WO2019244868A1 - Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product and resin material for solder resists - Google Patents

Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product and resin material for solder resists Download PDF

Info

Publication number
WO2019244868A1
WO2019244868A1 PCT/JP2019/024034 JP2019024034W WO2019244868A1 WO 2019244868 A1 WO2019244868 A1 WO 2019244868A1 JP 2019024034 W JP2019024034 W JP 2019024034W WO 2019244868 A1 WO2019244868 A1 WO 2019244868A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
group
acid
acrylate
mass
Prior art date
Application number
PCT/JP2019/024034
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 山田
亀山 裕史
裕美子 中村
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2020505947A priority Critical patent/JP6753552B2/en
Publication of WO2019244868A1 publication Critical patent/WO2019244868A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability, and excellent in substrate adhesion and elongation in a cured product, and a curable resin composition containing the same.
  • the present invention relates to a cured product, an insulating material comprising the curable resin composition, a resin material for a solder resist, and a resist member.
  • solder resist resin material for a solder resist for a printed wiring board
  • a curable resin composition curable by active energy rays such as ultraviolet rays
  • the required properties for the solder resist resin material include: curing with a small exposure dose, excellent alkali developability, excellent substrate adhesion to copper foil and the like, and heat resistance and strength, Various things, such as being excellent in characteristics, are mentioned.
  • substrate adhesion is a fundamental and important performance, but the mechanism of performance development has not been sufficiently elucidated, and it has been one of the properties that are difficult to improve.
  • the problem to be solved by the present invention is to provide an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability, and excellent in substrate adhesion and elongation in a cured product.
  • the present invention provides a curable resin composition, a cured product, an insulating material composed of the photosensitive resin composition, a resin material for a solder resist, and a resist member.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that an acid group-containing (meth) acrylate resin composition containing an acid group-containing (meth) acrylate resin and a specific amount of an amine-modified epoxy resin. It has been found that the above problem can be solved by using the present invention, and the present invention has been completed.
  • the present invention provides an acid group-containing (meth) acrylate resin composition containing an acid group-containing (meth) acrylate resin (A) and an amine-modified epoxy resin (B), wherein the amine-modified epoxy resin ( The content of B) is 0.5 part by mass or more and 40 parts by mass or less in terms of solids based on 100 parts by mass of the solids of the acid group-containing (meth) acrylate resin (A).
  • the present invention relates to an acid group-containing (meth) acrylate resin composition, a curable resin composition containing the same, a cured product, an insulating material composed of the curable resin composition, a resin material for a solder resist, and a resist member.
  • the acid group-containing (meth) acrylate resin composition of the present invention has high photosensitivity and excellent alkali developability, and has excellent substrate adhesion and elongation in a cured product. It can be suitably used for a material and a resist member made of the solder resist resin.
  • the acid group-containing (meth) acrylate resin composition of the present invention is characterized by containing an acid group-containing (meth) acrylate resin (A) and an amine-modified epoxy resin (B).
  • (meth) acrylate means acrylate and / or methacrylate.
  • (meth) acryloyl means acryloyl and / or methacryloyl.
  • (meth) acryl means acryl and / or methacryl.
  • the acid group-containing (meth) acrylate resin (A) may have an acid group and a (meth) acryloyl group, and other specific structures and molecular weights are not particularly limited, and a wide variety of resins may be used. Can be.
  • Examples of the acid group contained in the acid group-containing (meth) acrylate resin (A) include a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Among these, a carboxyl group is preferred because of exhibiting excellent alkali developability.
  • Examples of the acid group-containing (meth) acrylate resin (A) include [1] an epoxy resin (A-1) having an acid group and a (meth) acryloyl group, and [2] an acid group and a (meth) acryloyl group.
  • Examples of the epoxy resin (A-1) having an acid group and a (meth) acryloyl group include an epoxy resin (a1-1), an unsaturated monocarboxylic acid (a1-2), and a polycarboxylic anhydride ( a1-3) as an essential reaction raw material.
  • the specific structure of the epoxy resin (a1-1) is not particularly limited as long as the epoxy resin has a plurality of epoxy groups in the resin.
  • Examples of the epoxy resin (a1-1) include bisphenol type epoxy resin, hydrogenated bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, hydrogenated biphenyl type epoxy resin, triphenyl Methane epoxy resin, phenol novolak epoxy resin, cresol novolak epoxy resin, bisphenol novolak epoxy resin, naphthol novolak epoxy resin, naphthol-phenol co-condensed novolak epoxy resin, naphthol-cresol co-condensed novolak epoxy resin, phenol Aralkyl epoxy resin, naphthol aralkyl epoxy resin, dicyclopentadiene-phenol addition reaction epoxy resin, biphenyl aralkyl epoxy resin Carboxymethyl resins, fluorene type epoxy resin, a xanthene type epoxy resin, dihydroxybenzene type epoxy resin, trihydroxybenzene type epoxy resin, and oxazolidone type epoxy resins and the like.
  • the unsaturated monocarboxylic acid (a1-2) refers to a compound having a (meth) acryloyl group and a carboxyl group in one molecule, and examples thereof include acrylic acid and methacrylic acid. Further, esters, acid halides, acid anhydrides and the like of the unsaturated monocarboxylic acids (a1-2) can also be used. These unsaturated monocarboxylic acids (a1-2) can be used alone or in combination of two or more.
  • esterified product of the unsaturated monocarboxylic acid (a1-2) for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, ( Alkyl (meth) acrylates such as n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate
  • Hydroxy group-containing (meth) acrylate compounds such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate; dimethylaminoethyl (meth) acrylate, (meth) acryl Nitrogen-containing (meth) acrylates such as dieth
  • Examples of the acid halide of the unsaturated monocarboxylic acid (a1-2) include (meth) acrylic acid chloride.
  • Examples of the acid anhydride of the unsaturated monocarboxylic acid (a1-2) include (meth) acrylic anhydride.
  • any acid anhydride of a compound having two or more carboxyl groups in one molecule can be used.
  • the polycarboxylic anhydride include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, citraconic acid, itaconic acid, Glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo [2.2.1] heptane- 2,3-dicarboxylic acid, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, 4- (2,5-
  • the method for producing the epoxy resin (A-1) having an acid group and a (meth) acryloyl group comprises the epoxy resin (a1-1), the unsaturated monocarboxylic acid (a1-2), and the polycarboxylic anhydride.
  • the product (a1-3) is used as an essential reaction raw material, and it may be produced by any method. For example, it may be manufactured by a method of reacting all of the reaction materials at once, or by a method of sequentially reacting the reaction materials. Above all, since the reaction can be easily controlled, the epoxy resin (a1-1) and the unsaturated monocarboxylic acid (a1-2) are first reacted, and then the polycarboxylic anhydride (a1-3) Is preferred.
  • an epoxy resin (a1-1) is reacted with an unsaturated monocarboxylic acid (a1-2) in the presence of an esterification reaction catalyst at a temperature in the range of 100 to 150 ° C.
  • the reaction can be carried out by, for example, adding a polycarboxylic anhydride (a1-3) to the mixture and reacting the mixture in a temperature range of 90 to 120 ° C.
  • the reaction ratio of the epoxy resin (a1-1) and the unsaturated monocarboxylic acid (a1-2) is such that the unsaturated monocarboxylic acid (a1-2) is added to 1 mole of the epoxy group in the epoxy resin (a1-1). Is preferably used in the range of 0.9 to 1.1 mol.
  • the reaction ratio of the polycarboxylic acid anhydride (a1-3) is preferably in the range of 0.2 to 1.0 mol per 1 mol of the epoxy group in the epoxy resin (a1-1).
  • esterification reaction catalyst examples include phosphorus compounds such as trimethylphosphine, tributylphosphine and triphenylphosphine, amine compounds such as triethylamine, tributylamine and dimethylbenzylamine, 2-methylimidazole, 2-heptadecylimidazole, Imidazole compounds such as ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole and 1-isobutyl-2-methylimidazole; These reaction catalysts can be used alone or in combination of two or more.
  • phosphorus compounds such as trimethylphosphine, tributylphosphine and triphenylphosphine
  • amine compounds such as triethylamine, tributylamine and dimethylbenzylamine
  • 2-methylimidazole 2-heptadecylimidazole
  • Imidazole compounds such as ethyl-4-methylimidazole, 1-benzyl-2
  • the amount of the reaction catalyst to be added is preferably in the range of 0.001 to 5 parts by mass based on 100 parts by mass of the reaction raw materials in total.
  • the reaction of the epoxy resin (a1-1), the unsaturated monocarboxylic acid (a1-2), and the polycarboxylic anhydride (a1-3) can be performed in an organic solvent, if necessary.
  • organic solvent examples include ketone solvents such as methyl ethyl ketone, acetone, dimethylformamide and methyl isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; toluene, xylene and solvent Aromatic solvents such as naphtha; alicyclic solvents such as cyclohexane and methylcyclohexane; alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol and propylene glycol monomethyl ether; alkylene glycol monoalkyl ethers and dialkylene glycol monoalkyl ethers , Glycol ether solvents such as dialkylene glycol monoalkyl ether acetate; methoxypropanol, cyclohexanone, Chiruse
  • the acid value of the epoxy resin (A-1) having an acid group and a (meth) acryloyl group has a high photosensitivity and an excellent alkali developability, and forms a cured product having excellent substrate adhesion and elongation.
  • the range is preferably 30 to 150 mgKOH / g, and more preferably 40 to 120 mgKOH / g.
  • the acid value of the epoxy resin (A-1) having an acid group and a (meth) acryloyl group is a value measured by a neutralization titration method according to JIS K 0070 (1992).
  • Examples of the acrylamide resin (A-2) having an acid group and a (meth) acryloyl group include a phenolic hydroxyl group-containing resin (a2-1) and a cyclic carbonate compound (a2-2a) or a cyclic ether compound (a2- 2b), an unsaturated monocarboxylic acid (a2-3a) and / or an N-alkoxyalkyl (meth) acrylamide compound (a2-3b), and a polycarboxylic anhydride (a2-4) as essential reaction raw materials. And the like obtained.
  • the phenolic hydroxyl group-containing resin (a2-1) refers to a resin having two or more phenolic hydroxyl groups in a molecule, for example, an aromatic polyhydroxy compound or a compound having one phenolic hydroxyl group in a molecule.
  • R 1 is independently any one of an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, and an aralkyl group, and i is , 0 or an integer of 1 to 4.
  • Z is any one of a vinyl group, a halomethyl group, a hydroxymethyl group, and an alkyloxymethyl group.
  • Y is an alkylene group having 1 to 4 carbon atoms, an oxygen atom, a sulfur atom, or a carbonyl group, and j is an integer of 1 to 4.
  • aromatic polyhydroxy compound for example, dihydroxybenzene, trihydroxybenzene, tetrahydroxybenzene, dihydroxynaphthalene, trihydroxynaphthalene, tetrahydroxynaphthalene, dihydroxyanthracene, trihydroxyanthracene, tetrahydroxyanthracene, biphenol, tetrahydroxybiphenyl,
  • aromatic polyhydroxy compound for example, dihydroxybenzene, trihydroxybenzene, tetrahydroxybenzene, dihydroxynaphthalene, trihydroxynaphthalene, tetrahydroxynaphthalene, dihydroxyanthracene, trihydroxyanthracene, tetrahydroxyanthracene, biphenol, tetrahydroxybiphenyl,
  • compounds having one or more substituents on these aromatic nuclei and the like can be mentioned.
  • substituent on the aromatic nucleus examples include, for example, methyl group, ethyl group, vinyl group, propyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, and nonyl group.
  • Aliphatic hydrocarbon group such as methoxy group, ethoxy group, propyloxy group, butoxy group; halogen atom such as fluorine atom, chlorine atom, bromine atom; phenyl group, naphthyl group, anthryl group, and aromatic nucleus thereof
  • These aromatic polyhydroxy compounds can be
  • Examples of the novolak phenolic resin include those obtained by reacting one or more compounds having one phenolic hydroxyl group in the molecule with an aldehyde compound under an acidic catalyst.
  • any compound may be used as long as it is an aromatic compound having one hydroxyl group on an aromatic nucleus.
  • a phenol compound having one or more substituents on an aromatic nucleus of naphthol or naphthol; anthracen having one or more substituents on an aromatic nucleus of anthracenol or anthracenol Senol compounds and the like can be mentioned.
  • the substituent on the aromatic nucleus include an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, an aralkyl group and the like, and specific examples thereof are as described above.
  • These compounds having one phenolic hydroxyl group can be used alone or in combination of two or more.
  • aldehyde compound examples include formaldehyde; alkyl aldehydes such as acetaldehyde, propyl aldehyde, butyraldehyde, isobutyraldehyde, pentyl aldehyde, and hexyl aldehyde; salicylaldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, and 2-hydroxy-4.
  • alkyl aldehydes such as acetaldehyde, propyl aldehyde, butyraldehyde, isobutyraldehyde, pentyl aldehyde, and hexyl aldehyde
  • salicylaldehyde 3-hydroxybenzaldehyde
  • 4-hydroxybenzaldehyde 2-hydroxy-4.
  • Hydroxybenzaldehydes such as -methylbenzaldehyde, 2,4-dihydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde; 2-hydroxy-3-methoxybenzaldehyde, 3-hydroxy-4-methoxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde, -Ethoxy-4-hydroxybenzaldehyde, 4-hydroxy-3,5-dimethoxybenzaldehyde Having both a hydroxy group and an alkoxy group: alkoxybenzaldehyde such as methoxybenzaldehyde and ethoxybenzaldehyde; 1-hydroxy-2-naphthaldehyde, 2-hydroxy-1-naphthaldehyde, 6-hydroxy-2-naphthaldehyde and the like Hydroxynaphthaldehyde; halogenated benzaldehyde such as bromobenzaldehyde, and the like.
  • the acidic catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid and oxalic acid, and boron acids such as boron trifluoride, anhydrous aluminum chloride and zinc chloride. And the like. These acidic catalysts can be used alone or in combination of two or more.
  • Examples of a reaction product using the compound having one phenolic hydroxyl group and the compound (x) as essential reaction raw materials include, for example, a compound having one phenolic hydroxyl group in the molecule and the compound (x). Can be obtained by heating and stirring under a temperature condition of about 80 to 200 ° C. under an acidic catalyst.
  • the reaction ratio between the compound having one phenolic hydroxyl group in the molecule and the compound (x) is such that the compound having one phenolic hydroxyl group in the molecule is 0 per mole of the compound (x). It is preferable that the ratio be 0.5 to 5 mol.
  • Examples of the cyclic carbonate compound (a2-2a) include ethylene carbonate, propylene carbonate, butylene carbonate, and pentylene carbonate. These cyclic carbonate compounds can be used alone or in combination of two or more. In addition, since an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product having excellent substrate adhesion and elongation can be obtained, ethylene carbonate, Or propylene carbonate is preferred.
  • Examples of the cyclic ether compound (a2-2b) include ethylene oxide, propylene oxide, and tetrahydrofuran. These cyclic ether compounds can be used alone or in combination of two or more. Further, among these, an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation can be obtained. , Ethylene oxide or propylene oxide is preferred.
  • unsaturated monocarboxylic acid (a2-3a) the same as the above-mentioned unsaturated monocarboxylic acid (a1-2) can be used.
  • N-alkoxyalkyl (meth) acrylamide compound (a2-3b) examples include N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N-methoxy Ethyl (meth) acrylamide, N-ethoxyethyl (meth) acrylamide, N-butoxyethyl (meth) acrylamide and the like can be mentioned.
  • an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation is obtained.
  • -Methoxymethyl (meth) acrylamide is preferred.
  • These N-alkoxyalkyl (meth) acrylamide compounds can be used alone or in combination of two or more.
  • polycarboxylic anhydride (a2-4) the same as the above-mentioned polycarboxylic anhydride (a1-3) can be used.
  • the equivalent ratio [(a2-3b) / (a2-4)) with the polycarboxylic anhydride (a2-4) is: Since an acid group-containing (meth) acrylate resin composition having excellent substrate adhesion, high photosensitivity, and excellent alkali developability and having excellent elongation in a cured product can be obtained, 0.2 to 0.2% 7 is preferable, and the range of 0.25 to 6.7 is more preferable.
  • the method for producing the acrylamide resin (B-2) having an acid group and a (meth) acryloyl group is not particularly limited, and may be produced by any method. For example, it may be manufactured by a method of reacting all of the reaction materials at once, or by a method of sequentially reacting the reaction materials.
  • the phenolic hydroxyl group-containing resin (a2-1) is first reacted with the cyclic carbonate compound (a2-2a) or the cyclic ether compound (a2-2b), After reacting the obtained reaction product 1 with an unsaturated monocarboxylic acid (a2-3a) and / or an N-alkoxyalkyl (meth) acrylamide compound (a2-3b), the obtained reaction product 2 A method of reacting a polycarboxylic anhydride (a2-4) is preferred.
  • the reaction is carried out, for example, by reacting the phenolic hydroxyl group-containing resin (a2-1) with the cyclic carbonate compound (a2-2a) or the cyclic ether compound (a2-2b) in the presence of a basic catalyst in the range of 50 to 200. After reacting in a temperature range of ° C., the resulting reaction product is reacted with an unsaturated polycarboxylic acid (b2-3a) and / or an N-alkoxyalkyl (meth) acrylamide compound (a2-3b) in the presence of an acidic catalyst. ) In a temperature range of 80 to 140 ° C., and then a polycarboxylic anhydride (a2-4) is added, and the reaction is carried out in a temperature range of 80 to 140 ° C.
  • Examples of the basic catalyst include N-methylmorpholine, pyridine, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), and 1,5-diazabicyclo [4.3.0] nonene- 5 (DBN), 1,4-diazabicyclo [2.2.2] octane (DABCO), tri-n-butylamine or dimethylbenzylamine, butylamine, octylamine, monoethanolamine, diethanolamine, triethanolamine, imidazole, 1 -Methylimidazole, 2,4-dimethylimidazole, 1,4-diethylimidazole, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (N-phenyl) aminopropyltrimethoxysilane, 3- ( 2-aminoethyl) aminopropyltri Amine compounds such as toxicoxysilane, 3- (2-aminoethyl
  • the acidic catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid and oxalic acid, and boron acids such as boron trifluoride, anhydrous aluminum chloride and zinc chloride. And the like. These acidic catalysts can be used alone or in combination of two or more.
  • the reaction of the alkyl (meth) acrylamide compound (a2-3b) and the polycarboxylic anhydride (a2-4) can be performed in an organic solvent, if necessary.
  • organic solvent the same organic solvents as those described above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the amount of the organic solvent used is preferably in the range of 10 to 500 parts by mass based on 100 parts by mass of the total amount of the reaction raw materials, since the reaction efficiency is improved.
  • the specific structure of the acrylamide resin (B-2) having an acid group and a (meth) acryloyl group is not particularly limited, and a phenolic hydroxyl group-containing resin (a2-1) and a cyclic carbonate compound (a2-2a) or a cyclic carbonate compound (a2-2a) may be used.
  • any resin having an acid group and a (meth) acryloyl group may be used as the essential acrylamide resin (B-2) having the acid group and the (meth) acryloyl group.
  • R 2 is independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • R 3 is independently any one of a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a halogen atom, and n is each independently 1 or 2.
  • R 4 is each independently a methylene group or a structural site represented by any of the following structural formulas (x′-1) to (x′-5).
  • R 5 and R 6 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. Also, R 5 and R 6 may be linked to form a saturated or unsaturated ring.
  • R 7 is a hydrocarbon group having 1 to 12 carbon atoms.
  • R 8 is a hydrogen atom or a methyl group.
  • x represents a structural site represented by R 3 or a structural site (I) represented by the structural formula (a-1) or a structural site (II) represented by the structural formula (a-2) , * Is the point of attachment linked through R 4 marked. ]
  • R 2 is independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • R 3 is independently any one of a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a halogen atom, and n is each independently 1 or 2.
  • R 4 is each independently a methylene group or a structural site represented by any of the following structural formulas (x′-1) to (x′-5).
  • R 5 and R 6 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. Also, R 5 and R 6 may be linked to form a saturated or unsaturated ring.
  • R 7 is a hydrocarbon group having 1 to 12 carbon atoms.
  • R 8 is a hydrogen atom or a methyl group.
  • x represents a structural site represented by R 3 or a structural site (III) represented by structural formula (a-3) or a structural site (IV) represented by structural formula (a-4) , * Is the point of attachment linked through R 4 marked. ]
  • h is 0 or 1.
  • R 9 is each independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group or an aralkyl group, and i is 0 or 1 It is an integer of 44.
  • R 10 is a hydrogen atom or a methyl group.
  • W is the following structural formula (w-1) or (w-2).
  • Y is an alkylene group having 1 to 4 carbon atoms, an oxygen atom, a sulfur atom or a carbonyl group, and j is an integer of 1 to 4.
  • R 11 is each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • R 12 and R 13 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 12 and R 13 are linked to each other to form a saturated or unsaturated A ring may be formed.
  • R 14 is a hydrocarbon group having 1 to 12 carbon atoms, and R 15 is a hydrogen atom or a methyl group.
  • the acid value of the acrylamide resin (B-2) having an acid group and a (meth) acryloyl group has a high photosensitivity and excellent alkali developability, and forms a cured product having excellent substrate adhesion and elongation.
  • the range is preferably 30 to 150 mgKOH / g, and more preferably 40 to 120 mgKOH / g.
  • the acid value of the acid group-containing (meth) acrylate resin is a value measured based on a neutralization titration method according to JIS K 0070 (1992).
  • Examples of the amide imide resin (A-3) having an acid group and a (meth) acryloyl group include an amide imide resin (a3-1) having an acid group or an acid anhydride group and a hydroxyl group-containing (meth) acrylate compound (a3). And -2) as an essential reaction raw material.
  • the amide imide resin (a3-1) may have only one of an acid group and an acid anhydride group, or may have both. From the viewpoint of the reactivity with the hydroxyl group-containing (meth) acrylate compound (a3-2) and the control of the reaction, the compound preferably has an acid anhydride group, and has both an acid group and an acid anhydride group. Is more preferable.
  • the acid value of the amide imide resin (a3-1) is preferably in the range of 60 to 350 mgKOH / g as measured under neutral conditions, that is, without opening the acid anhydride group. On the other hand, it is preferable that the measured value under conditions in which the acid anhydride group is opened, such as in the presence of water, is in the range of 61 to 360 mgKOH / g.
  • the specific structure and production method of the amide imide resin (a3-1) are not particularly limited, and general amide imide resins and the like can be widely used.
  • a compound obtained by using a polyisocyanate compound and a polycarboxylic acid or an acid anhydride thereof as reaction raw materials can be used.
  • polyisocyanate compound examples include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate; norbornane diisocyanate, isophorone diisocyanate, and the like.
  • Alicyclic diisocyanate compounds such as hydrogenated xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate; tolylene diisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, diphenyl methane diisocyanate, 1,5-naphthalenedi isocyanate, 4,4'-diisocyanato-3 Aromatic diisocyanates such as 3,3'-dimethylbiphenyl and o-tolidine diisocyanate Cyanate compound; polymethylene polyphenyl polyisocyanate having a repeating structure represented by the following structural formula (i-1); these isocyanurate modified product, a biuret modified product, and the like allophanate modified product. These polyisocyanate compounds can be used alone or in combination of two or more.
  • R 1 is each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • R 2 is independently any one of an alkyl group having 1 to 4 carbon atoms or a bonding point connected to the structural site represented by the structural formula (i-1) via a methylene group marked with *. is there.
  • l is 0 or an integer of 1 to 3
  • m is an integer of 1 or more.
  • an acid group-containing (meth) acrylate resin composition having high solvent solubility can be obtained as the polyisocyanate compound, an alicyclic diisocyanate compound or a modified product thereof, an aliphatic diisocyanate compound or a modified product thereof may be used.
  • Preferred are alicyclic diisocyanates or modified isocyanurates thereof, and aliphatic diisocyanates or modified isocyanurates thereof.
  • the ratio of the total mass of the alicyclic diisocyanate compound or the modified product thereof and the aliphatic diisocyanate compound or the modified product thereof is preferably 70% by mass or more, and 90% by mass or more. % Is preferable.
  • the mass ratio of the two is preferably in the range of 30/70 to 70/30.
  • the specific structure of the polycarboxylic acid or its acid anhydride is not particularly limited as long as it is a compound having a plurality of carboxyl groups in its molecular structure or its acid anhydride, and various kinds of compounds can be used.
  • the amide imide resin (a3-1) In order for the amide imide resin (a3-1) to have both an amide group and an imide group, both the carboxyl group and the acid anhydride group need to be present in the system.
  • a compound having both a carboxyl group and an acid anhydride group in the molecule may be used, or a compound having a carboxyl group and a compound having an acid anhydride group may be used in combination.
  • polycarboxylic acid or an acid anhydride thereof examples include, for example, an aliphatic polycarboxylic acid compound or an acid anhydride thereof, an alicyclic polycarboxylic acid compound or an acid anhydride thereof, an aromatic polycarboxylic acid compound or an acid anhydride thereof. And the like.
  • the aliphatic hydrocarbon group may be any of a linear type and a branched type, and may have an unsaturated bond in the structure.
  • Examples of the aliphatic polycarboxylic acid compound or an acid anhydride thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, Examples thereof include citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, and acid anhydrides thereof.
  • alicyclic polycarboxylic acid compound or an acid anhydride thereof in the present invention, a compound in which a carboxyl group or an acid anhydride group is bonded to an alicyclic structure is an alicyclic polycarboxylic acid compound or an acid anhydride thereof.
  • the presence or absence of an aromatic ring in other structural sites is not considered.
  • the alicyclic polycarboxylic acid compound or an acid anhydride thereof include, for example, tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, and bicyclo [2.2.1].
  • Heptane-2,3-dicarboxylic acid methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4 -Tetrahydronaphthalene-1,2-dicarboxylic acid, and acid anhydrides thereof.
  • aromatic polycarboxylic acid compound or an acid anhydride thereof examples include, for example, phthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid, biphenyl Examples include tetracarboxylic acid and benzophenonetetracarboxylic acid.
  • an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation is obtained.
  • the alicyclic polycarboxylic acid compound or an acid anhydride thereof, or the aromatic polycarboxylic acid compound or an acid anhydride thereof is preferable.
  • the amide imide resin (a3-1) it is preferable to use a tricarboxylic anhydride having both a carboxyl group and an acid anhydride group in the molecular structure, and it is preferable to use cyclohexanetricarboxylic anhydride or It is particularly preferable to use trimellitic anhydride.
  • the ratio of the total amount of the alicyclic tricarboxylic anhydride and the aromatic tricarboxylic anhydride to the total mass of the polycarboxylic acid or the acid anhydride thereof is preferably 70% by mass or more, and more preferably 90% by mass or more. Is more preferable.
  • the amide imide resin (a3-1) uses the polyisocyanate compound and the polycarboxylic acid or its acid anhydride as reaction raw materials
  • other reaction raw materials may be used depending on desired resin performance and the like. May be used in combination.
  • the ratio of the total mass of the polyisocyanate compound and the polycarboxylic acid or the acid anhydride thereof to the total mass of the reaction raw materials of the amide imide resin (a3-1) Is preferably 90% by mass or more, and more preferably 95% by mass or more.
  • the amide imide resin (a3-1) uses a polyisocyanate compound and a polycarboxylic acid or an acid anhydride as a reaction raw material
  • it is not particularly limited, and may be produced by any method.
  • it can be produced by a method similar to a general amide imide resin. Specifically, 0.5 to 5.0 moles of a polycarboxylic acid or an acid anhydride thereof is used under stirring at a temperature of about 120 to 180 ° C. with respect to 1 mole of an isocyanate group contained in the polyisocyanate compound. Reaction.
  • the reaction between the polyisocyanate compound and the polycarboxylic acid or an acid anhydride thereof can be carried out in the presence of a basic catalyst, if necessary. Further, the reaction can be carried out in an organic solvent, if necessary.
  • the basic catalyst those similar to the above-described basic catalysts can be used, and the basic catalysts can be used alone or in combination of two or more.
  • organic solvent the same organic solvents as those described above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the amount of the organic solvent used is preferably in the range of 10 to 500 parts by mass based on 100 parts by mass of the total amount of the reaction raw materials, since the reaction efficiency is improved.
  • hydroxyl group-containing (meth) acrylate compound (a3-2) other specific structures are not particularly limited as long as the compound has a hydroxyl group and a (meth) acryloyl group in a molecular structure, and various kinds of compounds are used. be able to.
  • an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation is obtained, and thus has a molecular weight of Is preferably 1,000 or less.
  • the hydroxyl group-containing (meth) acrylate compound (a3-2) is a modified oxyalkylene or a modified lactone
  • the weight average molecular weight (Mw) is preferably 1,000 or less.
  • the amide imide resin (A-3) having an acid group and a (meth) acryloyl group may be, if necessary, the amide imide resin (a3-1) and a hydroxyl group-containing (meth) acrylate compound (b3-2).
  • a (meth) acryloyl group-containing epoxy compound (a3-3) may be used in combination as a reaction raw material.
  • the amide imide resin (A-3) having an acid group and a (meth) acryloyl group may be, if necessary, an amide imide resin (a3-1) and a hydroxyl group-containing (meth) acrylate compound (a3-2).
  • a (meth) acryloyl group-containing epoxy compound (a3-3) and a polycarboxylic anhydride (a3-4) can be used in combination as a reaction raw material.
  • the specific structure of the (meth) acryloyl group-containing epoxy compound (a3-3) is not particularly limited as long as it has a (meth) acryloyl group and an epoxy group in its molecular structure.
  • glycidyl group-containing (meth) acrylate monomers such as glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, epoxycyclohexylmethyl (meth) acrylate; dihydroxybenzene diglycidyl ether, dihydroxynaphthalenediglycidyl ether;
  • Mono (meth) acrylates of diglycidyl ether compounds such as biphenol diglycidyl ether and bisphenol diglycidyl ether are exemplified.
  • glycidyl is an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product having excellent substrate adhesion and elongation.
  • Group-containing (meth) acrylate monomers are preferred.
  • the molecular weight is preferably 500 or less.
  • the ratio of the glycidyl group-containing (meth) acrylate monomer to the total mass of the (meth) acryloyl group-containing epoxy compound (a3-3) is preferably 70% by mass or more, and more preferably 90% by mass or more. Is more preferred.
  • polycarboxylic anhydride (a3-4) those exemplified above as the polycarboxylic anhydride (b1-3) can be used, and the polycarboxylic acid (a3-4) is used alone. It is also possible to use two or more kinds in combination.
  • the amide imide resin (A-3) having an acid group and a (meth) acryloyl group may be selected from the group consisting of the amide imide resin (a3-1) having an acid group or an acid anhydride group and the hydroxyl group-containing resin according to desired resin performance and the like.
  • the (meth) acrylate compound (a3-2) the (meth) acryloyl group-containing epoxy compound (a3-3) and the polycarboxylic anhydride (a3-4)
  • other reaction raw materials can be used in combination.
  • the ratio of the total mass of the components (a3-1) to (a3-4) to the total mass of the reaction raw materials of the acid group-containing (meth) acrylate resin (A-3) is 80% by mass or more. More preferably, it is 90% by mass or more.
  • the method for producing the amide imide resin (A-3) having an acid group and a (meth) acryloyl group is not particularly limited, and may be produced by any method.
  • it may be manufactured by a method in which all of the reaction raw materials containing the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) are reacted at once, or the reaction raw materials are sequentially reacted. It may be manufactured by a method for causing the above.
  • the reaction between the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) is mainly caused by the reaction between the acid group and / or acid anhydride group in the amide imide resin (a3-1). It reacts with the hydroxyl group in the hydroxyl group-containing (meth) acrylate compound (a3-2). Since the hydroxyl group-containing (meth) acrylate compound (a3-2) is particularly excellent in reactivity with an acid anhydride group, the amide imide resin (a3-1) has an acid anhydride group as described above. Is preferred.
  • the content of the acid anhydride group in the amide imide resin (a3-1) is the difference between the two measured values of the acid value, that is, the acid value under the condition that the acid anhydride group is opened. And the acid value under the condition that the acid anhydride group is not ring-opened.
  • the reaction ratio between the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) is determined when the amide imide resin (a3-1) has an acid group and an acid anhydride group, and When the amide imide resin (a3-1) has an acid anhydride group, the hydroxyl group of the hydroxyl group-containing (meth) acrylate compound (a3-2) is based on 1 mol of the acid anhydride group of the amide imide resin (a3-1). Is preferably used in the range of 0.9 to 1.1.
  • the hydroxyl group of the hydroxyl group-containing (meth) acrylate compound (a3-2) is based on 1 mol of the acid group of the amide imide resin (a3-1). It is preferable that the number of moles is in the range of 0.01 to 1.0.
  • the reaction between the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) may use a basic catalyst or an acidic catalyst, if necessary.
  • a basic catalyst when the amide imide resin (a3-1) has an acid group and an acid anhydride group, and when the amide imide resin (a3-1) has an acid anhydride group, it is preferable to use a basic catalyst.
  • the amide imide resin (a3-1) has an acid group, it is preferable to use an acidic catalyst.
  • the basic catalyst those exemplified as the basic catalysts described above can be used, and the basic catalysts can be used alone or in combination of two or more.
  • the acidic catalyst those exemplified above as the acidic catalyst can be used, and the acidic catalyst can be used alone or in combination of two or more.
  • the amount of the basic catalyst or the acidic catalyst is preferably in the range of 0.001 to 5 parts by mass based on 100 parts by mass of the total mass of the reaction raw materials.
  • the reaction between the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) is carried out by heating and stirring at a temperature of about 80 to 140 ° C. in the presence of a suitable catalyst. It can be carried out.
  • the reaction may be carried out in an organic solvent if necessary.
  • the organic solvent the same organic solvents as described above can be used, and the organic solvent may be used alone or in combination of two or more. They can be used together.
  • the reaction may be continued in the organic solvent used in the production of the amide imide resin (a3-1).
  • the amide imide resin (A-3) having an acid group and a (meth) acryloyl group is a reaction raw material other than the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2),
  • the (meth) acryloyl group-containing epoxy compound (a3-3) is used, the amide imide resin (a3-1), the hydroxyl group-containing (meth) acrylate compound (a3-2), and the (meth) acryloyl group-containing epoxy compound
  • the reaction raw materials containing (a3-3) may be manufactured by a method of reacting all at once, or may be manufactured by a method of sequentially reacting the reaction raw materials.
  • product Product (1) a product obtained by reacting the amide imide resin (a3-1) with the hydroxyl group-containing (meth) acrylate compound (a3-2) (hereinafter referred to as “product Product (1) ”) with the (meth) acryloyl group-containing epoxy compound (a3-3).
  • the reaction between the product (1) and the (meth) acryloyl group-containing epoxy compound (a3-3) is mainly based on the acid group in the product (1) and the (meth) acryloyl group-containing epoxy compound ( a3-3).
  • the reaction ratio is such that the number of moles of the epoxy group of the (meth) acryloyl group-containing epoxy compound (a3-3) per mole of the acid group of the product (1) is 0.05 to 1.1. It is preferable to use it in a certain range.
  • the reaction can be carried out, for example, by heating and stirring under a temperature condition of about 90 to 140 ° C. in the presence of a suitable basic catalyst.
  • a basic catalyst may not be added, or may be added as appropriate.
  • the reaction may be performed in an organic solvent, if necessary.
  • the basic catalyst and the organic solvent can be the same as the basic catalyst and the organic solvent described above, and they can be used alone or in combination of two or more.
  • the amide imide resin (A-3) having an acid group and a (meth) acryloyl group is a reaction raw material other than the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2),
  • the (meth) acryloyl group-containing epoxy compound (a3-3) and the polycarboxylic anhydride (a3-4) are used, the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2)
  • the reaction raw material containing the (meth) acryloyl group-containing epoxy compound (a3-3) and the polycarboxylic anhydride (a3-4) may be produced by a method of reacting all at once.
  • the product (1) obtained by reacting the amide imide resin (a3-1) with the hydroxyl group-containing (meth) acrylate compound (a3-2) includes: The (meth) acryloyl group-containing epoxy compound (a3-3) is reacted, and the obtained product (hereinafter sometimes referred to as “product (2)”) is added to the polycarboxylic anhydride (a3). It is preferable to produce it by a method of reacting -4).
  • the reaction between the product (2) and the polycarboxylic acid anhydride (a3-4) is mainly for reacting the hydroxyl group in the product (2) with the polybasic acid anhydride.
  • the reaction ratio between the product (1) and the (meth) acryloyl group-containing epoxy compound (a3-3) is 1 mole of the acid group in the product (1).
  • the number of moles of the epoxy group in the (meth) acryloyl group-containing epoxy compound (a3-3) is preferably 0.1 to 1.2, more preferably 0.2 to 1.1. Is more preferred.
  • the product (2) for example, a hydroxyl group or the like generated by ring opening of the epoxy group in the (meth) acryloyl group-containing epoxy compound (a3-3) is present.
  • the reaction rate of the polycarboxylic anhydride (a3-4) is adjusted so that the acid value of the amideimide resin (A-3) having an acid group and a (meth) acryloyl group to be produced is about 50 to 120 mgKOH / g.
  • the reaction can be carried out, for example, by heating and stirring at a temperature of about 80 to 140 ° C. in the presence of a suitable basic catalyst.
  • a basic catalyst may not be added, or may be added as appropriate. Further, the reaction may be performed in an organic solvent, if necessary.
  • the basic catalyst and the organic solvent can be the same as the basic catalyst and the organic solvent described above, and they can be used alone or in combination of two or more.
  • the acid value of the amide imide resin (A-3) having an acid group and a (meth) acryloyl group has a high photosensitivity and excellent alkali developability, and forms a cured product excellent in substrate adhesion and elongation.
  • the range is preferably 30 to 150 mgKOH / g, and more preferably 40 to 120 mgKOH / g.
  • the acid value of the amide imide resin (A-3) having an acid group and a (meth) acryloyl group is a value measured by a neutralization titration method according to JIS K 0070 (1992).
  • Examples of the acrylic resin (A-4) having an acid group and a (meth) acryloyl group include a (meth) acrylate compound ( ⁇ ) having a reactive functional group such as a hydroxyl group, a carboxyl group, an isocyanate group, and a glycidyl group.
  • An acrylic resin intermediate obtained by polymerization as an essential component is further reacted with a (meth) acrylate compound ( ⁇ ) having a reactive functional group capable of reacting with these functional groups to introduce a (meth) acryloyl group.
  • a reaction product obtained by reacting a hydroxyl group in the reaction product with a polybasic acid anhydride is a reactive functional group such as a hydroxyl group, a carboxyl group, an isocyanate group, and a glycidyl group.
  • the acrylic resin intermediate may be obtained by copolymerizing another polymerizable unsaturated group-containing compound as required in addition to the (meth) acrylate compound ( ⁇ ).
  • the other compound having a polymerizable unsaturated group include (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • Acrylic acid alkyl ester ; alicyclic structure-containing (meth) acrylate such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate; phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxy Aromatic ring-containing (meth) acrylates such as ethyl acrylate; silyl group-containing (meth) acrylates such as 3-methacryloxypropyltrimethoxysilane; styrene derivatives such as styrene, ⁇ -methylstyrene and chlorostyrene; That. These can be used alone or in combination of two or more.
  • the (meth) acrylate compound ( ⁇ ) is not particularly limited as long as it can react with the reactive functional group of the (meth) acrylate compound ( ⁇ ). From the viewpoint of reactivity, the following combination is used. Is preferred. That is, when a hydroxyl group-containing (meth) acrylate is used as the (meth) acrylate compound ( ⁇ ), it is preferable to use an isocyanate group-containing (meth) acrylate as the (meth) acrylate compound ( ⁇ ).
  • a carboxyl group-containing (meth) acrylate is used as the (meth) acrylate compound ( ⁇ )
  • a hydroxyl group-containing (meth) acrylate is preferably used as the (meth) acrylate compound ( ⁇ ).
  • a carboxyl group-containing (meth) acrylate is preferably used as the (meth) acrylate compound ( ⁇ ).
  • the (meth) acrylate compound ( ⁇ ) may be used alone or in combination of two or more.
  • polybasic anhydride examples include phthalic anhydride, succinic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, and hexahydroanhydride.
  • examples include phthalic acid, methylhexahydrophthalic anhydride, octenyl succinic anhydride, tetrapropenyl succinic anhydride and the like. These polybasic acid anhydrides can be used alone or in combination of two or more.
  • the method for producing the acrylic resin (A-4) having an acid group and a (meth) acryloyl group is not particularly limited, and it may be produced by any method.
  • the production of the acrylic resin (A-4) having an acid group and a (meth) acryloyl group may be performed in an organic solvent, if necessary, or a basic catalyst may be used, if necessary. .
  • organic solvent the same organic solvents as those described above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the basic catalyst those similar to the above-described basic catalysts can be used, and the basic catalysts can be used alone or in combination of two or more.
  • the acid value of the acrylic resin (A-4) having an acid group and a (meth) acryloyl group has a high photosensitivity and excellent alkali developability, and forms a cured product having excellent substrate adhesion and elongation.
  • the range is preferably 30 to 150 mgKOH / g, and more preferably 40 to 120 mgKOH / g.
  • the acid value of the acrylic resin (A-4) having an acid group and a (meth) acryloyl group is a value measured by a neutralization titration method according to JIS K 0070 (1992).
  • Examples of the urethane resin (A-5) having an acid group and a (meth) acryloyl group include a polyisocyanate compound, a hydroxyl group-containing (meth) acrylate compound, a carboxyl group-containing polyol compound, and if necessary, a polybasic acid anhydride.
  • polyisocyanate compound those similar to the above-described polyisocyanate compounds can be used, and the polyisocyanate compounds can be used alone or in combination of two or more.
  • hydroxyl group-containing (meth) acrylate compound those similar to the above-mentioned hydroxyl group-containing (meth) acrylate compound (a3-2) can be used, and the hydroxyl group-containing (meth) acrylate compound can be used alone. Two or more can be used in combination.
  • carboxyl group-containing polyol compound examples include 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, and 2,2-dimethylolvaleric acid.
  • the carboxyl group-containing polyol compound may be used alone or in combination of two or more.
  • polybasic acid anhydride those exemplified above as the polybasic acid anhydride can be used, and the polybasic acid anhydride can be used alone or in combination of two or more.
  • polyol compounds other than the carboxyl group-containing polyol compound include, for example, aliphatic polyol compounds such as ethylene glycol, propylene glycol, butanediol, hexanediol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, and dipentaerythritol; Aromatic polyol compounds such as biphenol and bisphenol; (Poly) oxyalkylene chains such as (poly) oxyethylene chains, (poly) oxypropylene chains, and (poly) oxytetramethylene chains are included in the molecular structures of the various polyol compounds.
  • aliphatic polyol compounds such as ethylene glycol, propylene glycol, butanediol, hexanediol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol,
  • polystyrene resin modified products
  • lactone modified products in which a (poly) lactone structure is introduced into the molecular structure of the above-mentioned various polyol compounds.
  • the polyol compounds other than the carboxyl group-containing polyol compound may be used alone or in combination of two or more.
  • epoxy resin those exemplified as the epoxy resin (a1-1) described above can be used, and the epoxy resin can be used alone or in combination of two or more.
  • unsaturated monobasic acid examples include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, ⁇ -cyanocinnamic acid, ⁇ -styrylacrylic acid, and ⁇ -furfurylacrylic acid. Further, esters, acid halides, acid anhydrides and the like of the above-mentioned unsaturated monobasic acids can also be used. These unsaturated monobasic acids can be used alone or in combination of two or more.
  • the method for producing the urethane resin (A-5) having an acid group and a (meth) acryloyl group is not particularly limited, and may be any method.
  • the production of the urethane resin having an acid group and a polymerizable unsaturated bond may be carried out in an organic solvent, if necessary, or a basic catalyst may be used, if necessary.
  • organic solvent the same organic solvents as those described above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the basic catalyst those similar to the above-described basic catalysts can be used, and the basic catalysts can be used alone or in combination of two or more.
  • the amine-modified epoxy resin (B) is obtained by reacting the epoxy resin (b1) with the amine compound (b2).
  • epoxy resin (b1) the same one as exemplified above as the epoxy resin (a1-1) can be used. Above all, bisphenol-based resins having an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation can be obtained. Epoxy resins are preferred.
  • the epoxy resin (b1) may be used alone or in combination of two or more.
  • Examples of the amine compound (b2) include monoalkanolamines such as ethylethanolamine, ethanolamine, 4-amino-1-butanol and propanolamine; dialkanolamines such as diethanolamine, dipropanolamine and dibutanolamine. No. These amine compounds (b2) can be used alone or in combination of two or more. Among them, monoalkanolamine and dialkanolamine are preferably used in combination because the reaction with the epoxy resin (b1) can be easily controlled.
  • the ratio of the number of moles of the monoalkanolamine to the number of moles of the dialkanolamine is easy to control the reaction with the epoxy resin (b1).
  • [(Mol number of monoalkanolamine) / (mol number of dialkanolamine)] is preferably in the range of 0.5 to 10.
  • the method for producing the amine-modified epoxy resin (B) is not particularly limited as long as the epoxy resin (b1) and the amine compound (b2) are used as essential reaction raw materials. May be.
  • the reaction raw material containing the epoxy resin (b1) and the amine compound (b2) may be manufactured by a method of reacting all at once, or may be manufactured by a method of sequentially reacting the reaction raw materials.
  • a method in which the epoxy resin (b1) is produced and then the amine compound (b2) is reacted is preferable because the reaction can be easily controlled.
  • the reaction can be performed, for example, by a method in which the epoxy resin (b1) and the amine compound (b2) are reacted in a temperature range of 50 to 150 ° C.
  • the production may be carried out in an organic solvent, if necessary, or a basic catalyst may be used, if necessary.
  • organic solvent the same organic solvents as those described above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the basic catalyst those similar to the above-described basic catalysts can be used, and the basic catalysts can be used alone or in combination of two or more.
  • the amine compound (b2) has the mole ratio of the epoxy group of the epoxy resin (b1) with respect to the number of moles.
  • the ratio of the number of moles of active hydrogen [(number of moles of active hydrogen) / (number of moles of epoxy group)] is preferably in the range of 0.9 to 1.1, and more preferably in the range of 0.95 to 1.03. More preferably,
  • the weight-average molecular weight (Mw) of the amine-modified epoxy resin (B) is preferably 5,000 or more, because an acid group-containing (meth) acrylate resin composition having excellent substrate adhesion can be obtained.
  • the range is more preferably from 000 to 50,000, and even more preferably from 15,000 to 30,000.
  • the weight average molecular weight (Mw) is a value measured by a gel permeation chromatography (GPC) method.
  • the amine-modified epoxy resin (B) has high photosensitivity and excellent alkali developability, and is an acid group-containing (meth) acrylate resin composition capable of forming a cured product having excellent substrate adhesion and elongation. Because it is obtained, it may have an acid group and / or a substituent containing a polymerizable unsaturated bond.
  • Examples of the acid group include a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
  • a carboxyl group is preferred because of exhibiting excellent alkali developability.
  • the above-mentioned substituent having a polymerizable unsaturated bond means a substituent having at least one polymerizable unsaturated bond, and specific examples thereof include a vinyl group, an allyl group, and a (meth) acryloyl group. Among these, a (meth) acryloyl group is preferred because of exhibiting high photosensitivity.
  • the content of the amine-modified epoxy resin (B) is 0.5 to 40 parts by mass in terms of solids based on 100 parts by mass of the solids of the acid group-containing (meth) acrylate resin (A). 1 part by mass, since an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation is obtained. Or more, more preferably 1.5 parts by mass or more. Further, since an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation is obtained, 30 parts by mass is obtained. The following is preferred.
  • the acid group-containing (meth) acrylate resin composition of the present invention may contain other resin components other than the acid group-containing (meth) acrylate resin (A) and the amine-modified epoxy resin (B).
  • the other resin component for example, bisphenol type epoxy resin, epoxy resin such as novolak type epoxy resin, (meth) acrylic acid, if necessary, obtained by reacting an unsaturated monocarboxylic anhydride and the like,
  • the resin include a resin having a (meth) acryloyl group in the resin and various (meth) acrylate monomers.
  • Examples of the (meth) acrylate monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, and 2-ethylhexyl.
  • Aliphatic mono (meth) acrylate compounds such as (meth) acrylate and octyl (meth) acrylate; alicyclic mono (meth) acrylate compounds such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and adamantyl mono (meth) acrylate
  • a heterocyclic mono (meth) acrylate compound such as glycidyl (meth) acrylate or tetrahydrofurfuryl acrylate; benzyl (meth) acrylate, phenyl (meth) acrylate, phenylben (Meth) acrylate, phenoxy (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, phenoxybenzyl (meth) acrylate, benzy
  • Oxyalkylene-modified poly Meth) acrylate compound and the aliphatic poly (meth) acrylate compound in the molecular structure of (poly) lactone 4 or more functional introducing the lactone structure-modified poly (meth) acrylate compounds.
  • the acid group-containing (meth) acrylate resin composition of the present invention can be used as a curable resin composition by adding a photopolymerization initiator.
  • photopolymerization initiator examples include 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2- Hydroxy-2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2'-dimethoxy-1,2-diphenylethan-1-one, diphenyl (2,4,6-trimethoxybenzoyl) phosphine Oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1- On, 2-benzyl-2-dimethylamino-1- (4-morpho Nofeniru) -1-butanone, and the like.
  • the amount of the photopolymerization initiator to be added is preferably, for example, in the range of 1 to 20% by mass in the curable resin composition.
  • the curable resin composition of the present invention may contain an organic solvent for the purpose of adjusting the coating viscosity and the like, and the type and amount of the organic solvent are appropriately selected and adjusted according to the desired performance.
  • organic solvent examples include ketone solvents such as methyl ethyl ketone, acetone and isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; and aromatic solvents such as toluene, xylene and solvent naphtha.
  • ketone solvents such as methyl ethyl ketone, acetone and isobutyl ketone
  • cyclic ether solvents such as tetrahydrofuran and dioxolane
  • ester solvents such as methyl acetate, ethyl acetate and butyl acetate
  • aromatic solvents such as toluene, xylene and solvent naphtha.
  • Alicyclic solvents such as cyclohexane and methylcyclohexane; alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol and propylene glycol monomethyl ether; alkylene glycol monoalkyl ethers, dialkylene glycol monoalkyl ethers and dialkylene glycols Glycol ether solvents such as monoalkyl ether acetate; These organic solvents can be used alone or in combination of two or more.
  • the curable resin composition of the present invention may contain, if necessary, a curing agent, a curing accelerator, an organic solvent, inorganic or polymer fine particles, a pigment, an antifoaming agent, a viscosity modifier, and a leveling agent.
  • a curing agent such as an agent, a flame retardant, and a storage stabilizer can also be contained.
  • the curing agent is not particularly limited as long as it has a functional group capable of reacting with a carboxy group in the acid group-containing (meth) acrylate resin, and examples thereof include an epoxy resin.
  • the epoxy resin for example, bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, Bisphenol novolak epoxy resin, naphthol novolak epoxy resin, naphthol-phenol co-condensed novolak epoxy resin, naphthol-cresol co-condensed novolak epoxy resin, phenol aralkyl epoxy resin, naphthol aralkyl epoxy resin, dicyclopentadiene-phenol addition Reactive epoxy resin, biphenyl aralkyl epoxy resin, fluorene epoxy resin, xanthene epoxy resin, dihydric Kishibenzen type epoxy resin, trihydroxybenzen
  • epoxy resins can be used alone or in combination of two or more. Further, among these, an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation can be obtained.
  • Novolak epoxy resins such as phenol novolak epoxy resin, cresol novolak epoxy resin, bisphenol novolak epoxy resin, naphthol novolak epoxy resin, naphthol-phenol co-condensed novolak epoxy resin, and naphthol-cresol co-condensed novolak epoxy resin Those having a softening point in the range of 20 to 120 ° C. are particularly preferred.
  • the curing accelerator promotes a curing reaction of the curing agent.
  • a phosphorus compound, an amine compound, imidazole, an organic acid metal salt, a Lewis acid, Amine complex salts and the like can be used alone or in combination of two or more.
  • the addition amount of the curing accelerator is preferably, for example, in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the curing agent.
  • organic solvent the same organic solvents as those described above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the cured product of the present invention can be obtained by irradiating the curable resin composition with an active energy ray.
  • the active energy rays include ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • irradiation may be performed in an atmosphere of an inert gas such as nitrogen gas or in an air atmosphere in order to efficiently perform a curing reaction by the ultraviolet rays.
  • Ultraviolet lamps are generally used as a source of ultraviolet light in terms of practicality and economy. Specific examples include a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a gallium lamp, a metal halide lamp, sunlight, and an LED.
  • the integrated light amount of the active energy ray is not particularly limited, but is preferably 50 to 5,000 mJ / cm 2 , and more preferably 300 to 1,000 mJ / cm 2 . It is preferable that the integrated light amount is within the above range, since the occurrence of uncured portions can be prevented or suppressed.
  • the irradiation with the active energy ray may be performed in one stage, or may be performed in two or more stages.
  • the cured product obtained by curing the curable resin composition of the present invention has excellent substrate adhesion, and also has excellent elongation, for example, in semiconductor device applications, It can be suitably used as a package adhesive layer for a solder resist, an interlayer insulating material, a package material, an underfill material, a circuit element, or the like, or an adhesive layer between an integrated circuit element and a circuit board. Further, it can be suitably used for a thin film transistor protective film, a liquid crystal color filter protective film, a pigment resist for a color filter, a resist for a black matrix, a spacer, etc. in a thin display application represented by LCD and OELD.
  • the resin material for a solder resist of the present invention comprises the curable resin composition.
  • the resist member of the present invention is, for example, a photomask in which a desired pattern is formed after applying the resin material for a solder resist on a substrate, evaporating and drying an organic solvent in a temperature range of about 60 to 100 ° C. Through exposure to active energy rays, developing the unexposed portions with an aqueous alkali solution, and further heating and curing at a temperature in the range of about 140 to 180 ° C.
  • Examples of the base include metal foils such as copper foil and aluminum foil.
  • the weight average molecular weight (Mw) is a value measured using a gel permission chromatograph (GPC) under the following conditions.
  • Measuring device HLC-8220 manufactured by Tosoh Corporation Column: Guard column H XL- H manufactured by Tosoh Corporation + TSKgel G5000HXL manufactured by Tosoh Corporation + TSKgel G4000HXL manufactured by Tosoh Corporation + TSKgel G3000HXL manufactured by Tosoh Corporation + TSKgel G2000HXL manufactured by Tosoh Corporation Detector: RI (differential refractometer) Data processing: SC-8010 manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard; polystyrene sample; tetrahydrofuran solution of 0.4% by mass in terms of resin solid content filtered through a microfilter (100 ⁇ l)
  • the mixture was added, and the esterification reaction was performed at 120 ° C. for 10 hours while blowing air. Thereafter, 311 parts by weight of diethylene glycol monoethyl ether acetate and 160 parts by weight of tetrahydrophthalic anhydride were added and reacted at 110 ° C. for 2.5 hours to obtain an acid group-containing (meth) acrylate resin (A-1) having a nonvolatile content of 64%. Obtained.
  • the acid value of the solid content of the acid group-containing (meth) acrylate resin (A-1) was 85 mgKOH / g, and the weight average molecular weight was 8,540. The acid value is a value measured based on the neutralization titration method of JIS K0070 (1992).
  • the acid value of the solid content measured under the condition that the acid anhydride group was not ring-opened was 160 mgKOH / g.
  • the amide imide resin (A) having a non-volatile content of 62.1% by mass and having an acid group and a polymerizable unsaturated group (A -2) was obtained.
  • the acid value of the solid content of this amide imide resin (A-2) was 79 mgKOH / g, and the weight average molecular weight was 3790.
  • an amine-modified epoxy resin (B-1) The nonvolatile content of this amine-modified epoxy resin (B-1) was 35%, and the weight average molecular weight (Mw) was 23,000. Further, the ratio of the number of moles of active hydrogen of diethanolamine to the number of moles of epoxy group of the bisphenol A type epoxy resin [(number of moles of active hydrogen) / (number of moles of epoxy group)] is 1.00. .
  • the ratio of the number of moles of active hydrogen of diethanolamine to the number of moles of epoxy group of the bisphenol A type epoxy resin [(number of moles of active hydrogen) / (number of moles of epoxy group)] is 1.00. .
  • the nonvolatile content of this amine-modified epoxy resin (B-3) was 40.9%, the acid value of the solid component was 80 mgKOH / g, and the weight average molecular weight (Mw) was 26,900. Further, the ratio of the number of moles of active hydrogen of diethanolamine to the number of moles of epoxy group of the bisphenol A type epoxy resin [(number of moles of active hydrogen) / (number of moles of epoxy group)] is 1.00. .
  • the ratio of the number of moles of the ethanolamine to the number of moles of the diethanolamine [(number of moles of ethanolamine) / (number of moles of diethanolamine)] is 2.03, and the epoxy group of the bisphenol A type epoxy resin is The ratio [(moles of active hydrogen) / (moles of epoxy group)] of the total number of active hydrogens of ethanolamine and diethanolamine to the number of moles of 0.999 is 0.999.
  • Example 1 Preparation of curable resin composition (1) 156.3 parts by mass (100 parts by mass of solid content) of the acid group (meth) acrylate resin (A-1) obtained in Synthesis Example 1 and the amine-modified epoxy resin (B-1) 31.1 obtained in Synthesis Example 3 By mass (solid content: 10.9 parts by mass) to obtain an acid group-containing (meth) acrylate resin composition (1). Next, 187.4 parts by mass (solid content: 110.9 parts by mass) of the obtained acid group-containing (meth) acrylate resin composition (1) and an ortho-cresol novolak-type epoxy resin ("EPICLON" manufactured by DIC Corporation) as a curing agent.
  • EPICLON ortho-cresol novolak-type epoxy resin
  • Examples 2 to 11 Preparation of curable resin compositions (2) to (11)
  • a curable resin composition was prepared in the same manner as in Example 1, except that the acid group-containing (meth) acrylate resin (A-1) and the amine-modified epoxy resin were changed to the compositions and the amounts shown in Table 1. (2) to (11) were obtained.
  • the test piece was cut into a size of 1 cm in width and 12 cm in length, and 90 ° peel strength was measured using a peeling tester (“A & D Tensilon” manufactured by A & D Co., Ltd., peeling speed: 50 mm / min).
  • ⁇ Tensile test> The test piece was cut into a size of 10 mm ⁇ 80 mm, and a tensile test was performed on the test piece under the following measurement conditions using an automatic universal tester “AG-IS” manufactured by Shimadzu Corporation. The elongation (%) until the test piece was broken was measured.
  • Measurement conditions temperature 23 ° C, humidity 50%, distance between marked lines 20mm, distance between supports 20mm, tensile speed 10mm / min
  • Table 1 shows the compositions and evaluation results of the curable resin compositions (1) to (11) prepared in Examples 1 to 11 and the curable resin compositions (C1) and (C2) prepared in Comparative Examples 1 and 2. Shown in
  • Curing agent "in Table 1 indicates an orthocresol novolak type epoxy resin (" EPICLON @ N-680 "manufactured by DIC Corporation).
  • ED "EDGAC” in Table 1 indicates diethylene glycol monoethyl ether acetate.
  • Example 12 Preparation of curable resin composition (12) 156.3 parts by mass (100 parts by mass of solid content) of the acid group (meth) acrylate resin (A-1) obtained in Synthesis Example 1 and the amine-modified epoxy resin (B-1) 31.1 obtained in Synthesis Example 3 And an acid group-containing (meth) acrylate resin composition (12). Subsequently, 187.4 parts by mass (solid content: 110.9 parts by mass) of the obtained acid group-containing (meth) acrylate resin composition (8) and an ortho-cresol novolak type epoxy resin ("EPICLON" manufactured by DIC Corporation) as a curing agent.
  • EPICLON ortho-cresol novolak type epoxy resin
  • Example 13 to 22 Preparation of curable resin compositions (13) to (22)
  • a curable resin composition was prepared in the same manner as in Example 12, except that the acid group-containing (meth) acrylate resin (A-1) and the amine-modified epoxy resin were changed to the composition and the amount shown in Table 2. (13) to (22) were obtained.
  • Table 2 shows the compositions and evaluation results of the curable resin compositions (12) to (22) prepared in Examples 12 to 22, and the curable resin compositions (C3) and (C4) prepared in Comparative Examples 3 and 4. Shown in
  • Curing agent "in Table 2 indicates an orthocresol novolak type epoxy resin (" EPICLON @ N-680 "manufactured by DIC Corporation).
  • Examples 1 to 22 shown in Tables 1 and 2 are examples using the acid group-containing (meth) acrylate resin composition of the present invention.
  • a curable resin composition containing the acid group-containing (meth) acrylate resin composition of the present invention has both excellent substrate adhesion, high photosensitivity, and excellent alkali developability. It was confirmed that the cured product of the curable resin composition containing the acid group-containing (meth) acrylate resin composition had excellent elongation.
  • Comparative Examples 1 and 3 are examples of acid group-containing (meth) acrylate resin compositions without using an amine-modified epoxy resin. It was confirmed that the curable resin composition containing the acid group-containing (meth) acrylate resin composition was excellent in photosensitivity and alkali developability, but was extremely poor in substrate adhesion. Further, it was confirmed that the cured product of the curable resin composition obtained in Comparative Example 1 was insufficient in elongation.
  • Comparative Examples 2 and 4 are examples in which the compounding amount of the amine-modified epoxy resin is 50 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the acid group-containing (meth) acrylate resin.
  • the curable resin composition containing the acid group-containing (meth) acrylate resin composition is excellent in substrate adhesion and elongation of the cured product, but is extremely insufficient in photosensitivity and alkali developability. Was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials For Photolithography (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

