WO2019244809A1 - Coding device, decoding device, coding method, and decoding method - Google Patents

Coding device, decoding device, coding method, and decoding method Download PDF

Info

Publication number
WO2019244809A1
WO2019244809A1 PCT/JP2019/023781 JP2019023781W WO2019244809A1 WO 2019244809 A1 WO2019244809 A1 WO 2019244809A1 JP 2019023781 W JP2019023781 W JP 2019023781W WO 2019244809 A1 WO2019244809 A1 WO 2019244809A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
motion vector
block
unit
mode
Prior art date
Application number
PCT/JP2019/023781
Other languages
French (fr)
Japanese (ja)
Inventor
遠間 正真
西 孝啓
安倍 清史
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Publication of WO2019244809A1 publication Critical patent/WO2019244809A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/537Motion estimation other than block-based
    • H04N19/54Motion estimation other than block-based using feature points or meshes

Definitions

  • the present disclosure relates to an encoding device, a decoding device, an encoding method, and a decoding method.
  • H.264 is used as a standard for encoding a moving image.
  • 265 are present.
  • H. H.265 is also called HEVC (High Efficiency Video Coding).
  • Each of the configurations and methods disclosed in the embodiments of the present disclosure or a part thereof can be implemented by, for example, improving encoding efficiency, reducing the amount of encoding / decoding processing, reducing the circuit scale, and encoding / decoding speed. , And / or the appropriate selection of components / operations such as filters, blocks, sizes, motion vectors, reference pictures, reference blocks, etc., in encoding and decoding.
  • the present disclosure also includes disclosure of configurations or methods that can provide benefits other than those described above. For example, there is a configuration or a method for improving the coding efficiency while suppressing an increase in the processing amount.
  • An encoding device is an encoding device that performs motion compensation and encodes a moving image, and includes a circuit and a memory, wherein the circuit uses the memory,
  • the circuit uses the memory,
  • the inter prediction mode in which an affine motion vector is calculated in units of sub-blocks constituting the current block based on motion vectors of a plurality of peripheral blocks of a current block of an image in a moving image. Only uni-prediction of uni-prediction and bi-prediction is used. Calculates the affine motion vector in the sub-block unit, and performs the motion compensation in the sub-block unit using the calculated affine motion vector.
  • a decoding device is a decoding device that performs motion compensation and decodes a moving image, and includes a circuit and a memory, and the circuit uses the memory to In the inter prediction mode of calculating an affine motion vector in units of sub-blocks constituting the current block based on the motion vectors of a plurality of peripheral blocks of the current block of the image in The affine motion vector is calculated for each sub-block, and the motion compensation is performed for each sub-block using the calculated affine motion vector.
  • the present disclosure can provide an encoding device, a decoding device, an encoding method, or a decoding method that can improve processing efficiency.
  • FIG. 1 is a block diagram showing a functional configuration of the encoding device according to Embodiment 1.
  • FIG. 2 is a diagram illustrating an example of block division according to the first embodiment.
  • FIG. 3 is a table showing conversion basis functions corresponding to each conversion type.
  • FIG. 4A is a diagram illustrating an example of the shape of a filter used in ALF.
  • FIG. 4B is a diagram illustrating another example of the shape of the filter used in the ALF.
  • FIG. 4C is a diagram illustrating another example of the shape of the filter used in the ALF.
  • FIG. 5A is a diagram showing 67 intra prediction modes in intra prediction.
  • FIG. 5B is a flowchart for explaining an outline of the predicted image correction processing by the OBMC processing.
  • FIG. 5A is a diagram showing 67 intra prediction modes in intra prediction.
  • FIG. 5B is a flowchart for explaining an outline of the predicted image correction processing by the OBMC processing.
  • FIG. 5A is a diagram
  • FIG. 5C is a conceptual diagram for describing an outline of a predicted image correction process by the OBMC process.
  • FIG. 5D is a diagram illustrating an example of the FRUC.
  • FIG. 6 is a diagram for explaining pattern matching (bilateral matching) between two blocks along a motion trajectory.
  • FIG. 7 is a diagram for explaining pattern matching (template matching) between a template in the current picture and a block in the reference picture.
  • FIG. 8 is a diagram for explaining a model assuming constant velocity linear motion.
  • FIG. 9A is a diagram for describing derivation of a motion vector in sub-block units based on motion vectors of a plurality of adjacent blocks.
  • FIG. 9B is a diagram for describing the outline of the motion vector derivation process in the merge mode.
  • FIG. 9A is a diagram for describing derivation of a motion vector in sub-block units based on motion vectors of a plurality of adjacent blocks.
  • FIG. 9B is a diagram for
  • FIG. 9C is a conceptual diagram for explaining the outline of the DMVR process.
  • FIG. 9D is a diagram for explaining an outline of a predicted image generation method using the luminance correction processing by the LIC processing.
  • FIG. 10 is a block diagram showing a functional configuration of the decoding device according to Embodiment 1.
  • FIG. 11 is a flowchart illustrating an operation example of the affine motion compensation prediction mode performed by the inter prediction unit of the encoding device according to the first example of Embodiment 1.
  • FIG. 12 shows an operation example in the case where the motion vector of the control point is only uni-prediction in the normal mode of the affine motion compensation prediction mode performed by the inter prediction unit of the encoding device according to the first example of Embodiment 1. It is a flowchart.
  • FIG. 11 is a flowchart illustrating an operation example of the affine motion compensation prediction mode performed by the inter prediction unit of the encoding device according to the first example of Embodiment 1.
  • FIG. 12 shows an
  • FIG. 13 is a block diagram illustrating an implementation example of the encoding device according to Embodiment 1.
  • FIG. 14 is a flowchart illustrating an operation example of the encoding device illustrated in FIG.
  • FIG. 15 is a block diagram illustrating an implementation example of the decoding device according to the first embodiment.
  • FIG. 16 is a flowchart showing an operation example of the decoding device shown in FIG.
  • FIG. 17 is an overall configuration diagram of a content supply system that realizes a content distribution service.
  • FIG. 18 is a diagram illustrating an example of an encoding structure at the time of scalable encoding.
  • FIG. 19 is a diagram illustrating an example of an encoding structure at the time of scalable encoding.
  • FIG. 20 is a diagram illustrating an example of a display screen of a web page.
  • FIG. 21 is a diagram illustrating an example of a display screen of a web page.
  • FIG. 22 is a diagram illustrating an example of a smartphone.
  • FIG. 23 is a block diagram illustrating a configuration example of a smartphone.
  • an encoding device is an encoding device that performs motion compensation and encodes a moving image, and includes a circuit and a memory, and the circuit uses the memory.
  • the inter prediction mode for calculating an affine motion vector in units of sub-blocks constituting the current block based on the motion vectors of a plurality of peripheral blocks of the current block of the image in the moving image The affine motion vector in the sub-block unit is calculated only by prediction, and the motion compensation is performed in the sub-block unit using the calculated affine motion vector.
  • the encoding device can reduce the amount of processing while suppressing a decrease in encoding efficiency, and thus can improve the processing efficiency.
  • the circuit calculates one of the first reference picture list and the second reference picture list that are commonly used in the inter prediction mode when calculating the affine motion vector.
  • a reference picture is selected only from the selected reference picture, and an encoded block for deriving a predicted motion vector of a control point is determined using only uni-prediction from among a plurality of encoded blocks constituting the selected reference picture.
  • the circuit when the circuit performs an affine motion compensation mode, which is an inter prediction mode for calculating the affine motion vector, on the current block, the circuit is adjacent to the current block to which the affine motion compensation mode is applied.
  • the motion vector of the coded block Based on the motion vector of the coded block to be, based on the merge mode to determine the predicted motion vector of the control point, and the reference picture for each control point determined from the coded block near the control point of the current block,
  • the control is performed from an encoded block near the control point of the current block in only uni-prediction. Determine the predicted motion vector for each point Doing, the affine motion vector is calculated only a single prediction.
  • a decoding device is a decoding device that performs motion compensation and decodes a moving image, and includes a circuit and a memory, and the circuit uses the memory,
  • the inter prediction mode in which an affine motion vector is calculated in units of sub-blocks constituting the current block based on motion vectors of a plurality of peripheral blocks of a current block of an image in a moving image, only uni-prediction of uni-prediction and bi-prediction is used.
  • Calculates the affine motion vector in the sub-block unit and performs the motion compensation in the sub-block unit using the calculated affine motion vector.
  • the decoding device can reduce the amount of processing while suppressing a decrease in encoding efficiency, and thus can improve processing efficiency.
  • the circuit may use only one of the first reference picture list and the second reference picture list commonly used in the inter prediction mode. , And from among a plurality of coded blocks constituting the selected reference picture, a coded block for deriving a predicted motion vector of a control point using only uni-prediction is determined.
  • the circuit when the circuit performs an affine motion compensation mode, which is an inter prediction mode for calculating the affine motion vector, on the current block, the circuit is adjacent to the current block to which the affine motion compensation mode is applied.
  • the motion vector of the coded block Based on the motion vector of the coded block to be, based on the merge mode to determine the predicted motion vector of the control point, and the reference picture for each control point determined from the coded block near the control point of the current block,
  • the control is performed from an encoded block near the control point of the current block in only uni-prediction. Determine the predicted motion vector for each point Doing, the affine motion vector is calculated only a single prediction.
  • an encoding method is an encoding method that encodes a moving image by performing motion compensation, wherein the motion vectors of a plurality of peripheral blocks of a current block of an image in the moving image are provided. Based on, in the inter prediction mode of calculating an affine motion vector in units of sub-blocks constituting the current block, calculate the affine motion vector in units of sub-blocks only in uni-prediction of uni-prediction and bi-prediction, The motion compensation is performed for each sub-block using the calculated affine motion vector.
  • the encoding method can reduce the amount of processing while suppressing a decrease in encoding efficiency, so that the processing efficiency can be improved.
  • a decoding method for decoding a moving image by performing motion compensation, based on motion vectors of a plurality of peripheral blocks of a current block of an image in the moving image,
  • the affine motion vector in units of sub-blocks is calculated only in uni-prediction of uni-prediction and bi-prediction.
  • the motion compensation is performed for each sub-block using an affine motion vector.
  • the decoding method can reduce the amount of processing while suppressing a decrease in encoding efficiency, and can improve processing efficiency.
  • a non-transitory recording medium such as a system, an apparatus, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM
  • the present invention may be implemented by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • Embodiment 1 First, an outline of Embodiment 1 will be described as an example of an encoding device and a decoding device to which processing and / or a configuration described in each embodiment of the present disclosure described later can be applied. However, Embodiment 1 is merely an example of an encoding device and a decoding device to which the processing and / or configuration described in each aspect of the present disclosure can be applied, and the processing and / or processing described in each aspect of the present disclosure. The configuration can be implemented in an encoding device and a decoding device different from the first embodiment.
  • the components correspond to the components described in each aspect of the present disclosure.
  • Replacing constituent elements with constituent elements described in each aspect of the present disclosure (2)
  • Encoding device in combination with a component having a part of the provided function or a component that performs a part of a process performed by a component described in each aspect of the present disclosure Or, a component having a part of the functions of some of the components constituting the decoding device, or a plurality of components constituting the encoding device or the decoding device of the first embodiment.
  • a component that implements a part of the processing performed by the component a component that is described in each embodiment of the present disclosure, a component that includes a part of the function that the component described in each embodiment of the present disclosure has, or Implementing in combination with a component that performs a part of the process performed by the component described in each aspect of the disclosure (6)
  • a process corresponding to a process described in each aspect of the present disclosure is replaced with a process described in each aspect of the present disclosure.
  • the manner of implementing the processing and / or configuration described in each aspect of the present disclosure is not limited to the above example.
  • the present invention may be implemented in a device used for a different purpose from the moving image / image encoding device or the moving image / image decoding device disclosed in the first embodiment, and the processing and / or processing described in each aspect may be performed.
  • the configuration may be implemented alone. Further, the processes and / or configurations described in different modes may be implemented in combination.
  • FIG. 1 is a block diagram showing a functional configuration of an encoding device 100 according to Embodiment 1.
  • the encoding device 100 is a moving image / image encoding device that encodes a moving image / image in block units.
  • an encoding apparatus 100 is an apparatus that encodes an image in units of blocks, and includes a division unit 102, a subtraction unit 104, a conversion unit 106, a quantization unit 108, and entropy encoding.
  • Unit 110 inverse quantization unit 112, inverse transform unit 114, addition unit 116, block memory 118, loop filter unit 120, frame memory 122, intra prediction unit 124, inter prediction unit 126, And a prediction control unit 128.
  • the encoding device 100 is realized by, for example, a general-purpose processor and a memory.
  • the processor when the software program stored in the memory is executed by the processor, the processor includes the dividing unit 102, the subtracting unit 104, the transforming unit 106, the quantizing unit 108, the entropy encoding unit 110, and the inverse quantizing unit 112. , The inverse transform section 114, the adder section 116, the loop filter section 120, the intra prediction section 124, the inter prediction section 126, and the prediction control section 128.
  • the encoding apparatus 100 includes a dividing unit 102, a subtracting unit 104, a transforming unit 106, a quantizing unit 108, an entropy encoding unit 110, an inverse quantizing unit 112, an inverse transforming unit 114, an adding unit 116, and a loop filter unit 120. , The intra prediction unit 124, the inter prediction unit 126, and the prediction control unit 128.
  • the division unit 102 divides each picture included in the input moving image into a plurality of blocks, and outputs each block to the subtraction unit 104.
  • the dividing unit 102 first divides a picture into blocks of a fixed size (for example, 128 ⁇ 128).
  • This fixed size block may be referred to as a coding tree unit (CTU).
  • the dividing unit 102 divides each of the fixed-size blocks into blocks of a variable size (for example, 64 ⁇ 64 or less) based on recursive quadtree and / or binary tree block division. .
  • This variable size block may be referred to as a coding unit (CU), a prediction unit (PU), or a transform unit (TU).
  • CUs, PUs, and TUs do not need to be distinguished, and some or all blocks in a picture may be the processing units of the CUs, PUs, and TUs.
  • FIG. 2 is a diagram illustrating an example of block division according to the first embodiment.
  • a solid line represents a block boundary obtained by quadtree block division
  • a broken line represents a block boundary obtained by binary tree block division.
  • the block 10 is a square block of 128 ⁇ 128 pixels (128 ⁇ 128 block).
  • the 128 ⁇ 128 block 10 is first divided into four square 64 ⁇ 64 blocks (quad tree block division).
  • the upper left 64 ⁇ 64 block is further vertically divided into two rectangular 32 ⁇ 64 blocks, and the left 32 ⁇ 64 block is further vertically divided into two rectangular 16 ⁇ 64 blocks (binary tree block division). As a result, the upper left 64 ⁇ 64 block is divided into two 16 ⁇ 64 blocks 11 and 12 and a 32 ⁇ 64 block 13.
  • the upper right 64 ⁇ 64 block is horizontally divided into two rectangular 64 ⁇ 32 blocks 14 and 15 (binary tree block division).
  • the lower left 64 ⁇ 64 block is divided into four square 32 ⁇ 32 blocks (quad tree block division).
  • the upper left block and the lower right block of the four 32 ⁇ 32 blocks are further divided.
  • the upper left 32x32 block is vertically divided into two rectangular 16x32 blocks, and the right 16x32 block is further horizontally divided into two 16x16 blocks (binary tree block division).
  • the lower right 32 ⁇ 32 block is horizontally divided into two 32 ⁇ 16 blocks (binary tree block division).
  • the lower left 64 ⁇ 64 block is divided into a 16 ⁇ 32 block 16, two 16 ⁇ 16 blocks 17 and 18, two 32 ⁇ 32 blocks 19 and 20, and two 32 ⁇ 16 blocks 21 and 22.
  • the block 10 is divided into thirteen variable-size blocks 11 to 23 based on recursive quadtree and binary tree block division.
  • Such division may be referred to as QTBT (quad-tree ⁇ plus ⁇ binary ⁇ tree) division.
  • one block is divided into four or two blocks (quadtree or binary tree block division), but the division is not limited to this.
  • one block may be divided into three blocks (triple tree block division).
  • a division including such a ternary tree block division may be referred to as MBT (multimtype tree) division.
  • the subtraction unit 104 subtracts a prediction signal (prediction sample) from an original signal (original sample) in units of blocks divided by the division unit 102. That is, the subtraction unit 104 calculates a prediction error (also referred to as a residual) of an encoding target block (hereinafter, referred to as a current block). Then, the subtraction unit 104 outputs the calculated prediction error to the conversion unit 106.
  • the original signal is an input signal of the encoding device 100, and is a signal (for example, a luminance (luma) signal and two color difference (chroma) signals) representing an image of each picture constituting a moving image.
  • a signal representing an image may be referred to as a sample.
  • the transform unit 106 transforms the prediction error in the spatial domain into transform coefficients in the frequency domain, and outputs the transform coefficients to the quantization unit 108. Specifically, the transform unit 106 performs a predetermined discrete cosine transform (DCT) or discrete sine transform (DST) on a prediction error in a spatial domain, for example.
  • DCT discrete cosine transform
  • DST discrete sine transform
  • the conversion unit 106 adaptively selects a conversion type from a plurality of conversion types, and converts the prediction error into a conversion coefficient using a conversion basis function (transform basis function) corresponding to the selected conversion type. May be.
  • a conversion basis function transform basis function
  • Such a transformation is sometimes called EMT (explicit ⁇ core ⁇ transform) or AMT (adaptive ⁇ multiple ⁇ transform).
  • the plurality of conversion types include, for example, DCT-II, DCT-V, DCT-VIII, DST-I and DST-VII.
  • FIG. 3 is a table showing conversion basis functions corresponding to each conversion type. In FIG. 3, N indicates the number of input pixels. Selection of a conversion type from among the plurality of conversion types may depend on, for example, the type of prediction (intra prediction and inter prediction) or may depend on the intra prediction mode.
  • ⁇ Information indicating whether to apply such EMT or AMT (for example, called an AMT flag) and information indicating the selected conversion type are signalized at the CU level.
  • the signalization of these pieces of information need not be limited to the CU level, but may be another level (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
  • the conversion unit 106 may re-convert the conversion coefficient (conversion result). Such re-transformation may be referred to as AST (adaptive @ secondary @ transform) or NSST (non-separable @ secondary @ transform). For example, the transform unit 106 performs retransformation for each sub-block (for example, a 4 ⁇ 4 sub-block) included in a block of a transform coefficient corresponding to an intra prediction error. Information indicating whether to apply the NSST and information regarding the transformation matrix used for the NSST are signalized at the CU level. The signalization of these pieces of information need not be limited to the CU level, but may be another level (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
  • the Separable conversion is a method of performing conversion a plurality of times by separating each direction by the number of input dimensions
  • the Non-Separable conversion is a method of performing two or more conversions when the input is multidimensional. Are considered collectively as one dimension, and the conversion is performed collectively.
  • Non-Separable conversion if an input is a 4 ⁇ 4 block, it is regarded as one array having 16 elements, and a 16 ⁇ 16 conversion is performed on the array.
  • One that performs a conversion process using a matrix is exemplified.
  • a 4 ⁇ 4 input block is regarded as one array having 16 elements, and a Givens rotation is performed on the array a plurality of times (Hypercube / Givens / Transform). It is an example of conversion.
  • the quantization unit 108 quantizes the transform coefficient output from the transform unit 106. Specifically, the quantization unit 108 scans the transform coefficients of the current block in a predetermined scanning order, and quantizes the transform coefficients based on a quantization parameter (QP) corresponding to the scanned transform coefficients. Then, the quantization unit 108 outputs the quantized transform coefficients of the current block (hereinafter, referred to as quantization coefficients) to the entropy coding unit 110 and the inverse quantization unit 112.
  • QP quantization parameter
  • the predetermined order is an order for quantization / inverse quantization of transform coefficients.
  • the predetermined scanning order is defined in ascending frequency order (low-frequency to high-frequency) or descending order (high-frequency to low-frequency).
  • the quantization parameter is a parameter that defines a quantization step (quantization width). For example, if the value of the quantization parameter increases, the quantization step also increases. That is, as the value of the quantization parameter increases, the quantization error increases.
  • the entropy coding unit 110 generates a coded signal (coded bit stream) by performing variable-length coding on the quantization coefficient input from the quantization unit 108. Specifically, for example, the entropy encoding unit 110 binarizes the quantization coefficient and arithmetically encodes the binary signal.
  • the inverse quantization unit 112 inversely quantizes the quantization coefficient input from the quantization unit 108. Specifically, the inverse quantization unit 112 inversely quantizes the quantization coefficient of the current block in a predetermined scanning order. Then, the inverse quantization unit 112 outputs the inversely quantized transform coefficient of the current block to the inverse transformation unit 114.
  • the inverse transform unit 114 restores a prediction error by inversely transforming the transform coefficient input from the inverse quantization unit 112. Specifically, the inverse transform unit 114 restores the prediction error of the current block by performing an inverse transform corresponding to the transform by the transform unit 106 on the transform coefficient. Then, inverse transform section 114 outputs the restored prediction error to adder section 116.
  • the restored prediction error does not match the prediction error calculated by the subtraction unit 104 because information is lost due to quantization. That is, the restored prediction error includes a quantization error.
  • the adder 116 reconstructs the current block by adding the prediction error input from the inverse converter 114 and the prediction sample input from the prediction controller 128. Then, the adding unit 116 outputs the reconstructed block to the block memory 118 and the loop filter unit 120.
  • the reconstructed block is sometimes called a local decoding block.
  • the block memory 118 is a storage unit for storing a block that is referred to in intra prediction and is in a current picture (hereinafter, referred to as a current picture). Specifically, the block memory 118 stores the reconstructed block output from the adding unit 116.
  • the loop filter unit 120 applies a loop filter to the block reconstructed by the adding unit 116, and outputs the reconstructed block that has been filtered to the frame memory 122.
  • the loop filter is a filter (in-loop filter) used in the encoding loop, and includes, for example, a deblocking filter (DF), a sample adaptive offset (SAO), an adaptive loop filter (ALF), and the like.
  • a least squares error filter for removing coding distortion is applied. For example, for every 2 ⁇ 2 sub-block in the current block, a plurality of sub-blocks are determined based on the direction and activity of a local gradient. One filter selected from the filters is applied.
  • sub-blocks for example, 2 ⁇ 2 sub-blocks
  • the sub-block is classified into a plurality of classes (for example, 15 or 25 classes).
  • the gradient direction value D is derived, for example, by comparing gradients in a plurality of directions (for example, horizontal, vertical and two diagonal directions).
  • the gradient activation value A is derived, for example, by adding gradients in a plurality of directions and quantizing the addition result.
  • a filter for a sub-block is determined from a plurality of filters based on the result of such classification.
  • FIG. 4A to 4C are views showing a plurality of examples of the shape of the filter used in the ALF.
  • FIG. 4A shows a 5 ⁇ 5 diamond shape filter
  • FIG. 4B shows a 7 ⁇ 7 diamond shape filter
  • FIG. 4C shows a 9 ⁇ 9 diamond shape filter.
  • Information indicating the shape of the filter is signalized at the picture level.
  • the signalization of the information indicating the shape of the filter need not be limited to the picture level, but may be another level (for example, a sequence level, a slice level, a tile level, a CTU level, or a CU level).
  • the ON / OFF of the ALF is determined at the picture level or the CU level, for example. For example, it is determined whether or not to apply ALF at the CU level for luminance, and whether or not to apply ALF at the picture level for color difference.
  • Information indicating ON / OFF of ALF is signaled at a picture level or a CU level.
  • the signalization of the information indicating ON / OFF of the ALF does not need to be limited to the picture level or the CU level, and may be at another level (for example, a sequence level, a slice level, a tile level, or a CTU level). Good.
  • a set of coefficients for a plurality of selectable filters is signaled at the picture level.
  • the signalization of the coefficient set need not be limited to the picture level, but may be another level (for example, a sequence level, a slice level, a tile level, a CTU level, a CU level, or a sub-block level).
  • the frame memory 122 is a storage unit for storing reference pictures used for inter prediction, and may be called a frame buffer. Specifically, the frame memory 122 stores the reconstructed blocks filtered by the loop filter unit 120.
  • the intra prediction unit 124 generates a prediction signal (intra prediction signal) by performing intra prediction (also referred to as intra prediction) of the current block with reference to a block in the current picture stored in the block memory 118. Specifically, the intra prediction unit 124 generates an intra prediction signal by performing intra prediction with reference to a sample (for example, a luminance value and a color difference value) of a block adjacent to the current block, and performs prediction control on the intra prediction signal. Output to the unit 128.
  • intra prediction signal intra prediction signal
  • intra prediction also referred to as intra prediction
  • the intra prediction unit 124 performs intra prediction using one of a plurality of intra prediction modes defined in advance.
  • the plurality of intra prediction modes include one or more non-directional prediction modes and a plurality of directional prediction modes.
  • the one or more non-directional prediction modes are, for example, H.264. H.265 / HEVC (High-Efficiency Video Coding) standard (Non-Patent Document 1) includes a Planar prediction mode and a DC prediction mode.
  • the plurality of direction prediction modes are, for example, H.264. It includes a prediction mode in 33 directions defined by the H.265 / HEVC standard. Note that the plurality of directional prediction modes may further include 32 directional prediction modes (total of 65 directional prediction modes) in addition to the 33 directions.
  • FIG. 5A is a diagram illustrating 67 intra prediction modes (two non-directional prediction modes and 65 directional prediction modes) in intra prediction. Solid arrows indicate H.E. H.265 / HEVC standard indicates 33 directions, and dashed arrows indicate the added 32 directions.
  • a luminance block may be referred to. That is, the color difference component of the current block may be predicted based on the luminance component of the current block.
  • Such intra prediction may be referred to as CCLM (cross-component @ linear @ model) prediction.
  • CCLM cross-component @ linear @ model
  • Such an intra prediction mode of a chrominance block that refers to a luminance block (for example, referred to as a CCLM mode) may be added as one of the intra prediction modes of a chrominance block.
  • the intra prediction unit 124 may correct the pixel value after the intra prediction based on the gradient of the reference pixel in the horizontal / vertical direction. Intra prediction with such a correction is sometimes called PDPC (position ⁇ dependent ⁇ intra ⁇ prediction ⁇ combination). Information indicating whether or not PDPC is applied (for example, called a PDPC flag) is signaled at, for example, a CU level.
  • the signalization of this information need not be limited to the CU level, but may be another level (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
  • the inter prediction unit 126 performs inter prediction (also referred to as inter-screen prediction) of the current block with reference to a reference picture stored in the frame memory 122 and being different from the current picture, to thereby generate a prediction signal (inter prediction). A prediction signal).
  • the inter prediction is performed in units of a current block or a sub-block (for example, 4 ⁇ 4 block) in the current block.
  • the inter prediction unit 126 performs motion estimation (motion estimation) on the current block or the sub-block in the reference picture.
  • the inter prediction unit 126 generates an inter prediction signal of the current block or the sub block by performing motion compensation using the motion information (for example, a motion vector) obtained by the motion search.
  • the inter prediction unit 126 outputs the generated inter prediction signal to the prediction control unit 128.
  • the motion information used for motion compensation is signalized.
  • a predicted motion vector (motion ⁇ vector ⁇ predictor) may be used. That is, the difference between the motion vector and the predicted motion vector may be signalized.
  • the inter prediction signal may be generated using not only the motion information of the current block obtained by the motion search but also the motion information of the adjacent block. Specifically, an inter-prediction signal is generated for each sub-block in the current block by weighting and adding a prediction signal based on motion information obtained by a motion search and a prediction signal based on motion information of an adjacent block. May be done.
  • Such inter prediction motion compensation
  • OBMC overlapped ⁇ block ⁇ motion ⁇ compensation
  • OBMC block size information indicating the size of a sub-block for OBMC (for example, referred to as OBMC block size) is signalized at a sequence level.
  • Information indicating whether to apply the OBMC mode (for example, referred to as an OBMC flag) is signaled at the CU level.
  • the level of signalization of these pieces of information need not be limited to the sequence level and the CU level, and may be another level (for example, a picture level, a slice level, a tile level, a CTU level, or a sub-block level). Good.
  • FIG. 5B and FIG. 5C are a flowchart and a conceptual diagram for explaining the outline of the predicted image correction process by the OBMC process.
  • a predicted image (Pred) by normal motion compensation is obtained using the motion vector (MV) assigned to the current block.
  • the motion vector (MV_L) of the encoded left adjacent block is applied to the current block to obtain a predicted image (Pred_L), and the predicted image and Pred_L are weighted and overlapped with each other to perform prediction. Perform the first correction of the image.
  • the motion vector (MV_U) of the coded upper adjacent block is applied to the current block to obtain a predicted image (Pred_U), and the predicted image subjected to the first correction and Pred_U are weighted.
  • the second correction of the predicted image is performed by superimposing and superimposing, and this is used as the final predicted image.
  • the two-stage correction method using the left adjacent block and the upper adjacent block has been described.
  • a configuration in which the correction is performed more than two times using the right adjacent block and the lower adjacent block may be adopted. It is possible.
  • the region to be superimposed may not be the pixel region of the entire block, but may be only a partial region near the block boundary.
  • prediction image correction processing from one reference picture has been described here, the same applies to the case where a prediction image is corrected from a plurality of reference pictures.
  • the obtained predicted image is further superimposed to obtain a final predicted image.
  • the processing target block may be a prediction block unit or a sub-block unit obtained by further dividing the prediction block.
  • the encoding device determines whether the encoding target block belongs to an area with complicated motion, and sets a value 1 as obmc_flag if the block to be encoded belongs to an area with complicated motion. Encoding is performed by applying the OBMC process, and if it does not belong to a region with a complicated motion, the value is set to 0 as obmc_flag and encoding is performed without applying the OBMC process.
  • the decoding device decodes obmc_flag described in the stream, and switches whether or not to apply the OBMC process according to the value to perform decoding.
  • the motion information may be derived on the decoding device side without being signalized.
  • H. A merge mode defined by the H.265 / HEVC standard may be used.
  • the motion information may be derived by performing a motion search on the decoding device side. In this case, the motion search is performed without using the pixel values of the current block.
  • the mode in which a motion search is performed on the decoding device side may be referred to as a PMMVD (pattern matched motion vector derivation) mode or a FRUC (frame rate up-conversion) mode.
  • PMMVD pattern matched motion vector derivation
  • FRUC frame rate up-conversion
  • FIG. 5D shows an example of the FRUC processing.
  • a list of a plurality of candidates each having a predicted motion vector (which may be common to a merge list) is generated with reference to a motion vector of an encoded block spatially or temporally adjacent to the current block. Is done.
  • the best candidate MV is selected from the plurality of candidate MVs registered in the candidate list. For example, the evaluation value of each candidate included in the candidate list is calculated, and one candidate is selected based on the evaluation value.
  • a motion vector for the current block is derived based on the selected candidate motion vector.
  • the motion vector of the selected candidate (best candidate MV) is directly derived as a motion vector for the current block.
  • a motion vector for the current block may be derived by performing pattern matching in a peripheral region of a position in the reference picture corresponding to the selected candidate motion vector. That is, a search is performed in a similar manner to the area around the best candidate MV, and if there is an MV having a better evaluation value, the best candidate MV is updated to the MV and the MV is updated to the current block. May be the final MV. It is also possible to adopt a configuration in which the processing is not performed.
  • the evaluation value is calculated by calculating a difference value of a reconstructed image by pattern matching between a region in a reference picture corresponding to a motion vector and a predetermined region.
  • the evaluation value may be calculated using other information in addition to the difference value.
  • the first pattern matching or the second pattern matching is used.
  • the first pattern matching and the second pattern matching may be referred to as bilateral matching and template matching, respectively.
  • pattern matching is performed between two blocks in two different reference pictures and along a motion trajectory of the current block (motion @ trajectory). Therefore, in the first pattern matching, an area in another reference picture along the motion trajectory of the current block is used as a predetermined area for calculating the above-described candidate evaluation value.
  • FIG. 6 is a diagram for explaining an example of pattern matching (bilateral matching) between two blocks along a motion trajectory.
  • pattern matching bilateral matching
  • two blocks along the motion trajectory of the current block (Cur @ block) and a pair of two blocks in two different reference pictures (Ref0, Ref1) are used.
  • Ref0, Ref1 two motion vectors
  • a reconstructed image at a designated position in a first encoded reference picture (Ref0) designated by a candidate MV, and a symmetric MV obtained by scaling the candidate MV at a display time interval is derived, and an evaluation value is calculated using the obtained difference value.
  • the candidate MV having the best evaluation value among the plurality of candidate MVs may be selected as the final MV.
  • a motion vector (MV0, MV1) pointing to two reference blocks is a temporal distance between a current picture (Cur @ Pic) and two reference pictures (Ref0, Ref1). (TD0, TD1).
  • a reflection-symmetric bidirectional motion vector is used. Is derived.
  • pattern matching is performed between a template in the current picture (a block adjacent to the current block in the current picture (for example, an upper and / or left adjacent block)) and a block in the reference picture. Therefore, in the second pattern matching, a block adjacent to the current block in the current picture is used as a predetermined area for calculating the above-described candidate evaluation value.
  • FIG. 7 is a diagram for explaining an example of pattern matching (template matching) between a template in a current picture and a block in a reference picture.
  • the current block (Cur @ Pic) is searched for a block that matches the block adjacent to the current block (Cur @ block) in the reference picture (Ref0), thereby searching for the current block.
  • the reference picture (Ref0)
  • ⁇ Information indicating whether or not to apply such a FRUC mode (for example, called a FRUC flag) is signaled at the CU level.
  • a FRUC flag information indicating whether or not to apply such a FRUC mode (for example, called a FRUC flag) is signaled at the CU level.
  • information for example, called a FRUC mode flag
  • a pattern matching method first pattern matching or second pattern matching
  • BIO bi-directional optical flow
  • FIG. 8 is a diagram for explaining a model assuming constant velocity linear motion.
  • (v x , v y ) indicates a velocity vector
  • ⁇ 0 and ⁇ 1 are time between a current picture (Cur Pic) and two reference pictures (Ref 0 , Ref 1 ), respectively.
  • (MVx 0 , MVy 0 ) indicates a motion vector corresponding to the reference picture Ref 0
  • (MVx 1 , MVy 1 ) indicates a motion vector corresponding to the reference picture Ref 1 .
  • This optical flow equation includes (i) the time derivative of the luminance value, (ii) the product of the horizontal velocity and the horizontal component of the spatial gradient of the reference image, and (iii) the vertical velocity and the spatial gradient of the reference image. Indicates that the sum of the product of the vertical components of and is equal to zero. Based on a combination of the optical flow equation and Hermite interpolation, a block-by-block motion vector obtained from a merge list or the like is corrected in pixel units.
  • the motion vector may be derived on the decoding device side by a method different from the method for deriving the motion vector based on a model assuming uniform linear motion. For example, a motion vector may be derived for each sub-block based on the motion vectors of a plurality of adjacent blocks.
  • This mode may be referred to as an affine motion compensated prediction (affine ⁇ motion ⁇ compensation ⁇ prediction) mode.
  • FIG. 9A is a diagram for describing derivation of a motion vector in sub-block units based on motion vectors of a plurality of adjacent blocks.
  • the current block includes 16 4 ⁇ 4 sub-blocks.
  • the motion vector v 0 of the upper left corner control point of the current block is derived based on the motion vector of the adjacent block
  • the motion vector v 1 of the upper right corner control point of the current block is derived based on the motion vector of the adjacent sub block. Is done.
  • the motion vector (v x , v y ) of each sub-block in the current block is derived by the following equation (2).
  • x and y indicate the horizontal position and vertical position of the sub-block, respectively, and w indicates a predetermined weighting factor.
  • the affine motion compensation prediction mode may include several modes in which the method of deriving the motion vector of the upper left and upper right control points is different.
  • Information indicating such an affine motion compensation prediction mode (for example, called an affine flag) is signalized at the CU level.
  • the signalization of the information indicating the affine motion compensation prediction mode does not need to be limited to the CU level, but may be performed at another level (for example, a sequence level, a picture level, a slice level, a tile level, a CTU level, or a sub-block level). ).
  • the prediction control unit 128 selects one of the intra prediction signal and the inter prediction signal, and outputs the selected signal to the subtraction unit 104 and the addition unit 116 as a prediction signal.
  • FIG. 9B is a diagram for describing the outline of the motion vector derivation process in the merge mode.
  • a predicted MV list in which predicted MV candidates are registered is generated.
  • the spatially adjacent prediction MV which is the MV of a plurality of encoded blocks spatially located around the current block, and the position of the current block in the coded reference picture are projected.
  • Temporal adjacent prediction MV which is the MV of a nearby block
  • combined prediction MV which is an MV generated by combining the MV values of the spatial adjacent prediction MV and the temporal adjacent prediction MV
  • zero prediction MV which is an MV having a value of zero, etc.
  • one prediction MV is selected from a plurality of prediction MVs registered in the prediction MV list, and is determined as the MV of the encoding target block.
  • variable-length coding unit describes and encodes a signal “merge_idx” indicating which prediction MV is selected in the stream.
  • the prediction MV registered in the prediction MV list described in FIG. 9B is an example, and may be different from the number in the figure, or may not include some types of the prediction MV in the figure,
  • the configuration may be such that a prediction MV other than the type of the prediction MV in the drawing is added.
  • the final MV may be determined by performing a DMVR process described later using the MV of the encoding target block derived in the merge mode.
  • FIG. 9C is a conceptual diagram for explaining the outline of the DMVR process.
  • the optimal MVP set in the processing target block is set as a candidate MV.
  • a first reference picture that is a processed picture in the L0 direction and a second reference picture that is a processed picture in the L1 direction are referred to as reference pixels.
  • a template is generated by averaging each reference pixel.
  • ⁇ Circle around (2) ⁇ Next, using the template, search the surrounding areas of the candidate MV for the first reference picture and the second reference picture, respectively, and determine the MV with the lowest cost as the final MV.
  • the cost value is calculated using a difference value between each pixel value of the template and each pixel value of the search area, an MV value, and the like.
  • processing may be used as long as it is a processing that can search for the periphery of the candidate MV and derive the final MV without being the processing itself described here.
  • FIG. 9D is a diagram for describing an outline of a predicted image generation method using the luminance correction processing by the LIC processing.
  • an MV for obtaining a reference image corresponding to the current block from a reference picture which is a coded picture is derived.
  • the shape of the peripheral reference area in FIG. 9D is an example, and other shapes may be used.
  • a predicted image is generated after performing the brightness correction processing by the method.
  • lic_flag is a signal indicating whether or not to apply the LIC processing.
  • the encoding device it is determined whether the encoding target block belongs to an area in which a luminance change has occurred. If the encoding target block belongs to an area in which a luminance change has occurred, lik_flag is used.
  • the value 1 is set and coding is performed by applying the LIC processing, and when the pixel does not belong to the area where the luminance change occurs, the value is set as ric_flag and the coding is performed without applying the LIC processing.
  • the decoding device decodes lic_flag described in the stream, and switches whether or not to apply LIC processing according to the value to perform decoding.
  • determining whether or not to apply the LIC processing for example, there is a method of determining whether to apply the LIC processing to a peripheral block.
  • a method of determining whether to apply the LIC processing to a peripheral block For example, when the current block is in the merge mode, it is determined whether or not the peripheral coded block selected at the time of derivation of the MV in the merge mode process has been coded by applying the LIC process. Judgment is performed, and coding is performed by switching whether or not to apply LIC processing according to the result. In the case of this example, the processing in the decoding is exactly the same.
  • FIG. 10 is a block diagram showing a functional configuration of the decoding device 200 according to Embodiment 1.
  • the decoding device 200 is a moving image / image decoding device that decodes a moving image / image in block units.
  • the decoding device 200 includes an entropy decoding unit 202, an inverse quantization unit 204, an inverse transformation unit 206, an addition unit 208, a block memory 210, a loop filter unit 212, and a frame memory 214. , An intra prediction unit 216, an inter prediction unit 218, and a prediction control unit 220.
  • the decoding device 200 is realized by, for example, a general-purpose processor and a memory.
  • the processor when the software program stored in the memory is executed by the processor, the processor includes an entropy decoding unit 202, an inverse quantization unit 204, an inverse transformation unit 206, an addition unit 208, a loop filter unit 212, an intra prediction unit 216, and functions as the inter prediction unit 218 and the prediction control unit 220.
  • the decoding device 200 is a dedicated device corresponding to the entropy decoding unit 202, the inverse quantization unit 204, the inverse transformation unit 206, the addition unit 208, the loop filter unit 212, the intra prediction unit 216, the inter prediction unit 218, and the prediction control unit 220. May be realized as one or more electronic circuits.
  • the entropy decoding unit 202 performs entropy decoding on the encoded bit stream. Specifically, the entropy decoding unit 202 arithmetically decodes, for example, an encoded bit stream into a binary signal. Then, the entropy decoding unit 202 multi-values (binaries) the binary signal. As a result, the entropy decoding unit 202 outputs the quantization coefficients to the inverse quantization unit 204 in block units.
  • the inverse quantization unit 204 inversely quantizes a quantization coefficient of a decoding target block (hereinafter, referred to as a current block) input from the entropy decoding unit 202. Specifically, the inverse quantization unit 204 inversely quantizes each of the quantization coefficients of the current block based on the quantization parameter corresponding to the quantization coefficient. Then, the inverse quantization unit 204 outputs the inversely quantized quantized coefficients (that is, transform coefficients) of the current block to the inverse transform unit 206.
  • the inverse transform unit 206 restores a prediction error by inversely transforming the transform coefficient input from the inverse quantization unit 204.
  • the inverse transform unit 206 may perform the current block based on the information indicating the read conversion type. Is inversely transformed.
  • the inverse transform unit 206 applies inverse retransformation to the transform coefficients.
  • the addition unit 208 reconstructs the current block by adding the prediction error input from the inverse conversion unit 206 and the prediction sample input from the prediction control unit 220. Then, the adding unit 208 outputs the reconstructed block to the block memory 210 and the loop filter unit 212.
  • the block memory 210 is a storage unit for storing a block that is referred to in intra prediction and is in a current picture to be decoded (hereinafter, referred to as a current picture). Specifically, the block memory 210 stores the reconstructed block output from the adder 208.
  • the loop filter unit 212 applies a loop filter to the block reconstructed by the adding unit 208, and outputs the filtered reconstructed block to the frame memory 214, a display device, and the like.
  • one filter is selected from the plurality of filters based on the local gradient direction and activity. The selected filter is applied to the reconstruction block.
  • the frame memory 214 is a storage unit for storing a reference picture used for inter prediction, and is sometimes called a frame buffer. Specifically, the frame memory 214 stores the reconstructed blocks filtered by the loop filter unit 212.
  • the intra prediction unit 216 performs intra prediction with reference to a block in the current picture stored in the block memory 210 based on the intra prediction mode read from the coded bit stream, thereby obtaining a prediction signal (intra prediction). Signal). Specifically, the intra prediction unit 216 generates an intra prediction signal by performing intra prediction with reference to a sample (for example, a luminance value and a color difference value) of a block adjacent to the current block, and performs prediction control on the intra prediction signal. Output to the unit 220.
  • a sample for example, a luminance value and a color difference value
  • the intra prediction unit 216 may predict the chrominance component of the current block based on the luminance component of the current block. .
  • the intra prediction unit 216 corrects the pixel value after intra prediction based on the gradient of the reference pixel in the horizontal / vertical directions.
  • the inter prediction unit 218 predicts the current block with reference to the reference picture stored in the frame memory 214.
  • the prediction is performed in units of the current block or sub-blocks (for example, 4 ⁇ 4 blocks) in the current block.
  • the inter prediction unit 218 generates an inter prediction signal of a current block or a sub block by performing motion compensation using motion information (for example, a motion vector) read from an encoded bit stream. Output to the prediction control unit 220.
  • the inter prediction unit 218 determines not only the motion information of the current block obtained by the motion search but also the motion information of the adjacent block. To generate an inter prediction signal.
  • the inter prediction unit 218 uses the pattern matching method (bilateral matching or template matching) read from the encoded stream.
  • the motion information is derived by performing a motion search. Then, the inter prediction unit 218 performs motion compensation using the derived motion information.
  • the inter prediction unit 218 derives a motion vector based on a model assuming uniform linear motion. If the information read from the coded bit stream indicates that the affine motion compensation prediction mode is to be applied, the inter prediction unit 218 uses the motion vector of each of a plurality of adjacent blocks as a sub-block unit. Is derived.
  • the prediction control unit 220 selects one of the intra prediction signal and the inter prediction signal, and outputs the selected signal to the addition unit 208 as a prediction signal.
  • the inter prediction unit 126 of the encoding device 100 performs motion compensation in at least the affine motion compensation prediction mode among the inter prediction modes using only uni-prediction, and does not use bi-prediction.
  • the simple prediction is forward prediction or backward prediction, and is also referred to as one-way prediction.
  • Bi-prediction is also called bi-prediction.
  • the inter prediction unit 126 first derives each predicted motion vector of the control point of the current block. Next, the inter prediction unit 126 calculates the motion vector of each of the plurality of sub-blocks included in the current block as the affine motion vector using the derived predicted motion vector. Then, the inter prediction unit 126 performs motion compensation on the sub-block using the calculated affine motion vector and the encoded reference picture.
  • the affine motion compensation prediction mode includes two types of modes in which the method of determining a control point predicted motion vector is different, that is, a normal mode (affine inter mode) and a merge mode (affine merge mode).
  • the ⁇ ⁇ ⁇ normal mode is a mode for deriving a predicted motion vector of a control point by selecting a motion vector of one of encoded blocks near each control point of the current block.
  • index information indicating a reference picture and motion vector information are encoded for each control point.
  • the index information may be common to all control points.
  • the motion vector information can include an MVP index indicating a motion vector prediction candidate and an MVD indicating a difference between the predicted motion vector and an actual motion vector. When only the MVP index is included, the motion vector information may be common to all control points.
  • the merge mode is a mode for calculating a predicted motion vector of each control point based on a plurality of motion vectors corresponding to a block encoded in the affine mode among encoded blocks adjacent to the current block. . That is, the merge mode is a mode in which the motion vector of the control point is determined based on the motion vector of the peripheral CU to which the affine motion compensation mode has been applied. Therefore, if uni-prediction is used in the normal mode, when the merge mode is subsequently performed, the predicted motion vector of the control point is determined based on the motion vector of the coded block using the uni-prediction. As described above, if the simple prediction is used in the normal mode, the simple prediction is also used in the merge mode. Therefore, at least the normal mode may be performed using the simple prediction.
  • the reference picture may be selected based on one of the first reference picture list and the second reference picture list commonly used in the inter prediction mode. That is, the reference picture may be selected from one of the first list and the second list commonly used in the inter prediction mode (inter prediction mode).
  • the first list and the second list are, for example, an L0 list and an L1 list.
  • the reference picture may be selected, for example, from the L0 list.
  • an encoded block for deriving a predicted motion vector of a control point may be determined using only uni-prediction from among a plurality of encoded blocks constituting the selected reference picture. Accordingly, motion compensation in the affine motion compensation prediction mode can be performed using only uni-prediction.
  • the predicted motion vector of the control point may be determined based on the motion vector of the peripheral CU to which the inter prediction mode (inter prediction mode) other than the affine motion compensation prediction mode is applied.
  • a reference picture may be selected from an L0 list or the like.
  • affine motion compensation prediction mode motion compensation is performed in units of sub-CUs, which are units obtained by dividing a CU.
  • sub-CUs which are units obtained by dividing a CU.
  • the inter prediction unit 126 prohibits the use of bi-prediction and determines the predicted motion vector of the control point using only uni-prediction. Calculate the affine motion vector in units.
  • the encoding device 100 may be able to reduce the processing amount while suppressing a decrease in encoding efficiency.
  • FIG. 11 is a flowchart illustrating an operation example of the affine motion compensation prediction mode performed by the inter prediction unit 126 of the encoding device 100 according to the first example of Embodiment 1. Note that a flowchart showing a decoding operation example of the stream coded in the affine motion compensation prediction mode by the inter prediction unit 218 of the decoding device 200 is the same, and therefore, here, the affine motion by the inter prediction unit 126 of the coding device 100 is described. The operation example of the compensation mode will be described as an example.
  • the inter prediction unit 126 checks whether the prediction mode is the affine motion compensation prediction mode (S101).
  • step S101 when the prediction mode is the affine motion compensation prediction mode (Yes in S101), the inter prediction unit 126 determines a prediction motion vector of a control point using uni-prediction (S102). That is, in step S102, the inter prediction unit 126 determines the predicted motion vector of the control point using only uni-prediction, and does not use bi-prediction.
  • the inter prediction unit 126 calculates a motion vector for each sub-CU of the current block based on the predicted motion vector of the control point determined in step S102 (S103).
  • the inter prediction unit 126 calculates a motion vector by a predetermined method according to the prediction mode (S104).
  • a prediction mode other than the affine motion compensation prediction mode for example, there is a normal inter mode or a merge mode.
  • the inter prediction unit 126 may indicate only the index information of the reference picture for the first reference picture list.
  • the inter prediction unit 126 always determines the predicted motion vector of the control point by limiting the prediction mode to the simple prediction when the prediction mode is the affine motion compensation prediction mode.
  • the present invention is not limited thereto. Even if the prediction mode is the affine motion compensation prediction mode, the inter prediction unit 126 adaptively switches between using only uni-prediction or enabling bi-prediction according to the size of the sub-CU or the size of the CU. You may.
  • the processing amount is proportional to the total number of sub-CUs constituting a CU to which the affine motion compensation prediction mode is applied in a slice or a picture. Therefore, when the size of the sub-CU is equal to or smaller than the threshold, the inter prediction unit 126 may determine the predicted motion vector of the control point using only the simple prediction. On the other hand, when the size of the sub-CU exceeds the threshold, the inter prediction unit 126 may determine that the prediction motion vector of the control point is to be enabled by using the bi-prediction.
  • the inter prediction unit 126 prohibits the bi-prediction and predicts the control point.
  • a motion vector may be determined.
  • the inter prediction unit 126 may enable the bi-prediction and determine the predicted motion vector of the control point.
  • the affine motion compensation prediction mode may have a higher effect when a region having a certain size is rotated or enlarged or reduced. That is, the affine motion compensation prediction mode can be effective in a CU larger than a certain size.
  • the inter prediction unit 126 may prohibit the bi-prediction and determine the predicted motion vector of the control point. .
  • the inter prediction unit 126 may determine the predicted motion vector of the control point with bi-prediction enabled. For these bi-prediction prohibition rules, identification information may be encoded as header information.
  • the affine motion compensation prediction mode is not limited to the case where the affine motion compensation prediction mode is used for each sub-CU, and may be used for both the sub-CU unit and the CU unit. In this case, the increase in the processing amount becomes remarkable in the case of using a sub-CU unit. Therefore, when performing the affine motion compensation prediction mode in units of sub-CUs, the inter prediction unit 126 may determine the predicted motion vector of the control point using only the simple prediction. On the other hand, when performing the affine motion compensated prediction mode in CU units, the inter prediction unit 126 may determine that the prediction motion vector of the control point is to be determined by also using bi-prediction.
  • Whether the affine motion compensation prediction mode is performed in the sub-CU unit mode or the CU unit mode may be performed by coding identification information for each CU or CTU, or by coding header information to a sequence, slice, or picture. Switching may be performed in units.
  • the motion prediction in sub-CU units may be limited to uni-prediction. For example, in a prediction mode using a sub-CU unit motion vector in a block at the same position in a temporally different reference picture or a block shifted by an amount corresponding to a motion vector calculated based on a motion vector of a peripheral block.
  • it may be limited to application, that is, simple prediction.
  • FIG. 12 is an operation example in the case where the motion vector of the control point is only uni-prediction in the normal mode of the affine motion compensation prediction mode performed by the inter prediction unit 126 of the encoding device 100 according to the first example of Embodiment 1. It is a flowchart which shows.
  • the inter prediction unit 126 checks whether the prediction mode is the affine motion compensation prediction mode (S201).
  • step S201 when the prediction mode is the affine motion compensation prediction mode (Yes in S201), the inter prediction unit 126 further checks whether the affine motion compensation prediction mode is the normal mode for encoding motion vector information. (S202).
  • step S202 when the affine motion compensation prediction mode is the normal mode (Yes in S202), the inter prediction unit 126 determines a prediction motion vector of a control point using uni-prediction (S203). That is, in step S203, the inter prediction unit 126 determines the predicted motion vector of the control point using only uni-prediction, and does not use bi-prediction.
  • the inter prediction unit 126 calculates a motion vector for each sub-CU of the current block based on the predicted motion vector of the control point determined in step S203 (S205).
  • step S202 when the affine motion compensation prediction mode is not the normal mode (No in S202), the inter prediction unit 126 determines, based on the motion vector (MV) of the peripheral block to which the affine motion compensation prediction mode has been applied, The predicted motion vector of the control point is determined (S204).
  • the case where the affine motion compensation prediction mode is not the normal mode is the case where the affine motion compensation prediction mode is the merge mode.
  • the inter prediction unit 126 calculates a motion vector by a predetermined method according to the prediction mode (S206).
  • uni-prediction is used in the merge mode. That is, in the affine motion compensation prediction mode, when performing the normal mode only in the uni-prediction, the inter prediction unit 126 always performs the merge mode using the uni-prediction.
  • step S204 that is, in the merge mode of the affine motion compensation prediction mode, a case where a motion vector of a peripheral block to which an inter prediction mode other than the affine motion compensation prediction mode is applied may be used.
  • the inter prediction unit 126 may determine the predicted motion vector of the control point using the simple prediction even in the merge mode. Then, the inter prediction unit 126 selects one of the first list and the second list that commonly use the motion vector used for the uni-prediction in the inter prediction mode (inter-screen prediction method) as in the normal mode. You may choose from. Further, the inter prediction unit 126 may select a motion vector to be used for uni-prediction according to the same rule from the same list in the normal mode and the merge mode, for example.
  • the inter prediction unit 126 prohibits the use of bi-prediction and determines the predicted motion vector of the control point using only uni-prediction.
  • An affine motion vector is calculated for each sub-block.
  • the encoding device 100 may be able to reduce the processing amount while suppressing a decrease in encoding efficiency.
  • FIG. 13 is a block diagram illustrating an implementation example of the encoding device 100 according to Embodiment 1.
  • the encoding device 100 includes a circuit 160 and a memory 162.
  • a plurality of components of the encoding device 100 illustrated in FIG. 1 are implemented by the circuit 160 and the memory 162 illustrated in FIG.
  • the circuit 160 is a circuit that performs information processing, and is a circuit that can access the memory 162.
  • the circuit 160 is a dedicated or general-purpose electronic circuit that encodes a moving image.
  • the circuit 160 may be a processor such as a CPU.
  • the circuit 160 may be an aggregate of a plurality of electronic circuits.
  • the circuit 160 may play the role of a plurality of components of the encoding device 100 illustrated in FIG. 1 and the like, excluding a component for storing information.
  • the memory 162 is a dedicated or general-purpose memory in which information for the circuit 160 to encode a moving image is stored.
  • the memory 162 may be an electronic circuit and may be connected to the circuit 160. Further, the memory 162 may be included in the circuit 160. Further, the memory 162 may be an aggregate of a plurality of electronic circuits. Further, the memory 162 may be a magnetic disk or an optical disk, or may be expressed as a storage or a recording medium. Further, the memory 162 may be a nonvolatile memory or a volatile memory.
  • the memory 162 may store a moving image to be coded, or may store a bit string corresponding to the coded moving image. Further, the memory 162 may store a program for the circuit 160 to encode a moving image.
  • the memory 162 may serve as a component for storing information among a plurality of components of the encoding device 100 illustrated in FIG. 1 and the like. Specifically, the memory 162 may serve as the block memory 118 and the frame memory 122 shown in FIG. More specifically, the memory 162 may store reconstructed blocks, reconstructed pictures, and the like.
  • the encoding device 100 not all of the plurality of components illustrated in FIG. 1 and the like need to be implemented, and all of the plurality of processes described above need not be performed. Some of the components illustrated in FIG. 1 and the like may be included in another device, or some of the above-described processes may be performed by another device. Then, in the encoding device 100, some of the plurality of components illustrated in FIG. 1 and the like are implemented, and a part of the plurality of processes described above is performed, whereby an interface for calculating an affine motion vector is calculated. The prediction process in the prediction mode is performed efficiently.
  • FIG. 14 is a flowchart illustrating an operation example of the encoding device 100 illustrated in FIG.
  • the encoding device 100 illustrated in FIG. 13 performs the operation illustrated in FIG. 14 when encoding a moving image.
  • the circuit 160 of the encoding device 100 uses the memory 162 to determine the affine motion vector in units of sub-blocks constituting the current block based on the motion vectors of a plurality of peripheral blocks of the current block of the moving image.
  • the following prediction processing is performed. That is, first, the circuit 160 calculates an affine motion vector in sub-block units only in uni-prediction of uni-prediction and bi-prediction (S311). Next, the circuit 160 performs motion compensation on a sub-block basis using the affine motion vector calculated in step S311 (S312).
  • the encoding device 100 prohibits the use of bi-prediction and determines the predicted motion vector of the control point using only uni-prediction. Calculate the affine motion vector. Accordingly, there is a possibility that the processing amount can be reduced while suppressing a decrease in the coding efficiency, so that the coding device 100 can improve the processing efficiency.
  • FIG. 15 is a block diagram illustrating an implementation example of the decoding device 200 according to Embodiment 1.
  • the decoding device 200 includes a circuit 260 and a memory 262.
  • a plurality of components of the decoding device 200 illustrated in FIG. 10 are implemented by the circuit 260 and the memory 262 illustrated in FIG.
  • the circuit 260 is a circuit that performs information processing, and is a circuit that can access the memory 262.
  • the circuit 260 is a dedicated or general-purpose electronic circuit for decoding a moving image.
  • Circuit 260 may be a processor such as a CPU.
  • the circuit 260 may be an aggregate of a plurality of electronic circuits.
  • the circuit 260 may play the role of a plurality of components of the decoding device 200 shown in FIG. 10 and the like, excluding a component for storing information.
  • the memory 262 is a dedicated or general-purpose memory in which information for the circuit 260 to decode a moving image is stored.
  • the memory 262 may be an electronic circuit and may be connected to the circuit 260. Further, the memory 262 may be included in the circuit 260. Further, the memory 262 may be an aggregate of a plurality of electronic circuits. Further, the memory 262 may be a magnetic disk or an optical disk, or may be expressed as a storage or a recording medium. Further, the memory 262 may be a nonvolatile memory or a volatile memory.
  • the memory 262 may store a bit sequence corresponding to an encoded moving image, or may store a moving image corresponding to a decoded bit sequence. Further, the memory 262 may store a program for the circuit 260 to decode a moving image.
  • the memory 262 may play a role of a component for storing information among a plurality of components of the decoding device 200 illustrated in FIG. 10 and the like.
  • the memory 262 may serve as the block memory 210 and the frame memory 214 shown in FIG. More specifically, the memory 262 may store reconstructed blocks, reconstructed pictures, and the like.
  • all of the plurality of components illustrated in FIG. 10 and the like do not need to be implemented, and all of the plurality of processes described above do not need to be performed. Some of the components illustrated in FIG. 10 and the like may be included in another device, or some of the above-described processes may be performed by another device. Then, in the decoding device 200, a part of the plurality of components illustrated in FIG. 10 and the like is implemented, and a part of the plurality of processes described above is performed, so that motion compensation is efficiently performed. .
  • FIG. 16 is a flowchart illustrating an operation example of the decoding device 200 illustrated in FIG.
  • the decoding device 200 illustrated in FIG. 15 performs the operation illustrated in FIG.
  • the circuit 260 of the decoding device 200 uses the memory 262 to generate an affine motion vector in units of sub-blocks constituting the current block based on the motion vectors of a plurality of peripheral blocks of the current block of the video in the moving image.
  • the following prediction processing is performed. That is, first, the circuit 260 calculates an affine motion vector for each sub-block only in uni-prediction of uni-prediction and bi-prediction (S411). Next, the circuit 260 performs motion compensation on a subblock basis using the affine motion vector calculated in step S411 (S412).
  • the decoding device 200 prohibits the use of bi-prediction and determines the predicted motion vector of the control point using only uni-prediction. Calculate the motion vector. Accordingly, there is a possibility that the processing amount can be reduced while suppressing a decrease in the coding efficiency, so that the decoding device 200 can improve the processing efficiency.
  • the encoding device 100 and the decoding device 200 in the present embodiment may be used as an image encoding device and an image decoding device, respectively, or may be used as a moving image encoding device and a moving image decoding device. Good.
  • the encoding device 100 and the decoding device 200 can be used as inter prediction devices (inter prediction devices), respectively.
  • the encoding device 100 and the decoding device 200 may correspond to only the inter prediction unit (inter prediction unit) 126 and the inter prediction unit (inter prediction unit) 218, respectively.
  • Other components such as the conversion unit 106 and the inverse conversion unit 206 may be included in another device.
  • each component may be configured by dedicated hardware, or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • each of the encoding device 100 and the decoding device 200 includes a processing circuit (Processing @ Circuitry) and a storage device (Storage) electrically connected to the processing circuit and accessible from the processing circuit. You may have.
  • a processing circuit corresponds to the circuit 160 or 260
  • a storage device corresponds to the memory 162 or 262.
  • the processing circuit includes at least one of dedicated hardware and a program execution unit, and executes processing using a storage device.
  • the processing circuit includes a program execution unit
  • the storage device stores a software program executed by the program execution unit.
  • the software that implements the encoding device 100 or the decoding device 200 of the present embodiment is the following program.
  • this program is a coding method for coding a moving image by performing motion compensation on a computer, and forms a current block based on motion vectors of a plurality of peripheral blocks of a current block of an image in the moving image.
  • an affine motion vector in sub-block units is calculated only in uni-prediction of uni-prediction and bi-prediction, and a sub-block is calculated using the calculated affine motion vector.
  • An encoding method for performing the motion compensation on a unit basis may be executed.
  • the program is a decoding method for decoding a moving image by performing motion compensation, wherein the affine is performed in units of sub-blocks constituting a current block based on motion vectors of a plurality of peripheral blocks of a current block of an image in the moving image.
  • the inter prediction mode for calculating a motion vector an affine motion vector is calculated in sub-block units only in uni-prediction of uni-prediction and bi-prediction, and the motion compensation is performed in sub-block units using the calculated affine motion vector. May be executed by a computer.
  • Each component may be a circuit as described above. These circuits may constitute one circuit as a whole, or may be separate circuits. Further, each component may be realized by a general-purpose processor, or may be realized by a dedicated processor.
  • a process performed by a specific component may be performed by another component.
  • the order in which the processes are performed may be changed, or a plurality of processes may be performed in parallel.
  • the encoding / decoding device may include the encoding device 100 and the decoding device 200.
  • the first and second ordinal numbers used in the description may be appropriately replaced.
  • An ordinal number may be newly given to a component or the like, or may be removed.
  • the aspects of the encoding apparatus 100 and the decoding apparatus 200 have been described based on the embodiment, but the aspects of the encoding apparatus 100 and the decoding apparatus 200 are not limited to this embodiment. As long as the present disclosure does not depart from the spirit of the present disclosure, the coding apparatus 100 and the decoding apparatus 200 may include various modifications conceived by those skilled in the art, and configurations constructed by combining components in different embodiments. May be included in the scope of the embodiment.
  • This embodiment may be implemented in combination with at least a part of other embodiments in the present disclosure. Further, a part of the processing, a part of the configuration of the apparatus, a part of the syntax, and the like described in the flowchart of this embodiment may be implemented in combination with another embodiment.
  • each of the functional blocks can usually be realized by an MPU, a memory, and the like.
  • the processing by each of the functional blocks is generally realized by a program execution unit such as a processor reading and executing software (program) recorded on a recording medium such as a ROM.
  • the software may be distributed by download or the like, or may be recorded on a recording medium such as a semiconductor memory and distributed. Note that it is naturally possible to realize each functional block by hardware (dedicated circuit).
  • each embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good.
  • the number of processors that execute the program may be one or more. That is, centralized processing or distributed processing may be performed.
  • the system is characterized by having an image encoding device using an image encoding method, an image decoding device using an image decoding method, and an image encoding / decoding device including both.
  • Other configurations in the system can be appropriately changed as necessary.
  • FIG. 17 is a diagram illustrating an overall configuration of a content supply system ex100 that realizes a content distribution service.
  • a communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • each device such as a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, and a smartphone ex115 is connected to the Internet ex101 via the Internet service provider ex102 or the communication network ex104 and the base stations ex106 to ex110. Is connected.
  • the content supply system ex100 may be connected by combining any of the above elements.
  • the devices may be directly or indirectly connected to each other via a telephone network or short-range wireless communication without using the base stations ex106 to ex110 which are fixed wireless stations.
  • the streaming server ex103 is connected to each device such as a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, and a smartphone ex115 via the Internet ex101 and the like.
  • the streaming server ex103 is connected to a terminal or the like in a hot spot in the airplane ex117 via the satellite ex116.
  • a wireless access point or a hot spot may be used instead of the base stations ex106 to ex110.
  • the streaming server ex103 may be directly connected to the communication network ex104 without going through the Internet ex101 or the Internet service provider ex102, or may be directly connected to the airplane ex117 without going through the satellite ex116.
  • the camera ex113 is a device such as a digital camera capable of photographing still images and moving images.
  • the smartphone ex115 is a smartphone, a mobile phone, a PHS (Personal Handyphone System), or the like corresponding to a mobile communication system called 2G, 3G, 3.9G, 4G, and 5G in the future.
  • the home appliance ex118 is a refrigerator or a device included in a home fuel cell cogeneration system.
  • a terminal having a photographing function is connected to the streaming server ex103 through the base station ex106 or the like, thereby enabling live distribution or the like.
  • the terminal (computer ex111, game machine ex112, camera ex113, home appliance ex114, smartphone ex115, terminal in the airplane ex117, etc.) performs the above-described processing on the still image or the moving image content shot by the user using the terminal.
  • the encoding process described in each embodiment is performed, the video data obtained by the encoding is multiplexed with the encoded audio data of the sound corresponding to the video, and the obtained data is transmitted to the streaming server ex103. That is, each terminal functions as an image encoding device according to an aspect of the present disclosure.
  • the streaming server ex103 stream-distributes the transmitted content data to the requested client.
  • the client is a computer ex111, a game machine ex112, a camera ex113, a household appliance ex114, a smartphone ex115, a terminal in an airplane ex117, or the like, which can decode the encoded data.
  • Each device that has received the distributed data decodes and reproduces the received data. That is, each device functions as an image decoding device according to an aspect of the present disclosure.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, or distribute data in a distributed manner.
  • the streaming server ex103 may be realized by a CDN (Contents Delivery Network), and the content distribution may be realized by a number of edge servers distributed around the world and a network connecting the edge servers.
  • CDN Contents Delivery Network
  • edge servers distributed around the world and a network connecting the edge servers.
  • physically close edge servers are dynamically allocated according to clients. Then, the delay can be reduced by caching and distributing the content to the edge server.
  • the processing is distributed among multiple edge servers, the distribution entity is switched to another edge server, and the part of the network where the failure has occurred Since the distribution can be continued by bypass, high-speed and stable distribution can be realized.
  • the encoding processing of the captured data may be performed by each terminal, may be performed on the server side, or may be performed by sharing with each other.
  • a processing loop is performed twice.
  • the first loop the complexity or code amount of an image in units of frames or scenes is detected.
  • the second loop processing for maintaining the image quality and improving the coding efficiency is performed.
  • the terminal performs the first encoding process
  • the server that receives the content performs the second encoding process, thereby improving the quality and efficiency of the content while reducing the processing load on each terminal. it can.
  • the first encoded data performed by the terminal can be received and played back by another terminal, so more flexible real time distribution is possible Become.
  • the camera ex113 or the like extracts a feature amount from an image, compresses data related to the feature amount as metadata, and transmits the metadata to the server.
  • the server performs compression according to the meaning of the image, such as switching the quantization precision by determining the importance of the object from the feature amount.
  • the feature amount data is particularly effective for improving the accuracy and efficiency of motion vector prediction at the time of recompression at the server.
  • the terminal may perform simple coding such as VLC (variable length coding), and the server may perform coding with a large processing load such as CABAC (context adaptive binary arithmetic coding).
  • a plurality of video data in which a plurality of terminals capture substantially the same scene.
  • a GOP Group @ of @ Picture
  • a picture unit or a tile obtained by dividing a picture
  • Distributed processing is performed by assigning encoding processing in units or the like.
  • the server may perform management and / or instructions so that video data shot by each terminal can be referred to each other.
  • the encoded data from each terminal may be received by the server, and the reference relationship may be changed among a plurality of data, or the picture itself may be corrected or replaced to be re-encoded. As a result, it is possible to generate a stream in which the quality and efficiency of each data is improved.
  • the server may distribute the video data after performing transcoding for changing the encoding method of the video data. For example, the server may convert an MPEG-based encoding method to a VP-based encoding method. H.264 to H.P. 265.
  • the encoding process can be performed by the terminal or one or more servers. Therefore, in the following, description such as “server” or “terminal” is used as the subject of processing, but a part or all of the processing performed by the server may be performed by the terminal, or the processing performed by the terminal may be performed. Some or all may be performed on the server. The same applies to the decoding process.
  • the server not only encodes a two-dimensional moving image, but also automatically encodes a still image based on scene analysis of the moving image or at a time designated by the user and transmits the encoded still image to the receiving terminal. Is also good. If the server can further acquire the relative positional relationship between the photographing terminals, the server can determine the three-dimensional shape of the scene based on not only a two-dimensional moving image but also a video of the same scene photographed from different angles. Can be generated. Note that the server may separately encode three-dimensional data generated by a point cloud or the like, or generate a video to be transmitted to the receiving terminal based on a result of recognizing or tracking a person or an object using the three-dimensional data. Alternatively, the image may be selected from images captured by a plurality of terminals or reconstructed and generated.
  • the user can arbitrarily select each video corresponding to each shooting terminal to enjoy the scene, and can generate a video of an arbitrary viewpoint from three-dimensional data reconstructed using a plurality of images or videos. You can also enjoy clipped content.
  • the sound is collected from a plurality of different angles, and the server may transmit the sound multiplexed with the video from a specific angle or space in accordance with the video.
  • the server may create right-eye and left-eye viewpoint images, and perform encoding that allows reference between viewpoint videos by Multi-View @ Coding (MVC) or the like. It may be encoded as a separate stream without reference. At the time of decoding another stream, it is preferable to reproduce them in synchronization with each other so that a virtual three-dimensional space is reproduced according to the viewpoint of the user.
  • MVC Multi-View @ Coding
  • the server superimposes virtual object information in a virtual space on camera information in a real space based on a three-dimensional position or a movement of a user's viewpoint.
  • the decoding device may obtain or hold the virtual object information and the three-dimensional data, generate a two-dimensional image according to the movement of the user's viewpoint, and create superimposed data by connecting the two-dimensional images smoothly.
  • the decoding device transmits the viewpoint movement of the user to the server in addition to the request for the virtual object information, and the server creates superimposed data in accordance with the viewpoint movement received from the three-dimensional data held in the server,
  • the superimposed data may be encoded and distributed to the decoding device.
  • the superimposition data has an ⁇ value indicating transparency other than RGB
  • the server sets the ⁇ value of a portion other than the object created from the three-dimensional data to 0 or the like, and sets the portion in a transparent state.
  • the server may generate data in which a predetermined RGB value such as a chroma key is set as a background and a portion other than the object is set as a background color.
  • the decoding process of the distributed data may be performed by each terminal as a client, may be performed on the server side, or may be performed by sharing each other.
  • a certain terminal may once send a reception request to the server, receive the content corresponding to the request by another terminal, perform a decoding process, and transmit a decoded signal to a device having a display.
  • High-quality data can be reproduced by distributing processing and selecting appropriate content regardless of the performance of the terminal itself capable of communication.
  • a partial area such as a tile obtained by dividing a picture may be decoded and displayed on a personal terminal of a viewer. As a result, while sharing the whole image, it is possible to check at hand the field in which the user is in charge or the area to be checked in more detail.
  • access to encoded data on a network such as when encoded data is cached on a server that can be accessed from a receiving terminal in a short time or copied to an edge server in a content delivery service. It is also possible to switch the bit rate of the received data based on ease.
  • [Scalable encoding] Switching of content will be described using a scalable stream that is compression-encoded by applying the moving picture encoding method shown in each of the above-described embodiments shown in FIG.
  • the server may have a plurality of streams having the same contents and different qualities as individual streams, but the temporal / spatial scalable realization is realized by performing encoding in layers as shown in the figure.
  • a configuration in which the content is switched by utilizing the characteristics of the stream may be employed.
  • the decoding side determines the layer to be decoded according to an internal factor such as performance and an external factor such as a communication band state, so that the decoding side can separate the low-resolution content and the high-resolution content. You can switch freely to decode.
  • the device only has to decode the same stream to a different layer, so that the burden on the server side is high. Can be reduced.
  • the picture is encoded for each layer, and in addition to the configuration for achieving scalability in which the enhancement layer exists above the base layer, the enhancement layer includes meta information based on image statistical information and the like.
  • the decoding side may generate high-quality content by super-resolution of the base layer picture based on the meta information.
  • the super-resolution may be either improvement of the SN ratio at the same resolution or enlargement of the resolution.
  • the meta information includes information for specifying a linear or non-linear filter coefficient used for super-resolution processing, or information for specifying a parameter value in filter processing, machine learning, or least-squares operation used for super-resolution processing. .
  • the picture may be divided into tiles or the like according to the meaning of an object or the like in the image, and the decoding side may decode only a part of the area by selecting a tile to be decoded.
  • the decoding side can determine the position of the desired object based on the meta information.
  • the tile that contains the object can be determined.
  • the meta information is stored using a data storage structure different from the pixel data such as an SEI message in HEVC. This meta information indicates, for example, the position, size, color, or the like of the main object.
  • meta information may be stored in units composed of a plurality of pictures, such as a stream, a sequence, or a random access unit.
  • the decoding side can obtain the time at which the specific person appears in the video and the like, and can specify the picture in which the object exists and the position of the object in the picture by matching the information with the picture unit information.
  • FIG. 20 is a diagram illustrating an example of a display screen of a web page on the computer ex111 or the like.
  • FIG. 21 is a diagram illustrating an example of a display screen of a web page on the smartphone ex115 or the like.
  • a web page may include a plurality of link images which are links to image contents, and the appearance differs depending on a viewing device.
  • the display device is operated until the user explicitly selects the link image, or until the link image approaches the center of the screen or the entire link image enters the screen.
  • the (decoding device) displays a still image or an I picture included in each content as a link image, displays a video such as a gif animation with a plurality of still images or I pictures, or receives only a base layer to receive a video. And display it.
  • the display device When a link image is selected by the user, the display device performs decoding with the base layer given top priority. Note that if there is information indicating that the content is scalable in the HTML constituting the web page, the display device may decode the content up to the enhancement layer. In addition, in order to ensure real-time performance, before selection or when the communication band is extremely severe, the display device decodes only forward-referenced pictures (I-pictures, P-pictures, and B-pictures with only forward-reference). And display, the delay between the decoding time of the first picture and the display time (the delay from the start of decoding of the content to the start of display) can be reduced. In addition, the display device may intentionally ignore the reference relation of pictures, perform coarse decoding with all B pictures and P pictures being forward-referenced, and perform normal decoding as time passes and the number of received pictures increases.
  • the display device may intentionally ignore the reference relation of pictures, perform coarse decoding with all B pictures and P pictures being forward-referenced, and perform normal decoding as time
  • the receiving terminal may perform meta-information in addition to image data belonging to one or more layers. Weather or construction information may also be received and associated with them for decoding. Note that the meta information may belong to a layer or may be simply multiplexed with image data.
  • the receiving terminal since a car, a drone or an airplane including the receiving terminal moves, the receiving terminal transmits the location information of the receiving terminal at the time of the reception request, thereby seamlessly receiving and decoding while switching between the base stations ex106 to ex110. Can be realized.
  • the receiving terminal can dynamically switch how much the meta information is received or how much the map information is updated according to the user's selection, the user's situation, or the state of the communication band. become.
  • the client can receive, decode, and reproduce the encoded information transmitted by the user in real time.
  • the server may perform the encoding process after performing the editing process. This can be realized, for example, by the following configuration.
  • the server performs a recognition process such as a shooting error, a scene search, a meaning analysis, and an object detection from the original image or the encoded data after shooting in real time or after storing the image. Then, the server manually or automatically corrects out-of-focus or camera shake based on the recognition result, or deletes a less important scene such as a scene whose brightness is lower or out of focus compared to other pictures. Perform editing such as deleting, emphasizing the edges of the object, and changing the color. The server encodes the edited data based on the edited result.
  • a recognition process such as a shooting error, a scene search, a meaning analysis, and an object detection from the original image or the encoded data after shooting in real time or after storing the image. Then, the server manually or automatically corrects out-of-focus or camera shake based on the recognition result, or deletes a less important scene such as a scene whose brightness is lower or out of focus compared to other pictures. Perform editing such as deleting, emphasizing the edges of the object
  • the server will not only move the scenes with low importance as described above so that the content will be within a specific time range according to the shooting time. For example, a scene with few images may be automatically clipped based on the image processing result. Alternatively, the server may generate and encode a digest based on the result of the semantic analysis of the scene.
  • the server may dare to change the image of a person's face in the periphery of the screen or the inside of a house into an image that is out of focus. Further, the server recognizes whether or not a face of a person different from the person registered in advance is reflected in the image to be encoded, and if so, performs processing such as mosaicing the face part. You may.
  • a user specifies a person or a background area where the user wants to process an image from the viewpoint of copyright, and the server replaces the specified area with another video or defocuses. It is also possible to perform such a process. If it is a person, it is possible to replace the video of the face part while tracking the person in the moving image.
  • the decoding device first receives the base layer with the highest priority and decodes and reproduces it, depending on the bandwidth.
  • the decoding device may receive the enhancement layer during this time, and may reproduce high-quality video including the enhancement layer when the reproduction is performed twice or more, such as when the reproduction is looped.
  • the stream is scalable encoded in this way, it is a coarse moving image when not selected or when it is started to be viewed, but it is possible to provide an experience in which the stream gradually becomes smarter and the image becomes better.
  • a similar experience can be provided even when the coarse stream reproduced at the first time and the second stream encoded with reference to the first moving image are configured as one stream. .
  • these encoding or decoding processes are generally performed in the LSI ex500 included in each terminal.
  • the LSI ex500 may be a single chip or a configuration including a plurality of chips.
  • the moving image encoding or decoding software is incorporated into any recording medium (CD-ROM, flexible disk, hard disk, or the like) readable by the computer ex111 or the like, and the encoding or decoding processing is performed using the software. Is also good.
  • moving image data acquired by the camera may be transmitted. The moving image data at this time is data that has been encoded by the LSI ex500 of the smartphone ex115.
  • the LSI ex500 may be configured to download and activate application software.
  • the terminal first determines whether the terminal supports the content encoding method or has the ability to execute the specific service. If the terminal does not support the content encoding method or does not have the ability to execute a specific service, the terminal downloads a codec or application software, and then acquires and reproduces the content.
  • the digital broadcasting system at least the moving picture coding apparatus (picture coding apparatus) or the moving picture decoding apparatus (picture decoding apparatus) of each of the above embodiments.
  • the multiplexed data in which video and sound are multiplexed on the radio wave for broadcasting using a satellite or the like is transmitted and received, there is a difference that the content supply system ex100 is suitable for multicasting in contrast to the configuration in which unicast is easily performed.
  • similar applications are possible for the encoding process and the decoding process.
  • FIG. 22 is a diagram illustrating the smartphone ex115.
  • FIG. 23 is a diagram illustrating a configuration example of the smartphone ex115.
  • the smartphone ex115 receives an antenna ex450 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex465 capable of taking video and still images, a video image captured by the camera unit ex465, and an antenna ex450.
  • a display unit ex458 for displaying data obtained by decoding a video or the like.
  • the smartphone ex115 further includes an operation unit ex466 such as a touch panel, a sound output unit ex457 such as a speaker for outputting sound or sound, a sound input unit ex456 such as a microphone for inputting sound, and shooting.
  • a memory unit ex467 that can store encoded data such as encoded video or still images, recorded audio, received video or still images, mail, etc., or decoded data;
  • a slot unit ex464 is provided as an interface unit with the SIMex468 for authenticating access to various data. Note that an external memory may be used instead of the memory unit ex467.
  • a main control unit ex460 that comprehensively controls the display unit ex458 and the operation unit ex466, etc., a power supply circuit unit ex461, an operation input control unit ex462, a video signal processing unit ex455, a camera interface unit ex463, a display control unit ex459, modulation The / demodulation unit ex452, the multiplexing / demultiplexing unit ex453, the audio signal processing unit ex454, the slot unit ex464, and the memory unit ex467 are connected via a bus ex470.
  • the power supply circuit unit ex461 activates the smartphone ex115 by supplying power to each unit from the battery pack.
  • the smartphone ex115 performs processing such as telephone communication and data communication based on the control of the main control unit ex460 having a CPU, a ROM, a RAM, and the like.
  • the audio signal collected by the audio input unit ex456 is converted into a digital audio signal by the audio signal processing unit ex454, which is subjected to spectrum spread processing by the modulation / demodulation unit ex452, and digital / analog conversion by the transmission / reception unit ex451.
  • the signal is transmitted via the antenna ex450.
  • the received data is amplified, subjected to frequency conversion processing and analog-to-digital conversion processing, subjected to spectrum despreading processing by a modulation / demodulation unit ex452, converted to an analog audio signal by an audio signal processing unit ex454, and then converted to an audio output unit ex457.
  • Output from In the data communication mode text, still image, or video data is transmitted to the main control unit ex460 via the operation input control unit ex462 by an operation of the operation unit ex466 or the like of the main unit, and transmission and reception processing is performed in the same manner.
  • the video signal processing unit ex455 converts the video signal stored in the memory unit ex467 or the video signal input from the camera unit ex465 into each of the above embodiments.
  • the video data is compression-encoded by the moving image encoding method shown in the embodiment, and the encoded video data is transmitted to the multiplexing / demultiplexing unit ex453.
  • the audio signal processing unit ex454 encodes an audio signal collected by the audio input unit ex456 while capturing a video or a still image by the camera unit ex465, and transmits the encoded audio data to the multiplexing / demultiplexing unit ex453. I do.
  • the multiplexing / demultiplexing unit ex453 multiplexes the coded video data and the coded audio data by a predetermined method, and modulates and converts the multiplexed data in the modulation / demodulation unit (modulation / demodulation circuit unit) ex452 and the transmission / reception unit ex451. Processing is performed and transmission is performed via the antenna ex450.
  • the multiplexing / demultiplexing unit ex453 When receiving an image attached to an e-mail or a chat or an image linked to a web page or the like, the multiplexing / demultiplexing unit ex453 performs multiplexing to decode the multiplexed data received via the antenna ex450. By separating the data, the multiplexed data is divided into a bit stream of video data and a bit stream of audio data, and the coded video data is supplied to the video signal processing unit ex455 via the synchronous bus ex470, and The converted audio data is supplied to the audio signal processing unit ex454.
  • the video signal processing unit ex455 decodes the video signal by the video decoding method corresponding to the video encoding method described in each of the above embodiments, and is linked from the display unit ex458 via the display control unit ex459.
  • a video or a still image included in the moving image file is displayed.
  • the audio signal processing unit ex454 decodes the audio signal, and the audio is output from the audio output unit ex457. Since real-time streaming is widespread, depending on the situation of the user, there may be places where sound reproduction is not socially appropriate. Therefore, as an initial value, a configuration in which only the video data is reproduced without reproducing the audio signal is more preferable.
  • the audio may be reproduced in synchronization only when the user performs an operation such as clicking on the video data.
  • the smartphone ex115 has been described as an example here, as a terminal, in addition to a transmission / reception type terminal having both an encoder and a decoder, a transmission terminal having only an encoder and a reception terminal having only a decoder are provided.
  • multiplexed data in which audio data and the like are multiplexed with video data is received or transmitted, but multiplexed data includes character data related to video in addition to audio data.
  • the data may be multiplexed, or the video data itself may be received or transmitted instead of the multiplexed data.
  • the terminal often includes a GPU. Therefore, a configuration in which a wide area is collectively processed by utilizing the performance of the GPU by using a memory shared by the CPU and the GPU or a memory whose addresses are managed so as to be commonly used may be used. As a result, the encoding time can be reduced, real-time performance can be ensured, and low delay can be realized. In particular, it is efficient to perform the motion search, deblocking filter, SAO (Sample Adaptive Offset), and conversion / quantization processes collectively in units of pictures or the like by the GPU instead of the CPU.
  • SAO Sample Adaptive Offset
  • the present disclosure is applicable to, for example, a television receiver, a digital video recorder, a car navigation, a mobile phone, a digital camera, a digital video camera, a video conference system, an electronic mirror, and the like.
  • REFERENCE SIGNS LIST 100 Encoding device 102 Divider 104 Subtractor 106 Transformer 108 Quantizer 110 Entropy encoder 112, 204 Inverse quantizer 114, 206 Inverse transformer 116, 208 Adder 118, 210 Block memory 120, 212 Loop filter Units 122 and 214 Frame memories 124 and 216 Intra prediction unit (intra-screen prediction unit) 126, 218 Inter prediction unit (inter-screen prediction unit) 128, 220 prediction control unit 160, 260 circuit 162, 262 memory 200 decoding device 202 entropy decoding unit

