WO2019243394A1 - Procédé d'apprentissage manuel pour un manipulateur de robot à l'aide d'une prescription de force/couple - Google Patents

Procédé d'apprentissage manuel pour un manipulateur de robot à l'aide d'une prescription de force/couple Download PDF

Info

Publication number
WO2019243394A1
WO2019243394A1 PCT/EP2019/066141 EP2019066141W WO2019243394A1 WO 2019243394 A1 WO2019243394 A1 WO 2019243394A1 EP 2019066141 W EP2019066141 W EP 2019066141W WO 2019243394 A1 WO2019243394 A1 WO 2019243394A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
force
bearing
torque
user
Prior art date
Application number
PCT/EP2019/066141
Other languages
German (de)
English (en)
Inventor
Oliver Eiberger
Original Assignee
Deutsches Zentrum für Luft- und Raumfahrt e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum für Luft- und Raumfahrt e.V. filed Critical Deutsches Zentrum für Luft- und Raumfahrt e.V.
Priority to US17/054,991 priority Critical patent/US11648660B2/en
Publication of WO2019243394A1 publication Critical patent/WO2019243394A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0081Programme-controlled manipulators with master teach-in means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/423Teaching successive positions by walk-through, i.e. the tool head or end effector being grasped and guided directly, with or without servo-assistance, to follow a path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36418Modify trajectory by operator gesture, gesture force sensed by end effector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49065Execute learning mode first for determining adaptive control parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to a robot manipulator and a method for determining and storing target forces and / or target moments from a manual teaching process on the robot manipulator.
  • the object of the invention is in a manual teach-in process on one
  • Robot manipulator by a user a respective force and / or a respective moment both for specifying a desired acceleration of the
  • Robot manipulator as well as to exert a desired force and / or a desired torque by an end effector arranged on the robot manipulator (or simply through a distal end of the robot manipulator) on an object in the vicinity of the robot manipulator, the quality of the specification not being dependent on a pose of the Robot manipulator should be dependent. Furthermore, it is an object of the invention to make the teaching process intuitive for a user.
  • a first aspect of the invention relates to a robot manipulator, comprising:
  • the robot member GL n i being connected to a robot base and the robot member GL N being a distal end member of the robot manipulator and for receiving an end effector.
  • the robot members GL n can be moved in pairs by means of bearings that can be actuated by actuators, and each of the bearings has a rotational and / or translational degree of freedom.
  • the robot manipulator also has:
  • Bearing sensors which are arranged on the bearings and for detecting a
  • Bearing position and a bearing torque / bearing force are each designed in the direction of a respective degree of freedom of a respective one of the bearings,
  • a first sensor which is arranged on one of the robot members GL N a , with ae ⁇ 0,1, 2 ⁇ , and is designed to detect a power winder W,
  • an operating housing which is arranged on a robot member GL Nb , with b> a,
  • a computing unit which is connected to the bearing sensors and to the first sensor and to the second sensor, and is designed to do so, by means of a dynamic model of the robot manipulator and on the basis of the respective bearing torque / bearing force, the force winder W, and the user torque and / or the user force to determine a first setpoint force and / or a first setpoint torque for shifting the robot members GL n and a second setpoint force and / or a second setpoint torque for exerting on an external object by the end effector, the dynamic model based on the respective bearing position at least gravitational forces and Includes inertial forces, and
  • a storage unit which is designed to store the first and / or the second target force and / or the first and / or the second target torque.
  • a bearing position is determined in particular by a translational relative position between two elements of the respective bearing if the bearing has a translational degree of freedom. Furthermore, the bearing position is in particular a bearing angle between two elements of the respective bearing if the bearing has a rotational degree of freedom.
  • the dynamic model preferably has a differential equation, comprising a mass matrix of the robot manipulator and an inertia matrix with Coriolist terms and with a term describing the influence of gravity on the robot manipulator, which, like the inertia matrix and the mass matrix, in particular depends on a current pose (position and orientation of the robot manipulator, determined by the individual storage positions) of the robot manipulator.
  • displacement here means in particular a desired movement of the robot members GL n , which are made possible by the respective rotational and / or translational degree of freedom of a bearing arranged on a respective one of the robot members and in particular by corresponding actuation of actuators arranged on the bearings is made possible.
  • the control housing is preferably designed as a handle.
  • ae ⁇ 1, 2 ⁇ that is, the robot manipulator has: - A first sensor, which is arranged on one of the robot members GL Na , with ae ⁇ 1, 2 ⁇ , and is designed to detect a power winder W.
  • the force winder W is preferably a column vector of detected forces and moments.
  • the first sensor and the second sensor preferably each have strain gauges for detecting a strain in a respective component, the strain being calculable back via known material properties to an associated force or moment that is responsible for the strain.
  • the teaching process is also referred to as "teaching". This is a teaching-in process for the robot manipulator by manual guidance of the robot manipulator, preferably on the operating housing, in order to specify a desired movement path of the robot manipulator / end effector / end member. It is an advantageous effect of the invention that, in the case of such a learning process, at the same time as specifying a desired one