The present invention provides: an acid group-containing (meth)acrylate resin composition which contains an acid group-containing (meth)acrylate resin (A) and an amine-modified epoxy resin (B), and which is characterized in that the content of the amine-modified epoxy resin (B) is from 0.5 part by mass to 40 parts by mass (inclusive) in terms of solid content relative to 100 parts by mass of the solid content of the acid group-containing (meth)acrylate resin (A); a curable resin composition which contains this acid group-containing (meth)acrylate resin composition; a cured product; an insulating material which is composed of the above-described photosensitive resin composition; a resin material for solder resists; and a resist member. This acid group-containing (meth)acrylate resin composition has excellent adhesion to a base material, high optical sensitivity and excellent alkali developability at the same time, and is able to form a cured product that exhibits excellent elongation.

Description

酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、及びソルダーレジスト用樹脂材料Acid group-containing (meth) acrylate resin composition, curable resin composition, cured product, and resin material for solder resist
 本発明は、高い光感度及び優れたアルカリ現像性を有し、硬化物における基材密着性及び伸度に優れた酸基含有(メタ)アクリレート樹脂組成物、これを含有する硬化性樹脂組成物、硬化物、前記硬化性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材に関する。 The present invention relates to an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability, and excellent in substrate adhesion and elongation in a cured product, and a curable resin composition containing the same. The present invention relates to a cured product, an insulating material comprising the curable resin composition, a resin material for a solder resist, and a resist member.
 近年、プリント配線板向けのソルダーレジスト用樹脂材料としては、紫外線等の活性エネルギー線により硬化可能な硬化性樹脂組成物が広く用いられている。前記ソルダーレジスト用樹脂材料に対する要求特性としては、少ない露光量で硬化すること、アルカリ現像性に優れること、銅箔等に対する基材密着性に優れること、また、硬化物における耐熱性や強度、誘電特性等に優れることなど様々なものが挙げられる。これらの要求特性のうち、基材密着性は基本的かつ重要な性能ではあるが、性能発現のメカニズムが十分に解明されておらず、改良が難しい特性の一つであった。 Recently, as a resin material for a solder resist for a printed wiring board, a curable resin composition curable by active energy rays such as ultraviolet rays has been widely used. The required properties for the solder resist resin material include: curing with a small exposure dose, excellent alkali developability, excellent substrate adhesion to copper foil and the like, and heat resistance and strength, Various things, such as being excellent in characteristics, are mentioned. Among these required properties, substrate adhesion is a fundamental and important performance, but the mechanism of performance development has not been sufficiently elucidated, and it has been one of the properties that are difficult to improve.
 基材密着性を向上させる方法としては、酸ペンダント型エポキシアクリレート樹脂組成物中にリン酸を添加する技術が知られているが(例えば、特許文献1参照。)、今後ますます高まる要求特性を満足するものではなく、昨今の市場要求に対し十分なものではなかった。 As a method for improving the substrate adhesion, a technique of adding phosphoric acid to an acid pendant type epoxy acrylate resin composition is known (for example, see Patent Document 1). It was not satisfying and not enough for today's market demands.
 そこで、硬化物における基材密着性により一層優れた材料が求められていた。 Therefore, there has been a demand for a material which is more excellent in the adhesion of the cured product to the substrate.
特開2006-307020号公報JP 2006-307020 A
 本発明が解決しようとする課題は、高い光感度及び優れたアルカリ現像性を有し、硬化物における基材密着性及び伸度に優れた酸基含有(メタ)アクリレート樹脂組成物、これを含有する硬化性樹脂組成物、硬化物、前記感光性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材を提供することである。 The problem to be solved by the present invention is to provide an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability, and excellent in substrate adhesion and elongation in a cured product. The present invention provides a curable resin composition, a cured product, an insulating material composed of the photosensitive resin composition, a resin material for a solder resist, and a resist member.
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、酸基含有(メタ)アクリレート樹脂と、特定量のアミン変性エポキシ樹脂とを含有する酸基含有(メタ)アクリレート樹脂組成物を用いることによって、上記課題を解決できることを見出し、本発明を完成させた。 The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that an acid group-containing (meth) acrylate resin composition containing an acid group-containing (meth) acrylate resin and a specific amount of an amine-modified epoxy resin. It has been found that the above problem can be solved by using the present invention, and the present invention has been completed.
 すなわち、本発明は、酸基含有(メタ)アクリレート樹脂(A)と、アミン変性エポキシ樹脂(B)とを含有する酸基含有(メタ)アクリレート樹脂組成物であって、前記アミン変性エポキシ樹脂(B)の含有量が、前記酸基含有(メタ)アクリレート樹脂(A)の固形分100質量部に対して、固形分換算で0.5質量部以上40質量部以下であることを特徴とする酸基含有(メタ)アクリレート樹脂組成物、これを含有する硬化性樹脂組成物、硬化物、前記硬化性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材に関するものである。 That is, the present invention provides an acid group-containing (meth) acrylate resin composition containing an acid group-containing (meth) acrylate resin (A) and an amine-modified epoxy resin (B), wherein the amine-modified epoxy resin ( The content of B) is 0.5 part by mass or more and 40 parts by mass or less in terms of solids based on 100 parts by mass of the solids of the acid group-containing (meth) acrylate resin (A). The present invention relates to an acid group-containing (meth) acrylate resin composition, a curable resin composition containing the same, a cured product, an insulating material composed of the curable resin composition, a resin material for a solder resist, and a resist member.
 本発明の酸基含有(メタ)アクリレート樹脂組成物は、高い光感度及び優れたアルカリ現像性を有し、硬化物における基材密着性及び伸度に優れることから、絶縁材料、ソルダーレジスト用樹脂材料、及び前記ソルダーレジスト用樹脂からなるレジスト部材に好適に用いることができる。 The acid group-containing (meth) acrylate resin composition of the present invention has high photosensitivity and excellent alkali developability, and has excellent substrate adhesion and elongation in a cured product. It can be suitably used for a material and a resist member made of the solder resist resin.
 本発明の酸基含有(メタ)アクリレート樹脂組成物は、酸基含有(メタ)アクリレート樹脂(A)と、アミン変性エポキシ樹脂(B)とを含有することを特徴とする。 酸 The acid group-containing (meth) acrylate resin composition of the present invention is characterized by containing an acid group-containing (meth) acrylate resin (A) and an amine-modified epoxy resin (B).
 なお、本発明において、「(メタ)アクリレート」とは、アクリレート及び/またはメタクリレートを意味する。また、「(メタ)アクリロイル」とは、アクリロイル及び/またはメタクリロイルを意味する。さらに、「(メタ)アクリル」とは、アクリル及び/またはメタクリルを意味する。 In the present invention, “(meth) acrylate” means acrylate and / or methacrylate. Further, “(meth) acryloyl” means acryloyl and / or methacryloyl. Further, “(meth) acryl” means acryl and / or methacryl.
 前記酸基含有(メタ)アクリレート樹脂(A)としては、酸基及び(メタ)アクリロイル基を有していればよく、その他の具体構造や分子量等は特に問われず、多種多様な樹脂を用いることができる。 The acid group-containing (meth) acrylate resin (A) may have an acid group and a (meth) acryloyl group, and other specific structures and molecular weights are not particularly limited, and a wide variety of resins may be used. Can be.
 前記酸基含有(メタ)アクリレート樹脂(A)が含有する酸基としては、例えば、カルボキシル基、スルホン酸基、燐酸基等が挙げられる。これらの中でも優れたアルカリ現像性を発現することから、カルボキシル基が好ましい。 酸 Examples of the acid group contained in the acid group-containing (meth) acrylate resin (A) include a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Among these, a carboxyl group is preferred because of exhibiting excellent alkali developability.
 前記酸基含有(メタ)アクリレート樹脂(A)としては、例えば、〔1〕酸基及び(メタ)アクリロイル基を有するエポキシ樹脂(A-1)、〔2〕酸基及び(メタ)アクリロイル基を有するアクリルアミド樹脂(A-2)〔3〕酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(A-3)、〔4〕酸基及び(メタ)アクリロイル基を有するアクリル樹脂(A-4)、〔5〕酸基及び(メタ)アクリロイル基を有するウレタン樹脂(A-5)等が挙げられる。 Examples of the acid group-containing (meth) acrylate resin (A) include [1] an epoxy resin (A-1) having an acid group and a (meth) acryloyl group, and [2] an acid group and a (meth) acryloyl group. An acrylamide resin (A-2) having [3] an amide imide resin (A-3) having an acid group and a (meth) acryloyl group, [4] an acryl resin having an acid group and a (meth) acryloyl group (A-4), [5] Urethane resin (A-5) having an acid group and a (meth) acryloyl group.
 〔1〕酸基及び(メタ)アクリロイル基を有するエポキシ樹脂(A-1)について説明する。 (1) The epoxy resin (A-1) having an acid group and a (meth) acryloyl group will be described.
 前記酸基及び(メタ)アクリロイル基を有するエポキシ樹脂(A-1)としては、例えば、エポキシ樹脂(a1-1)と、不飽和モノカルボン酸(a1-2)と、ポリカルボン酸無水物(a1-3)とを必須の反応原料として得られるもの等が挙げられる。 Examples of the epoxy resin (A-1) having an acid group and a (meth) acryloyl group include an epoxy resin (a1-1), an unsaturated monocarboxylic acid (a1-2), and a polycarboxylic anhydride ( a1-3) as an essential reaction raw material.
 前記エポキシ樹脂(a1-1)としては、樹脂中に複数のエポキシ基を有しているものであれば、その具体構造は特に限定されない。 The specific structure of the epoxy resin (a1-1) is not particularly limited as long as the epoxy resin has a plurality of epoxy groups in the resin.
 前記エポキシ樹脂(a1-1)としては、ビスフェノール型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、水添ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フルオレン型エポキシ樹脂、キサンテン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂、トリヒドロキシベンゼン型エポキシ樹脂、オキサゾリドン型エポキシ樹脂等が挙げられる。 Examples of the epoxy resin (a1-1) include bisphenol type epoxy resin, hydrogenated bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, hydrogenated biphenyl type epoxy resin, triphenyl Methane epoxy resin, phenol novolak epoxy resin, cresol novolak epoxy resin, bisphenol novolak epoxy resin, naphthol novolak epoxy resin, naphthol-phenol co-condensed novolak epoxy resin, naphthol-cresol co-condensed novolak epoxy resin, phenol Aralkyl epoxy resin, naphthol aralkyl epoxy resin, dicyclopentadiene-phenol addition reaction epoxy resin, biphenyl aralkyl epoxy resin Carboxymethyl resins, fluorene type epoxy resin, a xanthene type epoxy resin, dihydroxybenzene type epoxy resin, trihydroxybenzene type epoxy resin, and oxazolidone type epoxy resins and the like.
 前記不飽和モノカルボン酸(a1-2)とは、一分子中に(メタ)アクリロイル基とカルボキシル基とを有する化合物をいい、例えば、アクリル酸、メタクリル酸等が挙げられる。また、前記不飽和モノカルボン酸(a1-2)のエステル化物、酸ハロゲン化物、酸無水物等も用いることができる。これらの不飽和モノカルボン酸(a1-2)は、単独で用いることも2種以上を併用することもできる。 The unsaturated monocarboxylic acid (a1-2) refers to a compound having a (meth) acryloyl group and a carboxyl group in one molecule, and examples thereof include acrylic acid and methacrylic acid. Further, esters, acid halides, acid anhydrides and the like of the unsaturated monocarboxylic acids (a1-2) can also be used. These unsaturated monocarboxylic acids (a1-2) can be used alone or in combination of two or more.
 前記不飽和モノカルボン酸(a1-2)のエステル化物としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸アルキルエステル化合物;(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル化合物;(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル等の窒素含有(メタ)アクリル酸エステル化合物;(メタ)アクリル酸グリシジル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸モルホリル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸シクロへキシル等のその他(メタ)アクリル酸エステル化合物などが挙げられる。 As the esterified product of the unsaturated monocarboxylic acid (a1-2), for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, ( Alkyl (meth) acrylates such as n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate Compounds: Hydroxy group-containing (meth) acrylate compounds such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate; dimethylaminoethyl (meth) acrylate, (meth) acryl Nitrogen-containing (meth) acrylates such as diethylaminoethyl acrylate Glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, morpholyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, and other (meth) acrylates And the like.
 前記不飽和モノカルボン酸(a1-2)の酸ハロゲン化物としては、例えば、(メタ)アクリル酸クロライド等が挙げられる。 酸 Examples of the acid halide of the unsaturated monocarboxylic acid (a1-2) include (meth) acrylic acid chloride.
 前記不飽和モノカルボン酸(a1-2)の酸無水物としては、例えば、(メタ)アクリル酸無水物等が挙げられる。 酸 Examples of the acid anhydride of the unsaturated monocarboxylic acid (a1-2) include (meth) acrylic anhydride.
 前記ポリカルボン酸無水物(a1-3)は、一分子中に2つ以上のカルボキシル基を有する化合物の酸無水物であれば、いずれのものも用いることができる。前記ポリカルボン酸無水物としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、1,2,3,4-ブタンテトラカルボン酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、シクロヘキサントリカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、フタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタレントリカルボン酸、ナフタレンテトラカルボン酸、ビフェニルジカルボン酸、ビフェニルトリカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸等のジカルボン酸化合物の酸無水物などが挙げられる。 As the polycarboxylic anhydride (a1-3), any acid anhydride of a compound having two or more carboxyl groups in one molecule can be used. Examples of the polycarboxylic anhydride include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, citraconic acid, itaconic acid, Glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo [2.2.1] heptane- 2,3-dicarboxylic acid, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydro Naphthalene-1,2-dicarboxylic acid, phthalic acid, trimellitic acid, pyromellitic acid, naphthalene Carboxylic acid, naphthalene tricarboxylic acid, naphthalene tetracarboxylic acid, biphenyl dicarboxylic acid, biphenyl tricarboxylic acid, biphenyl tetracarboxylic acid and acid anhydride of a dicarboxylic acid compound such as benzophenone tetracarboxylic acid.
 前記酸基及び(メタ)アクリロイル基を有するエポキシ樹脂(A-1)の製造方法は、前記エポキシ樹脂(a1-1)、前記不飽和モノカルボン酸(a1-2)、及び前記ポリカルボン酸無水物(a1-3)を必須の反応原料とするものであれば特に限定されず、どのような方法にて製造してもよい。例えば、反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。なかでも、反応の制御が容易であることから、先にエポキシ樹脂(a1-1)と不飽和モノカルボン酸(a1-2)とを反応させ、次いで、ポリカルボン酸無水物(a1-3)を反応させる方法が好ましい。該反応は、例えば、エポキシ樹脂(a1-1)と不飽和モノカルボン酸(a1-2)とをエステル化反応触媒の存在下、100~150℃の温度範囲で反応させた後、反応系中にポリカルボン酸無水物(a1-3)を加え、90~120℃の温度範囲で反応させる方法等により行うことができる。 The method for producing the epoxy resin (A-1) having an acid group and a (meth) acryloyl group comprises the epoxy resin (a1-1), the unsaturated monocarboxylic acid (a1-2), and the polycarboxylic anhydride. There is no particular limitation as long as the product (a1-3) is used as an essential reaction raw material, and it may be produced by any method. For example, it may be manufactured by a method of reacting all of the reaction materials at once, or by a method of sequentially reacting the reaction materials. Above all, since the reaction can be easily controlled, the epoxy resin (a1-1) and the unsaturated monocarboxylic acid (a1-2) are first reacted, and then the polycarboxylic anhydride (a1-3) Is preferred. In the reaction, for example, an epoxy resin (a1-1) is reacted with an unsaturated monocarboxylic acid (a1-2) in the presence of an esterification reaction catalyst at a temperature in the range of 100 to 150 ° C. The reaction can be carried out by, for example, adding a polycarboxylic anhydride (a1-3) to the mixture and reacting the mixture in a temperature range of 90 to 120 ° C.
 前記エポキシ樹脂(a1-1)と不飽和モノカルボン酸(a1-2)との反応割合は、エポキシ樹脂(a1-1)中のエポキシ基1モルに対し、不飽和モノカルボン酸(a1-2)を0.9~1.1モルの範囲で用いることが好ましい。また、前記ポリカルボン酸無水物(a1-3)の反応割合は、エポキシ樹脂(a1-1)中のエポキシ基1モルに対し、0.2~1.0モルの範囲で用いることが好ましい。 The reaction ratio of the epoxy resin (a1-1) and the unsaturated monocarboxylic acid (a1-2) is such that the unsaturated monocarboxylic acid (a1-2) is added to 1 mole of the epoxy group in the epoxy resin (a1-1). Is preferably used in the range of 0.9 to 1.1 mol. The reaction ratio of the polycarboxylic acid anhydride (a1-3) is preferably in the range of 0.2 to 1.0 mol per 1 mol of the epoxy group in the epoxy resin (a1-1).
 前記エステル化反応触媒としては、例えば、トリメチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等のリン化合物、トリエチルアミン、トリブチルアミン、ジメチルベンジルアミン等のアミン化合物、2-メチルイミダゾール、2-ヘプタデシルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール等のイミダゾール化合物などが挙げられる。これらの反応触媒は、単独で用いることも2種以上を併用することもできる。 Examples of the esterification reaction catalyst include phosphorus compounds such as trimethylphosphine, tributylphosphine and triphenylphosphine, amine compounds such as triethylamine, tributylamine and dimethylbenzylamine, 2-methylimidazole, 2-heptadecylimidazole, Imidazole compounds such as ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole and 1-isobutyl-2-methylimidazole; These reaction catalysts can be used alone or in combination of two or more.
 前記反応触媒の添加量は、反応原料の合計100質量部に対して0.001~5質量部の範囲が好ましい。 添加 The amount of the reaction catalyst to be added is preferably in the range of 0.001 to 5 parts by mass based on 100 parts by mass of the reaction raw materials in total.
 前記エポキシ樹脂(a1-1)、前記不飽和モノカルボン酸(a1-2)、及び前記ポリカルボン酸無水物(a1-3)の反応は、必要に応じて有機溶剤中で行うこともできる。 反 応 The reaction of the epoxy resin (a1-1), the unsaturated monocarboxylic acid (a1-2), and the polycarboxylic anhydride (a1-3) can be performed in an organic solvent, if necessary.
 前記有機溶剤としては、例えば、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン等のケトン溶剤;テトラヒドロフラン、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル溶剤;トルエン、キシレン、ソルベントナフサ等の芳香族溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環族溶剤;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール溶剤;アルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテルアセテート等のグリコールエーテル溶剤;メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらの有機溶剤は、単独で用いることも2種以上を併用することもできる。また、前記有機溶剤の使用量は、反応効率が良好となることから、反応原料の合計100質量部に対して10~500質量部の範囲が好ましい。 Examples of the organic solvent include ketone solvents such as methyl ethyl ketone, acetone, dimethylformamide and methyl isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; toluene, xylene and solvent Aromatic solvents such as naphtha; alicyclic solvents such as cyclohexane and methylcyclohexane; alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol and propylene glycol monomethyl ether; alkylene glycol monoalkyl ethers and dialkylene glycol monoalkyl ethers , Glycol ether solvents such as dialkylene glycol monoalkyl ether acetate; methoxypropanol, cyclohexanone, Chiruserosorubu, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate. These organic solvents can be used alone or in combination of two or more. The amount of the organic solvent used is preferably in the range of 10 to 500 parts by mass with respect to 100 parts by mass of the total amount of the reaction raw materials, since the reaction efficiency becomes good.
 前記酸基及び(メタ)アクリロイル基を有するエポキシ樹脂(A-1)の酸価は、高い光感度及び優れたアルカリ現像性を有し、基材密着性及び伸度に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、30~150mgKOH/gの範囲が好ましく、40~120mgKOH/gの範囲がより好ましい。なお、本願発明において酸基及び(メタ)アクリロイル基を有するエポキシ樹脂(A-1)の酸価は、JIS K 0070(1992)の中和滴定法にて測定される値である。 The acid value of the epoxy resin (A-1) having an acid group and a (meth) acryloyl group has a high photosensitivity and an excellent alkali developability, and forms a cured product having excellent substrate adhesion and elongation. From the viewpoint of obtaining a possible acid group-containing (meth) acrylate resin composition, the range is preferably 30 to 150 mgKOH / g, and more preferably 40 to 120 mgKOH / g. In the present invention, the acid value of the epoxy resin (A-1) having an acid group and a (meth) acryloyl group is a value measured by a neutralization titration method according to JIS K 0070 (1992).
 次に、〔2〕酸基及び(メタ)アクリロイル基を有するアクリルアミド樹脂(A-2)について説明する。 Next, [2] the acrylamide resin (A-2) having an acid group and a (meth) acryloyl group will be described.
 前記酸基及び(メタ)アクリロイル基を有するアクリルアミド樹脂(A-2)としては、例えば、フェノール性水酸基含有樹脂(a2-1)と、環状カーボネート化合物(a2-2a)または環状エーテル化合物(a2-2b)と、不飽和モノカルボン酸(a2-3a)及び/またはN-アルコキシアルキル(メタ)アクリルアミド化合物(a2-3b)と、ポリカルボン酸無水物(a2-4)とを必須の反応原料として得られるもの等が挙げられる。 Examples of the acrylamide resin (A-2) having an acid group and a (meth) acryloyl group include a phenolic hydroxyl group-containing resin (a2-1) and a cyclic carbonate compound (a2-2a) or a cyclic ether compound (a2- 2b), an unsaturated monocarboxylic acid (a2-3a) and / or an N-alkoxyalkyl (meth) acrylamide compound (a2-3b), and a polycarboxylic anhydride (a2-4) as essential reaction raw materials. And the like obtained.
 前記フェノール性水酸基含有樹脂(a2-1)とは、分子内にフェノール性水酸基を2つ以上有する樹脂をいい、例えば、芳香族ポリヒドロキシ化合物や、分子内にフェノール性水酸基を1つ有する化合物の1種または2種以上を反応原料とするノボラック型フェノール樹脂や、前記フェノール性水酸基を1つ有する化合物と下記構造式(x-1)~(x-5)の何れかで表される化合物(x)とを必須の反応原料とする反応生成物等が挙げられる。 The phenolic hydroxyl group-containing resin (a2-1) refers to a resin having two or more phenolic hydroxyl groups in a molecule, for example, an aromatic polyhydroxy compound or a compound having one phenolic hydroxyl group in a molecule. A novolak-type phenol resin using one or more kinds of reaction raw materials, a compound having one phenolic hydroxyl group and a compound represented by any of the following structural formulas (x-1) to (x-5) ( x) as an essential reaction raw material.
Figure JPOXMLDOC01-appb-C000001
[式(x-1)中、hは、0または1である。式(x-2)~(x-5)中、Rは、それぞれ独立に脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アリールオキシ基、アラルキル基の何れかであり、iは、0または1~4の整数である。式(x-2)、(x-3)及び(x-5)中、Zは、ビニル基、ハロメチル基、ヒドロキシメチル基、アルキルオキシメチル基の何れかである。式(x-5)中、Yは、炭素原子数1~4のアルキレン基、酸素原子、硫黄原子、またはカルボニル基であり、jは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000001
[In the formula (x-1), h is 0 or 1. In the formulas (x-2) to (x-5), R 1 is independently any one of an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, and an aralkyl group, and i is , 0 or an integer of 1 to 4. In the formulas (x-2), (x-3) and (x-5), Z is any one of a vinyl group, a halomethyl group, a hydroxymethyl group, and an alkyloxymethyl group. In the formula (x-5), Y is an alkylene group having 1 to 4 carbon atoms, an oxygen atom, a sulfur atom, or a carbonyl group, and j is an integer of 1 to 4. ]
 前記芳香族ポリヒドロキシ化合物としては、例えば、ジヒドロキシベンゼン、トリヒドロキシベンゼン、テトラヒドロキシベンゼン、ジヒドロキシナフタレン、トリヒドロキシナフタレン、テトラヒドロキシナフタレン、ジヒドロキシアントラセン、トリヒドロキシアントラセン、テトラヒドロキシアントラセン、ビフェノール、テトラヒドロキシビフェニル、ビスフェノール等の他、これらの芳香核上に1つまたは複数の置換基を有する化合物などが挙げられる。また、芳香核上の置換基としては、例えば、メチル基、エチル基、ビニル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基等の脂肪族炭化水素基;メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;フェニル基、ナフチル基、アントリル基、及びこれらの芳香核上に前記脂肪族炭化水素基、前記アルコキシ基、前記ハロゲン原子等が置換したアリール基;フェニルオキシ基、ナフチルオキシ基、及びこれらの芳香核上に前記脂肪族炭化水素基、前記アルコキシ基、前記ハロゲン原子等が置換したアリールオキシ基;フェニルメチル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基、及びこれらの芳香核上に前記脂肪族炭化水素基、前記アルコキシ基、前記ハロゲン原子等が置換したアラルキル基などが挙げられる。これらの芳香族ポリヒドロキシ化合物は、単独で用いることも2種以上を併用することもできる。これらの中でも、高い絶縁信頼性を有する酸基含有(メタ)アクリレート樹脂が得られることから、ハロゲンを含有しない化合物が好ましい。 Examples of the aromatic polyhydroxy compound, for example, dihydroxybenzene, trihydroxybenzene, tetrahydroxybenzene, dihydroxynaphthalene, trihydroxynaphthalene, tetrahydroxynaphthalene, dihydroxyanthracene, trihydroxyanthracene, tetrahydroxyanthracene, biphenol, tetrahydroxybiphenyl, In addition to bisphenol and the like, compounds having one or more substituents on these aromatic nuclei and the like can be mentioned. Examples of the substituent on the aromatic nucleus include, for example, methyl group, ethyl group, vinyl group, propyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, and nonyl group. Aliphatic hydrocarbon group; alkoxy group such as methoxy group, ethoxy group, propyloxy group, butoxy group; halogen atom such as fluorine atom, chlorine atom, bromine atom; phenyl group, naphthyl group, anthryl group, and aromatic nucleus thereof The aliphatic hydrocarbon group, the alkoxy group, an aryl group substituted with the halogen atom or the like; a phenyloxy group, a naphthyloxy group, and the aromatic hydrocarbon group, the alkoxy group, An aryloxy group substituted by a halogen atom or the like; a phenylmethyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and These aromatic nuclei wherein the aliphatic hydrocarbon group on the alkoxy group, the halogen atom and the like and aralkyl groups substituted. These aromatic polyhydroxy compounds can be used alone or in combination of two or more. Among these, a compound containing no halogen is preferable since an acid group-containing (meth) acrylate resin having high insulation reliability can be obtained.
 前記ノボラック型フェノール樹脂としては、例えば、分子内にフェノール性水酸基を1つ有する化合物の1種または2種以上と、アルデヒド化合物とを酸性触媒下で反応させて得られるものが挙げられる。 Examples of the novolak phenolic resin include those obtained by reacting one or more compounds having one phenolic hydroxyl group in the molecule with an aldehyde compound under an acidic catalyst.
 前記分子内にフェノール性水酸基を1つ有する化合物としては、芳香核上に水酸基を1つ有する芳香族化合物であれば何れの化合物でもよく、例えば、フェノール或いはフェノールの芳香核上に1つまたは複数の置換基を有するフェノール化合物、ナフトール或いはナフトールの芳香核上に1つまたは複数の置換基を有するナフトール化合物、アントラセノール或いはアントラセノールの芳香核上に1つまたは複数の置換基を有するアントラセノール化合物等が挙げられる。また、芳香核上の置換基としては、例えば、脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アリールオキシ基、アラルキル基等が挙げられ、それぞれの具体例は前述の通りである。これらのフェノール性水酸基を1つ有する化合物は、単独で用いることも、2種以上を併用することもできる。 As the compound having one phenolic hydroxyl group in the molecule, any compound may be used as long as it is an aromatic compound having one hydroxyl group on an aromatic nucleus. A phenol compound having one or more substituents on an aromatic nucleus of naphthol or naphthol; anthracen having one or more substituents on an aromatic nucleus of anthracenol or anthracenol Senol compounds and the like can be mentioned. Examples of the substituent on the aromatic nucleus include an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, an aralkyl group and the like, and specific examples thereof are as described above. These compounds having one phenolic hydroxyl group can be used alone or in combination of two or more.
 前記アルデヒド化合物としては、例えば、ホルムアルデヒド;アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、ペンチルアルデヒド、へキシルアルデヒド等のアルキルアルデヒド;サリチルアルデヒド、3-ヒドロキシベンズアルデヒド、4-ヒドロキシベンズアルデヒド、2-ヒドロキシ-4-メチルベンズアルデヒド、2,4-ジヒドロキシベンズアルデヒド、3,4-ジヒドロキシベンズアルデヒド等のヒドロキシベンズアルデヒド;2-ヒドロキシ-3-メトキシベンズアルデヒド、3-ヒドロキシ-4-メトキシベンズアルデヒド、4-ヒドロキシ-3-メトキシベンズアルデヒド、3-エトキシ-4-ヒドロキシベンズアルデヒド、4-ヒドロキシ-3,5-ジメトキシベンズアルデヒド等のヒドロキシ基とアルコキシ基の両方を有するベンズアルデヒド;メトキシベンズアルデヒド、エトキシベンズアルデヒド等のアルコキシベンズアルデヒド;1-ヒドロキシ-2-ナフトアルデヒド、2-ヒドロキシ-1-ナフトアルデヒド、6-ヒドロキシ-2-ナフトアルデヒド等のヒドロキシナフトアルデヒド;ブロムベンズアルデヒド等のハロゲン化ベンズアルデヒド等が挙げられる。 Examples of the aldehyde compound include formaldehyde; alkyl aldehydes such as acetaldehyde, propyl aldehyde, butyraldehyde, isobutyraldehyde, pentyl aldehyde, and hexyl aldehyde; salicylaldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, and 2-hydroxy-4. Hydroxybenzaldehydes such as -methylbenzaldehyde, 2,4-dihydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde; 2-hydroxy-3-methoxybenzaldehyde, 3-hydroxy-4-methoxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde, -Ethoxy-4-hydroxybenzaldehyde, 4-hydroxy-3,5-dimethoxybenzaldehyde Having both a hydroxy group and an alkoxy group: alkoxybenzaldehyde such as methoxybenzaldehyde and ethoxybenzaldehyde; 1-hydroxy-2-naphthaldehyde, 2-hydroxy-1-naphthaldehyde, 6-hydroxy-2-naphthaldehyde and the like Hydroxynaphthaldehyde; halogenated benzaldehyde such as bromobenzaldehyde, and the like.
 前記酸性触媒としては、例えば、塩酸、硫酸、リン酸等の無機酸、メタンスルホン酸、パラトルエンスルホン酸、シュウ酸等の有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛等のルイス酸などが挙げられる。これらの酸性触媒は、単独で用いることも2種以上を併用することもできる。 Examples of the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid and oxalic acid, and boron acids such as boron trifluoride, anhydrous aluminum chloride and zinc chloride. And the like. These acidic catalysts can be used alone or in combination of two or more.
 前記フェノール性水酸基を1つ有する化合物と前記化合物(x)とを必須の反応原料とする反応生成物としては、例えば、前記分子内にフェノール性水酸基を1つ有する化合物と前記化合物(x)とを、酸性触媒下で80~200℃程度の温度条件下で加熱撹拌する方法により得ることができる。前記分子内にフェノール性水酸基を1つ有する化合物と前記化合物(x)との反応割合は、前記化合物(x)1モルに対して、前記分子内にフェノール性水酸基を1つ有する化合物が、0.5~5モルとなる割合であることが好ましい。 Examples of a reaction product using the compound having one phenolic hydroxyl group and the compound (x) as essential reaction raw materials include, for example, a compound having one phenolic hydroxyl group in the molecule and the compound (x). Can be obtained by heating and stirring under a temperature condition of about 80 to 200 ° C. under an acidic catalyst. The reaction ratio between the compound having one phenolic hydroxyl group in the molecule and the compound (x) is such that the compound having one phenolic hydroxyl group in the molecule is 0 per mole of the compound (x). It is preferable that the ratio be 0.5 to 5 mol.
 前記環状カーボネート化合物(a2-2a)としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ペンチレンカーボネート等が挙げられる。これらの環状カーボネート化合物は、単独で用いることも2種以上を併用することもできる。また、高い光感度及び優れたアルカリ現像性を有し、基材密着性及び伸度に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、エチレンカーボネート、またはプロピレンカーボネートが好ましい。 Examples of the cyclic carbonate compound (a2-2a) include ethylene carbonate, propylene carbonate, butylene carbonate, and pentylene carbonate. These cyclic carbonate compounds can be used alone or in combination of two or more. In addition, since an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product having excellent substrate adhesion and elongation can be obtained, ethylene carbonate, Or propylene carbonate is preferred.