Abstract

A coding device (100) is provided with a circuit (160) and a memory (162). Using the memory (162), the circuit (160) calculates, in an inter-prediction mode in which on the basis of motion vectors of a plurality of peripheral blocks of a current block of an image in a moving image, an affine motion vector is calculated in units of sub-blocks constituting the current block, the affine motion vector in units of sub-blocks by only uni-prediction out of uni-prediction and bi-prediction, and using the calculated affine motion vector, performs motion compensation in units of sub-blocks.

Description

符号化装置、復号装置、符号化方法及び復号方法Encoding device, decoding device, encoding method and decoding method
 本開示は、符号化装置、復号装置、符号化方法及び復号方法に関する。 The present disclosure relates to an encoding device, a decoding device, an encoding method, and a decoding method.
 従来、動画像を符号化するための規格として、H.265が存在する。H.265は、HEVC(High Efficiency Video Coding)とも呼ばれる。 Conventionally, as a standard for encoding a moving image, H.264 is used. 265 are present. H. H.265 is also called HEVC (High Efficiency Video Coding).
 このような、符号化方法及び復号方法では、処理効率の向上や、画質の改善や、回路規模の削減などのために、新たな方式の提案できることが望まれている。 で は In such encoding and decoding methods, it is desired that a new method can be proposed in order to improve processing efficiency, improve image quality, and reduce the circuit scale.
 本開示における実施の形態またはその一部で開示された構成または方法のそれぞれは、例えば、符号化効率の改善、符号化/復号化処理量の削減、回路規模の削減、符号化/復号化速度の改善、符号化および復号化において、フィルタ、ブロック、サイズ、動きベクトル、参照ピクチャ、参照ブロックなどの構成要素/動作の適切な選択などのうちの、少なくともいずれか1つに貢献しうる。 Each of the configurations and methods disclosed in the embodiments of the present disclosure or a part thereof can be implemented by, for example, improving encoding efficiency, reducing the amount of encoding / decoding processing, reducing the circuit scale, and encoding / decoding speed. , And / or the appropriate selection of components / operations such as filters, blocks, sizes, motion vectors, reference pictures, reference blocks, etc., in encoding and decoding.
 なお、本開示は、上記以外の利益を提供し得る構成または方法の開示も含む。例えば、処理量の増加を抑えつつ、符号化効率を改善する構成または方法などである。 Note that the present disclosure also includes disclosure of configurations or methods that can provide benefits other than those described above. For example, there is a configuration or a method for improving the coding efficiency while suppressing an increase in the processing amount.
 本開示の一態様に係る符号化装置は、動き補償を行って動画像を符号化する符号化装置であって、回路と、メモリと、を備え、前記回路は、前記メモリを用いて、前記動画像における画像のカレントブロックの複数の周辺ブロックの動きベクトルに基づき、前記カレントブロックを構成するサブブロック単位でアフィン動きベクトルを算出するインター予測モードにおいて、単予測及び双予測のうちの単予測のみで前記サブブロック単位での前記アフィン動きベクトルを算出し、算出した前記アフィン動きベクトルを用いて、前記サブブロック単位で前記動き補償を行う。 An encoding device according to an aspect of the present disclosure is an encoding device that performs motion compensation and encodes a moving image, and includes a circuit and a memory, wherein the circuit uses the memory, In the inter prediction mode in which an affine motion vector is calculated in units of sub-blocks constituting the current block based on motion vectors of a plurality of peripheral blocks of a current block of an image in a moving image, only uni-prediction of uni-prediction and bi-prediction is used. Calculates the affine motion vector in the sub-block unit, and performs the motion compensation in the sub-block unit using the calculated affine motion vector.
 本開示の一態様に係る復号装置は、動き補償を行って動画像を復号化する復号装置であって、回路と、メモリと、を備え、前記回路は、前記メモリを用いて、前記動画像における画像のカレントブロックの複数の周辺ブロックの動きベクトルに基づき、前記カレントブロックを構成するサブブロック単位でアフィン動きベクトルを算出するインター予測モードにおいて、単予測及び双予測のうちの単予測のみで前記サブブロック単位での前記アフィン動きベクトルを算出し、算出した前記アフィン動きベクトルを用いて、前記サブブロック単位で前記動き補償を行う。 A decoding device according to an aspect of the present disclosure is a decoding device that performs motion compensation and decodes a moving image, and includes a circuit and a memory, and the circuit uses the memory to In the inter prediction mode of calculating an affine motion vector in units of sub-blocks constituting the current block based on the motion vectors of a plurality of peripheral blocks of the current block of the image in The affine motion vector is calculated for each sub-block, and the motion compensation is performed for each sub-block using the calculated affine motion vector.
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、コンピュータで読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム、及び、記録媒体の任意な組み合わせで実現されてもよい。 Note that these comprehensive or specific aspects may be realized by a system, an apparatus, a method, an integrated circuit, a computer program, or a non-transitory recording medium such as a computer-readable CD-ROM. The present invention may be implemented by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
 開示された実施の形態が提供する更なる利益や利点は、明細書および図面から明らかになる。それらの利益や利点は、さまざまな実施の形態や明細書および図面の特徴によって個々にもたらされる場合があり、1つ以上の利益や利点を得るために、全てが必ずしも提供される必要はない。 Further benefits and advantages provided by the disclosed embodiments will be apparent from the description and drawings. The benefits and advantages may be provided individually by the features of the various embodiments and the specification and drawings, and not all need be provided to obtain one or more benefits or advantages.
 本開示は、処理効率を向上できる符号化装置、復号装置、符号化方法または復号方法を提供できる。 The present disclosure can provide an encoding device, a decoding device, an encoding method, or a decoding method that can improve processing efficiency.
図1は、実施の形態1に係る符号化装置の機能構成を示すブロック図である。FIG. 1 is a block diagram showing a functional configuration of the encoding device according to Embodiment 1. 図2は、実施の形態1におけるブロック分割の一例を示す図である。FIG. 2 is a diagram illustrating an example of block division according to the first embodiment. 図3は、各変換タイプに対応する変換基底関数を示す表である。FIG. 3 is a table showing conversion basis functions corresponding to each conversion type. 図4Aは、ALFで用いられるフィルタの形状の一例を示す図である。FIG. 4A is a diagram illustrating an example of the shape of a filter used in ALF. 図4Bは、ALFで用いられるフィルタの形状の他の一例を示す図である。FIG. 4B is a diagram illustrating another example of the shape of the filter used in the ALF. 図4Cは、ALFで用いられるフィルタの形状の他の一例を示す図である。FIG. 4C is a diagram illustrating another example of the shape of the filter used in the ALF. 図5Aは、イントラ予測における67個のイントラ予測モードを示す図である。FIG. 5A is a diagram showing 67 intra prediction modes in intra prediction. 図5Bは、OBMC処理による予測画像補正処理の概要を説明するためのフローチャートである。FIG. 5B is a flowchart for explaining an outline of the predicted image correction processing by the OBMC processing. 図5Cは、OBMC処理による予測画像補正処理の概要を説明するための概念図である。FIG. 5C is a conceptual diagram for describing an outline of a predicted image correction process by the OBMC process. 図5Dは、FRUCの一例を示す図である。FIG. 5D is a diagram illustrating an example of the FRUC. 図6は、動き軌道に沿う2つのブロック間でのパターンマッチング(バイラテラルマッチング)を説明するための図である。FIG. 6 is a diagram for explaining pattern matching (bilateral matching) between two blocks along a motion trajectory. 図7は、カレントピクチャ内のテンプレートと参照ピクチャ内のブロックとの間でのパターンマッチング(テンプレートマッチング)を説明するための図である。FIG. 7 is a diagram for explaining pattern matching (template matching) between a template in the current picture and a block in the reference picture. 図8は、等速直線運動を仮定したモデルを説明するための図である。FIG. 8 is a diagram for explaining a model assuming constant velocity linear motion. 図9Aは、複数の隣接ブロックの動きベクトルに基づくサブブロック単位の動きベクトルの導出を説明するための図である。FIG. 9A is a diagram for describing derivation of a motion vector in sub-block units based on motion vectors of a plurality of adjacent blocks. 図9Bは、マージモードによる動きベクトル導出処理の概要を説明するための図である。FIG. 9B is a diagram for describing the outline of the motion vector derivation process in the merge mode. 図9Cは、DMVR処理の概要を説明するための概念図である。FIG. 9C is a conceptual diagram for explaining the outline of the DMVR process. 図9Dは、LIC処理による輝度補正処理を用いた予測画像生成方法の概要を説明するための図である。FIG. 9D is a diagram for explaining an outline of a predicted image generation method using the luminance correction processing by the LIC processing. 図10は、実施の形態1に係る復号装置の機能構成を示すブロック図である。FIG. 10 is a block diagram showing a functional configuration of the decoding device according to Embodiment 1. 図11は、実施の形態1の第1態様に係る符号化装置のインター予測部が行うアフィン動き補償予測モードの動作例を示すフローチャートである。FIG. 11 is a flowchart illustrating an operation example of the affine motion compensation prediction mode performed by the inter prediction unit of the encoding device according to the first example of Embodiment 1. 図12は、実施の形態1の第1態様に係る符号化装置のインター予測部が行うアフィン動き補償予測モードのノーマルモードで、制御ポイントの動きベクトルを単予測のみとする場合の動作例を示すフローチャートである。FIG. 12 shows an operation example in the case where the motion vector of the control point is only uni-prediction in the normal mode of the affine motion compensation prediction mode performed by the inter prediction unit of the encoding device according to the first example of Embodiment 1. It is a flowchart. 図13は、実施の形態1に係る符号化装置の実装例を示すブロック図である。FIG. 13 is a block diagram illustrating an implementation example of the encoding device according to Embodiment 1. 図14は、図13に示された符号化装置の動作例を示すフローチャートである。FIG. 14 is a flowchart illustrating an operation example of the encoding device illustrated in FIG. 図15は、実施の形態1に係る復号装置の実装例を示すブロック図である。FIG. 15 is a block diagram illustrating an implementation example of the decoding device according to the first embodiment. 図16は、図15に示された復号装置の動作例を示すフローチャートである。FIG. 16 is a flowchart showing an operation example of the decoding device shown in FIG. 図17は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。FIG. 17 is an overall configuration diagram of a content supply system that realizes a content distribution service. 図18は、スケーラブル符号化時の符号化構造の一例を示す図である。FIG. 18 is a diagram illustrating an example of an encoding structure at the time of scalable encoding. 図19は、スケーラブル符号化時の符号化構造の一例を示す図である。FIG. 19 is a diagram illustrating an example of an encoding structure at the time of scalable encoding. 図20は、webページの表示画面例を示す図である。FIG. 20 is a diagram illustrating an example of a display screen of a web page. 図21は、webページの表示画面例を示す図である。FIG. 21 is a diagram illustrating an example of a display screen of a web page. 図22は、スマートフォンの一例を示す図である。FIG. 22 is a diagram illustrating an example of a smartphone. 図23は、スマートフォンの構成例を示すブロック図である。FIG. 23 is a block diagram illustrating a configuration example of a smartphone.
 例えば、本開示の一態様に係る符号化装置は、動き補償を行って動画像を符号化する符号化装置であって、回路と、メモリと、を備え、前記回路は、前記メモリを用いて、前記動画像における画像のカレントブロックの複数の周辺ブロックの動きベクトルに基づき、前記カレントブロックを構成するサブブロック単位でアフィン動きベクトルを算出するインター予測モードにおいて、単予測及び双予測のうちの単予測のみで前記サブブロック単位での前記アフィン動きベクトルを算出し、算出した前記アフィン動きベクトルを用いて、前記サブブロック単位で前記動き補償を行う。 For example, an encoding device according to an aspect of the present disclosure is an encoding device that performs motion compensation and encodes a moving image, and includes a circuit and a memory, and the circuit uses the memory. In the inter prediction mode for calculating an affine motion vector in units of sub-blocks constituting the current block based on the motion vectors of a plurality of peripheral blocks of the current block of the image in the moving image, The affine motion vector in the sub-block unit is calculated only by prediction, and the motion compensation is performed in the sub-block unit using the calculated affine motion vector.
 これによれば、アフィン動き補償予測モードにおいて、双予測の使用を禁止し、単予測のみを用いて制御ポイントの予測動きベクトルの決定するので、単予測のみでサブブロック単位でのアフィン動きベクトルを算出する。よって、当該符号化装置は、符号化効率の低下を抑えつつ、処理量を削減できる可能性があるので、処理効率を向上できる。 According to this, in the affine motion compensation prediction mode, the use of bi-prediction is prohibited, and the prediction motion vector of the control point is determined using only uni-prediction. calculate. Therefore, the encoding device can reduce the amount of processing while suppressing a decrease in encoding efficiency, and thus can improve the processing efficiency.
 ここで、例えば、前記回路は、前記アフィン動きベクトルを算出する際、インター予測モードで共通に使用される第1の参照ピクチャリスト及び第2の参照ピクチャリストのうち、いずれか一方の参照ピクチャリストのみから参照ピクチャを選択し、選択した参照ピクチャを構成する複数の符号化済みブロックのうちから、単予測のみを用いて制御ポイントの予測動きベクトルを導出するための符号化済みブロックを決定する。 Here, for example, the circuit calculates one of the first reference picture list and the second reference picture list that are commonly used in the inter prediction mode when calculating the affine motion vector. A reference picture is selected only from the selected reference picture, and an encoded block for deriving a predicted motion vector of a control point is determined using only uni-prediction from among a plurality of encoded blocks constituting the selected reference picture.
 また、例えば、前記回路は、前記アフィン動きベクトルを算出するインター予測モードであるアフィン動き補償モードを前記カレントブロックに対して実行する際、前記アフィン動き補償モードが適用された、前記カレントブロックに隣接する符号化済みブロックの動きベクトルに基づいて、制御ポイントの予測動きベクトルを決定するマージモードと、前記カレントブロックの前記制御ポイント近傍の符号化済みブロックから決定された前記制御ポイント毎の参照ピクチャと予測動きベクトルとを示す情報が符号化されるノーマルモードとのうち一方を選択し、前記ノーマルモードを選択した場合、単予測のみにおける前記カレントブロックの前記制御ポイント近傍の符号化済みブロックから前記制御ポイント毎の予測動きベクトルを決定することで、前記アフィン動きベクトルを、単予測のみで算出する。 In addition, for example, when the circuit performs an affine motion compensation mode, which is an inter prediction mode for calculating the affine motion vector, on the current block, the circuit is adjacent to the current block to which the affine motion compensation mode is applied. Based on the motion vector of the coded block to be, based on the merge mode to determine the predicted motion vector of the control point, and the reference picture for each control point determined from the coded block near the control point of the current block, When one of the normal mode in which information indicating a predicted motion vector is encoded is selected and the normal mode is selected, the control is performed from an encoded block near the control point of the current block in only uni-prediction. Determine the predicted motion vector for each point Doing, the affine motion vector is calculated only a single prediction.
 また、本開示の一態様に係る復号装置は、動き補償を行って動画像を復号化する復号装置であって、回路と、メモリと、を備え、前記回路は、前記メモリを用いて、前記動画像における画像のカレントブロックの複数の周辺ブロックの動きベクトルに基づき、前記カレントブロックを構成するサブブロック単位でアフィン動きベクトルを算出するインター予測モードにおいて、単予測及び双予測のうちの単予測のみで前記サブブロック単位での前記アフィン動きベクトルを算出し、算出した前記アフィン動きベクトルを用いて、前記サブブロック単位で前記動き補償を行う。 Further, a decoding device according to an aspect of the present disclosure is a decoding device that performs motion compensation and decodes a moving image, and includes a circuit and a memory, and the circuit uses the memory, In the inter prediction mode in which an affine motion vector is calculated in units of sub-blocks constituting the current block based on motion vectors of a plurality of peripheral blocks of a current block of an image in a moving image, only uni-prediction of uni-prediction and bi-prediction is used. Calculates the affine motion vector in the sub-block unit, and performs the motion compensation in the sub-block unit using the calculated affine motion vector.
 これによれば、アフィン動き補償予測モードにおいて、双予測の使用を禁止し、単予測のみを用いて制御ポイントの予測動きベクトルの決定するので、単予測のみでサブブロック単位でのアフィン動きベクトルを算出する。よって、当該復号装置は、符号化効率の低下を抑えつつ、処理量を削減できる可能性があるので、処理効率を向上できる。 According to this, in the affine motion compensation prediction mode, the use of bi-prediction is prohibited, and the prediction motion vector of the control point is determined using only uni-prediction. calculate. Therefore, the decoding device can reduce the amount of processing while suppressing a decrease in encoding efficiency, and thus can improve processing efficiency.
 また、例えば、前記回路は、前記アフィン動きベクトルを算出する際、インター予測モードで共通に使用される第1の参照ピクチャリスト及び第2の参照ピクチャリストのうち、いずれか一方の参照ピクチャリストのみから参照ピクチャを選択し、選択した参照ピクチャを構成する複数の符号化済みブロックのうちから、単予測のみを用いて制御ポイントの予測動きベクトルを導出するための符号化済みブロックを決定する。 Also, for example, when calculating the affine motion vector, the circuit may use only one of the first reference picture list and the second reference picture list commonly used in the inter prediction mode. , And from among a plurality of coded blocks constituting the selected reference picture, a coded block for deriving a predicted motion vector of a control point using only uni-prediction is determined.
 また、例えば、前記回路は、前記アフィン動きベクトルを算出するインター予測モードであるアフィン動き補償モードを前記カレントブロックに対して実行する際、前記アフィン動き補償モードが適用された、前記カレントブロックに隣接する符号化済みブロックの動きベクトルに基づいて、制御ポイントの予測動きベクトルを決定するマージモードと、前記カレントブロックの前記制御ポイント近傍の符号化済みブロックから決定された前記制御ポイント毎の参照ピクチャと予測動きベクトルとを示す情報が符号化されるノーマルモードとのうち一方を選択し、前記ノーマルモードを選択した場合、単予測のみにおける前記カレントブロックの前記制御ポイント近傍の符号化済みブロックから前記制御ポイント毎の予測動きベクトルを決定することで、前記アフィン動きベクトルを、単予測のみで算出する。 In addition, for example, when the circuit performs an affine motion compensation mode, which is an inter prediction mode for calculating the affine motion vector, on the current block, the circuit is adjacent to the current block to which the affine motion compensation mode is applied. Based on the motion vector of the coded block to be, based on the merge mode to determine the predicted motion vector of the control point, and the reference picture for each control point determined from the coded block near the control point of the current block, When one of the normal mode in which information indicating a predicted motion vector is encoded is selected and the normal mode is selected, the control is performed from an encoded block near the control point of the current block in only uni-prediction. Determine the predicted motion vector for each point Doing, the affine motion vector is calculated only a single prediction.
 また、例えば、本開示の一態様に係る符号化方法は、動き補償を行って動画像を符号化する符号化方法であって、前記動画像における画像のカレントブロックの複数の周辺ブロックの動きベクトルに基づき、前記カレントブロックを構成するサブブロック単位でアフィン動きベクトルを算出するインター予測モードにおいて、単予測及び双予測のうちの単予測のみで前記サブブロック単位での前記アフィン動きベクトルを算出し、算出した前記アフィン動きベクトルを用いて、前記サブブロック単位で前記動き補償を行う。 Also, for example, an encoding method according to an aspect of the present disclosure is an encoding method that encodes a moving image by performing motion compensation, wherein the motion vectors of a plurality of peripheral blocks of a current block of an image in the moving image are provided. Based on, in the inter prediction mode of calculating an affine motion vector in units of sub-blocks constituting the current block, calculate the affine motion vector in units of sub-blocks only in uni-prediction of uni-prediction and bi-prediction, The motion compensation is performed for each sub-block using the calculated affine motion vector.
 これによれば、アフィン動き補償予測モードにおいて、双予測の使用を禁止し、単予測のみを用いて制御ポイントの予測動きベクトルの決定するので、単予測のみでサブブロック単位でのアフィン動きベクトルを算出する。よって、当該符号化方法は、符号化効率の低下を抑えつつ、処理量を削減できる可能性があるので、処理効率を向上できる。 According to this, in the affine motion compensation prediction mode, the use of bi-prediction is prohibited, and the prediction motion vector of the control point is determined using only uni-prediction. calculate. Therefore, the encoding method can reduce the amount of processing while suppressing a decrease in encoding efficiency, so that the processing efficiency can be improved.
 また、例えば、本開示の一態様に係る復号方法は、動き補償を行って動画像を復号する復号方法であって、前記動画像における画像のカレントブロックの複数の周辺ブロックの動きベクトルに基づき、前記カレントブロックを構成するサブブロック単位でアフィン動きベクトルを算出するインター予測モードにおいて、単予測及び双予測のうちの単予測のみで前記サブブロック単位での前記アフィン動きベクトルを算出し、算出した前記アフィン動きベクトルを用いて、前記サブブロック単位で前記動き補償を行う。 Also, for example, a decoding method according to an aspect of the present disclosure is a decoding method for decoding a moving image by performing motion compensation, based on motion vectors of a plurality of peripheral blocks of a current block of an image in the moving image, In the inter prediction mode for calculating an affine motion vector in units of sub-blocks constituting the current block, the affine motion vector in units of sub-blocks is calculated only in uni-prediction of uni-prediction and bi-prediction. The motion compensation is performed for each sub-block using an affine motion vector.
 これによれば、双予測の使用を禁止し、単予測のみを用いて制御ポイントの予測動きベクトルの決定するので、単予測のみでサブブロック単位でのアフィン動きベクトルを算出する。よって、当該復号方法は、符号化効率の低下を抑えつつ、処理量を削減できる可能性があるので、処理効率を向上できる。 According to this, since the use of bi-prediction is prohibited and the prediction motion vector of the control point is determined using only uni-prediction, an affine motion vector in sub-block units is calculated using only uni-prediction. Therefore, the decoding method can reduce the amount of processing while suppressing a decrease in encoding efficiency, and can improve processing efficiency.
 さらに、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、コンピュータで読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム、及び、記録媒体の任意な組み合わせで実現されてもよい。 Furthermore, these generic or specific aspects may be implemented in a non-transitory recording medium such as a system, an apparatus, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM, The present invention may be implemented by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
 以下、実施の形態について図面を参照しながら具体的に説明する。 Hereinafter, embodiments will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Note that each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and do not limit the scope of the claims. Further, among the components in the following embodiments, components not described in the independent claims indicating the highest concept are described as arbitrary components.
 (実施の形態1)
 まず、後述する本開示の各態様で説明する処理および/または構成を適用可能な符号化装置および復号化装置の一例として、実施の形態1の概要を説明する。ただし、実施の形態1は、本開示の各態様で説明する処理および/または構成を適用可能な符号化装置および復号化装置の一例にすぎず、本開示の各態様で説明する処理および/または構成は、実施の形態1とは異なる符号化装置および復号化装置においても実施可能である。
(Embodiment 1)
First, an outline of Embodiment 1 will be described as an example of an encoding device and a decoding device to which processing and / or a configuration described in each embodiment of the present disclosure described later can be applied. However, Embodiment 1 is merely an example of an encoding device and a decoding device to which the processing and / or configuration described in each aspect of the present disclosure can be applied, and the processing and / or processing described in each aspect of the present disclosure. The configuration can be implemented in an encoding device and a decoding device different from the first embodiment.
 実施の形態1に対して本開示の各態様で説明する処理および/または構成を適用する場合、例えば以下のいずれかを行ってもよい。 When applying the processing and / or configuration described in each aspect of the present disclosure to Embodiment 1, for example, any of the following may be performed.
 (1)実施の形態1の符号化装置または復号化装置に対して、当該符号化装置または復号化装置を構成する複数の構成要素のうち、本開示の各態様で説明する構成要素に対応する構成要素を、本開示の各態様で説明する構成要素に置き換えること
 (2)実施の形態1の符号化装置または復号化装置に対して、当該符号化装置または復号化装置を構成する複数の構成要素のうち一部の構成要素について機能または実施する処理の追加、置き換え、削除などの任意の変更を施した上で、本開示の各態様で説明する構成要素に対応する構成要素を、本開示の各態様で説明する構成要素に置き換えること
 (3)実施の形態1の符号化装置または復号化装置が実施する方法に対して、処理の追加、および/または当該方法に含まれる複数の処理のうちの一部の処理について置き換え、削除などの任意の変更を施した上で、本開示の各態様で説明する処理に対応する処理を、本開示の各態様で説明する処理に置き換えること
 (4)実施の形態1の符号化装置または復号化装置を構成する複数の構成要素のうちの一部の構成要素を、本開示の各態様で説明する構成要素、本開示の各態様で説明する構成要素が備える機能の一部を備える構成要素、または本開示の各態様で説明する構成要素が実施する処理の一部を実施する構成要素と組み合わせて実施すること
 (5)実施の形態1の符号化装置または復号化装置を構成する複数の構成要素のうちの一部の構成要素が備える機能の一部を備える構成要素、または実施の形態1の符号化装置または復号化装置を構成する複数の構成要素のうちの一部の構成要素が実施する処理の一部を実施する構成要素を、本開示の各態様で説明する構成要素、本開示の各態様で説明する構成要素が備える機能の一部を備える構成要素、または本開示の各態様で説明する構成要素が実施する処理の一部を実施する構成要素と組み合わせて実施すること
 (6)実施の形態1の符号化装置または復号化装置が実施する方法に対して、当該方法に含まれる複数の処理のうち、本開示の各態様で説明する処理に対応する処理を、本開示の各態様で説明する処理に置き換えること
 (7)実施の形態1の符号化装置または復号化装置が実施する方法に含まれる複数の処理のうちの一部の処理を、本開示の各態様で説明する処理と組み合わせて実施すること
(1) With respect to the encoding device or the decoding device according to the first embodiment, among the plurality of components configuring the encoding device or the decoding device, the components correspond to the components described in each aspect of the present disclosure. Replacing constituent elements with constituent elements described in each aspect of the present disclosure (2) Plural configurations configuring the coding apparatus or the decoding apparatus with respect to the coding apparatus or the decoding apparatus according to the first embodiment. After performing arbitrary changes such as addition, replacement, and deletion of a function or a process to be performed on some of the components, components corresponding to the components described in each embodiment of the present disclosure are described in the present disclosure. (3) Adding a process to the method performed by the encoding device or the decoding device of the first embodiment and / or performing a plurality of processes included in the method. home After replacing any part of the process with arbitrary changes such as deletion, the process corresponding to the process described in each embodiment of the present disclosure is replaced with the process described in each embodiment of the present disclosure. Some of the components constituting the encoding device or the decoding device according to the first embodiment are partially described in each aspect of the present disclosure, and are described in each aspect of the present disclosure. (5) Encoding device according to first embodiment, in combination with a component having a part of the provided function or a component that performs a part of a process performed by a component described in each aspect of the present disclosure Or, a component having a part of the functions of some of the components constituting the decoding device, or a plurality of components constituting the encoding device or the decoding device of the first embodiment. Some of A component that implements a part of the processing performed by the component, a component that is described in each embodiment of the present disclosure, a component that includes a part of the function that the component described in each embodiment of the present disclosure has, or Implementing in combination with a component that performs a part of the process performed by the component described in each aspect of the disclosure (6) For the method performed by the encoding device or the decoding device according to the first embodiment, Of the plurality of processes included in the method, a process corresponding to a process described in each aspect of the present disclosure is replaced with a process described in each aspect of the present disclosure. (7) The encoding device according to the first embodiment or Performing some of the processes included in the method performed by the decoding device in combination with the processes described in the respective aspects of the present disclosure.
 なお、本開示の各態様で説明する処理および/または構成の実施の仕方は、上記の例に限定されるものではない。例えば、実施の形態1において開示する動画像/画像符号化装置または動画像/画像復号化装置とは異なる目的で利用される装置において実施されてもよいし、各態様において説明した処理および/または構成を単独で実施してもよい。また、異なる態様において説明した処理および/または構成を組み合わせて実施してもよい。 Note that the manner of implementing the processing and / or configuration described in each aspect of the present disclosure is not limited to the above example. For example, the present invention may be implemented in a device used for a different purpose from the moving image / image encoding device or the moving image / image decoding device disclosed in the first embodiment, and the processing and / or processing described in each aspect may be performed. The configuration may be implemented alone. Further, the processes and / or configurations described in different modes may be implemented in combination.
 [符号化装置の概要]
 まず、実施の形態1に係る符号化装置の概要を説明する。図1は、実施の形態1に係る符号化装置100の機能構成を示すブロック図である。符号化装置100は、動画像/画像をブロック単位で符号化する動画像/画像符号化装置である。
[Overview of encoding device]
First, an overview of an encoding device according to Embodiment 1 will be described. FIG. 1 is a block diagram showing a functional configuration of an encoding device 100 according to Embodiment 1. The encoding device 100 is a moving image / image encoding device that encodes a moving image / image in block units.
 図1に示すように、符号化装置100は、画像をブロック単位で符号化する装置であって、分割部102と、減算部104と、変換部106と、量子化部108と、エントロピー符号化部110と、逆量子化部112と、逆変換部114と、加算部116と、ブロックメモリ118と、ループフィルタ部120と、フレームメモリ122と、イントラ予測部124と、インター予測部126と、予測制御部128と、を備える。 As shown in FIG. 1, an encoding apparatus 100 is an apparatus that encodes an image in units of blocks, and includes a division unit 102, a subtraction unit 104, a conversion unit 106, a quantization unit 108, and entropy encoding. Unit 110, inverse quantization unit 112, inverse transform unit 114, addition unit 116, block memory 118, loop filter unit 120, frame memory 122, intra prediction unit 124, inter prediction unit 126, And a prediction control unit 128.
 符号化装置100は、例えば、汎用プロセッサ及びメモリにより実現される。この場合、メモリに格納されたソフトウェアプログラムがプロセッサにより実行されたときに、プロセッサは、分割部102、減算部104、変換部106、量子化部108、エントロピー符号化部110、逆量子化部112、逆変換部114、加算部116、ループフィルタ部120、イントラ予測部124、インター予測部126及び予測制御部128として機能する。また、符号化装置100は、分割部102、減算部104、変換部106、量子化部108、エントロピー符号化部110、逆量子化部112、逆変換部114、加算部116、ループフィルタ部120、イントラ予測部124、インター予測部126及び予測制御部128に対応する専用の1以上の電子回路として実現されてもよい。 The encoding device 100 is realized by, for example, a general-purpose processor and a memory. In this case, when the software program stored in the memory is executed by the processor, the processor includes the dividing unit 102, the subtracting unit 104, the transforming unit 106, the quantizing unit 108, the entropy encoding unit 110, and the inverse quantizing unit 112. , The inverse transform section 114, the adder section 116, the loop filter section 120, the intra prediction section 124, the inter prediction section 126, and the prediction control section 128. The encoding apparatus 100 includes a dividing unit 102, a subtracting unit 104, a transforming unit 106, a quantizing unit 108, an entropy encoding unit 110, an inverse quantizing unit 112, an inverse transforming unit 114, an adding unit 116, and a loop filter unit 120. , The intra prediction unit 124, the inter prediction unit 126, and the prediction control unit 128.
 以下に、符号化装置100に含まれる各構成要素について説明する。 Hereinafter, each component included in the encoding device 100 will be described.
 [分割部]
 分割部102は、入力動画像に含まれる各ピクチャを複数のブロックに分割し、各ブロックを減算部104に出力する。例えば、分割部102は、まず、ピクチャを固定サイズ(例えば128x128)のブロックに分割する。この固定サイズのブロックは、符号化ツリーユニット(CTU)と呼ばれることがある。そして、分割部102は、再帰的な四分木(quadtree)及び/又は二分木(binary tree)ブロック分割に基づいて、固定サイズのブロックの各々を可変サイズ(例えば64x64以下)のブロックに分割する。この可変サイズのブロックは、符号化ユニット(CU)、予測ユニット(PU)あるいは変換ユニット(TU)と呼ばれることがある。なお、本実施の形態では、CU、PU及びTUは区別される必要はなく、ピクチャ内の一部又はすべてのブロックがCU、PU、TUの処理単位となってもよい。
[Division]
The division unit 102 divides each picture included in the input moving image into a plurality of blocks, and outputs each block to the subtraction unit 104. For example, the dividing unit 102 first divides a picture into blocks of a fixed size (for example, 128 × 128). This fixed size block may be referred to as a coding tree unit (CTU). The dividing unit 102 divides each of the fixed-size blocks into blocks of a variable size (for example, 64 × 64 or less) based on recursive quadtree and / or binary tree block division. . This variable size block may be referred to as a coding unit (CU), a prediction unit (PU), or a transform unit (TU). In the present embodiment, CUs, PUs, and TUs do not need to be distinguished, and some or all blocks in a picture may be the processing units of the CUs, PUs, and TUs.
 図2は、実施の形態1におけるブロック分割の一例を示す図である。図2において、実線は四分木ブロック分割によるブロック境界を表し、破線は二分木ブロック分割によるブロック境界を表す。 FIG. 2 is a diagram illustrating an example of block division according to the first embodiment. In FIG. 2, a solid line represents a block boundary obtained by quadtree block division, and a broken line represents a block boundary obtained by binary tree block division.
 ここでは、ブロック10は、128x128画素の正方形ブロック(128x128ブロック)である。この128x128ブロック10は、まず、4つの正方形の64x64ブロックに分割される(四分木ブロック分割)。 Here, the block 10 is a square block of 128 × 128 pixels (128 × 128 block). The 128 × 128 block 10 is first divided into four square 64 × 64 blocks (quad tree block division).
 左上の64x64ブロックは、さらに2つの矩形の32x64ブロックに垂直に分割され、左の32x64ブロックはさらに2つの矩形の16x64ブロックに垂直に分割される(二分木ブロック分割)。その結果、左上の64x64ブロックは、2つの16x64ブロック11、12と、32x64ブロック13とに分割される。 64 The upper left 64 × 64 block is further vertically divided into two rectangular 32 × 64 blocks, and the left 32 × 64 block is further vertically divided into two rectangular 16 × 64 blocks (binary tree block division). As a result, the upper left 64 × 64 block is divided into two 16 × 64 blocks 11 and 12 and a 32 × 64 block 13.
 右上の64x64ブロックは、2つの矩形の64x32ブロック14、15に水平に分割される(二分木ブロック分割)。 64The upper right 64 × 64 block is horizontally divided into two rectangular 64 × 32 blocks 14 and 15 (binary tree block division).
 左下の64x64ブロックは、4つの正方形の32x32ブロックに分割される(四分木ブロック分割)。4つの32x32ブロックのうち左上のブロック及び右下のブロックはさらに分割される。左上の32x32ブロックは、2つの矩形の16x32ブロックに垂直に分割され、右の16x32ブロックはさらに2つの16x16ブロックに水平に分割される(二分木ブロック分割)。右下の32x32ブロックは、2つの32x16ブロックに水平に分割される(二分木ブロック分割)。その結果、左下の64x64ブロックは、16x32ブロック16と、2つの16x16ブロック17、18と、2つの32x32ブロック19、20と、2つの32x16ブロック21、22とに分割される。 64 The lower left 64 × 64 block is divided into four square 32 × 32 blocks (quad tree block division). The upper left block and the lower right block of the four 32 × 32 blocks are further divided. The upper left 32x32 block is vertically divided into two rectangular 16x32 blocks, and the right 16x32 block is further horizontally divided into two 16x16 blocks (binary tree block division). The lower right 32 × 32 block is horizontally divided into two 32 × 16 blocks (binary tree block division). As a result, the lower left 64 × 64 block is divided into a 16 × 32 block 16, two 16 × 16 blocks 17 and 18, two 32 × 32 blocks 19 and 20, and two 32 × 16 blocks 21 and 22.
 右下の64x64ブロック23は分割されない。 64 The lower right 64 × 64 block 23 is not divided.
 以上のように、図2では、ブロック10は、再帰的な四分木及び二分木ブロック分割に基づいて、13個の可変サイズのブロック11~23に分割される。このような分割は、QTBT(quad-tree plus binary tree)分割と呼ばれることがある。 As described above, in FIG. 2, the block 10 is divided into thirteen variable-size blocks 11 to 23 based on recursive quadtree and binary tree block division. Such division may be referred to as QTBT (quad-tree \ plus \ binary \ tree) division.
 なお、図2では、1つのブロックが4つ又は2つのブロックに分割されていたが(四分木又は二分木ブロック分割)、分割はこれに限定されない。例えば、1つのブロックが3つのブロックに分割されてもよい(三分木ブロック分割)。このような三分木ブロック分割を含む分割は、MBT(multi type tree)分割と呼ばれることがある。 In FIG. 2, one block is divided into four or two blocks (quadtree or binary tree block division), but the division is not limited to this. For example, one block may be divided into three blocks (triple tree block division). A division including such a ternary tree block division may be referred to as MBT (multimtype tree) division.
 [減算部]
 減算部104は、分割部102によって分割されたブロック単位で原信号(原サンプル)から予測信号(予測サンプル)を減算する。つまり、減算部104は、符号化対象ブロック(以下、カレントブロックという)の予測誤差(残差ともいう)を算出する。そして、減算部104は、算出された予測誤差を変換部106に出力する。
[Subtraction unit]
The subtraction unit 104 subtracts a prediction signal (prediction sample) from an original signal (original sample) in units of blocks divided by the division unit 102. That is, the subtraction unit 104 calculates a prediction error (also referred to as a residual) of an encoding target block (hereinafter, referred to as a current block). Then, the subtraction unit 104 outputs the calculated prediction error to the conversion unit 106.
 原信号は、符号化装置100の入力信号であり、動画像を構成する各ピクチャの画像を表す信号(例えば輝度(luma)信号及び2つの色差(chroma)信号)である。以下において、画像を表す信号をサンプルともいうこともある。 The original signal is an input signal of the encoding device 100, and is a signal (for example, a luminance (luma) signal and two color difference (chroma) signals) representing an image of each picture constituting a moving image. Hereinafter, a signal representing an image may be referred to as a sample.
 [変換部]
 変換部106は、空間領域の予測誤差を周波数領域の変換係数に変換し、変換係数を量子化部108に出力する。具体的には、変換部106は、例えば空間領域の予測誤差に対して予め定められた離散コサイン変換(DCT)又は離散サイン変換(DST)を行う。
[Conversion unit]
The transform unit 106 transforms the prediction error in the spatial domain into transform coefficients in the frequency domain, and outputs the transform coefficients to the quantization unit 108. Specifically, the transform unit 106 performs a predetermined discrete cosine transform (DCT) or discrete sine transform (DST) on a prediction error in a spatial domain, for example.
 なお、変換部106は、複数の変換タイプの中から適応的に変換タイプを選択し、選択された変換タイプに対応する変換基底関数(transform basis function)を用いて、予測誤差を変換係数に変換してもよい。このような変換は、EMT(explicit multiple core transform)又はAMT(adaptive multiple transform)と呼ばれることがある。 Note that the conversion unit 106 adaptively selects a conversion type from a plurality of conversion types, and converts the prediction error into a conversion coefficient using a conversion basis function (transform basis function) corresponding to the selected conversion type. May be. Such a transformation is sometimes called EMT (explicit \ core \ transform) or AMT (adaptive \ multiple \ transform).
 複数の変換タイプは、例えば、DCT-II、DCT-V、DCT-VIII、DST-I及びDST-VIIを含む。図3は、各変換タイプに対応する変換基底関数を示す表である。図3においてNは入力画素の数を示す。これらの複数の変換タイプの中からの変換タイプの選択は、例えば、予測の種類(イントラ予測及びインター予測)に依存してもよいし、イントラ予測モードに依存してもよい。 変 換 The plurality of conversion types include, for example, DCT-II, DCT-V, DCT-VIII, DST-I and DST-VII. FIG. 3 is a table showing conversion basis functions corresponding to each conversion type. In FIG. 3, N indicates the number of input pixels. Selection of a conversion type from among the plurality of conversion types may depend on, for example, the type of prediction (intra prediction and inter prediction) or may depend on the intra prediction mode.
 このようなEMT又はAMTを適用するか否かを示す情報(例えばAMTフラグと呼ばれる)及び選択された変換タイプを示す情報は、CUレベルで信号化される。なお、これらの情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。 情報 Information indicating whether to apply such EMT or AMT (for example, called an AMT flag) and information indicating the selected conversion type are signalized at the CU level. The signalization of these pieces of information need not be limited to the CU level, but may be another level (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
