WO2019146718A1 - Coding device, decoding device, coding method, and decoding method - Google Patents

Coding device, decoding device, coding method, and decoding method Download PDF

Info

Publication number
WO2019146718A1
WO2019146718A1 PCT/JP2019/002341 JP2019002341W WO2019146718A1 WO 2019146718 A1 WO2019146718 A1 WO 2019146718A1 JP 2019002341 W JP2019002341 W JP 2019002341W WO 2019146718 A1 WO2019146718 A1 WO 2019146718A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
sub
predetermined value
unit
encoding
Prior art date
Application number
PCT/JP2019/002341
Other languages
French (fr)
Japanese (ja)
Inventor
安倍 清史
西 孝啓
遠間 正真
龍一 加納
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Publication of WO2019146718A1 publication Critical patent/WO2019146718A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock

Definitions

  • the present disclosure relates to an encoding device, a decoding device, an encoding method, and a decoding method.
  • HEVC High-Efficiency Video Coding
  • JCT-VC Joint Collaborative Team on Video Coding
  • the present disclosure aims to provide an encoding device, a decoding device, an encoding method, or a decoding method that can realize further improvement.
  • An encoding apparatus includes a circuit and a memory, and the circuit divides the processing target block into sub blocks using the memory and performs motion compensation in units of sub blocks.
  • encoding processing is performed by switching the horizontal and vertical lengths of the sub block based on the size of the processing target block.
  • a decoding device includes a circuit and a memory, and the circuit divides the processing target block into sub blocks using the memory and performs motion compensation in units of sub blocks.
  • the decoding process is performed by switching the horizontal and vertical lengths of the sub block based on the size of the processing target block.
  • the present disclosure can provide a coding device, a decoding device, a coding method or a decoding method that can realize further improvement.
  • FIG. 1 is a block diagram showing a functional configuration of the coding apparatus according to the first embodiment.
  • FIG. 2 is a diagram showing an example of block division in the first embodiment.
  • FIG. 3 is a table showing transform basis functions corresponding to each transform type.
  • FIG. 4A is a view showing an example of the shape of a filter used in ALF.
  • FIG. 4B is a view showing another example of the shape of a filter used in ALF.
  • FIG. 4C is a view showing another example of the shape of a filter used in ALF.
  • FIG. 5A is a diagram illustrating 67 intra prediction modes in intra prediction.
  • FIG. 5B is a flowchart for describing an outline of predicted image correction processing by OBMC processing.
  • FIG. 5A is a diagram illustrating 67 intra prediction modes in intra prediction.
  • FIG. 5B is a flowchart for describing an outline of predicted image correction processing by OBMC processing.
  • FIG. 5C is a conceptual diagram for describing an outline of predicted image correction processing by OBMC processing.
  • FIG. 5D is a diagram illustrating an example of FRUC.
  • FIG. 6 is a diagram for describing pattern matching (bilateral matching) between two blocks along a motion trajectory.
  • FIG. 7 is a diagram for describing pattern matching (template matching) between a template in a current picture and a block in a reference picture.
  • FIG. 8 is a diagram for explaining a model assuming uniform linear motion.
  • FIG. 9A is a diagram for describing derivation of a motion vector in units of sub blocks based on motion vectors of a plurality of adjacent blocks.
  • FIG. 9B is a diagram for describing an overview of motion vector derivation processing in the merge mode.
  • FIG. 9A is a diagram for describing derivation of a motion vector in units of sub blocks based on motion vectors of a plurality of adjacent blocks.
  • FIG. 9B is a diagram for describing an
  • FIG. 9C is a conceptual diagram for describing an overview of DMVR processing.
  • FIG. 9D is a diagram for describing an outline of a predicted image generation method using luminance correction processing by LIC processing.
  • FIG. 10 is a block diagram showing a functional configuration of the decoding apparatus according to the first embodiment.
  • FIG. 11 is a flowchart showing a first example of the inter prediction process in the first embodiment.
  • FIG. 12 is a diagram for describing a specific example of the size of the sub block obtained by dividing the processing target block.
  • FIG. 13 is a diagram for explaining an ATM VP mode which is an example of the sub book unit merge mode.
  • FIG. 14 is a diagram for describing an STMVP mode which is another example of the sub book unit merge mode.
  • FIG. 15 is an overall configuration diagram of a content supply system for realizing content distribution service.
  • FIG. 16 is a diagram illustrating an example of a coding structure at the time of scalable coding.
  • FIG. 17 is a diagram illustrating an example of a coding structure at the time of scalable coding.
  • FIG. 18 is a diagram showing an example of a display screen of a web page.
  • FIG. 19 is a view showing an example of a display screen of a web page.
  • FIG. 20 is a diagram illustrating an example of a smartphone.
  • FIG. 21 is a block diagram showing a configuration example of a smartphone.
  • Embodiment 1 First, an outline of the first embodiment will be described as an example of an encoding apparatus and a decoding apparatus to which the process and / or the configuration described in each aspect of the present disclosure described later can be applied.
  • Embodiment 1 is merely an example of an encoding apparatus and a decoding apparatus to which the processing and / or configuration described in each aspect of the present disclosure can be applied, and the processing and / or configuration described in each aspect of the present disclosure Can also be implemented in an encoding apparatus and a decoding apparatus different from those in the first embodiment.
  • the manner of implementation of the processing and / or configuration described in each aspect of the present disclosure is not limited to the above example.
  • the process may be implemented in an apparatus used for a purpose different from that of the moving picture / image coding apparatus or the moving picture / image decoding apparatus disclosed in the first embodiment, or the processing and / or configuration described in each aspect. May be implemented alone. Also, the processes and / or configurations described in the different embodiments may be implemented in combination.
  • FIG. 1 is a block diagram showing a functional configuration of coding apparatus 100 according to the first embodiment.
  • the encoding device 100 is a moving image / image coding device that encodes a moving image / image in units of blocks.
  • the encoding apparatus 100 is an apparatus for encoding an image in units of blocks, and includes a dividing unit 102, a subtracting unit 104, a converting unit 106, a quantizing unit 108, and entropy coding.
  • Unit 110 inverse quantization unit 112, inverse transformation unit 114, addition unit 116, block memory 118, loop filter unit 120, frame memory 122, intra prediction unit 124, inter prediction unit 126, And a prediction control unit 128.
  • the encoding device 100 is realized by, for example, a general-purpose processor and a memory.
  • the processor controls the division unit 102, the subtraction unit 104, the conversion unit 106, the quantization unit 108, the entropy coding unit 110, and the dequantization unit 112.
  • the inverse transform unit 114, the addition unit 116, the loop filter unit 120, the intra prediction unit 124, the inter prediction unit 126, and the prediction control unit 128 function.
  • coding apparatus 100 includes division section 102, subtraction section 104, conversion section 106, quantization section 108, entropy coding section 110, inverse quantization section 112, inverse conversion section 114, addition section 116, and loop filter section 120. , And may be realized as one or more dedicated electronic circuits corresponding to the intra prediction unit 124, the inter prediction unit 126, and the prediction control unit 128.
  • the intra prediction unit 124 may correct the pixel value after intra prediction based on the gradient of the reference pixel in the horizontal / vertical directions. Intra prediction with such correction is sometimes called position dependent intra prediction combination (PDPC). Information indicating the presence or absence of application of PDPC (for example, called a PDPC flag) is signaled, for example, at CU level. Note that the signaling of this information need not be limited to the CU level, but may be at other levels (eg, sequence level, picture level, slice level, tile level or CTU level).
  • the inter prediction signal may be generated using not only the motion information of the current block obtained by the motion search but also the motion information of the adjacent block. Specifically, the inter prediction signal is generated in units of sub blocks in the current block by weighting and adding a prediction signal based on motion information obtained by motion search and a prediction signal based on motion information of an adjacent block. It may be done.
  • Such inter prediction (motion compensation) may be called OBMC (overlapped block motion compensation).
  • the motion vector (MV_L) of the encoded left adjacent block is applied to the current block to obtain a predicted image (Pred_L), and the predicted image and Pred_L are weighted and superimposed. Perform the first correction of the image.
  • the processing target block may be a prediction block unit or a sub block unit obtained by further dividing the prediction block.
  • obmc_flag is a signal indicating whether to apply the OBMC process.
  • the encoding apparatus it is determined whether the encoding target block belongs to a complex area of motion, and if it belongs to a complex area of motion, the value 1 is set as obmc_flag. The encoding is performed by applying the OBMC processing, and when not belonging to the complex region of motion, the value 0 is set as the obmc_flag and the encoding is performed without applying the OBMC processing.
  • the decoding apparatus decodes the obmc_flag described in the stream to switch whether to apply the OBMC process according to the value and performs decoding.
  • the mode in which motion estimation is performed on the side of the decoding apparatus may be referred to as a pattern matched motion vector derivation (PMMVD) mode or a frame rate up-conversion (FRUC) mode.
  • PMMVD pattern matched motion vector derivation
  • FRUC frame rate up-conversion
  • FIG. 5D An example of the FRUC process is shown in FIG. 5D.
  • a plurality of candidate lists (which may be common to the merge list) each having a predicted motion vector are generated Be done.
  • the best candidate MV is selected from among the plurality of candidate MVs registered in the candidate list. For example, an evaluation value of each candidate included in the candidate list is calculated, and one candidate is selected based on the evaluation value.
  • first pattern matching or second pattern matching is used as pattern matching.
  • the first pattern matching and the second pattern matching may be referred to as bilateral matching and template matching, respectively.
  • FIG. 6 is a diagram for explaining an example of pattern matching (bilateral matching) between two blocks along a motion trajectory.
  • First pattern matching among pairs of two blocks in two reference pictures (Ref0, Ref1) which are two blocks along the motion trajectory of the current block (Cur block), Two motion vectors (MV0, MV1) are derived by searching for the most matching pair. Specifically, for the current block, a reconstructed image at a designated position in the first encoded reference picture (Ref 0) designated by the candidate MV, and a symmetric MV obtained by scaling the candidate MV at a display time interval.
  • FIG. 7 is a diagram for explaining an example of pattern matching (template matching) between a template in a current picture and a block in a reference picture.
  • the current block (Cur Pic) is searched for in the reference picture (Ref 0) for a block that most closely matches a block adjacent to the current block (Cur block).
  • Motion vectors are derived.
  • a FRUC flag Information indicating whether to apply such a FRUC mode (for example, called a FRUC flag) is signaled at the CU level.
  • a signal for example, called a FRUC mode flag
  • a method of pattern matching for example, first pattern matching or second pattern matching
  • the signaling of these pieces of information need not be limited to the CU level, but may be at other levels (eg, sequence level, picture level, slice level, tile level, CTU level or subblock level) .
  • This mode is sometimes referred to as a bi-directional optical flow (BIO) mode.
  • BIO bi-directional optical flow
  • FIG. 8 is a diagram for explaining a model assuming uniform linear motion.
  • (v x , v y ) indicate velocity vectors
  • ⁇ 0 and ⁇ 1 indicate the time between the current picture (Cur Pic) and two reference pictures (Ref 0 and Ref 1 ), respectively.
  • (MVx 0 , MVy 0 ) indicates a motion vector corresponding to the reference picture Ref 0
  • (MVx 1 , MVy 1 ) indicates a motion vector corresponding to the reference picture Ref 1 .
  • the optical flow equation is: (i) the time derivative of the luminance value, (ii) the product of the horizontal velocity and the horizontal component of the spatial gradient of the reference image, and (iii) the vertical velocity and the spatial gradient of the reference image Indicates that the product of the vertical components of and the sum of is equal to zero.
  • a motion vector in units of blocks obtained from a merge list or the like is corrected in units of pixels.
  • the motion vector may be derived on the decoding device side by a method different from the derivation of the motion vector based on a model assuming uniform linear motion.
  • motion vectors may be derived on a subblock basis based on motion vectors of a plurality of adjacent blocks.
  • This mode is sometimes referred to as affine motion compensation prediction mode.
  • FIG. 9A is a diagram for describing derivation of a motion vector in units of sub blocks based on motion vectors of a plurality of adjacent blocks.
  • the current block includes sixteen 4 ⁇ 4 subblocks.
  • the motion vector v 0 of the upper left corner control point of the current block is derived based on the motion vector of the adjacent block
  • the motion vector v 1 of the upper right corner control point of the current block is derived based on the motion vector of the adjacent subblock Be done.
  • the motion vector (v x , v y ) of each sub block in the current block is derived according to the following equation (2).
  • the derivation method of the motion vector of the upper left and upper right control points may include several different modes.
  • Information indicating such an affine motion compensation prediction mode (for example, called an affine flag) is signaled at the CU level. Note that the signaling of the information indicating this affine motion compensation prediction mode need not be limited to the CU level, and other levels (eg, sequence level, picture level, slice level, tile level, CTU level or subblock level) ) May be.
  • the prediction control unit 128 selects one of the intra prediction signal and the inter prediction signal, and outputs the selected signal as a prediction signal to the subtraction unit 104 and the addition unit 116.
  • one prediction MV is selected from among the plurality of prediction MVs registered in the prediction MV list, and it is determined as the MV of the current block.
  • merge_idx which is a signal indicating which prediction MV has been selected, is described in the stream and encoded.
  • FIG. 9D is a diagram for describing an outline of a predicted image generation method using luminance correction processing by LIC processing.
  • an MV for obtaining a reference image corresponding to a current block to be coded is derived from a reference picture which is a coded picture.
  • a predicted image for a block to be encoded is generated.
  • a predicted image is generated from a plurality of reference pictures, and is similar to the reference image acquired from each reference picture. After performing luminance correction processing by a method, a predicted image is generated.
  • FIG. 10 is a block diagram showing a functional configuration of decoding apparatus 200 according to Embodiment 1.
  • the decoding device 200 is a moving image / image decoding device that decodes a moving image / image in units of blocks.
  • the decoding apparatus 200 includes an entropy decoding unit 202, an inverse quantization unit 204, an inverse conversion unit 206, an addition unit 208, a block memory 210, a loop filter unit 212, and a frame memory 214. , An intra prediction unit 216, an inter prediction unit 218, and a prediction control unit 220.
  • the inverse quantization unit 204 inversely quantizes the quantization coefficient of the block to be decoded (hereinafter referred to as a current block), which is an input from the entropy decoding unit 202. Specifically, the dequantization part 204 dequantizes the said quantization coefficient about each of the quantization coefficient of a current block based on the quantization parameter corresponding to the said quantization coefficient. Then, the dequantization unit 204 outputs the dequantized quantization coefficient (that is, transform coefficient) of the current block to the inverse transformation unit 206.
  • a current block which is an input from the entropy decoding unit 202.
  • the dequantization part 204 dequantizes the said quantization coefficient about each of the quantization coefficient of a current block based on the quantization parameter corresponding to the said quantization coefficient. Then, the dequantization unit 204 outputs the dequantized quantization coefficient (that is, transform coefficient) of the current block to the inverse transformation unit 206.
  • the inverse transform unit 206 restores the prediction error by inversely transforming the transform coefficient that is the input from the inverse quantization unit 204.
  • the inverse transform unit 206 determines the current block based on the deciphered transformation type information. Inverse transform coefficients of
  • the inverse transform unit 206 applies inverse retransformation to the transform coefficients.
  • the addition unit 208 adds the prediction error, which is the input from the inverse conversion unit 206, and the prediction sample, which is the input from the prediction control unit 220, to reconstruct the current block. Then, the adding unit 208 outputs the reconstructed block to the block memory 210 and the loop filter unit 212.
  • the block memory 210 is a storage unit for storing a block within a picture to be decoded (hereinafter referred to as a current picture) which is a block referred to in intra prediction. Specifically, the block memory 210 stores the reconstructed block output from the adding unit 208.
  • one filter is selected from the plurality of filters based on the local gradient direction and activity, The selected filter is applied to the reconstruction block.
  • the frame memory 214 is a storage unit for storing a reference picture used for inter prediction, and may be referred to as a frame buffer. Specifically, the frame memory 214 stores the reconstructed block filtered by the loop filter unit 212.
  • the intra prediction unit 216 refers to a block in the current picture stored in the block memory 210 to perform intra prediction based on the intra prediction mode read from the coded bit stream, thereby generating a prediction signal (intra prediction Signal). Specifically, the intra prediction unit 216 generates an intra prediction signal by performing intra prediction with reference to samples (for example, luminance value, color difference value) of a block adjacent to the current block, and performs prediction control on the intra prediction signal. Output to unit 220.
  • the intra prediction unit 216 may predict the chrominance component of the current block based on the luminance component of the current block. .
  • the inter prediction unit 218 predicts the current block with reference to the reference picture stored in the frame memory 214.
  • the prediction is performed in units of the current block or subblocks (for example, 4 ⁇ 4 blocks) in the current block.
  • the inter prediction unit 218 generates an inter prediction signal of the current block or sub block by performing motion compensation using motion information (for example, a motion vector) read from the coded bit stream, and generates an inter prediction signal. It is output to the prediction control unit 220.
  • the inter prediction unit 218 determines not only the motion information of the current block obtained by the motion search but also the motion information of the adjacent block. Use to generate an inter prediction signal.
  • the inter prediction unit 218 derives a motion vector based on a model assuming uniform linear motion. Also, in the case where the information deciphered from the coded bit stream indicates that the affine motion compensation prediction mode is applied, the inter prediction unit 218 performs motion vectors in units of sub blocks based on motion vectors of a plurality of adjacent blocks. Derive
  • the prediction control unit 220 selects one of the intra prediction signal and the inter prediction signal, and outputs the selected signal to the addition unit 208 as a prediction signal.
  • the inter prediction unit 126 can select a prediction mode from a plurality of modes (normal mode, merge mode, affine mode, etc.), and derives a motion vector (MV) using the selected prediction mode.
  • the plurality of prediction modes are a first type of prediction mode (normal mode, block unit merge mode, etc.) for deriving a motion vector (MV) in prediction block units, and MV in sub block units obtained by further dividing the prediction block.
  • MV Motion vector
  • sub-block unit merge mode there are an ATMVP (Advanced Temporal Motion Vector Prediction) mode, an STMVP (Spatial-Temporal Motion Vector Prediction) mode, and the like.
  • the inter prediction unit 126 determines the size of the prediction block to be processed. Then, the sub-block size is determined according to (S106), and the prediction block is divided into sub-blocks at that size.
  • the block size is defined by the horizontal and vertical lengths of the block. Details of the determination of the sub block size in step S106 will be described later.
  • the inter prediction unit 126 derives an MV for merge mode in a sub-block unit or an MV for affine mode in a sub-block unit (S107, S108). Then, in loop processing in units of subblocks (S109 to S111), the inter prediction unit 126 performs MC processing in units of subblocks using the MV derived in step S107 or step S108 (S110). Generate a predicted image of
  • the inter prediction unit 126 determines, for example, the horizontal and vertical lengths of the sub block based on the following formula.
  • Sub block size (horizontal) MAX (M1, predicted block size (horizontal) / 2 N1 )
  • Sub block size (vertical) MAX (M2, predicted block size (vertical) / 2 N2 )
  • the inter prediction unit 126 first calculates the quotient of the first division that divides the predicted block size in the horizontal direction by the first power operation (2 N1 ).
  • the base of the first power operation is 2, and the exponent of the first power operation is N1.
  • the inter prediction unit 126 sets the calculated quotient of the first division as the sub-block size in the horizontal direction.
  • the inter prediction unit 126 sets M1 as the horizontal sub-block size.
  • the inter prediction unit 126 calculates the quotient of the second division that divides the predicted block size in the vertical direction by the second power operation (2 N2 ).
  • the base of the second power operation is 2, and the exponent of the second power operation is N2.
  • the inter prediction unit 126 sets the calculated quotient of the second division as the vertical sub-block size.
  • the inter prediction unit 126 sets M2 as the vertical sub-block size.
  • N1 and N2 may be the same value or different values.
  • M1 and M2 may have the same value or different values.
  • M1 and M2 may be determined based on the minimum block size (for example, 4 ⁇ 4 pixels) that can perform motion compensation processing.
  • M1 and M2 may be determined as the horizontal size (for example, 4 pixels) and the vertical size (for example, 4 pixels) of the minimum block size allowed for motion compensation processing, respectively.
  • the sub-block size determination (S106) is performed for both sub-block unit merge mode and affine mode, but the sub-block size determination may be performed only in one of the modes. Good. For example, determination of subblock size is performed in merge mode in units of subblocks, and in affine mode, a prediction block may be always divided into subblocks of fixed size without determination of subblock size, or vice versa It may be Also, the determination of the sub-block size may be similarly performed for the merge mode of the sub-block unit and the second type prediction mode for deriving the MV in sub-block units other than the affine mode.
  • process flow of FIG. 11 is an example, and part of the processes described may be removed or processes not described may be added.
  • FIG. 12 is a diagram for describing a specific example of the size of the sub block obtained by dividing the processing target block.
  • the prediction block size is 32 ⁇ 32 pixels
  • the prediction block is divided into 4 ⁇ 4 pixel sub blocks.
  • the prediction block and the sub-block both have a square of 1: 1 in width: length.
  • the prediction block size is 64 ⁇ 32 pixels
  • the prediction block is divided into subblocks of 8 ⁇ 4 pixels.
  • the prediction block and the sub-block both have a rectangle of 2: 1 horizontal: vertical.
  • the prediction block size is 16 ⁇ 32 pixels
  • the prediction block is divided into subblocks of 4 ⁇ 4 pixels.
  • the prediction block is a rectangle of 1: 2 in horizontal: vertical, but the sub-block is a square of 1: 1 in horizontal: vertical.
  • the prediction block size is 32 ⁇ 32 pixels
  • the prediction block is divided into sub blocks of 8 ⁇ 8 pixels.
  • the prediction block and the sub-block both have a square of 1: 1 in width: length.
  • the prediction block size is 64 ⁇ 32 pixels
  • the prediction block is divided into subblocks of 16 ⁇ 8 pixels.
  • the prediction block and the sub-block both have a rectangle of 2: 1 horizontal: vertical.
  • the prediction block size is 16 ⁇ 32 pixels
  • the prediction block is divided into 4 ⁇ 8 pixel sub blocks.
  • both of the prediction block and the sub-block become a rectangle having a width: height of 1: 2.
  • N1 and N2 increase, the sub-block size is reduced. Also, if the values of M1 and M2 decrease, smaller subblock sizes are allowed. That is, increasing N1 and N2 and / or decreasing M1 and M2 divides the prediction block into smaller sub-blocks. On the other hand, if N1 and N2 are decreased and / or M1 and M2 are increased, the prediction block is divided into larger sub-blocks.
  • the present invention is not limited to this example.
  • the vertical and horizontal lengths of the sub blocks may be determined based on only one of the two.
  • the vertical and horizontal lengths of the sub-blocks may be determined based on the ratio of vertical and horizontal lengths rather than the absolute values of vertical and horizontal lengths of the prediction block to be processed.
  • the vertical and horizontal lengths of the sub-blocks may be determined such that the ratio of vertical and horizontal lengths of the prediction block and the vertical and horizontal lengths of the sub-blocks are the same.
  • the entropy coding unit 110 of the coding apparatus 100 of the information related to M1, M2, N1 and N2 in FIGS. 11 and 12 is a sequence header area, a picture header area, a slice header area or auxiliary information of a coded bit stream. It may be encoded in the area.
  • the entropy decoding unit 202 of the decoding device 200 may decode the information on M1, M2, N1, and N2 from those regions.
  • the coding apparatus 100 switches the values of M1, M2, N1, and N2 according to the processing capacity of the coding apparatus 100 and the processing capacity of the decoding apparatus 200 to which the coding bit stream is transmitted from the coding apparatus 100.
  • the encoding apparatus 100 may determine the values of M1, M2, N1, and N2 based on the processing capabilities of the encoding apparatus 100 and the decoding apparatus 200. For example, if the processing capability is high, the encoding apparatus 100 sets the values of M1, M2, N1, and N2 so that they can be divided into small subblocks because many processes can be performed in a fixed processing time. May be On the other hand, if the processing capability is low, encoding apparatus 100 can set many values of M1, M2, N1, and N2 so that they can be divided into large subblocks because they can not perform many processings in a fixed processing time. Good.
  • the coding apparatus 100 may switch the values of M1, M2, N1, and N2 according to the profile or level information assigned to the coded bit stream. That is, the encoding apparatus 100 may determine the values of M1, M2, N1 and N2 based on the profile or level information. For example, in a profile and level assuming that decoding apparatus 200 has sufficient processing capability, encoding apparatus 100 sets the values of M1, M2, N1, and N2 so as to be divided into small subblocks. It is also good. On the other hand, in the profile and level assuming that the decoding apparatus 200 has insufficient processing power, the encoding apparatus 100 sets the values of M1, M2, N1 and N2 so as to be divided into large subblocks. May be
  • the coding apparatus 100 may switch the values of M1, M2, N1, and N2 according to the size of the current picture to be coded. That is, the encoding apparatus 100 may determine the values of M1, M2, N1, and N2 based on the size of the current picture to be encoded. For example, when the picture size is small, the encoding apparatus 100 may set the values of M1, M2, N1, and N2 so as to be divided into small subblocks so as to be able to follow finer motion. On the other hand, when the picture size is large, the encoding apparatus 100 divides the values of M1, M2, N1, and N2 so as to be divided into large subblocks so as not to be unnecessarily dragged by local fine motions. It may be set.
  • the information on M1, M2, N1 and N2 to be encoded into the bit stream may not be a signal of information strictly indicating them, and may be encoded as a signal having another meaning. For example, by directly associating information on M1, M2, N1, and N2 with profiles and levels in advance and defining them in advance, M1, M2, N1, and N2 can be identified with only signals indicating the profiles and levels.
  • information indicating the values of M1, M2, N1 and N2 themselves may be encoded, or information indicating a difference value from the values of M1, M2, N1 and N2 defined in advance in a standard etc. may be encoded. It is also good.
  • encoding apparatus 100 and decoding apparatus 200 divide the processing target block (prediction block) into sub blocks and perform motion compensation in units of sub blocks.
  • encoding / decoding processing can be performed by switching the horizontal and vertical lengths of the sub block based on the size of the processing target block. That is, the encoding apparatus 100 and the decoding apparatus 200 can perform motion compensation on subblocks of variable sizes depending on the size of the processing target block.
  • each embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good.
  • the processor that executes the program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
  • the server not only encodes a two-dimensional moving image, but also automatically encodes a still image based on scene analysis of the moving image or at a time designated by the user and transmits it to the receiving terminal. It is also good. Furthermore, if the server can acquire relative positional relationship between the imaging terminals, the three-dimensional shape of the scene is not only determined based on the two-dimensional moving image but also the video of the same scene captured from different angles. Can be generated. Note that the server may separately encode three-dimensional data generated by a point cloud or the like, or an image to be transmitted to the receiving terminal based on a result of recognizing or tracking a person or an object using the three-dimensional data. Alternatively, it may be generated by selecting or reconfiguring from videos taken by a plurality of terminals.
  • the user can enjoy the scene by arbitrarily selecting each video corresponding to each photographing terminal, or from the three-dimensional data reconstructed using a plurality of images or videos, the video of the arbitrary viewpoint You can also enjoy the extracted content.
  • the sound may be picked up from a plurality of different angles as well as the video, and the server may multiplex the sound from a specific angle or space with the video and transmit it according to the video.
  • the server superimposes virtual object information in the virtual space on camera information in the real space based on the three-dimensional position or the movement of the user's viewpoint.
  • the decoding apparatus may acquire or hold virtual object information and three-dimensional data, generate a two-dimensional image according to the movement of the user's viewpoint, and create superimposed data by smoothly connecting.
  • the decoding device transmits the motion of the user's viewpoint to the server in addition to the request for virtual object information, and the server creates superimposed data in accordance with the motion of the viewpoint received from the three-dimensional data held in the server.
  • the superimposed data may be encoded and distributed to the decoding device.
  • the picture may be divided into tiles or the like according to the meaning of an object or the like in the image, and the decoding side may be configured to decode only a part of the area by selecting the tile to be decoded.
  • the decoding side can position the desired object based on the meta information. And determine the tile that contains the object. For example, as shown in FIG. 17, meta-information is stored using a data storage structure different from pixel data, such as an SEI message in HEVC. This meta information indicates, for example, the position, size, or color of the main object.
  • the receiving terminal when transmitting or receiving still image or video data such as two-dimensional or three-dimensional map information for automatic traveling or driving assistance of a car, the receiving terminal is added as image information belonging to one or more layers as meta information Information on weather or construction may also be received, and these may be correlated and decoded.
  • the meta information may belong to the layer or may be simply multiplexed with the image data.
  • the receiving terminal since a car including a receiving terminal, a drone or an airplane moves, the receiving terminal transmits the position information of the receiving terminal at the time of reception request to seamlessly receive and decode while switching the base stations ex106 to ex110. Can be realized.
  • the receiving terminal can dynamically switch how much meta information is received or how much map information is updated according to the user's selection, the user's situation or the state of the communication band. become.
  • the client can receive, decode, and reproduce the encoded information transmitted by the user in real time.
  • the server may change and encode the face of a person at the periphery of the screen, or the inside of a house, etc. into an image out of focus.
  • the server recognizes whether or not the face of a person different from the person registered in advance appears in the image to be encoded, and if so, performs processing such as mosaicing the face portion. May be Alternatively, the user designates a person or background area desired to process an image from the viewpoint of copyright etc.
  • preprocessing or post-processing of encoding replaces the designated area with another video or blurs the focus. It is also possible to perform such processing. If it is a person, it is possible to replace the image of the face part while tracking the person in the moving image.
  • the present invention is not limited to the content supply system ex100 via the Internet ex101, but is also applicable to at least a moving picture coding apparatus (image coding apparatus) or a moving picture decoding apparatus (image decoding apparatus) of the above embodiments Can be incorporated. There is a difference in that it is multicast-oriented with respect to the configuration in which the content supply system ex100 can be easily unicasted, since multiplexed data in which video and sound are multiplexed is transmitted on broadcast radio waves using satellites etc. Similar applications are possible for the encoding process and the decoding process.
  • the smartphone ex115 performs processing such as call and data communication based on control of the main control unit ex460 having a CPU, a ROM, a RAM, and the like.
  • the audio signal collected by the audio input unit ex456 is converted to a digital audio signal by the audio signal processing unit ex454, spread spectrum processing is performed by the modulation / demodulation unit ex452, and digital analog conversion is performed by the transmission / reception unit ex451.
  • transmission is performed via the antenna ex450.
  • the received data is amplified and subjected to frequency conversion processing and analog-to-digital conversion processing, subjected to spectrum despreading processing by modulation / demodulation unit ex452, and converted to an analog sound signal by sound signal processing unit ex454.
  • Output from In the data communication mode text, still images, or video data are sent to the main control unit ex460 via the operation input control unit ex462 by the operation of the operation unit ex466 or the like of the main unit, and transmission and reception processing is similarly performed.
  • the video signal processing unit ex 455 executes the video signal stored in the memory unit ex 467 or the video signal input from the camera unit ex 465 as described above.
  • the multiplexing / demultiplexing unit ex453 multiplexes in order to decode multiplexed data received via the antenna ex450.
  • the multiplexed data is divided into a bit stream of video data and a bit stream of audio data, and the encoded video data is supplied to the video signal processing unit ex455 via the synchronization bus ex470, and The converted audio data is supplied to the audio signal processing unit ex 454.
  • the smartphone ex115 is described as an example, in addition to a transmission / reception terminal having both an encoder and a decoder as a terminal, it is referred to as a transmitting terminal having only the encoder and a receiving terminal having only the decoder.
  • a transmitting terminal having only the encoder
  • a receiving terminal having only the decoder.
  • multiplexed data in which audio data is multiplexed with video data is received or transmitted, but in multiplexed data, character data related to video other than audio data is also described. It may be multiplexed, or video data itself may be received or transmitted, not multiplexed data.
  • the present disclosure is applicable to, for example, television receivers, digital video recorders, car navigation systems, mobile phones, digital cameras, digital video cameras, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

A coding device (100) is provided with a circuit and a memory. The circuit uses the memory to, in an inter prediction mode in which a block to be processed is divided into sub-blocks and motion compensation is performed sub-bock by sub-block, switch the horizontal and vertical lengths of the sub-blocks on the basis of the size of the block to be processed and perform coding processing.