 前記環状エーテル化合物(a2-2b)としては、例えば、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等が挙げられる。これらの環状エーテル化合物は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、高い光感度及び優れたアルカリ現像性を有し、基材密着性及び伸度に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、エチレンオキサイド、またはプロピレンオキサイドが好ましい。 Examples of the cyclic ether compound (a2-2b) include ethylene oxide, propylene oxide, and tetrahydrofuran. These cyclic ether compounds can be used alone or in combination of two or more. Further, among these, an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation can be obtained. , Ethylene oxide or propylene oxide is preferred.
 前記不飽和モノカルボン酸(a2-3a)としては、上述の不飽和モノカルボン酸(a1-2)と同様のものを用いることができる。 と し て As the unsaturated monocarboxylic acid (a2-3a), the same as the above-mentioned unsaturated monocarboxylic acid (a1-2) can be used.
 前記N-アルコキシアルキル(メタ)アクリルアミド化合物(a2-3b)としては、例えば、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-メトキシエチル(メタ)アクリルアミド、N-エトキシエチル(メタ)アクリルアミド、N-ブトキシエチル(メタ)アクリルアミド等が挙げられる。これらの中でも、高い光感度及び優れたアルカリ現像性を有し、基材密着性及び伸度に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、N-メトキシメチル(メタ)アクリルアミドが好ましい。また、これらのN-アルコキシアルキル(メタ)アクリルアミド化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the N-alkoxyalkyl (meth) acrylamide compound (a2-3b) include N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N-methoxy Ethyl (meth) acrylamide, N-ethoxyethyl (meth) acrylamide, N-butoxyethyl (meth) acrylamide and the like can be mentioned. Among them, an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation is obtained. -Methoxymethyl (meth) acrylamide is preferred. These N-alkoxyalkyl (meth) acrylamide compounds can be used alone or in combination of two or more.
 前記ポリカルボン酸無水物(a2-4)としては、上述のポリカルボン酸無水物(a1-3)と同様のものを用いることができる。 ポ リ As the polycarboxylic anhydride (a2-4), the same as the above-mentioned polycarboxylic anhydride (a1-3) can be used.
 前記N-アルコキシアルキル(メタ)アクリルアミド化合物(a2-3b)を用いる場合、前記ポリカルボン酸無水物(a2-4)との当量比[(a2-3b)/(a2-4))]は、優れた基材密着性と、高い光感度及び優れたアルカリ現像性とを兼備し、硬化物における伸度に優れた酸基含有(メタ)アクリレート樹脂組成物が得られることから、0.2~7の範囲が好ましく、0.25~6.7の範囲がより好ましい。 When the N-alkoxyalkyl (meth) acrylamide compound (a2-3b) is used, the equivalent ratio [(a2-3b) / (a2-4)) with the polycarboxylic anhydride (a2-4) is: Since an acid group-containing (meth) acrylate resin composition having excellent substrate adhesion, high photosensitivity, and excellent alkali developability and having excellent elongation in a cured product can be obtained, 0.2 to 0.2% 7 is preferable, and the range of 0.25 to 6.7 is more preferable.
 前記前記酸基及び(メタ)アクリロイル基を有するアクリルアミド樹脂(B-2)の製造方法は、特に限定されず、どのような方法にて製造してもよい。例えば、反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。なかでも、反応の制御が容易であることから、先にフェノール性水酸基含有樹脂(a2-1)と、環状カーボネート化合物(a2-2a)または環状エーテル化合物(a2-2b)とを反応させて、得られた反応生成物1と、不飽和モノカルボン酸(a2-3a)及び/またはN-アルコキシアルキル(メタ)アクリルアミド化合物(a2-3b)を反応させた後、得られた反応生成物2とポリカルボン酸無水物(a2-4)を反応させる方法が好ましい。該反応は、例えば、前記フェノール性水酸基含有樹脂(a2-1)と前記前記環状カーボネート化合物(a2-2a)または前記環状エーテル化合物(a2-2b)とを塩基性触媒の存在下、50~200℃の温度範囲で反応させた後、酸性触媒の存在下、得られた反応生成物と、不飽和ポリカルボン酸(b2-3a)及び/またはN-アルコキシアルキル(メタ)アクリルアミド化合物(a2-3b)を80~140℃の温度範囲で反応させ、次いで、ポリカルボン酸無水物(a2-4)を加え、80~140℃の温度範囲で反応させる方法等により行うことができる。 The method for producing the acrylamide resin (B-2) having an acid group and a (meth) acryloyl group is not particularly limited, and may be produced by any method. For example, it may be manufactured by a method of reacting all of the reaction materials at once, or by a method of sequentially reacting the reaction materials. Among them, since the reaction can be easily controlled, the phenolic hydroxyl group-containing resin (a2-1) is first reacted with the cyclic carbonate compound (a2-2a) or the cyclic ether compound (a2-2b), After reacting the obtained reaction product 1 with an unsaturated monocarboxylic acid (a2-3a) and / or an N-alkoxyalkyl (meth) acrylamide compound (a2-3b), the obtained reaction product 2 A method of reacting a polycarboxylic anhydride (a2-4) is preferred. The reaction is carried out, for example, by reacting the phenolic hydroxyl group-containing resin (a2-1) with the cyclic carbonate compound (a2-2a) or the cyclic ether compound (a2-2b) in the presence of a basic catalyst in the range of 50 to 200. After reacting in a temperature range of ° C., the resulting reaction product is reacted with an unsaturated polycarboxylic acid (b2-3a) and / or an N-alkoxyalkyl (meth) acrylamide compound (a2-3b) in the presence of an acidic catalyst. ) In a temperature range of 80 to 140 ° C., and then a polycarboxylic anhydride (a2-4) is added, and the reaction is carried out in a temperature range of 80 to 140 ° C.
 前記塩基性触媒としては、例えば、N-メチルモルフォリン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、トリ-n-ブチルアミンもしくはジメチルベンジルアミン、ブチルアミン、オクチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、イミダゾール、1-メチルイミダゾール、2,4-ジメチルイミダゾール、1,4-ジエチルイミダゾール、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、テトラメチルアンモニウムヒドロキシド等のアミン化合物類;トリオクチルメチルアンモニウムクロライド、トリオクチルメチルアンモニウムアセテート等の四級アンモニウム塩類;トリメチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等のホスフィン類;テトラメチルホスホニウムクロライド、テトラエチルホスホニウムクロライド、テトラプロピルホスホニウムクロライド、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムブロマイド、トリメチル(2-ヒドロキシルプロピル)ホスホニウムクロライド、トリフェニルホスホニウムクロライド、ベンジルホスホニウムクロライド等のホスホニウム塩類;ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジオクチル錫ジアセテート、ジオクチル錫ジネオデカノエート、ジブチル錫ジアセテート、オクチル酸錫、1,1,3,3-テトラブチル-1,3-ドデカノイルジスタノキサン等の有機錫化合物;オクチル酸亜鉛、オクチル酸ビスマス等の有機金属化合物;オクタン酸錫等の無機錫化合物;無機金属化合物などが挙げられる。これらの塩基性触媒は、単独で用いることも2種以上を併用することもできる。 Examples of the basic catalyst include N-methylmorpholine, pyridine, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), and 1,5-diazabicyclo [4.3.0] nonene- 5 (DBN), 1,4-diazabicyclo [2.2.2] octane (DABCO), tri-n-butylamine or dimethylbenzylamine, butylamine, octylamine, monoethanolamine, diethanolamine, triethanolamine, imidazole, 1 -Methylimidazole, 2,4-dimethylimidazole, 1,4-diethylimidazole, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (N-phenyl) aminopropyltrimethoxysilane, 3- ( 2-aminoethyl) aminopropyltri Amine compounds such as toxicoxysilane, 3- (2-aminoethyl) aminopropylmethyldimethoxysilane and tetramethylammonium hydroxide; quaternary ammonium salts such as trioctylmethylammonium chloride and trioctylmethylammonium acetate; trimethylphosphine and tributylphosphine And phosphines such as triphenylphosphine; tetramethylphosphonium chloride, tetraethylphosphonium chloride, tetrapropylphosphonium chloride, tetrabutylphosphonium chloride, tetrabutylphosphonium bromide, trimethyl (2-hydroxypropyl) phosphonium chloride, triphenylphosphonium chloride, benzylphosphonium Phosphonium salts such as chloride; dibutyl Dilaurate, octyltin trilaurate, octyltin diacetate, dioctyltin diacetate, dioctyltin dinedecanoate, dibutyltin diacetate, tin octylate, 1,1,3,3-tetrabutyl-1,3-dodecanoyldista Organotin compounds such as noxane; organometallic compounds such as zinc octylate and bismuth octylate; inorganic tin compounds such as tin octoate; and inorganic metal compounds. These basic catalysts can be used alone or in combination of two or more.
 前記酸性触媒としては、例えば、塩酸、硫酸、リン酸等の無機酸、メタンスルホン酸、パラトルエンスルホン酸、シュウ酸等の有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛等のルイス酸などが挙げられる。これらの酸性触媒は、単独で用いることも2種以上を併用することもできる。 Examples of the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid and oxalic acid, and boron acids such as boron trifluoride, anhydrous aluminum chloride and zinc chloride. And the like. These acidic catalysts can be used alone or in combination of two or more.
 前記フェノール性水酸基含有樹脂(a2-1)、前記環状カーボネート化合物(a2-2a)または前記環状エーテル化合物(a2-2b)、前記不飽和モノカルボン酸(a2-3a)及び/または前記N-アルコキシアルキル(メタ)アクリルアミド化合物(a2-3b)、並びに前記ポリカルボン酸無水物(a2-4)の反応は、必要に応じて有機溶剤中で行うこともできる。 The phenolic hydroxyl group-containing resin (a2-1), the cyclic carbonate compound (a2-2a) or the cyclic ether compound (a2-2b), the unsaturated monocarboxylic acid (a2-3a) and / or the N-alkoxy The reaction of the alkyl (meth) acrylamide compound (a2-3b) and the polycarboxylic anhydride (a2-4) can be performed in an organic solvent, if necessary.
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as those described above can be used, and the organic solvents can be used alone or in combination of two or more.
 前記有機溶剤の使用量は、反応効率が良好となることから、反応原料の合計100質量部に対して10~500質量部の範囲が好ましい。 使用 The amount of the organic solvent used is preferably in the range of 10 to 500 parts by mass based on 100 parts by mass of the total amount of the reaction raw materials, since the reaction efficiency is improved.
 前記酸基及び(メタ)アクリロイル基を有するアクリルアミド樹脂(B-2)の具体的構造は特に限定されず、フェノール性水酸基含有樹脂(a2-1)と、環状カーボネート化合物(a2-2a)または環状エーテル化合物(a2-2b)と、不飽和モノカルボン酸(a2-3a)及び/またはN-アルコキシアルキル(メタ)アクリルアミド化合物(a2-3b)と、ポリカルボン酸無水物(a2-4)とを必須の反応原料とし、樹脂中に酸基及び(メタ)アクリロイル基を有するものであればよいが、得られる前記酸基及び(メタ)アクリロイル基を有するアクリルアミド樹脂(B-2)としては、例えば、下記構造式(a-1)で表される構造部位(I)と下記構造式(a-2)で表される構造部位(II)とを構造単位(例えば、繰り返し構造単位)とする樹脂構造を有するもの、下記構造式(a-3)で表される構造部位(III)と下記構造式(a-4)で表される構造部位(IV)とを構造単位(例えば、繰り返し構造単位)とする樹脂構造を有するものが挙げられる。 The specific structure of the acrylamide resin (B-2) having an acid group and a (meth) acryloyl group is not particularly limited, and a phenolic hydroxyl group-containing resin (a2-1) and a cyclic carbonate compound (a2-2a) or a cyclic carbonate compound (a2-2a) may be used. An ether compound (a2-2b), an unsaturated monocarboxylic acid (a2-3a) and / or an N-alkoxyalkyl (meth) acrylamide compound (a2-3b), and a polycarboxylic anhydride (a2-4) As an essential reaction raw material, any resin having an acid group and a (meth) acryloyl group may be used as the essential acrylamide resin (B-2) having the acid group and the (meth) acryloyl group. A structural unit (I) represented by the following structural formula (a-1) and a structural unit (II) represented by the following structural formula (a-2) Having a resin structure as a repeating structural unit), comprising a structural part (III) represented by the following structural formula (a-3) and a structural part (IV) represented by the following structural formula (a-4) Those having a resin structure as a unit (for example, a repeating structural unit) are exemplified.
Figure JPOXMLDOC01-appb-C000002
[式(a-1)及び(a-2)中、Rは、それぞれ独立に水素原子又は炭素原子数1~4の炭化水素基である。Rは、それぞれ独立に水素原子、炭素原子数1~4の炭化水素基、炭素原子数1~4のアルコキシ基、ハロゲン原子の何れかであり、nは、それぞれ独立に1または2である。Rは、それぞれ独立にメチレン基または下記構造式(x’-1)~(x’-5)の何れかで表される構造部位である。R、Rは、それぞれ独立に水素原子または炭素原子数1~20の炭化水素基である。また、RとRとが、連結して飽和または不飽和の環を形成してもよい。Rは、炭素原子数1~12の炭化水素基である。Rは、水素原子またはメチル基である。xは、前記Rで表される構造部位、或いは、構造式(a-1)で表される構造部位(I)または構造式(a-2)で表される構造部位(II)とが、*印が付されたRを介して連結する結合点である。]
Figure JPOXMLDOC01-appb-C000002
[In the formulas (a-1) and (a-2), R 2 is independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. R 3 is independently any one of a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a halogen atom, and n is each independently 1 or 2. . R 4 is each independently a methylene group or a structural site represented by any of the following structural formulas (x′-1) to (x′-5). R 5 and R 6 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. Also, R 5 and R 6 may be linked to form a saturated or unsaturated ring. R 7 is a hydrocarbon group having 1 to 12 carbon atoms. R 8 is a hydrogen atom or a methyl group. x represents a structural site represented by R 3 or a structural site (I) represented by the structural formula (a-1) or a structural site (II) represented by the structural formula (a-2) , * Is the point of attachment linked through R 4 marked. ]
Figure JPOXMLDOC01-appb-C000003
[式(a-3)及び(a-4)中、Rは、それぞれ独立に水素原子または炭素原子数1~4の炭化水素基である。Rは、それぞれ独立に水素原子、炭素原子数1~4の炭化水素基、炭素原子数1~4のアルコキシ基、ハロゲン原子の何れかであり、nは、それぞれ独立に1または2である。Rは、それぞれ独立にメチレン基または下記構造式(x’-1)~(x’-5)の何れかで表される構造部位である。R、Rは、それぞれ独立に水素原子または炭素原子数1~20の炭化水素基である。また、RとRとが、連結して飽和または不飽和の環を形成してもよい。Rは、炭素原子数1~12の炭化水素基である。Rは、水素原子またはメチル基である。xは、前記Rで表される構造部位、或いは、構造式(a-3)で表される構造部位(III)または構造式(a-4)で表される構造部位(IV)とが、*印が付されたRを介して連結する結合点である。]
Figure JPOXMLDOC01-appb-C000003
[In the formulas (a-3) and (a-4), R 2 is independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. R 3 is independently any one of a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a halogen atom, and n is each independently 1 or 2. . R 4 is each independently a methylene group or a structural site represented by any of the following structural formulas (x′-1) to (x′-5). R 5 and R 6 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. Also, R 5 and R 6 may be linked to form a saturated or unsaturated ring. R 7 is a hydrocarbon group having 1 to 12 carbon atoms. R 8 is a hydrogen atom or a methyl group. x represents a structural site represented by R 3 or a structural site (III) represented by structural formula (a-3) or a structural site (IV) represented by structural formula (a-4) , * Is the point of attachment linked through R 4 marked. ]
Figure JPOXMLDOC01-appb-C000004
[式(x’-1)中、hは、0又は1である。式(x’-2)~(x’-5)中、Rは、それぞれ独立して脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基又はアラルキル基であり、iは、0又は1~4の整数である。式(x’-2)、(x’-3)及び(x’-5)中、R10は、水素原子又はメチル基である。式(x’-4)中、Wは、下記構造式(w-1)又は(w-2)である。式(x’-5)中、Yは、炭素原子数1~4のアルキレン基、酸素原子、硫黄原子又はカルボニル基であり、jは、1~4の整数である。]
Figure JPOXMLDOC01-appb-C000004
[In the formula (x′-1), h is 0 or 1. In the formulas (x′-2) to (x′-5), R 9 is each independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group or an aralkyl group, and i is 0 or 1 It is an integer of 44. In the formulas (x′-2), (x′-3) and (x′-5), R 10 is a hydrogen atom or a methyl group. In the formula (x′-4), W is the following structural formula (w-1) or (w-2). In the formula (x′-5), Y is an alkylene group having 1 to 4 carbon atoms, an oxygen atom, a sulfur atom or a carbonyl group, and j is an integer of 1 to 4. ]
Figure JPOXMLDOC01-appb-C000005
[式(w-1)及び(w-2)中、R11は、それぞれ独立に水素原子又は炭素原子数1~4の炭化水素基である。式(w-1)中、R12及びR13は、それぞれ独立に水素原子又は炭素原子数1~20の炭化水素基であり、R12とR13とは、連結して飽和又は不飽和の環を形成してもよい。式(w-2)中、R14は、炭素原子数1~12の炭化水素基であり、R15は、水素原子又はメチル基である。]
Figure JPOXMLDOC01-appb-C000005
[In the formulas (w-1) and (w-2), R 11 is each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. In the formula (w-1), R 12 and R 13 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 12 and R 13 are linked to each other to form a saturated or unsaturated A ring may be formed. In the formula (w-2), R 14 is a hydrocarbon group having 1 to 12 carbon atoms, and R 15 is a hydrogen atom or a methyl group. ]
 前記酸基及び(メタ)アクリロイル基を有するアクリルアミド樹脂(B-2)の酸価は、高い光感度及び優れたアルカリ現像性を有し、基材密着性及び伸度に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、30~150mgKOH/gの範囲が好ましく、40~120mgKOH/gの範囲がより好ましい。なお、本発明において、前記酸基含有(メタ)アクリレート樹脂の酸価は、JIS K 0070(1992)の中和滴定法に基づいて測定される値である。 The acid value of the acrylamide resin (B-2) having an acid group and a (meth) acryloyl group has a high photosensitivity and excellent alkali developability, and forms a cured product having excellent substrate adhesion and elongation. From the viewpoint of obtaining a possible acid group-containing (meth) acrylate resin composition, the range is preferably 30 to 150 mgKOH / g, and more preferably 40 to 120 mgKOH / g. In the present invention, the acid value of the acid group-containing (meth) acrylate resin is a value measured based on a neutralization titration method according to JIS K 0070 (1992).
 次に、〔3〕酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(A-3)について説明する。 Next, the [3] amide imide resin (A-3) having an acid group and a (meth) acryloyl group will be described.
 前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(A-3)としては、例えば、酸基または酸無水物基を有するアミドイミド樹脂(a3-1)と、水酸基含有(メタ)アクリレート化合物(a3-2)とを必須の反応原料として得られるもの等が挙げられる。 Examples of the amide imide resin (A-3) having an acid group and a (meth) acryloyl group include an amide imide resin (a3-1) having an acid group or an acid anhydride group and a hydroxyl group-containing (meth) acrylate compound (a3). And -2) as an essential reaction raw material.
 前記アミドイミド樹脂(a3-1)としては、酸基または酸無水物基のどちらか一方のみを有するものであってもよいし、両方を有するものであってもよい。前記水酸基含有(メタ)アクリレート化合物(a3-2)との反応性や反応制御の観点から、酸無水物基を有するものであることが好ましく、酸基と酸無水物基との両方を有するものであることがより好ましい。前記アミドイミド樹脂(a3-1)の酸価は、中性条件下、即ち、酸無水物基を開環させない条件での測定値が60~350mgKOH/gの範囲であることが好ましい。他方、水の存在下等、酸無水物基を開環させた条件での測定値が61~360mgKOH/gの範囲であることが好ましい。 The amide imide resin (a3-1) may have only one of an acid group and an acid anhydride group, or may have both. From the viewpoint of the reactivity with the hydroxyl group-containing (meth) acrylate compound (a3-2) and the control of the reaction, the compound preferably has an acid anhydride group, and has both an acid group and an acid anhydride group. Is more preferable. The acid value of the amide imide resin (a3-1) is preferably in the range of 60 to 350 mgKOH / g as measured under neutral conditions, that is, without opening the acid anhydride group. On the other hand, it is preferable that the measured value under conditions in which the acid anhydride group is opened, such as in the presence of water, is in the range of 61 to 360 mgKOH / g.
 前記アミドイミド樹脂(a3-1)の具体構造や製造方法は特に限定されず、一般的なアミドイミド樹脂等を広く用いることができる。例えば、ポリイソシアネート化合物と、ポリカルボン酸またはその酸無水物とを反応原料として得られるものが挙げられる。 具体 The specific structure and production method of the amide imide resin (a3-1) are not particularly limited, and general amide imide resins and the like can be widely used. For example, a compound obtained by using a polyisocyanate compound and a polycarboxylic acid or an acid anhydride thereof as reaction raw materials can be used.
 前記ポリイソシアネート化合物としては、例えば、ブタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート化合物;ノルボルナンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等の脂環式ジイソシアネート化合物;トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、4,4’-ジイソシアナト-3,3’-ジメチルビフェニル、o-トリジンジイソシアネート等の芳香族ジイソシアネート化合物;下記構造式(i-1)で表される繰り返し構造を有するポリメチレンポリフェニルポリイソシアネート;これらのイソシアヌレート変性体、ビウレット変性体、アロファネート変性体などが挙げられる。また、これらのポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the polyisocyanate compound include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate; norbornane diisocyanate, isophorone diisocyanate, and the like. Alicyclic diisocyanate compounds such as hydrogenated xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate; tolylene diisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, diphenyl methane diisocyanate, 1,5-naphthalenedi isocyanate, 4,4'-diisocyanato-3 Aromatic diisocyanates such as 3,3'-dimethylbiphenyl and o-tolidine diisocyanate Cyanate compound; polymethylene polyphenyl polyisocyanate having a repeating structure represented by the following structural formula (i-1); these isocyanurate modified product, a biuret modified product, and the like allophanate modified product. These polyisocyanate compounds can be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000006
[式中、Rはそれぞれ独立に水素原子、炭素原子数1~6の炭化水素基の何れかである。Rはそれぞれ独立に炭素原子数1~4のアルキル基、または構造式(i-1)で表される構造部位と*印が付されたメチレン基を介して連結する結合点の何れかである。lは0または1~3の整数であり、mは1以上の整数である。]
Figure JPOXMLDOC01-appb-C000006
[In the formula, R 1 is each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. R 2 is independently any one of an alkyl group having 1 to 4 carbon atoms or a bonding point connected to the structural site represented by the structural formula (i-1) via a methylene group marked with *. is there. l is 0 or an integer of 1 to 3, and m is an integer of 1 or more. ]
 また、前記ポリイソシアネート化合物としては、高い溶剤溶解性を有する酸基含有(メタ)アクリレート樹脂組成物が得られることから、脂環式ジイソシアネート化合物またはその変性体、脂肪族ジイソシアネート化合物またはその変性体が好ましく、脂環式ジイソシアネートまたはそのイソシアヌレート変性体、脂肪族ジイソシアネートまたはそのイソシアヌレート変性体がより好ましい。 In addition, since an acid group-containing (meth) acrylate resin composition having high solvent solubility can be obtained as the polyisocyanate compound, an alicyclic diisocyanate compound or a modified product thereof, an aliphatic diisocyanate compound or a modified product thereof may be used. Preferred are alicyclic diisocyanates or modified isocyanurates thereof, and aliphatic diisocyanates or modified isocyanurates thereof.
 また、前記ポリイソシアネート化合物の総質量中における、脂環式ジイソシアネート化合物またはその変性体と、脂肪族ジイソシアネート化合物またはその変性体の合計質量の割合が、70質量%以上であることが好ましく、90質量%以上であることが好ましい。 Further, in the total mass of the polyisocyanate compound, the ratio of the total mass of the alicyclic diisocyanate compound or the modified product thereof and the aliphatic diisocyanate compound or the modified product thereof is preferably 70% by mass or more, and 90% by mass or more. % Is preferable.
 また、脂環式ジイソシアネート化合物またはその変性体と、脂肪族ジイソシアネート化合物またはその変性体とを併用する場合には、両者の質量比が30/70~70/30の範囲であることが好ましい。 In the case where an alicyclic diisocyanate compound or a modified product thereof is used in combination with an aliphatic diisocyanate compound or a modified product thereof, the mass ratio of the two is preferably in the range of 30/70 to 70/30.
 前記ポリカルボン酸またはその酸無水物としては、分子構造中に複数のカルボキシル基を有する化合物またはその酸無水物であれば具体構造は特に問われず、多種多様な化合物を用いることができる。なお、前記アミドイミド樹脂(a3-1)がアミド基とイミド基の両方を有するためには、系中にカルボキシル基及び酸無水物基の両方が存在している必要があるが、本発明においては、分子中にカルボキシル基と酸無水物基との両方を有する化合物を用いてもよいし、カルボキシル基を有する化合物と酸無水物基を有する化合物とを併用してもよい。 The specific structure of the polycarboxylic acid or its acid anhydride is not particularly limited as long as it is a compound having a plurality of carboxyl groups in its molecular structure or its acid anhydride, and various kinds of compounds can be used. In order for the amide imide resin (a3-1) to have both an amide group and an imide group, both the carboxyl group and the acid anhydride group need to be present in the system. Alternatively, a compound having both a carboxyl group and an acid anhydride group in the molecule may be used, or a compound having a carboxyl group and a compound having an acid anhydride group may be used in combination.
 前記ポリカルボン酸またはその酸無水物としては、例えば、脂肪族ポリカルボン酸化合物またはその酸無水物、脂環式ポリカルボン酸化合物またはその酸無水物、芳香族ポリカルボン酸化合物またはその酸無水物等が挙げられる。 Examples of the polycarboxylic acid or an acid anhydride thereof include, for example, an aliphatic polycarboxylic acid compound or an acid anhydride thereof, an alicyclic polycarboxylic acid compound or an acid anhydride thereof, an aromatic polycarboxylic acid compound or an acid anhydride thereof. And the like.
 前記脂肪族ポリカルボン酸化合物またはその酸無水物としては、脂肪族炭化水素基は直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。 と し て As the aliphatic polycarboxylic acid compound or an acid anhydride thereof, the aliphatic hydrocarbon group may be any of a linear type and a branched type, and may have an unsaturated bond in the structure.
 前記脂肪族ポリカルボン酸化合物またはその酸無水物としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、1,2,3,4-ブタンテトラカルボン酸、及びこれらの酸無水物等が挙げられる。 Examples of the aliphatic polycarboxylic acid compound or an acid anhydride thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, Examples thereof include citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, and acid anhydrides thereof.
 前記脂環式ポリカルボン酸化合物またはその酸無水物としては、本発明では、カルボキシル基または酸無水物基が脂環構造に結合しているものを脂環式ポリカルボン酸化合物またはその酸無水物とし、それ以外の構造部位における芳香環の有無は問わないものとする。前記脂環式ポリカルボン酸化合物またはその酸無水物としては、例えば、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、シクロヘキサントリカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、及びこれらの酸無水物等が挙げられる。 As the alicyclic polycarboxylic acid compound or an acid anhydride thereof, in the present invention, a compound in which a carboxyl group or an acid anhydride group is bonded to an alicyclic structure is an alicyclic polycarboxylic acid compound or an acid anhydride thereof. The presence or absence of an aromatic ring in other structural sites is not considered. Examples of the alicyclic polycarboxylic acid compound or an acid anhydride thereof include, for example, tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, and bicyclo [2.2.1]. Heptane-2,3-dicarboxylic acid, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4 -Tetrahydronaphthalene-1,2-dicarboxylic acid, and acid anhydrides thereof.
 前記芳香族ポリカルボン酸化合物またはその酸無水物としては、例えば、フタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタレントリカルボン酸、ナフタレンテトラカルボン酸、ビフェニルジカルボン酸、ビフェニルトリカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸等が挙げられる。 Examples of the aromatic polycarboxylic acid compound or an acid anhydride thereof include, for example, phthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid, biphenyl Examples include tetracarboxylic acid and benzophenonetetracarboxylic acid.
 これらの中でも、高い光感度及び優れたアルカリ現像性を有し、基材密着性及び伸度に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、前記脂環式ポリカルボン酸化合物またはその酸無水物、或いは前記芳香族ポリカルボン酸化合物またはその酸無水物が好ましい。また、前記アミドイミド樹脂(a3-1)を効率的に製造できることから、分子構造中にカルボキシル基と酸無水物基との両方を有するトリカルボン酸無水物を用いることが好ましく、シクロヘキサントリカルボン酸無水物またはトリメリット酸無水物を用いることが特に好ましい。更に、前記ポリカルボン酸またはその酸無水物の総質量に対する脂環式トリカルボン酸無水物と芳香族トリカルボン酸無水物との合計量の割合が70質量%以上であることが好ましく、90質量%以上であることがより好ましい。 Among these, an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation is obtained. The alicyclic polycarboxylic acid compound or an acid anhydride thereof, or the aromatic polycarboxylic acid compound or an acid anhydride thereof is preferable. Further, from the viewpoint that the amide imide resin (a3-1) can be efficiently produced, it is preferable to use a tricarboxylic anhydride having both a carboxyl group and an acid anhydride group in the molecular structure, and it is preferable to use cyclohexanetricarboxylic anhydride or It is particularly preferable to use trimellitic anhydride. Furthermore, the ratio of the total amount of the alicyclic tricarboxylic anhydride and the aromatic tricarboxylic anhydride to the total mass of the polycarboxylic acid or the acid anhydride thereof is preferably 70% by mass or more, and more preferably 90% by mass or more. Is more preferable.
 前記アミドイミド樹脂(a3-1)が、前記ポリイソシアネート化合物と、前記ポリカルボン酸またはその酸無水物とを反応原料とするものである場合、所望の樹脂性能等に応じて、これら以外の反応原料を併用してもよい。この場合、本発明が奏する効果が十分に発揮されることから、アミドイミド樹脂(a3-1)の反応原料総質量に対する前記ポリイソシアネート化合物と前記ポリカルボン酸またはその酸無水物との合計質量の割合が90質量%以上であることが好ましく、95質量%以上であることがより好ましい。 When the amide imide resin (a3-1) uses the polyisocyanate compound and the polycarboxylic acid or its acid anhydride as reaction raw materials, other reaction raw materials may be used depending on desired resin performance and the like. May be used in combination. In this case, since the effect of the present invention is sufficiently exhibited, the ratio of the total mass of the polyisocyanate compound and the polycarboxylic acid or the acid anhydride thereof to the total mass of the reaction raw materials of the amide imide resin (a3-1) Is preferably 90% by mass or more, and more preferably 95% by mass or more.
 前記アミドイミド樹脂(a3-1)が、ポリイソシアネート化合物とポリカルボン酸またはその酸無水物とを反応原料とするものである場合、特に限定されず、どのような方法にて製造してもよい。例えば、一般的なアミドイミド樹脂と同様の方法にて製造することができる。具体的には、ポリイソシアネート化合物が有するイソシアネート基1モルに対し、0.5~5.0モルのポリカルボン酸またはその酸無水物を用い、120~180℃程度の温度条件下で撹拌混合して反応させる方法が挙げられる。 When the amide imide resin (a3-1) uses a polyisocyanate compound and a polycarboxylic acid or an acid anhydride as a reaction raw material, it is not particularly limited, and may be produced by any method. For example, it can be produced by a method similar to a general amide imide resin. Specifically, 0.5 to 5.0 moles of a polycarboxylic acid or an acid anhydride thereof is used under stirring at a temperature of about 120 to 180 ° C. with respect to 1 mole of an isocyanate group contained in the polyisocyanate compound. Reaction.
 前記ポリイソシアネート化合物とポリカルボン酸またはその酸無水物との反応は、必要に応じて、塩基性触媒の存在下で行うこともできる。また、該反応は、必要に応じて有機溶剤中で行うこともできる。 反 応 The reaction between the polyisocyanate compound and the polycarboxylic acid or an acid anhydride thereof can be carried out in the presence of a basic catalyst, if necessary. Further, the reaction can be carried out in an organic solvent, if necessary.
 前記塩基性触媒としては、上述の塩基性触媒と同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, those similar to the above-described basic catalysts can be used, and the basic catalysts can be used alone or in combination of two or more.
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as those described above can be used, and the organic solvents can be used alone or in combination of two or more.
 前記有機溶剤の使用量は、反応効率が良好となることから、反応原料の合計100質量部に対して10~500質量部の範囲が好ましい。 使用 The amount of the organic solvent used is preferably in the range of 10 to 500 parts by mass based on 100 parts by mass of the total amount of the reaction raw materials, since the reaction efficiency is improved.