 また、変換部106は、変換係数(変換結果)を再変換してもよい。このような再変換は、AST(adaptive secondary transform)又はNSST(non-separable secondary transform)と呼ばれることがある。例えば、変換部106は、イントラ予測誤差に対応する変換係数のブロックに含まれるサブブロック(例えば4x4サブブロック)ごとに再変換を行う。NSSTを適用するか否かを示す情報及びNSSTに用いられる変換行列に関する情報は、CUレベルで信号化される。なお、これらの情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。 (4) The conversion unit 106 may re-convert the conversion coefficient (conversion result). Such re-transformation may be referred to as AST (adaptive @ secondary @ transform) or NSST (non-separable @ secondary @ transform). For example, the transform unit 106 performs retransformation for each sub-block (for example, a 4 × 4 sub-block) included in a block of a transform coefficient corresponding to an intra prediction error. Information indicating whether to apply the NSST and information regarding the transformation matrix used for the NSST are signalized at the CU level. The signalization of these pieces of information need not be limited to the CU level, but may be another level (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
 ここで、Separableな変換とは、入力の次元の数だけ方向ごとに分離して複数回変換を行う方式であり、Non-Separableな変換とは、入力が多次元であった際に2つ以上の次元をまとめて1次元とみなして、まとめて変換を行う方式である。 Here, the Separable conversion is a method of performing conversion a plurality of times by separating each direction by the number of input dimensions, and the Non-Separable conversion is a method of performing two or more conversions when the input is multidimensional. Are considered collectively as one dimension, and the conversion is performed collectively.
 例えば、Non-Separableな変換の1例として、入力が4×4のブロックであった場合にはそれを16個の要素を持ったひとつの配列とみなし、その配列に対して16×16の変換行列で変換処理を行うようなものが挙げられる。 For example, as an example of a Non-Separable conversion, if an input is a 4 × 4 block, it is regarded as one array having 16 elements, and a 16 × 16 conversion is performed on the array. One that performs a conversion process using a matrix is exemplified.
 また、同様に4×4の入力ブロックを16個の要素を持ったひとつの配列とみなした後に、その配列に対してGivens回転を複数回行うようなもの(Hypercube Givens Transform)もNon-Separableな変換の例である。 Similarly, a 4 × 4 input block is regarded as one array having 16 elements, and a Givens rotation is performed on the array a plurality of times (Hypercube / Givens / Transform). It is an example of conversion.
 [量子化部]
 量子化部108は、変換部106から出力された変換係数を量子化する。具体的には、量子化部108は、カレントブロックの変換係数を所定の走査順序で走査し、走査された変換係数に対応する量子化パラメータ(QP)に基づいて当該変換係数を量子化する。そして、量子化部108は、カレントブロックの量子化された変換係数(以下、量子化係数という)をエントロピー符号化部110及び逆量子化部112に出力する。
[Quantizer]
The quantization unit 108 quantizes the transform coefficient output from the transform unit 106. Specifically, the quantization unit 108 scans the transform coefficients of the current block in a predetermined scanning order, and quantizes the transform coefficients based on a quantization parameter (QP) corresponding to the scanned transform coefficients. Then, the quantization unit 108 outputs the quantized transform coefficients of the current block (hereinafter, referred to as quantization coefficients) to the entropy coding unit 110 and the inverse quantization unit 112.
 所定の順序は、変換係数の量子化/逆量子化のための順序である。例えば、所定の走査順序は、周波数の昇順(低周波から高周波の順)又は降順(高周波から低周波の順)で定義される。 The predetermined order is an order for quantization / inverse quantization of transform coefficients. For example, the predetermined scanning order is defined in ascending frequency order (low-frequency to high-frequency) or descending order (high-frequency to low-frequency).
 量子化パラメータとは、量子化ステップ(量子化幅)を定義するパラメータである。例えば、量子化パラメータの値が増加すれば量子化ステップも増加する。つまり、量子化パラメータの値が増加すれば量子化誤差が増大する。 The quantization parameter is a parameter that defines a quantization step (quantization width). For example, if the value of the quantization parameter increases, the quantization step also increases. That is, as the value of the quantization parameter increases, the quantization error increases.
 [エントロピー符号化部]
 エントロピー符号化部110は、量子化部108から入力である量子化係数を可変長符号化することにより符号化信号(符号化ビットストリーム)を生成する。具体的には、エントロピー符号化部110は、例えば、量子化係数を二値化し、二値信号を算術符号化する。
[Entropy encoder]
The entropy coding unit 110 generates a coded signal (coded bit stream) by performing variable-length coding on the quantization coefficient input from the quantization unit 108. Specifically, for example, the entropy encoding unit 110 binarizes the quantization coefficient and arithmetically encodes the binary signal.
 [逆量子化部]
 逆量子化部112は、量子化部108からの入力である量子化係数を逆量子化する。具体的には、逆量子化部112は、カレントブロックの量子化係数を所定の走査順序で逆量子化する。そして、逆量子化部112は、カレントブロックの逆量子化された変換係数を逆変換部114に出力する。
[Inverse quantization unit]
The inverse quantization unit 112 inversely quantizes the quantization coefficient input from the quantization unit 108. Specifically, the inverse quantization unit 112 inversely quantizes the quantization coefficient of the current block in a predetermined scanning order. Then, the inverse quantization unit 112 outputs the inversely quantized transform coefficient of the current block to the inverse transformation unit 114.
 [逆変換部]
 逆変換部114は、逆量子化部112からの入力である変換係数を逆変換することにより予測誤差を復元する。具体的には、逆変換部114は、変換係数に対して、変換部106による変換に対応する逆変換を行うことにより、カレントブロックの予測誤差を復元する。そして、逆変換部114は、復元された予測誤差を加算部116に出力する。
[Inverse conversion unit]
The inverse transform unit 114 restores a prediction error by inversely transforming the transform coefficient input from the inverse quantization unit 112. Specifically, the inverse transform unit 114 restores the prediction error of the current block by performing an inverse transform corresponding to the transform by the transform unit 106 on the transform coefficient. Then, inverse transform section 114 outputs the restored prediction error to adder section 116.
 なお、復元された予測誤差は、量子化により情報が失われているので、減算部104が算出した予測誤差と一致しない。すなわち、復元された予測誤差には、量子化誤差が含まれている。 Note that the restored prediction error does not match the prediction error calculated by the subtraction unit 104 because information is lost due to quantization. That is, the restored prediction error includes a quantization error.
 [加算部]
 加算部116は、逆変換部114からの入力である予測誤差と予測制御部128からの入力である予測サンプルとを加算することによりカレントブロックを再構成する。そして、加算部116は、再構成されたブロックをブロックメモリ118及びループフィルタ部120に出力する。再構成ブロックは、ローカル復号ブロックと呼ばれることもある。
[Adder]
The adder 116 reconstructs the current block by adding the prediction error input from the inverse converter 114 and the prediction sample input from the prediction controller 128. Then, the adding unit 116 outputs the reconstructed block to the block memory 118 and the loop filter unit 120. The reconstructed block is sometimes called a local decoding block.
 [ブロックメモリ]
 ブロックメモリ118は、イントラ予測で参照されるブロックであって符号化対象ピクチャ(以下、カレントピクチャという)内のブロックを格納するための記憶部である。具体的には、ブロックメモリ118は、加算部116から出力された再構成ブロックを格納する。
[Block memory]
The block memory 118 is a storage unit for storing a block that is referred to in intra prediction and is in a current picture (hereinafter, referred to as a current picture). Specifically, the block memory 118 stores the reconstructed block output from the adding unit 116.
 [ループフィルタ部]
 ループフィルタ部120は、加算部116によって再構成されたブロックにループフィルタを施し、フィルタされた再構成ブロックをフレームメモリ122に出力する。ループフィルタとは、符号化ループ内で用いられるフィルタ(インループフィルタ)であり、例えば、デブロッキング・フィルタ(DF)、サンプルアダプティブオフセット(SAO)及びアダプティブループフィルタ(ALF)などを含む。
[Loop filter section]
The loop filter unit 120 applies a loop filter to the block reconstructed by the adding unit 116, and outputs the reconstructed block that has been filtered to the frame memory 122. The loop filter is a filter (in-loop filter) used in the encoding loop, and includes, for example, a deblocking filter (DF), a sample adaptive offset (SAO), an adaptive loop filter (ALF), and the like.
 ALFでは、符号化歪みを除去するための最小二乗誤差フィルタが適用され、例えばカレントブロック内の2x2サブブロックごとに、局所的な勾配(gradient)の方向及び活性度(activity)に基づいて複数のフィルタの中から選択された1つのフィルタが適用される。 In the ALF, a least squares error filter for removing coding distortion is applied. For example, for every 2 × 2 sub-block in the current block, a plurality of sub-blocks are determined based on the direction and activity of a local gradient. One filter selected from the filters is applied.
 具体的には、まず、サブブロック(例えば2x2サブブロック)が複数のクラス(例えば15又は25クラス)に分類される。サブブロックの分類は、勾配の方向及び活性度に基づいて行われる。例えば、勾配の方向値D(例えば0~2又は0~4)と勾配の活性値A(例えば0~4)とを用いて分類値C(例えばC=5D+A)が算出される。そして、分類値Cに基づいて、サブブロックが複数のクラス(例えば15又は25クラス)に分類される。 {Specifically, first, sub-blocks (for example, 2 × 2 sub-blocks) are classified into a plurality of classes (for example, 15 or 25 classes). The classification of the sub-blocks is performed based on the direction and the activity of the gradient. For example, a classification value C (for example, C = 5D + A) is calculated using a gradient direction value D (for example, 0 to 2 or 0 to 4) and a gradient activity value A (for example, 0 to 4). Then, based on the classification value C, the sub-block is classified into a plurality of classes (for example, 15 or 25 classes).
 勾配の方向値Dは、例えば、複数の方向(例えば水平、垂直及び2つの対角方向)の勾配を比較することにより導出される。また、勾配の活性値Aは、例えば、複数の方向の勾配を加算し、加算結果を量子化することにより導出される。 The gradient direction value D is derived, for example, by comparing gradients in a plurality of directions (for example, horizontal, vertical and two diagonal directions). The gradient activation value A is derived, for example, by adding gradients in a plurality of directions and quantizing the addition result.
 このような分類の結果に基づいて、複数のフィルタの中からサブブロックのためのフィルタが決定される。 フ ィ ル タ A filter for a sub-block is determined from a plurality of filters based on the result of such classification.
 ALFで用いられるフィルタの形状としては例えば円対称形状が利用される。図4A~図4Cは、ALFで用いられるフィルタの形状の複数の例を示す図である。図4Aは、5x5ダイヤモンド形状フィルタを示し、図4Bは、7x7ダイヤモンド形状フィルタを示し、図4Cは、9x9ダイヤモンド形状フィルタを示す。フィルタの形状を示す情報は、ピクチャレベルで信号化される。なお、フィルタの形状を示す情報の信号化は、ピクチャレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、スライスレベル、タイルレベル、CTUレベル又はCUレベル)であってもよい。 As the shape of the filter used in the ALF, for example, a circularly symmetric shape is used. 4A to 4C are views showing a plurality of examples of the shape of the filter used in the ALF. FIG. 4A shows a 5 × 5 diamond shape filter, FIG. 4B shows a 7 × 7 diamond shape filter, and FIG. 4C shows a 9 × 9 diamond shape filter. Information indicating the shape of the filter is signalized at the picture level. The signalization of the information indicating the shape of the filter need not be limited to the picture level, but may be another level (for example, a sequence level, a slice level, a tile level, a CTU level, or a CU level).
 ALFのオン/オフは、例えば、ピクチャレベル又はCUレベルで決定される。例えば、輝度についてはCUレベルでALFを適用するか否かが決定され、色差についてはピクチャレベルでALFを適用するか否かが決定される。ALFのオン/オフを示す情報は、ピクチャレベル又はCUレベルで信号化される。なお、ALFのオン/オフを示す情報の信号化は、ピクチャレベル又はCUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。 The ON / OFF of the ALF is determined at the picture level or the CU level, for example. For example, it is determined whether or not to apply ALF at the CU level for luminance, and whether or not to apply ALF at the picture level for color difference. Information indicating ON / OFF of ALF is signaled at a picture level or a CU level. The signalization of the information indicating ON / OFF of the ALF does not need to be limited to the picture level or the CU level, and may be at another level (for example, a sequence level, a slice level, a tile level, or a CTU level). Good.
 選択可能な複数のフィルタ(例えば15又は25までのフィルタ)の係数セットは、ピクチャレベルで信号化される。なお、係数セットの信号化は、ピクチャレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、スライスレベル、タイルレベル、CTUレベル、CUレベル又はサブブロックレベル)であってもよい。 A set of coefficients for a plurality of selectable filters (eg up to 15 or 25 filters) is signaled at the picture level. The signalization of the coefficient set need not be limited to the picture level, but may be another level (for example, a sequence level, a slice level, a tile level, a CTU level, a CU level, or a sub-block level).
 [フレームメモリ]
 フレームメモリ122は、インター予測に用いられる参照ピクチャを格納するための記憶部であり、フレームバッファと呼ばれることもある。具体的には、フレームメモリ122は、ループフィルタ部120によってフィルタされた再構成ブロックを格納する。
[Frame memory]
The frame memory 122 is a storage unit for storing reference pictures used for inter prediction, and may be called a frame buffer. Specifically, the frame memory 122 stores the reconstructed blocks filtered by the loop filter unit 120.
 [イントラ予測部]
 イントラ予測部124は、ブロックメモリ118に格納されたカレントピクチャ内のブロックを参照してカレントブロックのイントラ予測(画面内予測ともいう)を行うことで、予測信号(イントラ予測信号)を生成する。具体的には、イントラ予測部124は、カレントブロックに隣接するブロックのサンプル(例えば輝度値、色差値)を参照してイントラ予測を行うことでイントラ予測信号を生成し、イントラ予測信号を予測制御部128に出力する。
[Intra prediction unit]
The intra prediction unit 124 generates a prediction signal (intra prediction signal) by performing intra prediction (also referred to as intra prediction) of the current block with reference to a block in the current picture stored in the block memory 118. Specifically, the intra prediction unit 124 generates an intra prediction signal by performing intra prediction with reference to a sample (for example, a luminance value and a color difference value) of a block adjacent to the current block, and performs prediction control on the intra prediction signal. Output to the unit 128.
 例えば、イントラ予測部124は、予め規定された複数のイントラ予測モードのうちの1つを用いてイントラ予測を行う。複数のイントラ予測モードは、1以上の非方向性予測モードと、複数の方向性予測モードと、を含む。 For example, the intra prediction unit 124 performs intra prediction using one of a plurality of intra prediction modes defined in advance. The plurality of intra prediction modes include one or more non-directional prediction modes and a plurality of directional prediction modes.
 1以上の非方向性予測モードは、例えばH.265/HEVC(High-Efficiency Video Coding)規格(非特許文献1)で規定されたPlanar予測モード及びDC予測モードを含む。 The one or more non-directional prediction modes are, for example, H.264. H.265 / HEVC (High-Efficiency Video Coding) standard (Non-Patent Document 1) includes a Planar prediction mode and a DC prediction mode.
 複数の方向性予測モードは、例えばH.265/HEVC規格で規定された33方向の予測モードを含む。なお、複数の方向性予測モードは、33方向に加えてさらに32方向の予測モード(合計で65個の方向性予測モード)を含んでもよい。図5Aは、イントラ予測における67個のイントラ予測モード(2個の非方向性予測モード及び65個の方向性予測モード)を示す図である。実線矢印は、H.265/HEVC規格で規定された33方向を表し、破線矢印は、追加された32方向を表す。 The plurality of direction prediction modes are, for example, H.264. It includes a prediction mode in 33 directions defined by the H.265 / HEVC standard. Note that the plurality of directional prediction modes may further include 32 directional prediction modes (total of 65 directional prediction modes) in addition to the 33 directions. FIG. 5A is a diagram illustrating 67 intra prediction modes (two non-directional prediction modes and 65 directional prediction modes) in intra prediction. Solid arrows indicate H.E. H.265 / HEVC standard indicates 33 directions, and dashed arrows indicate the added 32 directions.
 なお、色差ブロックのイントラ予測において、輝度ブロックが参照されてもよい。つまり、カレントブロックの輝度成分に基づいて、カレントブロックの色差成分が予測されてもよい。このようなイントラ予測は、CCLM(cross-component linear model)予測と呼ばれることがある。このような輝度ブロックを参照する色差ブロックのイントラ予測モード(例えばCCLMモードと呼ばれる)は、色差ブロックのイントラ予測モードの1つとして加えられてもよい。 In the intra prediction of the chrominance block, a luminance block may be referred to. That is, the color difference component of the current block may be predicted based on the luminance component of the current block. Such intra prediction may be referred to as CCLM (cross-component @ linear @ model) prediction. Such an intra prediction mode of a chrominance block that refers to a luminance block (for example, referred to as a CCLM mode) may be added as one of the intra prediction modes of a chrominance block.
 イントラ予測部124は、水平/垂直方向の参照画素の勾配に基づいてイントラ予測後の画素値を補正してもよい。このような補正をともなうイントラ予測は、PDPC(position dependent intra prediction combination)と呼ばれることがある。PDPCの適用の有無を示す情報(例えばPDPCフラグと呼ばれる)は、例えばCUレベルで信号化される。なお、この情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。 The intra prediction unit 124 may correct the pixel value after the intra prediction based on the gradient of the reference pixel in the horizontal / vertical direction. Intra prediction with such a correction is sometimes called PDPC (position \ dependent \ intra \ prediction \ combination). Information indicating whether or not PDPC is applied (for example, called a PDPC flag) is signaled at, for example, a CU level. The signalization of this information need not be limited to the CU level, but may be another level (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
 [インター予測部]
 インター予測部126は、フレームメモリ122に格納された参照ピクチャであってカレントピクチャとは異なる参照ピクチャを参照してカレントブロックのインター予測(画面間予測ともいう)を行うことで、予測信号(インター予測信号)を生成する。インター予測は、カレントブロック又はカレントブロック内のサブブロック(例えば4x4ブロック)の単位で行われる。例えば、インター予測部126は、カレントブロック又はサブブロックについて参照ピクチャ内で動き探索(motion estimation)を行う。そして、インター予測部126は、動き探索により得られた動き情報(例えば動きベクトル)を用いて動き補償を行うことでカレントブロック又はサブブロックのインター予測信号を生成する。そして、インター予測部126は、生成されたインター予測信号を予測制御部128に出力する。
[Inter prediction unit]
The inter prediction unit 126 performs inter prediction (also referred to as inter-screen prediction) of the current block with reference to a reference picture stored in the frame memory 122 and being different from the current picture, to thereby generate a prediction signal (inter prediction). A prediction signal). The inter prediction is performed in units of a current block or a sub-block (for example, 4 × 4 block) in the current block. For example, the inter prediction unit 126 performs motion estimation (motion estimation) on the current block or the sub-block in the reference picture. Then, the inter prediction unit 126 generates an inter prediction signal of the current block or the sub block by performing motion compensation using the motion information (for example, a motion vector) obtained by the motion search. Then, the inter prediction unit 126 outputs the generated inter prediction signal to the prediction control unit 128.
 動き補償に用いられた動き情報は信号化される。動きベクトルの信号化には、予測動きベクトル(motion vector predictor)が用いられてもよい。つまり、動きベクトルと予測動きベクトルとの間の差分が信号化されてもよい。 動 き The motion information used for motion compensation is signalized. For signalization of the motion vector, a predicted motion vector (motion \ vector \ predictor) may be used. That is, the difference between the motion vector and the predicted motion vector may be signalized.
 なお、動き探索により得られたカレントブロックの動き情報だけでなく、隣接ブロックの動き情報も用いて、インター予測信号が生成されてもよい。具体的には、動き探索により得られた動き情報に基づく予測信号と、隣接ブロックの動き情報に基づく予測信号と、を重み付け加算することにより、カレントブロック内のサブブロック単位でインター予測信号が生成されてもよい。このようなインター予測(動き補償)は、OBMC(overlapped block motion compensation)と呼ばれることがある。 The inter prediction signal may be generated using not only the motion information of the current block obtained by the motion search but also the motion information of the adjacent block. Specifically, an inter-prediction signal is generated for each sub-block in the current block by weighting and adding a prediction signal based on motion information obtained by a motion search and a prediction signal based on motion information of an adjacent block. May be done. Such inter prediction (motion compensation) may be referred to as OBMC (overlapped \ block \ motion \ compensation).
 このようなOBMCモードでは、OBMCのためのサブブロックのサイズを示す情報(例えばOBMCブロックサイズと呼ばれる)は、シーケンスレベルで信号化される。また、OBMCモードを適用するか否かを示す情報(例えばOBMCフラグと呼ばれる)は、CUレベルで信号化される。なお、これらの情報の信号化のレベルは、シーケンスレベル及びCUレベルに限定される必要はなく、他のレベル(例えばピクチャレベル、スライスレベル、タイルレベル、CTUレベル又はサブブロックレベル)であってもよい。 で は In such an OBMC mode, information indicating the size of a sub-block for OBMC (for example, referred to as OBMC block size) is signalized at a sequence level. Information indicating whether to apply the OBMC mode (for example, referred to as an OBMC flag) is signaled at the CU level. Note that the level of signalization of these pieces of information need not be limited to the sequence level and the CU level, and may be another level (for example, a picture level, a slice level, a tile level, a CTU level, or a sub-block level). Good.
 OBMCモードについて、より具体的に説明する。図5B及び図5Cは、OBMC処理による予測画像補正処理の概要を説明するためのフローチャート及び概念図である。 The OBMC mode will be described more specifically. FIG. 5B and FIG. 5C are a flowchart and a conceptual diagram for explaining the outline of the predicted image correction process by the OBMC process.
 まず、符号化対象ブロックに割り当てられた動きベクトル(MV)を用いて通常の動き補償による予測画像(Pred)を取得する。 {Circle around (1)} First, a predicted image (Pred) by normal motion compensation is obtained using the motion vector (MV) assigned to the current block.
 次に、符号化済みの左隣接ブロックの動きベクトル(MV_L)を符号化対象ブロックに適用して予測画像(Pred_L)を取得し、前記予測画像とPred_Lとを重みを付けて重ね合わせることで予測画像の1回目の補正を行う。 Next, the motion vector (MV_L) of the encoded left adjacent block is applied to the current block to obtain a predicted image (Pred_L), and the predicted image and Pred_L are weighted and overlapped with each other to perform prediction. Perform the first correction of the image.
 同様に、符号化済みの上隣接ブロックの動きベクトル(MV_U)を符号化対象ブロックに適用して予測画像(Pred_U)を取得し、前記1回目の補正を行った予測画像とPred_Uとを重みを付けて重ね合わせることで予測画像の2回目の補正を行い、それを最終的な予測画像とする。 Similarly, the motion vector (MV_U) of the coded upper adjacent block is applied to the current block to obtain a predicted image (Pred_U), and the predicted image subjected to the first correction and Pred_U are weighted. The second correction of the predicted image is performed by superimposing and superimposing, and this is used as the final predicted image.
 なお、ここでは左隣接ブロックと上隣接ブロックを用いた2段階の補正の方法を説明したが、右隣接ブロックや下隣接ブロックを用いて2段階よりも多い回数の補正を行う構成とすることも可能である。 Here, the two-stage correction method using the left adjacent block and the upper adjacent block has been described. However, a configuration in which the correction is performed more than two times using the right adjacent block and the lower adjacent block may be adopted. It is possible.
 なお、重ね合わせを行う領域はブロック全体の画素領域ではなく、ブロック境界近傍の一部の領域のみであってもよい。 Note that the region to be superimposed may not be the pixel region of the entire block, but may be only a partial region near the block boundary.
 なお、ここでは1枚の参照ピクチャからの予測画像補正処理について説明したが、複数枚の参照ピクチャから予測画像を補正する場合も同様であり、各々の参照ピクチャから補正した予測画像を取得した後に、得られた予測画像をさらに重ね合わせることで最終的な予測画像とする。 In addition, although the prediction image correction processing from one reference picture has been described here, the same applies to the case where a prediction image is corrected from a plurality of reference pictures. The obtained predicted image is further superimposed to obtain a final predicted image.
 なお、前記処理対象ブロックは、予測ブロック単位であっても、予測ブロックをさらに分割したサブブロック単位であってもよい。 The processing target block may be a prediction block unit or a sub-block unit obtained by further dividing the prediction block.
 OBMC処理を適用するかどうかの判定の方法として、例えば、OBMC処理を適用するかどうかを示す信号であるobmc_flagを用いる方法がある。具体的な一例としては、符号化装置において、符号化対象ブロックが動きの複雑な領域に属しているかどうかを判定し、動きの複雑な領域に属している場合はobmc_flagとして値1を設定してOBMC処理を適用して符号化を行い、動きの複雑な領域に属していない場合はobmc_flagとして値0を設定してOBMC処理を適用せずに符号化を行う。一方、復号化装置では、ストリームに記述されたobmc_flagを復号化することで、その値に応じてOBMC処理を適用するかどうかを切替えて復号化を行う。 As a method of determining whether to apply the OBMC process, for example, there is a method of using obmc_flag, which is a signal indicating whether to apply the OBMC process. As a specific example, the encoding device determines whether the encoding target block belongs to an area with complicated motion, and sets a value 1 as obmc_flag if the block to be encoded belongs to an area with complicated motion. Encoding is performed by applying the OBMC process, and if it does not belong to a region with a complicated motion, the value is set to 0 as obmc_flag and encoding is performed without applying the OBMC process. On the other hand, the decoding device decodes obmc_flag described in the stream, and switches whether or not to apply the OBMC process according to the value to perform decoding.
 なお、動き情報は信号化されずに、復号装置側で導出されてもよい。例えば、H.265/HEVC規格で規定されたマージモードが用いられてもよい。また例えば、復号装置側で動き探索を行うことにより動き情報が導出されてもよい。この場合、カレントブロックの画素値を用いずに動き探索が行われる。 Note that the motion information may be derived on the decoding device side without being signalized. For example, H. A merge mode defined by the H.265 / HEVC standard may be used. Further, for example, the motion information may be derived by performing a motion search on the decoding device side. In this case, the motion search is performed without using the pixel values of the current block.
 ここで、復号装置側で動き探索を行うモードについて説明する。この復号装置側で動き探索を行うモードは、PMMVD(pattern matched motion vector derivation)モード又はFRUC(frame rate up-conversion)モードと呼ばれることがある。 Here, a mode in which a motion search is performed on the decoding device side will be described. The mode in which a motion search is performed on the decoding device side may be referred to as a PMMVD (pattern matched motion vector derivation) mode or a FRUC (frame rate up-conversion) mode.
 FRUC処理の一例を図5Dに示す。まず、カレントブロックに空間的又は時間的に隣接する符号化済みブロックの動きベクトルを参照して、各々が予測動きベクトルを有する複数の候補のリスト(マージリストと共通であってもよい)が生成される。次に、候補リストに登録されている複数の候補MVの中からベスト候補MVを選択する。例えば、候補リストに含まれる各候補の評価値が算出され、評価値に基づいて1つの候補が選択される。 FIG. 5D shows an example of the FRUC processing. First, a list of a plurality of candidates each having a predicted motion vector (which may be common to a merge list) is generated with reference to a motion vector of an encoded block spatially or temporally adjacent to the current block. Is done. Next, the best candidate MV is selected from the plurality of candidate MVs registered in the candidate list. For example, the evaluation value of each candidate included in the candidate list is calculated, and one candidate is selected based on the evaluation value.
 そして、選択された候補の動きベクトルに基づいて、カレントブロックのための動きベクトルが導出される。具体的には、例えば、選択された候補の動きベクトル(ベスト候補MV)がそのままカレントブロックのための動きベクトルとして導出される。また例えば、選択された候補の動きベクトルに対応する参照ピクチャ内の位置の周辺領域において、パターンマッチングを行うことにより、カレントブロックのための動きベクトルが導出されてもよい。すなわち、ベスト候補MVの周辺の領域に対して同様の方法で探索を行い、さらに評価値が良い値となるMVがあった場合は、ベスト候補MVを前記MVに更新して、それをカレントブロックの最終的なMVとしてもよい。なお、当該処理を実施しない構成とすることも可能である。 動 き Then, a motion vector for the current block is derived based on the selected candidate motion vector. Specifically, for example, the motion vector of the selected candidate (best candidate MV) is directly derived as a motion vector for the current block. Further, for example, a motion vector for the current block may be derived by performing pattern matching in a peripheral region of a position in the reference picture corresponding to the selected candidate motion vector. That is, a search is performed in a similar manner to the area around the best candidate MV, and if there is an MV having a better evaluation value, the best candidate MV is updated to the MV and the MV is updated to the current block. May be the final MV. It is also possible to adopt a configuration in which the processing is not performed.
 サブブロック単位で処理を行う場合も全く同様の処理としてもよい。 場合 When the processing is performed in sub-block units, the same processing may be performed.
 なお、評価値は、動きベクトルに対応する参照ピクチャ内の領域と、所定の領域との間のパターンマッチングによって再構成画像の差分値を求めることにより算出される。なお、差分値に加えてそれ以外の情報を用いて評価値を算出してもよい。 The evaluation value is calculated by calculating a difference value of a reconstructed image by pattern matching between a region in a reference picture corresponding to a motion vector and a predetermined region. The evaluation value may be calculated using other information in addition to the difference value.
 パターンマッチングとしては、第1パターンマッチング又は第2パターンマッチングが用いられる。第1パターンマッチング及び第2パターンマッチングは、それぞれ、バイラテラルマッチング(bilateral matching)及びテンプレートマッチング(template matching)と呼ばれることがある。 第 As the pattern matching, the first pattern matching or the second pattern matching is used. The first pattern matching and the second pattern matching may be referred to as bilateral matching and template matching, respectively.
 第1パターンマッチングでは、異なる2つの参照ピクチャ内の2つのブロックであってカレントブロックの動き軌道(motion trajectory)に沿う2つのブロックの間でパターンマッチングが行われる。したがって、第1パターンマッチングでは、上述した候補の評価値の算出のための所定の領域として、カレントブロックの動き軌道に沿う他の参照ピクチャ内の領域が用いられる。 In the first pattern matching, pattern matching is performed between two blocks in two different reference pictures and along a motion trajectory of the current block (motion @ trajectory). Therefore, in the first pattern matching, an area in another reference picture along the motion trajectory of the current block is used as a predetermined area for calculating the above-described candidate evaluation value.
 図6は、動き軌道に沿う2つのブロック間でのパターンマッチング(バイラテラルマッチング)の一例を説明するための図である。図6に示すように、第1パターンマッチングでは、カレントブロック(Cur block)の動き軌道に沿う2つのブロックであって異なる2つの参照ピクチャ(Ref0、Ref1)内の2つのブロックのペアの中で最もマッチするペアを探索することにより2つの動きベクトル(MV0、MV1)が導出される。具体的には、カレントブロックに対して、候補MVで指定された第1の符号化済み参照ピクチャ(Ref0)内の指定位置における再構成画像と、前記候補MVを表示時間間隔でスケーリングした対称MVで指定された第2の符号化済み参照ピクチャ(Ref1)内の指定位置における再構成画像との差分を導出し、得られた差分値を用いて評価値を算出する。複数の候補MVの中で最も評価値が良い値となる候補MVを最終MVとして選択するとよい。 FIG. 6 is a diagram for explaining an example of pattern matching (bilateral matching) between two blocks along a motion trajectory. As shown in FIG. 6, in the first pattern matching, two blocks along the motion trajectory of the current block (Cur @ block) and a pair of two blocks in two different reference pictures (Ref0, Ref1) are used. By searching for the best matching pair, two motion vectors (MV0, MV1) are derived. Specifically, for the current block, a reconstructed image at a designated position in a first encoded reference picture (Ref0) designated by a candidate MV, and a symmetric MV obtained by scaling the candidate MV at a display time interval Then, a difference from the reconstructed image at the designated position in the second encoded reference picture (Ref1) designated by (1) is derived, and an evaluation value is calculated using the obtained difference value. The candidate MV having the best evaluation value among the plurality of candidate MVs may be selected as the final MV.
 連続的な動き軌道の仮定の下では、2つの参照ブロックを指し示す動きベクトル(MV0、MV1)は、カレントピクチャ(Cur Pic)と2つの参照ピクチャ(Ref0、Ref1)との間の時間的な距離(TD0、TD1)に対して比例する。例えば、カレントピクチャが時間的に2つの参照ピクチャの間に位置し、カレントピクチャから2つの参照ピクチャへの時間的な距離が等しい場合、第1パターンマッチングでは、鏡映対称な双方向の動きベクトルが導出される。 Under the assumption of a continuous motion trajectory, a motion vector (MV0, MV1) pointing to two reference blocks is a temporal distance between a current picture (Cur @ Pic) and two reference pictures (Ref0, Ref1). (TD0, TD1). For example, if the current picture is temporally located between two reference pictures and the temporal distances from the current picture to the two reference pictures are equal, in the first pattern matching, a reflection-symmetric bidirectional motion vector is used. Is derived.
 第2パターンマッチングでは、カレントピクチャ内のテンプレート(カレントピクチャ内でカレントブロックに隣接するブロック(例えば上及び/又は左隣接ブロック))と参照ピクチャ内のブロックとの間でパターンマッチングが行われる。したがって、第2パターンマッチングでは、上述した候補の評価値の算出のための所定の領域として、カレントピクチャ内のカレントブロックに隣接するブロックが用いられる。 In the second pattern matching, pattern matching is performed between a template in the current picture (a block adjacent to the current block in the current picture (for example, an upper and / or left adjacent block)) and a block in the reference picture. Therefore, in the second pattern matching, a block adjacent to the current block in the current picture is used as a predetermined area for calculating the above-described candidate evaluation value.
 図7は、カレントピクチャ内のテンプレートと参照ピクチャ内のブロックとの間でのパターンマッチング(テンプレートマッチング)の一例を説明するための図である。図7に示すように、第2パターンマッチングでは、カレントピクチャ(Cur Pic)内でカレントブロック(Cur block)に隣接するブロックと最もマッチするブロックを参照ピクチャ(Ref0)内で探索することによりカレントブロックの動きベクトルが導出される。具体的には、カレントブロックに対して、左隣接および上隣接の両方もしくはどちらか一方の符号化済み領域の再構成画像と、候補MVで指定された符号化済み参照ピクチャ(Ref0)内の同等位置における再構成画像との差分を導出し、得られた差分値を用いて評価値を算出し、複数の候補MVの中で最も評価値が良い値となる候補MVをベスト候補MVとして選択するとよい。 FIG. 7 is a diagram for explaining an example of pattern matching (template matching) between a template in a current picture and a block in a reference picture. As shown in FIG. 7, in the second pattern matching, the current block (Cur @ Pic) is searched for a block that matches the block adjacent to the current block (Cur @ block) in the reference picture (Ref0), thereby searching for the current block. Are derived. Specifically, with respect to the current block, the reconstructed image of the encoded region of the left adjacent region and / or the upper adjacent region and the equivalent image in the encoded reference picture (Ref0) designated by the candidate MV Deriving the difference from the reconstructed image at the position, calculating the evaluation value using the obtained difference value, and selecting the candidate MV having the best evaluation value among the plurality of candidate MVs as the best candidate MV Good.
 このようなFRUCモードを適用するか否かを示す情報(例えばFRUCフラグと呼ばれる)は、CUレベルで信号化される。また、FRUCモードが適用される場合(例えばFRUCフラグが真の場合)、パターンマッチングの方法(第1パターンマッチング又は第2パターンマッチング)を示す情報(例えばFRUCモードフラグと呼ばれる)がCUレベルで信号化される。なお、これらの情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル、CTUレベル又はサブブロックレベル)であってもよい。 情報 Information indicating whether or not to apply such a FRUC mode (for example, called a FRUC flag) is signaled at the CU level. When the FRUC mode is applied (for example, when the FRUC flag is true), information (for example, called a FRUC mode flag) indicating a pattern matching method (first pattern matching or second pattern matching) is signaled at the CU level. Be converted to Note that the signalization of these pieces of information does not need to be limited to the CU level, but may be another level (for example, a sequence level, a picture level, a slice level, a tile level, a CTU level, or a sub-block level). .
 ここで、等速直線運動を仮定したモデルに基づいて動きベクトルを導出するモードについて説明する。このモードは、BIO(bi-directional optical flow)モードと呼ばれることがある。 Here, a mode for deriving a motion vector based on a model assuming uniform linear motion will be described. This mode may be referred to as a BIO (bi-directional optical flow) mode.
 図8は、等速直線運動を仮定したモデルを説明するための図である。図8において、(v,v)は、速度ベクトルを示し、τ、τは、それぞれ、カレントピクチャ(Cur Pic)と2つの参照ピクチャ(Ref,Ref)との間の時間的な距離を示す。(MVx,MVy)は、参照ピクチャRefに対応する動きベクトルを示し、(MVx、MVy)は、参照ピクチャRefに対応する動きベクトルを示す。 FIG. 8 is a diagram for explaining a model assuming constant velocity linear motion. In FIG. 8, (v x , v y ) indicates a velocity vector, and τ 0 and τ 1 are time between a current picture (Cur Pic) and two reference pictures (Ref 0 , Ref 1 ), respectively. Indicates a typical distance. (MVx 0 , MVy 0 ) indicates a motion vector corresponding to the reference picture Ref 0 , and (MVx 1 , MVy 1 ) indicates a motion vector corresponding to the reference picture Ref 1 .
 このとき速度ベクトル(v,v)の等速直線運動の仮定の下では、(MVx,MVy)及び(MVx,MVy)は、それぞれ、(vτ,vτ)及び(-vτ,-vτ)と表され、以下のオプティカルフロー等式(1)が成り立つ。 Under the assumption of uniform linear motion at this time velocity vector (v x, v y), (MVx 0, MVy 0) and (MVx 1, MVy 1), respectively, (v x τ 0, v y τ 0 ) and (−v x τ 1 , −v y τ 1 ), and the following optical flow equation (1) holds.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、I(k)は、動き補償後の参照画像k(k=0,1)の輝度値を示す。このオプティカルフロー等式は、(i)輝度値の時間微分と、(ii)水平方向の速度及び参照画像の空間勾配の水平成分の積と、(iii)垂直方向の速度及び参照画像の空間勾配の垂直成分の積と、の和が、ゼロと等しいことを示す。このオプティカルフロー等式とエルミート補間(Hermite interpolation)との組み合わせに基づいて、マージリスト等から得られるブロック単位の動きベクトルが画素単位で補正される。 Here, I (k) indicates the luminance value of the reference image k (k = 0, 1) after motion compensation. This optical flow equation includes (i) the time derivative of the luminance value, (ii) the product of the horizontal velocity and the horizontal component of the spatial gradient of the reference image, and (iii) the vertical velocity and the spatial gradient of the reference image. Indicates that the sum of the product of the vertical components of and is equal to zero. Based on a combination of the optical flow equation and Hermite interpolation, a block-by-block motion vector obtained from a merge list or the like is corrected in pixel units.
 なお、等速直線運動を仮定したモデルに基づく動きベクトルの導出とは異なる方法で、復号装置側で動きベクトルが導出されてもよい。例えば、複数の隣接ブロックの動きベクトルに基づいてサブブロック単位で動きベクトルが導出されてもよい。 Note that the motion vector may be derived on the decoding device side by a method different from the method for deriving the motion vector based on a model assuming uniform linear motion. For example, a motion vector may be derived for each sub-block based on the motion vectors of a plurality of adjacent blocks.
 ここで、複数の隣接ブロックの動きベクトルに基づいてサブブロック単位で動きベクトルを導出するモードについて説明する。このモードは、アフィン動き補償予測(affine motion compensation prediction)モードと呼ばれることがある。 Here, a mode for deriving a motion vector in sub-block units based on the motion vectors of a plurality of adjacent blocks will be described. This mode may be referred to as an affine motion compensated prediction (affine \ motion \ compensation \ prediction) mode.
 図9Aは、複数の隣接ブロックの動きベクトルに基づくサブブロック単位の動きベクトルの導出を説明するための図である。図9Aにおいて、カレントブロックは、16の4x4サブブロックを含む。ここでは、隣接ブロックの動きベクトルに基づいてカレントブロックの左上角制御ポイントの動きベクトルvが導出され、隣接サブブロックの動きベクトルに基づいてカレントブロックの右上角制御ポイントの動きベクトルvが導出される。そして、2つの動きベクトルv及びvを用いて、以下の式(2)により、カレントブロック内の各サブブロックの動きベクトル(v,v)が導出される。 FIG. 9A is a diagram for describing derivation of a motion vector in sub-block units based on motion vectors of a plurality of adjacent blocks. In FIG. 9A, the current block includes 16 4 × 4 sub-blocks. Here, the motion vector v 0 of the upper left corner control point of the current block is derived based on the motion vector of the adjacent block, and the motion vector v 1 of the upper right corner control point of the current block is derived based on the motion vector of the adjacent sub block. Is done. Then, using the two motion vectors v 0 and v 1 , the motion vector (v x , v y ) of each sub-block in the current block is derived by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、x及びyは、それぞれ、サブブロックの水平位置及び垂直位置を示し、wは、予め定められた重み係数を示す。 Here, x and y indicate the horizontal position and vertical position of the sub-block, respectively, and w indicates a predetermined weighting factor.