Description

符号化装置、復号装置、符号化方法及び復号方法Encoding device, decoding device, encoding method and decoding method
 本開示は、符号化装置、復号装置、符号化方法及び復号方法に関する。 The present disclosure relates to an encoding device, a decoding device, an encoding method, and a decoding method.
 HEVC(High-Efficiency Video Coding)と称される映像符号化標準規格が、JCT-VC(Joint Collaborative Team on Video Coding)により標準化されている。 A video coding standard called HEVC (High-Efficiency Video Coding) is standardized by JCT-VC (Joint Collaborative Team on Video Coding).
 このような符号化及び復号技術では、さらなる改善が求められている。 There is a need for further improvements in such encoding and decoding techniques.
 そこで、本開示は、さらなる改善を実現できる符号化装置、復号装置、符号化方法又は復号方法を提供することを目的とする。 Therefore, the present disclosure aims to provide an encoding device, a decoding device, an encoding method, or a decoding method that can realize further improvement.
 本開示の一態様に係る符号化装置は、回路と、メモリと、を備え、前記回路は、前記メモリを用いて、処理対象ブロックをサブブロックに分割してサブブロック単位で動き補償を行うインター予測モードにおいて、前記処理対象ブロックのサイズに基づいてサブブロックの横および縦の長さを切り替えて符号化処理を行う。 An encoding apparatus according to an aspect of the present disclosure includes a circuit and a memory, and the circuit divides the processing target block into sub blocks using the memory and performs motion compensation in units of sub blocks. In the prediction mode, encoding processing is performed by switching the horizontal and vertical lengths of the sub block based on the size of the processing target block.
 本開示の一態様に係る復号装置は、回路と、メモリと、を備え、前記回路は、前記メモリを用いて、処理対象ブロックをサブブロックに分割してサブブロック単位で動き補償を行うインター予測モードにおいて、前記処理対象ブロックのサイズに基づいてサブブロックの横および縦の長さを切り替えて復号処理を行う。 A decoding device according to an aspect of the present disclosure includes a circuit and a memory, and the circuit divides the processing target block into sub blocks using the memory and performs motion compensation in units of sub blocks. In the mode, the decoding process is performed by switching the horizontal and vertical lengths of the sub block based on the size of the processing target block.
 なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 Note that these general or specific aspects may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium such as a computer readable CD-ROM, a system, a method, an integrated circuit, a computer program And any combination of recording media.
 本開示は、さらなる改善を実現できる符号化装置、復号装置、符号化方法又は復号方法を提供することができる。 The present disclosure can provide a coding device, a decoding device, a coding method or a decoding method that can realize further improvement.
図1は、実施の形態1に係る符号化装置の機能構成を示すブロック図である。FIG. 1 is a block diagram showing a functional configuration of the coding apparatus according to the first embodiment. 図2は、実施の形態1におけるブロック分割の一例を示す図である。FIG. 2 is a diagram showing an example of block division in the first embodiment. 図3は、各変換タイプに対応する変換基底関数を示す表である。FIG. 3 is a table showing transform basis functions corresponding to each transform type. 図4Aは、ALFで用いられるフィルタの形状の一例を示す図である。FIG. 4A is a view showing an example of the shape of a filter used in ALF. 図4Bは、ALFで用いられるフィルタの形状の他の一例を示す図である。FIG. 4B is a view showing another example of the shape of a filter used in ALF. 図4Cは、ALFで用いられるフィルタの形状の他の一例を示す図である。FIG. 4C is a view showing another example of the shape of a filter used in ALF. 図5Aは、イントラ予測における67個のイントラ予測モードを示す図である。FIG. 5A is a diagram illustrating 67 intra prediction modes in intra prediction. 図5Bは、OBMC処理による予測画像補正処理の概要を説明するためのフローチャートである。FIG. 5B is a flowchart for describing an outline of predicted image correction processing by OBMC processing. 図5Cは、OBMC処理による予測画像補正処理の概要を説明するための概念図である。FIG. 5C is a conceptual diagram for describing an outline of predicted image correction processing by OBMC processing. 図5Dは、FRUCの一例を示す図である。FIG. 5D is a diagram illustrating an example of FRUC. 図6は、動き軌道に沿う2つのブロック間でのパターンマッチング(バイラテラルマッチング)を説明するための図である。FIG. 6 is a diagram for describing pattern matching (bilateral matching) between two blocks along a motion trajectory. 図7は、カレントピクチャ内のテンプレートと参照ピクチャ内のブロックとの間でのパターンマッチング(テンプレートマッチング)を説明するための図である。FIG. 7 is a diagram for describing pattern matching (template matching) between a template in a current picture and a block in a reference picture. 図8は、等速直線運動を仮定したモデルを説明するための図である。FIG. 8 is a diagram for explaining a model assuming uniform linear motion. 図9Aは、複数の隣接ブロックの動きベクトルに基づくサブブロック単位の動きベクトルの導出を説明するための図である。FIG. 9A is a diagram for describing derivation of a motion vector in units of sub blocks based on motion vectors of a plurality of adjacent blocks. 図9Bは、マージモードによる動きベクトル導出処理の概要を説明するための図である。FIG. 9B is a diagram for describing an overview of motion vector derivation processing in the merge mode. 図9Cは、DMVR処理の概要を説明するための概念図である。FIG. 9C is a conceptual diagram for describing an overview of DMVR processing. 図9Dは、LIC処理による輝度補正処理を用いた予測画像生成方法の概要を説明するための図である。FIG. 9D is a diagram for describing an outline of a predicted image generation method using luminance correction processing by LIC processing. 図10は、実施の形態1に係る復号装置の機能構成を示すブロック図である。FIG. 10 is a block diagram showing a functional configuration of the decoding apparatus according to the first embodiment. 図11は、実施の形態1におけるインター予測処理の第1の例を示すフローチャートである。FIG. 11 is a flowchart showing a first example of the inter prediction process in the first embodiment. 図12は、処理対象ブロックを分割して得られるサブブロックのサイズの具体例を説明するための図である。FIG. 12 is a diagram for describing a specific example of the size of the sub block obtained by dividing the processing target block. 図13は、サブブック単位マージモードの一例であるATMVPモードについて説明するための図である。FIG. 13 is a diagram for explaining an ATM VP mode which is an example of the sub book unit merge mode. 図14は、サブブック単位マージモードの別の一例であるSTMVPモードについて説明するための図である。FIG. 14 is a diagram for describing an STMVP mode which is another example of the sub book unit merge mode. 図15は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。FIG. 15 is an overall configuration diagram of a content supply system for realizing content distribution service. 図16は、スケーラブル符号化時の符号化構造の一例を示す図である。FIG. 16 is a diagram illustrating an example of a coding structure at the time of scalable coding. 図17は、スケーラブル符号化時の符号化構造の一例を示す図である。FIG. 17 is a diagram illustrating an example of a coding structure at the time of scalable coding. 図18は、webページの表示画面例を示す図である。FIG. 18 is a diagram showing an example of a display screen of a web page. 図19は、webページの表示画面例を示す図である。FIG. 19 is a view showing an example of a display screen of a web page. 図20は、スマートフォンの一例を示す図である。FIG. 20 is a diagram illustrating an example of a smartphone. 図21は、スマートフォンの構成例を示すブロック図である。FIG. 21 is a block diagram showing a configuration example of a smartphone.
 以下、実施の形態について図面を参照しながら具体的に説明する。 Embodiments will be specifically described below with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 The embodiments described below are all inclusive or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the scope of the claims. Further, among the components in the following embodiments, components not described in the independent claim indicating the highest concept are described as arbitrary components.
 (実施の形態1)
 まず、後述する本開示の各態様で説明する処理及び/または構成を適用可能な符号化装置及び復号装置の一例として、実施の形態1の概要を説明する。ただし、実施の形態1は、本開示の各態様で説明する処理及び/または構成を適用可能な符号化装置及び復号装置の一例にすぎず、本開示の各態様で説明する処理及び/または構成は、実施の形態1とは異なる符号化装置及び復号装置においても実施可能である。
Embodiment 1
First, an outline of the first embodiment will be described as an example of an encoding apparatus and a decoding apparatus to which the process and / or the configuration described in each aspect of the present disclosure described later can be applied. However, Embodiment 1 is merely an example of an encoding apparatus and a decoding apparatus to which the processing and / or configuration described in each aspect of the present disclosure can be applied, and the processing and / or configuration described in each aspect of the present disclosure Can also be implemented in an encoding apparatus and a decoding apparatus different from those in the first embodiment.
 実施の形態1に対して本開示の各態様で説明する処理及び/または構成を適用する場合、例えば以下のいずれかを行ってもよい。 When the processing and / or configuration described in each aspect of the present disclosure is applied to Embodiment 1, for example, any of the following may be performed.
 (1)実施の形態1の符号化装置または復号装置に対して、当該符号化装置または復号装置を構成する複数の構成要素のうち、本開示の各態様で説明する構成要素に対応する構成要素を、本開示の各態様で説明する構成要素に置き換えること
 (2)実施の形態1の符号化装置または復号装置に対して、当該符号化装置または復号装置を構成する複数の構成要素のうち一部の構成要素について機能または実施する処理の追加、置き換え、削除などの任意の変更を施した上で、本開示の各態様で説明する構成要素に対応する構成要素を、本開示の各態様で説明する構成要素に置き換えること
 (3)実施の形態1の符号化装置または復号装置が実施する方法に対して、処理の追加、及び/または当該方法に含まれる複数の処理のうちの一部の処理について置き換え、削除などの任意の変更を施した上で、本開示の各態様で説明する処理に対応する処理を、本開示の各態様で説明する処理に置き換えること
 (4)実施の形態1の符号化装置または復号装置を構成する複数の構成要素のうちの一部の構成要素を、本開示の各態様で説明する構成要素、本開示の各態様で説明する構成要素が備える機能の一部を備える構成要素、または本開示の各態様で説明する構成要素が実施する処理の一部を実施する構成要素と組み合わせて実施すること
 (5)実施の形態1の符号化装置または復号装置を構成する複数の構成要素のうちの一部の構成要素が備える機能の一部を備える構成要素、または実施の形態1の符号化装置または復号装置を構成する複数の構成要素のうちの一部の構成要素が実施する処理の一部を実施する構成要素を、本開示の各態様で説明する構成要素、本開示の各態様で説明する構成要素が備える機能の一部を備える構成要素、または本開示の各態様で説明する構成要素が実施する処理の一部を実施する構成要素と組み合わせて実施すること
 (6)実施の形態1の符号化装置または復号装置が実施する方法に対して、当該方法に含まれる複数の処理のうち、本開示の各態様で説明する処理に対応する処理を、本開示の各態様で説明する処理に置き換えること
 (7)実施の形態1の符号化装置または復号装置が実施する方法に含まれる複数の処理のうちの一部の処理を、本開示の各態様で説明する処理と組み合わせて実施すること
(1) Components corresponding to the components described in each aspect of the present disclosure among a plurality of components configuring the encoding apparatus or the decoding apparatus with respect to the encoding apparatus or the decoding apparatus according to the first embodiment With the components described in each aspect of the present disclosure (2) With respect to the encoding device or the decoding device of the first embodiment, one of a plurality of components constituting the encoding device or the decoding device The configuration elements corresponding to the components described in each aspect of the present disclosure are added in each aspect of the present disclosure after arbitrary changes such as addition, replacement, deletion, etc. of functions or processing to be performed on components of the part are performed. Replacing the component to be described (3) With respect to the method implemented by the encoding device or the decoding device of the first embodiment, addition of a process and / or part of a plurality of processes included in the method processing Replacing any processing corresponding to the processing described in each aspect of the present disclosure with the processing described in each aspect of the present disclosure (4) Some components of the plurality of components constituting the encoding device or the decoding device will be the components described in each aspect of the present disclosure, some of the functions of the components described in each aspect of the present disclosure In combination with a component that carries out a part of the process performed by the component described in each aspect of the present disclosure, or (5) the encoding apparatus or the decoding apparatus according to the first embodiment A component having a part of functions provided by a part of a plurality of components to be selected, or a configuration of a part of a plurality of components constituting the encoding apparatus or the decoding apparatus of the first embodiment Element performs The components that perform part of the process are the components described in each aspect of the present disclosure, the components provided with a part of the functions of the components described in each aspect of the present disclosure, or (6) A plurality of methods included in a method implemented by the encoding apparatus or the decoding apparatus according to the first embodiment Replacing the processing corresponding to the processing described in each aspect of the present disclosure with the processing described in each aspect of the present disclosure (7) A method implemented by the encoding apparatus or the decoding apparatus according to the first embodiment Performing some of the plurality of processes included in the above in combination with the processes described in each aspect of the present disclosure
 なお、本開示の各態様で説明する処理及び/または構成の実施の仕方は、上記の例に限定されるものではない。例えば、実施の形態1において開示する動画像/画像符号化装置または動画像/画像復号装置とは異なる目的で利用される装置において実施されてもよいし、各態様において説明した処理及び/または構成を単独で実施してもよい。また、異なる態様において説明した処理及び/または構成を組み合わせて実施してもよい。 Note that the manner of implementation of the processing and / or configuration described in each aspect of the present disclosure is not limited to the above example. For example, the process may be implemented in an apparatus used for a purpose different from that of the moving picture / image coding apparatus or the moving picture / image decoding apparatus disclosed in the first embodiment, or the processing and / or configuration described in each aspect. May be implemented alone. Also, the processes and / or configurations described in the different embodiments may be implemented in combination.
 [符号化装置の概要]
 まず、実施の形態1に係る符号化装置の概要を説明する。図1は、実施の形態1に係る符号化装置100の機能構成を示すブロック図である。符号化装置100は、動画像/画像をブロック単位で符号化する動画像/画像符号化装置である。
[Overview of Encoding Device]
First, an outline of the coding apparatus according to Embodiment 1 will be described. FIG. 1 is a block diagram showing a functional configuration of coding apparatus 100 according to the first embodiment. The encoding device 100 is a moving image / image coding device that encodes a moving image / image in units of blocks.
 図1に示すように、符号化装置100は、画像をブロック単位で符号化する装置であって、分割部102と、減算部104と、変換部106と、量子化部108と、エントロピー符号化部110と、逆量子化部112と、逆変換部114と、加算部116と、ブロックメモリ118と、ループフィルタ部120と、フレームメモリ122と、イントラ予測部124と、インター予測部126と、予測制御部128と、を備える。 As shown in FIG. 1, the encoding apparatus 100 is an apparatus for encoding an image in units of blocks, and includes a dividing unit 102, a subtracting unit 104, a converting unit 106, a quantizing unit 108, and entropy coding. Unit 110, inverse quantization unit 112, inverse transformation unit 114, addition unit 116, block memory 118, loop filter unit 120, frame memory 122, intra prediction unit 124, inter prediction unit 126, And a prediction control unit 128.
 符号化装置100は、例えば、汎用プロセッサ及びメモリにより実現される。この場合、メモリに格納されたソフトウェアプログラムがプロセッサにより実行されたときに、プロセッサは、分割部102、減算部104、変換部106、量子化部108、エントロピー符号化部110、逆量子化部112、逆変換部114、加算部116、ループフィルタ部120、イントラ予測部124、インター予測部126及び予測制御部128として機能する。また、符号化装置100は、分割部102、減算部104、変換部106、量子化部108、エントロピー符号化部110、逆量子化部112、逆変換部114、加算部116、ループフィルタ部120、イントラ予測部124、インター予測部126及び予測制御部128に対応する専用の1以上の電子回路として実現されてもよい。 The encoding device 100 is realized by, for example, a general-purpose processor and a memory. In this case, when the software program stored in the memory is executed by the processor, the processor controls the division unit 102, the subtraction unit 104, the conversion unit 106, the quantization unit 108, the entropy coding unit 110, and the dequantization unit 112. The inverse transform unit 114, the addition unit 116, the loop filter unit 120, the intra prediction unit 124, the inter prediction unit 126, and the prediction control unit 128 function. In addition, coding apparatus 100 includes division section 102, subtraction section 104, conversion section 106, quantization section 108, entropy coding section 110, inverse quantization section 112, inverse conversion section 114, addition section 116, and loop filter section 120. , And may be realized as one or more dedicated electronic circuits corresponding to the intra prediction unit 124, the inter prediction unit 126, and the prediction control unit 128.
 以下に、符号化装置100に含まれる各構成要素について説明する。 Each component included in the encoding device 100 will be described below.
 [分割部]
 分割部102は、入力動画像に含まれる各ピクチャを複数のブロックに分割し、各ブロックを減算部104に出力する。例えば、分割部102は、まず、ピクチャを固定サイズ(例えば128x128)のブロックに分割する。この固定サイズのブロックは、符号化ツリーユニット(CTU)と呼ばれることがある。そして、分割部102は、再帰的な四分木(quadtree)及び/又は二分木(binary tree)ブロック分割に基づいて、固定サイズのブロックの各々を可変サイズ(例えば64x64以下)のブロックに分割する。この可変サイズのブロックは、符号化ユニット(CU)、予測ユニット(PU)あるいは変換ユニット(TU)と呼ばれることがある。なお、本実施の形態では、CU、PU及びTUは区別される必要はなく、ピクチャ内の一部又はすべてのブロックがCU、PU、TUの処理単位となってもよい。
[Division]
The dividing unit 102 divides each picture included in the input moving image into a plurality of blocks, and outputs each block to the subtracting unit 104. For example, the division unit 102 first divides a picture into blocks of a fixed size (for example, 128 × 128). This fixed size block may be referred to as a coding tree unit (CTU). Then, the dividing unit 102 divides each of fixed size blocks into blocks of variable size (for example, 64 × 64 or less) based on recursive quadtree and / or binary tree block division. . This variable sized block may be referred to as a coding unit (CU), a prediction unit (PU) or a transform unit (TU). In the present embodiment, CUs, PUs, and TUs need not be distinguished, and some or all of the blocks in a picture may be processing units of CUs, PUs, and TUs.
 図2は、実施の形態1におけるブロック分割の一例を示す図である。図2において、実線は四分木ブロック分割によるブロック境界を表し、破線は二分木ブロック分割によるブロック境界を表す。 FIG. 2 is a diagram showing an example of block division in the first embodiment. In FIG. 2, solid lines represent block boundaries by quadtree block division, and broken lines represent block boundaries by binary tree block division.
 ここでは、ブロック10は、128x128画素の正方形ブロック(128x128ブロック)である。この128x128ブロック10は、まず、4つの正方形の64x64ブロックに分割される(四分木ブロック分割)。 Here, the block 10 is a square block (128 × 128 block) of 128 × 128 pixels. The 128x128 block 10 is first divided into four square 64x64 blocks (quadtree block division).
 左上の64x64ブロックは、さらに2つの矩形の32x64ブロックに垂直に分割され、左の32x64ブロックはさらに2つの矩形の16x64ブロックに垂直に分割される(二分木ブロック分割)。その結果、左上の64x64ブロックは、2つの16x64ブロック11、12と、32x64ブロック13とに分割される。 The upper left 64x64 block is further vertically divided into two rectangular 32x64 blocks, and the left 32x64 block is further vertically divided into two rectangular 16x64 blocks (binary block division). As a result, the upper left 64x64 block is divided into two 16x64 blocks 11, 12 and a 32x64 block 13.
 右上の64x64ブロックは、2つの矩形の64x32ブロック14、15に水平に分割される(二分木ブロック分割)。 The upper right 64x64 block is divided horizontally into two rectangular 64x32 blocks 14 and 15 (binary block division).
 左下の64x64ブロックは、4つの正方形の32x32ブロックに分割される(四分木ブロック分割)。4つの32x32ブロックのうち左上のブロック及び右下のブロックはさらに分割される。左上の32x32ブロックは、2つの矩形の16x32ブロックに垂直に分割され、右の16x32ブロックはさらに2つの16x16ブロックに水平に分割される(二分木ブロック分割)。右下の32x32ブロックは、2つの32x16ブロックに水平に分割される(二分木ブロック分割)。その結果、左下の64x64ブロックは、16x32ブロック16と、2つの16x16ブロック17、18と、2つの32x32ブロック19、20と、2つの32x16ブロック21、22とに分割される。 The lower left 64x64 block is divided into four square 32x32 blocks (quadtree block division). Of the four 32x32 blocks, the upper left block and the lower right block are further divided. The upper left 32x32 block is vertically divided into two rectangular 16x32 blocks, and the right 16x32 block is further horizontally split into two 16x16 blocks (binary block division). The lower right 32x32 block is divided horizontally into two 32x16 blocks (binary block division). As a result, the lower left 64x64 block is divided into a 16x32 block 16, two 16x16 blocks 17, 18, two 32x32 blocks 19, 20, and two 32x16 blocks 21, 22.
 右下の64x64ブロック23は分割されない。 The lower right 64x64 block 23 is not divided.
 以上のように、図2では、ブロック10は、再帰的な四分木及び二分木ブロック分割に基づいて、13個の可変サイズのブロック11~23に分割される。このような分割は、QTBT(quad-tree plus binary tree)分割と呼ばれることがある。 As described above, in FIG. 2, the block 10 is divided into thirteen variable sized blocks 11 to 23 based on recursive quadtree and binary tree block division. Such division is sometimes called quad-tree plus binary tree (QTBT) division.
 なお、図2では、1つのブロックが4つ又は2つのブロックに分割されていたが(四分木又は二分木ブロック分割)、分割はこれに限定されない。例えば、1つのブロックが3つのブロックに分割されてもよい(三分木ブロック分割)。このような三分木ブロック分割を含む分割は、MBT(multi type tree)分割と呼ばれることがある。 Although one block is divided into four or two blocks (quadtree or binary tree block division) in FIG. 2, the division is not limited to this. For example, one block may be divided into three blocks (tri-tree block division). A partition including such a ternary tree block partition may be referred to as a multi type tree (MBT) partition.
 [減算部]
 減算部104は、分割部102によって分割されたブロック単位で原信号(原サンプル)から予測信号(予測サンプル)を減算する。つまり、減算部104は、符号化対象ブロック(以下、カレントブロックという)の予測誤差(残差ともいう)を算出する。そして、減算部104は、算出された予測誤差を変換部106に出力する。
[Subtractor]
The subtracting unit 104 subtracts a prediction signal (prediction sample) from an original signal (original sample) in block units divided by the dividing unit 102. That is, the subtraction unit 104 calculates a prediction error (also referred to as a residual) of the encoding target block (hereinafter, referred to as a current block). Then, the subtracting unit 104 outputs the calculated prediction error to the converting unit 106.
 原信号は、符号化装置100の入力信号であり、動画像を構成する各ピクチャの画像を表す信号(例えば輝度(luma)信号及び2つの色差(chroma)信号)である。以下において、画像を表す信号をサンプルともいうこともある。 The original signal is an input signal of the coding apparatus 100, and is a signal (for example, a luminance (luma) signal and two color difference (chroma) signals) representing an image of each picture constituting a moving image. In the following, a signal representing an image may also be referred to as a sample.
 [変換部]
 変換部106は、空間領域の予測誤差を周波数領域の変換係数に変換し、変換係数を量子化部108に出力する。具体的には、変換部106は、例えば空間領域の予測誤差に対して予め定められた離散コサイン変換(DCT)又は離散サイン変換(DST)を行う。
[Converter]
Transform section 106 transforms the prediction error in the spatial domain into a transform coefficient in the frequency domain, and outputs the transform coefficient to quantization section 108. Specifically, the transform unit 106 performs, for example, discrete cosine transform (DCT) or discrete sine transform (DST) determined in advance on the prediction error in the spatial domain.
 なお、変換部106は、複数の変換タイプの中から適応的に変換タイプを選択し、選択された変換タイプに対応する変換基底関数(transform basis function)を用いて、予測誤差を変換係数に変換してもよい。このような変換は、EMT(explicit multiple core transform)又はAMT(adaptive multiple transform)と呼ばれることがある。 Transform section 106 adaptively selects a transform type from among a plurality of transform types, and transforms the prediction error into transform coefficients using a transform basis function corresponding to the selected transform type. You may Such transformation may be referred to as explicit multiple core transform (EMT) or adaptive multiple transform (AMT).
 複数の変換タイプは、例えば、DCT-II、DCT-V、DCT-VIII、DST-I及びDST-VIIを含む。図3は、各変換タイプに対応する変換基底関数を示す表である。図3においてNは入力画素の数を示す。これらの複数の変換タイプの中からの変換タイプの選択は、例えば、予測の種類(イントラ予測及びインター予測)に依存してもよいし、イントラ予測モードに依存してもよい。 The plurality of transformation types include, for example, DCT-II, DCT-V, DCT-VIII, DST-I and DST-VII. FIG. 3 is a table showing transform basis functions corresponding to each transform type. In FIG. 3, N indicates the number of input pixels. The choice of transform type from among these multiple transform types may depend, for example, on the type of prediction (intra-prediction and inter-prediction) or depending on the intra-prediction mode.
 このようなEMT又はAMTを適用するか否かを示す情報(例えばAMTフラグと呼ばれる)及び選択された変換タイプを示す情報は、CUレベルで信号化される。なお、これらの情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。 Information indicating whether to apply such EMT or AMT (for example, called an AMT flag) and information indicating the selected conversion type are signaled at CU level. Note that the signaling of these pieces of information need not be limited to the CU level, but may be at other levels (eg, sequence level, picture level, slice level, tile level or CTU level).
 また、変換部106は、変換係数(変換結果)を再変換してもよい。このような再変換は、AST(adaptive secondary transform)又はNSST(non-separable secondary transform)と呼ばれることがある。例えば、変換部106は、イントラ予測誤差に対応する変換係数のブロックに含まれるサブブロック(例えば4x4サブブロック)ごとに再変換を行う。NSSTを適用するか否かを示す情報及びNSSTに用いられる変換行列に関する情報は、CUレベルで信号化される。なお、これらの情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。 Also, the conversion unit 106 may re-convert the conversion coefficient (conversion result). Such reconversion may be referred to as adaptive secondary transform (AST) or non-separable secondary transform (NSST). For example, the conversion unit 106 performs reconversion for each sub block (for example, 4 × 4 sub blocks) included in the block of transform coefficients corresponding to the intra prediction error. The information indicating whether to apply the NSST and the information on the transformation matrix used for the NSST are signaled at the CU level. Note that the signaling of these pieces of information need not be limited to the CU level, but may be at other levels (eg, sequence level, picture level, slice level, tile level or CTU level).
 ここで、Separableな変換とは、入力の次元の数だけ方向ごとに分離して複数回変換を行う方式であり、Non-Separableな変換とは、入力が多次元であった際に2つ以上の次元をまとめて1次元とみなして、まとめて変換を行う方式である。 Here, Separable conversion is a method in which conversion is performed multiple times by separating in each direction as many as the number of dimensions of the input, and Non-Separable conversion is two or more when the input is multidimensional. This is a method of collectively converting the dimensions of 1 and 2 into one dimension.
 例えば、Non-Separableな変換の1例として、入力が4×4のブロックであった場合にはそれを16個の要素を持ったひとつの配列とみなし、その配列に対して16×16の変換行列で変換処理を行うようなものが挙げられる。 For example, as an example of Non-Separable conversion, if the input is a 4 × 4 block, it is regarded as one array having 16 elements, and 16 × 16 conversion is performed on the array There is one that performs transformation processing with a matrix.
 また、同様に4×4の入力ブロックを16個の要素を持ったひとつの配列とみなした後に、その配列に対してGivens回転を複数回行うようなもの(Hypercube Givens Transform)もNon-Separableな変換の例である。 Similarly, if you consider 4x4 input blocks as one array with 16 elements, you can perform multiple Givens rotation on the array (Hypercube Givens Transform) as Non-Separable as well. It is an example of conversion.
 [量子化部]
 量子化部108は、変換部106から出力された変換係数を量子化する。具体的には、量子化部108は、カレントブロックの変換係数を所定の走査順序で走査し、走査された変換係数に対応する量子化パラメータ(QP)に基づいて当該変換係数を量子化する。そして、量子化部108は、カレントブロックの量子化された変換係数(以下、量子化係数という)をエントロピー符号化部110及び逆量子化部112に出力する。
[Quantizer]
The quantization unit 108 quantizes the transform coefficient output from the transform unit 106. Specifically, the quantization unit 108 scans the transform coefficient of the current block in a predetermined scan order, and quantizes the transform coefficient based on the quantization parameter (QP) corresponding to the scanned transform coefficient. Then, the quantization unit 108 outputs the quantized transform coefficient of the current block (hereinafter, referred to as a quantization coefficient) to the entropy coding unit 110 and the inverse quantization unit 112.
 所定の順序は、変換係数の量子化/逆量子化のための順序である。例えば、所定の走査順序は、周波数の昇順(低周波から高周波の順)又は降順(高周波から低周波の順)で定義される。 The predetermined order is an order for quantization / inverse quantization of transform coefficients. For example, the predetermined scan order is defined in ascending order (low frequency to high frequency) or descending order (high frequency to low frequency) of the frequency.
 量子化パラメータとは、量子化ステップ(量子化幅)を定義するパラメータである。例えば、量子化パラメータの値が増加すれば量子化ステップも増加する。つまり、量子化パラメータの値が増加すれば量子化誤差が増大する。 The quantization parameter is a parameter that defines a quantization step (quantization width). For example, if the value of the quantization parameter increases, the quantization step also increases. That is, as the value of the quantization parameter increases, the quantization error increases.
 [エントロピー符号化部]
 エントロピー符号化部110は、量子化部108から入力である量子化係数を可変長符号化することにより符号化信号(符号化ビットストリーム)を生成する。具体的には、エントロピー符号化部110は、例えば、量子化係数を二値化し、二値信号を算術符号化する。
[Entropy coding unit]
The entropy coding unit 110 generates a coded signal (coded bit stream) by subjecting the quantization coefficient input from the quantization unit 108 to variable-length coding. Specifically, for example, the entropy coding unit 110 binarizes the quantization coefficient and performs arithmetic coding on the binary signal.
 [逆量子化部]
 逆量子化部112は、量子化部108からの入力である量子化係数を逆量子化する。具体的には、逆量子化部112は、カレントブロックの量子化係数を所定の走査順序で逆量子化する。そして、逆量子化部112は、カレントブロックの逆量子化された変換係数を逆変換部114に出力する。
[Inverse quantization unit]
The inverse quantization unit 112 inversely quantizes the quantization coefficient which is the input from the quantization unit 108. Specifically, the inverse quantization unit 112 inversely quantizes the quantization coefficient of the current block in a predetermined scan order. Then, the inverse quantization unit 112 outputs the inverse quantized transform coefficient of the current block to the inverse transform unit 114.
 [逆変換部]
 逆変換部114は、逆量子化部112からの入力である変換係数を逆変換することにより予測誤差を復元する。具体的には、逆変換部114は、変換係数に対して、変換部106による変換に対応する逆変換を行うことにより、カレントブロックの予測誤差を復元する。そして、逆変換部114は、復元された予測誤差を加算部116に出力する。
[Inverse converter]
The inverse transform unit 114 restores the prediction error by inversely transforming the transform coefficient which is the input from the inverse quantization unit 112. Specifically, the inverse transform unit 114 restores the prediction error of the current block by performing inverse transform corresponding to the transform by the transform unit 106 on the transform coefficient. Then, the inverse conversion unit 114 outputs the restored prediction error to the addition unit 116.
 なお、復元された予測誤差は、量子化により情報が失われているので、減算部104が算出した予測誤差と一致しない。すなわち、復元された予測誤差には、量子化誤差が含まれている。 The restored prediction error does not match the prediction error calculated by the subtracting unit 104 because the information is lost due to quantization. That is, the restored prediction error includes the quantization error.
 [加算部]
 加算部116は、逆変換部114からの入力である予測誤差と予測制御部128からの入力である予測サンプルとを加算することによりカレントブロックを再構成する。そして、加算部116は、再構成されたブロックをブロックメモリ118及びループフィルタ部120に出力する。再構成ブロックは、ローカル復号ブロックと呼ばれることもある。
[Adder]
The addition unit 116 reconstructs the current block by adding the prediction error, which is the input from the inverse conversion unit 114, and the prediction sample, which is the input from the prediction control unit 128. Then, the addition unit 116 outputs the reconstructed block to the block memory 118 and the loop filter unit 120. Reconstruction blocks may also be referred to as local decoding blocks.
 [ブロックメモリ]
 ブロックメモリ118は、イントラ予測で参照されるブロックであって符号化対象ピクチャ(以下、カレントピクチャという)内のブロックを格納するための記憶部である。具体的には、ブロックメモリ118は、加算部116から出力された再構成ブロックを格納する。
[Block memory]
The block memory 118 is a storage unit for storing a block in an encoding target picture (hereinafter referred to as a current picture) which is a block referred to in intra prediction. Specifically, the block memory 118 stores the reconstructed block output from the adding unit 116.
 [ループフィルタ部]
 ループフィルタ部120は、加算部116によって再構成されたブロックにループフィルタを施し、フィルタされた再構成ブロックをフレームメモリ122に出力する。ループフィルタとは、符号化ループ内で用いられるフィルタ(インループフィルタ)であり、例えば、デブロッキング・フィルタ(DF)、サンプルアダプティブオフセット(SAO)及びアダプティブループフィルタ(ALF)などを含む。
[Loop filter section]
The loop filter unit 120 applies a loop filter to the block reconstructed by the adding unit 116, and outputs the filtered reconstructed block to the frame memory 122. The loop filter is a filter (in-loop filter) used in the coding loop, and includes, for example, a deblocking filter (DF), a sample adaptive offset (SAO), an adaptive loop filter (ALF) and the like.
 ALFでは、符号化歪みを除去するための最小二乗誤差フィルタが適用され、例えばカレントブロック内の2x2サブブロックごとに、局所的な勾配(gradient)の方向及び活性度(activity)に基づいて複数のフィルタの中から選択された1つのフィルタが適用される。 In ALF, a least squares error filter is applied to remove coding distortion, for example, multiple 2x2 subblocks in the current block, based on local gradient direction and activity. One filter selected from the filters is applied.
 具体的には、まず、サブブロック(例えば2x2サブブロック)が複数のクラス(例えば15又は25クラス)に分類される。サブブロックの分類は、勾配の方向及び活性度に基づいて行われる。例えば、勾配の方向値D(例えば0~2又は0~4)と勾配の活性値A(例えば0~4)とを用いて分類値C(例えばC=5D+A)が算出される。そして、分類値Cに基づいて、サブブロックが複数のクラス(例えば15又は25クラス)に分類される。 Specifically, first, subblocks (for example, 2x2 subblocks) are classified into a plurality of classes (for example, 15 or 25 classes). Sub-block classification is performed based on the gradient direction and activity. For example, the classification value C (for example, C = 5 D + A) is calculated using the gradient direction value D (for example, 0 to 2 or 0 to 4) and the gradient activity value A (for example, 0 to 4). Then, based on the classification value C, the sub-blocks are classified into a plurality of classes (for example, 15 or 25 classes).
 勾配の方向値Dは、例えば、複数の方向(例えば水平、垂直及び2つの対角方向)の勾配を比較することにより導出される。また、勾配の活性値Aは、例えば、複数の方向の勾配を加算し、加算結果を量子化することにより導出される。 The direction value D of the gradient is derived, for example, by comparing gradients in a plurality of directions (for example, horizontal, vertical and two diagonal directions). The gradient activation value A is derived, for example, by adding gradients in a plurality of directions and quantizing the addition result.
 このような分類の結果に基づいて、複数のフィルタの中からサブブロックのためのフィルタが決定される。 Based on the result of such classification, a filter for the subblock is determined among the plurality of filters.
 ALFで用いられるフィルタの形状としては例えば円対称形状が利用される。図4A~図4Cは、ALFで用いられるフィルタの形状の複数の例を示す図である。図4Aは、5x5ダイヤモンド形状フィルタを示し、図4Bは、7x7ダイヤモンド形状フィルタを示し、図4Cは、9x9ダイヤモンド形状フィルタを示す。フィルタの形状を示す情報は、ピクチャレベルで信号化される。なお、フィルタの形状を示す情報の信号化は、ピクチャレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、スライスレベル、タイルレベル、CTUレベル又はCUレベル)であってもよい。 For example, a circularly symmetrical shape is used as the shape of the filter used in ALF. FIGS. 4A to 4C are diagrams showing a plurality of examples of filter shapes used in ALF. FIG. 4A shows a 5 × 5 diamond shaped filter, FIG. 4B shows a 7 × 7 diamond shaped filter, and FIG. 4C shows a 9 × 9 diamond shaped filter. Information indicating the shape of the filter is signaled at the picture level. Note that the signaling of the information indicating the shape of the filter does not have to be limited to the picture level, and may be another level (for example, sequence level, slice level, tile level, CTU level or CU level).