 前記水酸基含有(メタ)アクリレート化合物(a3-2)としては、分子構造中に水酸基と(メタ)アクリロイル基とを有する化合物であれば他の具体構造は特に限定されず、多種多様な化合物を用いることができる。例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等のヒドロキシ(メタ)アクリレート化合物;前記各種のヒドロキシ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種のヒドロキシ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。これらの中でも、高い光感度及び優れたアルカリ現像性を有し、基材密着性及び伸度に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、分子量が1,000以下のものが好ましい。また、前記水酸基含有(メタ)アクリレート化合物(a3-2)が、前記オキシアルキレン変性体やラクトン変性体である場合には、重量平均分子量(Mw)が1,000以下であることが好ましい。これらの水酸基含有(メタ)アクリレート化合物は、単独で用いることも2種以上を併用することもできる。 As the hydroxyl group-containing (meth) acrylate compound (a3-2), other specific structures are not particularly limited as long as the compound has a hydroxyl group and a (meth) acryloyl group in a molecular structure, and various kinds of compounds are used. be able to. For example, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate Hydroxy (meth) acrylate compounds such as (poly) oxyethylene chains, (poly) oxypropylene chains, (poly) oxytetramethylene chains, and the like in the molecular structures of the various hydroxy (meth) acrylate compounds. (Poly) oxyalkylene modified products having an alkylene chain introduced; lactone modified products obtained by introducing a (poly) lactone structure into the molecular structure of the above various hydroxy (meth) acrylate compounds. Among these, an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation is obtained, and thus has a molecular weight of Is preferably 1,000 or less. When the hydroxyl group-containing (meth) acrylate compound (a3-2) is a modified oxyalkylene or a modified lactone, the weight average molecular weight (Mw) is preferably 1,000 or less. These hydroxyl group-containing (meth) acrylate compounds can be used alone or in combination of two or more.
 また、前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(A-3)としては、必要に応じて、前記アミドイミド樹脂(a3-1)と、水酸基含有(メタ)アクリレート化合物(b3-2)以外に、(メタ)アクリロイル基含有エポキシ化合物(a3-3)を反応原料として併用することもできる。また、前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(A-3)としては、必要に応じて、前記アミドイミド樹脂(a3-1)と、水酸基含有(メタ)アクリレート化合物(a3-2)以外に、(メタ)アクリロイル基含有エポキシ化合物(a3-3)及びポリカルボン酸無水物(a3-4)を反応原料として併用することもできる。 The amide imide resin (A-3) having an acid group and a (meth) acryloyl group may be, if necessary, the amide imide resin (a3-1) and a hydroxyl group-containing (meth) acrylate compound (b3-2). Alternatively, a (meth) acryloyl group-containing epoxy compound (a3-3) may be used in combination as a reaction raw material. The amide imide resin (A-3) having an acid group and a (meth) acryloyl group may be, if necessary, an amide imide resin (a3-1) and a hydroxyl group-containing (meth) acrylate compound (a3-2). In addition, a (meth) acryloyl group-containing epoxy compound (a3-3) and a polycarboxylic anhydride (a3-4) can be used in combination as a reaction raw material.
 前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)は、分子構造中に(メタ)アクリロイル基とエポキシ基とを有するものであれば他の具体構造は特に限定されず、多種多様な化合物を用いることができる。例えば、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、エポキシシクロへキシルメチル(メタ)アクリレート等のグリシジル基含有(メタ)アクリレートモノマー;ジヒドロキシベンゼンジグリシジルエーテル、ジヒドロキシナフタレンジグリシジルエーテル、ビフェノールジグリシジルエーテル、ビスフェノールジグリシジルエーテル等のジグリシジルエーテル化合物のモノ(メタ)アクリレート化物などが挙げられる。これらの中でも、高い光感度及び優れたアルカリ現像性を有し、基材密着性及び伸度に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、グリシジル基含有(メタ)アクリレートモノマーが好ましい。また、その分子量は、500以下であることが好ましい。さらに、前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)の総質量中の前記グリシジル基含有(メタ)アクリレートモノマーの割合が70質量%以上であることが好ましく、90質量%以上であることがより好ましい。 The specific structure of the (meth) acryloyl group-containing epoxy compound (a3-3) is not particularly limited as long as it has a (meth) acryloyl group and an epoxy group in its molecular structure. Can be used. For example, glycidyl group-containing (meth) acrylate monomers such as glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, epoxycyclohexylmethyl (meth) acrylate; dihydroxybenzene diglycidyl ether, dihydroxynaphthalenediglycidyl ether; Mono (meth) acrylates of diglycidyl ether compounds such as biphenol diglycidyl ether and bisphenol diglycidyl ether are exemplified. Among these, glycidyl is an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product having excellent substrate adhesion and elongation. Group-containing (meth) acrylate monomers are preferred. Further, the molecular weight is preferably 500 or less. Further, the ratio of the glycidyl group-containing (meth) acrylate monomer to the total mass of the (meth) acryloyl group-containing epoxy compound (a3-3) is preferably 70% by mass or more, and more preferably 90% by mass or more. Is more preferred.
 前記ポリカルボン酸無水物(a3-4)としては、上述のポリカルボン酸無水物(b1-3)として例示したものを用いることができ、前記ポリカルボン酸(a3-4)は、単独で用いることも2種以上を併用することもできる。 As the polycarboxylic anhydride (a3-4), those exemplified above as the polycarboxylic anhydride (b1-3) can be used, and the polycarboxylic acid (a3-4) is used alone. It is also possible to use two or more kinds in combination.
 前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(A-3)は、所望の樹脂性能等に応じて、前記酸基または酸無水物基を有するアミドイミド樹脂(a3-1)、前記水酸基含有(メタ)アクリレート化合物(a3-2)、(メタ)アクリロイル基含有エポキシ化合物(a3-3)及びポリカルボン酸無水物(a3-4)以外に、他の反応原料を併用することもできる。この場合、酸基含有(メタ)アクリレート樹脂(A-3)の反応原料総質量中の前記(a3-1)~(a3-4)成分の合計質量の割合が80質量%以上であることが好ましく、90質量%以上であることがより好ましい。 The amide imide resin (A-3) having an acid group and a (meth) acryloyl group may be selected from the group consisting of the amide imide resin (a3-1) having an acid group or an acid anhydride group and the hydroxyl group-containing resin according to desired resin performance and the like. In addition to the (meth) acrylate compound (a3-2), the (meth) acryloyl group-containing epoxy compound (a3-3) and the polycarboxylic anhydride (a3-4), other reaction raw materials can be used in combination. In this case, the ratio of the total mass of the components (a3-1) to (a3-4) to the total mass of the reaction raw materials of the acid group-containing (meth) acrylate resin (A-3) is 80% by mass or more. More preferably, it is 90% by mass or more.
 前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(A-3)の製造方法としては、特に限定されず、どのような方法にて製造してもよい。例えば、前記アミドイミド樹脂(a3-1)、及び前記水酸基含有(メタ)アクリレート化合物(a3-2)を含む反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。 The method for producing the amide imide resin (A-3) having an acid group and a (meth) acryloyl group is not particularly limited, and may be produced by any method. For example, it may be manufactured by a method in which all of the reaction raw materials containing the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) are reacted at once, or the reaction raw materials are sequentially reacted. It may be manufactured by a method for causing the above.
 前記アミドイミド樹脂(a3-1)と前記水酸基含有(メタ)アクリレート化合物(a3-2)との反応は、主に、前記アミドイミド樹脂(a3-1)中の酸基及び/または酸無水物基と水酸基含有(メタ)アクリレート化合物(a3-2)中の水酸基とを反応させるものである。前記水酸基含有(メタ)アクリレート化合物(a3-2)は特に酸無水物基との反応性に優れることから、前述の通り、前記アミドイミド樹脂(a3-1)は酸無水物基を有していることが好ましい。なお、前記アミドイミド樹脂(a3-1)中の酸無水物基の含有量は、前述した2通りの酸価の測定値の差分、即ち、酸無水物基を開環させた条件での酸価と、酸無水物基を開環させない条件での酸価との差分から算出することができる。 The reaction between the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) is mainly caused by the reaction between the acid group and / or acid anhydride group in the amide imide resin (a3-1). It reacts with the hydroxyl group in the hydroxyl group-containing (meth) acrylate compound (a3-2). Since the hydroxyl group-containing (meth) acrylate compound (a3-2) is particularly excellent in reactivity with an acid anhydride group, the amide imide resin (a3-1) has an acid anhydride group as described above. Is preferred. The content of the acid anhydride group in the amide imide resin (a3-1) is the difference between the two measured values of the acid value, that is, the acid value under the condition that the acid anhydride group is opened. And the acid value under the condition that the acid anhydride group is not ring-opened.
 前記アミドイミド樹脂(a3-1)と前記水酸基含有(メタ)アクリレート化合物(a3-2)との反応割合は、前記アミドイミド樹脂(a3-1)が酸基及び酸無水物基を有する場合、並びに前記アミドイミド樹脂(a3-1)が酸無水物基を有する場合、前記アミドイミド樹脂(a3-1)が有する酸無水物基1モルに対する、前記水酸基含有(メタ)アクリレート化合物(a3-2)が有する水酸基のモル数が、0.9~1.1となる範囲で用いることが好ましい。また、前記アミドイミド樹脂(a3-1)が酸基を有する場合、前記アミドイミド樹脂(a3-1)が有する酸基1モルに対する、前記水酸基含有(メタ)アクリレート化合物(a3-2)が有する水酸基のモル数が、0.01~1.0となる範囲で用いることが好ましい。 The reaction ratio between the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) is determined when the amide imide resin (a3-1) has an acid group and an acid anhydride group, and When the amide imide resin (a3-1) has an acid anhydride group, the hydroxyl group of the hydroxyl group-containing (meth) acrylate compound (a3-2) is based on 1 mol of the acid anhydride group of the amide imide resin (a3-1). Is preferably used in the range of 0.9 to 1.1. When the amide imide resin (a3-1) has an acid group, the hydroxyl group of the hydroxyl group-containing (meth) acrylate compound (a3-2) is based on 1 mol of the acid group of the amide imide resin (a3-1). It is preferable that the number of moles is in the range of 0.01 to 1.0.
 前記アミドイミド樹脂(a3-1)と前記水酸基含有(メタ)アクリレート化合物(a3-2)との反応は、必要に応じて、塩基性触媒または酸性触媒を用いてもよい。なかでも、前記アミドイミド樹脂(a3-1)が酸基及び酸無水物基を有する場合、並びに前記アミドイミド樹脂(a3-1)が酸無水物基を有する場合は、塩基性触媒を用いることが好ましく、前記アミドイミド樹脂(a3-1)が酸基を有する場合は、酸性触媒を用いることが好ましい。 The reaction between the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) may use a basic catalyst or an acidic catalyst, if necessary. Among them, when the amide imide resin (a3-1) has an acid group and an acid anhydride group, and when the amide imide resin (a3-1) has an acid anhydride group, it is preferable to use a basic catalyst. When the amide imide resin (a3-1) has an acid group, it is preferable to use an acidic catalyst.
 前記塩基性触媒としては、上述の塩基性触媒として例示したものを用いることができ、前記塩基性触媒は単独で用いることも2種以上を併用することもできる。 、 As the basic catalyst, those exemplified as the basic catalysts described above can be used, and the basic catalysts can be used alone or in combination of two or more.
 前記酸性触媒としては、上述の酸性触媒として例示したものを用いることができ、前記酸性触媒は単独で用いることも2種以上を併用することもできる。 酸性 As the acidic catalyst, those exemplified above as the acidic catalyst can be used, and the acidic catalyst can be used alone or in combination of two or more.
 前記塩基性触媒または前記酸性触媒の添加量は、反応原料の合計質量100質量部に対して0.001~5質量部の範囲で用いることが好ましい。 The amount of the basic catalyst or the acidic catalyst is preferably in the range of 0.001 to 5 parts by mass based on 100 parts by mass of the total mass of the reaction raw materials.
 また、前記アミドイミド樹脂(a3-1)と前記水酸基含有(メタ)アクリレート化合物(a3-2)との反応は、適当な触媒の存在下、80~140℃程度の温度条件下で加熱撹拌して行うことができる。 The reaction between the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) is carried out by heating and stirring at a temperature of about 80 to 140 ° C. in the presence of a suitable catalyst. It can be carried out.
 該反応は必要に応じて有機溶剤中で行ってもよく、前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。なお、前記アミドイミド樹脂(a3-1)の製造と連続して行う場合には、前記アミドイミド樹脂(a3-1)の製造で用いた有機溶剤中でそのまま反応を続けてもよい。 The reaction may be carried out in an organic solvent if necessary.As the organic solvent, the same organic solvents as described above can be used, and the organic solvent may be used alone or in combination of two or more. They can be used together. When the reaction is performed continuously with the production of the amide imide resin (a3-1), the reaction may be continued in the organic solvent used in the production of the amide imide resin (a3-1).
 前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(A-3)が、反応原料として、前記アミドイミド樹脂(a3-1)、及び前記水酸基含有(メタ)アクリレート化合物(a3-2)以外に、(メタ)アクリロイル基含有エポキシ化合物(a3-3)を用いる場合、前記アミドイミド樹脂(a3-1)、前記水酸基含有(メタ)アクリレート化合物(a3-2)、及び前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)を含む反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。なかでも、反応の制御が容易であることから、前記アミドイミド樹脂(a3-1)と前記水酸基含有(メタ)アクリレート化合物(a3-2)とを反応させて得られた生成物(以下、「生成物(1)」と称することがある。)に、前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)を反応させる方法で製造することが好ましい。 The amide imide resin (A-3) having an acid group and a (meth) acryloyl group is a reaction raw material other than the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2), When the (meth) acryloyl group-containing epoxy compound (a3-3) is used, the amide imide resin (a3-1), the hydroxyl group-containing (meth) acrylate compound (a3-2), and the (meth) acryloyl group-containing epoxy compound The reaction raw materials containing (a3-3) may be manufactured by a method of reacting all at once, or may be manufactured by a method of sequentially reacting the reaction raw materials. Above all, a product obtained by reacting the amide imide resin (a3-1) with the hydroxyl group-containing (meth) acrylate compound (a3-2) (hereinafter referred to as “product Product (1) ") with the (meth) acryloyl group-containing epoxy compound (a3-3).
 前記生成物(1)と前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)との反応は、主に、前記生成物(1)中の酸基と前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)とを反応させるものである。その反応割合は、前記生成物(1)が有する酸基1モルに対する、前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)が有するエポキシ基のモル数が、0.05~1.1となる範囲で用いることが好ましい。該反応は、例えば、適当な塩基性触媒の存在下、90~140℃程度の温度条件下で加熱撹拌して行うことができる。前記アミドイミド樹脂(a3-1)と前記水酸基含有(メタ)アクリレート化合物(a3-2)との反応と連続して行う場合、塩基性触媒は追加しなくてもよいし、適宜追加してもよい。また、該反応は必要に応じて有機溶剤中で行ってもよい。なお、前記塩基性触媒及び前記有機溶剤は、上述の塩基性触媒及び有機溶剤と同様のものを用いることができ、それらは、単独で用いることも2種以上を併用することもできる。 The reaction between the product (1) and the (meth) acryloyl group-containing epoxy compound (a3-3) is mainly based on the acid group in the product (1) and the (meth) acryloyl group-containing epoxy compound ( a3-3). The reaction ratio is such that the number of moles of the epoxy group of the (meth) acryloyl group-containing epoxy compound (a3-3) per mole of the acid group of the product (1) is 0.05 to 1.1. It is preferable to use it in a certain range. The reaction can be carried out, for example, by heating and stirring under a temperature condition of about 90 to 140 ° C. in the presence of a suitable basic catalyst. When the reaction between the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) is performed continuously, a basic catalyst may not be added, or may be added as appropriate. . Further, the reaction may be performed in an organic solvent, if necessary. The basic catalyst and the organic solvent can be the same as the basic catalyst and the organic solvent described above, and they can be used alone or in combination of two or more.
 前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(A-3)が、反応原料として、前記アミドイミド樹脂(a3-1)、及び前記水酸基含有(メタ)アクリレート化合物(a3-2)以外に、(メタ)アクリロイル基含有エポキシ化合物(a3-3)及びポリカルボン酸無水物(a3-4)を用いる場合、前記アミドイミド樹脂(a3-1)、前記水酸基含有(メタ)アクリレート化合物(a3-2)、前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)、及びポリカルボン酸無水物(a3-4)を含む反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。なかでも、反応の制御が容易であることから、前記アミドイミド樹脂(a3-1)と前記水酸基含有(メタ)アクリレート化合物(a3-2)とを反応させて得られた生成物(1)に、前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)を反応させ、得られた生成物(以下、「生成物(2)」と称することがある。)に、前記ポリカルボン酸無水物(a3-4)を反応させる方法で製造することが好ましい。 The amide imide resin (A-3) having an acid group and a (meth) acryloyl group is a reaction raw material other than the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2), When the (meth) acryloyl group-containing epoxy compound (a3-3) and the polycarboxylic anhydride (a3-4) are used, the amide imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) , The reaction raw material containing the (meth) acryloyl group-containing epoxy compound (a3-3) and the polycarboxylic anhydride (a3-4) may be produced by a method of reacting all at once. You may manufacture by the method of making it react sequentially. Above all, since the control of the reaction is easy, the product (1) obtained by reacting the amide imide resin (a3-1) with the hydroxyl group-containing (meth) acrylate compound (a3-2) includes: The (meth) acryloyl group-containing epoxy compound (a3-3) is reacted, and the obtained product (hereinafter sometimes referred to as “product (2)”) is added to the polycarboxylic anhydride (a3). It is preferable to produce it by a method of reacting -4).
 前記生成物(2)と前記ポリカルボン酸無水物(a3-4)との反応は、主に、前記生成物(2)中の水酸基と前記多塩基酸無水物とを反応させるものである。この際、前記生成物(2)において、前記生成物(1)と前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)との反応割合は、前記生成物(1)が有する酸基1モルに対する、前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)が有するエポキシ基のモル数は、0.1~1.2となる範囲で用いることが好ましく、0.2~1.1となることが更に好ましい。ここで、前記生成物(2)中には、例えば、前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)中のエポキシ基の開環により生じた水酸基等が存在する。前記ポリカルボン酸無水物(a3-4)の反応割合は、製造される酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(A-3)の酸価が50~120mgKOH/g程度になるよう調整されることが好ましい。該反応は、例えば、適当な塩基性触媒の存在下、80~140℃程度の温度条件下で加熱撹拌して行うことができる。前記生成物(1)と前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)との反応と連続して行う場合、塩基性触媒は追加しなくてもよいし、適宜追加してもよい。また、該反応は必要に応じて有機溶剤中で行ってもよい。なお、前記塩基性触媒及び前記有機溶剤は、上述の塩基性触媒及び有機溶剤と同様のものを用いることができ、それらは、単独で用いることも2種以上を併用することもできる。 反 応 The reaction between the product (2) and the polycarboxylic acid anhydride (a3-4) is mainly for reacting the hydroxyl group in the product (2) with the polybasic acid anhydride. At this time, in the product (2), the reaction ratio between the product (1) and the (meth) acryloyl group-containing epoxy compound (a3-3) is 1 mole of the acid group in the product (1). The number of moles of the epoxy group in the (meth) acryloyl group-containing epoxy compound (a3-3) is preferably 0.1 to 1.2, more preferably 0.2 to 1.1. Is more preferred. Here, in the product (2), for example, a hydroxyl group or the like generated by ring opening of the epoxy group in the (meth) acryloyl group-containing epoxy compound (a3-3) is present. The reaction rate of the polycarboxylic anhydride (a3-4) is adjusted so that the acid value of the amideimide resin (A-3) having an acid group and a (meth) acryloyl group to be produced is about 50 to 120 mgKOH / g. Preferably. The reaction can be carried out, for example, by heating and stirring at a temperature of about 80 to 140 ° C. in the presence of a suitable basic catalyst. When the reaction between the product (1) and the (meth) acryloyl group-containing epoxy compound (a3-3) is performed continuously, a basic catalyst may not be added, or may be added as appropriate. Further, the reaction may be performed in an organic solvent, if necessary. The basic catalyst and the organic solvent can be the same as the basic catalyst and the organic solvent described above, and they can be used alone or in combination of two or more.
 前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(A-3)の酸価は、高い光感度及び優れたアルカリ現像性を有し、基材密着性及び伸度に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、30~150mgKOH/gの範囲が好ましく、40~120mgKOH/gの範囲がより好ましい。なお、本願発明において酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(A-3)の酸価は、JIS K 0070(1992)の中和滴定法にて測定される値である。 The acid value of the amide imide resin (A-3) having an acid group and a (meth) acryloyl group has a high photosensitivity and excellent alkali developability, and forms a cured product excellent in substrate adhesion and elongation. From the viewpoint of obtaining a possible acid group-containing (meth) acrylate resin composition, the range is preferably 30 to 150 mgKOH / g, and more preferably 40 to 120 mgKOH / g. In the present invention, the acid value of the amide imide resin (A-3) having an acid group and a (meth) acryloyl group is a value measured by a neutralization titration method according to JIS K 0070 (1992).
 次に、〔4〕酸基及び(メタ)アクリロイル基を有するアクリル樹脂(A-4)について説明する。 (4) Next, the acrylic resin (A-4) having an acid group and a (meth) acryloyl group will be described.
 前記酸基及び(メタ)アクリロイル基を有するアクリル樹脂(A-4)としては、例えば、水酸基やカルボキシル基、イソシアネート基、グリシジル基等の反応性官能基を有する(メタ)アクリレート化合物(α)を必須の成分として重合させて得られるアクリル樹脂中間体に、これらの官能基と反応し得る反応性官能基を有する(メタ)アクリレート化合物(β)をさらに反応させることにより(メタ)アクリロイル基を導入して得られる反応生成物や、前記反応生成物中の水酸基に多塩基酸無水物を反応させて得られるもの等が挙げられる。 Examples of the acrylic resin (A-4) having an acid group and a (meth) acryloyl group include a (meth) acrylate compound (α) having a reactive functional group such as a hydroxyl group, a carboxyl group, an isocyanate group, and a glycidyl group. An acrylic resin intermediate obtained by polymerization as an essential component is further reacted with a (meth) acrylate compound (β) having a reactive functional group capable of reacting with these functional groups to introduce a (meth) acryloyl group. And a reaction product obtained by reacting a hydroxyl group in the reaction product with a polybasic acid anhydride.
 前記アクリル樹脂中間体は、前記(メタ)アクリレート化合物(α)の他、必要に応じてその他の重合性不飽和基含有化合物を共重合させたものであってもよい。前記その他の重合性不飽和基含有化合物は、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル;シクロヘキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等の脂環式構造含有(メタ)アクリレート;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチルアクリレート等の芳香環含有(メタ)アクリレート;3-メタクリロキシプロピルトリメトキシシラン等のシリル基含有(メタ)アクリレート;スチレン、α-メチルスチレン、クロロスチレン等のスチレン誘導体等が挙げられる。これらは単独で用いることも2種以上を併用することもできる。 The acrylic resin intermediate may be obtained by copolymerizing another polymerizable unsaturated group-containing compound as required in addition to the (meth) acrylate compound (α). Examples of the other compound having a polymerizable unsaturated group include (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. Acrylic acid alkyl ester; alicyclic structure-containing (meth) acrylate such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate; phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxy Aromatic ring-containing (meth) acrylates such as ethyl acrylate; silyl group-containing (meth) acrylates such as 3-methacryloxypropyltrimethoxysilane; styrene derivatives such as styrene, α-methylstyrene and chlorostyrene; That. These can be used alone or in combination of two or more.
 前記(メタ)アクリレート化合物(β)は、前記(メタ)アクリレート化合物(α)が有する反応性官能基と反応し得るものであれば特に限定されないが、反応性の観点から以下の組み合わせであることが好ましい。即ち、前記(メタ)アクリレート化合物(α)として水酸基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてイソシアネート基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてカルボキシル基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてグリシジル基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてイソシアネート基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)として水酸基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてグリシジル基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてカルボキシル基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(β)は、単独で用いることも2種以上を併用することもできる。 The (meth) acrylate compound (β) is not particularly limited as long as it can react with the reactive functional group of the (meth) acrylate compound (α). From the viewpoint of reactivity, the following combination is used. Is preferred. That is, when a hydroxyl group-containing (meth) acrylate is used as the (meth) acrylate compound (α), it is preferable to use an isocyanate group-containing (meth) acrylate as the (meth) acrylate compound (β). When a carboxyl group-containing (meth) acrylate is used as the (meth) acrylate compound (α), it is preferable to use a glycidyl group-containing (meth) acrylate as the (meth) acrylate compound (β). When an isocyanate group-containing (meth) acrylate is used as the (meth) acrylate compound (α), a hydroxyl group-containing (meth) acrylate is preferably used as the (meth) acrylate compound (β). When a glycidyl group-containing (meth) acrylate is used as the (meth) acrylate compound (α), a carboxyl group-containing (meth) acrylate is preferably used as the (meth) acrylate compound (β). The (meth) acrylate compound (β) may be used alone or in combination of two or more.
 前記多塩基酸無水物は、例えば、無水フタル酸、無水コハク酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、オクテニル無水コハク酸、テトラプロぺニル無水コハク酸等が挙げられる。これらの多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 Examples of the polybasic anhydride include phthalic anhydride, succinic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, and hexahydroanhydride. Examples include phthalic acid, methylhexahydrophthalic anhydride, octenyl succinic anhydride, tetrapropenyl succinic anhydride and the like. These polybasic acid anhydrides can be used alone or in combination of two or more.
 前記酸基及び(メタ)アクリロイル基を有するアクリル樹脂(A-4)の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記酸基及び(メタ)アクリロイル基を有するアクリル樹脂(A-4)の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 製造 The method for producing the acrylic resin (A-4) having an acid group and a (meth) acryloyl group is not particularly limited, and it may be produced by any method. The production of the acrylic resin (A-4) having an acid group and a (meth) acryloyl group may be performed in an organic solvent, if necessary, or a basic catalyst may be used, if necessary. .
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as those described above can be used, and the organic solvents can be used alone or in combination of two or more.
 前記塩基性触媒としては、上述の塩基性触媒と同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, those similar to the above-described basic catalysts can be used, and the basic catalysts can be used alone or in combination of two or more.
 前記酸基及び(メタ)アクリロイル基を有するアクリル樹脂(A-4)の酸価は、高い光感度及び優れたアルカリ現像性を有し、基材密着性及び伸度に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、30~150mgKOH/gの範囲が好ましく、40~120mgKOH/gの範囲がより好ましい。なお、本願発明において酸基及び(メタ)アクリロイル基を有するアクリル樹脂(A-4)の酸価は、JIS K 0070(1992)の中和滴定法にて測定される値である。 The acid value of the acrylic resin (A-4) having an acid group and a (meth) acryloyl group has a high photosensitivity and excellent alkali developability, and forms a cured product having excellent substrate adhesion and elongation. From the viewpoint of obtaining a possible acid group-containing (meth) acrylate resin composition, the range is preferably 30 to 150 mgKOH / g, and more preferably 40 to 120 mgKOH / g. In the present invention, the acid value of the acrylic resin (A-4) having an acid group and a (meth) acryloyl group is a value measured by a neutralization titration method according to JIS K 0070 (1992).
 次に、〔5〕酸基及び(メタ)アクリロイル基を有するウレタン樹脂(A-5)について説明する。 Next, [5] the urethane resin (A-5) having an acid group and a (meth) acryloyl group will be described.
 前記酸基及び(メタ)アクリロイル基を有するウレタン樹脂(A-5)としては、例えば、ポリイソシアネート化合物、水酸基含有(メタ)アクリレート化合物、カルボキシル基含有ポリオール化合物、及び必要に応じて多塩基酸無水物、前記カルボキシル基含有ポリオール化合物以外のポリオール化合物とを反応させて得られたものや、ポリイソシアネート化合物、水酸基含有(メタ)アクリレート化合物、多塩基酸無水物、及びカルボキシル基含有ポリオール化合物以外のポリオール化合物とを反応させて得られたものや、エポキシ樹脂、不飽和一塩基酸、多塩基酸無水物、ポリイソシアネート化合物、及び水酸基含有(メタ)アクリレート化合物とを反応させて得られたもの等が挙げられる。 Examples of the urethane resin (A-5) having an acid group and a (meth) acryloyl group include a polyisocyanate compound, a hydroxyl group-containing (meth) acrylate compound, a carboxyl group-containing polyol compound, and if necessary, a polybasic acid anhydride. , A product obtained by reacting a polyol compound other than the carboxyl group-containing polyol compound, a polyol other than a polyisocyanate compound, a hydroxyl group-containing (meth) acrylate compound, a polybasic acid anhydride, and a carboxyl group-containing polyol compound And those obtained by reacting with epoxy compounds, unsaturated monobasic acids, polybasic acid anhydrides, polyisocyanate compounds, and hydroxyl group-containing (meth) acrylate compounds. No.
 前記ポリイソシアネート化合物としては、上述のポリイソシアネート化合物と同様のものを用いることができ、前記ポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。 同 様 As the polyisocyanate compound, those similar to the above-described polyisocyanate compounds can be used, and the polyisocyanate compounds can be used alone or in combination of two or more.
 前記水酸基含有(メタ)アクリレート化合物としては、上述の水酸基含有(メタ)アクリレート化合物(a3-2)と同様のものを用いることができ、前記水酸基含有(メタ)アクリレート化合物は、単独で用いることも2種以上を併用することもできる。 As the hydroxyl group-containing (meth) acrylate compound, those similar to the above-mentioned hydroxyl group-containing (meth) acrylate compound (a3-2) can be used, and the hydroxyl group-containing (meth) acrylate compound can be used alone. Two or more can be used in combination.
 前記カルボキシル基含有ポリオール化合物としては、例えば、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2-ジメチロール吉草酸等が挙げられる。前記カルボキシル基含有ポリオール化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the carboxyl group-containing polyol compound include 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, and 2,2-dimethylolvaleric acid. The carboxyl group-containing polyol compound may be used alone or in combination of two or more.
 前記多塩基酸無水物としては、上述の多塩基酸無水物として例示したものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, those exemplified above as the polybasic acid anhydride can be used, and the polybasic acid anhydride can be used alone or in combination of two or more.
 前記カルボキシル基含有ポリオール化合物以外のポリオール化合物としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の脂肪族ポリオール化合物;ビフェノール、ビスフェノール等の芳香族ポリオール化合物;前記各種のポリオール化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種のポリオール化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。前記カルボキシル基含有ポリオール化合物以外のポリオール化合物は、単独で用いることも2種以上を併用することもできる。 Examples of polyol compounds other than the carboxyl group-containing polyol compound include, for example, aliphatic polyol compounds such as ethylene glycol, propylene glycol, butanediol, hexanediol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, and dipentaerythritol; Aromatic polyol compounds such as biphenol and bisphenol; (Poly) oxyalkylene chains such as (poly) oxyethylene chains, (poly) oxypropylene chains, and (poly) oxytetramethylene chains are included in the molecular structures of the various polyol compounds. Introduced (poly) oxyalkylene modified products; lactone modified products in which a (poly) lactone structure is introduced into the molecular structure of the above-mentioned various polyol compounds. The polyol compounds other than the carboxyl group-containing polyol compound may be used alone or in combination of two or more.