 このようなアフィン動き補償予測モードでは、左上及び右上角制御ポイントの動きベクトルの導出方法が異なるいくつかのモードを含んでもよい。このようなアフィン動き補償予測モードを示す情報(例えばアフィンフラグと呼ばれる)は、CUレベルで信号化される。なお、このアフィン動き補償予測モードを示す情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル、CTUレベル又はサブブロックレベル)であってもよい。 The affine motion compensation prediction mode may include several modes in which the method of deriving the motion vector of the upper left and upper right control points is different. Information indicating such an affine motion compensation prediction mode (for example, called an affine flag) is signalized at the CU level. The signalization of the information indicating the affine motion compensation prediction mode does not need to be limited to the CU level, but may be performed at another level (for example, a sequence level, a picture level, a slice level, a tile level, a CTU level, or a sub-block level). ).
 [予測制御部]
 予測制御部128は、イントラ予測信号及びインター予測信号のいずれかを選択し、選択した信号を予測信号として減算部104及び加算部116に出力する。
[Prediction control unit]
The prediction control unit 128 selects one of the intra prediction signal and the inter prediction signal, and outputs the selected signal to the subtraction unit 104 and the addition unit 116 as a prediction signal.
 ここで、マージモードにより符号化対象ピクチャの動きベクトルを導出する例を説明する。図9Bは、マージモードによる動きベクトル導出処理の概要を説明するための図である。 Here, an example of deriving a motion vector of the current picture in the merge mode will be described. FIG. 9B is a diagram for describing the outline of the motion vector derivation process in the merge mode.
 まず、予測MVの候補を登録した予測MVリストを生成する。予測MVの候補としては、符号化対象ブロックの空間的に周辺に位置する複数の符号化済みブロックが持つMVである空間隣接予測MV、符号化済み参照ピクチャにおける符号化対象ブロックの位置を投影した近辺のブロックが持つMVである時間隣接予測MV、空間隣接予測MVと時間隣接予測MVのMV値を組合わせて生成したMVである結合予測MV、および値がゼロのMVであるゼロ予測MV等がある。 First, a predicted MV list in which predicted MV candidates are registered is generated. As candidates for the prediction MV, the spatially adjacent prediction MV, which is the MV of a plurality of encoded blocks spatially located around the current block, and the position of the current block in the coded reference picture are projected. Temporal adjacent prediction MV, which is the MV of a nearby block, combined prediction MV, which is an MV generated by combining the MV values of the spatial adjacent prediction MV and the temporal adjacent prediction MV, and zero prediction MV, which is an MV having a value of zero, etc. There is.
 次に、予測MVリストに登録されている複数の予測MVの中から1つの予測MVを選択することで、符号化対象ブロックのMVとして決定する。 Next, one prediction MV is selected from a plurality of prediction MVs registered in the prediction MV list, and is determined as the MV of the encoding target block.
 さらに可変長符号化部では、どの予測MVを選択したかを示す信号であるmerge_idxをストリームに記述して符号化する。 {Circle around (2)} The variable-length coding unit describes and encodes a signal “merge_idx” indicating which prediction MV is selected in the stream.
 なお、図9Bで説明した予測MVリストに登録する予測MVは一例であり、図中の個数とは異なる個数であったり、図中の予測MVの一部の種類を含まない構成であったり、図中の予測MVの種類以外の予測MVを追加した構成であったりしてもよい。 Note that the prediction MV registered in the prediction MV list described in FIG. 9B is an example, and may be different from the number in the figure, or may not include some types of the prediction MV in the figure, The configuration may be such that a prediction MV other than the type of the prediction MV in the drawing is added.
 なお、マージモードにより導出した符号化対象ブロックのMVを用いて、後述するDMVR処理を行うことによって最終的なMVを決定してもよい。 Note that the final MV may be determined by performing a DMVR process described later using the MV of the encoding target block derived in the merge mode.
 ここで、DMVR処理を用いてMVを決定する例について説明する。 Here, an example of determining the MV using the DMVR process will be described.
 図9Cは、DMVR処理の概要を説明するための概念図である。 FIG. 9C is a conceptual diagram for explaining the outline of the DMVR process.
 まず、処理対象ブロックに設定された最適MVPを候補MVとして、前記候補MVに従って、L0方向の処理済みピクチャである第1参照ピクチャ、およびL1方向の処理済みピクチャである第2参照ピクチャから参照画素をそれぞれ取得し、各参照画素の平均をとることでテンプレートを生成する。 First, the optimal MVP set in the processing target block is set as a candidate MV. According to the candidate MV, a first reference picture that is a processed picture in the L0 direction and a second reference picture that is a processed picture in the L1 direction are referred to as reference pixels. Are obtained, and a template is generated by averaging each reference pixel.
 次に、前記テンプレートを用いて、第1参照ピクチャおよび第2参照ピクチャの候補MVの周辺領域をそれぞれ探索し、最もコストが最小となるMVを最終的なMVとして決定する。なお、コスト値はテンプレートの各画素値と探索領域の各画素値との差分値およびMV値等を用いて算出する。 {Circle around (2)} Next, using the template, search the surrounding areas of the candidate MV for the first reference picture and the second reference picture, respectively, and determine the MV with the lowest cost as the final MV. The cost value is calculated using a difference value between each pixel value of the template and each pixel value of the search area, an MV value, and the like.
 なお、符号化装置および復号化装置では、ここで説明した処理の概要は基本的に共通である。 Note that the outline of the processing described here is basically common to the encoding device and the decoding device.
 なお、ここで説明した処理そのものでなくても、候補MVの周辺を探索して最終的なMVを導出することができる処理であれば、他の処理を用いてもよい。 Note that other processing may be used as long as it is a processing that can search for the periphery of the candidate MV and derive the final MV without being the processing itself described here.
 ここで、LIC処理を用いて予測画像を生成するモードについて説明する。 Here, a mode for generating a predicted image using the LIC processing will be described.
 図9Dは、LIC処理による輝度補正処理を用いた予測画像生成方法の概要を説明するための図である。 FIG. 9D is a diagram for describing an outline of a predicted image generation method using the luminance correction processing by the LIC processing.
 まず、符号化済みピクチャである参照ピクチャから符号化対象ブロックに対応する参照画像を取得するためのMVを導出する。 First, an MV for obtaining a reference image corresponding to the current block from a reference picture which is a coded picture is derived.
 次に、符号化対象ブロックに対して、左隣接および上隣接の符号化済み周辺参照領域の輝度画素値と、MVで指定された参照ピクチャ内の同等位置における輝度画素値とを用いて、参照ピクチャと符号化対象ピクチャとで輝度値がどのように変化したかを示す情報を抽出して輝度補正パラメータを算出する。 Next, for the current block to be coded, reference is made using the luminance pixel values of the left adjacent and upper adjacent coded peripheral reference areas and the luminance pixel values at equivalent positions in the reference picture specified by the MV. Information indicating how the luminance value has changed between the picture and the encoding target picture is extracted to calculate a luminance correction parameter.
 MVで指定された参照ピクチャ内の参照画像に対して前記輝度補正パラメータを用いて輝度補正処理を行うことで、符号化対象ブロックに対する予測画像を生成する。 予 測 By performing a luminance correction process on the reference image in the reference picture specified by the MV using the luminance correction parameter, a predicted image for the current block is generated.
 なお、図9Dにおける前記周辺参照領域の形状は一例であり、これ以外の形状を用いてもよい。 The shape of the peripheral reference area in FIG. 9D is an example, and other shapes may be used.
 また、ここでは1枚の参照ピクチャから予測画像を生成する処理について説明したが、複数枚の参照ピクチャから予測画像を生成する場合も同様であり、各々の参照ピクチャから取得した参照画像に同様の方法で輝度補正処理を行ってから予測画像を生成する。 Although the process of generating a predicted image from one reference picture has been described here, the same applies to the case of generating a predicted image from a plurality of reference pictures, and the same applies to a reference image acquired from each reference picture. A predicted image is generated after performing the brightness correction processing by the method.
 LIC処理を適用するかどうかの判定の方法として、例えば、LIC処理を適用するかどうかを示す信号であるlic_flagを用いる方法がある。具体的な一例としては、符号化装置において、符号化対象ブロックが輝度変化が発生している領域に属しているかどうかを判定し、輝度変化が発生している領域に属している場合はlic_flagとして値1を設定してLIC処理を適用して符号化を行い、輝度変化が発生している領域に属していない場合はlic_flagとして値0を設定してLIC処理を適用せずに符号化を行う。一方、復号化装置では、ストリームに記述されたlic_flagを復号化することで、その値に応じてLIC処理を適用するかどうかを切替えて復号化を行う。 As a method of determining whether or not to apply the LIC processing, for example, there is a method of using lic_flag which is a signal indicating whether or not to apply the LIC processing. As a specific example, in the encoding device, it is determined whether the encoding target block belongs to an area in which a luminance change has occurred. If the encoding target block belongs to an area in which a luminance change has occurred, lik_flag is used. When the value 1 is set and coding is performed by applying the LIC processing, and when the pixel does not belong to the area where the luminance change occurs, the value is set as ric_flag and the coding is performed without applying the LIC processing. . On the other hand, the decoding device decodes lic_flag described in the stream, and switches whether or not to apply LIC processing according to the value to perform decoding.
 LIC処理を適用するかどうかの判定の別の方法として、例えば、周辺ブロックでLIC処理を適用したかどうかに従って判定する方法もある。具体的な一例としては、符号化対象ブロックがマージモードであった場合、マージモード処理におけるMVの導出の際に選択した周辺の符号化済みブロックがLIC処理を適用して符号化したかどうかを判定し、その結果に応じてLIC処理を適用するかどうかを切替えて符号化を行う。なお、この例の場合、復号化における処理も全く同様となる。 As another method of determining whether or not to apply the LIC processing, for example, there is a method of determining whether to apply the LIC processing to a peripheral block. As a specific example, when the current block is in the merge mode, it is determined whether or not the peripheral coded block selected at the time of derivation of the MV in the merge mode process has been coded by applying the LIC process. Judgment is performed, and coding is performed by switching whether or not to apply LIC processing according to the result. In the case of this example, the processing in the decoding is exactly the same.
 [復号装置の概要]
 次に、上記の符号化装置100から出力された符号化信号(符号化ビットストリーム)を復号可能な復号装置の概要について説明する。図10は、実施の形態1に係る復号装置200の機能構成を示すブロック図である。復号装置200は、動画像/画像をブロック単位で復号する動画像/画像復号装置である。
[Overview of decoding device]
Next, an outline of a decoding device capable of decoding the coded signal (coded bit stream) output from the coding device 100 will be described. FIG. 10 is a block diagram showing a functional configuration of the decoding device 200 according to Embodiment 1. The decoding device 200 is a moving image / image decoding device that decodes a moving image / image in block units.
 図10に示すように、復号装置200は、エントロピー復号部202と、逆量子化部204と、逆変換部206と、加算部208と、ブロックメモリ210と、ループフィルタ部212と、フレームメモリ214と、イントラ予測部216と、インター予測部218と、予測制御部220と、を備える。 As shown in FIG. 10, the decoding device 200 includes an entropy decoding unit 202, an inverse quantization unit 204, an inverse transformation unit 206, an addition unit 208, a block memory 210, a loop filter unit 212, and a frame memory 214. , An intra prediction unit 216, an inter prediction unit 218, and a prediction control unit 220.
 復号装置200は、例えば、汎用プロセッサ及びメモリにより実現される。この場合、メモリに格納されたソフトウェアプログラムがプロセッサにより実行されたときに、プロセッサは、エントロピー復号部202、逆量子化部204、逆変換部206、加算部208、ループフィルタ部212、イントラ予測部216、インター予測部218及び予測制御部220として機能する。また、復号装置200は、エントロピー復号部202、逆量子化部204、逆変換部206、加算部208、ループフィルタ部212、イントラ予測部216、インター予測部218及び予測制御部220に対応する専用の1以上の電子回路として実現されてもよい。 The decoding device 200 is realized by, for example, a general-purpose processor and a memory. In this case, when the software program stored in the memory is executed by the processor, the processor includes an entropy decoding unit 202, an inverse quantization unit 204, an inverse transformation unit 206, an addition unit 208, a loop filter unit 212, an intra prediction unit 216, and functions as the inter prediction unit 218 and the prediction control unit 220. In addition, the decoding device 200 is a dedicated device corresponding to the entropy decoding unit 202, the inverse quantization unit 204, the inverse transformation unit 206, the addition unit 208, the loop filter unit 212, the intra prediction unit 216, the inter prediction unit 218, and the prediction control unit 220. May be realized as one or more electronic circuits.
 以下に、復号装置200に含まれる各構成要素について説明する。 Hereinafter, each component included in the decoding device 200 will be described.
 [エントロピー復号部]
 エントロピー復号部202は、符号化ビットストリームをエントロピー復号する。具体的には、エントロピー復号部202は、例えば、符号化ビットストリームから二値信号に算術復号する。そして、エントロピー復号部202は、二値信号を多値化(debinarize)する。これにより、エントロピー復号部202は、ブロック単位で量子化係数を逆量子化部204に出力する。
[Entropy decoding unit]
The entropy decoding unit 202 performs entropy decoding on the encoded bit stream. Specifically, the entropy decoding unit 202 arithmetically decodes, for example, an encoded bit stream into a binary signal. Then, the entropy decoding unit 202 multi-values (binaries) the binary signal. As a result, the entropy decoding unit 202 outputs the quantization coefficients to the inverse quantization unit 204 in block units.
 [逆量子化部]
 逆量子化部204は、エントロピー復号部202からの入力である復号対象ブロック(以下、カレントブロックという)の量子化係数を逆量子化する。具体的には、逆量子化部204は、カレントブロックの量子化係数の各々について、当該量子化係数に対応する量子化パラメータに基づいて当該量子化係数を逆量子化する。そして、逆量子化部204は、カレントブロックの逆量子化された量子化係数(つまり変換係数)を逆変換部206に出力する。
[Inverse quantization unit]
The inverse quantization unit 204 inversely quantizes a quantization coefficient of a decoding target block (hereinafter, referred to as a current block) input from the entropy decoding unit 202. Specifically, the inverse quantization unit 204 inversely quantizes each of the quantization coefficients of the current block based on the quantization parameter corresponding to the quantization coefficient. Then, the inverse quantization unit 204 outputs the inversely quantized quantized coefficients (that is, transform coefficients) of the current block to the inverse transform unit 206.
 [逆変換部]
 逆変換部206は、逆量子化部204からの入力である変換係数を逆変換することにより予測誤差を復元する。
[Inverse conversion unit]
The inverse transform unit 206 restores a prediction error by inversely transforming the transform coefficient input from the inverse quantization unit 204.
 例えば符号化ビットストリームから読み解かれた情報がEMT又はAMTを適用することを示す場合(例えばAMTフラグが真)、逆変換部206は、読み解かれた変換タイプを示す情報に基づいてカレントブロックの変換係数を逆変換する。 For example, if the information read from the coded bit stream indicates that EMT or AMT is applied (for example, the AMT flag is true), the inverse transform unit 206 may perform the current block based on the information indicating the read conversion type. Is inversely transformed.
 また例えば、符号化ビットストリームから読み解かれた情報がNSSTを適用することを示す場合、逆変換部206は、変換係数に逆再変換を適用する。 {For example, when the information read from the coded bit stream indicates that NSST is to be applied, the inverse transform unit 206 applies inverse retransformation to the transform coefficients.
 [加算部]
 加算部208は、逆変換部206からの入力である予測誤差と予測制御部220からの入力である予測サンプルとを加算することによりカレントブロックを再構成する。そして、加算部208は、再構成されたブロックをブロックメモリ210及びループフィルタ部212に出力する。
[Adder]
The addition unit 208 reconstructs the current block by adding the prediction error input from the inverse conversion unit 206 and the prediction sample input from the prediction control unit 220. Then, the adding unit 208 outputs the reconstructed block to the block memory 210 and the loop filter unit 212.
 [ブロックメモリ]
 ブロックメモリ210は、イントラ予測で参照されるブロックであって復号対象ピクチャ(以下、カレントピクチャという)内のブロックを格納するための記憶部である。具体的には、ブロックメモリ210は、加算部208から出力された再構成ブロックを格納する。
[Block memory]
The block memory 210 is a storage unit for storing a block that is referred to in intra prediction and is in a current picture to be decoded (hereinafter, referred to as a current picture). Specifically, the block memory 210 stores the reconstructed block output from the adder 208.
 [ループフィルタ部]
 ループフィルタ部212は、加算部208によって再構成されたブロックにループフィルタを施し、フィルタされた再構成ブロックをフレームメモリ214及び表示装置等に出力する。
[Loop filter section]
The loop filter unit 212 applies a loop filter to the block reconstructed by the adding unit 208, and outputs the filtered reconstructed block to the frame memory 214, a display device, and the like.
 符号化ビットストリームから読み解かれたALFのオン/オフを示す情報がALFのオンを示す場合、局所的な勾配の方向及び活性度に基づいて複数のフィルタの中から1つのフィルタが選択され、選択されたフィルタが再構成ブロックに適用される。 If the ALF on / off information read from the coded bitstream indicates ALF on, one filter is selected from the plurality of filters based on the local gradient direction and activity. The selected filter is applied to the reconstruction block.
 [フレームメモリ]
 フレームメモリ214は、インター予測に用いられる参照ピクチャを格納するための記憶部であり、フレームバッファと呼ばれることもある。具体的には、フレームメモリ214は、ループフィルタ部212によってフィルタされた再構成ブロックを格納する。
[Frame memory]
The frame memory 214 is a storage unit for storing a reference picture used for inter prediction, and is sometimes called a frame buffer. Specifically, the frame memory 214 stores the reconstructed blocks filtered by the loop filter unit 212.
 [イントラ予測部]
 イントラ予測部216は、符号化ビットストリームから読み解かれたイントラ予測モードに基づいて、ブロックメモリ210に格納されたカレントピクチャ内のブロックを参照してイントラ予測を行うことで、予測信号(イントラ予測信号)を生成する。具体的には、イントラ予測部216は、カレントブロックに隣接するブロックのサンプル(例えば輝度値、色差値)を参照してイントラ予測を行うことでイントラ予測信号を生成し、イントラ予測信号を予測制御部220に出力する。
[Intra prediction unit]
The intra prediction unit 216 performs intra prediction with reference to a block in the current picture stored in the block memory 210 based on the intra prediction mode read from the coded bit stream, thereby obtaining a prediction signal (intra prediction). Signal). Specifically, the intra prediction unit 216 generates an intra prediction signal by performing intra prediction with reference to a sample (for example, a luminance value and a color difference value) of a block adjacent to the current block, and performs prediction control on the intra prediction signal. Output to the unit 220.
 なお、色差ブロックのイントラ予測において輝度ブロックを参照するイントラ予測モードが選択されている場合は、イントラ予測部216は、カレントブロックの輝度成分に基づいて、カレントブロックの色差成分を予測してもよい。 When the intra prediction mode that refers to the luminance block is selected in the intra prediction of the chrominance block, the intra prediction unit 216 may predict the chrominance component of the current block based on the luminance component of the current block. .
 また、符号化ビットストリームから読み解かれた情報がPDPCの適用を示す場合、イントラ予測部216は、水平/垂直方向の参照画素の勾配に基づいてイントラ予測後の画素値を補正する。 In addition, when the information read from the encoded bit stream indicates the application of PDPC, the intra prediction unit 216 corrects the pixel value after intra prediction based on the gradient of the reference pixel in the horizontal / vertical directions.
 [インター予測部]
 インター予測部218は、フレームメモリ214に格納された参照ピクチャを参照して、カレントブロックを予測する。予測は、カレントブロック又はカレントブロック内のサブブロック(例えば4x4ブロック)の単位で行われる。例えば、インター予測部218は、符号化ビットストリームから読み解かれた動き情報(例えば動きベクトル)を用いて動き補償を行うことでカレントブロック又はサブブロックのインター予測信号を生成し、インター予測信号を予測制御部220に出力する。
[Inter prediction unit]
The inter prediction unit 218 predicts the current block with reference to the reference picture stored in the frame memory 214. The prediction is performed in units of the current block or sub-blocks (for example, 4 × 4 blocks) in the current block. For example, the inter prediction unit 218 generates an inter prediction signal of a current block or a sub block by performing motion compensation using motion information (for example, a motion vector) read from an encoded bit stream. Output to the prediction control unit 220.
 なお、符号化ビットストリームから読み解かれた情報がOBMCモードを適用することを示す場合、インター予測部218は、動き探索により得られたカレントブロックの動き情報だけでなく、隣接ブロックの動き情報も用いて、インター予測信号を生成する。 If the information read from the coded bit stream indicates that the OBMC mode is to be applied, the inter prediction unit 218 determines not only the motion information of the current block obtained by the motion search but also the motion information of the adjacent block. To generate an inter prediction signal.
 また、符号化ビットストリームから読み解かれた情報がFRUCモードを適用することを示す場合、インター予測部218は、符号化ストリームから読み解かれたパターンマッチングの方法(バイラテラルマッチング又はテンプレートマッチング)に従って動き探索を行うことにより動き情報を導出する。そして、インター予測部218は、導出された動き情報を用いて動き補償を行う。 Also, when the information read from the encoded bit stream indicates that the FRUC mode is applied, the inter prediction unit 218 uses the pattern matching method (bilateral matching or template matching) read from the encoded stream. The motion information is derived by performing a motion search. Then, the inter prediction unit 218 performs motion compensation using the derived motion information.
 また、インター予測部218は、BIOモードが適用される場合に、等速直線運動を仮定したモデルに基づいて動きベクトルを導出する。また、符号化ビットストリームから読み解かれた情報がアフィン動き補償予測モードを適用することを示す場合には、インター予測部218は、複数の隣接ブロックの動きベクトルに基づいてサブブロック単位で動きベクトルを導出する。 イ ン タ ー Also, when the BIO mode is applied, the inter prediction unit 218 derives a motion vector based on a model assuming uniform linear motion. If the information read from the coded bit stream indicates that the affine motion compensation prediction mode is to be applied, the inter prediction unit 218 uses the motion vector of each of a plurality of adjacent blocks as a sub-block unit. Is derived.
 [予測制御部]
 予測制御部220は、イントラ予測信号及びインター予測信号のいずれかを選択し、選択した信号を予測信号として加算部208に出力する。
[Prediction control unit]
The prediction control unit 220 selects one of the intra prediction signal and the inter prediction signal, and outputs the selected signal to the addition unit 208 as a prediction signal.
 [第1態様]
 本実施の形態の第1態様では、動画像における画像のカレントブロックの複数の周辺ブロックの動きベクトルに基づき、カレントブロックを構成するサブブロック単位でアフィン動きベクトルを算出するインター予測モードにおける予測処理の一例について説明する。
[First aspect]
In the first aspect of the present embodiment, a prediction process in an inter prediction mode in which an affine motion vector is calculated for each sub-block constituting a current block based on motion vectors of a plurality of peripheral blocks of a current block of an image in a moving image. An example will be described.
 [符号化装置のインター予測部の内部構成]
 第1態様における符号化装置100のインター予測部126は、インター予測モードのうちの少なくともアフィン動き補償予測モードの動き補償を、単予測のみを使用して行い、双予測を使用しない。ここで、単予測は、前方予測または後方予測でもあり、片方向予測とも称される。双予測は、双方向予測とも称される。
[Internal Configuration of Inter Prediction Unit of Encoding Device]
The inter prediction unit 126 of the encoding device 100 according to the first aspect performs motion compensation in at least the affine motion compensation prediction mode among the inter prediction modes using only uni-prediction, and does not use bi-prediction. Here, the simple prediction is forward prediction or backward prediction, and is also referred to as one-way prediction. Bi-prediction is also called bi-prediction.
 アフィン動き補償予測モードの動き補償は、次のように行われる。すなわち、インター予測部126は、まず、カレントブロックの制御ポイントのそれぞれの予測動きベクトルを導出する。次に、インター予測部126は、導出した予測動きベクトルを用いて、カレントブロックに含まれる複数のサブブロックのそれぞれの動きベクトルを、アフィン動きベクトルとして算出する。そして、インター予測部126は、算出したアフィン動きベクトル及び符号化済み参照ピクチャを用いてサブブロックに対して動き補償を行う。 動 き Motion compensation in the affine motion compensation prediction mode is performed as follows. That is, the inter prediction unit 126 first derives each predicted motion vector of the control point of the current block. Next, the inter prediction unit 126 calculates the motion vector of each of the plurality of sub-blocks included in the current block as the affine motion vector using the derived predicted motion vector. Then, the inter prediction unit 126 performs motion compensation on the sub-block using the calculated affine motion vector and the encoded reference picture.
 また、アフィン動き補償予測モードには、制御ポイントの予測動きベクトルの決定方法が異なる2種類のモードすなわちノーマルモード(アフィンインターモード)とマージモード(アフィンマージモード)とがある。 The affine motion compensation prediction mode includes two types of modes in which the method of determining a control point predicted motion vector is different, that is, a normal mode (affine inter mode) and a merge mode (affine merge mode).
 ノーマルモードは、カレントブロックの各制御ポイント近傍の符号化済みブロックのうちのいずれかのブロックの動きベクトルを選択することで、制御ポイントの予測動きベクトルを導出するモードである。そして、ノーマルモードでは、制御ポイント毎に、参照ピクチャを示すインデックス情報と動きベクトル情報とを符号化する。ここで、インデックス情報は、全ての制御ポイントで共通としてもよい。また、動きベクトル情報は、動きベクトルの予測候補を示すMVPインデックスと、予測された動きベクトルと実際の動きベクトルとの差分を示すMVDとを含めることができる。動きベクトル情報は、MVPインデックスのみを含める場合、全ての制御ポイントで共通としてよい。 The モ ー ド normal mode is a mode for deriving a predicted motion vector of a control point by selecting a motion vector of one of encoded blocks near each control point of the current block. In the normal mode, index information indicating a reference picture and motion vector information are encoded for each control point. Here, the index information may be common to all control points. In addition, the motion vector information can include an MVP index indicating a motion vector prediction candidate and an MVD indicating a difference between the predicted motion vector and an actual motion vector. When only the MVP index is included, the motion vector information may be common to all control points.
 一方、マージモードは、カレントブロックに隣接する符号化済みブロックのうち、アフィンモードで符号化されたブロックに対応する複数の動きベクトルに基づいて、制御ポイントそれぞれの予測動きベクトルを算出するモードである。つまり、マージモードは、アフィン動き補償モードが適用された周辺CUの動きベクトルに基づいて制御ポイントの動きベクトルを決定するモードである。このため、ノーマルモードで単予測を用いれば、その後にマージモードを行うときには、単予測を用いた符号化済みブロックの動きベクトルに基づいて制御ポイントの予測動きベクトルを決定することになる。このように、ノーマルモードで単予測を用いれば、マージモードにおいても単予測を用いることになることから、少なくともノーマルモードを単予測を用いて行えばよい。 On the other hand, the merge mode is a mode for calculating a predicted motion vector of each control point based on a plurality of motion vectors corresponding to a block encoded in the affine mode among encoded blocks adjacent to the current block. . That is, the merge mode is a mode in which the motion vector of the control point is determined based on the motion vector of the peripheral CU to which the affine motion compensation mode has been applied. Therefore, if uni-prediction is used in the normal mode, when the merge mode is subsequently performed, the predicted motion vector of the control point is determined based on the motion vector of the coded block using the uni-prediction. As described above, if the simple prediction is used in the normal mode, the simple prediction is also used in the merge mode. Therefore, at least the normal mode may be performed using the simple prediction.
 なお、インター予測モードで共通に使用される第1の参照ピクチャリスト及び第2の参照ピクチャリストの一方により参照ピクチャを選択してもよい。つまり、参照ピクチャは、インター予測モード(画面間予測方式)で共通に使用する第1のリストと第2のリストとのいずれか一方から選択してもよい。第1のリストと第2のリストとは、例えばL0リストとL1リストである。参照ピクチャは、例えばL0リストから選択されてもよい。そして、選択した参照ピクチャを構成する複数の符号化済みブロックのうちから、単予測のみを用いて、制御ポイントの予測動きベクトルを導出するための符号化済みブロックを決定してもよい。これにより、アフィン動き補償予測モードの動き補償を、単予測のみを使用して行うことができる。 The reference picture may be selected based on one of the first reference picture list and the second reference picture list commonly used in the inter prediction mode. That is, the reference picture may be selected from one of the first list and the second list commonly used in the inter prediction mode (inter prediction mode). The first list and the second list are, for example, an L0 list and an L1 list. The reference picture may be selected, for example, from the L0 list. Then, an encoded block for deriving a predicted motion vector of a control point may be determined using only uni-prediction from among a plurality of encoded blocks constituting the selected reference picture. Accordingly, motion compensation in the affine motion compensation prediction mode can be performed using only uni-prediction.
 また、マージモードでは、アフィン動き補償予測モード以外のインター予測モード(画面間予測方式)が適用された周辺CUの動きベクトルに基づいて、制御ポイントの予測動きベクトルを決定してもよい。この場合、マージモードを単予測のみを使用して行うようにするために、L0リストなどから参照ピクチャを選択すればよい。 In the merge mode, the predicted motion vector of the control point may be determined based on the motion vector of the peripheral CU to which the inter prediction mode (inter prediction mode) other than the affine motion compensation prediction mode is applied. In this case, in order to perform the merge mode using only uni-prediction, a reference picture may be selected from an L0 list or the like.
 アフィン動き補償予測モードでは、CUを分割した単位であるサブCU単位で動き補償を行うため、CU単位で動き補償を行うモードに比べて処理量が大きい。特に、双予測を用いてアフィン動き補償予測モードを行う場合、サブCU単位で2本の動きベクトルを算出する必要が生じ、また、2枚の参照ピクチャから符号化済みブロックの情報を取得することから転送に係る必要なメモリバンド幅も増大する。 In the affine motion compensation prediction mode, motion compensation is performed in units of sub-CUs, which are units obtained by dividing a CU. In particular, in the case of performing the affine motion compensation prediction mode using bi-prediction, it is necessary to calculate two motion vectors in sub-CU units, and to obtain information of a coded block from two reference pictures. Also, the required memory bandwidth for transfer from the memory increases.
 一方、アフィン動き補償予測モードでは、シーンあるいはオブジェクトの回転及び/または変形に対応できる効果が大きいものの、回転及び/または変形は単方向の動き補償でも十分に表現できる可能性がある。そこで、本態様では、インター予測部126は、アフィン動き補償予測モードにおいて、双予測の使用を禁止し、単予測のみを用いて制御ポイントの予測動きベクトルの決定するので、単予測のみでサブブロック単位でのアフィン動きベクトルを算出する。これにより、符号化装置100は、符号化効率の低下を抑えつつ、処理量を削減できる可能性がある。  On the other hand, in the affine motion compensation prediction mode, although the effect of supporting the rotation and / or deformation of a scene or an object is great, the rotation and / or deformation may be sufficiently expressed by unidirectional motion compensation. Therefore, in this aspect, in the affine motion compensation prediction mode, the inter prediction unit 126 prohibits the use of bi-prediction and determines the predicted motion vector of the control point using only uni-prediction. Calculate the affine motion vector in units. Thus, the encoding device 100 may be able to reduce the processing amount while suppressing a decrease in encoding efficiency.
 [アフィン動き補償予測モードの動作例]
 図11は、実施の形態1の第1態様に係る符号化装置100のインター予測部126が行うアフィン動き補償予測モードの動作例を示すフローチャートである。なお、アフィン動き補償予測モードで符号化されたストリームの、復号装置200のインター予測部218による復号動作例を示すフローチャートも同様のため、ここでは、符号化装置100のインター予測部126によるアフィン動き補償モードの動作例を例に挙げて説明する。
[Operation example of affine motion compensation prediction mode]
FIG. 11 is a flowchart illustrating an operation example of the affine motion compensation prediction mode performed by the inter prediction unit 126 of the encoding device 100 according to the first example of Embodiment 1. Note that a flowchart showing a decoding operation example of the stream coded in the affine motion compensation prediction mode by the inter prediction unit 218 of the decoding device 200 is the same, and therefore, here, the affine motion by the inter prediction unit 126 of the coding device 100 is described. The operation example of the compensation mode will be described as an example.
 まず、インター予測部126は、予測モードがアフィン動き補償予測モードであるかを確認する(S101)。 First, the inter prediction unit 126 checks whether the prediction mode is the affine motion compensation prediction mode (S101).
 ステップS101において、予測モードがアフィン動き補償予測モードである場合(S101でYes)、インター予測部126は、単予測を用いて制御ポイントの予測動きベクトルを決定する(S102)。つまり、ステップS102において、インター予測部126は、単予測のみを用いて制御ポイントの予測動きベクトルを決定し、双予測は用いない。 In step S101, when the prediction mode is the affine motion compensation prediction mode (Yes in S101), the inter prediction unit 126 determines a prediction motion vector of a control point using uni-prediction (S102). That is, in step S102, the inter prediction unit 126 determines the predicted motion vector of the control point using only uni-prediction, and does not use bi-prediction.
 次に、インター予測部126は、ステップS102で決定した制御ポイントの予測動きベクトルに基づいて、カレントブロックのサブCU毎の動きベクトルを算出する(S103)。 Next, the inter prediction unit 126 calculates a motion vector for each sub-CU of the current block based on the predicted motion vector of the control point determined in step S102 (S103).
 一方、ステップS101において、予測モードがアフィン動き補償予測モードでない場合(S101でNo)、インター予測部126は、予測モードに応じた所定の方法により動きベクトルを算出する(S104)。アフィン動き補償予測モード以外の予測モードとしては、例えばノーマルインターモードまたはマージモードなどがある。予測モードがノーマルインターモードであり、例えば第1の参照ピクチャリストのみから参照ピクチャを選択する場合、インター予測部126は、第1の参照ピクチャリストに対する参照ピクチャのインデックス情報のみを示すとしてもよい。 On the other hand, if the prediction mode is not the affine motion compensation prediction mode in step S101 (No in S101), the inter prediction unit 126 calculates a motion vector by a predetermined method according to the prediction mode (S104). As a prediction mode other than the affine motion compensation prediction mode, for example, there is a normal inter mode or a merge mode. When the prediction mode is the normal inter mode and, for example, a reference picture is selected only from the first reference picture list, the inter prediction unit 126 may indicate only the index information of the reference picture for the first reference picture list.
 なお、インター予測部126は、予測モードがアフィン動き補償予測モードである場合において、常に単予測に限定して制御ポイントの予測動きベクトルを決定するとしたが、これに限らない。インター予測部126は、予測モードがアフィン動き補償予測モードであっても、サブCUのサイズまたはCUのサイズに応じて、単予測のみを使用または双予測を使用可とすることを適応的に切り替えてもよい。 Note that the inter prediction unit 126 always determines the predicted motion vector of the control point by limiting the prediction mode to the simple prediction when the prediction mode is the affine motion compensation prediction mode. However, the present invention is not limited thereto. Even if the prediction mode is the affine motion compensation prediction mode, the inter prediction unit 126 adaptively switches between using only uni-prediction or enabling bi-prediction according to the size of the sub-CU or the size of the CU. You may.
 処理量は、スライスやピクチャ内でアフィン動き補償予測モードが適用されるCUを構成するサブCUの総数に比例する。このため、サブCUのサイズが閾値以下である場合、インター予測部126は、単予測のみを使用して制御ポイントの予測動きベクトルを決定するとしてもよい。一方、サブCUのサイズが閾値を越える場合、インター予測部126は、双予測を使用可として制御ポイントの予測動きベクトルを決定するとしてもよい。 The processing amount is proportional to the total number of sub-CUs constituting a CU to which the affine motion compensation prediction mode is applied in a slice or a picture. Therefore, when the size of the sub-CU is equal to or smaller than the threshold, the inter prediction unit 126 may determine the predicted motion vector of the control point using only the simple prediction. On the other hand, when the size of the sub-CU exceeds the threshold, the inter prediction unit 126 may determine that the prediction motion vector of the control point is to be enabled by using the bi-prediction.
 例えば、サブCUの水平方向もしくは垂直方向のいずれか一方のサイズが4である、または、サブCUが4×4画素である場合、インター予測部126は、双予測を禁止して制御ポイントの予測動きベクトルを決定してもよい。一方、サブCUの水平方向もしくは垂直方向のいずれか一方のサイズが4を越えている場合、インター予測部126は、双予測を使用可として制御ポイントの予測動きベクトルを決定してもよい。ところで、アフィン動き補償予測モードは、ある程度の大きさの領域が回転、または、拡大もしくは縮小する際に効果が高くなる可能性がある。つまり、アフィン動き補償予測モードは、一定サイズよりも大きいCUにおいて有効となり得る。したがって、例えばCUの大きさが8×8画素であるなど、CUのサイズが閾値以下である場合、インター予測部126は、双予測を禁止して制御ポイントの予測動きベクトルを決定してもよい。一方、CUのサイズが閾値を超える場合、インター予測部126は、双予測を使用可として制御ポイントの予測動きベクトルを決定してもよい。これらの双予測の禁止ルールについては識別情報をヘッダ情報として符号化してもよい。  For example, when the size of either the horizontal direction or the vertical direction of the sub-CU is 4, or the sub-CU is 4 × 4 pixels, the inter prediction unit 126 prohibits the bi-prediction and predicts the control point. A motion vector may be determined. On the other hand, when the size of either the horizontal direction or the vertical direction of the sub-CU exceeds 4, the inter prediction unit 126 may enable the bi-prediction and determine the predicted motion vector of the control point. By the way, the affine motion compensation prediction mode may have a higher effect when a region having a certain size is rotated or enlarged or reduced. That is, the affine motion compensation prediction mode can be effective in a CU larger than a certain size. Therefore, when the size of the CU is equal to or smaller than the threshold, for example, the size of the CU is 8 × 8 pixels, the inter prediction unit 126 may prohibit the bi-prediction and determine the predicted motion vector of the control point. . On the other hand, when the size of the CU exceeds the threshold value, the inter prediction unit 126 may determine the predicted motion vector of the control point with bi-prediction enabled. For these bi-prediction prohibition rules, identification information may be encoded as header information.
 なお、アフィン動き補償予測モードは、サブCU単位で使用する場合に限らず、サブCU単位とCU単位の両方で使用するとしてもよい。この場合、処理量の増加が顕著となるのはサブCU単位を使用するケースである。そこで、インター予測部126は、サブCU単位でアフィン動き補償予測モードを行う場合、単予測のみを用いて制御ポイントの予測動きベクトルを決定するとしてもよい。一方、インター予測部126は、CU単位でアフィン動き補償予測モードを行う場合、双予測も使用可として制御ポイントの予測動きベクトルを決定するとしてもよい。サブCU単位とCU単位とのいずれのモードでアフィン動き補償予測モードを行うか否かは、CUまたはCTU毎に識別情報を符号化してもよいし、ヘッダ情報に符号化してシーケンス、スライスまたはピクチャ単位で切り替えてもよい。 Note that the affine motion compensation prediction mode is not limited to the case where the affine motion compensation prediction mode is used for each sub-CU, and may be used for both the sub-CU unit and the CU unit. In this case, the increase in the processing amount becomes remarkable in the case of using a sub-CU unit. Therefore, when performing the affine motion compensation prediction mode in units of sub-CUs, the inter prediction unit 126 may determine the predicted motion vector of the control point using only the simple prediction. On the other hand, when performing the affine motion compensated prediction mode in CU units, the inter prediction unit 126 may determine that the prediction motion vector of the control point is to be determined by also using bi-prediction. Whether the affine motion compensation prediction mode is performed in the sub-CU unit mode or the CU unit mode may be performed by coding identification information for each CU or CTU, or by coding header information to a sequence, slice, or picture. Switching may be performed in units.
 また、インター予測モードの中で、アフィン動き補償予測モード以外にもサブCU単位で動き補償を行う予測モードがあれば、サブCU単位の動き予測を単予測に限定して行ってもよい。例えば、時間的に異なる参照ピクチャにおける同一位置のブロック、あるいは、周辺ブロックの動きベクトルに基づいて算出した動きベクトルの分だけシフトした位置などのブロックにおいて、サブCU単位の動きベクトルを用いる予測モードに対して適用すなわち単予測に限定してもよい。 In addition, if there is a prediction mode for performing motion compensation in sub-CU units other than the affine motion compensation prediction mode in the inter prediction modes, the motion prediction in sub-CU units may be limited to uni-prediction. For example, in a prediction mode using a sub-CU unit motion vector in a block at the same position in a temporally different reference picture or a block shifted by an amount corresponding to a motion vector calculated based on a motion vector of a peripheral block. On the other hand, it may be limited to application, that is, simple prediction.
