WO2019244557A1 - Control system, control method, control program and signal apparatus - Google Patents

Control system, control method, control program and signal apparatus Download PDF

Info

Publication number
WO2019244557A1
WO2019244557A1 PCT/JP2019/020479 JP2019020479W WO2019244557A1 WO 2019244557 A1 WO2019244557 A1 WO 2019244557A1 JP 2019020479 W JP2019020479 W JP 2019020479W WO 2019244557 A1 WO2019244557 A1 WO 2019244557A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
traffic
weather data
traffic light
light
Prior art date
Application number
PCT/JP2019/020479
Other languages
French (fr)
Japanese (ja)
Inventor
成田 聡
龍雄 井上
健 小田桐
Original Assignee
株式会社日本マイクロニクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本マイクロニクス filed Critical 株式会社日本マイクロニクス
Publication of WO2019244557A1 publication Critical patent/WO2019244557A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/095Traffic lights

Definitions

  • the present invention relates to a control system for controlling a traffic light, a control method, a control program, and a traffic light.
  • a traffic signal (hereinafter referred to as a "signal")
  • the visibility of the signal will be reduced, causing a traffic hazard.
  • a light-emitting diode LED
  • the surface temperature of a traffic light that is lit does not increase due to the small amount of heat generated by the light source, but snow attached to the cover is unlikely to be melted.
  • An object of the present invention is to provide a control system, a control method, a control program, and a traffic signal capable of suppressing power consumption of a traffic signal provided with a heater.
  • a control system for a traffic signal provided with a heater, wherein the detection device detects weather data including data on a wind speed of a wind received by a signal display surface of the traffic signal, and sets at least data on a wind speed.
  • a control device that defines an operation state of the heater as one of the criteria, generates an operation condition according to the operation state, and transmits the operation condition to the traffic signal, wherein the traffic signal is controlled according to the operation condition transmitted from the control device.
  • a control system for varying the operating state of the heater is provided with a heater, wherein the detection device detects weather data including data on a wind speed of a wind received by a signal display surface of the traffic signal, and sets at least data on a wind speed.
  • a method for controlling a traffic signal provided with a heater including: detecting weather data including data relating to wind speed of a wind received by a signal display surface of the traffic signal; and setting at least data relating to wind speed. Defining the operating state of the heater as one of the criteria, generating operating conditions according to the operating state, transmitting the operating conditions to the traffic signal, and causing the traffic signal to vary the operating state of the heater according to the operating condition And a control method including:
  • a control program for controlling a traffic light provided with a heater, wherein weather data including data on a wind speed of a wind received by a signal display surface of the traffic light is obtained, and at least data on the wind speed is obtained.
  • a control program is provided for defining the operating state of the heater as one of the setting criteria, generating operating conditions according to the operating state, and transmitting the operating conditions to the traffic light.
  • a control program for controlling a traffic signal provided with a heater the control program causing a weather data acquisition device to acquire weather data including data on a wind speed of a wind received by a signal display surface of the traffic signal.
  • a control program for generating an operation condition according to a state and storing the operation condition in an operation condition storage device and causing the operation condition transmission device to execute an instruction to transmit the operation condition to a traffic signal is provided.
  • a control system for controlling a traffic light provided with a heater, a weather data acquisition device for acquiring weather data including data on a wind speed of a wind received by a signal display surface of the traffic light, An operation condition generation device that defines an operation state of the heater using at least data relating to wind speed as one of setting criteria and generates an operation condition according to the operation state, and an operation condition transmission device that transmits the generated operation condition to a traffic light.
  • a weather signal provided with a heater, a weather data acquisition device for obtaining weather data including data on a wind speed of a wind received by a signal display surface of the traffic signal, and at least data on a wind speed.
  • An operating condition generator that defines an operating state of the heater as one of the setting criteria and generates an operating condition according to the operating state is provided, and a traffic light that varies the operating state of the heater according to the generated operating condition is provided.
  • a control system a control method, a control program, and a traffic signal capable of suppressing power consumption of a traffic signal provided with a heater.
  • FIG. 1 is a schematic diagram illustrating a configuration of a control system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration of a detection device of the control system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration of a weather data storage device of the control system according to the first embodiment of the present invention.
  • 1 is a schematic diagram illustrating a configuration of a point information storage device of a control system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration of an operation condition storage device of the control system according to the first embodiment of the present invention. It is a typical sectional view showing the composition of the signal of the control system concerning a 1st embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration of an operation condition storage unit of the control system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration of an operation condition storage unit of the control system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration of an operation condition storage unit of the control system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration of an operation condition storage unit of the control system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration of a weather data storage unit of the control system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration of a weather data storage unit of the control system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration of a weather data storage unit of the control system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration of a weather data storage unit of the control system according to the first embodiment of the present invention.
  • 5 is a flowchart illustrating a control method according to the first embodiment of the present invention.
  • 6 is a flowchart for explaining another example of the control method according to the first embodiment of the present invention. 6 is a flowchart for explaining another example of the control method according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining a control example by the control system according to the first embodiment of the present invention.
  • 19 is a table for explaining effects of the control example shown in FIG. 18.
  • FIG. 5 is a schematic diagram for explaining another control example by the control system according to the first embodiment of the present invention.
  • 21 is a table for explaining effects of the control example shown in FIG. 20.
  • FIG. 7 is a schematic diagram for explaining a control system according to a first modification of the first embodiment of the present invention. It is a schematic diagram which shows the structure of the control apparatus of the control system which concerns on the modification 1 of 1st Embodiment of this invention. It is a schematic diagram which shows the structure of the weather information storage device of the control system which concerns on the modification 1 of 1st Embodiment of this invention.
  • FIG. 9 is a flowchart for explaining a control method according to a modified example 2 of the first embodiment of the present invention. It is a mimetic diagram showing the signal display surface of the signal of the control system concerning a 2nd embodiment of the present invention.
  • the control system according to the first embodiment of the present invention shown in FIG. 1 controls traffic lights 100a to 100d each provided with a heater.
  • the traffic lights 100a to 100d are arranged at the same intersection.
  • the traffic signal to be controlled is referred to as “traffic light 100”.
  • the heater is used to melt snow attached to the cover of the signal display surface 101 of the traffic light 100. Note that the example of the three-lamp type traffic signal 100 in which the signal units P1 to P3 for respectively lighting the signals are arranged on the signal display surface 101 is shown.
  • the control system includes a detection device 30 that detects weather data including data on a wind speed of a wind received by a signal display surface 101 of each of the traffic lights 100, and a control device 1 that generates operating conditions of a heater.
  • “Weather data” is data including weather information correlated with the amount of snowfall on the signal display surface 101 of the traffic light 100.
  • “Operating conditions” define operating states such as heater on / off and heat generation.
  • the control device 1 defines the operation state of the heater using at least data relating to the wind speed as one of the setting criteria, generates an operation condition according to the operation state, and transmits the operation condition to the traffic light 100.
  • the traffic light 100 changes the operation state of the heater according to the operating conditions transmitted from the control device 1 to the traffic light 100.
  • the control system shown in FIG. 1 controls the heater of the traffic light 100 by analyzing data on the wind speed received by the signal display surface 101. For example, data on the wind speed received by the signal display surface 101 is acquired using a wind pressure sensor provided on the signal display surface 101 of the traffic light 100.
  • the heater is turned on only for the traffic light 100 that receives the wind pressure in the range where the signal display surface 101 snows.
  • the amount of heat generated by the heater is adjusted according to the magnitude of the wind pressure. Thereby, power consumption by the heater in the traffic light 100 can be reduced.
  • the heat value of the heater is adjusted by increasing or decreasing the power supplied to the heater or increasing or decreasing the on-time.
  • the detection device 30 is arranged around the traffic light 100. For example, as shown in FIG. 1, it is arranged adjacent to the intersection where the traffic light 100 is arranged.
  • the detection device 30 includes a wind pressure sensor 31, a temperature sensor 32, and a snowfall amount sensor 33, as shown in FIG.
  • the wind pressure sensor 31 detects a wind pressure received on the signal display surface 101 of the traffic light 100.
  • Temperature sensor 32 detects a temperature around signal device 100 (hereinafter, referred to as “ambient temperature”).
  • the snowfall sensor 33 detects the amount of snowfall around the traffic light 100.
  • the wind pressure sensor 31 can detect the wind pressure in a plurality of directions to which the signal display surfaces 101 of the traffic lights 100 respectively face.
  • Configuration For example, a wind pressure sensor 31 in which a plurality of wind power detectors that detect wind power in one direction are arranged in different directions is used. According to the wind pressure sensor 31, the wind pressure of the wind blowing from various directions can be detected, and the wind pressure data of each of the traffic lights 100 can be acquired.
  • the wind pressure sensor 31 includes a wind pressure detecting unit that detects a wind pressure in the same direction as the signal display surface 101 of each of the traffic lights 100. That is, the first to fourth wind pressure detectors 31a to 31d of the wind pressure sensor 31 shown in FIG. 2 detect the wind pressure received by the signal display surfaces 101 of the traffic lights 100a to 100d.
  • the amount of snow on the signal display surface 101 also depends on the ambient temperature of the traffic light 100 and the amount of snowfall. Therefore, the detection device 30 may include a temperature sensor 32 and a snowfall amount sensor 33, and may control the heater with reference to the ambient temperature of the traffic light 100 and the snowfall amount in addition to the data on the wind speed, as described later. Therefore, the detection device 30 detects the ambient temperature and the amount of snowfall at the intersection where the traffic lights 100a to 100d are arranged.
  • the control device 1 includes a processing device 10 and a storage device 20.
  • the storage device 20 stores data processed by the processing device 10 and the like.
  • the processing device 10 includes a weather data acquisition device 11, an operation condition generation device 12, and an operation condition transmission device 13.
  • the weather data acquisition device 11 receives the weather data transmitted from the detection device 30 and acquires the weather data.
  • the operating condition generating device 12 defines the operating state of the heater based on the weather data, and generates operating conditions according to the defined operating state.
  • the operating condition transmitting device 13 transmits the operating condition generated to realize the specified operating state to the traffic light 100.
  • the propagation of weather data and operating conditions may be performed by wireless communication or wired communication.
  • the storage device 20 includes a weather data storage device 21, a point information storage device 22, and an operation condition storage device 23.
  • the weather data storage device 21 stores the weather data transmitted from the detection device 30 and the traffic light 100 and received by the weather data acquisition device 11. For example, as shown in FIG. 3, the identification number (signal ID) of the traffic signal 100 to be controlled and the identification number (wind pressure sensor ID) of the wind pressure detecting unit that detects the wind pressure received on the signal display surface 101 of each signal 100 are meteorological information. It is stored in the data storage device 21. For each detection time (year / month / day, hour: minute) of the wind pressure data, the wind pressure sensor ID and the detected wind pressure data are stored in association with each other.
  • the wind pressure data shown in FIG. 3 is an example in which the wind pressure of the traffic light 100b is 8, the wind pressure of the traffic light 100c is 9, and the wind pressures of the traffic lights 100a and 100d are zero.
  • the point information storage device 22 stores information on the points where the weather data is detected by the detection device 30. For example, as shown in FIG. 4, for each identification number (intersection ID) of the intersection where the traffic light 100 is arranged, the traffic signal ID and the identification number (detection device ID) of the detection device 30 that detects the weather data around the intersection are displayed. It is stored in the point information storage device 22.
  • the detection device ID is used for identifying the ambient temperature and the amount of snowfall detected by the detection device 30.
  • FIG. 4 shows an example in which the traffic lights 100a to 100d are arranged, and the detection device 30 having the detection device ID S1 is arranged at the intersection where the intersection ID is C1.
  • the operating condition storage device 23 stores the operating condition of each heater of the traffic light 100. For example, as shown in FIG. 5, the identification number (heater ID) of the heater installed in the traffic light 100 at each transmission time (year / month / day, hour: minute) when the operating condition is transmitted from the control device 1 to the traffic light 100. , The operating condition for the heater, and the snow melting state are stored in association with the traffic signal ID.
  • an operating condition for turning on the heater of the traffic light 100b with a heating value of 80% is generated, and an operating condition for turning on the heater of the traffic light 100c with a heating value of 90% is generated.
  • the heaters of the traffic lights 100a and 100d are off.
  • Snow melting state indicates the snow melting state of the traffic light 100 after the heater is operated.
  • indicates a state where there is no snowfall
  • indicates a state where snowfall remains.
  • the snow melting state is determined, for example, by measuring the amount of light emitted from the traffic light 100.
  • a light quantity sensor may be installed in the traffic light 100 as described later, and the light quantity measured by the light quantity sensor may be transmitted from the traffic light 100 to the control device 1.
  • the operation condition of the heater is regenerated according to the measured light amount of the emitted light. In this way, the operating conditions of the heater can be reviewed according to the snow melting state. For example, if snow melting is insufficient, the amount of heat generated by the heater under operating conditions is increased.
  • FIG. 6 shows a configuration example of the traffic light 100.
  • the traffic signal 100 shown in FIG. 6 includes a housing 110, a light emitting unit 120 disposed inside the housing 110, a cover 130 disposed over an opening of the housing 110, and disposed inside the housing 110.
  • a heater 140 is provided.
  • the light L emitted from the light emitting unit 120 passes through the heater 140 and the cover 130 and is output to the outside of the traffic light 100. That is, the surface facing the outside of the cover 130 is exposed on the signal display surface 101.
  • the light emitting unit 120 has a configuration in which a plurality of light sources 121 are installed on a light source installation plate 122.
  • a light source installation plate 122 As the light source 121, an LED with low power consumption and high visibility is preferably used.
  • the light sources 121 are arranged on the light source installation plate 122 in a matrix, for example. Control of turning on / off, blinking, and the like of the light source 121 is performed by the light emission control unit 153 of the processing unit 150 disposed inside the housing 110.
  • the cover 130 is made of, for example, a resin plate or a glass plate having optical transparency such as polycarbonate.
  • the cover 130 is heated by the heater 140.
  • a planar heater 140 In order to melt snow in the entire area of the cover 130, it is preferable to use a planar heater 140 to suppress the temperature variation of the cover 130.
  • the heater 140 is formed using a material having light transmissivity through which the emitted light L passes.
  • a transparent resistor film such as an indium tin oxide (ITO) film is formed on the surface of a transparent substrate such as a glass plate.
  • ITO indium tin oxide
  • the resistor film generates heat.
  • a heater 140 in which heating wires are arranged in a mesh shape or a lattice shape may be used.
  • the heater 140 is controlled by the heater control unit 152 of the processing unit 150 to control the on / off of the heater 140 and the amount of generated heat.
  • the operating condition receiving unit 151 receives the operating condition transmitted from the control device 1, and the heater control unit 152 controls the heater 140 according to the operating condition.
  • the operation condition transmitted from the control device 1 to the traffic light 100 is stored in the operation condition storage unit 161 of the storage unit 160.
  • the operation condition storage unit 161 stores a heater ID and an operation condition for each of the traffic signals 100a to 100d in association with the traffic signal ID.
  • the weather data used when generating the operating conditions may be transmitted from the control device 1 to the traffic light 100.
  • the weather data transmitted to the traffic light 100 is stored in the weather data storage unit 162. Since this weather data is associated with the operating condition, it can be used for reviewing the operating condition as described later.
  • the weather data storage unit 162 stores weather data relating to each traffic light 100. That is, the detection time (year / month / day, hour: minute) of the weather data, the wind pressure sensor ID of the wind pressure detection unit that detects the wind pressure data of the traffic light 100, and the wind pressure data are stored for each traffic light ID of the traffic light 100. .
  • the light amount sensor 170 is arranged close to the signal display surface 101.
  • the light amount sensor 170 detects the light amount of the outgoing light L output from the signal display surface 101. Since the amount of the emitted light L varies depending on the amount of snow on the signal display surface 101, the amount of snow on the signal display surface 101 can be detected by detecting the amount of the emitted light L.
  • the detection device 30 detects weather data of the traffic signal 100 to be controlled. For example, wind pressure data of the traffic light 100 and weather data of ambient temperature and snowfall at each intersection where the traffic light 100 is arranged are detected and transmitted to the control device 1.
  • the transmitted weather data is received by the weather data acquisition device 11 and stored in the weather data storage device 21.
  • step S20 the operating condition generating device 12 reads the information on the intersection stored in the point information storage device 22 and reads the weather data stored in the weather data storage device 21. Then, the operating condition generation device 12 determines whether or not the ambient temperature of the intersection corresponds to a predetermined temperature condition.
  • the “temperature condition” is set as a temperature range at which snow accumulates on the signal display surface 101 of the traffic light 100. For example, when the ambient temperature is lower than 0 ° C., dry snow occurs and snow does not accumulate, and when the ambient temperature is higher than 2 ° C., the snow melts and no snow accretion occurs, the temperature condition is set to 0 ° C. or higher and 2 ° C. or lower. If the ambient temperature corresponds to the temperature condition, the process proceeds to step S30. If the ambient temperature does not correspond to the temperature condition, the process ends.