 前記エポキシ樹脂としては、上述のエポキシ樹脂(a1-1)として例示したものを用いることができ、前記エポキシ樹脂は、単独で用いることも2種以上を併用することもできる。 As the epoxy resin, those exemplified as the epoxy resin (a1-1) described above can be used, and the epoxy resin can be used alone or in combination of two or more.
 前記不飽和一塩基酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、桂皮酸、α-シアノ桂皮酸、β-スチリルアクリル酸、β-フルフリルアクリル酸等が挙げられる。また、前記不飽和一塩基酸のエステル化物、酸ハロゲン化物、酸無水物等も用いることができる。これらの不飽和一塩基酸は、単独で用いることも2種以上を併用することもできる。 Examples of the unsaturated monobasic acid include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, α-cyanocinnamic acid, β-styrylacrylic acid, and β-furfurylacrylic acid. Further, esters, acid halides, acid anhydrides and the like of the above-mentioned unsaturated monobasic acids can also be used. These unsaturated monobasic acids can be used alone or in combination of two or more.
 前記酸基及び(メタ)アクリロイル基を有するウレタン樹脂(A-5)の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記酸基及び重合性不飽和結合を有するウレタン樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 The method for producing the urethane resin (A-5) having an acid group and a (meth) acryloyl group is not particularly limited, and may be any method. The production of the urethane resin having an acid group and a polymerizable unsaturated bond may be carried out in an organic solvent, if necessary, or a basic catalyst may be used, if necessary.
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as those described above can be used, and the organic solvents can be used alone or in combination of two or more.
 前記塩基性触媒としては、上述の塩基性触媒と同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, those similar to the above-described basic catalysts can be used, and the basic catalysts can be used alone or in combination of two or more.
 前記アミン変性エポキシ樹脂(B)としては、エポキシ樹脂(b1)とアミン化合物(b2)とを反応させて得られるものである。 The amine-modified epoxy resin (B) is obtained by reacting the epoxy resin (b1) with the amine compound (b2).
 前記エポキシ樹脂(b1)としては、上述のエポキシ樹脂(a1-1)として例示したものと同様のものを用いることができる。なかでも、高い光感度及び優れたアルカリ現像性を有し、基材密着性及び伸度に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、ビスフェノール型エポキシ樹脂が好ましい。また、前記エポキシ樹脂(b1)としては、単独で用いることも2種以上を併用することもできる。 エ ポ キ シ As the epoxy resin (b1), the same one as exemplified above as the epoxy resin (a1-1) can be used. Above all, bisphenol-based resins having an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation can be obtained. Epoxy resins are preferred. The epoxy resin (b1) may be used alone or in combination of two or more.
 前記アミン化合物(b2)としては、例えば、エチルエタノールアミン、エタノールアミン、4-アミノ-1-ブタノール、プロパノールアミン等のモノアルカノールアミン;ジエタノールアミン、ジプロパノールアミン、ジブタノールアミン等のジアルカノールアミンなどが挙げられる。これらのアミン化合物(b2)は、単独で用いることも2種以上を併用することもできる。なかでも、前記エポキシ樹脂(b1)との反応を制御しやすいことから、モノアルカノールアミン及びジアルカノールアミンを併用することが好ましい。 Examples of the amine compound (b2) include monoalkanolamines such as ethylethanolamine, ethanolamine, 4-amino-1-butanol and propanolamine; dialkanolamines such as diethanolamine, dipropanolamine and dibutanolamine. No. These amine compounds (b2) can be used alone or in combination of two or more. Among them, monoalkanolamine and dialkanolamine are preferably used in combination because the reaction with the epoxy resin (b1) can be easily controlled.
 前記モノアルカノールアミンと、前記ジアルカノールアミンを併用する場合は、前記エポキシ樹脂(b1)との反応を制御しやすいことから、前記モノアルカノールアミンのモル数と、前記ジアルカノールアミンのモル数の比[(モノアルカノールアミンのモル数)/(ジアルカノールアミンのモル数)]が、0.5~10の範囲であることが好ましい。 When the monoalkanolamine and the dialkanolamine are used in combination, the ratio of the number of moles of the monoalkanolamine to the number of moles of the dialkanolamine is easy to control the reaction with the epoxy resin (b1). [(Mol number of monoalkanolamine) / (mol number of dialkanolamine)] is preferably in the range of 0.5 to 10.
 前記アミン変性エポキシ樹脂(B)の製造方法は、前記エポキシ樹脂(b1)、前記アミン化合物(b2)を必須の反応原料とするものであれば特に限定されず、どのような方法にて製造してもよい。例えば、前記エポキシ樹脂(b1)及び前記アミン化合物(b2)を含む反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。なかでも、反応の制御が容易であることから、エポキシ樹脂(b1)を製造後、アミン化合物(b2)を反応させる方法が好ましい。該反応は、例えば、エポキシ樹脂(b1)とアミン化合物(b2)とを、50~150℃の温度範囲で反応させる方法等により行うことができる。 The method for producing the amine-modified epoxy resin (B) is not particularly limited as long as the epoxy resin (b1) and the amine compound (b2) are used as essential reaction raw materials. May be. For example, the reaction raw material containing the epoxy resin (b1) and the amine compound (b2) may be manufactured by a method of reacting all at once, or may be manufactured by a method of sequentially reacting the reaction raw materials. Among them, a method in which the epoxy resin (b1) is produced and then the amine compound (b2) is reacted is preferable because the reaction can be easily controlled. The reaction can be performed, for example, by a method in which the epoxy resin (b1) and the amine compound (b2) are reacted in a temperature range of 50 to 150 ° C.
 前記アミン変性エポキシ樹脂(B)の製造の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 In the production of the amine-modified epoxy resin (B), the production may be carried out in an organic solvent, if necessary, or a basic catalyst may be used, if necessary.
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as those described above can be used, and the organic solvents can be used alone or in combination of two or more.
 前記塩基性触媒としては、上述の塩基性触媒と同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, those similar to the above-described basic catalysts can be used, and the basic catalysts can be used alone or in combination of two or more.
 前記エポキシ樹脂(b1)と、前記アミン化合物(b2)との反応は、反応を制御しやすいことから、前記エポキシ樹脂(b1)が有するエポキシ基のモル数に対する、前記アミン化合物(b2)が有する活性水素のモル数の比[(活性水素のモル数)/(エポキシ基のモル数)]が、0.9~1.1の範囲で行うことが好ましく、0.95~1.03の範囲で行うことがより好ましい。 Since the reaction between the epoxy resin (b1) and the amine compound (b2) is easy to control, the amine compound (b2) has the mole ratio of the epoxy group of the epoxy resin (b1) with respect to the number of moles. The ratio of the number of moles of active hydrogen [(number of moles of active hydrogen) / (number of moles of epoxy group)] is preferably in the range of 0.9 to 1.1, and more preferably in the range of 0.95 to 1.03. More preferably,
 前記アミン変性エポキシ樹脂(B)の重量平均分子量(Mw)は、優れた基材密着性を有する酸基含有(メタ)アクリレート樹脂組成物が得られることから、5,000以上が好ましく、10,000~50,000の範囲がより好ましく、15,000~30,000の範囲がさらに好ましい。 The weight-average molecular weight (Mw) of the amine-modified epoxy resin (B) is preferably 5,000 or more, because an acid group-containing (meth) acrylate resin composition having excellent substrate adhesion can be obtained. The range is more preferably from 000 to 50,000, and even more preferably from 15,000 to 30,000.
 なお、本発明において、重量平均分子量(Mw)は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定した値を示す。 In the present invention, the weight average molecular weight (Mw) is a value measured by a gel permeation chromatography (GPC) method.
 前記アミン変性エポキシ樹脂(B)は、高い光感度及び優れたアルカリ現像性を有し、基材密着性及び伸度に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、酸基及び/または重合性不飽和結合含有置換基を有していてもよい。 The amine-modified epoxy resin (B) has high photosensitivity and excellent alkali developability, and is an acid group-containing (meth) acrylate resin composition capable of forming a cured product having excellent substrate adhesion and elongation. Because it is obtained, it may have an acid group and / or a substituent containing a polymerizable unsaturated bond.
 前記酸基としては、例えば、カルボキシル基、スルホン酸基、燐酸基等が挙げられる。これらの中でも優れたアルカリ現像性を発現することから、カルボキシル基が好ましい。 Examples of the acid group include a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Among these, a carboxyl group is preferred because of exhibiting excellent alkali developability.
 前記重合性不飽和結合含有置換基とは、重合性不飽和結合を少なくとも1つ有する置換基を意味し、具体的には、ビニル基、アリル基、(メタ)アクリロイル基等が挙げられる。これらの中でも高い光感度を発現することから、(メタ)アクリロイル基が好ましい。 The above-mentioned substituent having a polymerizable unsaturated bond means a substituent having at least one polymerizable unsaturated bond, and specific examples thereof include a vinyl group, an allyl group, and a (meth) acryloyl group. Among these, a (meth) acryloyl group is preferred because of exhibiting high photosensitivity.
 前記アミン変性エポキシ樹脂(B)の含有量は、前記酸基含有(メタ)アクリレート樹脂(A)の固形分100質量部に対して、固形分換算で0.5質量部以上40質量部以下であり、高い光感度及び優れたアルカリ現像性を有し、基材密着性及び伸度に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、1質量部以上が好ましく、1.5質量部以上がより好ましい。また、高い光感度及び優れたアルカリ現像性を有し、基材密着性及び伸度に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、30質量部以下が好ましい。 The content of the amine-modified epoxy resin (B) is 0.5 to 40 parts by mass in terms of solids based on 100 parts by mass of the solids of the acid group-containing (meth) acrylate resin (A). 1 part by mass, since an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation is obtained. Or more, more preferably 1.5 parts by mass or more. Further, since an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation is obtained, 30 parts by mass is obtained. The following is preferred.
 本発明の酸基含有(メタ)アクリレート樹脂組成物は、前記酸基含有(メタ)アクリレート樹脂(A)と、アミン変性エポキシ樹脂(B)以外のその他の樹脂成分を含有していてもよい。前記その他の樹脂成分としては、例えば、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂等のエポキシ樹脂に、(メタ)アクリル酸、必要に応じて不飽和モノカルボン酸無水物等を反応させて得られる、樹脂中に(メタ)アクリロイル基とを有する樹脂、各種の(メタ)アクリレートモノマー等が挙げられる。 酸 The acid group-containing (meth) acrylate resin composition of the present invention may contain other resin components other than the acid group-containing (meth) acrylate resin (A) and the amine-modified epoxy resin (B). As the other resin component, for example, bisphenol type epoxy resin, epoxy resin such as novolak type epoxy resin, (meth) acrylic acid, if necessary, obtained by reacting an unsaturated monocarboxylic anhydride and the like, Examples of the resin include a resin having a (meth) acryloyl group in the resin and various (meth) acrylate monomers.
 前記(メタ)アクリレートモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の脂肪族モノ(メタ)アクリレート化合物;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチルモノ(メタ)アクリレート等の脂環型モノ(メタ)アクリレート化合物;グリシジル(メタ)アクリレート、テトラヒドロフルフリルアクリレート等の複素環型モノ(メタ)アクリレート化合物;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、ベンジルベンジル(メタ)アクリレート、フェニルフェノキシエチル(メタ)アクリレート等の芳香族モノ(メタ)アクリレート化合物等のモノ(メタ)アクリレート化合物:前記各種のモノ(メタ)アクリレートモノマーの分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性モノ(メタ)アクリレート化合物;前記各種のモノ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性モノ(メタ)アクリレート化合物;エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の脂肪族ジ(メタ)アクリレート化合物;1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、ノルボルナンジ(メタ)アクリレート、ノルボルナンジメタノールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の脂環型ジ(メタ)アクリレート化合物;ビフェノールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート等の芳香族ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入したポリオキシアルキレン変性ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性ジ(メタ)アクリレート化合物;トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等の脂肪族トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性トリ(メタ)アクリレート化合物;ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の脂肪族ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した4官能以上の(ポリ)オキシアルキレン変性ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入した4官能以上のラクトン変性ポリ(メタ)アクリレート化合物などが挙げられる。 Examples of the (meth) acrylate monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, and 2-ethylhexyl. Aliphatic mono (meth) acrylate compounds such as (meth) acrylate and octyl (meth) acrylate; alicyclic mono (meth) acrylate compounds such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and adamantyl mono (meth) acrylate A heterocyclic mono (meth) acrylate compound such as glycidyl (meth) acrylate or tetrahydrofurfuryl acrylate; benzyl (meth) acrylate, phenyl (meth) acrylate, phenylben (Meth) acrylate, phenoxy (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, phenoxybenzyl (meth) acrylate, benzylbenzyl ( Mono (meth) acrylate compounds such as aromatic mono (meth) acrylate compounds such as meth) acrylate and phenylphenoxyethyl (meth) acrylate: (poly) oxyethylene chains in the molecular structure of the various mono (meth) acrylate monomers (Poly) oxyalkylene-modified mono (meth) acrylate compounds into which polyoxyalkylene chains such as (poly) oxypropylene chains and (poly) oxytetramethylene chains have been introduced; Lactone-modified mono (meth) acrylate compound in which a (poly) lactone structure is introduced into the molecular structure of the compound; ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol Aliphatic di (meth) acrylate compounds such as di (meth) acrylate and neopentyl glycol di (meth) acrylate; 1,4-cyclohexanedimethanol di (meth) acrylate, norbornane di (meth) acrylate, norbornane dimethanol di ( Alicyclic di (meth) acrylate compounds such as meth) acrylate, dicyclopentanyl di (meth) acrylate, and tricyclodecane dimethanol di (meth) acrylate; biphenol di (meth) acrylate, bisphenol Aromatic di (meth) acrylate compounds such as rudi (meth) acrylate; (poly) oxyethylene chains, (poly) oxypropylene chains, (poly) oxytetramethylene in the molecular structure of the above various di (meth) acrylate compounds Polyoxyalkylene-modified di (meth) acrylate compound into which a (poly) oxyalkylene chain such as a chain has been introduced; lactone-modified di (meth) acrylate having a (poly) lactone structure introduced into the molecular structure of the above-mentioned various di (meth) acrylate compounds A) an acrylate compound; an aliphatic tri (meth) acrylate compound such as trimethylolpropane tri (meth) acrylate and glycerin tri (meth) acrylate; and a (poly) oxyethylene chain in the molecular structure of the aliphatic tri (meth) acrylate compound. , (Poly) oxypropylene chains, (poly) oxyte (Poly) oxyalkylene-modified tri (meth) acrylate compounds having a (poly) oxyalkylene chain such as a ramethylene chain; lactone modified by introducing a (poly) lactone structure into the molecular structure of the aliphatic tri (meth) acrylate compound Tri (meth) acrylate compounds; tetra- or higher-functional aliphatic poly (meth) acrylate compounds such as pentaerythritol tetra (meth) acrylate, ditrimethylolpropanetetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate; 4- or more-functional (poly) in which a (poly) oxyalkylene chain such as a (poly) oxyethylene chain, a (poly) oxypropylene chain, and a (poly) oxytetramethylene chain is introduced into the molecular structure of the poly (meth) acrylate compound. Oxyalkylene-modified poly Meth) acrylate compound; and the aliphatic poly (meth) acrylate compound in the molecular structure of (poly) lactone 4 or more functional introducing the lactone structure-modified poly (meth) acrylate compounds.
 本発明の酸基含有(メタ)アクリレート樹脂組成物は、光重合開始剤を添加することにより硬化性樹脂組成物として用いることができる。 酸 The acid group-containing (meth) acrylate resin composition of the present invention can be used as a curable resin composition by adding a photopolymerization initiator.
 前記光重合開始剤としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、チオキサントン及びチオキサントン誘導体、2,2′-ジメトキシ-1,2-ジフェニルエタン-1-オン、ジフェニル(2,4,6-トリメトキシベンゾイル)ホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン等が挙げられる。 Examples of the photopolymerization initiator include 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2- Hydroxy-2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2'-dimethoxy-1,2-diphenylethan-1-one, diphenyl (2,4,6-trimethoxybenzoyl) phosphine Oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1- On, 2-benzyl-2-dimethylamino-1- (4-morpho Nofeniru) -1-butanone, and the like.
 前記その他の光重合開始剤の市販品としては、例えば、「Omnirad-1173」、「Omnirad-184」、「Omnirad-127」、「Omnirad-2959」、「Omnirad-369」、「Omnirad-379」、「Omnirad-907」、「Omnirad-4265」、「Omnirad-1000」、「Omnirad-651」、「Omnirad-TPO」、「Omnirad-819」、「Omnirad-2022」、「Omnirad-2100」、「Omnirad-754」、「Omnirad-784」、「Omnirad-500」、「Omnirad-81」(IGM社製)、「カヤキュア-DETX」、「カヤキュア-MBP」、「カヤキュア-DMBI」、「カヤキュア-EPA」、「カヤキュア-OA」(日本化薬株式会社製)、「バイキュア-10」、「バイキュア-55」(ストウファ・ケミカル社製)、「トリゴナルP1」(アクゾ社製)、「サンドレイ1000」(サンドズ社製)、「ディープ」(アプジョン社製)、「クオンタキュア-PDO」、「クオンタキュア-ITX」、「クオンタキュア-EPD」(ワードブレンキンソップ社製)、「Runtecure-1104」(Runtec社製)等が挙げられる。 Commercial products of the other photopolymerization initiators include, for example, “Omnirad-1173”, “Omnirad-184”, “Omnirad-127”, “Omnirad-2959”, “Omnirad-369”, “Omnirad-379” "Omnirad-907", "Omnirad-4265", "Omnirad-1000", "Omnirad-651", "Omnirad-TPO", "Omnirad-819", "Omnirad-2022", "Omnirad-2100", "Omnirad-2100", "Omnirad-2100", "Omnirad-2100" Omnirad-754, Omnirad-784, Omnirad-500, Omnirad-81 (manufactured by IGM), Kayacure-DETX, Kayacure-MBP, Kayacure-DMBI, Kayacure -EPA, "Kayacure-OA" (manufactured by Nippon Kayaku Co., Ltd.), "Vicure-10", "Bicure-55" (manufactured by Stouffa Chemical), "Trigonal P1" (manufactured by Akzo), "Sandrey 1000 ("Sands"), "Deep" ("Apjohn"), "Quantum Cure-PDO", "Quantum Cure-ITX", "Quantum Cure-EPD" (Made by Word Brenkin Sop), "Runtecure-1104" (Manufactured by Runtec) and the like.
 前記光重合開始剤の添加量は、例えば、前記硬化性樹脂組成物中に、1~20質量%の範囲で用いることが好ましい。 添加 The amount of the photopolymerization initiator to be added is preferably, for example, in the range of 1 to 20% by mass in the curable resin composition.
 本発明の硬化性樹脂組成物は、塗工粘度調節等の目的で有機溶剤を含有してもよく、その種類や添加量は、所望の性能に応じて適宜選択及び調整される。 硬化 The curable resin composition of the present invention may contain an organic solvent for the purpose of adjusting the coating viscosity and the like, and the type and amount of the organic solvent are appropriately selected and adjusted according to the desired performance.
 前記有機溶剤としては、例えば、メチルエチルケトン、アセトン、イソブチルケトン等のケトン溶剤;テトラヒドロフラン、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル溶剤;トルエン、キシレン、ソルベントナフサ等の芳香族溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環族溶剤;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテル等のアルコール溶剤;アルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテルアセテート等のグリコールエーテル溶剤などが挙げられる。これらの有機溶剤は、単独で用いることも2種以上を併用することもできる。 Examples of the organic solvent include ketone solvents such as methyl ethyl ketone, acetone and isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; and aromatic solvents such as toluene, xylene and solvent naphtha. Alicyclic solvents such as cyclohexane and methylcyclohexane; alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol and propylene glycol monomethyl ether; alkylene glycol monoalkyl ethers, dialkylene glycol monoalkyl ethers and dialkylene glycols Glycol ether solvents such as monoalkyl ether acetate; These organic solvents can be used alone or in combination of two or more.
 また、本発明の硬化性樹脂組成物には、必要に応じて、必要に応じて、硬化剤、硬化促進剤、有機溶剤、無機微粒子やポリマー微粒子、顔料、消泡剤、粘度調整剤、レベリング剤、難燃剤、保存安定化剤等の各種添加剤を含有することもできる。 In addition, the curable resin composition of the present invention may contain, if necessary, a curing agent, a curing accelerator, an organic solvent, inorganic or polymer fine particles, a pigment, an antifoaming agent, a viscosity modifier, and a leveling agent. Various additives such as an agent, a flame retardant, and a storage stabilizer can also be contained.
 前記硬化剤としては、前記酸基含有(メタ)アクリレート樹脂中のカルボキシ基と反応し得る官能基を有するものであれば特に制限されず、例えば、エポキシ樹脂が挙げられる。前記エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フルオレン型エポキシ樹脂、キサンテン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂、トリヒドロキシベンゼン型エポキシ樹脂、オキサゾリドン型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、高い光感度及び優れたアルカリ現像性を有し、基材密着性及び伸度に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂が好ましく、軟化点が20~120℃の範囲であるものが特に好ましい。 The curing agent is not particularly limited as long as it has a functional group capable of reacting with a carboxy group in the acid group-containing (meth) acrylate resin, and examples thereof include an epoxy resin. As the epoxy resin, for example, bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, Bisphenol novolak epoxy resin, naphthol novolak epoxy resin, naphthol-phenol co-condensed novolak epoxy resin, naphthol-cresol co-condensed novolak epoxy resin, phenol aralkyl epoxy resin, naphthol aralkyl epoxy resin, dicyclopentadiene-phenol addition Reactive epoxy resin, biphenyl aralkyl epoxy resin, fluorene epoxy resin, xanthene epoxy resin, dihydric Kishibenzen type epoxy resin, trihydroxybenzene type epoxy resin, and oxazolidone type epoxy resins and the like. These epoxy resins can be used alone or in combination of two or more. Further, among these, an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent alkali developability and capable of forming a cured product excellent in substrate adhesion and elongation can be obtained. Novolak epoxy resins such as phenol novolak epoxy resin, cresol novolak epoxy resin, bisphenol novolak epoxy resin, naphthol novolak epoxy resin, naphthol-phenol co-condensed novolak epoxy resin, and naphthol-cresol co-condensed novolak epoxy resin Those having a softening point in the range of 20 to 120 ° C. are particularly preferred.
 前記硬化促進剤としては、前記硬化剤の硬化反応を促進するものであり、前記硬化剤としてエポキシ樹脂を用いる場合には、リン系化合物、アミン系化合物、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。これらの硬化促進剤は、単独で用いることも2種以上を併用することもできる。また、前記硬化促進剤の添加量は、例えば、前記硬化剤100質量部に対し1~10質量部の範囲で用いることが好ましい。 The curing accelerator promotes a curing reaction of the curing agent. When an epoxy resin is used as the curing agent, a phosphorus compound, an amine compound, imidazole, an organic acid metal salt, a Lewis acid, Amine complex salts and the like. These curing accelerators can be used alone or in combination of two or more. Further, the addition amount of the curing accelerator is preferably, for example, in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the curing agent.
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as those described above can be used, and the organic solvents can be used alone or in combination of two or more.
 本発明の硬化物は、前記硬化性樹脂組成物に、活性エネルギー線を照射することで得ることができる。前記活性エネルギー線としては、例えば、紫外線、電子線、α線、β線、γ線等の電離放射線が挙げられる。また、前記活性エネルギー線として、紫外線を用いる場合、紫外線による硬化反応を効率よく行う上で、窒素ガス等の不活性ガス雰囲気下で照射してもよく、空気雰囲気下で照射してもよい。 硬化 The cured product of the present invention can be obtained by irradiating the curable resin composition with an active energy ray. Examples of the active energy rays include ionizing radiation such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. When ultraviolet rays are used as the active energy rays, irradiation may be performed in an atmosphere of an inert gas such as nitrogen gas or in an air atmosphere in order to efficiently perform a curing reaction by the ultraviolet rays.
 紫外線発生源としては、実用性、経済性の面から紫外線ランプが一般的に用いられている。具体的には、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ガリウムランプ、メタルハライドランプ、太陽光、LED等が挙げられる。 紫外線 Ultraviolet lamps are generally used as a source of ultraviolet light in terms of practicality and economy. Specific examples include a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a gallium lamp, a metal halide lamp, sunlight, and an LED.
 前記活性エネルギー線の積算光量は、特に制限されないが、50~5,000mJ/cmであることが好ましく、300~1,000mJ/cmであることがより好ましい。積算光量が上記範囲であると、未硬化部分の発生の防止または抑制ができることから好ましい。 The integrated light amount of the active energy ray is not particularly limited, but is preferably 50 to 5,000 mJ / cm 2 , and more preferably 300 to 1,000 mJ / cm 2 . It is preferable that the integrated light amount is within the above range, since the occurrence of uncured portions can be prevented or suppressed.
 なお、前記活性エネルギー線の照射は、一段階で行ってもよいし、二段階以上に分けて行ってもよい。 The irradiation with the active energy ray may be performed in one stage, or may be performed in two or more stages.
 また、本発明の硬化性樹脂組成物を硬化させて得られた硬化物は、優れた基材密着性を有しており、また、伸度にも優れることから、例えば、半導体デバイス用途における、ソルダーレジスト、層間絶縁材料、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や、集積回路素子と回路基板の接着層として好適に用いることができる。また、LCD、OELDに代表される薄型ディスプレイ用途における、薄膜トランジスタ保護膜、液晶カラーフィルタ保護膜、カラーフィルタ用顔料レジスト、ブラックマトリックス用レジスト、スペーサー等に好適に用いることができる。 Further, the cured product obtained by curing the curable resin composition of the present invention has excellent substrate adhesion, and also has excellent elongation, for example, in semiconductor device applications, It can be suitably used as a package adhesive layer for a solder resist, an interlayer insulating material, a package material, an underfill material, a circuit element, or the like, or an adhesive layer between an integrated circuit element and a circuit board. Further, it can be suitably used for a thin film transistor protective film, a liquid crystal color filter protective film, a pigment resist for a color filter, a resist for a black matrix, a spacer, etc. in a thin display application represented by LCD and OELD.
 本発明のソルダーレジスト用樹脂材料は、前記硬化性樹脂組成物からなるものである。 樹脂 The resin material for a solder resist of the present invention comprises the curable resin composition.
 本発明のレジスト部材は、例えば、前記ソルダーレジスト用樹脂材料を基材上に塗布し、60~100℃程度の温度範囲で有機溶剤を揮発乾燥させた後、所望のパターンが形成されたフォトマスクを通して活性エネルギー線にて露光させ、アルカリ水溶液にて未露光部を現像し、更に140~180℃程度の温度範囲で加熱硬化させて得ることができる。 The resist member of the present invention is, for example, a photomask in which a desired pattern is formed after applying the resin material for a solder resist on a substrate, evaporating and drying an organic solvent in a temperature range of about 60 to 100 ° C. Through exposure to active energy rays, developing the unexposed portions with an aqueous alkali solution, and further heating and curing at a temperature in the range of about 140 to 180 ° C.
 前記基材としては、例えば、銅箔、アルミニウム箔等の金属箔などが挙げられる。 基材 Examples of the base include metal foils such as copper foil and aluminum foil.
 以下、実施例と比較例とにより、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
 なお、本実施例において、重量平均分子量(Mw)は、ゲルパーミッションクロマトグラフ(GPC)を用い、下記の条件により測定した値である。 In this example, the weight average molecular weight (Mw) is a value measured using a gel permission chromatograph (GPC) under the following conditions.
 測定装置 ; 東ソー株式会社製 HLC-8220
 カラム  ; 東ソー株式会社製ガードカラムHXL-H
       +東ソー株式会社製 TSKgel G5000HXL
       +東ソー株式会社製 TSKgel G4000HXL
       +東ソー株式会社製 TSKgel G3000HXL
       +東ソー株式会社製 TSKgel G2000HXL
 検出器  ; RI(示差屈折計)
 データ処理:東ソー株式会社製 SC-8010
 測定条件: カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    1.0ml/分
 標準   ;ポリスチレン
 試料   ;樹脂固形分換算で0.4質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
Measuring device: HLC-8220 manufactured by Tosoh Corporation
Column: Guard column H XL- H manufactured by Tosoh Corporation
+ TSKgel G5000HXL manufactured by Tosoh Corporation
+ TSKgel G4000HXL manufactured by Tosoh Corporation
+ TSKgel G3000HXL manufactured by Tosoh Corporation
+ TSKgel G2000HXL manufactured by Tosoh Corporation
Detector: RI (differential refractometer)
Data processing: SC-8010 manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard; polystyrene sample; tetrahydrofuran solution of 0.4% by mass in terms of resin solid content filtered through a microfilter (100 μl)
(合成例1:酸基含有(メタ)アクリレート樹脂(A-1)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート101質量部を入れ、オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」、エポキシ当量:214g/当量)428質量部を溶解し、酸化防止剤としてジブチルヒドロキシトルエン4質量部、熱重合禁止剤としてメトキノン0.4質量部加えた後、アクリル酸144質量部、トリフェニルホスフィン1.6質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行なった。その後、ジエチレングリコールモノエチルエーテルアセテート311質量部、テトラヒドロ無水フタル酸160質量部を加え110℃で2.5時間反応させて、不揮発分64%の酸基含有(メタ)アクリレート樹脂(A-1)を得た。この酸基含有(メタ)アクリレート樹脂(A-1)の固形分酸価は85mgKOH/gであり、重量平均分子量は、8540であった。なお、酸価は、JIS K 0070(1992)の中和滴定法に基づいて測定した値である。
(Synthesis Example 1: Production of acid group-containing (meth) acrylate resin (A-1))
A flask equipped with a thermometer, a stirrer, and a reflux condenser was charged with 101 parts by mass of diethylene glycol monoethyl ether acetate, and an ortho-cresol novolak-type epoxy resin ("EPICLON N-680" manufactured by DIC Corporation, epoxy equivalent: 214 g / 428 parts by weight), 4 parts by weight of dibutylhydroxytoluene as an antioxidant, and 0.4 parts by weight of methoquinone as a thermal polymerization inhibitor, and then 144 parts by weight of acrylic acid and 1.6 parts by weight of triphenylphosphine. The mixture was added, and the esterification reaction was performed at 120 ° C. for 10 hours while blowing air. Thereafter, 311 parts by weight of diethylene glycol monoethyl ether acetate and 160 parts by weight of tetrahydrophthalic anhydride were added and reacted at 110 ° C. for 2.5 hours to obtain an acid group-containing (meth) acrylate resin (A-1) having a nonvolatile content of 64%. Obtained. The acid value of the solid content of the acid group-containing (meth) acrylate resin (A-1) was 85 mgKOH / g, and the weight average molecular weight was 8,540. The acid value is a value measured based on the neutralization titration method of JIS K0070 (1992).