 ALFのオン/オフは、例えば、ピクチャレベル又はCUレベルで決定される。例えば、輝度についてはCUレベルでALFを適用するか否かが決定され、色差についてはピクチャレベルでALFを適用するか否かが決定される。ALFのオン/オフを示す情報は、ピクチャレベル又はCUレベルで信号化される。なお、ALFのオン/オフを示す情報の信号化は、ピクチャレベル又はCUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。 The on / off of the ALF is determined, for example, at the picture level or the CU level. For example, as to luminance, it is determined whether to apply ALF at the CU level, and as to color difference, it is determined whether to apply ALF at the picture level. Information indicating on / off of ALF is signaled at picture level or CU level. Note that the signaling of the information indicating ALF on / off need not be limited to the picture level or CU level, and may be other levels (eg, sequence level, slice level, tile level or CTU level) Good.
 選択可能な複数のフィルタ(例えば15又は25までのフィルタ)の係数セットは、ピクチャレベルで信号化される。なお、係数セットの信号化は、ピクチャレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、スライスレベル、タイルレベル、CTUレベル、CUレベル又はサブブロックレベル)であってもよい。 The set of coefficients of the plurality of selectable filters (eg, up to 15 or 25 filters) is signaled at the picture level. Note that the signaling of the coefficient set need not be limited to the picture level, but may be other levels (eg, sequence level, slice level, tile level, CTU level, CU level or sub-block level).
 [フレームメモリ]
 フレームメモリ122は、インター予測に用いられる参照ピクチャを格納するための記憶部であり、フレームバッファと呼ばれることもある。具体的には、フレームメモリ122は、ループフィルタ部120によってフィルタされた再構成ブロックを格納する。
[Frame memory]
The frame memory 122 is a storage unit for storing a reference picture used for inter prediction, and may be referred to as a frame buffer. Specifically, the frame memory 122 stores the reconstructed block filtered by the loop filter unit 120.
 [イントラ予測部]
 イントラ予測部124は、ブロックメモリ118に格納されたカレントピクチャ内のブロックを参照してカレントブロックのイントラ予測(画面内予測ともいう)を行うことで、予測信号(イントラ予測信号)を生成する。具体的には、イントラ予測部124は、カレントブロックに隣接するブロックのサンプル(例えば輝度値、色差値)を参照してイントラ予測を行うことでイントラ予測信号を生成し、イントラ予測信号を予測制御部128に出力する。
[Intra prediction unit]
The intra prediction unit 124 generates a prediction signal (intra prediction signal) by performing intra prediction (also referred to as in-screen prediction) of the current block with reference to a block in the current picture stored in the block memory 118. Specifically, the intra prediction unit 124 generates an intra prediction signal by performing intra prediction with reference to samples (for example, luminance value, color difference value) of a block adjacent to the current block, and performs prediction control on the intra prediction signal. Output to the part 128.
 例えば、イントラ予測部124は、予め規定された複数のイントラ予測モードのうちの1つを用いてイントラ予測を行う。複数のイントラ予測モードは、1以上の非方向性予測モードと、複数の方向性予測モードと、を含む。 For example, the intra prediction unit 124 performs intra prediction using one of a plurality of predefined intra prediction modes. The plurality of intra prediction modes include one or more non-directional prediction modes and a plurality of directional prediction modes.
 1以上の非方向性予測モードは、例えばH.265/HEVC(High-Efficiency Video Coding)規格(非特許文献1)で規定されたPlanar予測モード及びDC予測モードを含む。 One or more non-directional prediction modes are described in, for example, H.264. It includes Planar prediction mode and DC prediction mode defined in H.265 / High-Efficiency Video Coding (HEVC) standard (Non-Patent Document 1).
 複数の方向性予測モードは、例えばH.265/HEVC規格で規定された33方向の予測モードを含む。なお、複数の方向性予測モードは、33方向に加えてさらに32方向の予測モード(合計で65個の方向性予測モード)を含んでもよい。図5Aは、イントラ予測における67個のイントラ予測モード(2個の非方向性予測モード及び65個の方向性予測モード)を示す図である。実線矢印は、H.265/HEVC規格で規定された33方向を表し、破線矢印は、追加された32方向を表す。 The plurality of directionality prediction modes are, for example, H. It includes 33 directional prediction modes defined by the H.265 / HEVC standard. In addition to the 33 directions, the plurality of directionality prediction modes may further include 32 direction prediction modes (a total of 65 directionality prediction modes). FIG. 5A is a diagram showing 67 intra prediction modes (2 non-directional prediction modes and 65 directional prediction modes) in intra prediction. Solid arrows indicate H. A broken line arrow represents the added 32 directions, which represents the 33 directions defined in the H.265 / HEVC standard.
 なお、色差ブロックのイントラ予測において、輝度ブロックが参照されてもよい。つまり、カレントブロックの輝度成分に基づいて、カレントブロックの色差成分が予測されてもよい。このようなイントラ予測は、CCLM(cross-component linear model)予測と呼ばれることがある。このような輝度ブロックを参照する色差ブロックのイントラ予測モード(例えばCCLMモードと呼ばれる)は、色差ブロックのイントラ予測モードの1つとして加えられてもよい。 Note that a luminance block may be referred to in intra prediction of a chrominance block. That is, the chrominance component of the current block may be predicted based on the luminance component of the current block. Such intra prediction may be referred to as cross-component linear model (CCLM) prediction. The intra prediction mode (for example, referred to as a CCLM mode) of a chrominance block referencing such a luminance block may be added as one of the intra prediction modes of the chrominance block.
 イントラ予測部124は、水平/垂直方向の参照画素の勾配に基づいてイントラ予測後の画素値を補正してもよい。このような補正をともなうイントラ予測は、PDPC(position dependent intra prediction combination)と呼ばれることがある。PDPCの適用の有無を示す情報(例えばPDPCフラグと呼ばれる)は、例えばCUレベルで信号化される。なお、この情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。 The intra prediction unit 124 may correct the pixel value after intra prediction based on the gradient of the reference pixel in the horizontal / vertical directions. Intra prediction with such correction is sometimes called position dependent intra prediction combination (PDPC). Information indicating the presence or absence of application of PDPC (for example, called a PDPC flag) is signaled, for example, at CU level. Note that the signaling of this information need not be limited to the CU level, but may be at other levels (eg, sequence level, picture level, slice level, tile level or CTU level).
 [インター予測部]
 インター予測部126は、フレームメモリ122に格納された参照ピクチャであってカレントピクチャとは異なる参照ピクチャを参照してカレントブロックのインター予測(画面間予測ともいう)を行うことで、予測信号(インター予測信号)を生成する。インター予測は、カレントブロック又はカレントブロック内のサブブロック(例えば4x4ブロック)の単位で行われる。例えば、インター予測部126は、カレントブロック又はサブブロックについて参照ピクチャ内で動き探索(motion estimation)を行う。そして、インター予測部126は、動き探索により得られた動き情報(例えば動きベクトル)を用いて動き補償を行うことでカレントブロック又はサブブロックのインター予測信号を生成する。そして、インター予測部126は、生成されたインター予測信号を予測制御部128に出力する。
[Inter prediction unit]
The inter prediction unit 126 performs inter prediction (also referred to as inter-frame prediction) of a current block with reference to a reference picture that is a reference picture stored in the frame memory 122 and that is different from the current picture. Generate a prediction signal). Inter prediction is performed in units of a current block or sub blocks (for example, 4 × 4 blocks) in the current block. For example, the inter prediction unit 126 performs motion estimation on the current block or sub block in the reference picture. Then, the inter prediction unit 126 generates an inter prediction signal of the current block or sub block by performing motion compensation using motion information (for example, a motion vector) obtained by the motion search. Then, the inter prediction unit 126 outputs the generated inter prediction signal to the prediction control unit 128.
 動き補償に用いられた動き情報は信号化される。動きベクトルの信号化には、予測動きベクトル(motion vector predictor)が用いられてもよい。つまり、動きベクトルと予測動きベクトルとの間の差分が信号化されてもよい。 The motion information used for motion compensation is signaled. A motion vector predictor may be used to signal the motion vector. That is, the difference between the motion vector and the predicted motion vector may be signaled.
 なお、動き探索により得られたカレントブロックの動き情報だけでなく、隣接ブロックの動き情報も用いて、インター予測信号が生成されてもよい。具体的には、動き探索により得られた動き情報に基づく予測信号と、隣接ブロックの動き情報に基づく予測信号と、を重み付け加算することにより、カレントブロック内のサブブロック単位でインター予測信号が生成されてもよい。このようなインター予測(動き補償)は、OBMC(overlapped block motion compensation)と呼ばれることがある。 Note that the inter prediction signal may be generated using not only the motion information of the current block obtained by the motion search but also the motion information of the adjacent block. Specifically, the inter prediction signal is generated in units of sub blocks in the current block by weighting and adding a prediction signal based on motion information obtained by motion search and a prediction signal based on motion information of an adjacent block. It may be done. Such inter prediction (motion compensation) may be called OBMC (overlapped block motion compensation).
 このようなOBMCモードでは、OBMCのためのサブブロックのサイズを示す情報(例えばOBMCブロックサイズと呼ばれる)は、シーケンスレベルで信号化される。また、OBMCモードを適用するか否かを示す情報(例えばOBMCフラグと呼ばれる)は、CUレベルで信号化される。なお、これらの情報の信号化のレベルは、シーケンスレベル及びCUレベルに限定される必要はなく、他のレベル(例えばピクチャレベル、スライスレベル、タイルレベル、CTUレベル又はサブブロックレベル)であってもよい。 In such OBMC mode, information indicating the size of sub-blocks for OBMC (for example, called OBMC block size) is signaled at the sequence level. Also, information indicating whether or not to apply the OBMC mode (for example, called an OBMC flag) is signaled at the CU level. Note that the level of signaling of these pieces of information need not be limited to the sequence level and the CU level, and may be other levels (eg, picture level, slice level, tile level, CTU level or subblock level) Good.
 OBMCモードについて、より具体的に説明する。図5B及び図5Cは、OBMC処理による予測画像補正処理の概要を説明するためのフローチャート及び概念図である。 The OBMC mode will be described more specifically. FIG. 5B and FIG. 5C are a flowchart and a conceptual diagram for explaining an outline of predicted image correction processing by OBMC processing.
 まず、符号化対象ブロックに割り当てられた動きベクトル(MV)を用いて通常の動き補償による予測画像(Pred)を取得する。 First, a predicted image (Pred) by normal motion compensation is acquired using the motion vector (MV) assigned to the encoding target block.
 次に、符号化済みの左隣接ブロックの動きベクトル(MV_L)を符号化対象ブロックに適用して予測画像(Pred_L)を取得し、前記予測画像とPred_Lとを重みを付けて重ね合わせることで予測画像の1回目の補正を行う。 Next, the motion vector (MV_L) of the encoded left adjacent block is applied to the current block to obtain a predicted image (Pred_L), and the predicted image and Pred_L are weighted and superimposed. Perform the first correction of the image.
 同様に、符号化済みの上隣接ブロックの動きベクトル(MV_U)を符号化対象ブロックに適用して予測画像(Pred_U)を取得し、前記1回目の補正を行った予測画像とPred_Uとを重みを付けて重ね合わせることで予測画像の2回目の補正を行い、それを最終的な予測画像とする。 Similarly, the motion vector (MV_U) of the encoded upper adjacent block is applied to the coding target block to obtain a predicted image (Pred_U), and the predicted image subjected to the first correction and the Pred_U are weighted. A second correction of the predicted image is performed by adding and superposing, and this is made a final predicted image.
 なお、ここでは左隣接ブロックと上隣接ブロックを用いた2段階の補正の方法を説明したが、右隣接ブロックや下隣接ブロックを用いて2段階よりも多い回数の補正を行う構成とすることも可能である。 Although the two-step correction method using the left adjacent block and the upper adjacent block has been described here, the right adjacent block and the lower adjacent block may be used to perform correction more than two steps. It is possible.
 なお、重ね合わせを行う領域はブロック全体の画素領域ではなく、ブロック境界近傍の一部の領域のみであってもよい。 The area to be superimposed may not be the pixel area of the entire block, but only a partial area near the block boundary.
 なお、ここでは1枚の参照ピクチャからの予測画像補正処理について説明したが、複数枚の参照ピクチャから予測画像を補正する場合も同様であり、各々の参照ピクチャから補正した予測画像を取得した後に、得られた予測画像をさらに重ね合わせることで最終的な予測画像とする。 Although the predicted image correction processing from one reference picture has been described here, the same applies to the case where a predicted image is corrected from a plurality of reference pictures, and after obtaining a corrected predicted image from each reference picture The final predicted image is obtained by further superimposing the obtained predicted images.
 なお、前記処理対象ブロックは、予測ブロック単位であっても、予測ブロックをさらに分割したサブブロック単位であってもよい。 The processing target block may be a prediction block unit or a sub block unit obtained by further dividing the prediction block.
 OBMC処理を適用するかどうかの判定の方法として、例えば、OBMC処理を適用するかどうかを示す信号であるobmc_flagを用いる方法がある。具体的な一例としては、符号化装置において、符号化対象ブロックが動きの複雑な領域に属しているかどうかを判定し、動きの複雑な領域に属している場合はobmc_flagとして値1を設定してOBMC処理を適用して符号化を行い、動きの複雑な領域に属していない場合はobmc_flagとして値0を設定してOBMC処理を適用せずに符号化を行う。一方、復号装置では、ストリームに記述されたobmc_flagを復号することで、その値に応じてOBMC処理を適用するかどうかを切替えて復号を行う。 As a method of determining whether to apply the OBMC process, for example, there is a method using obmc_flag which is a signal indicating whether to apply the OBMC process. As a specific example, in the encoding apparatus, it is determined whether the encoding target block belongs to a complex area of motion, and if it belongs to a complex area of motion, the value 1 is set as obmc_flag. The encoding is performed by applying the OBMC processing, and when not belonging to the complex region of motion, the value 0 is set as the obmc_flag and the encoding is performed without applying the OBMC processing. On the other hand, the decoding apparatus decodes the obmc_flag described in the stream to switch whether to apply the OBMC process according to the value and performs decoding.
 なお、動き情報は信号化されずに、復号装置側で導出されてもよい。例えば、H.265/HEVC規格で規定されたマージモードが用いられてもよい。また例えば、復号装置側で動き探索を行うことにより動き情報が導出されてもよい。この場合、カレントブロックの画素値を用いずに動き探索が行われる。 The motion information may be derived on the decoding device side without being signalized. For example, H. The merge mode defined in the H.265 / HEVC standard may be used. Also, for example, motion information may be derived by performing motion search on the decoding device side. In this case, motion search is performed without using the pixel value of the current block.
 ここで、復号装置側で動き探索を行うモードについて説明する。この復号装置側で動き探索を行うモードは、PMMVD(pattern matched motion vector derivation)モード又はFRUC(frame rate up-conversion)モードと呼ばれることがある。 Here, a mode in which motion estimation is performed on the decoding device side will be described. The mode in which motion estimation is performed on the side of the decoding apparatus may be referred to as a pattern matched motion vector derivation (PMMVD) mode or a frame rate up-conversion (FRUC) mode.
 FRUC処理の一例を図5Dに示す。まず、カレントブロックに空間的又は時間的に隣接する符号化済みブロックの動きベクトルを参照して、各々が予測動きベクトルを有する複数の候補のリスト(マージリストと共通であってもよい)が生成される。次に、候補リストに登録されている複数の候補MVの中からベスト候補MVを選択する。例えば、候補リストに含まれる各候補の評価値が算出され、評価値に基づいて1つの候補が選択される。 An example of the FRUC process is shown in FIG. 5D. First, referring to motion vectors of encoded blocks spatially or temporally adjacent to the current block, a plurality of candidate lists (which may be common to the merge list) each having a predicted motion vector are generated Be done. Next, the best candidate MV is selected from among the plurality of candidate MVs registered in the candidate list. For example, an evaluation value of each candidate included in the candidate list is calculated, and one candidate is selected based on the evaluation value.
 そして、選択された候補の動きベクトルに基づいて、カレントブロックのための動きベクトルが導出される。具体的には、例えば、選択された候補の動きベクトル(ベスト候補MV)がそのままカレントブロックのための動きベクトルとして導出される。また例えば、選択された候補の動きベクトルに対応する参照ピクチャ内の位置の周辺領域において、パターンマッチングを行うことにより、カレントブロックのための動きベクトルが導出されてもよい。すなわち、ベスト候補MVの周辺の領域に対して同様の方法で探索を行い、さらに評価値が良い値となるMVがあった場合は、ベスト候補MVを前記MVに更新して、それをカレントブロックの最終的なMVとしてもよい。なお、当該処理を実施しない構成とすることも可能である。 Then, a motion vector for the current block is derived based on the selected candidate motion vector. Specifically, for example, the selected candidate motion vector (best candidate MV) is derived as it is as the motion vector for the current block. Also, for example, a motion vector for the current block may be derived by performing pattern matching in a peripheral region of a position in the reference picture corresponding to the selected candidate motion vector. That is, the search is performed on the area around the best candidate MV by the same method, and if there is an MV for which the evaluation value is good, the best candidate MV is updated to the MV and the current block is updated. It may be used as the final MV. In addition, it is also possible to set it as the structure which does not implement the said process.
 サブブロック単位で処理を行う場合も全く同様の処理としてもよい。 When processing is performed in units of subblocks, the same processing may be performed.
 なお、評価値は、動きベクトルに対応する参照ピクチャ内の領域と、所定の領域との間のパターンマッチングによって再構成画像の差分値を求めることにより算出される。なお、差分値に加えてそれ以外の情報を用いて評価値を算出してもよい。 The evaluation value is calculated by calculating the difference value of the reconstructed image by pattern matching between the area in the reference picture corresponding to the motion vector and the predetermined area. Note that the evaluation value may be calculated using information other than the difference value.
 パターンマッチングとしては、第1パターンマッチング又は第2パターンマッチングが用いられる。第1パターンマッチング及び第2パターンマッチングは、それぞれ、バイラテラルマッチング(bilateral matching)及びテンプレートマッチング(template matching)と呼ばれることがある。 As pattern matching, first pattern matching or second pattern matching is used. The first pattern matching and the second pattern matching may be referred to as bilateral matching and template matching, respectively.
 第1パターンマッチングでは、異なる2つの参照ピクチャ内の2つのブロックであってカレントブロックの動き軌道(motion trajectory)に沿う2つのブロックの間でパターンマッチングが行われる。したがって、第1パターンマッチングでは、上述した候補の評価値の算出のための所定の領域として、カレントブロックの動き軌道に沿う他の参照ピクチャ内の領域が用いられる。 In the first pattern matching, pattern matching is performed between two blocks in two different reference pictures, which are along the motion trajectory of the current block. Therefore, in the first pattern matching, a region in another reference picture along the motion trajectory of the current block is used as the predetermined region for calculation of the evaluation value of the candidate described above.
 図6は、動き軌道に沿う2つのブロック間でのパターンマッチング(バイラテラルマッチング)の一例を説明するための図である。図6に示すように、第1パターンマッチングでは、カレントブロック(Cur block)の動き軌道に沿う2つのブロックであって異なる2つの参照ピクチャ(Ref0、Ref1)内の2つのブロックのペアの中で最もマッチするペアを探索することにより2つの動きベクトル(MV0、MV1)が導出される。具体的には、カレントブロックに対して、候補MVで指定された第1の符号化済み参照ピクチャ(Ref0)内の指定位置における再構成画像と、前記候補MVを表示時間間隔でスケーリングした対称MVで指定された第2の符号化済み参照ピクチャ(Ref1)内の指定位置における再構成画像との差分を導出し、得られた差分値を用いて評価値を算出する。複数の候補MVの中で最も評価値が良い値となる候補MVを最終MVとして選択するとよい。 FIG. 6 is a diagram for explaining an example of pattern matching (bilateral matching) between two blocks along a motion trajectory. As shown in FIG. 6, in the first pattern matching, among pairs of two blocks in two reference pictures (Ref0, Ref1) which are two blocks along the motion trajectory of the current block (Cur block), Two motion vectors (MV0, MV1) are derived by searching for the most matching pair. Specifically, for the current block, a reconstructed image at a designated position in the first encoded reference picture (Ref 0) designated by the candidate MV, and a symmetric MV obtained by scaling the candidate MV at a display time interval. The difference with the reconstructed image at the specified position in the second coded reference picture (Ref 1) specified in step is derived, and the evaluation value is calculated using the obtained difference value. The candidate MV with the best evaluation value among the plurality of candidate MVs may be selected as the final MV.
 連続的な動き軌道の仮定の下では、2つの参照ブロックを指し示す動きベクトル(MV0、MV1)は、カレントピクチャ(Cur Pic)と2つの参照ピクチャ(Ref0、Ref1)との間の時間的な距離(TD0、TD1)に対して比例する。例えば、カレントピクチャが時間的に2つの参照ピクチャの間に位置し、カレントピクチャから2つの参照ピクチャへの時間的な距離が等しい場合、第1パターンマッチングでは、鏡映対称な双方向の動きベクトルが導出される。 Under the assumption of continuous motion trajectory, motion vectors (MV0, MV1) pointing to two reference blocks are the temporal distance between the current picture (Cur Pic) and the two reference pictures (Ref0, Ref1) It is proportional to (TD0, TD1). For example, when the current picture is temporally located between two reference pictures, and the temporal distances from the current picture to the two reference pictures are equal, in the first pattern matching, the mirror symmetric bi-directional motion vector Is derived.
 第2パターンマッチングでは、カレントピクチャ内のテンプレート(カレントピクチャ内でカレントブロックに隣接するブロック(例えば上及び/又は左隣接ブロック))と参照ピクチャ内のブロックとの間でパターンマッチングが行われる。したがって、第2パターンマッチングでは、上述した候補の評価値の算出のための所定の領域として、カレントピクチャ内のカレントブロックに隣接するブロックが用いられる。 In the second pattern matching, pattern matching is performed between a template in the current picture (a block adjacent to the current block in the current picture (eg, upper and / or left adjacent blocks)) and a block in the reference picture. Therefore, in the second pattern matching, a block adjacent to the current block in the current picture is used as the predetermined area for calculating the evaluation value of the candidate described above.
 図7は、カレントピクチャ内のテンプレートと参照ピクチャ内のブロックとの間でのパターンマッチング(テンプレートマッチング)の一例を説明するための図である。図7に示すように、第2パターンマッチングでは、カレントピクチャ(Cur Pic)内でカレントブロック(Cur block)に隣接するブロックと最もマッチするブロックを参照ピクチャ(Ref0)内で探索することによりカレントブロックの動きベクトルが導出される。具体的には、カレントブロックに対して、左隣接及び上隣接の両方もしくはどちらか一方の符号化済み領域の再構成画像と、候補MVで指定された符号化済み参照ピクチャ(Ref0)内の同等位置における再構成画像との差分を導出し、得られた差分値を用いて評価値を算出し、複数の候補MVの中で最も評価値が良い値となる候補MVをベスト候補MVとして選択するとよい。 FIG. 7 is a diagram for explaining an example of pattern matching (template matching) between a template in a current picture and a block in a reference picture. As shown in FIG. 7, in the second pattern matching, the current block (Cur Pic) is searched for in the reference picture (Ref 0) for a block that most closely matches a block adjacent to the current block (Cur block). Motion vectors are derived. Specifically, with respect to the current block, the reconstructed image of the left adjacent region and / or the upper adjacent encoded region, and the equivalent in the encoded reference picture (Ref 0) specified by the candidate MV When the difference between the position and the reconstructed image is derived, the evaluation value is calculated using the obtained difference value, and the candidate MV having the best evaluation value among the plurality of candidate MVs is selected as the best candidate MV Good.
 このようなFRUCモードを適用するか否かを示す情報(例えばFRUCフラグと呼ばれる)は、CUレベルで信号化される。また、FRUCモードが適用される場合(例えばFRUCフラグが真の場合)、パターンマッチングの方法(第1パターンマッチング又は第2パターンマッチング)を示す情報(例えばFRUCモードフラグと呼ばれる)がCUレベルで信号化される。なお、これらの情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル、CTUレベル又はサブブロックレベル)であってもよい。 Information indicating whether to apply such a FRUC mode (for example, called a FRUC flag) is signaled at the CU level. In addition, when the FRUC mode is applied (for example, when the FRUC flag is true), a signal (for example, called a FRUC mode flag) indicating a method of pattern matching (for example, first pattern matching or second pattern matching) is a signal at CU level Be Note that the signaling of these pieces of information need not be limited to the CU level, but may be at other levels (eg, sequence level, picture level, slice level, tile level, CTU level or subblock level) .
 ここで、等速直線運動を仮定したモデルに基づいて動きベクトルを導出するモードについて説明する。このモードは、BIO(bi-directional optical flow)モードと呼ばれることがある。 Here, a mode for deriving a motion vector based on a model assuming uniform linear motion will be described. This mode is sometimes referred to as a bi-directional optical flow (BIO) mode.
 図8は、等速直線運動を仮定したモデルを説明するための図である。図8において、(v,v)は、速度ベクトルを示し、τ、τは、それぞれ、カレントピクチャ(Cur Pic)と2つの参照ピクチャ(Ref,Ref)との間の時間的な距離を示す。(MVx,MVy)は、参照ピクチャRefに対応する動きベクトルを示し、(MVx、MVy)は、参照ピクチャRefに対応する動きベクトルを示す。 FIG. 8 is a diagram for explaining a model assuming uniform linear motion. In FIG. 8, (v x , v y ) indicate velocity vectors, and τ 0 and τ 1 indicate the time between the current picture (Cur Pic) and two reference pictures (Ref 0 and Ref 1 ), respectively. Indicate the distance. (MVx 0 , MVy 0 ) indicates a motion vector corresponding to the reference picture Ref 0 , and (MVx 1 , MVy 1 ) indicates a motion vector corresponding to the reference picture Ref 1 .
 このとき速度ベクトル(v,v)の等速直線運動の仮定の下では、(MVx,MVy)及び(MVx,MVy)は、それぞれ、(vτ,vτ)及び(-vτ,-vτ)と表され、以下のオプティカルフロー等式(1)が成り立つ。 At this time, under the assumption of uniform linear motion of the velocity vector (v x , v y ), (MV x 0 , MV y 0 ) and (MV x 1 , MV y 1 ) respectively represent (v x τ 0 , v y τ 0 ) and (-v x τ 1 , -v y τ 1 ), the following optical flow equation (1) holds.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、I(k)は、動き補償後の参照画像k(k=0,1)の輝度値を示す。このオプティカルフロー等式は、(i)輝度値の時間微分と、(ii)水平方向の速度及び参照画像の空間勾配の水平成分の積と、(iii)垂直方向の速度及び参照画像の空間勾配の垂直成分の積と、の和が、ゼロと等しいことを示す。このオプティカルフロー等式とエルミート補間(Hermite interpolation)との組み合わせに基づいて、マージリスト等から得られるブロック単位の動きベクトルが画素単位で補正される。 Here, I (k) represents the luminance value of the reference image k (k = 0, 1) after motion compensation. The optical flow equation is: (i) the time derivative of the luminance value, (ii) the product of the horizontal velocity and the horizontal component of the spatial gradient of the reference image, and (iii) the vertical velocity and the spatial gradient of the reference image Indicates that the product of the vertical components of and the sum of is equal to zero. Based on the combination of the optical flow equation and Hermite interpolation, a motion vector in units of blocks obtained from a merge list or the like is corrected in units of pixels.
 なお、等速直線運動を仮定したモデルに基づく動きベクトルの導出とは異なる方法で、復号装置側で動きベクトルが導出されてもよい。例えば、複数の隣接ブロックの動きベクトルに基づいてサブブロック単位で動きベクトルが導出されてもよい。 Note that the motion vector may be derived on the decoding device side by a method different from the derivation of the motion vector based on a model assuming uniform linear motion. For example, motion vectors may be derived on a subblock basis based on motion vectors of a plurality of adjacent blocks.
 ここで、複数の隣接ブロックの動きベクトルに基づいてサブブロック単位で動きベクトルを導出するモードについて説明する。このモードは、アフィン動き補償予測(affine motion compensation prediction)モードと呼ばれることがある。 Here, a mode for deriving a motion vector in units of sub blocks based on motion vectors of a plurality of adjacent blocks will be described. This mode is sometimes referred to as affine motion compensation prediction mode.
 図9Aは、複数の隣接ブロックの動きベクトルに基づくサブブロック単位の動きベクトルの導出を説明するための図である。図9Aにおいて、カレントブロックは、16の4x4サブブロックを含む。ここでは、隣接ブロックの動きベクトルに基づいてカレントブロックの左上角制御ポイントの動きベクトルvが導出され、隣接サブブロックの動きベクトルに基づいてカレントブロックの右上角制御ポイントの動きベクトルvが導出される。そして、2つの動きベクトルv及びvを用いて、以下の式(2)により、カレントブロック内の各サブブロックの動きベクトル(v,v)が導出される。 FIG. 9A is a diagram for describing derivation of a motion vector in units of sub blocks based on motion vectors of a plurality of adjacent blocks. In FIG. 9A, the current block includes sixteen 4 × 4 subblocks. Here, the motion vector v 0 of the upper left corner control point of the current block is derived based on the motion vector of the adjacent block, and the motion vector v 1 of the upper right corner control point of the current block is derived based on the motion vector of the adjacent subblock Be done. Then, using the two motion vectors v 0 and v 1 , the motion vector (v x , v y ) of each sub block in the current block is derived according to the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、x及びyは、それぞれ、サブブロックの水平位置及び垂直位置を示し、wは、予め定められた重み係数を示す。 Here, x and y indicate the horizontal position and the vertical position of the sub block, respectively, and w indicates a predetermined weighting factor.
 このようなアフィン動き補償予測モードでは、左上及び右上角制御ポイントの動きベクトルの導出方法が異なるいくつかのモードを含んでもよい。このようなアフィン動き補償予測モードを示す情報(例えばアフィンフラグと呼ばれる)は、CUレベルで信号化される。なお、このアフィン動き補償予測モードを示す情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル、CTUレベル又はサブブロックレベル)であってもよい。 In such an affine motion compensation prediction mode, the derivation method of the motion vector of the upper left and upper right control points may include several different modes. Information indicating such an affine motion compensation prediction mode (for example, called an affine flag) is signaled at the CU level. Note that the signaling of the information indicating this affine motion compensation prediction mode need not be limited to the CU level, and other levels (eg, sequence level, picture level, slice level, tile level, CTU level or subblock level) ) May be.
 [予測制御部]
 予測制御部128は、イントラ予測信号及びインター予測信号のいずれかを選択し、選択した信号を予測信号として減算部104及び加算部116に出力する。
[Prediction control unit]
The prediction control unit 128 selects one of the intra prediction signal and the inter prediction signal, and outputs the selected signal as a prediction signal to the subtraction unit 104 and the addition unit 116.
 ここで、マージモードにより符号化対象ピクチャの動きベクトルを導出する例を説明する。図9Bは、マージモードによる動きベクトル導出処理の概要を説明するための図である。 Here, an example in which the motion vector of the current picture to be encoded is derived by the merge mode will be described. FIG. 9B is a diagram for describing an overview of motion vector derivation processing in the merge mode.
 まず、予測MVの候補を登録した予測MVリストを生成する。予測MVの候補としては、符号化対象ブロックの空間的に周辺に位置する複数の符号化済みブロックが持つMVである空間隣接予測MV、符号化済み参照ピクチャにおける符号化対象ブロックの位置を投影した近辺のブロックが持つMVである時間隣接予測MV、空間隣接予測MVと時間隣接予測MVのMV値を組合わせて生成したMVである結合予測MV、及び値がゼロのMVであるゼロ予測MV等がある。 First, a predicted MV list in which candidates for predicted MV are registered is generated. As the prediction MV candidate, the position of the coding target block in the coded reference picture, which is the MV of the plurality of coded blocks located in the spatial periphery of the coding target block, is projected Temporally adjacent prediction MV which is an MV possessed by a nearby block, joint prediction MV which is an MV generated by combining spatially adjacent prediction MV and MVs of temporally adjacent prediction MV, and zero prediction MV whose value is MV, etc. There is.
 次に、予測MVリストに登録されている複数の予測MVの中から1つの予測MVを選択することで、符号化対象ブロックのMVとして決定する。 Next, one prediction MV is selected from among the plurality of prediction MVs registered in the prediction MV list, and it is determined as the MV of the current block.
 さらに可変長符号化部では、どの予測MVを選択したかを示す信号であるmerge_idxをストリームに記述して符号化する。 Furthermore, in the variable-length coding unit, merge_idx, which is a signal indicating which prediction MV has been selected, is described in the stream and encoded.
 なお、図9Bで説明した予測MVリストに登録する予測MVは一例であり、図中の個数とは異なる個数であったり、図中の予測MVの一部の種類を含まない構成であったり、図中の予測MVの種類以外の予測MVを追加した構成であったりしてもよい。 Note that the prediction MVs registered in the prediction MV list described in FIG. 9B are an example, and the number is different from the number in the drawing, or the configuration does not include some types of the prediction MV in the drawing, It may have a configuration in which prediction MVs other than the type of prediction MV in the drawing are added.
 なお、マージモードにより導出した符号化対象ブロックのMVを用いて、後述するDMVR処理を行うことによって最終的なMVを決定してもよい。 The final MV may be determined by performing the DMVR process described later using the MV of the coding target block derived in the merge mode.
 ここで、DMVR処理を用いてMVを決定する例について説明する。 Here, an example in which the MV is determined using the DMVR process will be described.
 図9Cは、DMVR処理の概要を説明するための概念図である。 FIG. 9C is a conceptual diagram for describing an overview of DMVR processing.
 まず、処理対象ブロックに設定された最適MVPを候補MVとして、前記候補MVに従って、L0方向の処理済みピクチャである第1参照ピクチャ、及びL1方向の処理済みピクチャである第2参照ピクチャから参照画素をそれぞれ取得し、各参照画素の平均をとることでテンプレートを生成する。 First, with the optimum MVP set as the processing target block as a candidate MV, according to the candidate MV, a first reference picture which is a processed picture in the L0 direction and a second reference picture which is a processed picture in the L1 direction To generate a template by averaging each reference pixel.
 次に、前記テンプレートを用いて、第1参照ピクチャ及び第2参照ピクチャの候補MVの周辺領域をそれぞれ探索し、最もコストが最小となるMVを最終的なMVとして決定する。なお、コスト値はテンプレートの各画素値と探索領域の各画素値との差分値及びMV値等を用いて算出する。 Next, using the template, areas around candidate MVs of the first reference picture and the second reference picture are respectively searched, and the MV with the lowest cost is determined as the final MV. The cost value is calculated using the difference value between each pixel value of the template and each pixel value of the search area, the MV value, and the like.
 なお、符号化装置及び復号装置では、ここで説明した処理の概要は基本的に共通である。 In addition, in the encoding apparatus and the decoding apparatus, the outline of the process described here is basically common.
 なお、ここで説明した処理そのものでなくても、候補MVの周辺を探索して最終的なMVを導出することができる処理であれば、他の処理を用いてもよい。 Note that even if the process is not a process described here, another process may be used as long as the process can search for the periphery of the candidate MV and derive a final MV.
 ここで、LIC処理を用いて予測画像を生成するモードについて説明する。 Here, a mode in which a predicted image is generated using LIC processing will be described.
 図9Dは、LIC処理による輝度補正処理を用いた予測画像生成方法の概要を説明するための図である。 FIG. 9D is a diagram for describing an outline of a predicted image generation method using luminance correction processing by LIC processing.
 まず、符号化済みピクチャである参照ピクチャから符号化対象ブロックに対応する参照画像を取得するためのMVを導出する。 First, an MV for obtaining a reference image corresponding to a current block to be coded is derived from a reference picture which is a coded picture.
 次に、符号化対象ブロックに対して、左隣接及び上隣接の符号化済み周辺参照領域の輝度画素値と、MVで指定された参照ピクチャ内の同等位置における輝度画素値とを用いて、参照ピクチャと符号化対象ピクチャとで輝度値がどのように変化したかを示す情報を抽出して輝度補正パラメータを算出する。 Next, for the block to be encoded, reference is made using the luminance pixel values of the left adjacent and upper adjacent encoded peripheral reference regions and the luminance pixel values at equivalent positions in the reference picture specified by MV. Information indicating how the luminance value has changed between the picture and the picture to be encoded is extracted to calculate a luminance correction parameter.
 MVで指定された参照ピクチャ内の参照画像に対して前記輝度補正パラメータを用いて輝度補正処理を行うことで、符号化対象ブロックに対する予測画像を生成する。 By performing luminance correction processing on a reference image in a reference picture designated by MV using the luminance correction parameter, a predicted image for a block to be encoded is generated.
 なお、図9Dにおける前記周辺参照領域の形状は一例であり、これ以外の形状を用いてもよい。 The shape of the peripheral reference area in FIG. 9D is an example, and other shapes may be used.
 また、ここでは1枚の参照ピクチャから予測画像を生成する処理について説明したが、複数枚の参照ピクチャから予測画像を生成する場合も同様であり、各々の参照ピクチャから取得した参照画像に同様の方法で輝度補正処理を行ってから予測画像を生成する。 Further, although the process of generating a predicted image from one reference picture has been described here, the same applies to a case where a predicted image is generated from a plurality of reference pictures, and is similar to the reference image acquired from each reference picture. After performing luminance correction processing by a method, a predicted image is generated.