  • step S30 the operating condition generation device 12 determines whether the snowfall included in the weather data satisfies a predetermined snowfall condition.
  • the “snowfall condition” is set as a range of the snowfall that falls on the signal display surface 101 of the traffic light 100. For example, when the amount of snowfall is more than 10 mm / hour, it is determined that the amount of snowfall falls under the snowfall amount condition. If the amount of snow falls under the snowfall condition, the process proceeds to step S40. If the snowfall does not satisfy the snowfall condition, the process ends.
  • step S40 the operating condition generator 12 selects the traffic light 100 for which the operating condition has not been generated. Then, in step S50, it is determined whether the wind pressure data satisfies a predetermined ON condition. That is, the operating condition generating device 12 acquires information on the traffic signal 100 from the information stored in the point information storage device 22 and acquires wind pressure data on the signal display surface 101 of the selected traffic signal 100 from the weather data storage device 21. .
  • the “ON condition” is set based on the wind pressure at which the snow falls on the signal display surface 101. For example, when the wind pressure is 3 or more, it is determined that the ON condition is satisfied.
  • step S60 If the wind pressure data satisfies the ON condition, the process proceeds to step S60, and an operation condition for turning on the heater 140 is generated. Thereafter, the process proceeds to step S80. On the other hand, if the wind pressure data does not satisfy the on condition, the process proceeds to step S70, and an operation condition for turning off the heater 140 is generated. Thereafter, the process proceeds to step S80.
  • step S80 the operating condition transmitting device 13 transmits the generated operating condition to the traffic light 100.
  • the transmitted operating conditions are received by the operating condition receiving unit 151 of the traffic light 100 and stored in the operating condition storage unit 161. Then, the heater control unit 152 controls the heater 140 according to the operating conditions.
  • the operation condition generation device 12 determines whether or not the operation conditions have been generated for all the traffic signals 100 in step S90. If there is a traffic signal 100 for which no operating condition has been generated, the process returns to step S40. If the operating conditions have been generated for all the traffic signals 100, the process ends.
  • wind pressure data is acquired for each of a plurality of traffic signals 100 having different directions of the signal display surface 101. Then, operating conditions of the heater 140 for the traffic light 100 are sequentially generated according to the respective wind pressure data.
  • the operating condition is generated using at least one of the ambient temperature and the snowfall amount included in the weather data in addition to the data on the wind speed as a setting reference.
  • an anemometer may be used for wind pressure detection.
  • the wind pressure is detected in a unit obtained by dividing the wind power of 3 m / sec into 10 steps, and the wind power of 1 m / sec is defined as “wind pressure 3”.
  • data correlated with another wind speed or a value of the wind speed may be used as one of the setting criteria.
  • the amount of heat generated by the heater 140 may be adjusted according to the weather data. For example, the calorific value of the heater 140 is increased as the wind pressure increases. Alternatively, when it is difficult to snow when the wind is strong, the amount of heat generated by the heater 140 may be reduced when the wind pressure is higher than a predetermined upper limit. Further, the amount of heat generated by the heater 140 may be increased as the amount of snowfall on the signal display surface 101 of the weather data of the ambient temperature and the amount of snowfall increases.
  • FIG. 16 shows an example of a control method for generating operating conditions in which the amount of heat generated by the heater 140 is adjusted.
  • the operation condition generating device 12 when it is determined in step S50 that the wind pressure data satisfies the ON condition, in step S60A, the operation condition generating device 12 performs an operation in which the heat generation amount of the heater 140 according to the wind pressure data is specified. Generate a condition. Others are the same as the control method shown in FIG.
  • FIG. 17 shows an example in which the operating condition is generated when the on condition of the wind pressure is “the wind pressure is 3 or more”.
  • the wind pressure is detected in a unit obtained by dividing the wind pressure into 3 steps per 10 m / sec, and the on condition is that the wind pressure is 1 m / sec or more.
  • the on condition is that the wind pressure is 1 m / sec or more.
  • data is obtained when snow pressure is 3 or more and less than 6, snow easily occurs, and when wind pressure is 6 (wind force 2 m / sec) or more, it is difficult to snow due to strong wind force. .
  • step S50 it is determined whether the wind pressure is 3 or more. If the wind pressure is 3 or more, the process proceeds to step S60A. If the wind pressure is less than 3, the process proceeds to step S70, and an operation condition for turning off the heater 140 is generated.
  • step S61 of step S60A in FIG. 17 it is determined whether the wind pressure is 6 or more. If the wind pressure is 6 or more, the process proceeds to step S62, and an operation condition for turning on the heater 140 with a heat generation amount of 50% is generated. On the other hand, if the wind pressure is less than 6, the process proceeds to step S63, and an operating condition for turning on the heater 140 with a heat generation amount of 100% is generated. Thereafter, the process proceeds to step S80.
  • the power consumption of the heater 140 can be suppressed by increasing the calorific value of the heater 140 in the weather where the wind pressure is likely to snow, and decreasing the calorific value of the heater 140 in other cases.
  • the heat generation amount of the heater 140 according to the weather data is defined as an operation state
  • the control device 1 transmits the operation condition generated according to the operation state regarding the heat generation amount of the heater 140 to the traffic light 100.
  • the traffic signal 100 varies the amount of heat generated by the heater 140 according to the operating conditions.
  • the distance between the traffic light 100 and the control device 1 can be reduced.
  • the time from when the control device 1 acquires the weather data to when the operating conditions are transmitted to the traffic light 100 can be shortened, and more accurate control in accordance with the weather conditions can be executed.
  • the communication distance between the traffic light 100 and the control device 1 is shortened, so that the communication cost can be reduced.
  • Weather data is detected at predetermined intervals. For example, weather data is detected at intervals of 10 minutes. By shortening the detection interval, the time for turning on the heater 140 in a state where it is not necessary to melt snow is shortened, and wasteful power consumption can be suppressed.
  • the following describes an example in which the power consumption of the traffic light 100 is suppressed by selectively turning on only the heater 140 of the traffic light 100 that requires snow melting.
  • the power consumption of the traffic light 100 when the heater 140 is turned off is 20 W
  • the power consumption of the heater 140 turned on is 40 W.
  • the control device 1 generates an operation condition for turning on the heater 140 for the traffic lights 100b and 100c, and generates an operation condition for turning off the heater 140 for the traffic lights 100a and 100d.
  • FIG. 19 shows the power consumption of the control example 1 and the power consumption of the comparative example in which the heaters 140 of all the traffic signals 100 are turned on, regarding the total power consumption of the traffic signals 100a to 100d.
  • the power consumption can be reduced to two thirds as compared with the comparative example.
  • the control device 1 generates an operation condition for turning on the heater 140 for the traffic light 100b, and generates an operation condition for turning off the heater 140 for the traffic light 100a, the traffic light 100c, and the traffic light 100d.
  • FIG. 21 shows the power consumption of the control example 2 and the power consumption of the comparative example in which the heaters 140 of all the traffic signals 100 are turned on, regarding the total power consumption of the traffic signals 100a to 100d.
  • the power consumption can be reduced to half compared with the comparative example.
  • the series of control operations shown in FIGS. 15 to 17 can be executed by controlling the control system shown in FIG. 1 by a control program having an algorithm equivalent to that shown in FIGS.
  • This control program may be stored in the storage device 20 constituting the control system shown in FIG.
  • the heater 140 of the traffic signal 100 that snows on the signal display surface 101 is selectively turned on, and there is no need to melt snow.
  • the heater 140 of the traffic light 100 is turned off.
  • the heating value of the heater 140 is adjusted according to the weather data.
  • ⁇ Modification 1> Although the case where the heater 140 of the traffic light 100 arranged at one intersection is controlled has been described above as an example, the heater 140 of the traffic light 100 arranged at each of a plurality of intersections may be controlled by the control device 1. At this time, weather data can be acquired by arranging the detection device 30 at each intersection.
  • the heater 140 of the traffic light 100 may be controlled using weather data common to a plurality of intersections.
  • the control system illustrated in FIG. 1 controls the heaters 140 of the traffic lights 100 disposed at the intersections C1 to C5 included in the area 200 surrounded by the broken line among the plurality of intersections C1 to C9 illustrated in FIG. Control is performed using the same weather data.
  • an area sensor 300 for detecting the temperature and the amount of snowfall in the area 200 is arranged.
  • the control device 1 acquires wind pressure data detected by the detection devices 30 arranged at the intersections, and uses the wind pressure data and the weather data detected by the area sensor 300 to operate the traffic lights 100 at the intersections C1 to C5. Generate a condition.
  • the detection devices 30 arranged at the respective intersections can include only the wind pressure sensor. Thereby, the size and manufacturing cost of the detection device 30 can be suppressed.
  • weather data may be detected by the detectors 30 arranged at the respective intersections for the intersections C6 to C9 that are not included in the area 200, and the entire intersections C1 to C9 may be controlled by the single controller 1. .
  • the operating conditions of the heater 140 are generated using the weather data detected by the area sensor 300 .
  • the operating condition of the heater 140 may be generated using weather data (for example, weather information provided from an external organization) detected by a device other than the control system.
  • the storage device 20 uses the control device 1 having the weather information storage device 24.
  • the weather data acquisition device 11 illustrated in FIG. 23 acquires, from outside the control system, weather information including weather data such as wind direction, wind speed, temperature, and snowfall in an area where the traffic signal 100 to be controlled is located.
  • the acquired weather information is stored in the weather information storage device 24.
  • the weather information storage device 24 stores, for example, the time at which the weather information was acquired, the ambient temperature T, and the amount of snowfall M, as shown in FIG.
  • the wind pressure data detected by the detection device 30 is stored in the weather data storage device 21.
  • the operating condition generation device 12 determines whether the ambient temperature and the amount of snow fall under predetermined conditions using weather data acquired from the outside, and generates operating conditions of the heater 140 based on the wind pressure data.
  • the operating conditions of the heater 140 may be generated with reference to not only the weather data at the detection time but also the operating conditions generated in the past and the effects obtained thereby. In other words, the operating conditions are reviewed with reference to the snow melting effect obtained by the past operating conditions generated using the same weather data as the weather data at the detection time, and new operating conditions different from the operating conditions generated in the past are generated. May be.
  • the operating conditions are reviewed with reference to these past data. That is, if snow melting is incomplete and snow remains after heating by the heater 140 is completed, an operating condition in which the calorific value of the heater 140 is increased for the same weather data is newly generated. Thereby, a reliable snow melting effect can be obtained.
  • the control device 1 newly generates an operating condition in which the heating value of the heater 140 is reduced. Thereby, the power consumption of the heater 140 can be reduced.
  • the snow melting effect due to the generated operating conditions can be detected by the light amount sensor 170. That is, if the light amount of the output light L detected by the light amount sensor 170 is large, it is determined that the snow melting effect is high. On the other hand, if the light amount of the output light L detected by the light amount sensor 170 is small, it is determined that the snow melting effect is low.
  • the operating conditions and the weather data used to generate the operating conditions are stored in the operating condition storage unit 161 and the weather data storage unit 162 of the traffic light 100.
  • the operating conditions corresponding to the weather data can be reviewed.
  • the program for generating the operating conditions of the traffic light 100 can be updated at any time.
  • FIG. 25 shows an example of a flowchart of a control method for generating operating conditions with reference to past data.
  • step S50 it is determined whether the wind pressure is 3 or more. If the wind pressure is 3 or more, the process proceeds to step S60B. If the wind pressure is less than 3, the process proceeds to step S70, and an operation condition for turning off the heater 140 is generated.
  • step S61 of step S60B in FIG. 25 it is determined whether the wind pressure is 6 or more. If the wind pressure is 6 or more, the process proceeds to step S621.
  • step S621 the past data is referred to. For example, if it is determined based on the weather data at the detection time, an operating condition for turning on the heater 140 with a heating value of 50% is generated, but in the same period of last year, a heating value of 50% in the past indicates that heating is excessive If there is data, change the operating conditions. For example, in step S622, an operating condition for turning on the heater 140 with a heating value of 40% is generated. Thereafter, the process proceeds to step S80.
  • step S631 past data is referred to. For example, if it is determined based on the weather data at the detection time, an operating condition for turning on the heater 140 is generated at a heating value of 100%. If there is data, change the operating conditions. For example, in step S632, an operating condition for turning on the heater 140 with a heating value of 80% is generated. Thereafter, the process proceeds to step S80.
  • the control device 1 determines that the heating of the heater 140 is lower than the past operating condition. Generate increased operating conditions. Thus, it is possible to prevent snow from remaining on the signal display surface 101.
  • a heater 140 is constituted by a plurality of partial heaters 141 to 143 arranged along the surface of the cover 130 of the signal display surface 101. Control the traffic signal 100 that is present.
  • FIG. 26 illustrates a three-lamp type traffic signal 100 in which the signal units P1 to P3 are arranged on the signal display surface 101.
  • the signal units P1 to P3 are referred to as “signal units P”.
  • a plurality of partial temperature sensors 321 to 323 are arranged on the cover 130 of the signal unit P so as to be separated from each other.
  • the partial heaters 141 to 143 are arranged close to the partial temperature sensors 321 to 323, respectively.
  • the partial temperature sensors 321 to 323 and the partial heaters 141 to 143 are arranged in pairs.
  • unit wind pressure sensors 311 to 313 are arranged close to the respective signal units P.
  • the unit ID of the signal unit P is stored in the operation condition storage unit 161 in association with the traffic light ID. Then, as shown in FIGS. 28 to 30, the identification numbers of the unit wind pressure sensors (wind pressure sensor IDs) and the identification numbers of the partial temperature sensors (temperature sensor IDs) arranged in the respective signal units P are associated with the unit IDs. , The identification number of the partial heater (partial heater ID) is stored in the operating condition storage unit 161.
  • the control device 1 uses the temperature detected by the partial temperature sensors 321 to 323 (hereinafter, referred to as “partial temperature”) and the wind pressure data detected by the unit wind pressure sensors 311 to 313 to generate the partial heater 141 of the signal unit P. An operating condition is generated for each of ⁇ 143.
  • partial temperature the temperature detected by the partial temperature sensors 321 to 323
  • wind pressure data detected by the unit wind pressure sensors 311 to 313
  • An operating condition is generated for each of ⁇ 143.
  • a traffic signal corresponding to the temperature condition and the snowfall condition is selected in the same manner as in the control method according to the first embodiment.
  • a signal unit P for which an operating condition is not specified is selected.
  • step S50 for the selected signal unit P, it is determined whether or not the wind pressure data detected by the unit wind pressure sensor satisfies the ON condition. If the wind pressure data satisfies the ON condition, the process proceeds to step S55. On the other hand, if the wind pressure data does not satisfy the on condition, an operation condition for turning off the partial heater is generated in step S70, and then the process proceeds to step S80.
  • step S55 it is determined for each of the plurality of partial temperature sensors of the signal unit P whether or not the partial temperature corresponds to the temperature condition. If the partial temperature corresponds to the temperature condition, the process proceeds to step S60, and the operating condition generating device 12 generates operating conditions for the partial heater that is close to the partial temperature sensor whose partial temperature has been measured. Thereafter, the process proceeds to step S80. On the other hand, when the partial temperature does not correspond to the temperature condition, the process proceeds to step S70, and an operation condition for turning off the partial heater is generated. Thereafter, the process proceeds to step S80.
  • step S80 the operating condition transmitting device 13 transmits the generated operating condition to the traffic light 100.
  • the transmitted operating conditions are received by the operating condition receiving unit 151 of the traffic light 100 and stored in the operating condition storage unit 161.
  • the heater control unit 152 controls the partial heater according to the operating conditions.
  • step S85 After the operating conditions are transmitted to the traffic light 100, it is determined in step S85 whether the operating condition generating device 12 has generated operating conditions for all the signal units P. If there is a signal unit P for which an operating condition has not been generated, the process returns to step S45.
  • step S90 it is determined whether or not the operating condition generating device 12 has generated operating conditions for all the traffic lights 100. If there is a traffic signal 100 for which no operating condition has been generated, the process returns to step S40. If the operating conditions have been generated for all the traffic signals 100, the process ends.
  • the operating conditions of the partial heaters 141 to 143 are respectively generated using the partial temperature of the cover 130 and the air pressure data as the setting reference. For this reason, fine heating can be performed over the entire area of the cover 130. For example, there is a case where the amount of snowfall is large below the cover 130 and the amount of snowfall is small as the position is above the cover 130.
  • the heating by the heater 140 can be optimized for each part of the cover 130. Thereby, the cover 130 can be efficiently heated without the shortage of the amount of heat generated in the portion with a large amount of snowfall or the excessive amount of heat generation in the portion with a small amount of snowfall. As a result, a power saving effect can be obtained.
  • the number of partial heaters arranged in the signal unit P is three has been described above, the number of partial heaters may be other than three.
  • a unit wind pressure sensor is arranged for each signal unit P.
  • the heater 140 can be controlled with high accuracy for each signal unit P.
  • a plurality of signal units P of the traffic light 100 may use a common wind pressure sensor.
  • the detection devices 30 are arranged at each intersection, but the detection devices 30 may be arranged in each of the traffic lights 100. Thereby, the weather data on the traffic light 100 can be acquired more accurately.
  • the example in which the traffic light 100 is a three-light type is shown, but the control system according to the embodiment can be applied to other types of traffic lights such as a two-light type and a one-light type.
  • operating conditions are generated using weather data at the detection time or past data, but operating conditions may be generated with reference to future weather information such as a weather forecast. For example, when the ambient temperature is expected to rise sharply after the detection time, the time for turning on the heater 140 is generated to be short. Thereby, a power saving effect can be obtained.
  • the heater 140 may be controlled only during the period when the traffic light 100 displays a signal.
  • each traffic light 100 can be controlled independently.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Road Signs Or Road Markings (AREA)