 一方で、インター予測モードの中で、サブCU単位で動き補償を行う予測モードが複数あるとする。この場合、シーケンス全体が回転している動画像に動き補償を行うとすると、アフィン動き補償予測モードでは他の予測モードに比べて、同一ピクチャ内でアフィン動き補償予測モードが適用されるCUの数が多くなり、結果として1ピクチャに係る処理量が増加する可能性がある。そこで、サブCU単位の動き補償を行う予測モードが複数ある場合、少なくともアフィン動き補償予測モードでは双予測を禁止し、他のモードでは双予測を使用可能としてもよい。 On the other hand, it is assumed that there are a plurality of prediction modes for performing motion compensation in sub-CU units among the inter prediction modes. In this case, if motion compensation is performed on a moving image in which the entire sequence is rotated, the number of CUs to which the affine motion compensation prediction mode is applied in the same picture in the affine motion compensation prediction mode is higher than in other prediction modes. And the amount of processing per picture may increase as a result. Therefore, when there are a plurality of prediction modes for performing motion compensation on a sub-CU basis, bi-prediction may be prohibited in at least the affine motion compensation prediction mode, and bi-prediction may be enabled in other modes.
 図12は、実施の形態1の第1態様に係る符号化装置100のインター予測部126が行うアフィン動き補償予測モードのノーマルモードで、制御ポイントの動きベクトルを単予測のみとする場合の動作例を示すフローチャートである。 FIG. 12 is an operation example in the case where the motion vector of the control point is only uni-prediction in the normal mode of the affine motion compensation prediction mode performed by the inter prediction unit 126 of the encoding device 100 according to the first example of Embodiment 1. It is a flowchart which shows.
 まず、インター予測部126は、予測モードがアフィン動き補償予測モードであるかを確認する(S201)。 First, the inter prediction unit 126 checks whether the prediction mode is the affine motion compensation prediction mode (S201).
 ステップS201において、予測モードがアフィン動き補償予測モードである場合(S201でYes)、インター予測部126は、さらに、アフィン動き補償予測モードが、動きベクトル情報を符号化するノーマルモードであるかを確認する(S202)。 In step S201, when the prediction mode is the affine motion compensation prediction mode (Yes in S201), the inter prediction unit 126 further checks whether the affine motion compensation prediction mode is the normal mode for encoding motion vector information. (S202).
 ステップS202において、アフィン動き補償予測モードがノーマルモードである場合(S202でYes)、インター予測部126は、単予測を用いて制御ポイントの予測動きベクトルを決定する(S203)。つまり、ステップS203において、インター予測部126は、単予測のみを用いて制御ポイントの予測動きベクトルを決定し、双予測は用いない。 In step S202, when the affine motion compensation prediction mode is the normal mode (Yes in S202), the inter prediction unit 126 determines a prediction motion vector of a control point using uni-prediction (S203). That is, in step S203, the inter prediction unit 126 determines the predicted motion vector of the control point using only uni-prediction, and does not use bi-prediction.
 次に、インター予測部126は、ステップS203で決定した制御ポイントの予測動きベクトルに基づいて、カレントブロックのサブCU毎の動きベクトルを算出する(S205)。 Next, the inter prediction unit 126 calculates a motion vector for each sub-CU of the current block based on the predicted motion vector of the control point determined in step S203 (S205).
 一方、ステップS202において、アフィン動き補償予測モードがノーマルモードではない場合(S202でNo)、インター予測部126は、アフィン動き補償予測モードが適用された周辺ブロックの動きベクトル(MV)に基づいて、制御ポイントの予測動きベクトルを決定する(S204)。ここで、アフィン動き補償予測モードがノーマルモードではない場合とは、アフィン動き補償予測モードがマージモードである場合である。 On the other hand, in step S202, when the affine motion compensation prediction mode is not the normal mode (No in S202), the inter prediction unit 126 determines, based on the motion vector (MV) of the peripheral block to which the affine motion compensation prediction mode has been applied, The predicted motion vector of the control point is determined (S204). Here, the case where the affine motion compensation prediction mode is not the normal mode is the case where the affine motion compensation prediction mode is the merge mode.
 一方、ステップS201において、予測モードがアフィン動き補償予測モードでない場合(S201でNo)、インター予測部126は、予測モードに応じた所定の方法により動きベクトルを算出する(S206)。 On the other hand, when the prediction mode is not the affine motion compensation prediction mode in step S201 (No in S201), the inter prediction unit 126 calculates a motion vector by a predetermined method according to the prediction mode (S206).
 なお、上述したように、ノーマルモードで単予測を用いれば、マージモードにおいても単予測を用いることになる。つまり、インター予測部126は、アフィン動き補償予測モードにおいて、単予測に限定してノーマルモードを行う場合、マージモードも常に単予測を用いて行うこととなる。 As described above, if uni-prediction is used in the normal mode, uni-prediction is used in the merge mode. That is, in the affine motion compensation prediction mode, when performing the normal mode only in the uni-prediction, the inter prediction unit 126 always performs the merge mode using the uni-prediction.
 また、ステップS204において、すなわちアフィン動き補償予測モードのマージモードにおいて、アフィン動き補償予測モード以外のインター予測モードが適用された周辺のブロックの動きベクトルを使用できる場合も想定される。この場合には、インター予測部126は、マージモードにおいても、単予測を用いて制御ポイントの予測動きベクトルを決定すればよい。そして、インター予測部126は、単予測に用いる動きベクトルを、ノーマルモードと同様に、インター予測モード(画面間予測方式)で共通に使用する第1のリストと第2のリストとのいずれか一方から選択してもよい。また、インター予測部126は、例えばノーマルモードとマージモードとで同一のリストから同一のルールに従って、単予測に用いる動きベクトルを選択してもよい。  In addition, in step S204, that is, in the merge mode of the affine motion compensation prediction mode, a case where a motion vector of a peripheral block to which an inter prediction mode other than the affine motion compensation prediction mode is applied may be used. In this case, the inter prediction unit 126 may determine the predicted motion vector of the control point using the simple prediction even in the merge mode. Then, the inter prediction unit 126 selects one of the first list and the second list that commonly use the motion vector used for the uni-prediction in the inter prediction mode (inter-screen prediction method) as in the normal mode. You may choose from. Further, the inter prediction unit 126 may select a motion vector to be used for uni-prediction according to the same rule from the same list in the normal mode and the merge mode, for example.
 このように、本態様では、インター予測部126は、アフィン動き補償予測モードにおいて、双予測の使用を禁止し、単予測のみを用いて制御ポイントの予測動きベクトルの決定するので、単予測のみでサブブロック単位でのアフィン動きベクトルを算出する。これにより、本態様では、符号化装置100は、符号化効率の低下を抑えつつ、処理量を削減できる可能性がある。 As described above, in this aspect, in the affine motion compensation prediction mode, the inter prediction unit 126 prohibits the use of bi-prediction and determines the predicted motion vector of the control point using only uni-prediction. An affine motion vector is calculated for each sub-block. As a result, in this aspect, the encoding device 100 may be able to reduce the processing amount while suppressing a decrease in encoding efficiency.
 [符号化装置の実装例]
 図13は、実施の形態1に係る符号化装置100の実装例を示すブロック図である。符号化装置100は、回路160及びメモリ162を備える。例えば、図1に示された符号化装置100の複数の構成要素は、図13に示された回路160及びメモリ162によって実装される。
[Implementation example of encoding device]
FIG. 13 is a block diagram illustrating an implementation example of the encoding device 100 according to Embodiment 1. The encoding device 100 includes a circuit 160 and a memory 162. For example, a plurality of components of the encoding device 100 illustrated in FIG. 1 are implemented by the circuit 160 and the memory 162 illustrated in FIG.
 回路160は、情報処理を行う回路であり、メモリ162にアクセス可能な回路である。例えば、回路160は、動画像を符号化する専用又は汎用の電子回路である。回路160は、CPUのようなプロセッサであってもよい。また、回路160は、複数の電子回路の集合体であってもよい。また、例えば、回路160は、図1等に示された符号化装置100の複数の構成要素のうち、情報を記憶するための構成要素を除く、複数の構成要素の役割を果たしてもよい。 The circuit 160 is a circuit that performs information processing, and is a circuit that can access the memory 162. For example, the circuit 160 is a dedicated or general-purpose electronic circuit that encodes a moving image. The circuit 160 may be a processor such as a CPU. Further, the circuit 160 may be an aggregate of a plurality of electronic circuits. In addition, for example, the circuit 160 may play the role of a plurality of components of the encoding device 100 illustrated in FIG. 1 and the like, excluding a component for storing information.
 メモリ162は、回路160が動画像を符号化するための情報が記憶される専用又は汎用のメモリである。メモリ162は、電子回路であってもよく、回路160に接続されていてもよい。また、メモリ162は、回路160に含まれていてもよい。また、メモリ162は、複数の電子回路の集合体であってもよい。また、メモリ162は、磁気ディスク又は光ディスク等であってもよいし、ストレージ又は記録媒体等と表現されてもよい。また、メモリ162は、不揮発性メモリでもよいし、揮発性メモリでもよい。 The memory 162 is a dedicated or general-purpose memory in which information for the circuit 160 to encode a moving image is stored. The memory 162 may be an electronic circuit and may be connected to the circuit 160. Further, the memory 162 may be included in the circuit 160. Further, the memory 162 may be an aggregate of a plurality of electronic circuits. Further, the memory 162 may be a magnetic disk or an optical disk, or may be expressed as a storage or a recording medium. Further, the memory 162 may be a nonvolatile memory or a volatile memory.
 例えば、メモリ162には、符号化される動画像が記憶されてもよいし、符号化された動画像に対応するビット列が記憶されてもよい。また、メモリ162には、回路160が動画像を符号化するためのプログラムが記憶されていてもよい。 For example, the memory 162 may store a moving image to be coded, or may store a bit string corresponding to the coded moving image. Further, the memory 162 may store a program for the circuit 160 to encode a moving image.
 また、例えば、メモリ162は、図1等に示された符号化装置100の複数の構成要素のうち、情報を記憶するための構成要素の役割を果たしてもよい。具体的には、メモリ162は、図1に示されたブロックメモリ118及びフレームメモリ122の役割を果たしてもよい。より具体的には、メモリ162には、再構成済みブロック及び再構成済みピクチャ等が記憶されてもよい。 For example, the memory 162 may serve as a component for storing information among a plurality of components of the encoding device 100 illustrated in FIG. 1 and the like. Specifically, the memory 162 may serve as the block memory 118 and the frame memory 122 shown in FIG. More specifically, the memory 162 may store reconstructed blocks, reconstructed pictures, and the like.
 なお、符号化装置100において、図1等に示された複数の構成要素の全てが実装されなくてもよいし、上述された複数の処理の全てが行われなくてもよい。図1等に示された複数の構成要素の一部は、他の装置に含まれていてもよいし、上述された複数の処理の一部は、他の装置によって実行されてもよい。そして、符号化装置100において、図1等に示された複数の構成要素のうちの一部が実装され、上述された複数の処理の一部が行われることによって、アフィン動きベクトルを算出するインター予測モードでの予測処理が効率的に行われる。 In the encoding device 100, not all of the plurality of components illustrated in FIG. 1 and the like need to be implemented, and all of the plurality of processes described above need not be performed. Some of the components illustrated in FIG. 1 and the like may be included in another device, or some of the above-described processes may be performed by another device. Then, in the encoding device 100, some of the plurality of components illustrated in FIG. 1 and the like are implemented, and a part of the plurality of processes described above is performed, whereby an interface for calculating an affine motion vector is calculated. The prediction process in the prediction mode is performed efficiently.
 以下に、図13に示された符号化装置100の動作例を示す。以下の動作例において、図14は、図13に示された符号化装置100の動作例を示すフローチャートである。例えば、図13に示された符号化装置100は、動画像を符号化する際、図14に示された動作を行う。 The following describes an operation example of the encoding device 100 shown in FIG. In the following operation example, FIG. 14 is a flowchart illustrating an operation example of the encoding device 100 illustrated in FIG. For example, the encoding device 100 illustrated in FIG. 13 performs the operation illustrated in FIG. 14 when encoding a moving image.
 具体的には、符号化装置100の回路160は、メモリ162を用いて、動画像における画像のカレントブロックの複数の周辺ブロックの動きベクトルに基づき、カレントブロックを構成するサブブロック単位でアフィン動きベクトルを算出するインター予測モードにおいて、以下の予測処理を行う。すなわち、まず、回路160は、単予測及び双予測のうちの単予測のみでサブブロック単位でのアフィン動きベクトルを算出する(S311)。次に、回路160は、ステップS311で算出したアフィン動きベクトルを用いて、サブブロック単位で動き補償を行う(S312)。 Specifically, the circuit 160 of the encoding device 100 uses the memory 162 to determine the affine motion vector in units of sub-blocks constituting the current block based on the motion vectors of a plurality of peripheral blocks of the current block of the moving image. In the inter prediction mode in which is calculated, the following prediction processing is performed. That is, first, the circuit 160 calculates an affine motion vector in sub-block units only in uni-prediction of uni-prediction and bi-prediction (S311). Next, the circuit 160 performs motion compensation on a sub-block basis using the affine motion vector calculated in step S311 (S312).
 これにより、符号化装置100は、アフィン動き補償予測モードにおいて、双予測の使用を禁止し、単予測のみを用いて制御ポイントの予測動きベクトルを決定するので、単予測のみでサブブロック単位でのアフィン動きベクトルを算出する。これにより、符号化効率の低下を抑えつつ、処理量を削減できる可能性があるので、符号化装置100は、処理効率を向上できる。 Accordingly, in the affine motion compensation prediction mode, the encoding device 100 prohibits the use of bi-prediction and determines the predicted motion vector of the control point using only uni-prediction. Calculate the affine motion vector. Accordingly, there is a possibility that the processing amount can be reduced while suppressing a decrease in the coding efficiency, so that the coding device 100 can improve the processing efficiency.
 [復号装置の実装例]
 図15は、実施の形態1に係る復号装置200の実装例を示すブロック図である。復号装置200は、回路260及びメモリ262を備える。例えば、図10に示された復号装置200の複数の構成要素は、図15に示された回路260及びメモリ262によって実装される。
[Decoding device implementation example]
FIG. 15 is a block diagram illustrating an implementation example of the decoding device 200 according to Embodiment 1. The decoding device 200 includes a circuit 260 and a memory 262. For example, a plurality of components of the decoding device 200 illustrated in FIG. 10 are implemented by the circuit 260 and the memory 262 illustrated in FIG.
 回路260は、情報処理を行う回路であり、メモリ262にアクセス可能な回路である。例えば、回路260は、動画像を復号する専用又は汎用の電子回路である。回路260は、CPUのようなプロセッサであってもよい。また、回路260は、複数の電子回路の集合体であってもよい。また、例えば、回路260は、図10等に示された復号装置200の複数の構成要素のうち、情報を記憶するための構成要素を除く、複数の構成要素の役割を果たしてもよい。 The circuit 260 is a circuit that performs information processing, and is a circuit that can access the memory 262. For example, the circuit 260 is a dedicated or general-purpose electronic circuit for decoding a moving image. Circuit 260 may be a processor such as a CPU. Further, the circuit 260 may be an aggregate of a plurality of electronic circuits. Further, for example, the circuit 260 may play the role of a plurality of components of the decoding device 200 shown in FIG. 10 and the like, excluding a component for storing information.
 メモリ262は、回路260が動画像を復号するための情報が記憶される専用又は汎用のメモリである。メモリ262は、電子回路であってもよく、回路260に接続されていてもよい。また、メモリ262は、回路260に含まれていてもよい。また、メモリ262は、複数の電子回路の集合体であってもよい。また、メモリ262は、磁気ディスク又は光ディスク等であってもよいし、ストレージ又は記録媒体等と表現されてもよい。また、メモリ262は、不揮発性メモリでもよいし、揮発性メモリでもよい。 The memory 262 is a dedicated or general-purpose memory in which information for the circuit 260 to decode a moving image is stored. The memory 262 may be an electronic circuit and may be connected to the circuit 260. Further, the memory 262 may be included in the circuit 260. Further, the memory 262 may be an aggregate of a plurality of electronic circuits. Further, the memory 262 may be a magnetic disk or an optical disk, or may be expressed as a storage or a recording medium. Further, the memory 262 may be a nonvolatile memory or a volatile memory.
 例えば、メモリ262には、符号化された動画像に対応するビット列が記憶されてもよいし、復号されたビット列に対応する動画像が記憶されてもよい。また、メモリ262には、回路260が動画像を復号するためのプログラムが記憶されていてもよい。 For example, the memory 262 may store a bit sequence corresponding to an encoded moving image, or may store a moving image corresponding to a decoded bit sequence. Further, the memory 262 may store a program for the circuit 260 to decode a moving image.
 また、例えば、メモリ262は、図10等に示された復号装置200の複数の構成要素のうち、情報を記憶するための構成要素の役割を果たしてもよい。具体的には、メモリ262は、図10に示されたブロックメモリ210及びフレームメモリ214の役割を果たしてもよい。より具体的には、メモリ262には、再構成済みブロック及び再構成済みピクチャ等が記憶されてもよい。 For example, the memory 262 may play a role of a component for storing information among a plurality of components of the decoding device 200 illustrated in FIG. 10 and the like. Specifically, the memory 262 may serve as the block memory 210 and the frame memory 214 shown in FIG. More specifically, the memory 262 may store reconstructed blocks, reconstructed pictures, and the like.
 なお、復号装置200において、図10等に示された複数の構成要素の全てが実装されなくてもよいし、上述された複数の処理の全てが行われなくてもよい。図10等に示された複数の構成要素の一部は、他の装置に含まれていてもよいし、上述された複数の処理の一部は、他の装置によって実行されてもよい。そして、復号装置200において、図10等に示された複数の構成要素のうちの一部が実装され、上述された複数の処理の一部が行われることによって、動き補償が効率的に行われる。 In the decoding device 200, all of the plurality of components illustrated in FIG. 10 and the like do not need to be implemented, and all of the plurality of processes described above do not need to be performed. Some of the components illustrated in FIG. 10 and the like may be included in another device, or some of the above-described processes may be performed by another device. Then, in the decoding device 200, a part of the plurality of components illustrated in FIG. 10 and the like is implemented, and a part of the plurality of processes described above is performed, so that motion compensation is efficiently performed. .
 以下に、図15に示された復号装置200の動作例を示す。図16は、図15に示された復号装置200の動作例を示すフローチャートである。例えば、図15に示された復号装置200は、動画像を復号する際、図16に示された動作を行う。 The following is an example of the operation of the decoding device 200 shown in FIG. FIG. 16 is a flowchart illustrating an operation example of the decoding device 200 illustrated in FIG. For example, when decoding the moving image, the decoding device 200 illustrated in FIG. 15 performs the operation illustrated in FIG.
 具体的には、復号装置200の回路260は、メモリ262を用いて、動画像における画像のカレントブロックの複数の周辺ブロックの動きベクトルに基づき、カレントブロックを構成するサブブロック単位でアフィン動きベクトルを算出するインター予測モードにおいて、以下の予測処理を行う。すなわち、まず、回路260は、単予測及び双予測のうちの単予測のみでサブブロック単位でのアフィン動きベクトルを算出する(S411)。次に、回路260は、ステップS411で算出したアフィン動きベクトルを用いて、サブブロック単位で動き補償を行う(S412)。 Specifically, the circuit 260 of the decoding device 200 uses the memory 262 to generate an affine motion vector in units of sub-blocks constituting the current block based on the motion vectors of a plurality of peripheral blocks of the current block of the video in the moving image. In the inter prediction mode to be calculated, the following prediction processing is performed. That is, first, the circuit 260 calculates an affine motion vector for each sub-block only in uni-prediction of uni-prediction and bi-prediction (S411). Next, the circuit 260 performs motion compensation on a subblock basis using the affine motion vector calculated in step S411 (S412).
 これにより、復号装置200は、アフィン動き補償予測モードにおいて、双予測の使用を禁止し、単予測のみを用いて制御ポイントの予測動きベクトルの決定するので、単予測のみでサブブロック単位でのアフィン動きベクトルを算出する。これにより、符号化効率の低下を抑えつつ、処理量を削減できる可能性があるので、復号装置200は、処理効率を向上できる。 Thereby, in the affine motion compensation prediction mode, the decoding device 200 prohibits the use of bi-prediction and determines the predicted motion vector of the control point using only uni-prediction. Calculate the motion vector. Accordingly, there is a possibility that the processing amount can be reduced while suppressing a decrease in the coding efficiency, so that the decoding device 200 can improve the processing efficiency.
 [補足]
 また、本実施の形態における符号化装置100及び復号装置200は、それぞれ、画像符号化装置及び画像復号装置として利用されてもよいし、動画像符号化装置及び動画像復号装置として利用されてもよい。あるいは、符号化装置100及び復号装置200は、それぞれ、インター予測装置(画面間予測装置)として利用され得る。
[Supplement]
Also, the encoding device 100 and the decoding device 200 in the present embodiment may be used as an image encoding device and an image decoding device, respectively, or may be used as a moving image encoding device and a moving image decoding device. Good. Alternatively, the encoding device 100 and the decoding device 200 can be used as inter prediction devices (inter prediction devices), respectively.
 すなわち、符号化装置100及び復号装置200は、それぞれ、インター予測部(画面間予測部)126及びインター予測部(画面間予測部)218のみに対応していてもよい。そして、変換部106及び逆変換部206等の他の構成要素は、他の装置に含まれていてもよい。 That is, the encoding device 100 and the decoding device 200 may correspond to only the inter prediction unit (inter prediction unit) 126 and the inter prediction unit (inter prediction unit) 218, respectively. Other components such as the conversion unit 106 and the inverse conversion unit 206 may be included in another device.
 また、本実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 In addition, in the present embodiment, each component may be configured by dedicated hardware, or may be realized by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
 具体的には、符号化装置100及び復号装置200のそれぞれは、処理回路(Processing Circuitry)と、当該処理回路に電気的に接続された、当該処理回路からアクセス可能な記憶装置(Storage)とを備えていてもよい。例えば、処理回路は回路160又は260に対応し、記憶装置はメモリ162又は262に対応する。 Specifically, each of the encoding device 100 and the decoding device 200 includes a processing circuit (Processing @ Circuitry) and a storage device (Storage) electrically connected to the processing circuit and accessible from the processing circuit. You may have. For example, a processing circuit corresponds to the circuit 160 or 260, and a storage device corresponds to the memory 162 or 262.
 処理回路は、専用のハードウェア及びプログラム実行部の少なくとも一方を含み、記憶装置を用いて処理を実行する。また、記憶装置は、処理回路がプログラム実行部を含む場合には、当該プログラム実行部により実行されるソフトウェアプログラムを記憶する。 The processing circuit includes at least one of dedicated hardware and a program execution unit, and executes processing using a storage device. When the processing circuit includes a program execution unit, the storage device stores a software program executed by the program execution unit.
 ここで、本実施の形態の符号化装置100又は復号装置200などを実現するソフトウェアは、次のようなプログラムである。 Here, the software that implements the encoding device 100 or the decoding device 200 of the present embodiment is the following program.
 すなわち、このプログラムは、コンピュータに、動き補償を行って動画像を符号化する符号化方法であって、動画像における画像のカレントブロックの複数の周辺ブロックの動きベクトルに基づき、カレントブロックを構成するサブブロック単位でアフィン動きベクトルを算出するインター予測モードにおいて、単予測及び双予測のうちの単予測のみでサブブロック単位でのアフィン動きベクトルを算出し、算出したアフィン動きベクトルを用いて、サブブロック単位で前記動き補償を行う符号化方法を実行させてもよい。 That is, this program is a coding method for coding a moving image by performing motion compensation on a computer, and forms a current block based on motion vectors of a plurality of peripheral blocks of a current block of an image in the moving image. In the inter prediction mode for calculating an affine motion vector in sub-block units, an affine motion vector in sub-block units is calculated only in uni-prediction of uni-prediction and bi-prediction, and a sub-block is calculated using the calculated affine motion vector. An encoding method for performing the motion compensation on a unit basis may be executed.
 あるいは、このプログラムは、動き補償を行って動画像を復号する復号方法であって、動画像における画像のカレントブロックの複数の周辺ブロックの動きベクトルに基づき、カレントブロックを構成するサブブロック単位でアフィン動きベクトルを算出するインター予測モードにおいて、単予測及び双予測のうちの単予測のみでサブブロック単位でのアフィン動きベクトルを算出し、算出したアフィン動きベクトルを用いて、サブブロック単位で前記動き補償を行う復号方法を、コンピュータに実行させてもよい。 Alternatively, the program is a decoding method for decoding a moving image by performing motion compensation, wherein the affine is performed in units of sub-blocks constituting a current block based on motion vectors of a plurality of peripheral blocks of a current block of an image in the moving image. In the inter prediction mode for calculating a motion vector, an affine motion vector is calculated in sub-block units only in uni-prediction of uni-prediction and bi-prediction, and the motion compensation is performed in sub-block units using the calculated affine motion vector. May be executed by a computer.
 また、各構成要素は、上述の通り、回路であってもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路であってもよい。また、各構成要素は、汎用的なプロセッサで実現されてもよいし、専用のプロセッサで実現されてもよい。 Each component may be a circuit as described above. These circuits may constitute one circuit as a whole, or may be separate circuits. Further, each component may be realized by a general-purpose processor, or may be realized by a dedicated processor.
 また、特定の構成要素が実行する処理を別の構成要素が実行してもよい。また、処理を実行する順番が変更されてもよいし、複数の処理が並行して実行されてもよい。また、符号化復号装置が、符号化装置100及び復号装置200を備えていてもよい。 処理 Alternatively, a process performed by a specific component may be performed by another component. The order in which the processes are performed may be changed, or a plurality of processes may be performed in parallel. Further, the encoding / decoding device may include the encoding device 100 and the decoding device 200.
 説明に用いられた第1及び第2等の序数は、適宜、付け替えられてもよい。また、構成要素などに対して、序数が新たに与えられてもよいし、取り除かれてもよい。 序 The first and second ordinal numbers used in the description may be appropriately replaced. An ordinal number may be newly given to a component or the like, or may be removed.
 以上、符号化装置100及び復号装置200の態様について、実施の形態に基づいて説明したが、符号化装置100及び復号装置200の態様は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、符号化装置100および復号装置200の態様の範囲内に含まれてもよい。 As described above, the aspects of the encoding apparatus 100 and the decoding apparatus 200 have been described based on the embodiment, but the aspects of the encoding apparatus 100 and the decoding apparatus 200 are not limited to this embodiment. As long as the present disclosure does not depart from the spirit of the present disclosure, the coding apparatus 100 and the decoding apparatus 200 may include various modifications conceived by those skilled in the art, and configurations constructed by combining components in different embodiments. May be included in the scope of the embodiment.
 本態様を本開示における他の態様の少なくとも一部と組み合わせて実施してもよい。また、本態様のフローチャートに記載の一部の処理、装置の一部の構成、シンタックスの一部などを他の態様と組み合わせて実施してもよい。 This embodiment may be implemented in combination with at least a part of other embodiments in the present disclosure. Further, a part of the processing, a part of the configuration of the apparatus, a part of the syntax, and the like described in the flowchart of this embodiment may be implemented in combination with another embodiment.
 (実施の形態2)
 以上の各実施の形態において、機能ブロックの各々は、通常、MPU及びメモリ等によって実現可能である。また、機能ブロックの各々による処理は、通常、プロセッサなどのプログラム実行部が、ROM等の記録媒体に記録されたソフトウェア(プログラム)を読み出して実行することで実現される。当該ソフトウェアはダウンロード等により配布されてもよいし、半導体メモリなどの記録媒体に記録して配布されてもよい。なお、各機能ブロックをハードウェア(専用回路)によって実現することも、当然、可能である。
(Embodiment 2)
In each of the above embodiments, each of the functional blocks can usually be realized by an MPU, a memory, and the like. The processing by each of the functional blocks is generally realized by a program execution unit such as a processor reading and executing software (program) recorded on a recording medium such as a ROM. The software may be distributed by download or the like, or may be recorded on a recording medium such as a semiconductor memory and distributed. Note that it is naturally possible to realize each functional block by hardware (dedicated circuit).
 また、各実施の形態において説明した処理は、単一の装置(システム)を用いて集中処理することによって実現してもよく、又は、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、又は分散処理を行ってもよい。 Further, the processing described in each embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good. In addition, the number of processors that execute the program may be one or more. That is, centralized processing or distributed processing may be performed.
 本開示の態様は、以上の実施例に限定されることなく、種々の変更が可能であり、それらも本開示の態様の範囲内に包含される。 態 様 The embodiments of the present disclosure are not limited to the above-described embodiments, and various modifications are possible, and they are also included in the scope of the embodiments of the present disclosure.
 さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)又は動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、画像復号方法を用いた画像復号装置、及び両方を備える画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。 Here, an application example of the moving picture coding method (image coding method) or the moving picture decoding method (image decoding method) described in each of the above embodiments and a system using the same will be described. The system is characterized by having an image encoding device using an image encoding method, an image decoding device using an image decoding method, and an image encoding / decoding device including both. Other configurations in the system can be appropriately changed as necessary.
 [使用例]
 図17は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。
[Example of use]
FIG. 17 is a diagram illustrating an overall configuration of a content supply system ex100 that realizes a content distribution service. A communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
 このコンテンツ供給システムex100では、インターネットex101に、インターネットサービスプロバイダex102又は通信網ex104、及び基地局ex106~ex110を介して、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、及びスマートフォンex115などの各機器が接続される。当該コンテンツ供給システムex100は、上記のいずれかの要素を組合せて接続するようにしてもよい。固定無線局である基地局ex106~ex110を介さずに、各機器が電話網又は近距離無線等を介して直接的又は間接的に相互に接続されていてもよい。また、ストリーミングサーバex103は、インターネットex101等を介して、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、及びスマートフォンex115などの各機器と接続される。また、ストリーミングサーバex103は、衛星ex116を介して、飛行機ex117内のホットスポット内の端末等と接続される。 In the content supply system ex100, each device such as a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, and a smartphone ex115 is connected to the Internet ex101 via the Internet service provider ex102 or the communication network ex104 and the base stations ex106 to ex110. Is connected. The content supply system ex100 may be connected by combining any of the above elements. The devices may be directly or indirectly connected to each other via a telephone network or short-range wireless communication without using the base stations ex106 to ex110 which are fixed wireless stations. In addition, the streaming server ex103 is connected to each device such as a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, and a smartphone ex115 via the Internet ex101 and the like. The streaming server ex103 is connected to a terminal or the like in a hot spot in the airplane ex117 via the satellite ex116.
 なお、基地局ex106~ex110の代わりに、無線アクセスポイント又はホットスポット等が用いられてもよい。また、ストリーミングサーバex103は、インターネットex101又はインターネットサービスプロバイダex102を介さずに直接通信網ex104と接続されてもよいし、衛星ex116を介さず直接飛行機ex117と接続されてもよい。 A wireless access point or a hot spot may be used instead of the base stations ex106 to ex110. The streaming server ex103 may be directly connected to the communication network ex104 without going through the Internet ex101 or the Internet service provider ex102, or may be directly connected to the airplane ex117 without going through the satellite ex116.
 カメラex113はデジタルカメラ等の静止画撮影、及び動画撮影が可能な機器である。また、スマートフォンex115は、一般に2G、3G、3.9G、4G、そして今後は5Gと呼ばれる移動通信システムの方式に対応したスマートフォン機、携帯電話機、又はPHS(Personal Handyphone System)等である。 The camera ex113 is a device such as a digital camera capable of photographing still images and moving images. In addition, the smartphone ex115 is a smartphone, a mobile phone, a PHS (Personal Handyphone System), or the like corresponding to a mobile communication system called 2G, 3G, 3.9G, 4G, and 5G in the future.
 家電ex118は、冷蔵庫、又は家庭用燃料電池コージェネレーションシステムに含まれる機器等である。 The home appliance ex118 is a refrigerator or a device included in a home fuel cell cogeneration system.
 コンテンツ供給システムex100では、撮影機能を有する端末が基地局ex106等を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、端末(コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、スマートフォンex115、及び飛行機ex117内の端末等)は、ユーザが当該端末を用いて撮影した静止画又は動画コンテンツに対して上記各実施の形態で説明した符号化処理を行い、符号化により得られた映像データと、映像に対応する音を符号化した音データと多重化し、得られたデータをストリーミングサーバex103に送信する。即ち、各端末は、本開示の一態様に係る画像符号化装置として機能する。 In the content supply system ex100, a terminal having a photographing function is connected to the streaming server ex103 through the base station ex106 or the like, thereby enabling live distribution or the like. In the live distribution, the terminal (computer ex111, game machine ex112, camera ex113, home appliance ex114, smartphone ex115, terminal in the airplane ex117, etc.) performs the above-described processing on the still image or the moving image content shot by the user using the terminal. The encoding process described in each embodiment is performed, the video data obtained by the encoding is multiplexed with the encoded audio data of the sound corresponding to the video, and the obtained data is transmitted to the streaming server ex103. That is, each terminal functions as an image encoding device according to an aspect of the present disclosure.
 一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントは、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、スマートフォンex115、又は飛行機ex117内の端末等である。配信されたデータを受信した各機器は、受信したデータを復号化処理して再生する。即ち、各機器は、本開示の一態様に係る画像復号装置として機能する。 On the other hand, the streaming server ex103 stream-distributes the transmitted content data to the requested client. The client is a computer ex111, a game machine ex112, a camera ex113, a household appliance ex114, a smartphone ex115, a terminal in an airplane ex117, or the like, which can decode the encoded data. Each device that has received the distributed data decodes and reproduces the received data. That is, each device functions as an image decoding device according to an aspect of the present disclosure.
 [分散処理]
 また、ストリーミングサーバex103は複数のサーバ又は複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。例えば、ストリーミングサーバex103は、CDN(Contents Delivery Network)により実現され、世界中に分散された多数のエッジサーバとエッジサーバ間をつなぐネットワークによりコンテンツ配信が実現されていてもよい。CDNでは、クライアントに応じて物理的に近いエッジサーバが動的に割り当てられる。そして、当該エッジサーバにコンテンツがキャッシュ及び配信されることで遅延を減らすことができる。また、何らかのエラーが発生した場合又はトラフィックの増加などにより通信状態が変わる場合に複数のエッジサーバで処理を分散したり、他のエッジサーバに配信主体を切り替えたり、障害が生じたネットワークの部分を迂回して配信を続けることができるので、高速かつ安定した配信が実現できる。
[Distributed processing]
The streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, or distribute data in a distributed manner. For example, the streaming server ex103 may be realized by a CDN (Contents Delivery Network), and the content distribution may be realized by a number of edge servers distributed around the world and a network connecting the edge servers. In the CDN, physically close edge servers are dynamically allocated according to clients. Then, the delay can be reduced by caching and distributing the content to the edge server. In addition, when an error occurs or the communication state changes due to an increase in traffic, the processing is distributed among multiple edge servers, the distribution entity is switched to another edge server, and the part of the network where the failure has occurred Since the distribution can be continued by bypass, high-speed and stable distribution can be realized.
 また、配信自体の分散処理にとどまらず、撮影したデータの符号化処理を各端末で行ってもよいし、サーバ側で行ってもよいし、互いに分担して行ってもよい。一例として、一般に符号化処理では、処理ループが2度行われる。1度目のループでフレーム又はシーン単位での画像の複雑さ、又は、符号量が検出される。また、2度目のループでは画質を維持して符号化効率を向上させる処理が行われる。例えば、端末が1度目の符号化処理を行い、コンテンツを受け取ったサーバ側が2度目の符号化処理を行うことで、各端末での処理負荷を減らしつつもコンテンツの質と効率を向上させることができる。この場合、ほぼリアルタイムで受信して復号する要求があれば、端末が行った一度目の符号化済みデータを他の端末で受信して再生することもできるので、より柔軟なリアルタイム配信も可能になる。 In addition to the distributed processing of the distribution itself, the encoding processing of the captured data may be performed by each terminal, may be performed on the server side, or may be performed by sharing with each other. As an example, generally, in an encoding process, a processing loop is performed twice. In the first loop, the complexity or code amount of an image in units of frames or scenes is detected. In the second loop, processing for maintaining the image quality and improving the coding efficiency is performed. For example, the terminal performs the first encoding process, and the server that receives the content performs the second encoding process, thereby improving the quality and efficiency of the content while reducing the processing load on each terminal. it can. In this case, if there is a request to receive and decode in near real time, the first encoded data performed by the terminal can be received and played back by another terminal, so more flexible real time distribution is possible Become.
 他の例として、カメラex113等は、画像から特徴量抽出を行い、特徴量に関するデータをメタデータとして圧縮してサーバに送信する。サーバは、例えば特徴量からオブジェクトの重要性を判断して量子化精度を切り替えるなど、画像の意味に応じた圧縮を行う。特徴量データはサーバでの再度の圧縮時の動きベクトル予測の精度及び効率向上に特に有効である。また、端末でVLC(可変長符号化)などの簡易的な符号化を行い、サーバでCABAC(コンテキスト適応型二値算術符号化方式)など処理負荷の大きな符号化を行ってもよい。 As another example, the camera ex113 or the like extracts a feature amount from an image, compresses data related to the feature amount as metadata, and transmits the metadata to the server. The server performs compression according to the meaning of the image, such as switching the quantization precision by determining the importance of the object from the feature amount. The feature amount data is particularly effective for improving the accuracy and efficiency of motion vector prediction at the time of recompression at the server. Alternatively, the terminal may perform simple coding such as VLC (variable length coding), and the server may perform coding with a large processing load such as CABAC (context adaptive binary arithmetic coding).
 さらに他の例として、スタジアム、ショッピングモール、又は工場などにおいては、複数の端末によりほぼ同一のシーンが撮影された複数の映像データが存在する場合がある。この場合には、撮影を行った複数の端末と、必要に応じて撮影をしていない他の端末及びサーバを用いて、例えばGOP(Group of Picture)単位、ピクチャ単位、又はピクチャを分割したタイル単位などで符号化処理をそれぞれ割り当てて分散処理を行う。これにより、遅延を減らし、よりリアルタイム性を実現できる。 As yet another example, in a stadium, a shopping mall, a factory, or the like, there may be a plurality of video data in which a plurality of terminals capture substantially the same scene. In this case, for example, using a plurality of photographed terminals and other terminals and servers not photographed as necessary, for example, a GOP (Group @ of @ Picture) unit, a picture unit, or a tile obtained by dividing a picture Distributed processing is performed by assigning encoding processing in units or the like. Thereby, delay can be reduced and more real-time properties can be realized.
 また、複数の映像データはほぼ同一シーンであるため、各端末で撮影された映像データを互いに参照し合えるように、サーバで管理及び/又は指示をしてもよい。または、各端末からの符号化済みデータを、サーバが受信し複数のデータ間で参照関係を変更、又はピクチャ自体を補正或いは差し替えて符号化しなおしてもよい。これにより、一つ一つのデータの質と効率を高めたストリームを生成できる。 {Circle around (2)} Since a plurality of video data are almost the same scene, the server may perform management and / or instructions so that video data shot by each terminal can be referred to each other. Alternatively, the encoded data from each terminal may be received by the server, and the reference relationship may be changed among a plurality of data, or the picture itself may be corrected or replaced to be re-encoded. As a result, it is possible to generate a stream in which the quality and efficiency of each data is improved.