 LIC処理を適用するかどうかの判定の方法として、例えば、LIC処理を適用するかどうかを示す信号であるlic_flagを用いる方法がある。具体的な一例としては、符号化装置において、符号化対象ブロックが輝度変化が発生している領域に属しているかどうかを判定し、輝度変化が発生している領域に属している場合はlic_flagとして値1を設定してLIC処理を適用して符号化を行い、輝度変化が発生している領域に属していない場合はlic_flagとして値0を設定してLIC処理を適用せずに符号化を行う。一方、復号装置では、ストリームに記述されたlic_flagを復号することで、その値に応じてLIC処理を適用するかどうかを切替えて復号を行う。 As a method of determining whether to apply the LIC process, for example, there is a method using lic_flag which is a signal indicating whether to apply the LIC process. As a specific example, in the encoding apparatus, it is determined whether or not the encoding target block belongs to the area in which the luminance change occurs, and when it belongs to the area in which the luminance change occurs, as lic_flag A value of 1 is set and encoding is performed by applying LIC processing, and when not belonging to an area where a luminance change occurs, a value of 0 is set as lic_flag and encoding is performed without applying the LIC processing. . On the other hand, the decoding apparatus decodes lic_flag described in the stream to switch whether to apply the LIC processing according to the value and performs decoding.
 LIC処理を適用するかどうかの判定の別の方法として、例えば、周辺ブロックでLIC処理を適用したかどうかに従って判定する方法もある。具体的な一例としては、符号化対象ブロックがマージモードであった場合、マージモード処理におけるMVの導出の際に選択した周辺の符号化済みブロックがLIC処理を適用して符号化したかどうかを判定し、その結果に応じてLIC処理を適用するかどうかを切替えて符号化を行う。なお、この例の場合、復号における処理も全く同様となる。 As another method of determining whether to apply the LIC process, for example, there is also a method of determining according to whether or not the LIC process is applied to the peripheral block. As a specific example, when the encoding target block is in merge mode, whether or not the surrounding encoded blocks selected in the derivation of the MV in merge mode processing are encoded by applying LIC processing According to the result, whether to apply the LIC process is switched to perform encoding. In the case of this example, the processing in the decoding is completely the same.
 [復号装置の概要]
 次に、上記の符号化装置100から出力された符号化信号(符号化ビットストリーム)を復号可能な復号装置の概要について説明する。図10は、実施の形態1に係る復号装置200の機能構成を示すブロック図である。復号装置200は、動画像/画像をブロック単位で復号する動画像/画像復号装置である。
[Overview of Decryption Device]
Next, an outline of a decoding apparatus capable of decoding the coded signal (coded bit stream) output from the above coding apparatus 100 will be described. FIG. 10 is a block diagram showing a functional configuration of decoding apparatus 200 according to Embodiment 1. The decoding device 200 is a moving image / image decoding device that decodes a moving image / image in units of blocks.
 図10に示すように、復号装置200は、エントロピー復号部202と、逆量子化部204と、逆変換部206と、加算部208と、ブロックメモリ210と、ループフィルタ部212と、フレームメモリ214と、イントラ予測部216と、インター予測部218と、予測制御部220と、を備える。 As shown in FIG. 10, the decoding apparatus 200 includes an entropy decoding unit 202, an inverse quantization unit 204, an inverse conversion unit 206, an addition unit 208, a block memory 210, a loop filter unit 212, and a frame memory 214. , An intra prediction unit 216, an inter prediction unit 218, and a prediction control unit 220.
 復号装置200は、例えば、汎用プロセッサ及びメモリにより実現される。この場合、メモリに格納されたソフトウェアプログラムがプロセッサにより実行されたときに、プロセッサは、エントロピー復号部202、逆量子化部204、逆変換部206、加算部208、ループフィルタ部212、イントラ予測部216、インター予測部218及び予測制御部220として機能する。また、復号装置200は、エントロピー復号部202、逆量子化部204、逆変換部206、加算部208、ループフィルタ部212、イントラ予測部216、インター予測部218及び予測制御部220に対応する専用の1以上の電子回路として実現されてもよい。 The decoding device 200 is realized by, for example, a general-purpose processor and a memory. In this case, when the processor executes the software program stored in the memory, the processor determines whether the entropy decoding unit 202, the inverse quantization unit 204, the inverse conversion unit 206, the addition unit 208, the loop filter unit 212, the intra prediction unit 216 functions as an inter prediction unit 218 and a prediction control unit 220. In addition, the decoding apparatus 200 is a dedicated unit corresponding to the entropy decoding unit 202, the inverse quantization unit 204, the inverse conversion unit 206, the addition unit 208, the loop filter unit 212, the intra prediction unit 216, the inter prediction unit 218, and the prediction control unit 220. And one or more electronic circuits.
 以下に、復号装置200に含まれる各構成要素について説明する。 Each component included in the decoding device 200 will be described below.
 [エントロピー復号部]
 エントロピー復号部202は、符号化ビットストリームをエントロピー復号する。具体的には、エントロピー復号部202は、例えば、符号化ビットストリームから二値信号に算術復号する。そして、エントロピー復号部202は、二値信号を多値化(debinarize)する。これにより、エントロピー復号部202は、ブロック単位で量子化係数を逆量子化部204に出力する。
[Entropy decoder]
The entropy decoding unit 202 entropy decodes the coded bit stream. Specifically, the entropy decoding unit 202 performs arithmetic decoding, for example, from a coded bit stream to a binary signal. Then, the entropy decoding unit 202 debinarizes the binary signal. Thereby, the entropy decoding unit 202 outputs the quantization coefficient to the dequantization unit 204 in block units.
 [逆量子化部]
 逆量子化部204は、エントロピー復号部202からの入力である復号対象ブロック(以下、カレントブロックという)の量子化係数を逆量子化する。具体的には、逆量子化部204は、カレントブロックの量子化係数の各々について、当該量子化係数に対応する量子化パラメータに基づいて当該量子化係数を逆量子化する。そして、逆量子化部204は、カレントブロックの逆量子化された量子化係数(つまり変換係数)を逆変換部206に出力する。
[Inverse quantization unit]
The inverse quantization unit 204 inversely quantizes the quantization coefficient of the block to be decoded (hereinafter referred to as a current block), which is an input from the entropy decoding unit 202. Specifically, the dequantization part 204 dequantizes the said quantization coefficient about each of the quantization coefficient of a current block based on the quantization parameter corresponding to the said quantization coefficient. Then, the dequantization unit 204 outputs the dequantized quantization coefficient (that is, transform coefficient) of the current block to the inverse transformation unit 206.
 [逆変換部]
 逆変換部206は、逆量子化部204からの入力である変換係数を逆変換することにより予測誤差を復元する。
[Inverse converter]
The inverse transform unit 206 restores the prediction error by inversely transforming the transform coefficient that is the input from the inverse quantization unit 204.
 例えば符号化ビットストリームから読み解かれた情報がEMT又はAMTを適用することを示す場合(例えばAMTフラグが真)、逆変換部206は、読み解かれた変換タイプを示す情報に基づいてカレントブロックの変換係数を逆変換する。 For example, when the information deciphered from the coded bit stream indicates that the EMT or AMT is applied (for example, the AMT flag is true), the inverse transform unit 206 determines the current block based on the deciphered transformation type information. Inverse transform coefficients of
 また例えば、符号化ビットストリームから読み解かれた情報がNSSTを適用することを示す場合、逆変換部206は、変換係数に逆再変換を適用する。 Also, for example, when the information deciphered from the coded bit stream indicates that the NSST is to be applied, the inverse transform unit 206 applies inverse retransformation to the transform coefficients.
 [加算部]
 加算部208は、逆変換部206からの入力である予測誤差と予測制御部220からの入力である予測サンプルとを加算することによりカレントブロックを再構成する。そして、加算部208は、再構成されたブロックをブロックメモリ210及びループフィルタ部212に出力する。
[Adder]
The addition unit 208 adds the prediction error, which is the input from the inverse conversion unit 206, and the prediction sample, which is the input from the prediction control unit 220, to reconstruct the current block. Then, the adding unit 208 outputs the reconstructed block to the block memory 210 and the loop filter unit 212.
 [ブロックメモリ]
 ブロックメモリ210は、イントラ予測で参照されるブロックであって復号対象ピクチャ(以下、カレントピクチャという)内のブロックを格納するための記憶部である。具体的には、ブロックメモリ210は、加算部208から出力された再構成ブロックを格納する。
[Block memory]
The block memory 210 is a storage unit for storing a block within a picture to be decoded (hereinafter referred to as a current picture) which is a block referred to in intra prediction. Specifically, the block memory 210 stores the reconstructed block output from the adding unit 208.
 [ループフィルタ部]
 ループフィルタ部212は、加算部208によって再構成されたブロックにループフィルタを施し、フィルタされた再構成ブロックをフレームメモリ214及び表示装置等に出力する。
[Loop filter section]
The loop filter unit 212 applies a loop filter to the block reconstructed by the adding unit 208, and outputs the filtered reconstructed block to the frame memory 214 and a display device or the like.
 符号化ビットストリームから読み解かれたALFのオン/オフを示す情報がALFのオンを示す場合、局所的な勾配の方向及び活性度に基づいて複数のフィルタの中から1つのフィルタが選択され、選択されたフィルタが再構成ブロックに適用される。 If the information indicating on / off of ALF read from the encoded bit stream indicates that ALF is on, one filter is selected from the plurality of filters based on the local gradient direction and activity, The selected filter is applied to the reconstruction block.
 [フレームメモリ]
 フレームメモリ214は、インター予測に用いられる参照ピクチャを格納するための記憶部であり、フレームバッファと呼ばれることもある。具体的には、フレームメモリ214は、ループフィルタ部212によってフィルタされた再構成ブロックを格納する。
[Frame memory]
The frame memory 214 is a storage unit for storing a reference picture used for inter prediction, and may be referred to as a frame buffer. Specifically, the frame memory 214 stores the reconstructed block filtered by the loop filter unit 212.
 [イントラ予測部]
 イントラ予測部216は、符号化ビットストリームから読み解かれたイントラ予測モードに基づいて、ブロックメモリ210に格納されたカレントピクチャ内のブロックを参照してイントラ予測を行うことで、予測信号(イントラ予測信号)を生成する。具体的には、イントラ予測部216は、カレントブロックに隣接するブロックのサンプル(例えば輝度値、色差値)を参照してイントラ予測を行うことでイントラ予測信号を生成し、イントラ予測信号を予測制御部220に出力する。
[Intra prediction unit]
The intra prediction unit 216 refers to a block in the current picture stored in the block memory 210 to perform intra prediction based on the intra prediction mode read from the coded bit stream, thereby generating a prediction signal (intra prediction Signal). Specifically, the intra prediction unit 216 generates an intra prediction signal by performing intra prediction with reference to samples (for example, luminance value, color difference value) of a block adjacent to the current block, and performs prediction control on the intra prediction signal. Output to unit 220.
 なお、色差ブロックのイントラ予測において輝度ブロックを参照するイントラ予測モードが選択されている場合は、イントラ予測部216は、カレントブロックの輝度成分に基づいて、カレントブロックの色差成分を予測してもよい。 When the intra prediction mode that refers to the luminance block is selected in the intra prediction of the chrominance block, the intra prediction unit 216 may predict the chrominance component of the current block based on the luminance component of the current block. .
 また、符号化ビットストリームから読み解かれた情報がPDPCの適用を示す場合、イントラ予測部216は、水平/垂直方向の参照画素の勾配に基づいてイントラ予測後の画素値を補正する。 Also, when the information read from the coded bit stream indicates the application of PDPC, the intra prediction unit 216 corrects the pixel value after intra prediction based on the gradient of reference pixels in the horizontal / vertical directions.
 [インター予測部]
 インター予測部218は、フレームメモリ214に格納された参照ピクチャを参照して、カレントブロックを予測する。予測は、カレントブロック又はカレントブロック内のサブブロック(例えば4x4ブロック)の単位で行われる。例えば、インター予測部218は、符号化ビットストリームから読み解かれた動き情報(例えば動きベクトル)を用いて動き補償を行うことでカレントブロック又はサブブロックのインター予測信号を生成し、インター予測信号を予測制御部220に出力する。
[Inter prediction unit]
The inter prediction unit 218 predicts the current block with reference to the reference picture stored in the frame memory 214. The prediction is performed in units of the current block or subblocks (for example, 4 × 4 blocks) in the current block. For example, the inter prediction unit 218 generates an inter prediction signal of the current block or sub block by performing motion compensation using motion information (for example, a motion vector) read from the coded bit stream, and generates an inter prediction signal. It is output to the prediction control unit 220.
 なお、符号化ビットストリームから読み解かれた情報がOBMCモードを適用することを示す場合、インター予測部218は、動き探索により得られたカレントブロックの動き情報だけでなく、隣接ブロックの動き情報も用いて、インター予測信号を生成する。 When the information deciphered from the coded bit stream indicates that the OBMC mode is applied, the inter prediction unit 218 determines not only the motion information of the current block obtained by the motion search but also the motion information of the adjacent block. Use to generate an inter prediction signal.
 また、符号化ビットストリームから読み解かれた情報がFRUCモードを適用することを示す場合、インター予測部218は、符号化ストリームから読み解かれたパターンマッチングの方法(バイラテラルマッチング又はテンプレートマッチング)に従って動き探索を行うことにより動き情報を導出する。そして、インター予測部218は、導出された動き情報を用いて動き補償を行う。 Also, in the case where the information deciphered from the coded bit stream indicates that the FRUC mode is applied, the inter prediction unit 218 is configured to follow the method of pattern matching deciphered from the coded stream (bilateral matching or template matching). Motion information is derived by performing motion search. Then, the inter prediction unit 218 performs motion compensation using the derived motion information.
 また、インター予測部218は、BIOモードが適用される場合に、等速直線運動を仮定したモデルに基づいて動きベクトルを導出する。また、符号化ビットストリームから読み解かれた情報がアフィン動き補償予測モードを適用することを示す場合には、インター予測部218は、複数の隣接ブロックの動きベクトルに基づいてサブブロック単位で動きベクトルを導出する。 In addition, when the BIO mode is applied, the inter prediction unit 218 derives a motion vector based on a model assuming uniform linear motion. Also, in the case where the information deciphered from the coded bit stream indicates that the affine motion compensation prediction mode is applied, the inter prediction unit 218 performs motion vectors in units of sub blocks based on motion vectors of a plurality of adjacent blocks. Derive
 [予測制御部]
 予測制御部220は、イントラ予測信号及びインター予測信号のいずれかを選択し、選択した信号を予測信号として加算部208に出力する。
[Prediction control unit]
The prediction control unit 220 selects one of the intra prediction signal and the inter prediction signal, and outputs the selected signal to the addition unit 208 as a prediction signal.
 [インター予測処理の第1の例]
 ここで、インター予測部126および218におけるインター予測処理の一例について図面を参照しながら説明する。図11は、実施の形態1におけるインター予測処理の第1の例を示すフローチャートである。なお、インター予測部218は、インター予測部126と同様の処理を行うので、本例において、インター予測部218の説明は適宜省略する。
[First example of inter prediction processing]
Here, an example of the inter prediction processing in the inter prediction units 126 and 218 will be described with reference to the drawings. FIG. 11 is a flowchart showing a first example of the inter prediction process in the first embodiment. In addition, since the inter prediction unit 218 performs the same processing as the inter prediction unit 126, in the present example, the description of the inter prediction unit 218 is appropriately omitted.
 インター予測部126は、複数のモード(ノーマルモード、マージモード、アフィンモード等)の中から予測モードを選択可能であり、選択された予測モードを用いて動きベクトル(MV)を導出する。このとき、複数の予測モードは、予測ブロック単位で動きベクトル(MV)を導出する第1タイプの予測モード(ノーマルモード、ブロック単位マージモード等)と、予測ブロックをさらに分割したサブブロック単位でMVを導出する第2タイプの予測モード(サブブロック単位マージモード、アフィンモード等)とに大きく分けられる。なお、サブブロック単位マージモードの一例としては、ATMVP(Advanced Temporal Motion Vector Prediction)モード、STMVP(Spatial-Temporal Motion Vector Prediction)モード等がある。 The inter prediction unit 126 can select a prediction mode from a plurality of modes (normal mode, merge mode, affine mode, etc.), and derives a motion vector (MV) using the selected prediction mode. At this time, the plurality of prediction modes are a first type of prediction mode (normal mode, block unit merge mode, etc.) for deriving a motion vector (MV) in prediction block units, and MV in sub block units obtained by further dividing the prediction block. Are roughly divided into a second type of prediction mode (sub-block unit merge mode, affine mode, etc.) for deriving. As an example of the sub-block unit merge mode, there are an ATMVP (Advanced Temporal Motion Vector Prediction) mode, an STMVP (Spatial-Temporal Motion Vector Prediction) mode, and the like.
 予測ブロック単位のループ処理において(S101~S112)、まず、インター予測部126は、予測ブロックのインター予測モード情報を判定する(S102)。ここで、インター予測モードが第1タイプの予測モードに含まれるノーマルモードである場合は(S102のノーマルモード)、インター予測部126は、ブロック単位でノーマルモード用のMVを導出する(S103)。また、インター予測モードが第1タイプの予測モードに含まれるブロック単位のマージモードである場合は(S102のマージモード(ブロック))、インター予測部126は、ブロック単位でマージモード用のMVを導出する(S104)。インター予測部126は、ステップS103またはステップS104で導出されたMVを用いてブロック単位で動き補償(MC)処理を行うことで(S105)、予測ブロックの予測画像を生成する。 In loop processing on a prediction block basis (S101 to S112), first, the inter prediction unit 126 determines inter prediction mode information of a prediction block (S102). Here, when the inter prediction mode is the normal mode included in the first type of prediction mode (the normal mode of S102), the inter prediction unit 126 derives the MV for the normal mode in block units (S103). When the inter prediction mode is a merge mode in block units included in the first type of prediction mode (merge mode (block) in S102), the inter prediction unit 126 derives MV for merge mode in block units. (S104). The inter prediction unit 126 generates a prediction image of a prediction block by performing motion compensation (MC) processing in units of blocks using the MV derived in step S103 or step S104 (S105).
 一方、インター予測モードがサブブロック単位でMVを導出する第2タイプの予測モードである場合は(S102のマージモード(サブブロック)およびアフィンモード)、インター予測部126は、処理対象の予測ブロックサイズに応じてサブブロックサイズを判定し(S106)、そのサイズで予測ブロックをサブブロックに分割する。ブロックサイズは、ブロックの横および縦の長さで定義される。このステップS106におけるサブブロックサイズの判定の詳細については後述する。 On the other hand, when the inter prediction mode is the second type of prediction mode for deriving MV in units of sub blocks (merge mode (sub block) and affine mode in S102), the inter prediction unit 126 determines the size of the prediction block to be processed. Then, the sub-block size is determined according to (S106), and the prediction block is divided into sub-blocks at that size. The block size is defined by the horizontal and vertical lengths of the block. Details of the determination of the sub block size in step S106 will be described later.
 その後、インター予測部126は、サブブロック単位のマージモード用のMVまたはアフィンモード用のMVをサブブロック単位で導出する(S107、S108)。そして、サブブロック単位のループ処理において(S109~S111)、インター予測部126は、ステップS107またはステップS108で導出されたMVを用いてサブブロック単位でMC処理を行うことで(S110)、予測ブロックの予測画像を生成する。 Thereafter, the inter prediction unit 126 derives an MV for merge mode in a sub-block unit or an MV for affine mode in a sub-block unit (S107, S108). Then, in loop processing in units of subblocks (S109 to S111), the inter prediction unit 126 performs MC processing in units of subblocks using the MV derived in step S107 or step S108 (S110). Generate a predicted image of
 ここで、図11のステップS106におけるサブブロックサイズの判定方法の一例を説明する。 Here, an example of the method of determining the sub block size in step S106 of FIG. 11 will be described.
 インター予測部126は、例えば、以下の数式に基づいてサブブロックの横および縦の長さを判定する。 The inter prediction unit 126 determines, for example, the horizontal and vertical lengths of the sub block based on the following formula.
 サブブロックサイズ(横)=MAX(M1,予測ブロックサイズ(横)/2N1Sub block size (horizontal) = MAX (M1, predicted block size (horizontal) / 2 N1 )
 サブブロックサイズ(縦)=MAX(M2,予測ブロックサイズ(縦)/2N2Sub block size (vertical) = MAX (M2, predicted block size (vertical) / 2 N2 )
 ここで、M1およびM2は、それぞれ第1所定値および第2所定値であり、ともに予め定められた1以上の整数である。また、N1およびN2は、それぞれ第1べき演算の指数および第2べき演算の指数であり、ともに予め定められた0以上の整数である。 Here, M1 and M2 are a first predetermined value and a second predetermined value, respectively, and both are predetermined integers of 1 or more. Further, N1 and N2 are an index of the first power operation and an index of the second power operation, respectively, and both are predetermined integers of 0 or more.
 具体的には、インター予測部126は、まず、横方向の予測ブロックサイズを第1べき演算(2N1)で割る第1除算の商を算出する。ここで、第1べき演算の底は2であり、第1べき演算の指数はN1である。そして、算出された第1除算の商がM1以上であれば、インター予測部126は、算出された第1除算の商を横方向のサブブロックサイズとして設定する。一方、算出された第1乗算の商がM1より小さければ、インター予測部126は、M1を横方向のサブブロックサイズとして設定する。 Specifically, the inter prediction unit 126 first calculates the quotient of the first division that divides the predicted block size in the horizontal direction by the first power operation (2 N1 ). Here, the base of the first power operation is 2, and the exponent of the first power operation is N1. Then, if the calculated quotient of the first division is M1 or more, the inter prediction unit 126 sets the calculated quotient of the first division as the sub-block size in the horizontal direction. On the other hand, if the calculated quotient of the first multiplication is smaller than M1, the inter prediction unit 126 sets M1 as the horizontal sub-block size.
 同様に、インター予測部126は、縦方向の予測ブロックサイズを第2べき演算(2N2)で割る第2除算の商を算出する。ここで、第2べき演算の底は2であり、第2べき演算の指数はN2である。そして、算出された第2除算の商がM2以上であれば、インター予測部126は、算出された第2除算の商を縦方向のサブブロックサイズとして設定する。一方、算出された第2除算の商がM2より小さければ、インター予測部126は、M2を縦方向のサブブロックサイズとして設定する。 Similarly, the inter prediction unit 126 calculates the quotient of the second division that divides the predicted block size in the vertical direction by the second power operation (2 N2 ). Here, the base of the second power operation is 2, and the exponent of the second power operation is N2. Then, if the calculated quotient of the second division is M2 or more, the inter prediction unit 126 sets the calculated quotient of the second division as the vertical sub-block size. On the other hand, if the calculated quotient of the second division is smaller than M2, the inter prediction unit 126 sets M2 as the vertical sub-block size.
 なお、N1およびN2は、同じ値であってもよいし、異なる値であってもよい。同様に、M1およびM2も、同じ値であってもよいし、異なる値であってもよい。 Note that N1 and N2 may be the same value or different values. Similarly, M1 and M2 may have the same value or different values.
 なお、M1およびM2は、動き補償処理を行うことができる最小のブロックサイズ(例えば4x4画素)に基づいて決定されてもよい。例えば、M1およびM2は、それぞれ、動き補償処理で許される最小のブロックサイズの横サイズ(例えば4画素)および縦サイズ(例えば4画素)と決定されてもよい。 Note that M1 and M2 may be determined based on the minimum block size (for example, 4 × 4 pixels) that can perform motion compensation processing. For example, M1 and M2 may be determined as the horizontal size (for example, 4 pixels) and the vertical size (for example, 4 pixels) of the minimum block size allowed for motion compensation processing, respectively.
 なお、図11では、サブブロック単位のマージモードおよびアフィンモードの両方について、サブブロックサイズの判定(S106)が行われているが、いずれかのモードにおいてのみサブブロックサイズの判定が行われてもよい。例えば、サブブロック単位のマージモードにおいてサブブロックサイズの判定が行われ、アフィンモードではサブブロックサイズの判定が行われずに、常に固定サイズのサブブロックに予測ブロックが分割されてもよいし、その逆であってもよい。また、サブブロック単位のマージモードおよびアフィンモード以外のサブブロック単位でMVを導出する第2タイプの予測モードについても同様にサブブロックサイズの判定が行われてもよい。 In FIG. 11, the sub-block size determination (S106) is performed for both sub-block unit merge mode and affine mode, but the sub-block size determination may be performed only in one of the modes. Good. For example, determination of subblock size is performed in merge mode in units of subblocks, and in affine mode, a prediction block may be always divided into subblocks of fixed size without determination of subblock size, or vice versa It may be Also, the determination of the sub-block size may be similarly performed for the merge mode of the sub-block unit and the second type prediction mode for deriving the MV in sub-block units other than the affine mode.
 なお、この図11の処理フローは一例であり、記載されている処理の一部を除いたり、記載されていない処理を追加したりしてもよい。 Note that the process flow of FIG. 11 is an example, and part of the processes described may be removed or processes not described may be added.
 [サブブロックサイズの具体例]
 図12は、処理対象ブロックを分割して得られるサブブロックのサイズの具体例を説明するための図である。
[Specific example of sub block size]
FIG. 12 is a diagram for describing a specific example of the size of the sub block obtained by dividing the processing target block.
 (例1)では、M1およびM2として、ともに4が与えられ、かつ、N1およびN2として、ともに3が与えられている。 In (Example 1), 4 is given as both M1 and M2, and 3 is given as both N1 and N2.
 (a)に示すように、予測ブロックサイズが32x32画素である場合は、予測ブロックは4x4画素のサブブロックに分割される。このとき、予測ブロックおよびサブブロックは、どちらも横:縦が1:1の正方形となる。 As shown in (a), when the prediction block size is 32 × 32 pixels, the prediction block is divided into 4 × 4 pixel sub blocks. At this time, the prediction block and the sub-block both have a square of 1: 1 in width: length.
 (b)に示すように、予測ブロックサイズが64x32画素である場合は、予測ブロックは8x4画素のサブブロックに分割される。このとき、予測ブロックおよびサブブロックは、どちらも横:縦が2:1の長方形となる。 As shown in (b), when the prediction block size is 64 × 32 pixels, the prediction block is divided into subblocks of 8 × 4 pixels. At this time, the prediction block and the sub-block both have a rectangle of 2: 1 horizontal: vertical.
 (c)に示すように、予測ブロックサイズが16x32画素である場合は、予測ブロックは4x4画素のサブブロックに分割される。このとき、予測ブロックは、横:縦が1:2の長方形となるが、サブブロックは、横:縦が1:1の正方形となる。 As shown in (c), when the prediction block size is 16 × 32 pixels, the prediction block is divided into subblocks of 4 × 4 pixels. At this time, the prediction block is a rectangle of 1: 2 in horizontal: vertical, but the sub-block is a square of 1: 1 in horizontal: vertical.
 (例2)では、M1およびM2として、ともに4が与えられ、かつ、N1およびN2として、ともに2が与えられている。 In (Example 2), 4 is given as both M1 and M2, and 2 is given as both N1 and N2.
 (d)に示すように、予測ブロックサイズが32x32画素である場合は、予測ブロックは8x8画素のサブブロックに分割される。このとき、予測ブロックおよびサブブロックは、どちらも横:縦が1:1の正方形となる。 As shown in (d), when the prediction block size is 32 × 32 pixels, the prediction block is divided into sub blocks of 8 × 8 pixels. At this time, the prediction block and the sub-block both have a square of 1: 1 in width: length.
 (e)に示すように、予測ブロックサイズが64x32画素である場合は、予測ブロックは16x8画素のサブブロックに分割される。このとき、予測ブロックおよびサブブロックは、どちらも横:縦が2:1の長方形となる。 As shown in (e), when the prediction block size is 64 × 32 pixels, the prediction block is divided into subblocks of 16 × 8 pixels. At this time, the prediction block and the sub-block both have a rectangle of 2: 1 horizontal: vertical.
 (f)に示すように、予測ブロックサイズが16x32画素である場合は、予測ブロックは4x8画素のサブブロックに分割される。このとき、予測ブロックおよびサブブロックは、どちらも横:縦が1:2の長方形となる。 As shown in (f), when the prediction block size is 16 × 32 pixels, the prediction block is divided into 4 × 8 pixel sub blocks. At this time, both of the prediction block and the sub-block become a rectangle having a width: height of 1: 2.
 一般に、処理対象とする画像が特定の方向に相関の強い特徴を持っている場合は、その特定の方向に長い形状の予測ブロックが選択される傾向がある。そのため、サブブロックも特定の方向に長い形状となるサイズに決定することで、符号化効率が最適となるサブブロックに分割することができる可能性が高くなる。特に、N1およびN2が等しい場合は、予測ブロックの縦横比とサブブロックの縦横比とを等しくできる可能性が高くなるため、画像の特徴に合わせた効率の高い符号化を促進できる。 In general, when an image to be processed has a highly correlated feature in a particular direction, a prediction block having a long shape in the particular direction tends to be selected. Therefore, by determining the size of the sub-blocks to be long in the specific direction, there is a high possibility that they can be divided into sub-blocks in which the coding efficiency is optimal. In particular, when N1 and N2 are equal, there is a high possibility that the aspect ratio of the prediction block and the aspect ratio of the sub-blocks can be equal, so that highly efficient encoding matched to the feature of the image can be promoted.
 また、(例1)のように比較的小さなサブブロックに分割する設定とすることで、処理量は増加するが、より小さなサブブロック単位でMVを選択することができるため符号化効率を向上させられる可能性が高くなる。また、(例2)のように比較的大きなサブブロックに分割する設定とすることで、符号化効率は低下するが、より大きなサブブロック単位でMVの選択および動き補償処理を行うことになるため処理量を抑制できる可能性が高くなる。 Also, by setting to divide into relatively small sub-blocks as in (Example 1), although the processing amount increases, it is possible to select the MV in smaller sub-blocks, thus improving the coding efficiency. Chances of being Also, by setting to divide into relatively large sub-blocks as in (Example 2), although the coding efficiency is lowered, the MV selection and motion compensation processing are performed in units of larger sub-blocks. There is a high possibility that the throughput can be reduced.
 なお、N1およびN2の値が増加すれば、サブブロックサイズは縮小する。また、M1およびM2の値が減少すれば、より小さいサブブロックサイズが許容される。つまり、N1およびN2を増加し、および/または、M1およびM2を減少すれば、予測ブロックは、より小さなサブブロックに分割される。一方、N1およびN2を減少し、および/または、M1およびM2を増加すれば、予測ブロックは、より大きなサブブロックに分割される。 If the values of N1 and N2 increase, the sub-block size is reduced. Also, if the values of M1 and M2 decrease, smaller subblock sizes are allowed. That is, increasing N1 and N2 and / or decreasing M1 and M2 divides the prediction block into smaller sub-blocks. On the other hand, if N1 and N2 are decreased and / or M1 and M2 are increased, the prediction block is divided into larger sub-blocks.
 なお、処理対象の予測ブロックの縦および横の長さに基づいてサブブロックの縦および横の長さを決定する例を示したが、この例に限定されず、予測ブロックの縦および横のうちの一方のみに基づいてサブブロックの縦および横の長さを決定してもよい。 Although an example in which the vertical and horizontal lengths of the sub-blocks are determined based on the vertical and horizontal lengths of the prediction block to be processed is shown, the present invention is not limited to this example. The vertical and horizontal lengths of the sub blocks may be determined based on only one of the two.
 また、処理対象の予測ブロックの縦および横の長さの絶対値ではなく、縦および横の長さの比率に基づいてサブブロックの縦および横の長さを決定してもよい。例えば、予測ブロックの縦および横の長さの比率とサブブロックの縦および横の長さの比率とが同じになるようにサブブロックの縦および横の長さを決定してもよい。 Also, the vertical and horizontal lengths of the sub-blocks may be determined based on the ratio of vertical and horizontal lengths rather than the absolute values of vertical and horizontal lengths of the prediction block to be processed. For example, the vertical and horizontal lengths of the sub-blocks may be determined such that the ratio of vertical and horizontal lengths of the prediction block and the vertical and horizontal lengths of the sub-blocks are the same.
 [インター予測処理の第1の例のバリエーション]
 なお、図11および図12におけるM1、M2、N1およびN2に関する情報を、符号化装置100のエントロピー符号化部110は、符号化ビットストリームのシーケンスヘッダ領域、ピクチャヘッダ領域、スライスヘッダ領域または補助情報領域に符号化してもよい。この場合、復号装置200のエントロピー復号部202は、それらの領域からM1、M2、N1およびN2に関する情報を復号してもよい。
[Variation of first example of inter prediction processing]
In addition, the entropy coding unit 110 of the coding apparatus 100 of the information related to M1, M2, N1 and N2 in FIGS. 11 and 12 is a sequence header area, a picture header area, a slice header area or auxiliary information of a coded bit stream. It may be encoded in the area. In this case, the entropy decoding unit 202 of the decoding device 200 may decode the information on M1, M2, N1, and N2 from those regions.
 例えば、符号化装置100は、符号化装置100の処理能力および符号化装置100から符号化ビットストリームが送信される復号装置200の処理能力に応じて、M1、M2、N1およびN2の値を切替えてもよい。つまり、符号化装置100は、符号化装置100および復号装置200の処理能力に基づいて、M1、M2、N1およびN2の値を決定してもよい。例えば、処理能力が高い場合は、符号化装置100は、一定の処理時間で多くの処理が可能であるため小さなサブブロックに分割されるように、M1、M2、N1およびN2の値を設定してもよい。一方、処理能力が低い場合は、符号化装置100は、一定の処理時間で多くの処理ができないため大きなサブブロックに分割されるように、M1、M2、N1およびN2の値を設定してもよい。 For example, the coding apparatus 100 switches the values of M1, M2, N1, and N2 according to the processing capacity of the coding apparatus 100 and the processing capacity of the decoding apparatus 200 to which the coding bit stream is transmitted from the coding apparatus 100. May be That is, the encoding apparatus 100 may determine the values of M1, M2, N1, and N2 based on the processing capabilities of the encoding apparatus 100 and the decoding apparatus 200. For example, if the processing capability is high, the encoding apparatus 100 sets the values of M1, M2, N1, and N2 so that they can be divided into small subblocks because many processes can be performed in a fixed processing time. May be On the other hand, if the processing capability is low, encoding apparatus 100 can set many values of M1, M2, N1, and N2 so that they can be divided into large subblocks because they can not perform many processings in a fixed processing time. Good.
 また、符号化装置100は、符号化ビットストリームに割り当てられたプロファイルまたはレベル情報に応じて、M1、M2、N1およびN2の値を切替えてもよい。つまり、符号化装置100は、プロファイルまたはレベル情報に基づいて、M1、M2、N1およびN2の値を決定してもよい。例えば、復号装置200が十分な処理能力を有することを想定したプロファイルおよびレベルでは、符号化装置100は、小さなサブブロックに分割されるように、M1、M2、N1およびN2の値を設定してもよい。一方、復号装置200の十分ではない処理能力を有することを想定したプロファイルおよびレベルでは、符号化装置100は、大きなサブブロックに分割されるように、M1、M2、N1およびN2の値を設定してもよい。 Also, the coding apparatus 100 may switch the values of M1, M2, N1, and N2 according to the profile or level information assigned to the coded bit stream. That is, the encoding apparatus 100 may determine the values of M1, M2, N1 and N2 based on the profile or level information. For example, in a profile and level assuming that decoding apparatus 200 has sufficient processing capability, encoding apparatus 100 sets the values of M1, M2, N1, and N2 so as to be divided into small subblocks. It is also good. On the other hand, in the profile and level assuming that the decoding apparatus 200 has insufficient processing power, the encoding apparatus 100 sets the values of M1, M2, N1 and N2 so as to be divided into large subblocks. May be
 また、符号化装置100は、符号化対象ピクチャのサイズに応じて、M1、M2、N1およびN2の値を切替えてもよい。つまり、符号化装置100は、符号化対象ピクチャのサイズに基づいて、M1、M2、N1およびN2の値を決定してもよい。例えば、ピクチャサイズが小さい場合は、符号化装置100は、より細かい動きに追従できるように小さなサブブロックに分割されるように、M1、M2、N1およびN2の値を設定してもよい。一方、ピクチャサイズが大きい場合は、符号化装置100は、局所的な細かい動きに不必要に引きずられ過ぎないように大きなサブブロックに分割されるように、M1、M2、N1およびN2の値を設定してもよい。 Also, the coding apparatus 100 may switch the values of M1, M2, N1, and N2 according to the size of the current picture to be coded. That is, the encoding apparatus 100 may determine the values of M1, M2, N1, and N2 based on the size of the current picture to be encoded. For example, when the picture size is small, the encoding apparatus 100 may set the values of M1, M2, N1, and N2 so as to be divided into small subblocks so as to be able to follow finer motion. On the other hand, when the picture size is large, the encoding apparatus 100 divides the values of M1, M2, N1, and N2 so as to be divided into large subblocks so as not to be unnecessarily dragged by local fine motions. It may be set.
 なお、ビットストリームに符号化するM1、M2、N1およびN2に関する情報は、厳密にそれらを示す情報の信号でなくてもよく、他の意味を持つ信号として符号化してもよい。例えば、M1、M2、N1およびN2に関する情報をプロファイルおよびレベルに直接対応付けて予め定義しておくことにより、プロファイルおよびレベルを示す信号のみでM1、M2、N1およびN2が特定できる。 The information on M1, M2, N1 and N2 to be encoded into the bit stream may not be a signal of information strictly indicating them, and may be encoded as a signal having another meaning. For example, by directly associating information on M1, M2, N1, and N2 with profiles and levels in advance and defining them in advance, M1, M2, N1, and N2 can be identified with only signals indicating the profiles and levels.
 また、M1、M2、N1およびN2の値そのものを示す情報を符号化してもよいし、規格等で予め定義されたM1、M2、N1およびN2の値からの差分値を示す情報を符号化してもよい。 Also, information indicating the values of M1, M2, N1 and N2 themselves may be encoded, or information indicating a difference value from the values of M1, M2, N1 and N2 defined in advance in a standard etc. may be encoded. It is also good.