Abstract

This control system of a heater installed in a signal apparatus is provided with: a detection device (30) which detects weather data including data pertaining to the wind speed of wind received by a signal display surface of the signal apparatus; and a control device (1) which defines an operation state of the heater as one of setting criteria of the data pertaining to at least the wind speed, generates operation conditions according to the operation state, and transmits the operation conditions to the signal apparatus. The signal apparatus can change the operation state of the heater according to the operation conditions that have been transmitted from the control device (1).

Description

制御システム、制御方法、制御プログラム及び信号機Control system, control method, control program and signal
 本発明は、信号機を制御する制御システム、制御方法、制御プログラム及び信号機に関する。 The present invention relates to a control system for controlling a traffic light, a control method, a control program, and a traffic light.
 交通信号機(以下、「信号機」という。)の信号表示面を覆うカバーに着雪があると、信号の視認性が低下して交通障害などを引き起こす。特に光源に発光ダイオード(LED)を使用した場合には、節電効果などがある反面、光源の発熱量が小さいために点灯中の信号機の表面温度が上昇せず、カバーに付着した雪が溶けにくい。 雪 If there is snow on the cover that covers the signal display surface of a traffic signal (hereinafter referred to as a "signal"), the visibility of the signal will be reduced, causing a traffic hazard. In particular, when a light-emitting diode (LED) is used as a light source, the surface temperature of a traffic light that is lit does not increase due to the small amount of heat generated by the light source, but snow attached to the cover is unlikely to be melted.
 このため、信号機にヒータを設置し、ヒータの熱によって信号機に付着した雪を溶かす方法が開示されている(特許文献1参照。)。 Therefore, a method has been disclosed in which a heater is installed in a traffic light to melt snow attached to the traffic light by the heat of the heater (see Patent Document 1).
特開2016-170627号公報JP 2016-170627 A
 しかしながら、ヒータの熱によって信号機に付着した雪を溶かす方法では消費電力が増大する問題がある。本発明は、ヒータを設置した信号機の消費電力の抑制が可能な制御システム、制御方法、制御プログラム及び信号機を提供することを目的とする。 However, the method of melting snow attached to the traffic signal by the heat of the heater has a problem that power consumption increases. An object of the present invention is to provide a control system, a control method, a control program, and a traffic signal capable of suppressing power consumption of a traffic signal provided with a heater.
 本発明の一態様によれば、ヒータを設置した信号機の制御システムであって、信号機の信号表示面が受ける風の風速に関するデータを含む気象データを検出する検出装置と、少なくとも風速に関するデータを設定基準の1つとしてヒータの動作状態を規定し、動作状態に応じた動作条件を生成し、信号機に動作条件を送信する制御装置とを備え、信号機が、制御装置から送信された動作条件に応じてヒータの動作状態を可変させる制御システムが提供される。 According to one aspect of the present invention, there is provided a control system for a traffic signal provided with a heater, wherein the detection device detects weather data including data on a wind speed of a wind received by a signal display surface of the traffic signal, and sets at least data on a wind speed. A control device that defines an operation state of the heater as one of the criteria, generates an operation condition according to the operation state, and transmits the operation condition to the traffic signal, wherein the traffic signal is controlled according to the operation condition transmitted from the control device. A control system for varying the operating state of the heater.
 本発明の他の態様によれば、ヒータを設置した信号機の制御方法であって、信号機の信号表示面が受ける風の風速に関するデータを含む気象データを検出するステップと、少なくとも風速に関するデータを設定基準の1つとしてヒータの動作状態を規定し、動作状態に応じた動作条件を生成し、信号機に動作条件を送信するステップと、信号機に、動作条件に応じてヒータの動作状態を可変させるステップとを含む制御方法が提供される。 According to another aspect of the present invention, there is provided a method for controlling a traffic signal provided with a heater, the method including: detecting weather data including data relating to wind speed of a wind received by a signal display surface of the traffic signal; and setting at least data relating to wind speed. Defining the operating state of the heater as one of the criteria, generating operating conditions according to the operating state, transmitting the operating conditions to the traffic signal, and causing the traffic signal to vary the operating state of the heater according to the operating condition And a control method including:
 本発明の更に他の態様によれば、ヒータを設置した信号機を制御する制御プログラムであって、信号機の信号表示面が受ける風の風速に関するデータを含む気象データを取得し、少なくとも風速に関するデータを設定基準の1つとしてヒータの動作状態を規定し、動作状態に応じた動作条件を生成し、動作条件を信号機に送信する制御プログラムが提供される。 According to still another aspect of the present invention, there is provided a control program for controlling a traffic light provided with a heater, wherein weather data including data on a wind speed of a wind received by a signal display surface of the traffic light is obtained, and at least data on the wind speed is obtained. A control program is provided for defining the operating state of the heater as one of the setting criteria, generating operating conditions according to the operating state, and transmitting the operating conditions to the traffic light.
 本発明の更に他の態様によれば、ヒータを設置した信号機を制御する制御プログラムであって、気象データ取得装置に、信号機の信号表示面が受ける風の風速に関するデータを含む気象データを取得させ、気象データを気象データ記憶装置に記憶させる命令と、動作条件生成装置に、気象データを気象データ記憶装置から読み出し、少なくとも風速に関するデータを設定基準の1つとしてヒータの動作状態を規定し、動作状態に応じた動作条件を生成させ、動作条件を動作条件記憶装置に記憶させる命令と、動作条件送信装置に、動作条件を信号機に送信させる命令とを実行させるための制御プログラムが提供される。 According to still another aspect of the present invention, there is provided a control program for controlling a traffic signal provided with a heater, the control program causing a weather data acquisition device to acquire weather data including data on a wind speed of a wind received by a signal display surface of the traffic signal. A command for storing weather data in a weather data storage device, and an operating condition generation device reading the weather data from the weather data storage device, defining at least data relating to wind speed as one of setting criteria, and defining an operation state of the heater. A control program for generating an operation condition according to a state and storing the operation condition in an operation condition storage device and causing the operation condition transmission device to execute an instruction to transmit the operation condition to a traffic signal is provided.
 本発明の更に他の態様によれば、ヒータを設置した信号機を制御する制御システムであって、信号機の信号表示面が受ける風の風速に関するデータを含む気象データを取得する気象データ取得装置と、少なくとも風速に関するデータを設定基準の1つとしてヒータの動作状態を規定し、動作状態に応じた動作条件を生成する動作条件生成装置と、生成した動作条件を信号機に送信する動作条件送信装置とを備える制御システムが提供される。 According to still another aspect of the present invention, there is provided a control system for controlling a traffic light provided with a heater, a weather data acquisition device for acquiring weather data including data on a wind speed of a wind received by a signal display surface of the traffic light, An operation condition generation device that defines an operation state of the heater using at least data relating to wind speed as one of setting criteria and generates an operation condition according to the operation state, and an operation condition transmission device that transmits the generated operation condition to a traffic light A control system is provided.
 本発明の更に他の態様によれば、ヒータを設置した信号機であって、信号機の信号表示面が受ける風の風速に関するデータを含む気象データを取得する気象データ取得装置と、少なくとも風速に関するデータを設定基準の1つとしてヒータの動作状態を規定し、動作状態に応じた動作条件を生成する動作条件生成装置とを備え、生成した動作条件に応じてヒータの動作状態を可変させる信号機が提供される。 According to still another aspect of the present invention, there is provided a weather signal provided with a heater, a weather data acquisition device for obtaining weather data including data on a wind speed of a wind received by a signal display surface of the traffic signal, and at least data on a wind speed. An operating condition generator that defines an operating state of the heater as one of the setting criteria and generates an operating condition according to the operating state is provided, and a traffic light that varies the operating state of the heater according to the generated operating condition is provided. You.
 本発明によれば、ヒータを設置した信号機の消費電力の抑制が可能な制御システム、制御方法、制御プログラム及び信号機を提供できる。 According to the present invention, it is possible to provide a control system, a control method, a control program, and a traffic signal capable of suppressing power consumption of a traffic signal provided with a heater.
本発明の第1の実施形態に係る制御システムの構成を示す模式図である。FIG. 1 is a schematic diagram illustrating a configuration of a control system according to a first embodiment of the present invention. 本発明の第1の実施形態に係る制御システムの検出装置の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of a detection device of the control system according to the first embodiment of the present invention. 本発明の第1の実施形態に係る制御システムの気象データ記憶装置の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of a weather data storage device of the control system according to the first embodiment of the present invention. 本発明の第1の実施形態に係る制御システムの地点情報記憶装置の構成を示す模式図である。1 is a schematic diagram illustrating a configuration of a point information storage device of a control system according to a first embodiment of the present invention. 本発明の第1の実施形態に係る制御システムの動作条件記憶装置の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of an operation condition storage device of the control system according to the first embodiment of the present invention. 本発明の第1の実施形態に係る制御システムの信号機の構成を示す模式的な断面図である。It is a typical sectional view showing the composition of the signal of the control system concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る制御システムの動作条件記憶部の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of an operation condition storage unit of the control system according to the first embodiment of the present invention. 本発明の第1の実施形態に係る制御システムの動作条件記憶部の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of an operation condition storage unit of the control system according to the first embodiment of the present invention. 本発明の第1の実施形態に係る制御システムの動作条件記憶部の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of an operation condition storage unit of the control system according to the first embodiment of the present invention. 本発明の第1の実施形態に係る制御システムの動作条件記憶部の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of an operation condition storage unit of the control system according to the first embodiment of the present invention. 本発明の第1の実施形態に係る制御システムの気象データ記憶部の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of a weather data storage unit of the control system according to the first embodiment of the present invention. 本発明の第1の実施形態に係る制御システムの気象データ記憶部の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of a weather data storage unit of the control system according to the first embodiment of the present invention. 本発明の第1の実施形態に係る制御システムの気象データ記憶部の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of a weather data storage unit of the control system according to the first embodiment of the present invention. 本発明の第1の実施形態に係る制御システムの気象データ記憶部の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of a weather data storage unit of the control system according to the first embodiment of the present invention. 本発明の第1の実施形態に係る制御方法を説明するためのフローチャートである。5 is a flowchart illustrating a control method according to the first embodiment of the present invention. 本発明の第1の実施形態に係る制御方法の他の例を説明するためのフローチャートである。6 is a flowchart for explaining another example of the control method according to the first embodiment of the present invention. 本発明の第1の実施形態に係る制御方法の他の例を説明するためのフローチャートである。6 is a flowchart for explaining another example of the control method according to the first embodiment of the present invention. 本発明の第1の実施形態に係る制御システムによる制御例を説明するための模式図である。FIG. 2 is a schematic diagram for explaining a control example by the control system according to the first embodiment of the present invention. 図18に示した制御例の効果を説明するための表である。19 is a table for explaining effects of the control example shown in FIG. 18. 本発明の第1の実施形態に係る制御システムによる他の制御例を説明するための模式図である。FIG. 5 is a schematic diagram for explaining another control example by the control system according to the first embodiment of the present invention. 図20に示した制御例の効果を説明するための表である。21 is a table for explaining effects of the control example shown in FIG. 20. 本発明の第1の実施形態の変形例1に係る制御システムを説明するための模式図である。FIG. 7 is a schematic diagram for explaining a control system according to a first modification of the first embodiment of the present invention. 本発明の第1の実施形態の変形例1に係る制御システムの制御装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the control apparatus of the control system which concerns on the modification 1 of 1st Embodiment of this invention. 本発明の第1の実施形態の変形例1に係る制御システムの気象情報記憶装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the weather information storage device of the control system which concerns on the modification 1 of 1st Embodiment of this invention. 本発明の第1の実施形態の変形例2に係る制御方法を説明するためのフローチャートである。9 is a flowchart for explaining a control method according to a modified example 2 of the first embodiment of the present invention. 本発明の第2の実施形態に係る制御システムの信号機の信号表示面を示す模式図である。It is a mimetic diagram showing the signal display surface of the signal of the control system concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る制御システムの信号機の動作条件記憶部の構成を示す模式図である。FIG. 7 is a schematic diagram illustrating a configuration of an operation condition storage unit of a traffic light of a control system according to a second embodiment of the present invention. 本発明の第2の実施形態に係る制御システムの信号ユニットの動作条件記憶部の構成を示す模式図である。It is a schematic diagram showing a configuration of an operation condition storage unit of a signal unit of a control system according to a second embodiment of the present invention. 本発明の第2の実施形態に係る制御システムの信号ユニットの動作条件記憶部の構成を示す模式図である。It is a schematic diagram showing a configuration of an operation condition storage unit of a signal unit of a control system according to a second embodiment of the present invention. 本発明の第2の実施形態に係る制御システムの信号ユニットの動作条件記憶部の構成を示す模式図である。It is a schematic diagram showing a configuration of an operation condition storage unit of a signal unit of a control system according to a second embodiment of the present invention. 本発明の第2の実施形態に係る制御方法を説明するためのフローチャートである。6 is a flowchart illustrating a control method according to a second embodiment of the present invention.
 次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、各部の厚みの比率などは現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施形態は、構成部品の材質、形状、構造、配置などを下記のものに特定するものでない。 Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and ratios of the thickness of each part are different from actual ones. In addition, it is needless to say that dimensional relationships and ratios are different between drawings. The embodiments described below exemplify an apparatus and a method for embodying the technical idea of the present invention, and the embodiments of the present invention describe the materials, shapes, structures, arrangements, and the like of the components as follows. It is not something specific to the thing.
 (第1の実施形態)
 図1に示す本発明の第1の実施形態に係る制御システムは、ヒータをそれぞれ設置された信号機100a~信号機100dを制御する。信号機100a~信号機100dは、同一の交差点に配置されている。以下において、制御対象の信号機を「信号機100」と称する。ヒータは、信号機100の信号表示面101のカバーに付着した雪を溶かすために使用される。なお、信号をそれぞれ点灯する信号ユニットP1~信号ユニットP3が信号表示面101に配置された3灯式の信号機100の例を示した。
(1st Embodiment)
The control system according to the first embodiment of the present invention shown in FIG. 1 controls traffic lights 100a to 100d each provided with a heater. The traffic lights 100a to 100d are arranged at the same intersection. Hereinafter, the traffic signal to be controlled is referred to as “traffic light 100”. The heater is used to melt snow attached to the cover of the signal display surface 101 of the traffic light 100. Note that the example of the three-lamp type traffic signal 100 in which the signal units P1 to P3 for respectively lighting the signals are arranged on the signal display surface 101 is shown.
 図1に示す実施形態に係る制御システムは、信号機100それぞれの信号表示面101が受ける風の風速に関するデータを含む気象データを検出する検出装置30と、ヒータの動作条件を生成する制御装置1とを備える。「気象データ」は、信号機100の信号表示面101での着雪量と相関する気象情報を含むデータである。「動作条件」は、ヒータのオンオフや発熱量などの動作状態を規定する。制御装置1は、少なくとも風速に関するデータを設定基準の1つとしてヒータの動作状態を規定し、動作状態に応じた動作条件を生成し、信号機100に動作条件を送信する。制御装置1から信号機100に送信された動作条件に応じて、信号機100は、ヒータの動作状態を可変させる。 The control system according to the embodiment illustrated in FIG. 1 includes a detection device 30 that detects weather data including data on a wind speed of a wind received by a signal display surface 101 of each of the traffic lights 100, and a control device 1 that generates operating conditions of a heater. Is provided. “Weather data” is data including weather information correlated with the amount of snowfall on the signal display surface 101 of the traffic light 100. “Operating conditions” define operating states such as heater on / off and heat generation. The control device 1 defines the operation state of the heater using at least data relating to the wind speed as one of the setting criteria, generates an operation condition according to the operation state, and transmits the operation condition to the traffic light 100. The traffic light 100 changes the operation state of the heater according to the operating conditions transmitted from the control device 1 to the traffic light 100.
 信号機100の信号表示面101に着雪すると信号の視認性が低下する。このとき、風が吹いてくる方向に向いた信号表示面101には着雪しやすいが、風の吹きつけない信号表示面101には着雪しにくい。つまり、着雪量は、信号表示面101の受ける風速に依存する。この現象に着目し、図1に示した制御システムは、信号表示面101が受ける風速に関するデータを解析して信号機100のヒータを制御する。例えば、信号表示面101が受ける風速に関するデータを、信号機100の信号表示面101に設けられた風圧センサを用いて取得する。即ち、信号表示面101が着雪する範囲の風圧を受ける信号機100についてのみ、ヒータをオンする。或いは、風圧の大きさに応じてヒータの発熱量を調整する。これにより、信号機100でのヒータによる消費電力を削減することができる。ヒータの発熱量は、ヒータに供給する電力を増減させたりオン時間を増減させたりして調整される。 す る と When snow falls on the signal display surface 101 of the traffic light 100, the visibility of the signal is reduced. At this time, it is easy to snow on the signal display surface 101 facing the direction in which the wind blows, but hard to snow on the signal display surface 101 to which the wind does not blow. That is, the amount of snow depends on the wind speed received by the signal display surface 101. Focusing on this phenomenon, the control system shown in FIG. 1 controls the heater of the traffic light 100 by analyzing data on the wind speed received by the signal display surface 101. For example, data on the wind speed received by the signal display surface 101 is acquired using a wind pressure sensor provided on the signal display surface 101 of the traffic light 100. That is, the heater is turned on only for the traffic light 100 that receives the wind pressure in the range where the signal display surface 101 snows. Alternatively, the amount of heat generated by the heater is adjusted according to the magnitude of the wind pressure. Thereby, power consumption by the heater in the traffic light 100 can be reduced. The heat value of the heater is adjusted by increasing or decreasing the power supplied to the heater or increasing or decreasing the on-time.