(合成例2:酸基含有(メタ)アクリレート樹脂(A-2)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート392質量部、イソホロンジイソシアネートのイソシアヌレート変性体(EVONIK社製「VESTANAT T-1890/100」、イソシアネート基含有量17.2質量%)(以下、「T-1890」と略記する。)244質量部、無水トリメリット酸192質量部、ジブチルヒドロキシトルエン1.0質量部を加えて溶解させた。窒素雰囲気下、160℃で5時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。酸無水物基非開環条件で測定した固形分酸価は160mgKOH/gであった。メトキノン0.3質量部、ペンタエリスリトールポリアクリレート混合物(東亜合成株式会社製「アロニックスM-306」、ペンタエリスリトールトリアクリレート含有量約67%、水酸基価159.7mgKOH/g)(以下、「M-306」と略記する。)172質量部及びトリフェニルホスフィン3.6質量部を添加し、空気を吹き込みながら110℃で5時間反応させた。次いで、グリシジルメタクリレート163質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸112質量部、ジエチレングリコールモノメチルエーテルアセテート122質量部を加えて110℃で5時間反応させ、不揮発分が62.1質量%の酸基及び重合性不飽和基を有するアミドイミド樹脂(A-2)を得た。このアミドイミド樹脂(A-2)の固形分酸価は79mgKOH/gであり、重量平均分子量は、3790であった。
(Synthesis Example 2: Production of acid group-containing (meth) acrylate resin (A-2))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 392 parts by mass of diethylene glycol monomethyl ether acetate, an isocyanurate-modified isophorone diisocyanate (“VESTANAT T-1890 / 100” manufactured by EVONIK, has an isocyanate group content of 17.) 244 parts by mass, 192 parts by mass of trimellitic anhydride, and 1.0 part by mass of dibutylhydroxytoluene were added and dissolved. The reaction was carried out at 160 ° C. for 5 hours in a nitrogen atmosphere, and it was confirmed that the isocyanate group content was 0.1% by mass or less. The acid value of the solid content measured under the condition that the acid anhydride group was not ring-opened was 160 mgKOH / g. Methoquinone 0.3 parts by mass, pentaerythritol polyacrylate mixture ("Aronix M-306" manufactured by Toagosei Co., Ltd., pentaerythritol triacrylate content about 67%, hydroxyl value 159.7 mg KOH / g) (hereinafter, "M-306") 172 parts by mass and 3.6 parts by mass of triphenylphosphine were added, and the mixture was reacted at 110 ° C. for 5 hours while blowing air. Next, 163 parts by mass of glycidyl methacrylate was added and reacted at 110 ° C. for 5 hours. Further, 112 parts by mass of succinic anhydride and 122 parts by mass of diethylene glycol monomethyl ether acetate were added, and reacted at 110 ° C. for 5 hours. The amide imide resin (A) having a non-volatile content of 62.1% by mass and having an acid group and a polymerizable unsaturated group (A -2) was obtained. The acid value of the solid content of this amide imide resin (A-2) was 79 mgKOH / g, and the weight average molecular weight was 3790.
(合成例3:アミン変性エポキシ樹脂(B-1)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート1117質量部を入れ、ビスフェノールA型エポキシ樹脂(DIC株式会社製「EPICLON 850-S」、エポキシ当量:187g/当量)374質量部、ビスフェノールA215質量部、テトラメチルアンモニウムクロライド0.6質量部加えた後、窒素を吹き込みながら145℃で8時間反応を行なった。その後、ジエタノールアミン12質量部を加え140℃で4時間反応させて、アミン変性エポキシ樹脂(B-1)を得た。このアミン変性エポキシ樹脂(B-1)の不揮発分は35%であり、重量平均分子量(Mw)は23,000であった。また、ビスフェノールA型エポキシ樹脂が有するエポキシ基のモル数に対する、ジエタノールアミンが有する活性水素のモル数の比[(活性水素のモル数)/(エポキシ基のモル数)]は、1.00である。
(Synthesis Example 3: Production of amine-modified epoxy resin (B-1))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 1117 parts by mass of diethylene glycol monoethyl ether acetate was put, and a bisphenol A type epoxy resin ("EPICLON 850-S" manufactured by DIC Corporation, epoxy equivalent: 187 g / equivalent) 374 parts by mass, 215 parts by mass of bisphenol A, and 0.6 parts by mass of tetramethylammonium chloride were added, and the mixture was reacted at 145 ° C. for 8 hours while blowing in nitrogen. Thereafter, 12 parts by mass of diethanolamine was added and reacted at 140 ° C. for 4 hours to obtain an amine-modified epoxy resin (B-1). The nonvolatile content of this amine-modified epoxy resin (B-1) was 35%, and the weight average molecular weight (Mw) was 23,000. Further, the ratio of the number of moles of active hydrogen of diethanolamine to the number of moles of epoxy group of the bisphenol A type epoxy resin [(number of moles of active hydrogen) / (number of moles of epoxy group)] is 1.00. .
(合成例4:アミン変性エポキシ樹脂(B-2)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート1117質量部を入れ、ビスフェノールA型エポキシ樹脂(DIC株式会社製「EPICLON 850-S」、エポキシ当量:187g/当量)374質量部、ビスフェノールA215質量部、テトラメチルアンモニウムクロライド0.6質量部加えた後、窒素を吹き込みながら145℃で8時間反応を行なった。その後、ジエタノールアミン12質量部を加え140℃で4時間反応させて、アミン変性エポキシ樹脂を得た。次いで、無水コハク酸97質量部、トリフェニルホスフィン2.1質量部を添加し、窒素雰囲気下において110℃で3時間反応させて、酸基を有するアミン変性エポキシ樹脂(B-2)を得た。このアミン変性エポキシ樹脂(B-2)の不揮発分は38.4%であり、固形分酸価は80mgKOH/gであり、重量平均分子量(Mw)は25,500であった。また、ビスフェノールA型エポキシ樹脂が有するエポキシ基のモル数に対する、ジエタノールアミンが有する活性水素のモル数の比[(活性水素のモル数)/(エポキシ基のモル数)]は、1.00である。
(Synthesis Example 4: Production of amine-modified epoxy resin (B-2))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 1117 parts by mass of diethylene glycol monoethyl ether acetate was put, and a bisphenol A type epoxy resin ("EPICLON 850-S" manufactured by DIC Corporation, epoxy equivalent: 187 g / equivalent) 374 parts by mass, 215 parts by mass of bisphenol A, and 0.6 parts by mass of tetramethylammonium chloride were added, and the mixture was reacted at 145 ° C. for 8 hours while blowing in nitrogen. Thereafter, 12 parts by mass of diethanolamine was added and reacted at 140 ° C. for 4 hours to obtain an amine-modified epoxy resin. Next, 97 parts by mass of succinic anhydride and 2.1 parts by mass of triphenylphosphine were added and reacted at 110 ° C. for 3 hours under a nitrogen atmosphere to obtain an amine-modified epoxy resin (B-2) having an acid group. . The nonvolatile content of this amine-modified epoxy resin (B-2) was 38.4%, the acid value of the solid content was 80 mgKOH / g, and the weight average molecular weight (Mw) was 25,500. Further, the ratio of the number of moles of active hydrogen of diethanolamine to the number of moles of epoxy group of the bisphenol A type epoxy resin [(number of moles of active hydrogen) / (number of moles of epoxy group)] is 1.00. .
(合成例5:アミン変性エポキシ樹脂(B-3)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート1117質量部を入れ、ビスフェノールA型エポキシ樹脂(DIC株式会社製「EPICLON 850-S」、エポキシ当量:187g/当量)374質量部、ビスフェノールA215質量部、テトラメチルアンモニウムクロライド0.6質量部加えた後、窒素を吹き込みながら145℃で8時間反応を行なった。その後、ジエタノールアミン12質量部を加え140℃で4時間反応させて、アミン変性エポキシ樹脂を得た。次いで、無水コハク酸135質量部、トリフェニルホスフィン3.9質量部を添加し、窒素雰囲気下において110℃で3時間反応させた。その後、グリシジルメタクリレート38質量部とメトキノン0.4質量部添加し、空気を吹き込みながら120℃で5時間反応させて、酸基及び重合性不飽和結合含有置換基を有するアミン変性エポキシ樹脂(B-3)を得た。このアミン変性エポキシ樹脂(B-3)の不揮発分は40.9%であり、固形分酸価は80mgKOH/gであり、重量平均分子量(Mw)は26,900であった。また、ビスフェノールA型エポキシ樹脂が有するエポキシ基のモル数に対する、ジエタノールアミンが有する活性水素のモル数の比[(活性水素のモル数)/(エポキシ基のモル数)]は、1.00である。
(Synthesis Example 5: Production of amine-modified epoxy resin (B-3))
A flask equipped with a thermometer, a stirrer, and a reflux condenser was charged with 1117 parts by mass of diethylene glycol monoethyl ether acetate, and a bisphenol A type epoxy resin ("EPICLON 850-S" manufactured by DIC Corporation, epoxy equivalent: 187 g / equivalent 374 parts by mass, 215 parts by mass of bisphenol A, and 0.6 parts by mass of tetramethylammonium chloride were added, and the mixture was reacted at 145 ° C. for 8 hours while blowing in nitrogen. Thereafter, 12 parts by mass of diethanolamine was added and reacted at 140 ° C. for 4 hours to obtain an amine-modified epoxy resin. Next, 135 parts by mass of succinic anhydride and 3.9 parts by mass of triphenylphosphine were added, and reacted at 110 ° C. for 3 hours under a nitrogen atmosphere. Thereafter, 38 parts by mass of glycidyl methacrylate and 0.4 part by mass of methoquinone were added, and the mixture was reacted at 120 ° C. for 5 hours while blowing in air to obtain an amine-modified epoxy resin having an acid group and a substituent having a polymerizable unsaturated bond (B- 3) was obtained. The nonvolatile content of this amine-modified epoxy resin (B-3) was 40.9%, the acid value of the solid component was 80 mgKOH / g, and the weight average molecular weight (Mw) was 26,900. Further, the ratio of the number of moles of active hydrogen of diethanolamine to the number of moles of epoxy group of the bisphenol A type epoxy resin [(number of moles of active hydrogen) / (number of moles of epoxy group)] is 1.00. .
(合成例6:アミン変性エポキシ樹脂(B-4)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート836質量部を入れ、ビスフェノールA型エポキシ樹脂(DIC株式会社製「EPICLON 850-S」、エポキシ当量:187g/当量)374質量部、ビスフェノールA150質量部、テトラメチルアンモニウムクロライド0.3質量部加えた後、窒素を吹き込みながら145℃で4時間反応を行なった。その後、エタノールアミン16.7質量部、ジエタノールアミン14.2質量部を加え110℃で6時間反応させて、アミン変性エポキシ樹脂(B-4)を得た。このアミン変性エポキシ樹脂(B-4)の不揮発分は40%であり、重量平均分子量(Mw)は15,400であった。また、前記エタノールアミンのモル数と、前記ジエタノールアミンのモル数の比[(エタノールアミンのモル数)/(ジエタノールアミンのモル数)]は、2.03であり、ビスフェノールA型エポキシ樹脂が有するエポキシ基のモル数に対する、エタノールアミン及びジエタノールアミンが有する活性水素の合計モル数の比[(活性水素のモル数)/(エポキシ基のモル数)]は、0.999である。
(Synthesis Example 6: Production of amine-modified epoxy resin (B-4))
A flask equipped with a thermometer, a stirrer, and a reflux condenser was charged with 836 parts by mass of diethylene glycol monoethyl ether acetate, and a bisphenol A type epoxy resin ("EPICLON 850-S" manufactured by DIC Corporation, epoxy equivalent: 187 g / equivalent After adding 374 parts by mass, 150 parts by mass of bisphenol A and 0.3 parts by mass of tetramethylammonium chloride, the mixture was reacted at 145 ° C. for 4 hours while blowing nitrogen. Thereafter, 16.7 parts by mass of ethanolamine and 14.2 parts by mass of diethanolamine were added and reacted at 110 ° C. for 6 hours to obtain an amine-modified epoxy resin (B-4). The nonvolatile content of this amine-modified epoxy resin (B-4) was 40%, and the weight average molecular weight (Mw) was 15,400. The ratio of the number of moles of the ethanolamine to the number of moles of the diethanolamine [(number of moles of ethanolamine) / (number of moles of diethanolamine)] is 2.03, and the epoxy group of the bisphenol A type epoxy resin is The ratio [(moles of active hydrogen) / (moles of epoxy group)] of the total number of active hydrogens of ethanolamine and diethanolamine to the number of moles of 0.999 is 0.999.
(合成例7:アミン変性エポキシ樹脂(B-5)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、合成例6で得られたアミン変性エポキシ樹脂(B-4)200質量部を入れ、無水コハク酸13質量部、トリフェニルホスフィン0.3質量部を添加し、窒素雰囲気下において110℃で3時間反応させて、酸基を有するアミン変性エポキシ樹脂(B-5)を得た。このアミン変性エポキシ樹脂(B-5)の不揮発分は43.6%であり、固形分酸価は80mgKOH/gであり、重量平均分子量(Mw)は16,100であった。
(Synthesis Example 7: Production of amine-modified epoxy resin (B-5))
A flask equipped with a thermometer, a stirrer, and a reflux condenser was charged with 200 parts by mass of the amine-modified epoxy resin (B-4) obtained in Synthesis Example 6, 13 parts by mass of succinic anhydride, and 0.1% of triphenylphosphine. 3 parts by mass were added and reacted at 110 ° C. for 3 hours under a nitrogen atmosphere to obtain an amine-modified epoxy resin (B-5) having an acid group. The nonvolatile content of this amine-modified epoxy resin (B-5) was 43.6%, the acid value of the solid content was 80 mgKOH / g, and the weight average molecular weight (Mw) was 16,100.
(合成例8:アミン変性エポキシ樹脂(B-6)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート1122質量部を入れ、ビスフェノールA型エポキシ樹脂(DIC株式会社製「EPICLON 850-S」、エポキシ当量:187g/当量)374質量部、ビスフェノールA215質量部、テトラメチルアンモニウムクロライド0.6質量部加えた後、窒素を吹き込みながら145℃で8時間反応を行なった。その後、ジイソプロパノールアミン15.2質量部を加え140℃で4時間反応させて、アミン変性エポキシ樹脂(B-6)を得た。このアミン変性エポキシ樹脂(B-6)の不揮発分は35%であり、重量平均分子量(Mw)は23,600であった。また、ビスフェノールA型エポキシ樹脂が有するエポキシ基のモル数に対する、ジイソプロパノールアミンが有する活性水素のモル数の比[(活性水素のモル数)/(エポキシ基のモル数)]は、1.00である。
(Synthesis Example 8: Production of amine-modified epoxy resin (B-6))
A flask equipped with a thermometer, a stirrer, and a reflux condenser was charged with 1122 parts by mass of diethylene glycol monoethyl ether acetate, and a bisphenol A type epoxy resin ("EPICLON 850-S" manufactured by DIC Corporation, epoxy equivalent: 187 g / equivalent 374 parts by mass, 215 parts by mass of bisphenol A, and 0.6 parts by mass of tetramethylammonium chloride were added, and the mixture was reacted at 145 ° C. for 8 hours while blowing in nitrogen. Thereafter, 15.2 parts by mass of diisopropanolamine was added and reacted at 140 ° C. for 4 hours to obtain an amine-modified epoxy resin (B-6). The nonvolatile content of this amine-modified epoxy resin (B-6) was 35%, and the weight average molecular weight (Mw) was 23,600. The ratio of the number of moles of active hydrogen of diisopropanolamine to the number of moles of epoxy group of the bisphenol A type epoxy resin [(mol of active hydrogen) / (mol of epoxy group)] is 1.00. It is.
(実施例1:硬化性樹脂組成物(1)の調製)
 合成例1で得た酸基(メタ)アクリレート樹脂(A-1)156.3質量部(固形分100質量部)と、合成例3で得たアミン変性エポキシ樹脂(B-1)31.1質量部(固形分10.9質量部)とを混合して酸基含有(メタ)アクリレート樹脂組成物(1)を得た。次いで、得られた酸基含有(メタ)アクリレート樹脂組成物(1)187.4質量部(固形分110.9質量部)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)38.9質量部と、ジエチレングリコールモノエチルエーテルアセテート20.9質量部と、光重合開始剤(IGM社製「Omnirad 907」)5.6質量部とを配合し、ロールミルにより混錬して硬化性樹脂組成物(1)を得た。
(Example 1: Preparation of curable resin composition (1))
156.3 parts by mass (100 parts by mass of solid content) of the acid group (meth) acrylate resin (A-1) obtained in Synthesis Example 1 and the amine-modified epoxy resin (B-1) 31.1 obtained in Synthesis Example 3 By mass (solid content: 10.9 parts by mass) to obtain an acid group-containing (meth) acrylate resin composition (1). Next, 187.4 parts by mass (solid content: 110.9 parts by mass) of the obtained acid group-containing (meth) acrylate resin composition (1) and an ortho-cresol novolak-type epoxy resin ("EPICLON" manufactured by DIC Corporation) as a curing agent. N-680 "), 38.9 parts by mass, diethylene glycol monoethyl ether acetate (20.9 parts by mass), and a photopolymerization initiator (IGN Corp.," Omnirad 907 "), 5.6 parts by mass, were mixed by a roll mill. This was cured to obtain a curable resin composition (1).
(実施例2~11:硬化性樹脂組成物(2)~(11)の調製)
 酸基含有(メタ)アクリレート樹脂(A-1)、及びアミン変性エポキシ樹脂を、表1に示した組成及び配合量に変更した以外は、実施例1と同様の方法にて硬化性樹脂組成物(2)~(11)を得た。
(Examples 2 to 11: Preparation of curable resin compositions (2) to (11))
A curable resin composition was prepared in the same manner as in Example 1, except that the acid group-containing (meth) acrylate resin (A-1) and the amine-modified epoxy resin were changed to the compositions and the amounts shown in Table 1. (2) to (11) were obtained.
(比較例1:硬化性樹脂組成物(C1)の調製)
 合成例1で得た酸基(メタ)アクリレート樹脂(A-1)156.3質量部(固形分100質量部)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)38.9質量部と、ジエチレングリコールモノエチルエーテルアセテート20.9質量部と、光重合開始剤(IGM社製「Omnirad 907」)5.6質量部とを配合し、ロールミルにより混錬して硬化性樹脂組成物(C1)を得た。
(Comparative Example 1: Preparation of curable resin composition (C1))
156.3 parts by mass (solids content: 100 parts by mass) of an acid group (meth) acrylate resin (A-1) obtained in Synthesis Example 1 and an ortho-cresol novolac type epoxy resin (“EPICLON N- manufactured by DIC Corporation”) as a curing agent. 680 "), 38.9 parts by mass, diethylene glycol monoethyl ether acetate 20.9 parts by mass, and 5.6 parts by mass of a photopolymerization initiator (" Omnirad 907 "manufactured by IGM) are kneaded by a roll mill. Thus, a curable resin composition (C1) was obtained.
(比較例2:硬化性樹脂組成物(C2)の調製)
 合成例1で得た酸基(メタ)アクリレート樹脂(A-1)156.3質量部(固形分100質量部)と、合成例3で得たアミン変性エポキシ樹脂(B-1)142.9質量部(固形分50質量部)とを混合して酸基含有(メタ)アクリレート樹脂組成物(C2)を得た。次いで、得られた酸基含有(メタ)アクリレート樹脂組成物(C2)299.2質量部(固形分150質量部)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)38.9質量部と、ジエチレングリコールモノエチルエーテルアセテート20.9質量部と、光重合開始剤(IGM社製「Omnirad 907」)5.6質量部とを配合し、ロールミルにより混錬して硬化性樹脂組成物(C2)を得た。
(Comparative Example 2: Preparation of curable resin composition (C2))
156.3 parts by mass (solid content: 100 parts by mass) of the acid group (meth) acrylate resin (A-1) obtained in Synthesis Example 1 and 142.9 parts of the amine-modified epoxy resin (B-1) obtained in Synthesis Example 3 And an acid group-containing (meth) acrylate resin composition (C2). Next, 299.2 parts by mass (solid content: 150 parts by mass) of the obtained acid group-containing (meth) acrylate resin composition (C2) and an ortho-cresol novolak-type epoxy resin ("EPICLON N-" manufactured by DIC Corporation) as a curing agent. 680 "), 38.9 parts by mass, diethylene glycol monoethyl ether acetate 20.9 parts by mass, and 5.6 parts by mass of a photopolymerization initiator (" Omnirad 907 "manufactured by IGM) are kneaded by a roll mill. Thus, a curable resin composition (C2) was obtained.
 上記の実施例1~11、並びに比較例1及び2で得られた硬化性樹脂組成物を用いて、下記の評価を行った。 下 記 The following evaluation was performed using the curable resin compositions obtained in Examples 1 to 11 and Comparative Examples 1 and 2.
[試験片の作製]
 各実施例及び比較例で得られた硬化性樹脂組成物を、アプリケーターを用いて銅箔(古河産業株式会社製、電解銅箔「F2-WS」18μm)基材上に膜厚50μmとなるように塗布し、80℃で30分乾燥させた。メタルハライドランプを用いて1,000mJ/cmの紫外線を照射し、さらに160℃で1時間熱硬化させて試験片を得た。
[Preparation of test piece]
The curable resin composition obtained in each of Examples and Comparative Examples was coated on a copper foil (Furukawa Sangyo Co., Ltd., electrolytic copper foil “F2-WS” 18 μm) base material with a thickness of 50 μm using an applicator. And dried at 80 ° C. for 30 minutes. Ultraviolet rays of 1,000 mJ / cm 2 were irradiated using a metal halide lamp, and further heat-cured at 160 ° C. for 1 hour to obtain a test piece.
[基材密着性の評価方法]
 基材密着性の評価は、ピール強度の測定により行った。
[Evaluation method of substrate adhesion]
The evaluation of the substrate adhesion was performed by measuring the peel strength.
<ピール強度の測定方法>
 前記試験片を幅1cm、長さ12cmの大きさに切り出し、剥離試験機(株式会社A&D製「A&Dテンシロン」、剥離速度50mm/分)を用いて90°ピール強度を測定した。
<Method of measuring peel strength>
The test piece was cut into a size of 1 cm in width and 12 cm in length, and 90 ° peel strength was measured using a peeling tester (“A & D Tensilon” manufactured by A & D Co., Ltd., peeling speed: 50 mm / min).
[伸度の測定方法]
 伸度の測定は、引張試験にて行った。
[Method of measuring elongation]
The elongation was measured by a tensile test.
<引張試験>
 前記試験片を10mm×80mmの大きさに切り出し、株式会社島津製作所製精密万能試験機オートグラフ「AG-IS」を用いて、下記の測定条件で試験片の引張試験を行った。試験片が破断するまでの伸度(%)を測定した。
<Tensile test>
The test piece was cut into a size of 10 mm × 80 mm, and a tensile test was performed on the test piece under the following measurement conditions using an automatic universal tester “AG-IS” manufactured by Shimadzu Corporation. The elongation (%) until the test piece was broken was measured.
 測定条件:温度23℃、湿度50%、標線間距離20mm、支点間距離20mm、引張速度10mm/分 Measurement conditions: temperature 23 ° C, humidity 50%, distance between marked lines 20mm, distance between supports 20mm, tensile speed 10mm / min
 実施例1~11で調製した硬化性樹脂組成物(1)~(11)、及び比較例1及び2で調製した硬化性樹脂組成物(C1)及び(C2)の組成及び評価結果を表1に示す。 Table 1 shows the compositions and evaluation results of the curable resin compositions (1) to (11) prepared in Examples 1 to 11 and the curable resin compositions (C1) and (C2) prepared in Comparative Examples 1 and 2. Shown in
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1中の「硬化剤」は、オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)を示す。 「" Curing agent "in Table 1 indicates an orthocresol novolak type epoxy resin (" EPICLON @ N-680 "manufactured by DIC Corporation).
 表1中の「EDGAC」は、ジエチレングリコールモノエチルエーテルアセテートを示す。 ED "EDGAC" in Table 1 indicates diethylene glycol monoethyl ether acetate.
 表1中の質量部の記載における括弧内は、固形分表記を示す。 括弧 In parentheses in the description of parts by mass in Table 1, the solid content is shown.
(実施例12:硬化性樹脂組成物(12)の調製)
 合成例1で得た酸基(メタ)アクリレート樹脂(A-1)156.3質量部(固形分100質量部)と、合成例3で得たアミン変性エポキシ樹脂(B-1)31.1質量部(固形分10.9質量部)とを混合して酸基含有(メタ)アクリレート樹脂組成物(12)を得た。次いで、得られた酸基含有(メタ)アクリレート樹脂組成物(8)187.4質量部(固形分110.9質量部)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)38.9質量部と、ジペンタエリスリトールヘキサアクリレート11質量部と、ジエチレングリコールモノエチルエーテルアセテート20.9質量部と、光重合開始剤(IGM社製「Omnirad 907」)5.6質量部と、フタロシアニングリーン1質量部とを配合し、ロールミルにより混錬して硬化性樹脂組成物(12)を得た。
(Example 12: Preparation of curable resin composition (12))
156.3 parts by mass (100 parts by mass of solid content) of the acid group (meth) acrylate resin (A-1) obtained in Synthesis Example 1 and the amine-modified epoxy resin (B-1) 31.1 obtained in Synthesis Example 3 And an acid group-containing (meth) acrylate resin composition (12). Subsequently, 187.4 parts by mass (solid content: 110.9 parts by mass) of the obtained acid group-containing (meth) acrylate resin composition (8) and an ortho-cresol novolak type epoxy resin ("EPICLON" manufactured by DIC Corporation) as a curing agent. N-680 ") 38.9 parts by mass, dipentaerythritol hexaacrylate 11 parts by mass, diethylene glycol monoethyl ether acetate 20.9 parts by mass, and a photopolymerization initiator (IGN's" Omnirad 907 ") 5.6. Parts by mass and 1 part by mass of phthalocyanine green were blended and kneaded by a roll mill to obtain a curable resin composition (12).
(実施例13~22:硬化性樹脂組成物(13)~(22)の調製)
 酸基含有(メタ)アクリレート樹脂(A-1)、及びアミン変性エポキシ樹脂を、表2に示した組成及び配合量に変更した以外は、実施例12と同様の方法にて硬化性樹脂組成物(13)~(22)を得た。
(Examples 13 to 22: Preparation of curable resin compositions (13) to (22))
A curable resin composition was prepared in the same manner as in Example 12, except that the acid group-containing (meth) acrylate resin (A-1) and the amine-modified epoxy resin were changed to the composition and the amount shown in Table 2. (13) to (22) were obtained.
(比較例3:硬化性樹脂組成物(C3)の調製)
 合成例1で得た酸基(メタ)アクリレート樹脂(A-1)156.3質量部(固形分100質量部)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)38.9質量部と、ジペンタエリスリトールヘキサアクリレート11質量部と、ジエチレングリコールモノエチルエーテルアセテート20.9質量部と、光重合開始剤(IGM社製「Omnirad 907」)5.6質量部と、フタロシアニングリーン1質量部とを配合し、ロールミルにより混錬して硬化性樹脂組成物(C3)を得た。
(Comparative Example 3: Preparation of curable resin composition (C3))
156.3 parts by mass (solids content: 100 parts by mass) of an acid group (meth) acrylate resin (A-1) obtained in Synthesis Example 1 and an ortho-cresol novolac type epoxy resin (“EPICLON N- manufactured by DIC Corporation”) as a curing agent. 680 ") 38.9 parts by mass, dipentaerythritol hexaacrylate 11 parts by mass, diethylene glycol monoethyl ether acetate 20.9 parts by mass, and a photopolymerization initiator (IGN's" Omnirad 907 ") 5.6 parts by mass. And 1 part by mass of phthalocyanine green were mixed and kneaded by a roll mill to obtain a curable resin composition (C3).
(比較例4:硬化性樹脂組成物(C4)の調製)
 合成例1で得た酸基(メタ)アクリレート樹脂(A-1)156.3質量部(固形分100質量部)と、合成例3で得たアミン変性エポキシ樹脂(B-1)142.9質量部(固形分50質量部)とを混合して酸基含有(メタ)アクリレート樹脂組成物(C4)を得た。次いで、得られた酸基含有(メタ)アクリレート樹脂組成物(C4)299.2質量部(固形分150質量部)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)38.9質量部と、ジペンタエリスリトールヘキサアクリレート11質量部と、ジエチレングリコールモノエチルエーテルアセテート20.9質量部と、光重合開始剤(IGM社製「Omnirad 907」)5.6質量部と、フタロシアニングリーン1質量部とを配合し、ロールミルにより混錬して硬化性樹脂組成物(C4)を得た。
(Comparative Example 4: Preparation of curable resin composition (C4))
156.3 parts by mass (solid content: 100 parts by mass) of the acid group (meth) acrylate resin (A-1) obtained in Synthesis Example 1 and 142.9 parts of the amine-modified epoxy resin (B-1) obtained in Synthesis Example 3 By mass (solid content: 50 parts by mass) to obtain an acid group-containing (meth) acrylate resin composition (C4). Next, 299.2 parts by mass (solids content: 150 parts by mass) of the obtained acid group-containing (meth) acrylate resin composition (C4) and an ortho-cresol novolak type epoxy resin ("EPICLON N-" manufactured by DIC Corporation) as a curing agent. 680 ") 38.9 parts by mass, dipentaerythritol hexaacrylate 11 parts by mass, diethylene glycol monoethyl ether acetate 20.9 parts by mass, and a photopolymerization initiator (IGM" Omnirad 907 ") 5.6 parts by mass. And 1 part by mass of phthalocyanine green were mixed and kneaded by a roll mill to obtain a curable resin composition (C4).
 上記の実施例12~22、並びに比較例3及び4で得られた酸基含有(メタ)アクリレート樹脂組成物を用いて、下記の評価を行った。 下 記 The following evaluation was performed using the acid group-containing (meth) acrylate resin compositions obtained in Examples 12 to 22 and Comparative Examples 3 and 4.
[光感度の評価方法]
 各実施例及び比較例で得られた硬化性樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布し、80℃で30分乾燥させた。次いで、乾燥させた塗膜上にコダック社製「ステップタブレットNo.2」を乗せ、メタルハライドランプを用いて1,000mJ/cmの紫外線を照射した。これを1%の炭酸ナトリウム水溶液で30℃180秒間現像し、ステップタブレット法に基づきステップタブレットの残存段数にて評価した。なお、残存段数が多いほど光感度が高いことを示す。
[Light sensitivity evaluation method]
The curable resin compositions obtained in each of the examples and comparative examples were applied on a glass substrate using an applicator so as to have a thickness of 50 μm, and dried at 80 ° C. for 30 minutes. Next, “Step Tablet No. 2” manufactured by Kodak Co., Ltd. was placed on the dried coating film, and ultraviolet rays of 1,000 mJ / cm 2 were irradiated using a metal halide lamp. This was developed with a 1% aqueous sodium carbonate solution at 30 ° C. for 180 seconds, and evaluated based on the number of remaining step tablets based on the step tablet method. It should be noted that the greater the number of remaining stages, the higher the light sensitivity.
[アルカリ現像性の評価方法]
 各実施例及び比較例で得られた硬化性樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布した後、80℃でそれぞれ30分間、40分間、50分間、60分間、70分間乾燥させ、乾燥時間が異なるサンプルを作成した。これらを1%炭酸ナトリウム水溶液で30℃180秒間現像し、基板上に残渣が残らなかったサンプルの80℃での乾燥時間を乾燥管理幅として評価した。なお、乾燥管理幅が長いほどアルカリ現像性が優れていることを示す。
[Evaluation method for alkali developability]
The curable resin composition obtained in each of the Examples and Comparative Examples was applied on a glass substrate using an applicator so as to have a thickness of 50 μm, and then at 80 ° C. for 30 minutes, 40 minutes, and 50 minutes, respectively. The sample was dried for 60 minutes and 70 minutes to prepare samples having different drying times. These were developed with a 1% aqueous solution of sodium carbonate at 30 ° C. for 180 seconds, and the drying time at 80 ° C. of the sample having no residue on the substrate was evaluated as a drying control width. In addition, it shows that alkali developing property is so excellent that drying control width | variety is long.
 実施例12~22で調製した硬化性樹脂組成物(12)~(22)、並びに比較例3及び4で調製した硬化性樹脂組成物(C3)及び(C4)の組成及び評価結果を表2に示す。 Table 2 shows the compositions and evaluation results of the curable resin compositions (12) to (22) prepared in Examples 12 to 22, and the curable resin compositions (C3) and (C4) prepared in Comparative Examples 3 and 4. Shown in
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表2中の「硬化剤」は、オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)を示す。 「" Curing agent "in Table 2 indicates an orthocresol novolak type epoxy resin (" EPICLON @ N-680 "manufactured by DIC Corporation).
 表2中の「DPHA」は、ジペンタエリスリトールヘキサアクリレートを示す。 「" DPHA "in Table 2 indicates dipentaerythritol hexaacrylate.
 表2中の「EDGAC」は、ジエチレングリコールモノエチルエーテルアセテートを示す。 「" EDGAC "in Table 2 indicates diethylene glycol monoethyl ether acetate.
 表2中の質量部の記載における括弧内は、固形分表記を示す。 括弧 In parentheses in the description of parts by mass in Table 2, the solid content is shown.
 表2中の「-」は、現像不可を示す。 「"-"In Table 2 indicates that development is not possible.
 表1及び2に示した実施例1~22は、本発明の酸基含有(メタ)アクリレート樹脂組成物を用いた例である。本発明の酸基含有(メタ)アクリレート樹脂組成物を含んだ硬化性樹脂組成物は、優れた基材密着性と、高い光感度及び優れたアルカリ現像性を兼備しており、また、本発明の酸基含有(メタ)アクリレート樹脂組成物を含んだ硬化性樹脂組成物の硬化物は、優れた伸度を有することが確認できた。 Examples 1 to 22 shown in Tables 1 and 2 are examples using the acid group-containing (meth) acrylate resin composition of the present invention. A curable resin composition containing the acid group-containing (meth) acrylate resin composition of the present invention has both excellent substrate adhesion, high photosensitivity, and excellent alkali developability. It was confirmed that the cured product of the curable resin composition containing the acid group-containing (meth) acrylate resin composition had excellent elongation.
 一方、比較例1及び3は、アミン変性エポキシ樹脂を用いない酸基含有(メタ)アクリレート樹脂組成物の例である。この酸基含有(メタ)アクリレート樹脂組成物を含有した硬化性樹脂組成物は、光感度及びアルカリ現像性には優れるものの、基材密着性は著しく不十分であることが確認できた。また、比較例1で得られた硬化性樹脂組成物の硬化物は、伸度においても不十分であることが確認できた。 On the other hand, Comparative Examples 1 and 3 are examples of acid group-containing (meth) acrylate resin compositions without using an amine-modified epoxy resin. It was confirmed that the curable resin composition containing the acid group-containing (meth) acrylate resin composition was excellent in photosensitivity and alkali developability, but was extremely poor in substrate adhesion. Further, it was confirmed that the cured product of the curable resin composition obtained in Comparative Example 1 was insufficient in elongation.
 比較例2及び4は、アミン変性エポキシ樹脂の配合量が、酸基含有(メタ)アクリレート樹脂100質量部(固形分)に対して、50質量部(固形分)の例である。この酸基含有(メタ)アクリレート樹脂組成物を含有した硬化性樹脂組成物は、基材密着性及び硬化物の伸度には優れるものの、光感度及びアルカリ現像性においては著しく不十分であることが確認できた。 Comparative Examples 2 and 4 are examples in which the compounding amount of the amine-modified epoxy resin is 50 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the acid group-containing (meth) acrylate resin. The curable resin composition containing the acid group-containing (meth) acrylate resin composition is excellent in substrate adhesion and elongation of the cured product, but is extremely insufficient in photosensitivity and alkali developability. Was confirmed.