 なお、復号装置200では、処理に必要となる信号をストリームに符号化する処理が、ストリームから復号する処理に代わるが、図11で説明したインター予測処理は基本的に共通である。このとき、復号装置200では、インター予測部126の代わりに、インター予測部218がインター予測処理を行う。 In the decoding apparatus 200, the process of encoding a signal necessary for the process into a stream is replaced with the process of decoding from a stream, but the inter prediction process described with reference to FIG. 11 is basically common. At this time, in the decoding device 200, the inter prediction unit 218 performs an inter prediction process instead of the inter prediction unit 126.
 [インター予測処理の第1の例の効果]
 図11および図12を用いて説明した構成によれば、符号化装置100および復号装置200は、処理対象ブロック(予測ブロック)をサブブロックに分割してサブブロック単位で動き補償を行う第2タイプの予測モードにおいて、処理対象ブロックのサイズに基づいてサブブロックの横および縦の長さを切り替えて符号化/復号処理を行うことができる。つまり、符号化装置100および復号装置200は、処理対象ブロックのサイズに依存する可変サイズのサブブロックで動き補償を行うことができる。
[Effect of the first example of inter prediction processing]
According to the configuration described with reference to FIGS. 11 and 12, encoding apparatus 100 and decoding apparatus 200 divide the processing target block (prediction block) into sub blocks and perform motion compensation in units of sub blocks. In the prediction mode, encoding / decoding processing can be performed by switching the horizontal and vertical lengths of the sub block based on the size of the processing target block. That is, the encoding apparatus 100 and the decoding apparatus 200 can perform motion compensation on subblocks of variable sizes depending on the size of the processing target block.
 これにより、第2タイプの予測モードにおいて、最適なサブブロックサイズに分割することが可能となる。その結果、不必要に細かいサブブロックに分割して処理量が増加してしまったり、サブブロックが大きすぎて符号化性能が低下してしまったりすることを抑制することが可能となる。 This makes it possible to divide into the optimal sub-block size in the second type of prediction mode. As a result, it is possible to suppress an increase in processing amount due to division into unnecessarily fine subblocks, and a decrease in coding performance due to an excessively large subblock.
 また、上記構成によれば、符号化装置100および復号装置200は、処理対象ブロックの横の長さを第1べき演算で割る第1除算の商に基づいて、サブブロックの横の長さを決定することができる。このとき、第1べき演算の底として2を用いることができ、第1べき演算の指数N1として予め定められた0以上の整数を用いることができる。同様に、符号化装置100および復号装置200は、処理対象ブロックの縦の長さを第2べき演算で割る第2除算の商に基づいて、サブブロックの縦の長さを決定することができる。このとき、第2べき演算の底として2を用いることができ、第2べき演算の指数N2として予め定められた0以上の整数を用いることができる。 Further, according to the above configuration, the encoding apparatus 100 and the decoding apparatus 200 determine the horizontal length of the sub block based on the quotient of the first division dividing the horizontal length of the processing target block by the first power operation. It can be decided. At this time, 2 can be used as the base of the first power operation, and a predetermined integer greater than or equal to 0 can be used as the index N1 of the first power operation. Similarly, the encoding apparatus 100 and the decoding apparatus 200 can determine the vertical length of the sub-block based on the quotient of the second division that divides the vertical length of the processing target block by the second power operation. . At this time, 2 can be used as the base of the second power operation, and a predetermined integer greater than or equal to 0 can be used as the exponent N2 of the second power operation.
 これにより、N1およびN2の2つのパラメータを用いて、処理対象ブロックのサイズが大きいほどサブブロックの横および縦の長さを大きくすることができ、処理対象ブロックのサイズが小さいほどサブブロックの横および縦の長さを小さくすることができる。その結果、処理対象ブロックのサイズが小さい場合に、符号化装置100および復号装置200は、より細かい動きに追従できるように小さなサブブロックを実現することができる。一方、処理対象ブロックのサイズが大きい場合に、符号化装置100は、局所的な細かい動きに不必要に引きずられ過ぎないように大きなサブブロックを実現することができる。 Thus, using the two parameters N1 and N2, the horizontal and vertical lengths of the sub-block can be increased as the size of the block to be processed is larger, and the smaller the size of the block to be processed is, the horizontal direction of the sub-block And the vertical length can be reduced. As a result, when the size of the processing target block is small, the encoding device 100 and the decoding device 200 can realize small sub-blocks so as to be able to follow finer motion. On the other hand, when the size of the processing target block is large, the encoding device 100 can realize a large sub-block so as not to be dragged excessively by the local fine motion.
 また、上記構成によれば、符号化装置100および復号装置200は、第1除算の商が第1所定値M1よりも小さい場合に、サブブロックの横の長さを第1所定値M1と決定し、第1除算の商が第1所定値M1以上である場合に、サブブロックの横の長さを第1除算の商と決定することができる。同様に、符号化装置100および復号装置200は、第2除算の商が第2所定値M2よりも小さい場合に、サブブロックの縦の長さを第2所定値M2と決定し、第2除算の商が第2所定値M2以上である場合に、サブブロックの縦の長さを第2除算の商と決定することができる。 Further, according to the above configuration, when the quotient of the first division is smaller than the first predetermined value M1, the encoding device 100 and the decoding device 200 determine the horizontal length of the sub block as the first predetermined value M1. If the quotient of the first division is greater than or equal to the first predetermined value M1, the horizontal length of the sub block can be determined as the quotient of the first division. Similarly, when the quotient of the second division is smaller than the second predetermined value M2, the encoding device 100 and the decoding device 200 determine the vertical length of the sub block as the second predetermined value M2, and the second division The vertical length of the sub block can be determined as the quotient of the second division when the quotient of is equal to or greater than the second predetermined value M2.
 これにより、N1およびN2を用いて決定されるサブブロックの横および縦の長さが小さくなりすぎることを防ぐことができ、不必要な処理量の増加を抑制することができる。 This can prevent the lateral and vertical lengths of the subblocks determined using N1 and N2 from being too small, and can suppress unnecessary increases in throughput.
 また、上記構成によれば、符号化装置100および復号装置200は、第1所定値M1および第2所定値M2を、使用可能な動き補償の最小のブロックサイズに基づいて決定することができる。 Further, according to the above configuration, the encoding device 100 and the decoding device 200 can determine the first predetermined value M1 and the second predetermined value M2 based on the minimum block size of usable motion compensation.
 これにより、N1およびN2を用いて決定されるサブブロックの横および縦の長さが動き補償の最小ブロックサイズよりも小さくなることを防ぐことができる。つまり、動き補償の最小ブロックサイズの条件を満たす範囲でサブブロックの横および縦の長さを可変にすることができる。 This can prevent the horizontal and vertical lengths of the sub block determined using N1 and N2 from becoming smaller than the minimum block size of motion compensation. That is, the horizontal and vertical lengths of the sub-blocks can be made variable within the range satisfying the condition of the minimum block size of motion compensation.
 また、上記構成によれば、符号化装置100は、第1所定値M1、第2所定値M2、第1べき演算の指数N1および第2べき演算の指数N2を特定するための情報をシーケンスヘッダ領域、ピクチャヘッダ領域、スライスヘッダ領域または補助情報領域に符号化することができる。そして、復号装置200は、第1所定値M1、第2所定値M2、第1べき演算の指数N1および第2べき演算の指数N2を特定するための情報を、シーケンスヘッダ領域、ピクチャヘッダ領域、スライスヘッダ領域または補助情報領域から復号することができる。 Further, according to the above configuration, the encoding apparatus 100 can use the sequence header to specify information for specifying the first predetermined value M1, the second predetermined value M2, the exponent N1 of the first operation and the exponent N2 of the second operation. It can be encoded into an area, a picture header area, a slice header area or a side information area. Then, the decoding device 200 includes information for specifying the first predetermined value M1, the second predetermined value M2, the exponent N1 of the first power operation and the exponent N2 of the second power operation, a sequence header region, a picture header region, It is possible to decode from the slice header area or the side information area.
 これにより、符号化装置100でM1、M2、N1およびN2がどのように決定されても、復号装置200は、符号化装置100と同じM1、M2、N1およびN2を用いてサブブロックの横および縦の長さを決定することができる。 Thus, regardless of how M1, M2, N1, and N2 are determined by the coding apparatus 100, the decoding apparatus 200 uses the same M1, M2, N1, and N2 as the coding apparatus 100 to execute sub-block horizontal and Vertical length can be determined.
 また、上記構成によれば、符号化装置100は、符号化装置100の処理能力および符号化装置100に対応する復号装置200の処理能力に応じて、第1所定値M1、第2所定値M2、第1べき演算の指数N1および第2べき演算の指数N2を切替えて符号化することができる。つまり、符号化装置100は、M1、M2、N1およびN2の値を、符号化装置100および復号装置200の処理能力に依存して変えることができ、そのようなM1、M2、N1およびN2を特定するための情報をビットストリーム内に符号化することができる。 Further, according to the above configuration, the encoding device 100 can set the first predetermined value M1 and the second predetermined value M2 according to the processing capability of the encoding device 100 and the processing capability of the decoding device 200 corresponding to the encoding device 100. , The exponent N1 of the first power operation and the exponent N2 of the second power operation can be switched and encoded. That is, the encoding device 100 can change the values of M1, M2, N1 and N2 depending on the processing capabilities of the encoding device 100 and the decoding device 200, and such M1, M2, N1 and N2 Information for identification can be encoded in the bitstream.
 これにより、符号化装置100および復号装置200の処理能力に応じたサブブロックの横および縦の長さを実現するためのM1、M2、N1およびN2の値をビットストリーム内に符号化することができる。その結果、サブブロックのサイズが小さすぎて、符号化装置100および復号装置200の処理能力に対して過剰な処理量が必要となることを避けることができる。 Thereby, the values of M1, M2, N1 and N2 for realizing the horizontal and vertical lengths of the sub-blocks according to the processing capabilities of the encoding device 100 and the decoding device 200 can be encoded in the bitstream. it can. As a result, it is possible to avoid that the sub-block size is too small, and an excessive amount of processing is required for the processing capacity of the encoding apparatus 100 and the decoding apparatus 200.
 また、上記構成によれば、符号化装置100は、符号化対象ストリームに割り当てられたプロファイル値またはレベル値に応じて、第1所定値M1、第2所定値M2、第1べき演算の指数N1および第2べき演算の指数N2を切替えて符号化することができる。つまり、符号化装置100は、M1、M2、N1およびN2の値を、プロファイル値またはレベル値に依存して変えることができ、そのようなM1、M2、N1およびN2を特定するための情報をビットストリーム内に符号化することができる。 Further, according to the above configuration, the encoding apparatus 100 can set the first predetermined value M1, the second predetermined value M2, the exponent N1 of the first operation according to the profile value or the level value assigned to the encoding target stream. And the exponent N2 of the second power operation can be switched and encoded. That is, encoding apparatus 100 can change the values of M1, M2, N1, and N2 depending on the profile value or the level value, and information for identifying such M1, M2, N1, and N2 can be obtained. It can be encoded in the bitstream.
 これにより、プロファイル値またはレベル値に応じたサブブロックのサイズを実現するためのM1、M2、N1およびN2の値をビットストリーム内に符号化することができる。その結果、プロファイル値またはレベル値で想定される復号装置200の処理能力に応じたサブブロックのサイズを実現することができる。 Thereby, the values of M1, M2, N1 and N2 for realizing the size of the sub block according to the profile value or the level value can be encoded in the bitstream. As a result, it is possible to realize the size of the sub block according to the processing capability of the decoding device 200 assumed by the profile value or the level value.
 また、上記構成によれば、符号化装置100は、符号化対象ピクチャの大きさに応じて、第1所定値M1、第2所定値M2、第1べき演算の指数N1および第2べき演算の指数N2を切替えて符号化することができる。つまり、符号化装置100は、M1、M2、N1およびN2の値を、符号化対象ピクチャの大きさに依存して変えることができ、そのようなM1、M2、N1およびN2を特定するための情報をビットストリーム内に符号化することができる。 Further, according to the above configuration, the encoding device 100 can calculate the first predetermined value M1, the second predetermined value M2, the exponent N1 of the first operation, and the second operation according to the size of the encoding target picture. The exponent N2 can be switched and encoded. That is, encoding apparatus 100 can change the values of M1, M2, N1 and N2 depending on the size of the picture to be encoded, and for identifying such M1, M2, N1 and N2. Information can be encoded into the bitstream.
 これにより、符号化対象ピクチャのサイズに応じたサブブロックのサイズを実現するためのM1、M2、N1およびN2の値をビットストリーム内に符号化することができる。例えば、ピクチャサイズが小さい場合は、符号化装置100は、より細かい動きに追従できるように小さなサブブロックを実現するためのM1、M2、N1およびN2の値を符号化することができる。一方、ピクチャサイズが大きい場合は、符号化装置100は、局所的な細かい動きに不必要に引きずられ過ぎないように大きなサブブロックを実現するためのM1、M2、N1およびN2の値を符号化することができる。 Thereby, the values of M1, M2, N1, and N2 for realizing the size of the sub block according to the size of the picture to be encoded can be encoded in the bitstream. For example, when the picture size is small, the encoding apparatus 100 can encode the values of M1, M2, N1 and N2 for realizing a small sub-block so as to follow finer motion. On the other hand, when the picture size is large, the encoding apparatus 100 encodes the values of M1, M2, N1 and N2 for realizing a large sub-block so as not to be unnecessarily dragged by local fine motions. can do.
 [ATMVPモードの説明]
 次に、ATMVPモードについて簡単に説明する。ATMVPモードは、処理対象ブロックが属するピクチャと異なるピクチャに含まれる、処理対象ブロックと同じ位置に位置する参照ブロックの動きベクトルを用いて、処理対象ブロックの動きベクトルを導出するマージモードの一例である。図13は、サブブック単位マージモードの一例であるATMVPモードについて説明するための図である。
[Description of ATMVP mode]
Next, the ATM VP mode will be briefly described. The ATM VP mode is an example of a merge mode for deriving a motion vector of a processing target block using a motion vector of a reference block located at the same position as the processing target block included in a picture different from the picture to which the processing target block belongs. . FIG. 13 is a diagram for explaining an ATM VP mode which is an example of the sub book unit merge mode.
 マージモードでは、処理済みブロックを参照して生成したMV候補リストの中から1つの候補を選択して処理対象ブロックのMVを決定する。このとき、ATMVPモードでは、インター予測部126および218は、MV候補リストに登録される1つの候補を以下のように導出する。 In the merge mode, one candidate is selected from the MV candidate list generated with reference to the processed block, and the MV of the processing target block is determined. At this time, in the ATM VP mode, the inter prediction units 126 and 218 derive one candidate registered in the MV candidate list as follows.
 ATMVPモードでは、まず、処理対象ピクチャ1000内の処理対象ブロック1100の左下に隣接する周辺MV参照ブロック1300のMV(MV0)を参照し、MV0によって指定される符号化済みの時間MV参照ピクチャ2000における、処理対象ブロック1100に対応付けられた時間MV参照ブロック2100を特定する。次に、処理対象ブロック1100内における各サブブロックについて、時間MV参照ブロックにおいて当該サブブロック(例えばサブブロック1200)に対応する領域(例えば領域2200)の符号化時に用いられたMVを特定する。そして、特定されたMVを参照して時間間隔に応じてスケーリングすることで、各サブブロックのMVを取得する。 In the ATMVP mode, first, referring to the MV (MV0) of the neighboring MV reference block 1300 adjacent to the lower left of the processing target block 1100 in the processing target picture 1000, the coded time MV reference picture 2000 specified by MV0 is referred to. The time MV reference block 2100 associated with the process target block 1100 is identified. Next, for each sub-block in the processing target block 1100, the MV used at the time of encoding the region (for example, the region 2200) corresponding to the sub-block (for example, the sub-block 1200) in the temporal MV reference block is specified. Then, scaling is performed according to the time interval with reference to the specified MV to obtain the MV of each sub block.
 なお、図13ではMV0を参照するブロックとして左下に隣接するブロックを用いたが、それ以外のブロックを用いてもよい。 Although the block adjacent to the lower left is used as the block referring to MV0 in FIG. 13, other blocks may be used.
 また、ここでは符号化における処理について説明したが、復号においても同様の処理となる。 Moreover, although the process in encoding was demonstrated here, it becomes the same process also in decoding.
 [STMVPモードの説明]
 次に、STMVPモードについて簡単に説明する。STMVPモードは、処理対象ブロックに隣接する隣接ブロックの動きベクトルを用いて、処理対象ブロックの動きベクトルを導出するマージモードの一例である。図14は、サブブック単位マージモードの別の一例であるSTMVPモードについて説明するための図である。
[Description of STMVP mode]
Next, the STMVP mode will be briefly described. The STMVP mode is an example of a merge mode in which a motion vector of a processing target block is derived using motion vectors of adjacent blocks adjacent to the processing target block. FIG. 14 is a diagram for describing an STMVP mode which is another example of the sub book unit merge mode.
 マージモードでは処理済みブロックを参照して生成したMV候補リストの中から1つの候補を選択して処理対象ブロックのMVを決定する。このとき、STMVPモードでは、インター予測部126および218は、MV候補リストに登録する1つの候補を以下のように導出する。 In the merge mode, one candidate is selected from the MV candidate list generated with reference to the processed block, and the MV of the processing target block is determined. At this time, in the STMVP mode, the inter prediction units 126 and 218 derive one candidate to be registered in the MV candidate list as follows.
 STMVPモードでは、まず、符号化済みの時間MV参照ピクチャ3000において処理対象ブロック1100と同じ場所に位置する時間MV参照ブロック3100を特定する。次に、処理対象ブロック1100内における各サブブロックについて、当該サブブロック(例えばサブブロック1200)の空間的に上に隣接するブロック(例えばブロック1400)のMV(MV_up)と、空間的に左に隣接するブロック(例えばブロック1500)のMV(MV_left)と、時間MV参照ブロック3100を符号化した際に用いられたMV(MV_col)を特定する。図14の例では、MV_colとして、対象とするサブブロック1200の位置に対して右下に位置するブロック3200のMVを用いている。そして、MV_upとMV_leftとMV_colとを時間間隔に応じてスケーリングした値の平均を算出することで、各サブブロックのMVを取得する。 In the STMVP mode, first, a temporal MV reference block 3100 located at the same position as the processing target block 1100 in the encoded temporal MV reference picture 3000 is specified. Next, for each sub-block in the block to be processed 1100, the MV (MV_up) of a block (for example, block 1400) spatially adjacent to the sub-block (for example, sub-block 1200) is spatially adjacent to the left. The MV (MV_left) of the block (eg, block 1500) and the MV (MV_col) used when encoding the temporal MV reference block 3100 are identified. In the example of FIG. 14, the MV of the block 3200 located at the lower right with respect to the position of the target sub block 1200 is used as the MV_col. And MV of each subblock is acquired by computing the average of the value which scaled up MV_up, MV_left, and MV_col according to a time interval.
 なお、図14ではMV_colとして対象とするサブブロック(例えばサブブロック1200)の位置に対して右下に位置するブロック(例えばブロック3200)のMVを用いているが、それ以外の位置のブロックのMVを用いてもよい。 Although the MV of the block (for example, block 3200) located at the lower right with respect to the position of the target sub block (for example, sub block 1200) is used as MV_col in FIG. 14, the MV of the block at other positions is used. May be used.
 また、図14ではMV_upとMV_leftとMV_colとの平均を算出して各サブブロックのMVを取得しているが、それ以外の周辺のMVを用いたり、平均以外の方法で代表MVを算出したりすることで各サブブロックのMVを取得してもよい。 Further, in FIG. 14, the MV of each sub-block is obtained by calculating the average of MV_up, MV_left, and MV_col, but other surrounding MVs may be used, or representative MV may be calculated by methods other than average. You may acquire MV of each subblock by doing.
 また、ここでは符号化における処理について説明したが、復号においても同様の処理となる。 Moreover, although the process in encoding was demonstrated here, it becomes the same process also in decoding.
 本例を本開示における他の態様の少なくとも一部と組み合わせて実施してもよい。また、本例のフローチャートに記載の一部の処理、装置の一部の構成、シンタックスの一部などを他の態様と組み合わせて実施してもよい。 This example may be implemented in combination with at least a part of other aspects in the present disclosure. In addition, part of the processing described in the flowchart of this example, part of the configuration of the apparatus, and part of the syntax may be implemented in combination with other aspects.
 (実施の形態2)
 以上の各実施の形態において、機能ブロックの各々は、通常、MPU及びメモリ等によって実現可能である。また、機能ブロックの各々による処理は、通常、プロセッサなどのプログラム実行部が、ROM等の記録媒体に記録されたソフトウェア(プログラム)を読み出して実行することで実現される。当該ソフトウェアはダウンロード等により配布されてもよいし、半導体メモリなどの記録媒体に記録して配布されてもよい。なお、各機能ブロックをハードウェア(専用回路)によって実現することも、当然、可能である。
Second Embodiment
In each of the above embodiments, each of the functional blocks can usually be realized by an MPU, a memory, and the like. Further, the processing by each of the functional blocks is usually realized by a program execution unit such as a processor reading and executing software (program) recorded in a recording medium such as a ROM. The software may be distributed by downloading or the like, or may be distributed by being recorded in a recording medium such as a semiconductor memory. Of course, it is also possible to realize each functional block by hardware (dedicated circuit).
 また、各実施の形態において説明した処理は、単一の装置(システム)を用いて集中処理することによって実現してもよく、又は、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、又は分散処理を行ってもよい。 Also, the processing described in each embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good. Moreover, the processor that executes the program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
 本開示の態様は、以上の実施例に限定されることなく、種々の変更が可能であり、それらも本開示の態様の範囲内に包含される。 The aspects of the present disclosure are not limited to the above examples, and various modifications are possible, which are also included in the scope of the aspects of the present disclosure.
 さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)又は動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、画像復号方法を用いた画像復号装置、及び両方を備える画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。 Furthermore, an application example of the moving picture coding method (image coding method) or the moving picture decoding method (image decoding method) shown in each of the above-described embodiments and a system using the same will be described. The system is characterized by having an image coding apparatus using an image coding method, an image decoding apparatus using an image decoding method, and an image coding / decoding apparatus provided with both. Other configurations in the system can be suitably modified as the case may be.
 [使用例]
 図15は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。
[Example of use]
FIG. 15 is a diagram showing an overall configuration of a content supply system ex100 for realizing content distribution service. The area for providing communication service is divided into desired sizes, and base stations ex106, ex107, ex108, ex109 and ex110, which are fixed wireless stations, are installed in each cell.
 このコンテンツ供給システムex100では、インターネットex101に、インターネットサービスプロバイダex102又は通信網ex104、及び基地局ex106~ex110を介して、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、及びスマートフォンex115などの各機器が接続される。当該コンテンツ供給システムex100は、上記のいずれかの要素を組合せて接続するようにしてもよい。固定無線局である基地局ex106~ex110を介さずに、各機器が電話網又は近距離無線等を介して直接的又は間接的に相互に接続されていてもよい。また、ストリーミングサーバex103は、インターネットex101等を介して、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、及びスマートフォンex115などの各機器と接続される。また、ストリーミングサーバex103は、衛星ex116を介して、飛行機ex117内のホットスポット内の端末等と接続される。 In the content supply system ex100, each device such as the computer ex111, the game machine ex112, the camera ex113, the home appliance ex114, and the smartphone ex115 via the Internet service provider ex102 or the communication network ex104 and the base stations ex106 to ex110 Is connected. The content supply system ex100 may connect any of the above-described elements in combination. The respective devices may be connected to each other directly or indirectly via a telephone network, near-field radio, etc., not via the base stations ex106 to ex110 which are fixed wireless stations. Also, the streaming server ex103 is connected to each device such as the computer ex111, the game machine ex112, the camera ex113, the home appliance ex114, and the smartphone ex115 via the Internet ex101 or the like. Also, the streaming server ex103 is connected to a terminal or the like in a hotspot in the aircraft ex117 via the satellite ex116.
 なお、基地局ex106~ex110の代わりに、無線アクセスポイント又はホットスポット等が用いられてもよい。また、ストリーミングサーバex103は、インターネットex101又はインターネットサービスプロバイダex102を介さずに直接通信網ex104と接続されてもよいし、衛星ex116を介さず直接飛行機ex117と接続されてもよい。 A radio access point or a hotspot may be used instead of base stations ex106 to ex110. Also, the streaming server ex103 may be directly connected to the communication network ex104 without the internet ex101 or the internet service provider ex102, or may be directly connected with the airplane ex117 without the satellite ex116.
 カメラex113はデジタルカメラ等の静止画撮影、及び動画撮影が可能な機器である。また、スマートフォンex115は、一般に2G、3G、3.9G、4G、そして今後は5Gと呼ばれる移動通信システムの方式に対応したスマートフォン機、携帯電話機、又はPHS(Personal Handyphone System)等である。 The camera ex113 is a device capable of shooting a still image such as a digital camera and shooting a moving image. The smartphone ex115 is a smartphone, a mobile phone, a PHS (Personal Handyphone System), or the like compatible with a mobile communication system generally called 2G, 3G, 3.9G, 4G, and 5G in the future.
 家電ex118は、冷蔵庫、又は家庭用燃料電池コージェネレーションシステムに含まれる機器等である。 The home appliance ex118 is a refrigerator or a device included in a home fuel cell cogeneration system.
 コンテンツ供給システムex100では、撮影機能を有する端末が基地局ex106等を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、端末(コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、スマートフォンex115、及び飛行機ex117内の端末等)は、ユーザが当該端末を用いて撮影した静止画又は動画コンテンツに対して上記各実施の形態で説明した符号化処理を行い、符号化により得られた映像データと、映像に対応する音を符号化した音データと多重化し、得られたデータをストリーミングサーバex103に送信する。即ち、各端末は、本開示の一態様に係る画像符号化装置として機能する。 In the content supply system ex100, when a terminal having a photographing function is connected to the streaming server ex103 through the base station ex106 or the like, live distribution and the like become possible. In live distribution, a terminal (a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, a smartphone ex115, a terminal in an airplane ex117, etc.) transmits the still image or moving image content captured by the user using the terminal. The encoding process described in each embodiment is performed, and video data obtained by the encoding and sound data obtained by encoding a sound corresponding to the video are multiplexed, and the obtained data is transmitted to the streaming server ex103. That is, each terminal functions as an image coding apparatus according to an aspect of the present disclosure.
 一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントは、上記符号化処理されたデータを復号することが可能な、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、スマートフォンex115、又は飛行機ex117内の端末等である。配信されたデータを受信した各機器は、受信したデータを復号処理して再生する。即ち、各機器は、本開示の一態様に係る画像復号装置として機能する。 On the other hand, the streaming server ex 103 streams the content data transmitted to the requested client. The client is a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, a smartphone ex115, or a terminal in an airplane ex117 that can decode the encoded data. Each device that receives the distributed data decrypts and reproduces the received data. That is, each device functions as an image decoding device according to an aspect of the present disclosure.
 [分散処理]
 また、ストリーミングサーバex103は複数のサーバ又は複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。例えば、ストリーミングサーバex103は、CDN(Contents Delivery Network)により実現され、世界中に分散された多数のエッジサーバとエッジサーバ間をつなぐネットワークによりコンテンツ配信が実現されていてもよい。CDNでは、クライアントに応じて物理的に近いエッジサーバが動的に割り当てられる。そして、当該エッジサーバにコンテンツがキャッシュ及び配信されることで遅延を減らすことができる。また、何らかのエラーが発生した場合又はトラフィックの増加などにより通信状態が変わる場合に複数のエッジサーバで処理を分散したり、他のエッジサーバに配信主体を切り替えたり、障害が生じたネットワークの部分を迂回して配信を続けることができるので、高速かつ安定した配信が実現できる。
[Distributed processing]
Also, the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, or distribute data in a distributed manner. For example, the streaming server ex103 may be realized by a CDN (Contents Delivery Network), and content delivery may be realized by a network connecting a large number of edge servers distributed around the world and the edge servers. In the CDN, physically close edge servers are dynamically assigned according to clients. The delay can be reduced by caching and distributing the content to the edge server. In addition, when there is an error or when the communication status changes due to an increase in traffic etc., processing is distributed among multiple edge servers, or the distribution subject is switched to another edge server, or a portion of the network where a failure has occurred. Since the delivery can be continued bypassing, high-speed and stable delivery can be realized.
 また、配信自体の分散処理にとどまらず、撮影したデータの符号化処理を各端末で行ってもよいし、サーバ側で行ってもよいし、互いに分担して行ってもよい。一例として、一般に符号化処理では、処理ループが2度行われる。1度目のループでフレーム又はシーン単位での画像の複雑さ、又は、符号量が検出される。また、2度目のループでは画質を維持して符号化効率を向上させる処理が行われる。例えば、端末が1度目の符号化処理を行い、コンテンツを受け取ったサーバ側が2度目の符号化処理を行うことで、各端末での処理負荷を減らしつつもコンテンツの質と効率を向上させることができる。この場合、ほぼリアルタイムで受信して復号する要求があれば、端末が行った一度目の符号化済みデータを他の端末で受信して再生することもできるので、より柔軟なリアルタイム配信も可能になる。 In addition to the distributed processing of distribution itself, each terminal may perform encoding processing of captured data, or may perform processing on the server side, or may share processing with each other. As an example, generally in the encoding process, a processing loop is performed twice. In the first loop, the complexity or code amount of the image in frame or scene units is detected. In the second loop, processing is performed to maintain the image quality and improve the coding efficiency. For example, the terminal performs a first encoding process, and the server receiving the content performs a second encoding process, thereby improving the quality and efficiency of the content while reducing the processing load on each terminal. it can. In this case, if there is a request to receive and decode in substantially real time, the first encoded data made by the terminal can also be received and reproduced by another terminal, enabling more flexible real time delivery Become.
 他の例として、カメラex113等は、画像から特徴量抽出を行い、特徴量に関するデータをメタデータとして圧縮してサーバに送信する。サーバは、例えば特徴量からオブジェクトの重要性を判断して量子化精度を切り替えるなど、画像の意味に応じた圧縮を行う。特徴量データはサーバでの再度の圧縮時の動きベクトル予測の精度及び効率向上に特に有効である。また、端末でVLC(可変長符号化)などの簡易的な符号化を行い、サーバでCABAC(コンテキスト適応型二値算術符号化方式)など処理負荷の大きな符号化を行ってもよい。 As another example, the camera ex 113 or the like extracts a feature amount from an image, compresses data relating to the feature amount as metadata, and transmits the data to the server. The server performs compression according to the meaning of the image, for example, determining the importance of the object from the feature amount and switching the quantization accuracy. Feature amount data is particularly effective in improving the accuracy and efficiency of motion vector prediction at the time of second compression in the server. Also, the terminal may perform simple coding such as VLC (variable length coding) and the server may perform coding with a large processing load such as CABAC (context adaptive binary arithmetic coding method).
 さらに他の例として、スタジアム、ショッピングモール、又は工場などにおいては、複数の端末によりほぼ同一のシーンが撮影された複数の映像データが存在する場合がある。この場合には、撮影を行った複数の端末と、必要に応じて撮影をしていない他の端末及びサーバを用いて、例えばGOP(Group of Picture)単位、ピクチャ単位、又はピクチャを分割したタイル単位などで符号化処理をそれぞれ割り当てて分散処理を行う。これにより、遅延を減らし、よりリアルタイム性を実現できる。 As still another example, in a stadium, a shopping mall, or a factory, there may be a plurality of video data in which substantially the same scenes are shot by a plurality of terminals. In this case, for example, a unit of GOP (Group of Picture), a unit of picture, or a tile into which a picture is divided, using a plurality of terminals for which photographing was performed and other terminals and servers which are not photographing as necessary. The encoding process is allocated in units, etc. to perform distributed processing. This reduces delay and can realize more real time performance.
 また、複数の映像データはほぼ同一シーンであるため、各端末で撮影された映像データを互いに参照し合えるように、サーバで管理及び/又は指示をしてもよい。または、各端末からの符号化済みデータを、サーバが受信し複数のデータ間で参照関係を変更、又はピクチャ自体を補正或いは差し替えて符号化しなおしてもよい。これにより、一つ一つのデータの質と効率を高めたストリームを生成できる。 Further, since a plurality of video data are substantially the same scene, the server may manage and / or instruct the video data captured by each terminal to be mutually referred to. Alternatively, the server may receive the encoded data from each terminal and change the reference relationship among a plurality of data, or may correct or replace the picture itself and re-encode it. This makes it possible to generate streams with enhanced quality and efficiency of each piece of data.
 また、サーバは、映像データの符号化方式を変更するトランスコードを行ったうえで映像データを配信してもよい。例えば、サーバは、MPEG系の符号化方式をVP系に変換してもよいし、H.264をH.265に変換してもよい。 Also, the server may deliver the video data after performing transcoding for changing the coding method of the video data. For example, the server may convert the encoding system of the MPEG system into the VP system, or the H.264 system. H.264. It may be converted to 265.
 このように、符号化処理は、端末、又は1以上のサーバにより行うことが可能である。よって、以下では、処理を行う主体として「サーバ」又は「端末」等の記載を用いるが、サーバで行われる処理の一部又は全てが端末で行われてもよいし、端末で行われる処理の一部又は全てがサーバで行われてもよい。また、これらに関しては、復号処理についても同様である。 Thus, the encoding process can be performed by the terminal or one or more servers. Therefore, in the following, although the description such as "server" or "terminal" is used as the subject of processing, part or all of the processing performed by the server may be performed by the terminal, or the processing performed by the terminal Some or all may be performed on the server. In addition, with regard to these, the same applies to the decoding process.
 [3D、マルチアングル]
 近年では、互いにほぼ同期した複数のカメラex113及び/又はスマートフォンex115などの端末により撮影された異なるシーン、又は、同一シーンを異なるアングルから撮影した画像或いは映像を統合して利用することも増えてきている。各端末で撮影した映像は、別途取得した端末間の相対的な位置関係、又は、映像に含まれる特徴点が一致する領域などに基づいて統合される。
[3D, multi-angle]
In recent years, it has been increasingly used to integrate and use different scenes captured by terminals such as a plurality of cameras ex113 and / or smartphone ex115 which are substantially synchronized with each other, or images or videos of the same scene captured from different angles. There is. The images captured by each terminal are integrated based on the relative positional relationship between the terminals acquired separately, or an area where the feature points included in the image coincide with each other.
 サーバは、2次元の動画像を符号化するだけでなく、動画像のシーン解析などに基づいて自動的に、又は、ユーザが指定した時刻において、静止画を符号化し、受信端末に送信してもよい。サーバは、さらに、撮影端末間の相対的な位置関係を取得できる場合には、2次元の動画像だけでなく、同一シーンが異なるアングルから撮影された映像に基づき、当該シーンの3次元形状を生成できる。なお、サーバは、ポイントクラウドなどにより生成した3次元のデータを別途符号化してもよいし、3次元データを用いて人物又はオブジェクトを認識或いは追跡した結果に基づいて、受信端末に送信する映像を、複数の端末で撮影した映像から選択、又は、再構成して生成してもよい。 The server not only encodes a two-dimensional moving image, but also automatically encodes a still image based on scene analysis of the moving image or at a time designated by the user and transmits it to the receiving terminal. It is also good. Furthermore, if the server can acquire relative positional relationship between the imaging terminals, the three-dimensional shape of the scene is not only determined based on the two-dimensional moving image but also the video of the same scene captured from different angles. Can be generated. Note that the server may separately encode three-dimensional data generated by a point cloud or the like, or an image to be transmitted to the receiving terminal based on a result of recognizing or tracking a person or an object using the three-dimensional data. Alternatively, it may be generated by selecting or reconfiguring from videos taken by a plurality of terminals.