 検出装置30は、信号機100の周囲に配置される。例えば、図1に示すように、信号機100の配置された交差点に隣接して配置される。 The detection device 30 is arranged around the traffic light 100. For example, as shown in FIG. 1, it is arranged adjacent to the intersection where the traffic light 100 is arranged.
 検出装置30は、図2に示すように、風圧センサ31、温度センサ32、降雪量センサ33を備える。風圧センサ31は、信号機100の信号表示面101が受ける風圧を検出する。温度センサ32は、信号機100の周囲の温度(以下、「周囲温度」という。)を検出する。降雪量センサ33は、信号機100の周囲の降雪量を検出する。 The detection device 30 includes a wind pressure sensor 31, a temperature sensor 32, and a snowfall amount sensor 33, as shown in FIG. The wind pressure sensor 31 detects a wind pressure received on the signal display surface 101 of the traffic light 100. Temperature sensor 32 detects a temperature around signal device 100 (hereinafter, referred to as “ambient temperature”). The snowfall sensor 33 detects the amount of snowfall around the traffic light 100.
 図1に示すように信号表示面101の向きが互いに異なる複数の信号機100のヒータを制御するために、風圧センサ31は、信号機100の信号表示面101がそれぞれ向く複数の方向について風圧を検出できる構成とする。例えば、一方向について風力を検出する複数の風力検出器を異なる方向にそれぞれ向けて配置した風圧センサ31を使用する。この風圧センサ31によれば、様々な方向から吹く風の風圧を検出し、信号機100それぞれの風圧データを取得することができる。 As shown in FIG. 1, in order to control the heaters of the plurality of traffic lights 100 in which the directions of the signal display surfaces 101 are different from each other, the wind pressure sensor 31 can detect the wind pressure in a plurality of directions to which the signal display surfaces 101 of the traffic lights 100 respectively face. Configuration. For example, a wind pressure sensor 31 in which a plurality of wind power detectors that detect wind power in one direction are arranged in different directions is used. According to the wind pressure sensor 31, the wind pressure of the wind blowing from various directions can be detected, and the wind pressure data of each of the traffic lights 100 can be acquired.
 以下では、風圧センサ31が、信号機100それぞれの信号表示面101と同一方向の風圧を検出する風圧検出部を備える場合について説明する。即ち、図2に示した風圧センサ31の第1風圧検出部31a~第4風圧検出部31dは、信号機100a~信号機100dの信号表示面101の受ける風圧を検出する。 Hereinafter, a description will be given of a case where the wind pressure sensor 31 includes a wind pressure detecting unit that detects a wind pressure in the same direction as the signal display surface 101 of each of the traffic lights 100. That is, the first to fourth wind pressure detectors 31a to 31d of the wind pressure sensor 31 shown in FIG. 2 detect the wind pressure received by the signal display surfaces 101 of the traffic lights 100a to 100d.
 なお、信号表示面101の着雪量は信号機100の周囲温度や降雪量にも依存する。このため、検出装置30が温度センサ32や降雪量センサ33を備え、後述するように、風速に関するデータに加えて信号機100の周囲温度や降雪量も参照してヒータを制御してもよい。このため、検出装置30が、信号機100a~信号機100dの配置された交差点の周囲温度や降雪量を検出する。 The amount of snow on the signal display surface 101 also depends on the ambient temperature of the traffic light 100 and the amount of snowfall. Therefore, the detection device 30 may include a temperature sensor 32 and a snowfall amount sensor 33, and may control the heater with reference to the ambient temperature of the traffic light 100 and the snowfall amount in addition to the data on the wind speed, as described later. Therefore, the detection device 30 detects the ambient temperature and the amount of snowfall at the intersection where the traffic lights 100a to 100d are arranged.
 図1に示すように、制御装置1は処理装置10と記憶装置20を備える。記憶装置20には、処理装置10によって処理されたデータなどが記憶される。 制 御 As shown in FIG. 1, the control device 1 includes a processing device 10 and a storage device 20. The storage device 20 stores data processed by the processing device 10 and the like.
 処理装置10は、気象データ取得装置11、動作条件生成装置12、動作条件送信装置13を備える。気象データ取得装置11は、検出装置30から送信される気象データを受信し、気象データを取得する。動作条件生成装置12は、気象データに基づいてヒータの動作状態を規定し、規定した動作状態に応じた動作条件を生成する。動作条件送信装置13は、規定した動作状態を実現するように生成された動作条件を信号機100に送信する。なお、気象データや動作条件の伝搬は無線通信によってもよいし、有線通信によってもよい。 The processing device 10 includes a weather data acquisition device 11, an operation condition generation device 12, and an operation condition transmission device 13. The weather data acquisition device 11 receives the weather data transmitted from the detection device 30 and acquires the weather data. The operating condition generating device 12 defines the operating state of the heater based on the weather data, and generates operating conditions according to the defined operating state. The operating condition transmitting device 13 transmits the operating condition generated to realize the specified operating state to the traffic light 100. The propagation of weather data and operating conditions may be performed by wireless communication or wired communication.
 記憶装置20は、気象データ記憶装置21、地点情報記憶装置22、動作条件記憶装置23を備える。 The storage device 20 includes a weather data storage device 21, a point information storage device 22, and an operation condition storage device 23.
 気象データ記憶装置21には、検出装置30及び信号機100から送信されて気象データ取得装置11によって受信された気象データが記憶される。例えば図3に示すように、制御対象の信号機100の識別番号(信号機ID)と、それぞれの信号機100の信号表示面101が受ける風圧を検出する風圧検出部の識別番号(風圧センサID)が気象データ記憶装置21に記憶されている。風圧データの検出時刻(年/月/日、時:分)ごとに、風圧センサIDと検出された風圧データが関連付けされて記憶される。図3に示した風圧データは、信号機100bの風圧が8、信号機100cの風圧が9、信号機100a及び信号機100dの風圧がゼロの例である。 The weather data storage device 21 stores the weather data transmitted from the detection device 30 and the traffic light 100 and received by the weather data acquisition device 11. For example, as shown in FIG. 3, the identification number (signal ID) of the traffic signal 100 to be controlled and the identification number (wind pressure sensor ID) of the wind pressure detecting unit that detects the wind pressure received on the signal display surface 101 of each signal 100 are meteorological information. It is stored in the data storage device 21. For each detection time (year / month / day, hour: minute) of the wind pressure data, the wind pressure sensor ID and the detected wind pressure data are stored in association with each other. The wind pressure data shown in FIG. 3 is an example in which the wind pressure of the traffic light 100b is 8, the wind pressure of the traffic light 100c is 9, and the wind pressures of the traffic lights 100a and 100d are zero.
 地点情報記憶装置22には、検出装置30により気象データが検出される地点の情報が記憶される。例えば図4に示すように、信号機100が配置された交差点の識別番号(交差点ID)ごとに、信号機IDと、交差点の周囲の気象データを検出する検出装置30の識別番号(検出装置ID)が地点情報記憶装置22に記憶される。検出装置IDは、検出装置30により検出される周囲温度や降雪量の識別などに使用される。図4は、信号機100a~信号機100dが配置され、交差点IDがC1である交差点に、検出装置IDがS1の検出装置30が配置されている例である。 The point information storage device 22 stores information on the points where the weather data is detected by the detection device 30. For example, as shown in FIG. 4, for each identification number (intersection ID) of the intersection where the traffic light 100 is arranged, the traffic signal ID and the identification number (detection device ID) of the detection device 30 that detects the weather data around the intersection are displayed. It is stored in the point information storage device 22. The detection device ID is used for identifying the ambient temperature and the amount of snowfall detected by the detection device 30. FIG. 4 shows an example in which the traffic lights 100a to 100d are arranged, and the detection device 30 having the detection device ID S1 is arranged at the intersection where the intersection ID is C1.
 動作条件記憶装置23には、信号機100それぞれのヒータの動作条件が記憶される。例えば図5に示すように、制御装置1から動作条件を信号機100に送信した送信時刻(年/月/日、時:分)ごとに、信号機100に設置されたヒータの識別番号(ヒータID)、ヒータに対する動作条件、及び融雪状態が、信号機IDと関連付けされて記憶される。 The operating condition storage device 23 stores the operating condition of each heater of the traffic light 100. For example, as shown in FIG. 5, the identification number (heater ID) of the heater installed in the traffic light 100 at each transmission time (year / month / day, hour: minute) when the operating condition is transmitted from the control device 1 to the traffic light 100. , The operating condition for the heater, and the snow melting state are stored in association with the traffic signal ID.
 図5に示した例では、信号機100bのヒータについて80%の発熱量でオンする動作条件が生成され、信号機100cのヒータについて90%の発熱量でオンする動作条件が生成されている。信号機100a及び信号機100dのヒータはオフである。 In the example shown in FIG. 5, an operating condition for turning on the heater of the traffic light 100b with a heating value of 80% is generated, and an operating condition for turning on the heater of the traffic light 100c with a heating value of 90% is generated. The heaters of the traffic lights 100a and 100d are off.
 「融雪状態」は、ヒータを動作させた後の、信号機100の融雪状態を示す。図5で、「○」は着雪が無い状態であり、「△」は着雪が残っている状態を示す。つまり、信号機100bについては融雪が不足で着雪が残っており、信号機100cについては融雪が十分であり、着雪がないことを示している。融雪状態は、例えば信号機100からの出射光の光量を測定することにより判定される。このため、後述するように信号機100に光量センサを設置し、光量センサにより測定した光量を信号機100から制御装置1に送信させるようにしてもよい。そして、測定された出射光の光量に応じてヒータの動作条件を生成し直す。このように、融雪状態に応じてヒータの動作条件を見直すこともできる。例えば、融雪が不足であれば、動作条件のヒータの発熱量を増加させる。 "Snow melting state" indicates the snow melting state of the traffic light 100 after the heater is operated. In FIG. 5, “で” indicates a state where there is no snowfall, and “△” indicates a state where snowfall remains. In other words, it is indicated that the traffic light 100b has insufficient snow melting and the snow remains, and the traffic light 100c has sufficient snow melting and no snow accumulation. The snow melting state is determined, for example, by measuring the amount of light emitted from the traffic light 100. For this reason, a light quantity sensor may be installed in the traffic light 100 as described later, and the light quantity measured by the light quantity sensor may be transmitted from the traffic light 100 to the control device 1. Then, the operation condition of the heater is regenerated according to the measured light amount of the emitted light. In this way, the operating conditions of the heater can be reviewed according to the snow melting state. For example, if snow melting is insufficient, the amount of heat generated by the heater under operating conditions is increased.
 信号機100の構成例を図6に示す。図6に示した信号機100は、筐体110、筐体110の内部に配置された発光ユニット120、筐体110の開口部を覆って配置されたカバー130、筐体110の内部に配置されたヒータ140を備える。発光ユニット120からの出射光Lは、ヒータ140及びカバー130を透過して、信号機100の外部に出力される。つまり、信号表示面101に、カバー130の外部に向いた面が露出している。 FIG. 6 shows a configuration example of the traffic light 100. The traffic signal 100 shown in FIG. 6 includes a housing 110, a light emitting unit 120 disposed inside the housing 110, a cover 130 disposed over an opening of the housing 110, and disposed inside the housing 110. A heater 140 is provided. The light L emitted from the light emitting unit 120 passes through the heater 140 and the cover 130 and is output to the outside of the traffic light 100. That is, the surface facing the outside of the cover 130 is exposed on the signal display surface 101.
 発光ユニット120は、光源設置板122に複数の光源121が設置された構成である。光源121には、消費電力が少なく、視認性の高いLEDなどが好適に使用される。光源121は、例えばマトリクス状に光源設置板122に配置されている。光源121の点灯や消灯、或いは点滅などの制御は、筐体110の内部に配置された処理部150の発光制御部153によって行われる。 The light emitting unit 120 has a configuration in which a plurality of light sources 121 are installed on a light source installation plate 122. As the light source 121, an LED with low power consumption and high visibility is preferably used. The light sources 121 are arranged on the light source installation plate 122 in a matrix, for example. Control of turning on / off, blinking, and the like of the light source 121 is performed by the light emission control unit 153 of the processing unit 150 disposed inside the housing 110.
 カバー130には、例えばポリカーボネートなどの光透過性を有する樹脂板やガラス板などが使用される。ヒータ140によってカバー130が加熱される。カバー130の全域で融雪するために、面状のヒータ140を使用してカバー130の温度のばらつきを抑制することが好ましい。 The cover 130 is made of, for example, a resin plate or a glass plate having optical transparency such as polycarbonate. The cover 130 is heated by the heater 140. In order to melt snow in the entire area of the cover 130, it is preferable to use a planar heater 140 to suppress the temperature variation of the cover 130.
 面状のヒータ140を使用した場合、出射光Lがヒータ140を透過する必要がある。このため、出射光Lが透過する光透過性を有する材料を用いてヒータ140を構成する。例えば、ガラス板などの透明基材の表面に、酸化インジウムスズ(ITO)膜などの透明な抵抗体膜を形成する。抵抗体膜に配置した電極(図示略)の間に電圧を印加することにより、抵抗体膜が発熱する。或いは、発熱線をメッシュ状や格子状に配置したヒータ140を使用してもよい。 When the planar heater 140 is used, the outgoing light L needs to pass through the heater 140. For this reason, the heater 140 is formed using a material having light transmissivity through which the emitted light L passes. For example, a transparent resistor film such as an indium tin oxide (ITO) film is formed on the surface of a transparent substrate such as a glass plate. When a voltage is applied between electrodes (not shown) arranged on the resistor film, the resistor film generates heat. Alternatively, a heater 140 in which heating wires are arranged in a mesh shape or a lattice shape may be used.
 ヒータ140のオンオフや発熱量の制御は、処理部150のヒータ制御部152によって行われる。動作条件受信部151が制御装置1から送信された動作条件を受信し、この動作条件に従って、ヒータ制御部152がヒータ140を制御する。 (4) The heater 140 is controlled by the heater control unit 152 of the processing unit 150 to control the on / off of the heater 140 and the amount of generated heat. The operating condition receiving unit 151 receives the operating condition transmitted from the control device 1, and the heater control unit 152 controls the heater 140 according to the operating condition.
 制御装置1から信号機100に送信されてきた動作条件は、記憶部160の動作条件記憶部161に記憶される。動作条件記憶部161には、例えば図7~図10に示すように、信号機100a~信号機100dのそれぞれについて、信号機IDと関連付けてヒータIDと動作条件が記憶される。 The operation condition transmitted from the control device 1 to the traffic light 100 is stored in the operation condition storage unit 161 of the storage unit 160. As shown in FIGS. 7 to 10, for example, the operation condition storage unit 161 stores a heater ID and an operation condition for each of the traffic signals 100a to 100d in association with the traffic signal ID.
 また、制御装置1から信号機100に、動作条件を生成する際に使用した気象データを送信してもよい。信号機100に送信された気象データは、気象データ記憶部162に格納される。この気象データは動作条件と関連付けられているため、後述するように動作条件の見直しなどに使用することができる。 The weather data used when generating the operating conditions may be transmitted from the control device 1 to the traffic light 100. The weather data transmitted to the traffic light 100 is stored in the weather data storage unit 162. Since this weather data is associated with the operating condition, it can be used for reviewing the operating condition as described later.
 気象データ記憶部162には、図11~図14に示すように、それぞれの信号機100に関する気象データが記憶される。即ち、信号機100の信号機IDごとに、気象データの検出時刻(年/月/日、時:分)、信号機100の風圧データを検出する風圧検出部の風圧センサID及び風圧データが記憶されている。 As shown in FIGS. 11 to 14, the weather data storage unit 162 stores weather data relating to each traffic light 100. That is, the detection time (year / month / day, hour: minute) of the weather data, the wind pressure sensor ID of the wind pressure detection unit that detects the wind pressure data of the traffic light 100, and the wind pressure data are stored for each traffic light ID of the traffic light 100. .
 なお、図6に示した信号機100では、信号表示面101に近接させて光量センサ170が配置されている。光量センサ170は、信号表示面101から出力される出射光Lの光量を検出する。信号表示面101の着雪量により出射光Lの光量が変動するため、出射光Lの光量を検出することにより、信号表示面101の着雪量を検出できる。 In the traffic light 100 shown in FIG. 6, the light amount sensor 170 is arranged close to the signal display surface 101. The light amount sensor 170 detects the light amount of the outgoing light L output from the signal display surface 101. Since the amount of the emitted light L varies depending on the amount of snow on the signal display surface 101, the amount of snow on the signal display surface 101 can be detected by detecting the amount of the emitted light L.
 以下に、図1に示した制御システムを用いた制御方法を、図15に示したフローチャートを参照して説明する。なお、以下では、信号機100の周囲温度及び降雪量も気象データとして使用する制御方法を説明する。 Hereinafter, a control method using the control system shown in FIG. 1 will be described with reference to a flowchart shown in FIG. In the following, a control method in which the ambient temperature and the amount of snowfall of the traffic light 100 are used as weather data will be described.
 先ず、ステップS10において、検出装置30によって制御対象の信号機100の気象データが検出される。例えば、信号機100の風圧データや信号機100が配置された交差点ごとの周囲温度や降雪量の気象データが検出され、制御装置1に送信される。送信された気象データは、気象データ取得装置11によって受信され、気象データ記憶装置21に記憶される。 First, in step S10, the detection device 30 detects weather data of the traffic signal 100 to be controlled. For example, wind pressure data of the traffic light 100 and weather data of ambient temperature and snowfall at each intersection where the traffic light 100 is arranged are detected and transmitted to the control device 1. The transmitted weather data is received by the weather data acquisition device 11 and stored in the weather data storage device 21.
 ステップS20において、動作条件生成装置12が、地点情報記憶装置22に記憶された交差点の情報を読み出し、気象データ記憶装置21に記憶された気象データを読み出す。そして、動作条件生成装置12が、交差点の周囲温度が所定の温度条件に該当するか否かを判定する。「温度条件」は、信号機100の信号表示面101に着雪する温度の範囲として設定される。例えば、周囲温度が0℃よりも低いと乾雪となり着雪せず、2℃よりも高いと雪が溶けて着雪しない場合には、温度条件を0℃以上かつ2℃以下に設定する。周囲温度が温度条件に該当する場合は、処理はステップS30に進む。周囲温度が温度条件に該当しない場合は、処理を終了する。 In step S20, the operating condition generating device 12 reads the information on the intersection stored in the point information storage device 22 and reads the weather data stored in the weather data storage device 21. Then, the operating condition generation device 12 determines whether or not the ambient temperature of the intersection corresponds to a predetermined temperature condition. The “temperature condition” is set as a temperature range at which snow accumulates on the signal display surface 101 of the traffic light 100. For example, when the ambient temperature is lower than 0 ° C., dry snow occurs and snow does not accumulate, and when the ambient temperature is higher than 2 ° C., the snow melts and no snow accretion occurs, the temperature condition is set to 0 ° C. or higher and 2 ° C. or lower. If the ambient temperature corresponds to the temperature condition, the process proceeds to step S30. If the ambient temperature does not correspond to the temperature condition, the process ends.
 ステップS30において、動作条件生成装置12が、気象データに含まれる降雪量が所定の降雪量条件に該当するか否かを判定する。「降雪量条件」は、信号機100の信号表示面101に着雪する降雪量の範囲として設定される。例えば、降雪量が10mm/時より多い場合に、降雪量が降雪量条件に該当すると判定する。降雪量が降雪量条件に該当する場合は、処理はステップS40に進む。降雪量が降雪量条件に該当しない場合は、処理を終了する。 In step S30, the operating condition generation device 12 determines whether the snowfall included in the weather data satisfies a predetermined snowfall condition. The “snowfall condition” is set as a range of the snowfall that falls on the signal display surface 101 of the traffic light 100. For example, when the amount of snowfall is more than 10 mm / hour, it is determined that the amount of snowfall falls under the snowfall amount condition. If the amount of snow falls under the snowfall condition, the process proceeds to step S40. If the snowfall does not satisfy the snowfall condition, the process ends.