 また、サーバは、映像データの符号化方式を変更するトランスコードを行ったうえで映像データを配信してもよい。例えば、サーバは、MPEG系の符号化方式をVP系に変換してもよいし、H.264をH.265に変換してもよい。 The server may distribute the video data after performing transcoding for changing the encoding method of the video data. For example, the server may convert an MPEG-based encoding method to a VP-based encoding method. H.264 to H.P. 265.
 このように、符号化処理は、端末、又は1以上のサーバにより行うことが可能である。よって、以下では、処理を行う主体として「サーバ」又は「端末」等の記載を用いるが、サーバで行われる処理の一部又は全てが端末で行われてもよいし、端末で行われる処理の一部又は全てがサーバで行われてもよい。また、これらに関しては、復号処理についても同様である。 As described above, the encoding process can be performed by the terminal or one or more servers. Therefore, in the following, description such as "server" or "terminal" is used as the subject of processing, but a part or all of the processing performed by the server may be performed by the terminal, or the processing performed by the terminal may be performed. Some or all may be performed on the server. The same applies to the decoding process.
 [3D、マルチアングル]
 近年では、互いにほぼ同期した複数のカメラex113及び/又はスマートフォンex115などの端末により撮影された異なるシーン、又は、同一シーンを異なるアングルから撮影した画像或いは映像を統合して利用することも増えてきている。各端末で撮影した映像は、別途取得した端末間の相対的な位置関係、又は、映像に含まれる特徴点が一致する領域などに基づいて統合される。
[3D, multi-angle]
In recent years, different scenes photographed by a plurality of terminals such as a plurality of cameras ex113 and / or smartphone ex115 which are substantially synchronized with each other, or images or videos of the same scene photographed from different angles have been integrated and used. I have. The video shot by each terminal is integrated based on the relative positional relationship between the terminals separately acquired or the region where the feature points included in the video match.
 サーバは、2次元の動画像を符号化するだけでなく、動画像のシーン解析などに基づいて自動的に、又は、ユーザが指定した時刻において、静止画を符号化し、受信端末に送信してもよい。サーバは、さらに、撮影端末間の相対的な位置関係を取得できる場合には、2次元の動画像だけでなく、同一シーンが異なるアングルから撮影された映像に基づき、当該シーンの3次元形状を生成できる。なお、サーバは、ポイントクラウドなどにより生成した3次元のデータを別途符号化してもよいし、3次元データを用いて人物又はオブジェクトを認識或いは追跡した結果に基づいて、受信端末に送信する映像を、複数の端末で撮影した映像から選択、又は、再構成して生成してもよい。 The server not only encodes a two-dimensional moving image, but also automatically encodes a still image based on scene analysis of the moving image or at a time designated by the user and transmits the encoded still image to the receiving terminal. Is also good. If the server can further acquire the relative positional relationship between the photographing terminals, the server can determine the three-dimensional shape of the scene based on not only a two-dimensional moving image but also a video of the same scene photographed from different angles. Can be generated. Note that the server may separately encode three-dimensional data generated by a point cloud or the like, or generate a video to be transmitted to the receiving terminal based on a result of recognizing or tracking a person or an object using the three-dimensional data. Alternatively, the image may be selected from images captured by a plurality of terminals or reconstructed and generated.
 このようにして、ユーザは、各撮影端末に対応する各映像を任意に選択してシーンを楽しむこともできるし、複数画像又は映像を用いて再構成された3次元データから任意視点の映像を切り出したコンテンツを楽しむこともできる。さらに、映像と同様に音も複数の相異なるアングルから収音され、サーバは、映像に合わせて特定のアングル又は空間からの音を映像と多重化して送信してもよい。 In this way, the user can arbitrarily select each video corresponding to each shooting terminal to enjoy the scene, and can generate a video of an arbitrary viewpoint from three-dimensional data reconstructed using a plurality of images or videos. You can also enjoy clipped content. Further, as with the video, the sound is collected from a plurality of different angles, and the server may transmit the sound multiplexed with the video from a specific angle or space in accordance with the video.
 また、近年ではVirtual Reality(VR)及びAugmented Reality(AR)など、現実世界と仮想世界とを対応付けたコンテンツも普及してきている。VRの画像の場合、サーバは、右目用及び左目用の視点画像をそれぞれ作成し、Multi-View Coding(MVC)などにより各視点映像間で参照を許容する符号化を行ってもよいし、互いに参照せずに別ストリームとして符号化してもよい。別ストリームの復号時には、ユーザの視点に応じて仮想的な3次元空間が再現されるように互いに同期させて再生するとよい。 In recent years, contents in which the real world is associated with the virtual world, such as Virtual Reality (VR) and Augmented Reality (AR), have also become widespread. In the case of VR images, the server may create right-eye and left-eye viewpoint images, and perform encoding that allows reference between viewpoint videos by Multi-View @ Coding (MVC) or the like. It may be encoded as a separate stream without reference. At the time of decoding another stream, it is preferable to reproduce them in synchronization with each other so that a virtual three-dimensional space is reproduced according to the viewpoint of the user.
 ARの画像の場合には、サーバは、現実空間のカメラ情報に、仮想空間上の仮想物体情報を、3次元的位置又はユーザの視点の動きに基づいて重畳する。復号装置は、仮想物体情報及び3次元データを取得又は保持し、ユーザの視点の動きに応じて2次元画像を生成し、スムーズにつなげることで重畳データを作成してもよい。または、復号装置は仮想物体情報の依頼に加えてユーザの視点の動きをサーバに送信し、サーバは、サーバに保持される3次元データから受信した視点の動きに合わせて重畳データを作成し、重畳データを符号化して復号装置に配信してもよい。なお、重畳データは、RGB以外に透過度を示すα値を有し、サーバは、3次元データから作成されたオブジェクト以外の部分のα値が0などに設定し、当該部分が透過する状態で、符号化してもよい。もしくは、サーバは、クロマキーのように所定の値のRGB値を背景に設定し、オブジェクト以外の部分は背景色にしたデータを生成してもよい。 In the case of an AR image, the server superimposes virtual object information in a virtual space on camera information in a real space based on a three-dimensional position or a movement of a user's viewpoint. The decoding device may obtain or hold the virtual object information and the three-dimensional data, generate a two-dimensional image according to the movement of the user's viewpoint, and create superimposed data by connecting the two-dimensional images smoothly. Alternatively, the decoding device transmits the viewpoint movement of the user to the server in addition to the request for the virtual object information, and the server creates superimposed data in accordance with the viewpoint movement received from the three-dimensional data held in the server, The superimposed data may be encoded and distributed to the decoding device. Note that the superimposition data has an α value indicating transparency other than RGB, and the server sets the α value of a portion other than the object created from the three-dimensional data to 0 or the like, and sets the portion in a transparent state. , May be encoded. Alternatively, the server may generate data in which a predetermined RGB value such as a chroma key is set as a background and a portion other than the object is set as a background color.
 同様に配信されたデータの復号処理はクライアントである各端末で行っても、サーバ側で行ってもよいし、互いに分担して行ってもよい。一例として、ある端末が、一旦サーバに受信リクエストを送り、そのリクエストに応じたコンテンツを他の端末で受信し復号処理を行い、ディスプレイを有する装置に復号済みの信号が送信されてもよい。通信可能な端末自体の性能によらず処理を分散して適切なコンテンツを選択することで画質のよいデータを再生することができる。また、他の例として大きなサイズの画像データをTV等で受信しつつ、鑑賞者の個人端末にピクチャが分割されたタイルなど一部の領域が復号されて表示されてもよい。これにより、全体像を共有化しつつ、自身の担当分野又はより詳細に確認したい領域を手元で確認することができる。 復 号 Similarly, the decoding process of the distributed data may be performed by each terminal as a client, may be performed on the server side, or may be performed by sharing each other. As an example, a certain terminal may once send a reception request to the server, receive the content corresponding to the request by another terminal, perform a decoding process, and transmit a decoded signal to a device having a display. High-quality data can be reproduced by distributing processing and selecting appropriate content regardless of the performance of the terminal itself capable of communication. As another example, while receiving large-size image data by a TV or the like, a partial area such as a tile obtained by dividing a picture may be decoded and displayed on a personal terminal of a viewer. As a result, while sharing the whole image, it is possible to check at hand the field in which the user is in charge or the area to be checked in more detail.
 また今後は、屋内外にかかわらず近距離、中距離、又は長距離の無線通信が複数使用可能な状況下で、MPEG-DASHなどの配信システム規格を利用して、接続中の通信に対して適切なデータを切り替えながらシームレスにコンテンツを受信することが予想される。これにより、ユーザは、自身の端末のみならず屋内外に設置されたディスプレイなどの復号装置又は表示装置を自由に選択しながらリアルタイムで切り替えられる。また、自身の位置情報などに基づいて、復号する端末及び表示する端末を切り替えながら復号を行うことができる。これにより、目的地への移動中に、表示可能なデバイスが埋め込まれた隣の建物の壁面又は地面の一部に地図情報を表示させながら移動することも可能になる。また、符号化データが受信端末から短時間でアクセスできるサーバにキャッシュされている、又は、コンテンツ・デリバリー・サービスにおけるエッジサーバにコピーされている、などの、ネットワーク上での符号化データへのアクセス容易性に基づいて、受信データのビットレートを切り替えることも可能である。 Also, in the future, in situations where multiple short-range, medium-range, or long-range wireless communications can be used regardless of indoors and outdoors, using a distribution system standard such as MPEG-DASH, It is expected that content will be received seamlessly while switching appropriate data. Thus, the user can switch in real time while freely selecting not only his / her terminal but also a decoding device or a display device such as a display installed indoors and outdoors. In addition, decoding can be performed while switching between a terminal to be decoded and a terminal to be displayed based on position information of the terminal itself. This makes it possible to move while displaying map information on a wall surface of a neighboring building or a part of the ground where a displayable device is embedded while moving to the destination. In addition, access to encoded data on a network, such as when encoded data is cached on a server that can be accessed from a receiving terminal in a short time or copied to an edge server in a content delivery service. It is also possible to switch the bit rate of the received data based on ease.
 [スケーラブル符号化]
 コンテンツの切り替えに関して、図18に示す、上記各実施の形態で示した動画像符号化方法を応用して圧縮符号化されたスケーラブルなストリームを用いて説明する。サーバは、個別のストリームとして内容は同じで質の異なるストリームを複数有していても構わないが、図示するようにレイヤに分けて符号化を行うことで実現される時間的/空間的スケーラブルなストリームの特徴を活かして、コンテンツを切り替える構成であってもよい。つまり、復号側が性能という内的要因と通信帯域の状態などの外的要因とに応じてどのレイヤまで復号するかを決定することで、復号側は、低解像度のコンテンツと高解像度のコンテンツとを自由に切り替えて復号できる。例えば移動中にスマートフォンex115で視聴していた映像の続きを、帰宅後にインターネットTV等の機器で視聴したい場合には、当該機器は、同じストリームを異なるレイヤまで復号すればよいので、サーバ側の負担を軽減できる。
[Scalable encoding]
Switching of content will be described using a scalable stream that is compression-encoded by applying the moving picture encoding method shown in each of the above-described embodiments shown in FIG. The server may have a plurality of streams having the same contents and different qualities as individual streams, but the temporal / spatial scalable realization is realized by performing encoding in layers as shown in the figure. A configuration in which the content is switched by utilizing the characteristics of the stream may be employed. In other words, the decoding side determines the layer to be decoded according to an internal factor such as performance and an external factor such as a communication band state, so that the decoding side can separate the low-resolution content and the high-resolution content. You can switch freely to decode. For example, if the user wants to watch the continuation of the video that was being viewed on the smartphone ex115 while moving on a device such as the Internet TV after returning home, the device only has to decode the same stream to a different layer, so that the burden on the server side is high. Can be reduced.
 さらに、上記のように、レイヤ毎にピクチャが符号化されており、ベースレイヤの上位にエンハンスメントレイヤが存在するスケーラビリティを実現する構成以外に、エンハンスメントレイヤが画像の統計情報などに基づくメタ情報を含み、復号側が、メタ情報に基づきベースレイヤのピクチャを超解像することで高画質化したコンテンツを生成してもよい。超解像とは、同一解像度におけるSN比の向上、及び、解像度の拡大のいずれであってもよい。メタ情報は、超解像処理に用いる線形或いは非線形のフィルタ係数を特定するため情報、又は、超解像処理に用いるフィルタ処理、機械学習或いは最小2乗演算におけるパラメータ値を特定する情報などを含む。 Further, as described above, the picture is encoded for each layer, and in addition to the configuration for achieving scalability in which the enhancement layer exists above the base layer, the enhancement layer includes meta information based on image statistical information and the like. Alternatively, the decoding side may generate high-quality content by super-resolution of the base layer picture based on the meta information. The super-resolution may be either improvement of the SN ratio at the same resolution or enlargement of the resolution. The meta information includes information for specifying a linear or non-linear filter coefficient used for super-resolution processing, or information for specifying a parameter value in filter processing, machine learning, or least-squares operation used for super-resolution processing. .
 または、画像内のオブジェクトなどの意味合いに応じてピクチャがタイル等に分割されており、復号側が、復号するタイルを選択することで一部の領域だけを復号する構成であってもよい。また、オブジェクトの属性(人物、車、ボールなど)と映像内の位置(同一画像における座標位置など)とをメタ情報として格納することで、復号側は、メタ情報に基づいて所望のオブジェクトの位置を特定し、そのオブジェクトを含むタイルを決定できる。例えば、図19に示すように、メタ情報は、HEVCにおけるSEIメッセージなど画素データとは異なるデータ格納構造を用いて格納される。このメタ情報は、例えば、メインオブジェクトの位置、サイズ、又は色彩などを示す。 Alternatively, the picture may be divided into tiles or the like according to the meaning of an object or the like in the image, and the decoding side may decode only a part of the area by selecting a tile to be decoded. Also, by storing the attribute of the object (person, car, ball, etc.) and the position in the video (coordinate position in the same image, etc.) as meta information, the decoding side can determine the position of the desired object based on the meta information. , And the tile that contains the object can be determined. For example, as shown in FIG. 19, the meta information is stored using a data storage structure different from the pixel data such as an SEI message in HEVC. This meta information indicates, for example, the position, size, color, or the like of the main object.
 また、ストリーム、シーケンス又はランダムアクセス単位など、複数のピクチャから構成される単位でメタ情報が格納されてもよい。これにより、復号側は、特定人物が映像内に出現する時刻などが取得でき、ピクチャ単位の情報と合わせることで、オブジェクトが存在するピクチャ、及び、ピクチャ内でのオブジェクトの位置を特定できる。 メ タ Also, meta information may be stored in units composed of a plurality of pictures, such as a stream, a sequence, or a random access unit. Thus, the decoding side can obtain the time at which the specific person appears in the video and the like, and can specify the picture in which the object exists and the position of the object in the picture by matching the information with the picture unit information.
 [Webページの最適化]
 図20は、コンピュータex111等におけるwebページの表示画面例を示す図である。図21は、スマートフォンex115等におけるwebページの表示画面例を示す図である。図20及び図21に示すようにwebページが、画像コンテンツへのリンクであるリンク画像を複数含む場合があり、閲覧するデバイスによってその見え方は異なる。画面上に複数のリンク画像が見える場合には、ユーザが明示的にリンク画像を選択するまで、又は画面の中央付近にリンク画像が近付く或いはリンク画像の全体が画面内に入るまでは、表示装置(復号装置)は、リンク画像として各コンテンツが有する静止画又はIピクチャを表示したり、複数の静止画又はIピクチャ等でgifアニメのような映像を表示したり、ベースレイヤのみ受信して映像を復号及び表示したりする。
[Web page optimization]
FIG. 20 is a diagram illustrating an example of a display screen of a web page on the computer ex111 or the like. FIG. 21 is a diagram illustrating an example of a display screen of a web page on the smartphone ex115 or the like. As shown in FIGS. 20 and 21, a web page may include a plurality of link images which are links to image contents, and the appearance differs depending on a viewing device. When a plurality of link images can be seen on the screen, the display device is operated until the user explicitly selects the link image, or until the link image approaches the center of the screen or the entire link image enters the screen. The (decoding device) displays a still image or an I picture included in each content as a link image, displays a video such as a gif animation with a plurality of still images or I pictures, or receives only a base layer to receive a video. And display it.
 ユーザによりリンク画像が選択された場合、表示装置は、ベースレイヤを最優先にして復号する。なお、webページを構成するHTMLにスケーラブルなコンテンツであることを示す情報があれば、表示装置は、エンハンスメントレイヤまで復号してもよい。また、リアルタイム性を担保するために、選択される前又は通信帯域が非常に厳しい場合には、表示装置は、前方参照のピクチャ(Iピクチャ、Pピクチャ、前方参照のみのBピクチャ)のみを復号及び表示することで、先頭ピクチャの復号時刻と表示時刻との間の遅延(コンテンツの復号開始から表示開始までの遅延)を低減できる。また、表示装置は、ピクチャの参照関係を敢えて無視して全てのBピクチャ及びPピクチャを前方参照にして粗く復号し、時間が経ち受信したピクチャが増えるにつれて正常の復号を行ってもよい。 (4) When a link image is selected by the user, the display device performs decoding with the base layer given top priority. Note that if there is information indicating that the content is scalable in the HTML constituting the web page, the display device may decode the content up to the enhancement layer. In addition, in order to ensure real-time performance, before selection or when the communication band is extremely severe, the display device decodes only forward-referenced pictures (I-pictures, P-pictures, and B-pictures with only forward-reference). And display, the delay between the decoding time of the first picture and the display time (the delay from the start of decoding of the content to the start of display) can be reduced. In addition, the display device may intentionally ignore the reference relation of pictures, perform coarse decoding with all B pictures and P pictures being forward-referenced, and perform normal decoding as time passes and the number of received pictures increases.
 [自動走行]
 また、車の自動走行又は走行支援のため2次元又は3次元の地図情報などの静止画又は映像データを送受信する場合、受信端末は、1以上のレイヤに属する画像データに加えて、メタ情報として天候又は工事の情報なども受信し、これらを対応付けて復号してもよい。なお、メタ情報は、レイヤに属してもよいし、単に画像データと多重化されてもよい。
[Automatic driving]
Further, when transmitting or receiving still image or video data such as two-dimensional or three-dimensional map information for automatic driving or driving support of a car, the receiving terminal may perform meta-information in addition to image data belonging to one or more layers. Weather or construction information may also be received and associated with them for decoding. Note that the meta information may belong to a layer or may be simply multiplexed with image data.
 この場合、受信端末を含む車、ドローン又は飛行機などが移動するため、受信端末は、当該受信端末の位置情報を受信要求時に送信することで、基地局ex106~ex110を切り替えながらシームレスな受信及び復号を実現できる。また、受信端末は、ユーザの選択、ユーザの状況又は通信帯域の状態に応じて、メタ情報をどの程度受信するか、又は地図情報をどの程度更新していくかを動的に切り替えることが可能になる。 In this case, since a car, a drone or an airplane including the receiving terminal moves, the receiving terminal transmits the location information of the receiving terminal at the time of the reception request, thereby seamlessly receiving and decoding while switching between the base stations ex106 to ex110. Can be realized. In addition, the receiving terminal can dynamically switch how much the meta information is received or how much the map information is updated according to the user's selection, the user's situation, or the state of the communication band. become.
 以上のようにして、コンテンツ供給システムex100では、ユーザが送信した符号化された情報をリアルタイムでクライアントが受信して復号し、再生することができる。 As described above, in the content supply system ex100, the client can receive, decode, and reproduce the encoded information transmitted by the user in real time.
 [個人コンテンツの配信]
 また、コンテンツ供給システムex100では、映像配信業者による高画質で長時間のコンテンツのみならず、個人による低画質で短時間のコンテンツのユニキャスト、又はマルチキャスト配信が可能である。また、このような個人のコンテンツは今後も増加していくと考えられる。個人コンテンツをより優れたコンテンツにするために、サーバは、編集処理を行ってから符号化処理を行ってもよい。これは例えば、以下のような構成で実現できる。
[Distribution of personal content]
Further, in the content supply system ex100, not only high-quality and long-time content by a video distributor but also low-quality and short-time content unicast or multicast distribution by an individual is possible. Such personal contents are expected to increase in the future. In order to make the personal content better, the server may perform the encoding process after performing the editing process. This can be realized, for example, by the following configuration.
 撮影時にリアルタイム又は蓄積して撮影後に、サーバは、原画又は符号化済みデータから撮影エラー、シーン探索、意味の解析、及びオブジェクト検出などの認識処理を行う。そして、サーバは、認識結果に基いて手動又は自動で、ピントずれ又は手ブレなどを補正したり、明度が他のピクチャに比べて低い又は焦点が合っていないシーンなどの重要性の低いシーンを削除したり、オブジェクトのエッジを強調したり、色合いを変化させるなどの編集を行う。サーバは、編集結果に基いて編集後のデータを符号化する。また撮影時刻が長すぎると視聴率が下がることも知られており、サーバは、撮影時間に応じて特定の時間範囲内のコンテンツになるように上記のように重要性が低いシーンのみならず動きが少ないシーンなどを、画像処理結果に基き自動でクリップしてもよい。または、サーバは、シーンの意味解析の結果に基づいてダイジェストを生成して符号化してもよい。 (4) The server performs a recognition process such as a shooting error, a scene search, a meaning analysis, and an object detection from the original image or the encoded data after shooting in real time or after storing the image. Then, the server manually or automatically corrects out-of-focus or camera shake based on the recognition result, or deletes a less important scene such as a scene whose brightness is lower or out of focus compared to other pictures. Perform editing such as deleting, emphasizing the edges of the object, and changing the color. The server encodes the edited data based on the edited result. It is also known that if the shooting time is too long, the audience rating will drop, and the server will not only move the scenes with low importance as described above so that the content will be within a specific time range according to the shooting time. For example, a scene with few images may be automatically clipped based on the image processing result. Alternatively, the server may generate and encode a digest based on the result of the semantic analysis of the scene.
 なお、個人コンテンツには、そのままでは著作権、著作者人格権、又は肖像権等の侵害となるものが写り込んでいるケースもあり、共有する範囲が意図した範囲を超えてしまうなど個人にとって不都合な場合もある。よって、例えば、サーバは、画面の周辺部の人の顔、又は家の中などを敢えて焦点が合わない画像に変更して符号化してもよい。また、サーバは、符号化対象画像内に、予め登録した人物とは異なる人物の顔が映っているかどうかを認識し、映っている場合には、顔の部分にモザイクをかけるなどの処理を行ってもよい。または、符号化の前処理又は後処理として、著作権などの観点からユーザが画像を加工したい人物又は背景領域を指定し、サーバは、指定された領域を別の映像に置き換える、又は焦点をぼかすなどの処理を行うことも可能である。人物であれば、動画像において人物をトラッキングしながら、顔の部分の映像を置き換えることができる。 In addition, in some cases, personal contents may infringe copyrights, moral rights, or portrait rights, etc., which may cause inconvenience to individuals, such as exceeding the intended range. It may be. Therefore, for example, the server may dare to change the image of a person's face in the periphery of the screen or the inside of a house into an image that is out of focus. Further, the server recognizes whether or not a face of a person different from the person registered in advance is reflected in the image to be encoded, and if so, performs processing such as mosaicing the face part. You may. Alternatively, as a pre-processing or post-processing of encoding, a user specifies a person or a background area where the user wants to process an image from the viewpoint of copyright, and the server replaces the specified area with another video or defocuses. It is also possible to perform such a process. If it is a person, it is possible to replace the video of the face part while tracking the person in the moving image.
 また、データ量の小さい個人コンテンツの視聴はリアルタイム性の要求が強いため、帯域幅にもよるが、復号装置は、まずベースレイヤを最優先で受信して復号及び再生を行う。復号装置は、この間にエンハンスメントレイヤを受信し、再生がループされる場合など2回以上再生される場合に、エンハンスメントレイヤも含めて高画質の映像を再生してもよい。このようにスケーラブルな符号化が行われているストリームであれば、未選択時又は見始めた段階では粗い動画だが、徐々にストリームがスマートになり画像がよくなるような体験を提供することができる。スケーラブル符号化以外にも、1回目に再生される粗いストリームと、1回目の動画を参照して符号化される2回目のストリームとが1つのストリームとして構成されていても同様の体験を提供できる。 視 聴 Also, since the viewing of personal content with a small data amount requires a real-time property, the decoding device first receives the base layer with the highest priority and decodes and reproduces it, depending on the bandwidth. The decoding device may receive the enhancement layer during this time, and may reproduce high-quality video including the enhancement layer when the reproduction is performed twice or more, such as when the reproduction is looped. If the stream is scalable encoded in this way, it is a coarse moving image when not selected or when it is started to be viewed, but it is possible to provide an experience in which the stream gradually becomes smarter and the image becomes better. In addition to the scalable encoding, a similar experience can be provided even when the coarse stream reproduced at the first time and the second stream encoded with reference to the first moving image are configured as one stream. .
 [その他の使用例]
 また、これらの符号化又は復号処理は、一般的に各端末が有するLSIex500において処理される。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化又は復号用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、又はハードディスクなど)に組み込み、そのソフトウェアを用いて符号化又は復号処理を行ってもよい。さらに、スマートフォンex115がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データはスマートフォンex115が有するLSIex500で符号化処理されたデータである。
[Other examples of use]
In addition, these encoding or decoding processes are generally performed in the LSI ex500 included in each terminal. The LSI ex500 may be a single chip or a configuration including a plurality of chips. It should be noted that the moving image encoding or decoding software is incorporated into any recording medium (CD-ROM, flexible disk, hard disk, or the like) readable by the computer ex111 or the like, and the encoding or decoding processing is performed using the software. Is also good. Furthermore, when the smartphone ex115 has a camera, moving image data acquired by the camera may be transmitted. The moving image data at this time is data that has been encoded by the LSI ex500 of the smartphone ex115.
 なお、LSIex500は、アプリケーションソフトをダウンロードしてアクティベートする構成であってもよい。この場合、端末は、まず、当該端末がコンテンツの符号化方式に対応しているか、又は、特定サービスの実行能力を有するかを判定する。端末がコンテンツの符号化方式に対応していない場合、又は、特定サービスの実行能力を有さない場合、端末は、コーデック又はアプリケーションソフトをダウンロードし、その後、コンテンツ取得及び再生する。 Note that the LSI ex500 may be configured to download and activate application software. In this case, the terminal first determines whether the terminal supports the content encoding method or has the ability to execute the specific service. If the terminal does not support the content encoding method or does not have the ability to execute a specific service, the terminal downloads a codec or application software, and then acquires and reproduces the content.
 また、インターネットex101を介したコンテンツ供給システムex100に限らず、デジタル放送用システムにも上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)又は動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。衛星などを利用して放送用の電波に映像と音が多重化された多重化データを載せて送受信するため、コンテンツ供給システムex100のユニキャストがし易い構成に対してマルチキャスト向きであるという違いがあるが符号化処理及び復号処理に関しては同様の応用が可能である。 Further, not only the content supply system ex100 via the Internet ex101 but also the digital broadcasting system at least the moving picture coding apparatus (picture coding apparatus) or the moving picture decoding apparatus (picture decoding apparatus) of each of the above embodiments. Can be incorporated. Since the multiplexed data in which video and sound are multiplexed on the radio wave for broadcasting using a satellite or the like is transmitted and received, there is a difference that the content supply system ex100 is suitable for multicasting in contrast to the configuration in which unicast is easily performed. However, similar applications are possible for the encoding process and the decoding process.
 [ハードウェア構成]
 図22は、スマートフォンex115を示す図である。また、図23は、スマートフォンex115の構成例を示す図である。スマートフォンex115は、基地局ex110との間で電波を送受信するためのアンテナex450と、映像及び静止画を撮ることが可能なカメラ部ex465と、カメラ部ex465で撮像した映像、及びアンテナex450で受信した映像等が復号されたデータを表示する表示部ex458とを備える。スマートフォンex115は、さらに、タッチパネル等である操作部ex466と、音声又は音響を出力するためのスピーカ等である音声出力部ex457と、音声を入力するためのマイク等である音声入力部ex456と、撮影した映像或いは静止画、録音した音声、受信した映像或いは静止画、メール等の符号化されたデータ、又は、復号化されたデータを保存可能なメモリ部ex467と、ユーザを特定し、ネットワークをはじめ各種データへのアクセスの認証をするためのSIMex468とのインタフェース部であるスロット部ex464とを備える。なお、メモリ部ex467の代わりに外付けメモリが用いられてもよい。
[Hardware configuration]
FIG. 22 is a diagram illustrating the smartphone ex115. FIG. 23 is a diagram illustrating a configuration example of the smartphone ex115. The smartphone ex115 receives an antenna ex450 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex465 capable of taking video and still images, a video image captured by the camera unit ex465, and an antenna ex450. A display unit ex458 for displaying data obtained by decoding a video or the like. The smartphone ex115 further includes an operation unit ex466 such as a touch panel, a sound output unit ex457 such as a speaker for outputting sound or sound, a sound input unit ex456 such as a microphone for inputting sound, and shooting. A memory unit ex467 that can store encoded data such as encoded video or still images, recorded audio, received video or still images, mail, etc., or decoded data; A slot unit ex464 is provided as an interface unit with the SIMex468 for authenticating access to various data. Note that an external memory may be used instead of the memory unit ex467.
 また、表示部ex458及び操作部ex466等を統括的に制御する主制御部ex460と、電源回路部ex461、操作入力制御部ex462、映像信号処理部ex455、カメラインタフェース部ex463、ディスプレイ制御部ex459、変調/復調部ex452、多重/分離部ex453、音声信号処理部ex454、スロット部ex464、及びメモリ部ex467とがバスex470を介して接続されている。 In addition, a main control unit ex460 that comprehensively controls the display unit ex458 and the operation unit ex466, etc., a power supply circuit unit ex461, an operation input control unit ex462, a video signal processing unit ex455, a camera interface unit ex463, a display control unit ex459, modulation The / demodulation unit ex452, the multiplexing / demultiplexing unit ex453, the audio signal processing unit ex454, the slot unit ex464, and the memory unit ex467 are connected via a bus ex470.
 電源回路部ex461は、ユーザの操作により電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することによりスマートフォンex115を動作可能な状態に起動する。 (4) When the power key is turned on by a user operation, the power supply circuit unit ex461 activates the smartphone ex115 by supplying power to each unit from the battery pack.
 スマートフォンex115は、CPU、ROM及びRAM等を有する主制御部ex460の制御に基づいて、通話及データ通信等の処理を行う。通話時は、音声入力部ex456で収音した音声信号を音声信号処理部ex454でデジタル音声信号に変換し、これを変調/復調部ex452でスペクトラム拡散処理し、送信/受信部ex451でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex450を介して送信する。また受信データを増幅して周波数変換処理及びアナログデジタル変換処理を施し、変調/復調部ex452でスペクトラム逆拡散処理し、音声信号処理部ex454でアナログ音声信号に変換した後、これを音声出力部ex457から出力する。データ通信モード時は、本体部の操作部ex466等の操作によってテキスト、静止画、又は映像データが操作入力制御部ex462を介して主制御部ex460に送出され、同様に送受信処理が行われる。データ通信モード時に映像、静止画、又は映像と音声を送信する場合、映像信号処理部ex455は、メモリ部ex467に保存されている映像信号又はカメラ部ex465から入力された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し、符号化された映像データを多重/分離部ex453に送出する。また、音声信号処理部ex454は、映像又は静止画等をカメラ部ex465で撮像中に音声入力部ex456で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex453に送出する。多重/分離部ex453は、符号化済み映像データと符号化済み音声データを所定の方式で多重化し、変調/復調部(変調/復調回路部)ex452、及び送信/受信部ex451で変調処理及び変換処理を施してアンテナex450を介して送信する。 The smartphone ex115 performs processing such as telephone communication and data communication based on the control of the main control unit ex460 having a CPU, a ROM, a RAM, and the like. At the time of a telephone call, the audio signal collected by the audio input unit ex456 is converted into a digital audio signal by the audio signal processing unit ex454, which is subjected to spectrum spread processing by the modulation / demodulation unit ex452, and digital / analog conversion by the transmission / reception unit ex451. After performing the processing and the frequency conversion processing, the signal is transmitted via the antenna ex450. Further, the received data is amplified, subjected to frequency conversion processing and analog-to-digital conversion processing, subjected to spectrum despreading processing by a modulation / demodulation unit ex452, converted to an analog audio signal by an audio signal processing unit ex454, and then converted to an audio output unit ex457. Output from In the data communication mode, text, still image, or video data is transmitted to the main control unit ex460 via the operation input control unit ex462 by an operation of the operation unit ex466 or the like of the main unit, and transmission and reception processing is performed in the same manner. When transmitting video, still images, or video and audio in the data communication mode, the video signal processing unit ex455 converts the video signal stored in the memory unit ex467 or the video signal input from the camera unit ex465 into each of the above embodiments. The video data is compression-encoded by the moving image encoding method shown in the embodiment, and the encoded video data is transmitted to the multiplexing / demultiplexing unit ex453. Further, the audio signal processing unit ex454 encodes an audio signal collected by the audio input unit ex456 while capturing a video or a still image by the camera unit ex465, and transmits the encoded audio data to the multiplexing / demultiplexing unit ex453. I do. The multiplexing / demultiplexing unit ex453 multiplexes the coded video data and the coded audio data by a predetermined method, and modulates and converts the multiplexed data in the modulation / demodulation unit (modulation / demodulation circuit unit) ex452 and the transmission / reception unit ex451. Processing is performed and transmission is performed via the antenna ex450.
 電子メール又はチャットに添付された映像、又はウェブページ等にリンクされた映像を受信した場合、アンテナex450を介して受信された多重化データを復号するために、多重/分離部ex453は、多重化データを分離することにより、多重化データを映像データのビットストリームと音声データのビットストリームとに分け、同期バスex470を介して符号化された映像データを映像信号処理部ex455に供給するとともに、符号化された音声データを音声信号処理部ex454に供給する。映像信号処理部ex455は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって映像信号を復号し、ディスプレイ制御部ex459を介して表示部ex458から、リンクされた動画像ファイルに含まれる映像又は静止画が表示される。また音声信号処理部ex454は、音声信号を復号し、音声出力部ex457から音声が出力される。なおリアルタイムストリーミングが普及しているため、ユーザの状況によっては音声の再生が社会的にふさわしくない場も起こりえる。そのため、初期値としては、音声信号は再生せず映像データのみを再生する構成の方が望ましい。ユーザが映像データをクリックするなど操作を行った場合にのみ音声を同期して再生してもよい。 When receiving an image attached to an e-mail or a chat or an image linked to a web page or the like, the multiplexing / demultiplexing unit ex453 performs multiplexing to decode the multiplexed data received via the antenna ex450. By separating the data, the multiplexed data is divided into a bit stream of video data and a bit stream of audio data, and the coded video data is supplied to the video signal processing unit ex455 via the synchronous bus ex470, and The converted audio data is supplied to the audio signal processing unit ex454. The video signal processing unit ex455 decodes the video signal by the video decoding method corresponding to the video encoding method described in each of the above embodiments, and is linked from the display unit ex458 via the display control unit ex459. A video or a still image included in the moving image file is displayed. The audio signal processing unit ex454 decodes the audio signal, and the audio is output from the audio output unit ex457. Since real-time streaming is widespread, depending on the situation of the user, there may be places where sound reproduction is not socially appropriate. Therefore, as an initial value, a configuration in which only the video data is reproduced without reproducing the audio signal is more preferable. The audio may be reproduced in synchronization only when the user performs an operation such as clicking on the video data.
 またここではスマートフォンex115を例に説明したが、端末としては符号化器及び復号化器を両方持つ送受信型端末の他に、符号化器のみを有する送信端末、及び、復号化器のみを有する受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムにおいて、映像データに音声データなどが多重化された多重化データを受信又は送信するとして説明したが、多重化データには、音声データ以外に映像に関連する文字データなどが多重化されてもよいし、多重化データではなく映像データ自体が受信又は送信されてもよい。 Although the smartphone ex115 has been described as an example here, as a terminal, in addition to a transmission / reception type terminal having both an encoder and a decoder, a transmission terminal having only an encoder and a reception terminal having only a decoder are provided. There are three possible mounting formats, namely, a terminal. Furthermore, in the system for digital broadcasting, it has been described that multiplexed data in which audio data and the like are multiplexed with video data is received or transmitted, but multiplexed data includes character data related to video in addition to audio data. The data may be multiplexed, or the video data itself may be received or transmitted instead of the multiplexed data.
 なお、CPUを含む主制御部ex460が符号化又は復号処理を制御するとして説明したが、端末はGPUを備えることも多い。よって、CPUとGPUで共通化されたメモリ、又は共通に使用できるようにアドレスが管理されているメモリにより、GPUの性能を活かして広い領域を一括して処理する構成でもよい。これにより符号化時間を短縮でき、リアルタイム性を確保し、低遅延を実現できる。特に動き探索、デブロックフィルタ、SAO(Sample Adaptive Offset)、及び変換・量子化の処理を、CPUではなく、GPUでピクチャなどの単位で一括して行うと効率的である。 Although the main control unit ex460 including the CPU controls the encoding or decoding processing, the terminal often includes a GPU. Therefore, a configuration in which a wide area is collectively processed by utilizing the performance of the GPU by using a memory shared by the CPU and the GPU or a memory whose addresses are managed so as to be commonly used may be used. As a result, the encoding time can be reduced, real-time performance can be ensured, and low delay can be realized. In particular, it is efficient to perform the motion search, deblocking filter, SAO (Sample Adaptive Offset), and conversion / quantization processes collectively in units of pictures or the like by the GPU instead of the CPU.
 本開示は、例えば、テレビジョン受像機、デジタルビデオレコーダー、カーナビゲーション、携帯電話、デジタルカメラ、デジタルビデオカメラ、テレビ会議システム、または、電子ミラー等に利用可能である。 The present disclosure is applicable to, for example, a television receiver, a digital video recorder, a car navigation, a mobile phone, a digital camera, a digital video camera, a video conference system, an electronic mirror, and the like.
  100 符号化装置
  102 分割部
  104 減算部
  106 変換部
  108 量子化部
  110 エントロピー符号化部
  112、204 逆量子化部
  114、206 逆変換部
  116、208 加算部
  118、210 ブロックメモリ
  120、212 ループフィルタ部
  122、214 フレームメモリ
  124、216 イントラ予測部(画面内予測部)
  126、218 インター予測部(画面間予測部)
  128、220 予測制御部
  160、260 回路
  162、262 メモリ
  200 復号装置
  202 エントロピー復号部
REFERENCE SIGNS LIST 100 Encoding device 102 Divider 104 Subtractor 106 Transformer 108 Quantizer 110 Entropy encoder 112, 204 Inverse quantizer 114, 206 Inverse transformer 116, 208 Adder 118, 210 Block memory 120, 212 Loop filter Units 122 and 214 Frame memories 124 and 216 Intra prediction unit (intra-screen prediction unit)
126, 218 Inter prediction unit (inter-screen prediction unit)
128, 220 prediction control unit 160, 260 circuit 162, 262 memory 200 decoding device 202 entropy decoding unit