Claims (10)

  1.  酸基含有(メタ)アクリレート樹脂(A)と、アミン変性エポキシ樹脂(B)とを含有する酸基含有(メタ)アクリレート樹脂組成物であって、
    前記アミン変性エポキシ樹脂(B)の含有量が、前記酸基含有(メタ)アクリレート樹脂(A)の固形分100質量部に対して、固形分換算で0.5質量部以上40質量部以下であることを特徴とする酸基含有(メタ)アクリレート樹脂組成物。
    An acid group-containing (meth) acrylate resin composition containing an acid group-containing (meth) acrylate resin (A) and an amine-modified epoxy resin (B),
    When the content of the amine-modified epoxy resin (B) is 0.5 parts by mass or more and 40 parts by mass or less in terms of solids with respect to 100 parts by mass of the solids of the acid group-containing (meth) acrylate resin (A). An acid group-containing (meth) acrylate resin composition, characterized in that:
  2.  前記アミン変性エポキシ樹脂(B)の重量平均分子量が、5,000以上である請求項1記載の酸基含有(メタ)アクリレート樹脂組成物。 The acid group-containing (meth) acrylate resin composition according to claim 1, wherein the weight average molecular weight of the amine-modified epoxy resin (B) is 5,000 or more.
  3.  前記アミン変性エポキシ樹脂(B)が、酸基を有するものである請求項1記載の酸基含有(メタ)アクリレート樹脂組成物。 The acid group-containing (meth) acrylate resin composition according to claim 1, wherein the amine-modified epoxy resin (B) has an acid group.
  4.  前記アミン変性エポキシ樹脂(B)が、重合性不飽和結合含有置換基を有するものである請求項1記載の酸基含有(メタ)アクリレート樹脂組成物。 The acid group-containing (meth) acrylate resin composition according to claim 1, wherein the amine-modified epoxy resin (B) has a polymerizable unsaturated bond-containing substituent.
  5.  請求項1~4のいずれか1項記載の酸基含有(メタ)アクリレート樹脂組成物と、光重合開始剤とを含有することを特徴とする硬化性樹脂組成物。 A curable resin composition comprising the acid group-containing (meth) acrylate resin composition according to any one of claims 1 to 4 and a photopolymerization initiator.
  6.  さらに、有機溶剤と、硬化剤とを含有するものである請求項5記載の硬化性樹脂組成物。 (6) The curable resin composition according to (5), further comprising an organic solvent and a curing agent.
  7.  請求項5または6記載の硬化性樹脂組成物の硬化反応物であることを特徴とする硬化物。 A cured product, which is a cured reaction product of the curable resin composition according to claim 5 or 6.
  8.  請求項5または6記載の硬化性樹脂組成物からなることを特徴とする絶縁材料。 An insulating material comprising the curable resin composition according to claim 5.
  9.  請求項5または6記載の硬化性樹脂組成物からなることを特徴とするソルダーレジスト用樹脂材料。 A resin material for a solder resist, comprising the curable resin composition according to claim 5 or 6.
  10.  請求項9記載のソルダーレジスト用樹脂材料からなることを特徴とするレジスト部材。 A resist member comprising the solder resist resin material according to claim 9.
PCT/JP2019/024034 2018-06-20 2019-06-18 Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product and resin material for solder resists WO2019244868A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020505947A JP6753552B2 (en) 2018-06-20 2019-06-18 Acid group-containing (meth) acrylate resin composition, curable resin composition, cured product, and resin material for solder resist