 ステップS40において、動作条件生成装置12が、動作条件が生成されていない信号機100を選択する。そして、ステップS50において、風圧データが所定のオン条件を満たしているか否かを判定する。即ち、動作条件生成装置12が、地点情報記憶装置22に格納された情報から信号機100の情報を取得し、選択された信号機100の信号表示面101の風圧データを気象データ記憶装置21から取得する。「オン条件」は、信号表示面101に着雪する風圧を基準に設定される。例えば、風圧が3以上である場合に、オン条件を満たしていると判定する。 In step S40, the operating condition generator 12 selects the traffic light 100 for which the operating condition has not been generated. Then, in step S50, it is determined whether the wind pressure data satisfies a predetermined ON condition. That is, the operating condition generating device 12 acquires information on the traffic signal 100 from the information stored in the point information storage device 22 and acquires wind pressure data on the signal display surface 101 of the selected traffic signal 100 from the weather data storage device 21. . The “ON condition” is set based on the wind pressure at which the snow falls on the signal display surface 101. For example, when the wind pressure is 3 or more, it is determined that the ON condition is satisfied.
 風圧データがオン条件を満たしている場合は、処理はステップS60に進み、ヒータ140をオンする動作条件が生成される。その後、処理はステップS80に進む。一方、風圧データがオン条件を満たしていない場合は、処理はステップS70に進み、ヒータ140をオフする動作条件が生成される。その後、処理はステップS80に進む。 If the wind pressure data satisfies the ON condition, the process proceeds to step S60, and an operation condition for turning on the heater 140 is generated. Thereafter, the process proceeds to step S80. On the other hand, if the wind pressure data does not satisfy the on condition, the process proceeds to step S70, and an operation condition for turning off the heater 140 is generated. Thereafter, the process proceeds to step S80.
 ステップS80において、動作条件送信装置13が、生成された動作条件を信号機100に送信する。送信された動作条件は、信号機100の動作条件受信部151で受信され、動作条件記憶部161に記憶される。そして、ヒータ制御部152が、動作条件に従ってヒータ140を制御する。 In step S80, the operating condition transmitting device 13 transmits the generated operating condition to the traffic light 100. The transmitted operating conditions are received by the operating condition receiving unit 151 of the traffic light 100 and stored in the operating condition storage unit 161. Then, the heater control unit 152 controls the heater 140 according to the operating conditions.
 動作条件が制御装置1から信号機100に送信された後、ステップS90において、動作条件生成装置12が、すべての信号機100について動作条件を生成したか否かを判定する。動作条件を生成していない信号機100がある場合は、ステップS40に戻る。すべての信号機100について動作条件が生成されていれば、処理を終了する。 (4) After the operation conditions are transmitted from the control device 1 to the traffic signal 100, the operation condition generation device 12 determines whether or not the operation conditions have been generated for all the traffic signals 100 in step S90. If there is a traffic signal 100 for which no operating condition has been generated, the process returns to step S40. If the operating conditions have been generated for all the traffic signals 100, the process ends.
 上記のように、第1の実施形態に係る制御方法では、信号表示面101の向きが互いに異なる複数の信号機100について、風圧データをそれぞれ取得する。そして、それぞれの風圧データに応じて信号機100についてヒータ140の動作条件が順次生成される。 As described above, in the control method according to the first embodiment, wind pressure data is acquired for each of a plurality of traffic signals 100 having different directions of the signal display surface 101. Then, operating conditions of the heater 140 for the traffic light 100 are sequentially generated according to the respective wind pressure data.
 上記の制御方法のように、風速に関するデータに加えて気象データに含まれる周囲温度及び降雪量の少なくともいずれかを設定基準として用いて動作条件を生成することが好ましい。風速以外の着雪量と相関する気象データも用いることにより、ヒータ140の制御をより効率的に行うことができる。 As in the above control method, it is preferable that the operating condition is generated using at least one of the ambient temperature and the snowfall amount included in the weather data in addition to the data on the wind speed as a setting reference. By using weather data correlated with the amount of snow accumulation other than the wind speed, the control of the heater 140 can be performed more efficiently.
 ところで、風圧の検出に風力計を使用してもよい。例えば、風力3m/秒を10段階で分割した単位で風圧を検出し、風力1m/秒を「風圧3」とする。なお、風力計の代わりに風速計を使用してもよい。このように、風圧データの代わりに他の風速と相関するデータや風速の値を設定基準の1つとして用いてもよい。 By the way, an anemometer may be used for wind pressure detection. For example, the wind pressure is detected in a unit obtained by dividing the wind power of 3 m / sec into 10 steps, and the wind power of 1 m / sec is defined as “wind pressure 3”. In addition, you may use an anemometer instead of an anemometer. As described above, instead of the wind pressure data, data correlated with another wind speed or a value of the wind speed may be used as one of the setting criteria.
 図15を参照して説明した制御方法では、動作条件がヒータ140のオンオフである例を示した。しかし、気象データに応じてヒータ140の発熱量を調整してもよい。例えば、風圧が高いほどヒータ140の発熱量を大きくする。或いは、風力が強いと着雪しにくい場合には、所定の上限値よりも風圧が高い場合にヒータ140の発熱量を小さくするようにしてもよい。また、周囲温度や降雪量の気象データが信号表示面101の着雪量が多い状態ほど、ヒータ140の発熱量を大きくしてもよい。 で は In the control method described with reference to FIG. 15, an example in which the operating condition is ON / OFF of the heater 140 has been described. However, the amount of heat generated by the heater 140 may be adjusted according to the weather data. For example, the calorific value of the heater 140 is increased as the wind pressure increases. Alternatively, when it is difficult to snow when the wind is strong, the amount of heat generated by the heater 140 may be reduced when the wind pressure is higher than a predetermined upper limit. Further, the amount of heat generated by the heater 140 may be increased as the amount of snowfall on the signal display surface 101 of the weather data of the ambient temperature and the amount of snowfall increases.
 ヒータ140の発熱量を調整した動作条件を生成する制御方法の例を、図16に示す。図16に示したフローチャートでは、ステップS50で風圧データがオン条件を満たすと判定された場合に、ステップS60Aにおいて、動作条件生成装置12が風圧データに応じたヒータ140の発熱量が規定された動作条件を生成する。他は、図15に示した制御方法と同様である。 FIG. 16 shows an example of a control method for generating operating conditions in which the amount of heat generated by the heater 140 is adjusted. In the flowchart shown in FIG. 16, when it is determined in step S50 that the wind pressure data satisfies the ON condition, in step S60A, the operation condition generating device 12 performs an operation in which the heat generation amount of the heater 140 according to the wind pressure data is specified. Generate a condition. Others are the same as the control method shown in FIG.
 図17に、風圧のオン条件が「風圧が3以上」である場合の、動作条件を生成する例を示す。ここで、風圧を風力3m/秒を10段階で分割した単位で風圧を検出し、風力1m/秒以上である場合をオン条件としている。また、風圧が3以上かつ6未満の場合に着雪しやすく、風圧が6(風力2m/秒)以上の場合には風力が強いために着雪しにくいとのデータが得られているとする。 FIG. 17 shows an example in which the operating condition is generated when the on condition of the wind pressure is “the wind pressure is 3 or more”. Here, the wind pressure is detected in a unit obtained by dividing the wind pressure into 3 steps per 10 m / sec, and the on condition is that the wind pressure is 1 m / sec or more. In addition, it is assumed that data is obtained when snow pressure is 3 or more and less than 6, snow easily occurs, and when wind pressure is 6 (wind force 2 m / sec) or more, it is difficult to snow due to strong wind force. .
 図17では、ステップS50において、風圧が3以上であるか否かが判定される。風圧が3以上であれば、処理はステップS60Aに進む。風圧が3未満であれば、処理はステップS70に進み、ヒータ140をオフする動作条件が生成される。 In FIG. 17, in step S50, it is determined whether the wind pressure is 3 or more. If the wind pressure is 3 or more, the process proceeds to step S60A. If the wind pressure is less than 3, the process proceeds to step S70, and an operation condition for turning off the heater 140 is generated.
 図17のステップS60AのステップS61において、風圧が6以上であるか否かが判定される。風圧が6以上である場合には、処理はステップS62に進み、50%の発熱量でヒータ140をオンする動作条件が生成される。一方、風圧が6未満である場合には、処理はステップS63に進み、100%の発熱量でヒータ140をオンする動作条件が生成される。その後、処理はステップS80に進む。 に お い て In step S61 of step S60A in FIG. 17, it is determined whether the wind pressure is 6 or more. If the wind pressure is 6 or more, the process proceeds to step S62, and an operation condition for turning on the heater 140 with a heat generation amount of 50% is generated. On the other hand, if the wind pressure is less than 6, the process proceeds to step S63, and an operating condition for turning on the heater 140 with a heat generation amount of 100% is generated. Thereafter, the process proceeds to step S80.
 上記のように、風圧が着雪しやすい気象の場合にヒータ140の発熱量を大きくし、その他の場合にヒータ140の発熱量を小さくすることにより、ヒータ140の消費電力を抑制することができる。即ち、気象データに応じたヒータ140の発熱量を動作状態として規定し、ヒータ140の発熱量に関する動作状態に応じて生成した動作条件を、制御装置1が信号機100に送信する。信号機100は、動作条件に応じてヒータ140の発熱量を可変させる。 As described above, the power consumption of the heater 140 can be suppressed by increasing the calorific value of the heater 140 in the weather where the wind pressure is likely to snow, and decreasing the calorific value of the heater 140 in other cases. . That is, the heat generation amount of the heater 140 according to the weather data is defined as an operation state, and the control device 1 transmits the operation condition generated according to the operation state regarding the heat generation amount of the heater 140 to the traffic light 100. The traffic signal 100 varies the amount of heat generated by the heater 140 according to the operating conditions.
 なお、交差点ごとに制御装置1を配置することにより、信号機100と制御装置1との距離を近くできる。これにより、制御装置1が気象データを取得してから動作条件を信号機100に送信するまでの時間を短縮し、気象条件に即したより正確な制御を実行できる。また、信号機100と制御装置1との間の通信距離が短縮されることにより、通信コストを削減することができる。 By disposing the control device 1 at each intersection, the distance between the traffic light 100 and the control device 1 can be reduced. As a result, the time from when the control device 1 acquires the weather data to when the operating conditions are transmitted to the traffic light 100 can be shortened, and more accurate control in accordance with the weather conditions can be executed. Further, the communication distance between the traffic light 100 and the control device 1 is shortened, so that the communication cost can be reduced.
 気象データは、所定の間隔で検出される。例えば10分の間隔で気象データを検出する。検出する間隔を短くすることにより、融雪の必要のない状態でヒータ140をオンする時間が短くなり、無駄な電力の消費を抑制することができる。 Weather data is detected at predetermined intervals. For example, weather data is detected at intervals of 10 minutes. By shortening the detection interval, the time for turning on the heater 140 in a state where it is not necessary to melt snow is shortened, and wasteful power consumption can be suppressed.
 以下に、融雪が必要である信号機100のヒータ140のみを選択的にオンにすることにより、信号機100の消費電力を抑制する例を説明する。ここで、ヒータ140をオフした状態での信号機100の消費電力が20Wであり、オンしたヒータ140の消費電力が40Wであるとする。 The following describes an example in which the power consumption of the traffic light 100 is suppressed by selectively turning on only the heater 140 of the traffic light 100 that requires snow melting. Here, it is assumed that the power consumption of the traffic light 100 when the heater 140 is turned off is 20 W, and the power consumption of the heater 140 turned on is 40 W.
 図18に示した制御例1では、北西からの風Wが交差点に吹いている。このため、信号表示面101が西向きの信号機100bと北向きの信号機100cが、信号表示面101に着雪するために融雪が必要な信号機100である。一方、信号表示面101が南向きの信号機100aと東向きの信号機100dは、信号表示面101に着雪せず、融雪が不要の信号機100である。したがって、制御装置1により、信号機100bと信号機100cについてヒータ140をオンする動作条件が生成され、信号機100aと信号機100dについてヒータ140をオフする動作条件が生成される。 制 御 In the control example 1 shown in FIG. 18, the wind W from the northwest is blowing at the intersection. For this reason, the traffic light 100b with the signal display surface 101 facing west and the traffic light 100c with the north facing are the traffic lights 100 that need to melt snow in order to snow on the signal display surface 101. On the other hand, a traffic signal 100a whose signal display surface 101 faces south and a traffic signal 100d whose signal display surface 101 faces east do not have snow on the signal display surface 101 and do not need to melt snow. Therefore, the control device 1 generates an operation condition for turning on the heater 140 for the traffic lights 100b and 100c, and generates an operation condition for turning off the heater 140 for the traffic lights 100a and 100d.
 信号機100a~信号機100dの消費電力の総量について、制御例1の消費電力と、すべての信号機100のヒータ140をオンする比較例の消費電力を図19に示す。図19に示すように、比較例と対比して、制御例1では消費電力を3分の2に低減することができる。 FIG. 19 shows the power consumption of the control example 1 and the power consumption of the comparative example in which the heaters 140 of all the traffic signals 100 are turned on, regarding the total power consumption of the traffic signals 100a to 100d. As shown in FIG. 19, in the control example 1, the power consumption can be reduced to two thirds as compared with the comparative example.
 図20に示した制御例2では、西からの風Wが交差点に吹いている。このため、信号表示面101が西向きの信号機100bが、融雪が必要な信号機100である。一方、信号表示面101が南向きの信号機100a、北向きの信号機100c、東向きの信号機100dは、融雪が不要の信号機100である。このため、制御装置1により、信号機100bについてヒータ140をオンする動作条件が生成され、信号機100a、信号機100c及び信号機100dについてヒータ140をオフする動作条件が生成される。 制 御 In the control example 2 shown in FIG. 20, the wind W from the west is blowing at the intersection. For this reason, the traffic light 100b whose signal display surface 101 faces west is the traffic light 100 that needs snow melting. On the other hand, a traffic light 100a whose signal display surface 101 faces south, a traffic light 100c that faces north, and a traffic light 100d that faces east are traffic lights 100 that do not require snow melting. Therefore, the control device 1 generates an operation condition for turning on the heater 140 for the traffic light 100b, and generates an operation condition for turning off the heater 140 for the traffic light 100a, the traffic light 100c, and the traffic light 100d.
 信号機100a~信号機100dの消費電力の総量について、制御例2の消費電力と、すべての信号機100のヒータ140をオンする比較例の消費電力を図21に示す。図21に示すように、比較例と対比して、制御例2では消費電力を半分に低減することができる。 FIG. 21 shows the power consumption of the control example 2 and the power consumption of the comparative example in which the heaters 140 of all the traffic signals 100 are turned on, regarding the total power consumption of the traffic signals 100a to 100d. As shown in FIG. 21, in the control example 2, the power consumption can be reduced to half compared with the comparative example.
 なお、図15~図17に示した一連の制御操作は、図15~図17と等価なアルゴリズムの制御プログラムにより、図1に示した制御システムを制御して実行できる。この制御プログラムは、図1に示した制御システムを構成する記憶装置20に記憶させればよい。 The series of control operations shown in FIGS. 15 to 17 can be executed by controlling the control system shown in FIG. 1 by a control program having an algorithm equivalent to that shown in FIGS. This control program may be stored in the storage device 20 constituting the control system shown in FIG.
 以上に説明したように、第1の実施形態に係る制御システムでは、気象データを参照して、信号表示面101に着雪する信号機100のヒータ140を選択的にオンし、融雪の必要のない信号機100のヒータ140をオフにする。また、気象データに応じて、ヒータ140の発熱量を調整する。その結果、図1に示した制御システムによれば、冬季に降雪量の多い地域に配置される信号機100の信号表示面101の着雪を防止すると共に、ヒータ140による消費電力を抑制することができる。 As described above, in the control system according to the first embodiment, with reference to weather data, the heater 140 of the traffic signal 100 that snows on the signal display surface 101 is selectively turned on, and there is no need to melt snow. The heater 140 of the traffic light 100 is turned off. In addition, the heating value of the heater 140 is adjusted according to the weather data. As a result, according to the control system shown in FIG. 1, it is possible to prevent snow on the signal display surface 101 of the traffic light 100 arranged in an area with a large amount of snowfall in winter and to suppress power consumption by the heater 140. it can.
 <変形例1>
 上記では1つの交差点に配置された信号機100のヒータ140を制御する場合を例示的に説明したが、複数の交差点にそれぞれ配置された信号機100のヒータ140を制御装置1によって制御してもよい。このとき、それぞれの交差点に検出装置30を配置することにより、気象データを取得することができる。
<Modification 1>
Although the case where the heater 140 of the traffic light 100 arranged at one intersection is controlled has been described above as an example, the heater 140 of the traffic light 100 arranged at each of a plurality of intersections may be controlled by the control device 1. At this time, weather data can be acquired by arranging the detection device 30 at each intersection.
 一方、複数の交差点に共通の気象データを用いて、信号機100のヒータ140を制御してもよい。例えば、図1に示す制御システムが、図22に示した複数の交差点C1~C9のうちの破線で囲んだ地域200に含まれる交差点C1~交差点C5にそれぞれ配置された信号機100のヒータ140を、同一の気象データを用いて制御する。図22に示すように、地域200について温度や降雪量を検出する地域センサ300が配置されている。制御装置1は、交差点にそれぞれ配置された検出装置30により検出された風圧データを取得し、この風圧データと地域センサ300により検出される気象データを用いて、交差点C1~C5の信号機100の動作条件を生成する。 On the other hand, the heater 140 of the traffic light 100 may be controlled using weather data common to a plurality of intersections. For example, the control system illustrated in FIG. 1 controls the heaters 140 of the traffic lights 100 disposed at the intersections C1 to C5 included in the area 200 surrounded by the broken line among the plurality of intersections C1 to C9 illustrated in FIG. Control is performed using the same weather data. As shown in FIG. 22, an area sensor 300 for detecting the temperature and the amount of snowfall in the area 200 is arranged. The control device 1 acquires wind pressure data detected by the detection devices 30 arranged at the intersections, and uses the wind pressure data and the weather data detected by the area sensor 300 to operate the traffic lights 100 at the intersections C1 to C5. Generate a condition.
 上記の制御システムでは、それぞれの交差点に配置する検出装置30を風圧センサのみを含むようにするができる。これにより、検出装置30のサイズや製造コストを抑制することができる。 In the above control system, the detection devices 30 arranged at the respective intersections can include only the wind pressure sensor. Thereby, the size and manufacturing cost of the detection device 30 can be suppressed.
 なお、地域200に含まれない交差点C6~交差点C9について、それぞれの交差点に配置した検出装置30によって気象データを検出し、交差点C1~C9の全体を単一の制御装置1によって制御してもよい。 It should be noted that weather data may be detected by the detectors 30 arranged at the respective intersections for the intersections C6 to C9 that are not included in the area 200, and the entire intersections C1 to C9 may be controlled by the single controller 1. .
 上記では、地域センサ300によって検出された気象データを用いてヒータ140の動作条件を生成する例を示した。しかし、制御システム以外によって検出された気象データ(例えば外部機関から提供される気象情報など)を用いてヒータ140の動作条件を生成してもよい。 In the above, an example in which the operating conditions of the heater 140 are generated using the weather data detected by the area sensor 300 has been described. However, the operating condition of the heater 140 may be generated using weather data (for example, weather information provided from an external organization) detected by a device other than the control system.
 例えば、図23に示すように、記憶装置20が気象情報記憶装置24を有する制御装置1を使用する。図23に示した気象データ取得装置11は、制御対象の信号機100が配置された地域の風向や風速、温度、降雪量などの気象データを含む気象情報を、制御システムの外部から取得する。取得された気象情報は、気象情報記憶装置24に記憶される。気象情報記憶装置24には、例えば図24に示すように、気象情報を取得した時刻と、周囲温度T及び降雪量Mが記憶される。 For example, as shown in FIG. 23, the storage device 20 uses the control device 1 having the weather information storage device 24. The weather data acquisition device 11 illustrated in FIG. 23 acquires, from outside the control system, weather information including weather data such as wind direction, wind speed, temperature, and snowfall in an area where the traffic signal 100 to be controlled is located. The acquired weather information is stored in the weather information storage device 24. The weather information storage device 24 stores, for example, the time at which the weather information was acquired, the ambient temperature T, and the amount of snowfall M, as shown in FIG.