Claims (8)

  1.  動き補償を行って動画像を符号化する符号化装置であって、
     回路と、
     メモリと、を備え、
     前記回路は、前記メモリを用いて、
     前記動画像における画像のカレントブロックの複数の周辺ブロックの動きベクトルに基づき、前記カレントブロックを構成するサブブロック単位でアフィン動きベクトルを算出するインター予測モードにおいて、
     単予測及び双予測のうちの単予測のみで前記サブブロック単位での前記アフィン動きベクトルを算出し、
     算出した前記アフィン動きベクトルを用いて、前記サブブロック単位で前記動き補償を行う、
     符号化装置。
    An encoding device that performs motion compensation and encodes a moving image,
    Circuit and
    And a memory,
    The circuit uses the memory,
    In the inter prediction mode of calculating an affine motion vector in units of sub-blocks constituting the current block, based on motion vectors of a plurality of peripheral blocks of the current block of the image in the moving image,
    Calculating the affine motion vector in the sub-block unit only in uni-prediction of uni-prediction and bi-prediction,
    Using the calculated affine motion vector, perform the motion compensation on a sub-block basis,
    Encoding device.
  2.  前記回路は、
     前記アフィン動きベクトルを算出する際、
     インター予測モードで共通に使用される第1の参照ピクチャリスト及び第2の参照ピクチャリストのうち、いずれか一方の参照ピクチャリストのみから参照ピクチャを選択し、選択した参照ピクチャを構成する複数の符号化済みブロックのうちから、単予測のみを用いて制御ポイントの予測動きベクトルを導出するための符号化済みブロックを決定する、
     請求項1に記載の符号化装置。
    The circuit comprises:
    When calculating the affine motion vector,
    A plurality of codes constituting a selected reference picture by selecting a reference picture from only one of the first reference picture list and the second reference picture list commonly used in the inter prediction mode From among the encoded blocks, determine an encoded block for deriving a prediction motion vector of a control point using only uni-prediction,
    The encoding device according to claim 1.
  3.  前記回路は、
     前記アフィン動きベクトルを算出するインター予測モードであるアフィン動き補償モードを前記カレントブロックに対して実行する際、
     前記アフィン動き補償モードが適用された、前記カレントブロックに隣接する符号化済みブロックの動きベクトルに基づいて、制御ポイントの予測動きベクトルを決定するマージモードと、前記カレントブロックの前記制御ポイント近傍の符号化済みブロックから決定された前記制御ポイント毎の参照ピクチャと予測動きベクトルとを示す情報が符号化されるノーマルモードとのうち一方を選択し、
     前記ノーマルモードを選択した場合、単予測のみにおける前記カレントブロックの前記制御ポイント近傍の符号化済みブロックから前記制御ポイント毎の予測動きベクトルを決定することで、前記アフィン動きベクトルを、単予測のみで算出する、
     請求項1に記載の符号化装置。
    The circuit comprises:
    When performing an affine motion compensation mode, which is an inter prediction mode for calculating the affine motion vector, on the current block,
    A merge mode for determining a predicted motion vector of a control point based on a motion vector of an encoded block adjacent to the current block to which the affine motion compensation mode is applied, and a code near the control point of the current block. Selecting one of a normal mode in which information indicating a reference picture and a prediction motion vector for each control point determined from the converted block is encoded,
    When the normal mode is selected, by determining a prediction motion vector for each control point from a coded block in the vicinity of the control point of the current block in only uni-prediction, the affine motion vector is determined by uni-prediction only. calculate,
    The encoding device according to claim 1.
  4.  動き補償を行って動画像を復号化する復号装置であって、
     回路と、
     メモリと、を備え、
     前記回路は、前記メモリを用いて、
     前記動画像における画像のカレントブロックの複数の周辺ブロックの動きベクトルに基づき、前記カレントブロックを構成するサブブロック単位でアフィン動きベクトルを算出するインター予測モードにおいて、
     単予測及び双予測のうちの単予測のみで前記サブブロック単位での前記アフィン動きベクトルを算出し、
     算出した前記アフィン動きベクトルを用いて、前記サブブロック単位で前記動き補償を行う、
     復号装置。
    A decoding device that performs motion compensation and decodes a moving image,
    Circuit and
    And a memory,
    The circuit uses the memory,
    In the inter prediction mode of calculating an affine motion vector in units of sub-blocks constituting the current block, based on motion vectors of a plurality of peripheral blocks of the current block of the image in the moving image,
    Calculating the affine motion vector in the sub-block unit only in uni-prediction of uni-prediction and bi-prediction,
    Using the calculated affine motion vector, perform the motion compensation on a sub-block basis,
    Decoding device.
  5.  前記回路は、
     前記アフィン動きベクトルを算出する際、
     インター予測モードで共通に使用される第1の参照ピクチャリスト及び第2の参照ピクチャリストのうち、いずれか一方の参照ピクチャリストのみから参照ピクチャを選択し、選択した参照ピクチャを構成する複数の符号化済みブロックのうちから、単予測のみを用いて制御ポイントの予測動きベクトルを導出するための符号化済みブロックを決定する、
     請求項4に記載の復号装置。
    The circuit comprises:
    When calculating the affine motion vector,
    A plurality of codes constituting a selected reference picture by selecting a reference picture from only one of the first reference picture list and the second reference picture list commonly used in the inter prediction mode From among the encoded blocks, determine an encoded block for deriving a prediction motion vector of a control point using only uni-prediction,
    The decoding device according to claim 4.
  6.  前記回路は、
     前記アフィン動きベクトルを算出するインター予測モードであるアフィン動き補償モードを前記カレントブロックに対して実行する際、
     前記アフィン動き補償モードが適用された、前記カレントブロックに隣接する符号化済みブロックの動きベクトルに基づいて、制御ポイントの予測動きベクトルを決定するマージモードと、前記カレントブロックの前記制御ポイント近傍の符号化済みブロックから決定された前記制御ポイント毎の参照ピクチャと予測動きベクトルとを示す情報が符号化されるノーマルモードとのうち一方を選択し、
     前記ノーマルモードを選択した場合、単予測のみにおける前記カレントブロックの前記制御ポイント近傍の符号化済みブロックから前記制御ポイント毎の予測動きベクトルを決定することで、前記アフィン動きベクトルを、単予測のみで算出する、
     請求項5に記載の復号装置。
    The circuit comprises:
    When performing an affine motion compensation mode, which is an inter prediction mode for calculating the affine motion vector, on the current block,
    A merge mode for determining a predicted motion vector of a control point based on a motion vector of an encoded block adjacent to the current block to which the affine motion compensation mode has been applied, and a code near the control point of the current block. Selecting one of a normal mode in which information indicating a reference picture and a predicted motion vector for each control point determined from the converted block is encoded,
    When the normal mode is selected, by determining a prediction motion vector for each control point from a coded block near the control point of the current block in only uni-prediction, the affine motion vector, only in uni-prediction calculate,
    The decoding device according to claim 5.
  7.  動き補償を行って動画像を符号化する符号化方法であって、
     前記動画像における画像のカレントブロックの複数の周辺ブロックの動きベクトルに基づき、前記カレントブロックを構成するサブブロック単位でアフィン動きベクトルを算出するインター予測モードにおいて、
     単予測及び双予測のうちの単予測のみで前記サブブロック単位での前記アフィン動きベクトルを算出し、
     算出した前記アフィン動きベクトルを用いて、前記サブブロック単位で前記動き補償を行う、
     符号化方法。
    An encoding method for encoding a moving image by performing motion compensation,
    In the inter prediction mode of calculating an affine motion vector in units of sub-blocks constituting the current block, based on motion vectors of a plurality of peripheral blocks of the current block of the image in the moving image,
    Calculating the affine motion vector in the sub-block unit only in uni-prediction of uni-prediction and bi-prediction,
    Using the calculated affine motion vector, perform the motion compensation on a sub-block basis,
    Encoding method.
  8.  動き補償を行って動画像を復号する復号方法であって、
     前記動画像における画像のカレントブロックの複数の周辺ブロックの動きベクトルに基づき、前記カレントブロックを構成するサブブロック単位でアフィン動きベクトルを算出するインター予測モードにおいて、
     単予測及び双予測のうちの単予測のみで前記サブブロック単位での前記アフィン動きベクトルを算出し、
     算出した前記アフィン動きベクトルを用いて、前記サブブロック単位で前記動き補償を行う、
     復号方法。
    A decoding method for performing motion compensation and decoding a moving image,
    In the inter prediction mode of calculating an affine motion vector in units of sub-blocks constituting the current block, based on motion vectors of a plurality of peripheral blocks of the current block of the image in the moving image,
    Calculating the affine motion vector in the sub-block unit only in uni-prediction of uni-prediction and bi-prediction,
    Using the calculated affine motion vector, perform the motion compensation on a sub-block basis,
    Decryption method.
PCT/JP2019/023781 2018-06-21 2019-06-14 Coding device, decoding device, coding method, and decoding method WO2019244809A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862688096P 2018-06-21 2018-06-21
US62/688,096 2018-06-21