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-117032 2018-06-20
JP2018117032 2018-06-20

Publications (1)

Publication Number Publication Date
WO2019244868A1 true WO2019244868A1 (en) 2019-12-26

Family

ID=68983734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024034 WO2019244868A1 (en) 2018-06-20 2019-06-18 Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product and resin material for solder resists

Country Status (3)

Country Link
JP (1) JP6753552B2 (en)
TW (1) TWI811384B (en)
WO (1) WO2019244868A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252276A (en) * 1991-01-29 1992-09-08 C Uyemura & Co Ltd Cation chargeable polymer particle, production thereof and electrodeposition coating compound containing the same particle
JP2006503944A (en) * 2002-10-21 2006-02-02 サーフェィス スペシャルティーズ オーストリア ゲーエムベーハー Aqueous nonionic stabilized epoxy resin
JP2009186564A (en) * 2008-02-04 2009-08-20 Dic Corp Photosensitive resin composition and new acid radical-containing vinyl ester resin

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2763955B2 (en) * 1990-05-21 1998-06-11 キヤノン株式会社 Image communication device
KR101394683B1 (en) * 2004-10-07 2014-05-14 히타치가세이가부시끼가이샤 Resin composition for optical waveguide, resin film for optical waveguide and optical waveguide using same
KR100883047B1 (en) * 2006-07-10 2009-02-11 다이요 잉키 세이조 가부시키가이샤 Photocurable/thermosetting resin composition, cured product thereof and printed wiring board
CN100582161C (en) * 2007-04-20 2010-01-20 常熟佳发化学有限责任公司 Epoxy resin composition and using method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252276A (en) * 1991-01-29 1992-09-08 C Uyemura & Co Ltd Cation chargeable polymer particle, production thereof and electrodeposition coating compound containing the same particle
JP2006503944A (en) * 2002-10-21 2006-02-02 サーフェィス スペシャルティーズ オーストリア ゲーエムベーハー Aqueous nonionic stabilized epoxy resin
JP2009186564A (en) * 2008-02-04 2009-08-20 Dic Corp Photosensitive resin composition and new acid radical-containing vinyl ester resin

Also Published As

Publication number Publication date
JP6753552B2 (en) 2020-09-09
TWI811384B (en) 2023-08-11
TW202006060A (en) 2020-02-01
JPWO2019244868A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
JP7172555B2 (en) Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP6780809B1 (en) Acid group-containing (meth) acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member
JP6813135B1 (en) Acid group-containing (meth) acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member
JP6797354B2 (en) Acid group-containing (meth) acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member
JP7188053B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7183761B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP6753552B2 (en) Acid group-containing (meth) acrylate resin composition, curable resin composition, cured product, and resin material for solder resist
KR20200043418A (en) Acid group-containing (meth) acrylate resin, curable resin composition, resin material for solder resist, and resist member
JP2020117613A (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member
JP2020063346A (en) Acidic group-containing epoxy (meth)acrylate resin, curable resin composition, cured article, insulation material, resin material for solder resist, and resist member
JP7196587B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7275898B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7310253B2 (en) Amideimide resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7228093B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7192480B2 (en) Curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP2020083985A (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP2021055006A (en) Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP2020083986A (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JPWO2021065318A1 (en) Acid group-containing (meth) acrylate resin, acid group-containing (meth) acrylate resin composition, curable resin composition, cured product, insulating material, solder resist resin material and resist member
JP2021091879A (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist material
CN112105991A (en) Pattern forming material, cured film, and method for producing cured pattern

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020505947

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823075

Country of ref document: EP

Kind code of ref document: A1