 図23に示した制御装置1でも、検出装置30で検出され風圧データが気象データ記憶装置21に格納される。動作条件生成装置12は、外部から取得した気象データを用いて周囲温度や降雪量が所定の条件に該当するか否かを判定し、風圧データに基づいてヒータ140の動作条件を生成する。 で も In the control device 1 shown in FIG. 23 as well, the wind pressure data detected by the detection device 30 is stored in the weather data storage device 21. The operating condition generation device 12 determines whether the ambient temperature and the amount of snow fall under predetermined conditions using weather data acquired from the outside, and generates operating conditions of the heater 140 based on the wind pressure data.
 <変形例2>
 検出時刻の気象データだけでなく、過去に生成された動作条件とそれにより得られた効果を参照して、ヒータ140の動作条件を生成してもよい。つまり、検出時刻の気象データと同一の気象データを用いて生成した過去の動作条件によって得られた融雪効果を参照して動作条件を見直し、過去に生成した動作条件と異なる新たな動作条件を生成してもよい。
<Modification 2>
The operating conditions of the heater 140 may be generated with reference to not only the weather data at the detection time but also the operating conditions generated in the past and the effects obtained thereby. In other words, the operating conditions are reviewed with reference to the snow melting effect obtained by the past operating conditions generated using the same weather data as the weather data at the detection time, and new operating conditions different from the operating conditions generated in the past are generated. May be.
 例えば、生成された動作条件では融雪が不完全であったり発熱量が過剰であったりする過去データが記憶されている場合に、これらの過去データを参照して動作条件の見直しを行う。即ち、融雪が不完全であり、ヒータ140による加熱が終了した後も着雪が残る場合には、同様の気象データに対してヒータ140の発熱量を増大させた動作条件が新たに生成される。これにより、確実な融雪効果が得られる。或いは、発熱量が過剰であり、融雪された後もヒータ140による加熱が続く場合には、制御装置1がヒータ140の発熱量を減少させた動作条件を新たに生成する。これにより、ヒータ140の消費電力を削減することができる。 For example, in the case where past data such as incomplete snow melting or excessive heat generation is stored under the generated operating conditions, the operating conditions are reviewed with reference to these past data. That is, if snow melting is incomplete and snow remains after heating by the heater 140 is completed, an operating condition in which the calorific value of the heater 140 is increased for the same weather data is newly generated. Thereby, a reliable snow melting effect can be obtained. Alternatively, when the heating value is excessive and the heating by the heater 140 continues even after the snow melting, the control device 1 newly generates an operating condition in which the heating value of the heater 140 is reduced. Thereby, the power consumption of the heater 140 can be reduced.
 生成された動作条件による融雪効果は、光量センサ170によって検出できる。即ち、光量センサ170によって検出された出射光Lの光量が多ければ、融雪効果が高いと判定される。一方、光量センサ170によって検出された出射光Lの光量が少なければ、融雪効果が低いと判定される。 雪 The snow melting effect due to the generated operating conditions can be detected by the light amount sensor 170. That is, if the light amount of the output light L detected by the light amount sensor 170 is large, it is determined that the snow melting effect is high. On the other hand, if the light amount of the output light L detected by the light amount sensor 170 is small, it is determined that the snow melting effect is low.
 動作条件、及び動作条件を生成するために使用された気象データは、信号機100の動作条件記憶部161と気象データ記憶部162に格納されている。動作条件、気象データ及び光量データを信号機100から制御装置1に送信することにより、気象データに対応する動作条件の見直しを行うことができる。このように、過去の気象データと動作条件を参照して動作条件の内容を更新することにより、ヒータ140の制御をより効率的に行うことができる。信号機100の動作条件を生成するプログラムは、随時、更新することができる。 The operating conditions and the weather data used to generate the operating conditions are stored in the operating condition storage unit 161 and the weather data storage unit 162 of the traffic light 100. By transmitting the operating conditions, weather data, and light amount data from the traffic light 100 to the control device 1, the operating conditions corresponding to the weather data can be reviewed. As described above, by updating the content of the operation condition with reference to the past weather data and the operation condition, the control of the heater 140 can be performed more efficiently. The program for generating the operating conditions of the traffic light 100 can be updated at any time.
 例えば、検出された気象データが同様であっても、時季が異なれば同じ動作条件であっても得られる融雪効果が異なる場合がある。このため、図5に示した動作条件記憶装置23に記憶されたデータなどに基づいて動作条件を変更することにより、より効率的な融雪を行うことができる。図25に、過去データを参照して動作条件を生成する制御方法のフローチャートの例を示す。 For example, even if the detected weather data is the same, the obtained snow melting effect may be different under the same operating conditions in different seasons. For this reason, by changing the operation conditions based on the data stored in the operation condition storage device 23 shown in FIG. 5, it is possible to perform more efficient snow melting. FIG. 25 shows an example of a flowchart of a control method for generating operating conditions with reference to past data.
 図25では、ステップS50において、風圧が3以上であるか否かが判定される。風圧が3以上であれば、処理はステップS60Bに進む。風圧が3未満であれば、処理はステップS70に進み、ヒータ140をオフする動作条件が生成される。 In FIG. 25, in step S50, it is determined whether the wind pressure is 3 or more. If the wind pressure is 3 or more, the process proceeds to step S60B. If the wind pressure is less than 3, the process proceeds to step S70, and an operation condition for turning off the heater 140 is generated.
 図25のステップS60BのステップS61において、風圧が6以上であるか否かが判定される。風圧が6以上である場合には、処理はステップS621に進む。ステップS621では、過去データが参照される。例えば、検出時刻の気象データで判断すれば50%の発熱量でヒータ140をオンする動作条件が生成されるが、昨年の同時期に50%の発熱量では加熱が過剰であることを示す過去データがあれば、動作条件を変更する。例えば、ステップS622において、40%の発熱量でヒータ140をオンする動作条件が生成される。その後、処理はステップS80に進む。 に お い て In step S61 of step S60B in FIG. 25, it is determined whether the wind pressure is 6 or more. If the wind pressure is 6 or more, the process proceeds to step S621. In step S621, the past data is referred to. For example, if it is determined based on the weather data at the detection time, an operating condition for turning on the heater 140 with a heating value of 50% is generated, but in the same period of last year, a heating value of 50% in the past indicates that heating is excessive If there is data, change the operating conditions. For example, in step S622, an operating condition for turning on the heater 140 with a heating value of 40% is generated. Thereafter, the process proceeds to step S80.
 一方、ステップS61において風圧が6未満である場合には、処理はステップS631に進む。ステップS631では、過去データが参照される。例えば、検出時刻の気象データで判断すれば100%の発熱量でヒータ140をオンする動作条件が生成されるが、昨年の同時期では100%の発熱量では加熱が過剰であることを示す過去データがあれば、動作条件を変更する。例えば、ステップS632において、80%の発熱量でヒータ140をオンする動作条件が生成される。その後、処理はステップS80に進む。 On the other hand, if the wind pressure is less than 6 in step S61, the process proceeds to step S631. In step S631, past data is referred to. For example, if it is determined based on the weather data at the detection time, an operating condition for turning on the heater 140 is generated at a heating value of 100%. If there is data, change the operating conditions. For example, in step S632, an operating condition for turning on the heater 140 with a heating value of 80% is generated. Thereafter, the process proceeds to step S80.
 このように、過去データを参照することにより、ヒータ140による過剰な加熱が減少し、消費電力を抑制することができる。 As described above, by referring to the past data, excessive heating by the heater 140 is reduced, and power consumption can be suppressed.
 上記では発熱量が過剰である過去データの場合について説明したが、加熱が不足であることを示す過去データが得られている場合には、制御装置1が過去の動作条件よりもヒータ140の発熱量を増大させた動作条件を生成する。これにより、信号表示面101に着雪が残ることを防止することができる。 In the above, the case of the past data having an excessive heat generation has been described. However, when the past data indicating that the heating is insufficient is obtained, the control device 1 determines that the heating of the heater 140 is lower than the past operating condition. Generate increased operating conditions. Thus, it is possible to prevent snow from remaining on the signal display surface 101.
 (第2の実施形態)
 本発明の第2の実施形態に係る制御システムでは、図26に示すように、信号表示面101のカバー130の表面に沿って配置された複数の部分ヒータ141~143によりヒータ140が構成されている信号機100を制御する。図26は、信号ユニットP1~P3が信号表示面101に配置された3灯式の信号機100を例示している。以下において、信号ユニットP1~P3を「信号ユニットP」と称する。
(Second embodiment)
In the control system according to the second embodiment of the present invention, as shown in FIG. 26, a heater 140 is constituted by a plurality of partial heaters 141 to 143 arranged along the surface of the cover 130 of the signal display surface 101. Control the traffic signal 100 that is present. FIG. 26 illustrates a three-lamp type traffic signal 100 in which the signal units P1 to P3 are arranged on the signal display surface 101. Hereinafter, the signal units P1 to P3 are referred to as “signal units P”.
 信号ユニットPのカバー130に、互いに離間して複数の部分温度センサ321~323が配置されている。部分ヒータ141~143は、部分温度センサ321~323にそれぞれ近接して配置されている。このように、部分温度センサ321~323と部分ヒータ141~143とは対で配置されている。更に、信号ユニットPそれぞれに近接してユニット風圧センサ311~313が配置されている。 複数 A plurality of partial temperature sensors 321 to 323 are arranged on the cover 130 of the signal unit P so as to be separated from each other. The partial heaters 141 to 143 are arranged close to the partial temperature sensors 321 to 323, respectively. Thus, the partial temperature sensors 321 to 323 and the partial heaters 141 to 143 are arranged in pairs. Further, unit wind pressure sensors 311 to 313 are arranged close to the respective signal units P.
 図26に示した信号機100では、例えば図27に示すように、信号機IDと関連付けて信号ユニットPのユニットIDが動作条件記憶部161に記憶される。そして、図28~図30に示すように、ユニットIDと関連付けて、それぞれの信号ユニットPに配置されたユニット風圧センサの識別番号(風圧センサID)、部分温度センサの識別番号(温度センサID)、部分ヒータの識別番号(部分ヒータID)が、動作条件記憶部161に記憶される。 In the traffic light 100 shown in FIG. 26, for example, as shown in FIG. 27, the unit ID of the signal unit P is stored in the operation condition storage unit 161 in association with the traffic light ID. Then, as shown in FIGS. 28 to 30, the identification numbers of the unit wind pressure sensors (wind pressure sensor IDs) and the identification numbers of the partial temperature sensors (temperature sensor IDs) arranged in the respective signal units P are associated with the unit IDs. , The identification number of the partial heater (partial heater ID) is stored in the operating condition storage unit 161.
 制御装置1は、部分温度センサ321~323により検出された温度(以下、「部分温度」という。)及びユニット風圧センサ311~313により検出された風圧データを用いて、信号ユニットPの部分ヒータ141~143ごとに動作条件を生成する。以下に、図31に示したフローチャートを参照して、第2の実施形態に係る制御方法を説明する。 The control device 1 uses the temperature detected by the partial temperature sensors 321 to 323 (hereinafter, referred to as “partial temperature”) and the wind pressure data detected by the unit wind pressure sensors 311 to 313 to generate the partial heater 141 of the signal unit P. An operating condition is generated for each of ~ 143. Hereinafter, a control method according to the second embodiment will be described with reference to the flowchart shown in FIG.
 図31のステップS10~ステップS40において、第1の実施形態に係る制御方法と同様にして、温度条件及び降雪量条件に該当する信号機を選択する。次に、ステップS45において、動作条件を規定していない信号ユニットPを選択する。 に お い て In steps S10 to S40 of FIG. 31, a traffic signal corresponding to the temperature condition and the snowfall condition is selected in the same manner as in the control method according to the first embodiment. Next, in step S45, a signal unit P for which an operating condition is not specified is selected.
 そして、ステップS50において、選択した信号ユニットPについて、ユニット風圧センサの検出した風圧データがオン条件を満たすか否かを判定する。風圧データがオン条件を満たす場合には、処理はステップS55に進む。一方、風圧データがオン条件を満たさない場合は、ステップS70において部分ヒータをオフする動作条件が生成された後、ステップS80に処理が進む。 Then, in step S50, for the selected signal unit P, it is determined whether or not the wind pressure data detected by the unit wind pressure sensor satisfies the ON condition. If the wind pressure data satisfies the ON condition, the process proceeds to step S55. On the other hand, if the wind pressure data does not satisfy the on condition, an operation condition for turning off the partial heater is generated in step S70, and then the process proceeds to step S80.
 ステップS55において、信号ユニットPの複数の部分温度センサごとに部分温度が温度条件に該当するか否かが判定される。そして、部分温度が温度条件に該当する場合に、処理はステップS60に進み、動作条件生成装置12が、その部分温度が測定された部分温度センサに近接する部分ヒータについて動作条件を生成する。その後、処理はステップS80に進む。一方、部分温度が温度条件に該当しない場合は、処理はステップS70に進み、部分ヒータをオフする動作条件が生成される。その後、処理はステップS80に進む。 In step S55, it is determined for each of the plurality of partial temperature sensors of the signal unit P whether or not the partial temperature corresponds to the temperature condition. If the partial temperature corresponds to the temperature condition, the process proceeds to step S60, and the operating condition generating device 12 generates operating conditions for the partial heater that is close to the partial temperature sensor whose partial temperature has been measured. Thereafter, the process proceeds to step S80. On the other hand, when the partial temperature does not correspond to the temperature condition, the process proceeds to step S70, and an operation condition for turning off the partial heater is generated. Thereafter, the process proceeds to step S80.
 ステップS80において、動作条件送信装置13が、生成された動作条件を信号機100に送信する。送信された動作条件は、信号機100の動作条件受信部151で受信され、動作条件記憶部161に記憶される。そして、ヒータ制御部152が、動作条件に従って部分ヒータを制御する。 In step S80, the operating condition transmitting device 13 transmits the generated operating condition to the traffic light 100. The transmitted operating conditions are received by the operating condition receiving unit 151 of the traffic light 100 and stored in the operating condition storage unit 161. Then, the heater control unit 152 controls the partial heater according to the operating conditions.
 動作条件が信号機100に送信された後、ステップS85において、動作条件生成装置12がすべての信号ユニットPについて動作条件を生成したか否かを判定する。動作条件を生成していない信号ユニットPがある場合は、処理はステップS45に戻る。 (4) After the operating conditions are transmitted to the traffic light 100, it is determined in step S85 whether the operating condition generating device 12 has generated operating conditions for all the signal units P. If there is a signal unit P for which an operating condition has not been generated, the process returns to step S45.
 一方、すべての信号ユニットPについて動作条件を生成している場合は、処理はステップS90に進む。ステップS90において、動作条件生成装置12がすべての信号機100について動作条件を生成したか否かを判定する。動作条件を生成していない信号機100がある場合は、ステップS40に戻る。すべての信号機100について動作条件が生成されていれば、処理を終了する。 On the other hand, if the operating conditions have been generated for all the signal units P, the process proceeds to step S90. In step S90, it is determined whether or not the operating condition generating device 12 has generated operating conditions for all the traffic lights 100. If there is a traffic signal 100 for which no operating condition has been generated, the process returns to step S40. If the operating conditions have been generated for all the traffic signals 100, the process ends.
 上記に説明した制御方法によれば、カバー130の部分温度と風圧データを設定基準に用いて部分ヒータ141~143の動作条件がそれぞれ生成される。このため、カバー130の全域について細かな加熱を行うことができる。例えば、着雪がカバー130の下方に多く、カバー130の上方ほど着雪が少ない場合がある。このようにカバー130の全域で着雪量が均一で無い場合に、カバー130の部分ごとにヒータ140による加熱を最適化することができる。これにより、着雪量の多い部分での発熱量が不足したり、着雪量の少ない部分で発熱量が過剰になったりすることなく、効率的にカバー130を加熱することができる。その結果、省電力効果を得ることができる。 According to the control method described above, the operating conditions of the partial heaters 141 to 143 are respectively generated using the partial temperature of the cover 130 and the air pressure data as the setting reference. For this reason, fine heating can be performed over the entire area of the cover 130. For example, there is a case where the amount of snowfall is large below the cover 130 and the amount of snowfall is small as the position is above the cover 130. As described above, when the snow accumulation amount is not uniform in the entire area of the cover 130, the heating by the heater 140 can be optimized for each part of the cover 130. Thereby, the cover 130 can be efficiently heated without the shortage of the amount of heat generated in the portion with a large amount of snowfall or the excessive amount of heat generation in the portion with a small amount of snowfall. As a result, a power saving effect can be obtained.
 なお、信号ユニットPに配置される部分ヒータが3つである場合を上記に示したが、部分ヒータの個数は3つ以外であってもよい。部分温度センサや部分ヒータの対が多いほど、カバー130の全域で均一な融雪効果を得られる。 Although the case where the number of partial heaters arranged in the signal unit P is three has been described above, the number of partial heaters may be other than three. The more pairs of partial temperature sensors and partial heaters, the more uniform the snow melting effect can be obtained over the entire area of the cover 130.
 上記では、信号ユニットPごとにユニット風圧センサを配置する例を示した。これにより、信号ユニットPごとに高い精度でヒータ140を制御することができる。しかし、信号機100の複数の信号ユニットPで風圧センサを共通にしてもよい。 In the above, an example has been shown in which a unit wind pressure sensor is arranged for each signal unit P. Thus, the heater 140 can be controlled with high accuracy for each signal unit P. However, a plurality of signal units P of the traffic light 100 may use a common wind pressure sensor.
 (その他の実施形態)
 上記のように本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the present invention has been described by the embodiments. However, it should not be understood that the description and drawings forming part of the present disclosure limit the present invention. From this disclosure, various alternative embodiments, examples, and operation techniques will be apparent to those skilled in the art.
 例えば、上記では交差点ごとに検出装置30を配置する例を説明したが、信号機100のそれぞれに検出装置30を配置してもよい。これにより、信号機100についての気象データをより正確に取得することができる。また、信号機100が3灯式である例を示したが、2灯式や1灯式などの他の形態の信号機にも実施形態に係る制御システムを適用できる。 For example, in the above description, the example in which the detection devices 30 are arranged at each intersection has been described, but the detection devices 30 may be arranged in each of the traffic lights 100. Thereby, the weather data on the traffic light 100 can be acquired more accurately. Further, the example in which the traffic light 100 is a three-light type is shown, but the control system according to the embodiment can be applied to other types of traffic lights such as a two-light type and a one-light type.
 また、上記では検出時刻の気象データ、或いは過去データを用いて動作条件を生成する例を説明したが、天気予報などの今後の気象情報を参照して動作条件を生成してもよい。例えば、検出時刻より後に周囲温度が急上昇することが予測される場合に、ヒータ140をオンする時間を短く生成する。これにより、省電力効果を得られる。 In the above, an example has been described in which operating conditions are generated using weather data at the detection time or past data, but operating conditions may be generated with reference to future weather information such as a weather forecast. For example, when the ambient temperature is expected to rise sharply after the detection time, the time for turning on the heater 140 is generated to be short. Thereby, a power saving effect can be obtained.
 なお、信号機100によっては常時動作しているとは限らない。このため、信号機100が信号を表示する期間だけ、ヒータ140の制御を行ってもよい。 In addition, depending on the traffic light 100, it does not always operate. Therefore, the heater 140 may be controlled only during the period when the traffic light 100 displays a signal.
 また、信号機100のそれぞれに制御装置1に設置してもよい。これにより、それぞれの信号機100を独立して制御することができる。 Moreover, you may install in the control apparatus 1 in each of the traffic lights 100. Thereby, each traffic light 100 can be controlled independently.
 このように、本発明はここでは記載していない様々な実施形態などを含むことはもちろんである。 As described above, the present invention naturally includes various embodiments and the like that are not described herein.