Publications (1)

Publication Number Publication Date
WO2019244809A1 true WO2019244809A1 (en) 2019-12-26

Family

ID=68984030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023781 WO2019244809A1 (en) 2018-06-21 2019-06-14 Coding device, decoding device, coding method, and decoding method

Country Status (1)

Country Link
WO (1) WO2019244809A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050168A (en) * 2019-12-27 2020-04-21 浙江大华技术股份有限公司 Affine prediction method and related device thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017148345A1 (en) * 2016-03-01 2017-09-08 Mediatek Inc. Method and apparatus of video coding with affine motion compensation
WO2017200771A1 (en) * 2016-05-16 2017-11-23 Qualcomm Incorporated Affine motion prediction for video coding
WO2018061563A1 (en) * 2016-09-27 2018-04-05 シャープ株式会社 Affine motion vector derivation device, prediction image generation device, moving image decoding device, and moving image coding device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017148345A1 (en) * 2016-03-01 2017-09-08 Mediatek Inc. Method and apparatus of video coding with affine motion compensation
WO2017200771A1 (en) * 2016-05-16 2017-11-23 Qualcomm Incorporated Affine motion prediction for video coding
WO2018061563A1 (en) * 2016-09-27 2018-04-05 シャープ株式会社 Affine motion vector derivation device, prediction image generation device, moving image decoding device, and moving image coding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050168A (en) * 2019-12-27 2020-04-21 浙江大华技术股份有限公司 Affine prediction method and related device thereof

Similar Documents

Publication Publication Date Title
JP6946419B2 (en) Decoding device, decoding method and program
JP7014881B2 (en) Coding device and coding method
JPWO2018212110A1 (en) Encoding device, decoding device, encoding method and decoding method
JP6669938B2 (en) Encoding device, decoding device, encoding method and decoding method
JP7339890B2 (en) Encoding device and decoding device
JP7331052B2 (en) Decoding device and encoding device
JP2019017066A (en) Coding apparatus, decoding apparatus, coding method, and decoding method
JP7087030B2 (en) Encoding device, decoding device, coding method and decoding method
JPWO2019013235A1 (en) Encoding device, encoding method, decoding device and decoding method
JP7026747B2 (en) Decoding device and decoding method
JPWO2018199050A1 (en) Encoding device, decoding device, encoding method and decoding method
JPWO2018225594A1 (en) Encoding device, decoding device, encoding method and decoding method
JP2023040271A (en) Decoding device, and decoding method
JP6767579B2 (en) Encoding device, coding method, decoding device and decoding method
JPWO2019189344A1 (en) Coding device, decoding device, coding method and decoding method
JP2023016991A (en) Encoder and decoder
WO2019021803A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2019244809A1 (en) Coding device, decoding device, coding method, and decoding method
WO2019049912A1 (en) Coding device, decoding device, coding method, and decoding method
WO2019031369A1 (en) Coding device, decoding device, coding method and decoding method
WO2019146718A1 (en) Coding device, decoding device, coding method, and decoding method
WO2019203036A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2019087978A1 (en) Coding device, decoding device, coding method and decoding method
WO2018225595A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2019031136A1 (en) Coding device, decoding device, coding method and decoding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822485

Country of ref document: EP

Kind code of ref document: A1