducting polyaniline‐coated halloysite coaxial structure nanocomposites via in situ oxidative graft polymerization

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CH DE GB JP NL US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642