Claims (22)

  1.  ヒータを設置した信号機の制御システムであって。
     前記信号機の信号表示面が受ける風の風速に関するデータを含む気象データを検出する検出装置と、
     少なくとも前記風速に関するデータを設定基準の1つとして前記ヒータの動作状態を規定し、前記動作状態に応じた動作条件を生成し、前記信号機に前記動作条件を送信する制御装置と
     を備え、
     前記信号機が、前記制御装置から送信された前記動作条件に応じて前記ヒータの前記動作状態を可変させることを特徴とする制御システム。
    A control system for a traffic light equipped with a heater.
    A detection device that detects weather data including data on a wind speed of a wind received by a signal display surface of the traffic light,
    A control device that defines an operation state of the heater as at least data on the wind speed as one of setting criteria, generates an operation condition according to the operation state, and transmits the operation condition to the traffic light.
    The control system, wherein the traffic light changes the operation state of the heater according to the operation condition transmitted from the control device.
  2.  前記風速に関するデータを前記信号機の信号表示面に設けられた風圧センサを用いて取得することを特徴とする請求項1に記載の制御システム。 2. The control system according to claim 1, wherein the data on the wind speed is acquired by using a wind pressure sensor provided on a signal display surface of the traffic light. 3.
  3.  前記制御装置が、前記気象データに応じた前記ヒータの発熱量を前記動作状態として規定し、前記ヒータの発熱量に関する前記動作状態に応じて生成した前記動作条件を前記信号機に送信し、
     前記信号機が、前記制御装置から送信された前記動作条件に応じて前記ヒータの発熱量を可変させることを特徴とする請求項1又は2に記載の制御システム。
    The control device defines a heating value of the heater according to the weather data as the operating state, and transmits the operating condition generated according to the operating condition related to the heating value of the heater to the traffic light,
    3. The control system according to claim 1, wherein the traffic light changes a heating value of the heater according to the operating condition transmitted from the control device. 4.
  4.  前記制御装置が、
     同一の交差点に配置された前記信号表示面の向きが互いに異なる複数の前記信号機について前記気象データをそれぞれ取得し、
     複数の前記信号機にそれぞれについて前記動作条件を生成する
     ことを特徴とする請求項1乃至3のいずれか1項に記載の制御システム。
    The control device,
    Obtain the weather data for each of the plurality of traffic lights having different directions of the signal display surface arranged at the same intersection,
    The control system according to any one of claims 1 to 3, wherein the operating condition is generated for each of the plurality of traffic lights.
  5.  前記気象データに、前記風速に関するデータに加えて前記信号機の周囲温度及び降雪量の少なくともいずれかが含まれ、
     前記制御装置が、前記周囲温度及び前記降雪量の少なくともいずれかを設定基準の他の1つとして用いて前記動作条件を生成することを特徴とする請求項1乃至4のいずれか1項に記載の制御システム。
    The weather data includes at least one of the ambient temperature and the amount of snowfall of the traffic light in addition to the data on the wind speed,
    5. The control device according to claim 1, wherein the control device generates the operating condition by using at least one of the ambient temperature and the snowfall amount as another one of the setting criteria. 6. Control system.
  6.  前記制御装置が、
     複数の交差点にそれぞれ配置された前記信号機について前記気象データをそれぞれ取得し、
     それぞれ取得した前記気象データ、及び複数の前記交差点に共通の前記周囲温度及び前記降雪量の少なくともいずれか用いて、複数の前記信号機のそれぞれについて前記動作条件を生成する
     ことを特徴とする請求項5に記載の制御システム。
    The control device,
    Acquiring the weather data for the traffic lights respectively arranged at a plurality of intersections,
    The operating condition is generated for each of the plurality of traffic lights, using the obtained weather data and at least one of the ambient temperature and the snowfall amount common to the plurality of intersections. The control system according to item 1.
  7.  過去に生成した前記動作条件によって得られた融雪効果を参照して、前記動作条件を生成することを特徴とする請求項1乃至6のいずれか1項に記載の制御システム。 The control system according to any one of claims 1 to 6, wherein the operation condition is generated by referring to a snow melting effect obtained by the operation condition generated in the past.
  8.  前記信号表示面に露出して光源からの出射光が透過するカバーに複数の部分温度センサが互いに離間して配置され、前記複数の部分温度センサにそれぞれ近接して前記カバーの表面に沿って配置された複数の部分ヒータを前記ヒータが有し、
     前記制御装置が、前記複数の部分温度センサによりそれぞれ検出された部分温度を取得し、前記部分温度と前記気象データを設定基準に用いて前記部分ヒータの前記動作条件を生成する
     ことを特徴とする請求項1乃至7のいずれか1項に記載の制御システム。
    A plurality of partial temperature sensors are disposed apart from each other on a cover that is exposed to the signal display surface and through which light emitted from a light source is transmitted, and is disposed along the surface of the cover in proximity to the plurality of partial temperature sensors. The heater has a plurality of partial heaters,
    The control device acquires partial temperatures detected by the plurality of partial temperature sensors, and generates the operating condition of the partial heater using the partial temperature and the weather data as a setting criterion. The control system according to claim 1.
  9.  前記信号機からの出射光の光量を測定する光量センサが前記信号機に配置され、前記制御装置が前記光量センサから前記光量を取得し、前記光量に応じて前記動作条件を生成し直すことを特徴とする請求項1乃至8のいずれか1項に記載の制御システム。 A light amount sensor for measuring the amount of light emitted from the traffic light is disposed at the traffic light, the control device acquires the light amount from the light amount sensor, and regenerates the operating condition according to the light amount. The control system according to any one of claims 1 to 8, wherein:
  10.  ヒータを設置した信号機の制御方法であって、
     前記信号機の信号表示面が受ける風の風速に関するデータを含む気象データを検出するステップと、
     少なくとも前記風速に関するデータを設定基準の1つとして前記ヒータの動作状態を規定し、前記動作状態に応じた動作条件を生成し、前記信号機に前記動作条件を送信するステップと、
     前記信号機に、前記動作条件に応じて前記ヒータの前記動作状態を可変させるステップと
     を含むことを特徴とする制御方法。
    A method of controlling a traffic light provided with a heater,
    Detecting weather data including data on the wind speed of the wind received by the signal display surface of the traffic light;
    Defining the operation state of the heater as at least data on the wind speed as one of the setting criteria, generating an operation condition according to the operation state, and transmitting the operation condition to the traffic light;
    Changing the operating state of the heater according to the operating condition in the traffic signal.
  11.  前記風速に関するデータを前記信号機の信号表示面に設けられた風圧センサを用いて取得することを特徴とする請求項10に記載の制御方法。 11. The control method according to claim 10, wherein the data relating to the wind speed is obtained by using a wind pressure sensor provided on a signal display surface of the traffic light.
  12.  前記気象データに応じた前記ヒータの発熱量を前記動作状態として規定し、前記ヒータの発熱量に関する前記動作状態に応じて生成した前記動作条件を前記信号機に送信して、前記信号機に前記動作条件に応じて前記ヒータの発熱量を可変させることを特徴とする請求項10又は11に記載の制御方法。 The heat generation amount of the heater according to the weather data is defined as the operation state, and the operation condition generated according to the operation state regarding the heat generation amount of the heater is transmitted to the traffic light, and the operation condition is transmitted to the traffic light. The control method according to claim 10, wherein the amount of heat generated by the heater is varied according to the following.
  13.  同一の交差点に配置された前記信号表示面の向きが互いに異なる複数の前記信号機について前記気象データをそれぞれ取得し、
     複数の前記信号機にそれぞれについて前記動作条件を生成する
     ことを特徴とする請求項10乃至12のいずれか1項に記載の制御方法。
    Obtain the weather data for each of the plurality of traffic lights having different directions of the signal display surface arranged at the same intersection,
    The control method according to claim 10, wherein the operation condition is generated for each of the plurality of traffic signals.
  14.  前記気象データに、前記風速に関するデータに加えて前記信号機の周囲温度及び降雪量の少なくともいずれかが含まれ、
     前記周囲温度及び前記降雪量の少なくともいずれかを設定基準の他の1つとして用いて前記動作条件を生成することを特徴とする請求項10乃至13のいずれか1項に記載の制御方法。
    The weather data includes at least one of the ambient temperature and the amount of snowfall of the traffic light in addition to the data on the wind speed,
    14. The control method according to claim 10, wherein the operating condition is generated by using at least one of the ambient temperature and the snowfall amount as another one of the setting criteria.
  15.  複数の交差点にそれぞれ配置された前記信号機について前記気象データをそれぞれ取得し、
     それぞれ取得した前記気象データ、及び複数の前記交差点に共通の前記周囲温度及び前記降雪量の少なくともいずれか用いて、複数の前記信号機のそれぞれについて前記動作条件を生成する
     ことを特徴とする請求項14に記載の制御方法。
    Acquiring the weather data for the traffic lights respectively arranged at a plurality of intersections,
    The operating condition is generated for each of the plurality of traffic signals, using the obtained weather data and at least one of the ambient temperature and the snowfall amount common to the plurality of intersections. The control method described in the above.
  16.  過去に生成した前記動作条件によって得られた融雪効果を参照して、前記動作条件を生成することを特徴とする請求項10乃至15のいずれか1項に記載の制御方法。 16. The control method according to claim 10, wherein the operation condition is generated by referring to a snow melting effect obtained by the operation condition generated in the past.
  17.  前記信号表示面に露出して光源からの出射光が透過するカバーに複数の部分温度センサが互いに離間して配置され、前記複数の部分温度センサにそれぞれ近接して前記カバーの表面に沿って配置された複数の部分ヒータを前記ヒータが有し、
     前記複数の部分温度センサによりそれぞれ検出された部分温度を取得し、前記部分温度と前記気象データを設定基準に用いて前記部分ヒータの前記動作条件を生成する
     ことを特徴とする請求項10乃至16のいずれか1項に記載の制御方法。
    A plurality of partial temperature sensors are disposed apart from each other on a cover that is exposed to the signal display surface and through which light emitted from a light source is transmitted, and is disposed along the surface of the cover in proximity to the plurality of partial temperature sensors. The heater has a plurality of partial heaters,
    The partial temperature detected by each of the plurality of partial temperature sensors is acquired, and the operating condition of the partial heater is generated by using the partial temperature and the weather data as a setting criterion. The control method according to any one of the above.
  18.  前記信号機からの出射光の光量を測定する光量センサが前記信号機に配置され、前記光量に応じて前記動作条件を生成し直すことを特徴とする請求項10乃至17のいずれか1項に記載の制御方法。 18. The light signal according to claim 10, wherein a light amount sensor for measuring a light amount of the light emitted from the traffic light is arranged in the traffic light, and the operating condition is regenerated according to the light amount. Control method.
  19.  ヒータを設置した信号機を制御する制御プログラムであって、
     前記信号機の信号表示面が受ける風の風速に関するデータを含む気象データを取得し、少なくとも前記風速に関するデータを設定基準の1つとして前記ヒータの動作状態を規定し、前記動作状態に応じた動作条件を生成し、
     前記動作条件を前記信号機に送信する制御プログラム。
    A control program for controlling a traffic light provided with a heater,
    Obtaining weather data including data relating to the wind speed of the wind received by the signal display surface of the traffic signal, defining the operating state of the heater using at least the data relating to the wind speed as one of setting criteria, and operating conditions according to the operating state Produces
    A control program for transmitting the operating condition to the traffic signal.
  20.  ヒータを設置した信号機を制御する制御プログラムであって、
     気象データ取得装置に、前記信号機の信号表示面が受ける風の風速に関するデータを含む気象データを取得させ、前記気象データを気象データ記憶装置に記憶させる命令と、
     動作条件生成装置に、前記気象データを前記気象データ記憶装置から読み出し、少なくとも前記風速に関するデータを設定基準の1つとして前記ヒータの動作状態を規定し、前記動作状態に応じた動作条件を生成させ、前記動作条件を動作条件記憶装置に記憶させる命令と、
     動作条件送信装置に、前記動作条件を前記信号機に送信させる命令と
     を実行させるための制御プログラム。
    A control program for controlling a traffic light provided with a heater,
    An instruction to cause the weather data acquisition device to acquire weather data including data on the wind speed of the wind received by the signal display surface of the traffic signal, and to store the weather data in a weather data storage device;
    The operating condition generating device reads the weather data from the weather data storage device, defines at least data on the wind speed as one of setting criteria, defines an operating state of the heater, and generates an operating condition according to the operating state. An instruction for storing the operating condition in an operating condition storage device;
    And a command for causing the operating condition transmitting device to transmit the operating condition to the traffic signal.
  21.  ヒータを設置した信号機を制御する制御システムであって、
     前記信号機の信号表示面が受ける風の風速に関するデータを含む気象データを取得する気象データ取得装置と、
     少なくとも前記風速に関するデータを設定基準の1つとして前記ヒータの動作状態を規定し、前記動作状態に応じた動作条件を生成する動作条件生成装置と、
     生成した前記動作条件を前記信号機に送信する動作条件送信装置と
     を備えること特徴とする制御システム。
    A control system for controlling a traffic light provided with a heater,
    A weather data acquisition device that acquires weather data including data on a wind speed of a wind received by a signal display surface of the traffic light;
    An operation condition generation device that defines an operation state of the heater as at least data on the wind speed as one of setting criteria, and generates an operation condition according to the operation state;
    An operating condition transmitting device for transmitting the generated operating condition to the traffic signal.
  22.  ヒータを設置した信号機であって、
     前記信号機の信号表示面が受ける風の風速に関するデータを含む気象データを取得する気象データ取得装置と、
     少なくとも前記風速に関するデータを設定基準の1つとして前記ヒータの動作状態を規定し、前記動作状態に応じた動作条件を生成する動作条件生成装置と
     を備え、
     生成した前記動作条件に応じて前記ヒータの前記動作状態を可変させることを特徴とする信号機。
    A traffic light equipped with a heater,
    A weather data acquisition device that acquires weather data including data on a wind speed of a wind received by a signal display surface of the traffic light;
    An operation condition generation device that defines an operation state of the heater with at least data on the wind speed as one of setting criteria, and generates an operation condition according to the operation state,
    A traffic signal, wherein the operating state of the heater is varied according to the generated operating condition.
PCT/JP2019/020479 2018-06-20 2019-05-23 Control system, control method, control program and signal apparatus WO2019244557A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018117150A JP2019219938A (en) 2018-06-20 2018-06-20 Control system, control method, control program, and traffic light
JP2018-117150 2018-06-20