 このようにして、ユーザは、各撮影端末に対応する各映像を任意に選択してシーンを楽しむこともできるし、複数画像又は映像を用いて再構成された3次元データから任意視点の映像を切り出したコンテンツを楽しむこともできる。さらに、映像と同様に音も複数の相異なるアングルから収音され、サーバは、映像に合わせて特定のアングル又は空間からの音を映像と多重化して送信してもよい。 In this way, the user can enjoy the scene by arbitrarily selecting each video corresponding to each photographing terminal, or from the three-dimensional data reconstructed using a plurality of images or videos, the video of the arbitrary viewpoint You can also enjoy the extracted content. Furthermore, the sound may be picked up from a plurality of different angles as well as the video, and the server may multiplex the sound from a specific angle or space with the video and transmit it according to the video.
 また、近年ではVirtual Reality(VR)及びAugmented Reality(AR)など、現実世界と仮想世界とを対応付けたコンテンツも普及してきている。VRの画像の場合、サーバは、右目用及び左目用の視点画像をそれぞれ作成し、Multi-View Coding(MVC)などにより各視点映像間で参照を許容する符号化を行ってもよいし、互いに参照せずに別ストリームとして符号化してもよい。別ストリームの復号時には、ユーザの視点に応じて仮想的な3次元空間が再現されるように互いに同期させて再生するとよい。 Also, in recent years, content in which the real world and the virtual world are associated, such as Virtual Reality (VR) and Augmented Reality (AR), has also become widespread. In the case of VR images, the server may create viewpoint images for the right eye and for the left eye, respectively, and may perform coding to allow reference between each viewpoint video using Multi-View Coding (MVC) or the like. It may be encoded as another stream without reference. At the time of decoding of another stream, reproduction may be performed in synchronization with each other so that a virtual three-dimensional space is reproduced according to the viewpoint of the user.
 ARの画像の場合には、サーバは、現実空間のカメラ情報に、仮想空間上の仮想物体情報を、3次元的位置又はユーザの視点の動きに基づいて重畳する。復号装置は、仮想物体情報及び3次元データを取得又は保持し、ユーザの視点の動きに応じて2次元画像を生成し、スムーズにつなげることで重畳データを作成してもよい。または、復号装置は仮想物体情報の依頼に加えてユーザの視点の動きをサーバに送信し、サーバは、サーバに保持される3次元データから受信した視点の動きに合わせて重畳データを作成し、重畳データを符号化して復号装置に配信してもよい。なお、重畳データは、RGB以外に透過度を示すα値を有し、サーバは、3次元データから作成されたオブジェクト以外の部分のα値が0などに設定し、当該部分が透過する状態で、符号化してもよい。もしくは、サーバは、クロマキーのように所定の値のRGB値を背景に設定し、オブジェクト以外の部分は背景色にしたデータを生成してもよい。 In the case of an AR image, the server superimposes virtual object information in the virtual space on camera information in the real space based on the three-dimensional position or the movement of the user's viewpoint. The decoding apparatus may acquire or hold virtual object information and three-dimensional data, generate a two-dimensional image according to the movement of the user's viewpoint, and create superimposed data by smoothly connecting. Alternatively, the decoding device transmits the motion of the user's viewpoint to the server in addition to the request for virtual object information, and the server creates superimposed data in accordance with the motion of the viewpoint received from the three-dimensional data held in the server. The superimposed data may be encoded and distributed to the decoding device. Note that the superimposed data has an α value indicating transparency as well as RGB, and the server sets the α value of a portion other than the object created from the three-dimensional data to 0 etc., and the portion is transparent , May be encoded. Alternatively, the server may set RGB values of predetermined values as a background, such as chroma key, and generate data in which the portion other than the object has a background color.
 同様に配信されたデータの復号処理はクライアントである各端末で行っても、サーバ側で行ってもよいし、互いに分担して行ってもよい。一例として、ある端末が、一旦サーバに受信リクエストを送り、そのリクエストに応じたコンテンツを他の端末で受信し復号処理を行い、ディスプレイを有する装置に復号済みの信号が送信されてもよい。通信可能な端末自体の性能によらず処理を分散して適切なコンテンツを選択することで画質のよいデータを再生することができる。また、他の例として大きなサイズの画像データをTV等で受信しつつ、鑑賞者の個人端末にピクチャが分割されたタイルなど一部の領域が復号されて表示されてもよい。これにより、全体像を共有化しつつ、自身の担当分野又はより詳細に確認したい領域を手元で確認することができる。 Similarly, the decryption processing of the distributed data may be performed by each terminal which is a client, may be performed by the server side, or may be performed sharing each other. As one example, one terminal may send a reception request to the server once, the content corresponding to the request may be received by another terminal and decoded, and the decoded signal may be transmitted to a device having a display. Data of high image quality can be reproduced by distributing processing and selecting appropriate content regardless of the performance of the communicable terminal itself. As another example, while receiving image data of a large size by a TV or the like, a viewer's personal terminal may decode and display a partial area such as a tile in which a picture is divided. Thereby, it is possible to confirm at hand the area in which the user is in charge or the area to be checked in more detail while sharing the whole image.
 また今後は、屋内外にかかわらず近距離、中距離、又は長距離の無線通信が複数使用可能な状況下で、MPEG-DASHなどの配信システム規格を利用して、接続中の通信に対して適切なデータを切り替えながらシームレスにコンテンツを受信することが予想される。これにより、ユーザは、自身の端末のみならず屋内外に設置されたディスプレイなどの復号装置又は表示装置を自由に選択しながらリアルタイムで切り替えられる。また、自身の位置情報などに基づいて、復号する端末及び表示する端末を切り替えながら復号を行うことができる。これにより、目的地への移動中に、表示可能なデバイスが埋め込まれた隣の建物の壁面又は地面の一部に地図情報を表示させながら移動することも可能になる。また、符号化データが受信端末から短時間でアクセスできるサーバにキャッシュされている、又は、コンテンツ・デリバリー・サービスにおけるエッジサーバにコピーされている、などの、ネットワーク上での符号化データへのアクセス容易性に基づいて、受信データのビットレートを切り替えることも可能である。 Also, from now on, for communication under connection using a delivery system standard such as MPEG-DASH under a situation where multiple short distance, middle distance or long distance wireless communication can be used regardless of indoor or outdoor. It is expected to receive content seamlessly while switching the appropriate data. As a result, the user can switch in real time while freely selecting not only his own terminal but also a decoding apparatus or display apparatus such as a display installed indoors and outdoors. In addition, decoding can be performed while switching between a terminal to be decoded and a terminal to be displayed, based on own position information and the like. This makes it possible to move while displaying map information on the wall surface or part of the ground of the next building in which the displayable device is embedded while moving to the destination. Also, access to encoded data over the network, such as encoded data being cached on a server that can be accessed in a short time from a receiving terminal, or copied to an edge server in a content delivery service, etc. It is also possible to switch the bit rate of the received data based on ease.
 [スケーラブル符号化]
 コンテンツの切り替えに関して、図16に示す、上記各実施の形態で示した動画像符号化方法を応用して圧縮符号化されたスケーラブルなストリームを用いて説明する。サーバは、個別のストリームとして内容は同じで質の異なるストリームを複数有していても構わないが、図示するようにレイヤに分けて符号化を行うことで実現される時間的/空間的スケーラブルなストリームの特徴を活かして、コンテンツを切り替える構成であってもよい。つまり、復号側が性能という内的要因と通信帯域の状態などの外的要因とに応じてどのレイヤまで復号するかを決定することで、復号側は、低解像度のコンテンツと高解像度のコンテンツとを自由に切り替えて復号できる。例えば移動中にスマートフォンex115で視聴していた映像の続きを、帰宅後にインターネットTV等の機器で視聴したい場合には、当該機器は、同じストリームを異なるレイヤまで復号すればよいので、サーバ側の負担を軽減できる。
[Scalable coding]
Content switching will be described using a scalable stream compression-coded by applying the moving picture coding method shown in each of the above embodiments shown in FIG. The server may have a plurality of streams with the same content but different qualities as individual streams, but is temporally / spatial scalable which is realized by coding into layers as shown in the figure. The configuration may be such that the content is switched using the feature of the stream. That is, the decoding side determines low-resolution content and high-resolution content by determining which layer to decode depending on the internal factor of performance and external factors such as the state of the communication band. It can be switched freely and decoded. For example, when it is desired to view the continuation of the video being watched by the smartphone ex115 while moving on a device such as the Internet TV after returning home, the device only has to decode the same stream to different layers, so the burden on the server side Can be reduced.
 さらに、上記のように、レイヤ毎にピクチャが符号化されており、ベースレイヤの上位にエンハンスメントレイヤが存在するスケーラビリティを実現する構成以外に、エンハンスメントレイヤが画像の統計情報などに基づくメタ情報を含み、復号側が、メタ情報に基づきベースレイヤのピクチャを超解像することで高画質化したコンテンツを生成してもよい。超解像とは、同一解像度におけるSN比の向上、及び、解像度の拡大のいずれであってもよい。メタ情報は、超解像処理に用いる線形或いは非線形のフィルタ係数を特定するため情報、又は、超解像処理に用いるフィルタ処理、機械学習或いは最小2乗演算におけるパラメータ値を特定する情報などを含む。 Furthermore, as described above, the picture is encoded for each layer, and the enhancement layer includes meta information based on statistical information of the image, etc., in addition to the configuration for realizing the scalability in which the enhancement layer exists above the base layer. The decoding side may generate high-quality content by super-resolving a picture of the base layer based on the meta information. The super resolution may be either an improvement in the SN ratio at the same resolution or an expansion of the resolution. Meta information includes information for identifying linear or non-linear filter coefficients used for super-resolution processing, or information for identifying parameter values in filter processing used for super-resolution processing, machine learning or least squares operation, etc. .
 または、画像内のオブジェクトなどの意味合いに応じてピクチャがタイル等に分割されており、復号側が、復号するタイルを選択することで一部の領域だけを復号する構成であってもよい。また、オブジェクトの属性(人物、車、ボールなど)と映像内の位置(同一画像における座標位置など)とをメタ情報として格納することで、復号側は、メタ情報に基づいて所望のオブジェクトの位置を特定し、そのオブジェクトを含むタイルを決定できる。例えば、図17に示すように、メタ情報は、HEVCにおけるSEIメッセージなど画素データとは異なるデータ格納構造を用いて格納される。このメタ情報は、例えば、メインオブジェクトの位置、サイズ、又は色彩などを示す。 Alternatively, the picture may be divided into tiles or the like according to the meaning of an object or the like in the image, and the decoding side may be configured to decode only a part of the area by selecting the tile to be decoded. Also, by storing the attribute of the object (person, car, ball, etc.) and the position in the image (coordinate position in the same image, etc.) as meta information, the decoding side can position the desired object based on the meta information. And determine the tile that contains the object. For example, as shown in FIG. 17, meta-information is stored using a data storage structure different from pixel data, such as an SEI message in HEVC. This meta information indicates, for example, the position, size, or color of the main object.
 また、ストリーム、シーケンス又はランダムアクセス単位など、複数のピクチャから構成される単位でメタ情報が格納されてもよい。これにより、復号側は、特定人物が映像内に出現する時刻などが取得でき、ピクチャ単位の情報と合わせることで、オブジェクトが存在するピクチャ、及び、ピクチャ内でのオブジェクトの位置を特定できる。 Also, meta information may be stored in units of a plurality of pictures, such as streams, sequences, or random access units. As a result, the decoding side can acquire the time when a specific person appears in the video and the like, and can identify the picture in which the object exists and the position of the object in the picture by combining the information with the picture unit.
 [Webページの最適化]
 図18は、コンピュータex111等におけるwebページの表示画面例を示す図である。図19は、スマートフォンex115等におけるwebページの表示画面例を示す図である。図18及び図19に示すようにwebページが、画像コンテンツへのリンクであるリンク画像を複数含む場合があり、閲覧するデバイスによってその見え方は異なる。画面上に複数のリンク画像が見える場合には、ユーザが明示的にリンク画像を選択するまで、又は画面の中央付近にリンク画像が近付く或いはリンク画像の全体が画面内に入るまでは、表示装置(復号装置)は、リンク画像として各コンテンツが有する静止画又はIピクチャを表示したり、複数の静止画又はIピクチャ等でgifアニメのような映像を表示したり、ベースレイヤのみ受信して映像を復号及び表示したりする。
Web Page Optimization
FIG. 18 is a diagram showing an example of a display screen of a web page in the computer ex111 and the like. FIG. 19 is a diagram illustrating an example of a display screen of a web page in the smartphone ex115 or the like. As shown in FIGS. 18 and 19, the web page may include a plurality of link images which are links to image content, and the appearance differs depending on the browsing device. When multiple link images are visible on the screen, the display device until the user explicitly selects the link image, or until the link image approaches near the center of the screen or the entire link image falls within the screen The (decoding device) displays still images or I pictures of each content as link images, displays images such as gif animation with a plurality of still images or I pictures, etc., receives only the base layer Decode and display.
 ユーザによりリンク画像が選択された場合、表示装置は、ベースレイヤを最優先にして復号する。なお、webページを構成するHTMLにスケーラブルなコンテンツであることを示す情報があれば、表示装置は、エンハンスメントレイヤまで復号してもよい。また、リアルタイム性を担保するために、選択される前又は通信帯域が非常に厳しい場合には、表示装置は、前方参照のピクチャ(Iピクチャ、Pピクチャ、前方参照のみのBピクチャ)のみを復号及び表示することで、先頭ピクチャの復号時刻と表示時刻との間の遅延(コンテンツの復号開始から表示開始までの遅延)を低減できる。また、表示装置は、ピクチャの参照関係を敢えて無視して全てのBピクチャ及びPピクチャを前方参照にして粗く復号し、時間が経ち受信したピクチャが増えるにつれて正常の復号を行ってもよい。 When the link image is selected by the user, the display device decodes the base layer with the highest priority. Note that the display device may decode up to the enhancement layer if there is information indicating that the content is scalable in the HTML configuring the web page. Also, in order to secure real-time capability, the display device decodes only forward referenced pictures (I picture, P picture, forward referenced only B picture) before the selection or when the communication band is very strict. And, by displaying, it is possible to reduce the delay between the decoding time of the leading picture and the display time (delay from the start of decoding of the content to the start of display). In addition, the display device may roughly ignore the reference relationship of pictures and roughly decode all B pictures and P pictures with forward reference, and may perform normal decoding as time passes and the number of received pictures increases.
 [自動走行]
 また、車の自動走行又は走行支援のため2次元又は3次元の地図情報などの静止画又は映像データを送受信する場合、受信端末は、1以上のレイヤに属する画像データに加えて、メタ情報として天候又は工事の情報なども受信し、これらを対応付けて復号してもよい。なお、メタ情報は、レイヤに属してもよいし、単に画像データと多重化されてもよい。
[Auto run]
In addition, when transmitting or receiving still image or video data such as two-dimensional or three-dimensional map information for automatic traveling or driving assistance of a car, the receiving terminal is added as image information belonging to one or more layers as meta information Information on weather or construction may also be received, and these may be correlated and decoded. The meta information may belong to the layer or may be simply multiplexed with the image data.
 この場合、受信端末を含む車、ドローン又は飛行機などが移動するため、受信端末は、当該受信端末の位置情報を受信要求時に送信することで、基地局ex106~ex110を切り替えながらシームレスな受信及び復号を実現できる。また、受信端末は、ユーザの選択、ユーザの状況又は通信帯域の状態に応じて、メタ情報をどの程度受信するか、又は地図情報をどの程度更新していくかを動的に切り替えることが可能になる。 In this case, since a car including a receiving terminal, a drone or an airplane moves, the receiving terminal transmits the position information of the receiving terminal at the time of reception request to seamlessly receive and decode while switching the base stations ex106 to ex110. Can be realized. In addition, the receiving terminal can dynamically switch how much meta information is received or how much map information is updated according to the user's selection, the user's situation or the state of the communication band. become.
 以上のようにして、コンテンツ供給システムex100では、ユーザが送信した符号化された情報をリアルタイムでクライアントが受信して復号し、再生することができる。 As described above, in the content providing system ex100, the client can receive, decode, and reproduce the encoded information transmitted by the user in real time.
 [個人コンテンツの配信]
 また、コンテンツ供給システムex100では、映像配信業者による高画質で長時間のコンテンツのみならず、個人による低画質で短時間のコンテンツのユニキャスト、又はマルチキャスト配信が可能である。また、このような個人のコンテンツは今後も増加していくと考えられる。個人コンテンツをより優れたコンテンツにするために、サーバは、編集処理を行ってから符号化処理を行ってもよい。これは例えば、以下のような構成で実現できる。
[Distribution of personal content]
Further, in the content supply system ex100, not only high-quality and long-time content by a video distribution company but also unicast or multicast distribution of low-quality and short-time content by an individual is possible. In addition, such personal content is expected to increase in the future. In order to make the personal content more excellent, the server may perform the encoding process after performing the editing process. This can be realized, for example, with the following configuration.
 撮影時にリアルタイム又は蓄積して撮影後に、サーバは、原画又は符号化済みデータから撮影エラー、シーン探索、意味の解析、及びオブジェクト検出などの認識処理を行う。そして、サーバは、認識結果に基いて手動又は自動で、ピントずれ又は手ブレなどを補正したり、明度が他のピクチャに比べて低い又は焦点が合っていないシーンなどの重要性の低いシーンを削除したり、オブジェクトのエッジを強調したり、色合いを変化させるなどの編集を行う。サーバは、編集結果に基いて編集後のデータを符号化する。また撮影時間が長すぎると視聴率が下がることも知られており、サーバは、撮影時間に応じて特定の時間範囲内のコンテンツになるように上記のように重要性が低いシーンのみならず動きが少ないシーンなどを、画像処理結果に基き自動でクリップしてもよい。または、サーバは、シーンの意味解析の結果に基づいてダイジェストを生成して符号化してもよい。 At the time of shooting, the server performs recognition processing such as shooting error, scene search, meaning analysis, and object detection from the original image or encoded data after shooting in real time or by accumulation. Then, the server manually or automatically corrects out-of-focus or camera shake, etc. based on the recognition result, or a scene with low importance such as a scene whose brightness is low or out of focus compared with other pictures. Make edits such as deleting, emphasizing the edge of an object, or changing the color. The server encodes the edited data based on the edited result. It is also known that the audience rating decreases if the shooting time is too long, and the server moves not only the scenes with low importance as described above but also the motion so as to be the content within a specific time range according to the shooting time. Scenes with a small amount of motion may be clipped automatically based on the image processing result. Alternatively, the server may generate and encode a digest based on the result of semantic analysis of the scene.
 なお、個人コンテンツには、そのままでは著作権、著作者人格権、又は肖像権等の侵害となるものが写り込んでいるケースもあり、共有する範囲が意図した範囲を超えてしまうなど個人にとって不都合な場合もある。よって、例えば、サーバは、画面の周辺部の人の顔、又は家の中などを敢えて焦点が合わない画像に変更して符号化してもよい。また、サーバは、符号化対象画像内に、予め登録した人物とは異なる人物の顔が映っているかどうかを認識し、映っている場合には、顔の部分にモザイクをかけるなどの処理を行ってもよい。または、符号化の前処理又は後処理として、著作権などの観点からユーザが画像を加工したい人物又は背景領域を指定し、サーバは、指定された領域を別の映像に置き換える、又は焦点をぼかすなどの処理を行うことも可能である。人物であれば、動画像において人物をトラッキングしながら、顔の部分の映像を置き換えることができる。 In some cases, there are cases where personal content may infringe copyright, author's personality right, portrait right, etc. as it is, and it is inconvenient for the individual, such as the range of sharing exceeds the intended range. There are also cases. Thus, for example, the server may change and encode the face of a person at the periphery of the screen, or the inside of a house, etc. into an image out of focus. In addition, the server recognizes whether or not the face of a person different from the person registered in advance appears in the image to be encoded, and if so, performs processing such as mosaicing the face portion. May be Alternatively, the user designates a person or background area desired to process an image from the viewpoint of copyright etc. as preprocessing or post-processing of encoding, and the server replaces the designated area with another video or blurs the focus. It is also possible to perform such processing. If it is a person, it is possible to replace the image of the face part while tracking the person in the moving image.
 また、データ量の小さい個人コンテンツの視聴はリアルタイム性の要求が強いため、帯域幅にもよるが、復号装置は、まずベースレイヤを最優先で受信して復号及び再生を行う。復号装置は、この間にエンハンスメントレイヤを受信し、再生がループされる場合など2回以上再生される場合に、エンハンスメントレイヤも含めて高画質の映像を再生してもよい。このようにスケーラブルな符号化が行われているストリームであれば、未選択時又は見始めた段階では粗い動画だが、徐々にストリームがスマートになり画像がよくなるような体験を提供することができる。スケーラブル符号化以外にも、1回目に再生される粗いストリームと、1回目の動画を参照して符号化される2回目のストリームとが1つのストリームとして構成されていても同様の体験を提供できる。 Also, since viewing of personal content with a small amount of data has a strong demand for real-time performance, the decoding apparatus first receives the base layer with the highest priority, and performs decoding and reproduction, although it depends on the bandwidth. The decoding device may receive the enhancement layer during this period, and may play back high-quality video including the enhancement layer if it is played back more than once, such as when playback is looped. In the case of a stream in which scalable coding is performed as described above, it is possible to provide an experience in which the stream gradually becomes smart and the image becomes better although it is a rough moving image when it is not selected or when it starts watching. Besides scalable coding, the same experience can be provided even if the coarse stream played back first and the second stream coded with reference to the first moving image are configured as one stream .
 [その他の使用例]
 また、これらの符号化又は復号処理は、一般的に各端末が有するLSIex500において処理される。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化又は復号用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、又はハードディスクなど)に組み込み、そのソフトウェアを用いて符号化又は復号処理を行ってもよい。さらに、スマートフォンex115がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データはスマートフォンex115が有するLSIex500で符号化処理されたデータである。
[Other use cases]
Also, these encoding or decoding processes are generally processed in an LSI ex 500 that each terminal has. The LSI ex 500 may be a single chip or a plurality of chips. Software for moving image encoding or decoding is incorporated in any recording medium (CD-ROM, flexible disk, hard disk, etc.) readable by computer ex111 or the like, and encoding or decoding is performed using the software. It is also good. Furthermore, when the smartphone ex115 is equipped with a camera, moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex 500 included in the smartphone ex 115.
 なお、LSIex500は、アプリケーションソフトをダウンロードしてアクティベートする構成であってもよい。この場合、端末は、まず、当該端末がコンテンツの符号化方式に対応しているか、又は、特定サービスの実行能力を有するかを判定する。端末がコンテンツの符号化方式に対応していない場合、又は、特定サービスの実行能力を有さない場合、端末は、コーデック又はアプリケーションソフトをダウンロードし、その後、コンテンツ取得及び再生する。 The LSI ex 500 may be configured to download and activate application software. In this case, the terminal first determines whether the terminal corresponds to the content coding scheme or has the ability to execute a specific service. If the terminal does not support the content encoding method or does not have the ability to execute a specific service, the terminal downloads the codec or application software, and then acquires and reproduces the content.
 また、インターネットex101を介したコンテンツ供給システムex100に限らず、デジタル放送用システムにも上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)又は動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。衛星などを利用して放送用の電波に映像と音が多重化された多重化データを載せて送受信するため、コンテンツ供給システムex100のユニキャストがし易い構成に対してマルチキャスト向きであるという違いがあるが符号化処理及び復号処理に関しては同様の応用が可能である。 Further, the present invention is not limited to the content supply system ex100 via the Internet ex101, but is also applicable to at least a moving picture coding apparatus (image coding apparatus) or a moving picture decoding apparatus (image decoding apparatus) of the above embodiments Can be incorporated. There is a difference in that it is multicast-oriented with respect to the configuration in which the content supply system ex100 can be easily unicasted, since multiplexed data in which video and sound are multiplexed is transmitted on broadcast radio waves using satellites etc. Similar applications are possible for the encoding process and the decoding process.
 [ハードウェア構成]
 図20は、スマートフォンex115を示す図である。また、図21は、スマートフォンex115の構成例を示す図である。スマートフォンex115は、基地局ex110との間で電波を送受信するためのアンテナex450と、映像及び静止画を撮ることが可能なカメラ部ex465と、カメラ部ex465で撮像した映像、及びアンテナex450で受信した映像等が復号されたデータを表示する表示部ex458とを備える。スマートフォンex115は、さらに、タッチパネル等である操作部ex466と、音声又は音響を出力するためのスピーカ等である音声出力部ex457と、音声を入力するためのマイク等である音声入力部ex456と、撮影した映像或いは静止画、録音した音声、受信した映像或いは静止画、メール等の符号化されたデータ、又は、復号されたデータを保存可能なメモリ部ex467と、ユーザを特定し、ネットワークをはじめ各種データへのアクセスの認証をするためのSIMex468とのインタフェース部であるスロット部ex464とを備える。なお、メモリ部ex467の代わりに外付けメモリが用いられてもよい。
[Hardware configuration]
FIG. 20 is a diagram showing the smartphone ex115. FIG. 21 is a diagram illustrating an exemplary configuration of the smartphone ex115. The smartphone ex115 receives an antenna ex450 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex465 capable of taking video and still images, a video taken by the camera unit ex465, and the antenna ex450 And a display unit ex <b> 458 for displaying data obtained by decoding an image or the like. The smartphone ex115 further includes an operation unit ex466 that is a touch panel or the like, a voice output unit ex457 that is a speaker or the like for outputting voice or sound, a voice input unit ex456 that is a microphone or the like for inputting voice, Specify a user, a memory unit ex467 capable of storing encoded video or still image, recorded voice, received video or still image, encoded data such as mail, or decoded data, and various networks and networks And a slot unit ex464 that is an interface unit with the SIM ex 468 for authenticating access to data. Note that an external memory may be used instead of the memory unit ex467.
 また、表示部ex458及び操作部ex466等を統括的に制御する主制御部ex460と、電源回路部ex461、操作入力制御部ex462、映像信号処理部ex455、カメラインタフェース部ex463、ディスプレイ制御部ex459、変調/復調部ex452、多重/分離部ex453、音声信号処理部ex454、スロット部ex464、及びメモリ部ex467とがバスex470を介して接続されている。 Further, a main control unit ex460 that integrally controls the display unit ex458 and the operation unit ex466, a power supply circuit unit ex461, an operation input control unit ex462, a video signal processing unit ex455, a camera interface unit ex463, a display control unit ex459, / Demodulation unit ex452, multiplexing / demultiplexing unit ex453, audio signal processing unit ex454, slot unit ex464, and memory unit ex467 are connected via a bus ex470.
 電源回路部ex461は、ユーザの操作により電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することによりスマートフォンex115を動作可能な状態に起動する。 When the power supply key is turned on by the user's operation, the power supply circuit unit ex461 activates the smartphone ex115 to an operable state by supplying power from the battery pack to each unit.
 スマートフォンex115は、CPU、ROM及びRAM等を有する主制御部ex460の制御に基づいて、通話及データ通信等の処理を行う。通話時は、音声入力部ex456で収音した音声信号を音声信号処理部ex454でデジタル音声信号に変換し、これを変調/復調部ex452でスペクトラム拡散処理し、送信/受信部ex451でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex450を介して送信する。また受信データを増幅して周波数変換処理及びアナログデジタル変換処理を施し、変調/復調部ex452でスペクトラム逆拡散処理し、音声信号処理部ex454でアナログ音声信号に変換した後、これを音声出力部ex457から出力する。データ通信モード時は、本体部の操作部ex466等の操作によってテキスト、静止画、又は映像データが操作入力制御部ex462を介して主制御部ex460に送出され、同様に送受信処理が行われる。データ通信モード時に映像、静止画、又は映像と音声を送信する場合、映像信号処理部ex455は、メモリ部ex467に保存されている映像信号又はカメラ部ex465から入力された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し、符号化された映像データを多重/分離部ex453に送出する。また、音声信号処理部ex454は、映像又は静止画等をカメラ部ex465で撮像中に音声入力部ex456で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex453に送出する。多重/分離部ex453は、符号化済み映像データと符号化済み音声データを所定の方式で多重化し、変調/復調部(変調/復調回路部)ex452、及び送信/受信部ex451で変調処理及び変換処理を施してアンテナex450を介して送信する。 The smartphone ex115 performs processing such as call and data communication based on control of the main control unit ex460 having a CPU, a ROM, a RAM, and the like. At the time of a call, the audio signal collected by the audio input unit ex456 is converted to a digital audio signal by the audio signal processing unit ex454, spread spectrum processing is performed by the modulation / demodulation unit ex452, and digital analog conversion is performed by the transmission / reception unit ex451. After processing and frequency conversion processing, transmission is performed via the antenna ex450. Further, the received data is amplified and subjected to frequency conversion processing and analog-to-digital conversion processing, subjected to spectrum despreading processing by modulation / demodulation unit ex452, and converted to an analog sound signal by sound signal processing unit ex454. Output from In the data communication mode, text, still images, or video data are sent to the main control unit ex460 via the operation input control unit ex462 by the operation of the operation unit ex466 or the like of the main unit, and transmission and reception processing is similarly performed. In the case of transmitting video, still images, or video and audio in the data communication mode, the video signal processing unit ex 455 executes the video signal stored in the memory unit ex 467 or the video signal input from the camera unit ex 465 as described above. The video data is compressed and encoded by the moving picture encoding method shown in the form, and the encoded video data is sent to the multiplexing / demultiplexing unit ex453. Further, the audio signal processing unit ex454 encodes an audio signal collected by the audio input unit ex456 while capturing a video or a still image with the camera unit ex465, and sends the encoded audio data to the multiplexing / demultiplexing unit ex453. Do. The multiplexing / demultiplexing unit ex453 multiplexes the encoded video data and the encoded audio data according to a predetermined method, and performs modulation processing and conversion by the modulation / demodulation unit (modulation / demodulation circuit unit) ex452 and the transmission / reception unit ex451. It processes and transmits via antenna ex450.
 電子メール又はチャットに添付された映像、又はウェブページ等にリンクされた映像を受信した場合、アンテナex450を介して受信された多重化データを復号するために、多重/分離部ex453は、多重化データを分離することにより、多重化データを映像データのビットストリームと音声データのビットストリームとに分け、同期バスex470を介して符号化された映像データを映像信号処理部ex455に供給するとともに、符号化された音声データを音声信号処理部ex454に供給する。映像信号処理部ex455は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号方法によって映像信号を復号し、ディスプレイ制御部ex459を介して表示部ex458から、リンクされた動画像ファイルに含まれる映像又は静止画が表示される。また音声信号処理部ex454は、音声信号を復号し、音声出力部ex457から音声が出力される。なおリアルタイムストリーミングが普及しているため、ユーザの状況によっては音声の再生が社会的にふさわしくない場も起こりえる。そのため、初期値としては、音声信号は再生せず映像データのみを再生する構成の方が望ましい。ユーザが映像データをクリックするなど操作を行った場合にのみ音声を同期して再生してもよい。 When a video attached to an e-mail or a chat or a video linked to a web page or the like is received, the multiplexing / demultiplexing unit ex453 multiplexes in order to decode multiplexed data received via the antenna ex450. By separating the data, the multiplexed data is divided into a bit stream of video data and a bit stream of audio data, and the encoded video data is supplied to the video signal processing unit ex455 via the synchronization bus ex470, and The converted audio data is supplied to the audio signal processing unit ex 454. The video signal processing unit ex 455 decodes the video signal by the moving picture decoding method corresponding to the moving picture coding method described in each of the above embodiments, and the moving picture linked from the display unit ex 458 via the display control unit ex 459 An image or a still image included in the image file is displayed. The audio signal processing unit ex 454 decodes the audio signal, and the audio output unit ex 457 outputs the audio. Furthermore, since real-time streaming is widespread, depending on the user's situation, it may happen that sound reproduction is not socially appropriate. Therefore, as an initial value, it is preferable to have a configuration in which only the video data is reproduced without reproducing the audio signal. Audio may be synchronized and played back only when the user performs an operation such as clicking on video data.
 またここではスマートフォンex115を例に説明したが、端末としては符号化器及び復号器を両方持つ送受信型端末の他に、符号化器のみを有する送信端末、及び、復号器のみを有する受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムにおいて、映像データに音声データなどが多重化された多重化データを受信又は送信するとして説明したが、多重化データには、音声データ以外に映像に関連する文字データなどが多重化されてもよいし、多重化データではなく映像データ自体が受信又は送信されてもよい。 Here, although the smartphone ex115 is described as an example, in addition to a transmission / reception terminal having both an encoder and a decoder as a terminal, it is referred to as a transmitting terminal having only the encoder and a receiving terminal having only the decoder. There are three possible implementation types. Furthermore, in the digital broadcasting system, it has been described that multiplexed data in which audio data is multiplexed with video data is received or transmitted, but in multiplexed data, character data related to video other than audio data is also described. It may be multiplexed, or video data itself may be received or transmitted, not multiplexed data.
 なお、CPUを含む主制御部ex460が符号化又は復号処理を制御するとして説明したが、端末はGPUを備えることも多い。よって、CPUとGPUで共通化されたメモリ、又は共通に使用できるようにアドレスが管理されているメモリにより、GPUの性能を活かして広い領域を一括して処理する構成でもよい。これにより符号化時間を短縮でき、リアルタイム性を確保し、低遅延を実現できる。特に動き探索、デブロックフィルタ、SAO(Sample Adaptive Offset)、及び変換・量子化の処理を、CPUではなく、GPUでピクチャなどの単位で一括して行うと効率的である。 Although the main control unit ex 460 including the CPU is described as controlling the encoding or decoding process, the terminal often includes a GPU. Therefore, a configuration in which a large area is collectively processed using the performance of the GPU may be performed using a memory shared by the CPU and the GPU, or a memory whose address is managed so as to be commonly used. As a result, coding time can be shortened, real time property can be secured, and low delay can be realized. In particular, it is efficient to perform processing of motion search, deblock filter, sample adaptive offset (SAO), and transform / quantization collectively in units of pictures or the like on the GPU instead of the CPU.
 本開示は、例えば、テレビジョン受像機、デジタルビデオレコーダー、カーナビゲーション、携帯電話、デジタルカメラ、または、デジタルビデオカメラ等に利用可能である。 The present disclosure is applicable to, for example, television receivers, digital video recorders, car navigation systems, mobile phones, digital cameras, digital video cameras, and the like.
 100 符号化装置
 102 分割部
 104 減算部
 106 変換部
 108 量子化部
 110 エントロピー符号化部
 112、204 逆量子化部
 114、206 逆変換部
 116、208 加算部
 118、210 ブロックメモリ
 120、212 ループフィルタ部
 122、214 フレームメモリ
 124、216 イントラ予測部
 126、218 インター予測部
 128、220 予測制御部
 200 復号装置
 202 エントロピー復号部
Reference Signs List 100 encoder 102 division unit 104 subtraction unit 106 transformation unit 108 quantization unit 110 entropy encoding unit 112, 204 inverse quantization unit 114, 206 inverse transformation unit 116, 208 addition unit 118, 210 block memory 120, 212 loop filter Unit 122, 214 Frame memory 124, 216 Intra prediction unit 126, 218 Inter prediction unit 128, 220 Prediction control unit 200 Decoding device 202 Entropy decoding unit

Claims (27)

  1.  回路と、
     メモリと、を備え、
     前記回路は、前記メモリを用いて、
     処理対象ブロックをサブブロックに分割してサブブロック単位で動き補償を行うインター予測モードにおいて、前記処理対象ブロックのサイズに基づいてサブブロックの横および縦の長さを切り替えて符号化処理を行う、
     符号化装置。
    Circuit,
    With memory,
    The circuit uses the memory to
    In an inter prediction mode in which a block to be processed is divided into subblocks and motion compensation is performed in units of subblocks, encoding is performed by switching the horizontal and vertical lengths of the subblocks based on the size of the block to be processed.
    Encoding device.
  2.  前記サブブロックの横の長さは、前記処理対象ブロックの横の長さに基づいて決定され、前記サブブロックの縦の長さは、前記処理対象ブロックの縦の長さに基づいて決定される、
     請求項1に記載の符号化装置。
    The horizontal length of the sub block is determined based on the horizontal length of the process target block, and the vertical length of the sub block is determined based on the vertical length of the process target block ,
    The encoding device according to claim 1.
  3.  前記サブブロック単位で動き補償を行うインター予測モードは、前記処理対象ブロックに隣接する隣接ブロックの動きベクトルを用いて、動きベクトルを導出するマージモードである、
     請求項1又は2に記載の符号化装置。
    The inter prediction mode in which motion compensation is performed in units of sub blocks is a merge mode in which a motion vector is derived using a motion vector of an adjacent block adjacent to the processing target block.
    The encoding device according to claim 1 or 2.
  4.  前記サブブロック単位で動き補償を行うインター予測モードは、前記処理対象ブロックが属するピクチャと異なるピクチャに含まれる、前記処理対象ブロックと同じ場所に位置する参照ブロックの動きベクトルを用いて、動きベクトルを導出するマージモードである、
     請求項1又は2に記載の符号化装置。
    In the inter prediction mode in which motion compensation is performed in units of sub blocks, a motion vector is calculated using a motion vector of a reference block located at the same place as the processing target block included in a picture different from the picture to which the processing target block belongs. Merge mode to derive,
    The encoding device according to claim 1 or 2.
  5.  前記サブブロック単位で動き補償を行うインター予測モードは、アフィン変換処理を用いて動きベクトルを導出するアフィンモードである、
     請求項1又は2に記載の符号化装置。
    The inter prediction mode in which motion compensation is performed in units of sub blocks is an affine mode that derives a motion vector using an affine transformation process,
    The encoding device according to claim 1 or 2.
  6.  前記サブブロックの横の長さは、前記処理対象ブロックの横の長さを第1べき演算で割る第1除算の商に基づいて決定され、前記第1べき演算の底は2であり、前記第1べき演算の指数は予め定められた0以上の整数であり、
     前記サブブロックの縦の長さは、前記処理対象ブロックの縦の長さを第2べき演算で割る第2除算の商に基づいて決定され、前記第2べき演算の底は2であり、前記第2べき演算の指数は予め定められた0以上の整数である、
     請求項1~5のいずれか1項に記載の符号化装置。
    The horizontal length of the sub block is determined based on the quotient of the first division dividing the horizontal length of the processing target block by the first power, and the base of the first power is 2; The exponent of the first power operation is a predetermined integer greater than or equal to 0,
    The vertical length of the sub block is determined based on the quotient of the second division dividing the vertical length of the processing target block by the second power, and the base of the second power is 2; The exponent of the second power operation is a predetermined integer greater than or equal to 0,
    The encoding apparatus according to any one of claims 1 to 5.
  7.  前記第1べき演算の指数は、前記第2べき演算の指数と異なる値を有する、
     請求項6に記載の符号化装置。
    The exponent of the first power operation has a value different from the exponent of the second power operation,
    The encoding device according to claim 6.
  8.  前記第1除算の商が第1所定値よりも小さい場合に、前記サブブロックの横の長さは、前記第1所定値と決定され、
     前記第1除算の商が前記第1所定値以上である場合に、前記サブブロックの横の長さは、前記第1除算の商と決定され、
     前記第2除算の商が第2所定値よりも小さい場合に、前記サブブロックの縦の長さは、前記第2所定値と決定され、
     前記第2除算の商が前記第2所定値以上である場合に、前記サブブロックの縦の長さは、前記第2除算の商と決定される、
     請求項6又は7に記載の符号化装置。
    When the quotient of the first division is smaller than a first predetermined value, the horizontal length of the sub block is determined as the first predetermined value,
    When the quotient of the first division is greater than or equal to the first predetermined value, the horizontal length of the sub-block is determined as the quotient of the first division,
    When the quotient of the second division is smaller than a second predetermined value, the vertical length of the sub block is determined as the second predetermined value,
    When the quotient of the second division is greater than or equal to the second predetermined value, the vertical length of the sub block is determined as the quotient of the second division.
    The encoding device according to claim 6 or 7.
  9.  前記第1所定値は、前記第2所定値と異なる、
     請求項8に記載の符号化装置。
    The first predetermined value is different from the second predetermined value,
    The encoding device according to claim 8.
  10.  前記第1所定値および前記第2所定値は使用可能な動き補償の最小のブロックサイズに基づいて決定される、
     請求項8又は9に記載の符号化装置。
    The first predetermined value and the second predetermined value are determined based on the smallest block size of usable motion compensation.
    The encoding device according to claim 8 or 9.
  11.  前記第1所定値、前記第2所定値、前記第1べき演算の指数および前記第2べき演算の指数を特定するための情報を、シーケンスヘッダ領域、ピクチャヘッダ領域、スライスヘッダ領域または補助情報領域に符号化する、
     請求項8~10のいずれか1項に記載の符号化装置。
    Information for specifying the first predetermined value, the second predetermined value, the index of the first power operation and the index of the second power operation, a sequence header area, a picture header area, a slice header area or an auxiliary information area Encode to
    The encoding device according to any one of claims 8 to 10.
  12.  前記符号化装置の処理能力および前記符号化装置に対応する復号装置の処理能力に応じて、前記第1所定値、前記第2所定値、前記第1べき演算の指数および前記第2べき演算の指数を切替えて符号化する、
     請求項11に記載の符号化装置。
    The first predetermined value, the second predetermined value, the exponent of the first operation, and the second operation according to the processing capability of the encoding device and the processing capability of the decoding device corresponding to the encoding device Switch exponents and encode,
    An encoding apparatus according to claim 11.
  13.  符号化対象ストリームに割り当てられたプロファイル値またはレベル値に応じて、前記第1所定値、前記第2所定値、前記第1べき演算の指数および前記第2べき演算の指数を切替えて符号化する、
     請求項11に記載の符号化装置。
    The first predetermined value, the second predetermined value, the exponent of the first power operation, and the exponent of the second power operation are switched and encoded according to the profile value or the level value assigned to the encoding target stream ,
    An encoding apparatus according to claim 11.
  14.  符号化対象ピクチャの大きさに応じて、前記第1所定値、前記第2所定値、前記第1べき演算の指数および前記第2べき演算の指数を切替えて符号化する、
     請求項11に記載の符号化装置。
    The first predetermined value, the second predetermined value, the exponent of the first power operation, and the exponent of the second power operation are switched and encoded according to the size of the picture to be encoded.
    An encoding apparatus according to claim 11.
  15.  処理対象ブロックをサブブロックに分割してサブブロック単位で動き補償を行うインター予測モードにおいて、前記処理対象ブロックのサイズに基づいてサブブロックの横および縦の長さを切り替えて符号化処理を行う、
     符号化方法。
    In an inter prediction mode in which a block to be processed is divided into subblocks and motion compensation is performed in units of subblocks, encoding is performed by switching the horizontal and vertical lengths of the subblocks based on the size of the block to be processed.
    Encoding method.
  16.  回路と、
     メモリと、を備え、
     前記回路は、前記メモリを用いて、
     処理対象ブロックをサブブロックに分割してサブブロック単位で動き補償を行うインター予測モードにおいて、前記処理対象ブロックのサイズに基づいてサブブロックの横および縦の長さを切り替えて復号処理を行う、
     復号装置。
    Circuit,
    With memory,
    The circuit uses the memory to
    In an inter prediction mode in which a processing target block is divided into sub blocks and motion compensation is performed in units of sub blocks, decoding processing is performed by switching the horizontal and vertical lengths of the sub blocks based on the size of the processing target block.
    Decoding device.
  17.  前記サブブロックの横の長さは、前記処理対象ブロックの横の長さに基づいて決定され、前記サブブロックの縦の長さは、前記処理対象ブロックの縦の長さに基づいて決定される、
     請求項16に記載の復号装置。
    The horizontal length of the sub block is determined based on the horizontal length of the process target block, and the vertical length of the sub block is determined based on the vertical length of the process target block ,
    The decoding device according to claim 16.
  18.  前記サブブロック単位で動き補償を行うインター予測モードは、前記処理対象ブロックに隣接する隣接ブロックの動きベクトルを用いて動きベクトルを導出するマージモードである、
     請求項16又は17に記載の復号装置。
    The inter prediction mode in which motion compensation is performed in units of sub blocks is a merge mode in which a motion vector is derived using a motion vector of an adjacent block adjacent to the processing target block,
    The decoding device according to claim 16 or 17.
  19.  前記サブブロック単位で動き補償を行うインター予測モードは、前記処理対象ブロックが属するピクチャと異なるピクチャに含まれる、前記処理対象ブロックと同じ場所に位置する参照ブロックの動きベクトルを用いて動きベクトルを導出するマージモードである、
     請求項16又は17に記載の復号装置。
    In the inter prediction mode in which motion compensation is performed in units of sub blocks, a motion vector is derived using a motion vector of a reference block located at the same place as the processing target block included in a picture different from the picture to which the processing target block belongs. In merge mode,
    The decoding device according to claim 16 or 17.
  20.  前記サブブロック単位で動き補償を行うインター予測モードは、アフィン変換処理を用いて動きベクトルを導出するアフィンモードである、
     請求項16又は17に記載の復号装置。
    The inter prediction mode in which motion compensation is performed in units of sub blocks is an affine mode that derives a motion vector using an affine transformation process,
    The decoding device according to claim 16 or 17.
  21.  前記サブブロックの横の長さは、前記処理対象ブロックの横の長さを第1べき演算で割る第1除算の商に基づいて決定され、前記第1べき演算の底は2であり、前記第1べき演算の指数は予め定められた0以上の整数であり、
     前記サブブロックの縦の長さは、前記処理対象ブロックの縦の長さを第2べき演算で割る第2除算の商に基づいて決定され、前記第2べき演算の底は2であり、前記第2べき演算の指数は予め定められた0以上の整数である、
     請求項16~20のいずれか1項に記載の復号装置。
    The horizontal length of the sub block is determined based on the quotient of the first division dividing the horizontal length of the processing target block by the first power, and the base of the first power is 2; The exponent of the first power operation is a predetermined integer greater than or equal to 0,
    The vertical length of the sub block is determined based on the quotient of the second division dividing the vertical length of the processing target block by the second power, and the base of the second power is 2; The exponent of the second power operation is a predetermined integer greater than or equal to 0,
    The decoding device according to any one of claims 16 to 20.
  22.  前記第1べき演算の指数は、前記第2べき演算の指数と異なる値を有する、
     請求項21に記載の復号装置。
    The exponent of the first power operation has a value different from the exponent of the second power operation,
    The decoding device according to claim 21.
  23.  前記第1除算の商が第1所定値よりも小さい場合に、前記サブブロックの横の長さは、前記第1所定値と決定され、
     前記第1除算の商が前記第1所定値以上である場合に、前記サブブロックの横の長さは、前記第1除算の商と決定され、
     前記第2除算の商が第2所定値よりも小さい場合に、前記サブブロックの縦の長さは、前記第2所定値と決定され、
     前記第2除算の商が前記第2所定値以上の場合に、前記サブブロックの縦の長さは、前記第2除算の商と決定される、
     請求項21又は22に記載の復号装置。
    When the quotient of the first division is smaller than a first predetermined value, the horizontal length of the sub block is determined as the first predetermined value,
    When the quotient of the first division is greater than or equal to the first predetermined value, the horizontal length of the sub-block is determined as the quotient of the first division,
    When the quotient of the second division is smaller than a second predetermined value, the vertical length of the sub block is determined as the second predetermined value,
    When the quotient of the second division is greater than or equal to the second predetermined value, the vertical length of the sub block is determined as the quotient of the second division.
    A decoding device according to claim 21 or 22.
  24.  前記第1所定値は、前記第2所定値と異なる、
     請求項23に記載の復号装置。
    The first predetermined value is different from the second predetermined value,
    The decoding device according to claim 23.
  25.  前記第1所定値および前記第2所定値は使用可能な動き補償の最小のブロックサイズに基づいて決定される、
     請求項23又は24に記載の復号装置。
    The first predetermined value and the second predetermined value are determined based on the smallest block size of usable motion compensation.
    The decoding device according to claim 23 or 24.
  26.  前記第1所定値、前記第2所定値、前記第1べき演算の指数および前記第2べき演算の指数を特定するための情報を、シーケンスヘッダ領域、ピクチャヘッダ領域、スライスヘッダ領域または補助情報領域から復号し、前記第1所定値、前記第2所定値、前記第1べき演算の指数および前記第2べき演算の指数を特定する、
     請求項23~25のいずれか1項に記載の復号装置。
    Information for specifying the first predetermined value, the second predetermined value, the index of the first power operation and the index of the second power operation, a sequence header area, a picture header area, a slice header area or an auxiliary information area To identify the first predetermined value, the second predetermined value, the exponent of the first power operation, and the exponent of the second power operation,
    The decoding device according to any one of claims 23 to 25.
  27.  処理対象ブロックをサブブロックに分割してサブブロック単位で動き補償を行うインター予測モードにおいて、前記処理対象ブロックのサイズに基づいてサブブロックの横および縦の長さを切り替えて復号処理を行う、
     復号方法。
    In an inter prediction mode in which a processing target block is divided into sub blocks and motion compensation is performed in units of sub blocks, decoding processing is performed by switching the horizontal and vertical lengths of the sub blocks based on the size of the processing target block.
    Decryption method.
PCT/JP2019/002341 2018-01-29 2019-01-24 Coding device, decoding device, coding method, and decoding method WO2019146718A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862623133P 2018-01-29 2018-01-29
US62/623,133 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019146718A1 true WO2019146718A1 (en) 2019-08-01