Publications (1)

Publication Number Publication Date
WO2019244557A1 true WO2019244557A1 (en) 2019-12-26

Family

ID=68983662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020479 WO2019244557A1 (en) 2018-06-20 2019-05-23 Control system, control method, control program and signal apparatus

Country Status (2)

Country Link
JP (1) JP2019219938A (en)
WO (1) WO2019244557A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135999U (en) * 1984-02-20 1985-09-10 株式会社 有明技術開発センタ− traffic light
JPH02156400A (en) * 1988-12-08 1990-06-15 Nissei Build Kogyo Co Ltd Snow melting device for traffic sign
JP2000207683A (en) * 1998-11-09 2000-07-28 Ntt Me Corp Snow removing device for traffic signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135999U (en) * 1984-02-20 1985-09-10 株式会社 有明技術開発センタ− traffic light
JPH02156400A (en) * 1988-12-08 1990-06-15 Nissei Build Kogyo Co Ltd Snow melting device for traffic sign
JP2000207683A (en) * 1998-11-09 2000-07-28 Ntt Me Corp Snow removing device for traffic signal

Also Published As

Publication number Publication date
JP2019219938A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
RU2604654C2 (en) Adaptive controlled outdoor lighting system and operation method thereof
JP4005358B2 (en) Self-luminous road sign system
KR101012472B1 (en) Signal board
KR101835819B1 (en) Light emitting sign apparatus using optical fiber
KR101645349B1 (en) light-emitting changeable sign board device using optical fiber
Husin et al. Automatic street lighting system for energy efficiency based on low cost microcontroller
CN102712461A (en) Nonvolatile nano-electromechanical system device
JP6750065B2 (en) Fiber Optic Luminescent Marker
CN101784743A (en) Window-blind with illuminated lamellae
KR102307512B1 (en) Responsive road signs to the external environment for improved visibility and stability
JP2013139685A (en) Road sign display system
WO2019244557A1 (en) Control system, control method, control program and signal apparatus
KR101492578B1 (en) Monitoring and Control System for the road sign and the traffic safety sign
KR101082218B1 (en) Remote control system for street lighting
KR101285352B1 (en) Power saving road sign board using a minority of led and light guide plate
KR101342482B1 (en) Signal board
KR101970654B1 (en) Light emitting sign apparatus using optical fiber
CN102265096A (en) Ambient illumination system and illumination method using it
JP2014102881A (en) Led lighting device with snow-melting function
KR101056419B1 (en) Road information display system using self-power generation
EP3806578A1 (en) Heating system for heating surfaces of infrastructure
KR101285351B1 (en) Power saving road sign board using a minority of led and light guide plate
KR101187877B1 (en) Road information-image display system on the road and method thereof
KR20210002663U (en) colour temperature control register for street lamps
KR101691923B1 (en) Humidity sensitive light emitting type signbord for automatic when outbreak of the fog

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822205

Country of ref document: EP

Kind code of ref document: A1