Family

ID=67395480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002341 WO2019146718A1 (en) 2018-01-29 2019-01-24 Coding device, decoding device, coding method, and decoding method

Country Status (1)

Country Link
WO (1) WO2019146718A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015048459A1 (en) * 2013-09-26 2015-04-02 Qualcomm Incorporated Sub-prediction unit (pu) based temporal motion vector prediction in hevc and sub-pu design in 3d-hevc
WO2016160605A1 (en) * 2015-03-27 2016-10-06 Qualcomm Incorporated Deriving motion information for sub-blocks in video coding
WO2016201094A1 (en) * 2015-06-11 2016-12-15 Qualcomm Incorporated Sub-prediction unit motion vector prediction using spatial and/or temporal motion information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015048459A1 (en) * 2013-09-26 2015-04-02 Qualcomm Incorporated Sub-prediction unit (pu) based temporal motion vector prediction in hevc and sub-pu design in 3d-hevc
WO2016160605A1 (en) * 2015-03-27 2016-10-06 Qualcomm Incorporated Deriving motion information for sub-blocks in video coding
WO2016201094A1 (en) * 2015-06-11 2016-12-15 Qualcomm Incorporated Sub-prediction unit motion vector prediction using spatial and/or temporal motion information

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANLE CHEN ET AL.: "Algorithm Description of Joint Exploration Test Model 1", JOINT VIDEO EXPLORATION TEAM (JVET) OF ITU-T SG 16 WP 3, February 2016 (2016-02-01), Geneva, CH, pages i - ii, 1-25, XP030150000 *
WEI-JUNG CHIEN ET AL.: "Extension of Advanced Temporal Motion Vector Predictor (ATMVP),", ITU - TELECOMMUNICATIONS STANDARDIZATION SECTOR STUDY GROUP 16 QUESTION 6 VIDEO CODING EXPERTS GROUP (VCEG, June 2015 (2015-06-01), Warsaw, Poland, pages 1 - 4, XP030003891 *

Similar Documents

Publication Publication Date Title
JP6946419B2 (en) Decoding device, decoding method and program
JP2020198649A (en) Encoder, decoder, encoding method, and decoding method
JP7339890B2 (en) Encoding device and decoding device
WO2019022099A1 (en) Encoding device, decoding device, encoding method and decoding method
JP7087030B2 (en) Encoding device, decoding device, coding method and decoding method
JP2022066195A (en) Encoding device and encoding method
JP2022008413A (en) Decoding device, encoding device and recording medium
JP7026747B2 (en) Decoding device and decoding method
WO2019138998A1 (en) Encoding device, decoding device, encoding method, and decoding method
JP7017580B2 (en) Decoding device, image decoding device and decoding method
WO2019013235A1 (en) Coding device, coding method, decoding device and decoding method
WO2019013236A1 (en) Coding device, coding method, decoding device and decoding method
JP2022093625A (en) Encoder, decoder, encoding method, and decoding method
JP2021101576A (en) Decoding device and storage medium
JP2023126387A (en) Encoder and encoding method
WO2019069782A1 (en) Encoding device, decoding device, encoding method and decoding method
JP7371055B2 (en) Encoding device and decoding device
JP2021180494A (en) Decoding device, decoding method, and non-temporary storage medium
WO2019009314A1 (en) Encoding device, decoding device, encoding method and decoding method
WO2019069902A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2019065329A1 (en) Encoding device, decoding device, encoding method and decoding method
WO2019059107A1 (en) Encoding device, decoding device, encoding method and decoding method
WO2019021803A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2019031369A1 (en) Coding device, decoding device, coding method and decoding method
WO2019244809A1 (en) Coding device, decoding device, coding method, and decoding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743486

Country of ref document: EP

Kind code of ref document: A1