  • Robot manipulator can be specified, this force or the moment can be assigned to the desired movement path. This is possible in particular in that a desired force of the end effector on an object in the environment can be distinguished from the user input, and this is possible regardless of the current pose of the robot manipulator. Even with such an alignment of respective bearings designed as articulated joints that the robot members arranged thereon form a 180 ° angle and the articulated joints are located directly in between in the force flow of a tensile or compressive force exerted on the robot members
  • a desired force of the end effector on an object in the environment can be distinguished from the user force or the user moment.
  • the first sensor in particular due to its ability to detect moments, can advantageously replace at least one of the bearing sensors that detect a moment on the adjacent robot member, so that the number of sensors is advantageously not increased overall, in particular by introducing the first sensor.
  • the force winder W has forces and moments that are related to and about axes that are orthogonal to one another in pairs.
  • forces are related to axes and moments are defined around axes.
  • a force is defined in an x-axis, that is, the x-direction, whereas a moment is defined, for example, around the x-axis.
  • the force winder W has forces and moments which are related to and about three axially mutually orthogonal pairs.
  • Three axes that are orthogonal to each other in pairs form in particular a Cartesian coordinate system.
  • the second sensor is used for
  • Embodiment of the second sensor designed only for detecting user moments or alternatively preferred - but equivalent - for detecting user forces and user moments around and in all possible axes, but for use and
  • Robot members GL N ai to GL N can be moved against each other in / by a number c of movement axes, and the second sensor is designed to do so
  • the robot members GL NEI to GL N can be moved relative to one another in / around a number c of movement axes, and the second sensor is designed to detect only user forces / user moments in / around axes from a linear combination of the c movement axes.
  • the c movement axes are multiplied by factors, whereby a factor can also be zero, so that the respective c Axes of motion that are multiplied by zero are effectively ignored.
  • the second sensor is designed to only detect user moments around axes from a linear combination of the c movement axes.
  • the second sensor is designed to only detect user forces in axes from a linear combination of the c movement axes. Which of these options and which combination of these options is to be used depends in particular on the respective degree of freedom of the bearings arranged between the robot members GL N a -i to GL N.
  • an articulated joint has a rotational degree of freedom, so that the robot links adjoining the articulated joint can be pivoted relative to one another, "pivoting" meaning a superimposition of the rotation and translation of the robot members, in particular their focal points.
  • a rotary bearing has in particular a rotational degree of freedom, which, in contrast to that of the articulated joint, results in a pure rotation of the robot member arranged thereon, as occurs, for example, during drilling.
  • a linear bearing has, in particular, a translational degree of freedom, which leads to a displacement of the robot members connected to the linear bearing relative to one another.
  • Robot members GL N a -i to GL N can be rotated relative to one another by a number c of rotation axes, and the second sensor is designed to only detect user moments about axes from a linear combination of the c rotation axes.
  • the robot members GL NEI to GL N can be rotated relative to one another by a number c of rotation axes, the second sensor being designed to detect only user moments about axes from one
  • Robot members GL N a -i to GL N can be rotated relative to one another by a number c of rotation axes, and the second sensor is designed to only detect user moments about an axis parallel to at least one of the c rotation axes.
  • the robot elements GL NEI to GL N can be rotated relative to one another by a number c of rotation axes, the second sensor is designed to detect only user moments about at least one axis parallel to the c rotation axes.
  • the bearings are in each case articulated joints and / or rotary bearings and / or linear bearings.
  • vot bearing refers to a pure rotational bearing, which entails a sole rotational movement, such as during a drilling process.
  • a linear bearing on the other hand, in particular allows a translatory relative movement of robot members arranged on the linear bearing.
  • Robot link GL Nb with b> a, is arranged,
  • a dynamic model of the robot manipulator and on the basis of the respective bearing torque / bearing force, the force winder W, and the user torque and / or the user force: determining a first setpoint force and / or a first setpoint torque for shifting the robot members GL n and a second setpoint force and / or a second setpoint torque for exerting on an external object by the end effector by means of a computing unit connected to the bearing sensors and to the first sensor and to the second sensor, the dynamic model being based on the respective
  • Storage position includes at least gravity and inertia, and
  • FIG. 1 shows a robot manipulator, in particular with a computing unit for determining a first and / or a second setpoint force and a first and / or a second setpoint torque from a manual learning process on a
  • Fig. 2 shows a method for determining and storing a first and / or
  • the force winder W has forces and moments that are related to and about three axes of a Cartesian coordinate system that are orthogonal to one another in pairs.
  • the robot manipulator 1 has an operating housing 13, which is arranged on a robot member GL Nb , with b> a, and a second sensor 15, which is arranged on the operating housing 13 and is used to detect a user torque applied to the operating housing 13, and a computing unit 17, which is connected to the bearing sensors 9 and to the first sensor 11 and to the second sensor 15, and is designed for this purpose by means of a
  • Dynamic model based on the respective bearing position includes at least gravity and inertial forces.
  • the robot manipulator has a storage unit 19 which is designed to store the first and the second target torque.
  • M a mass matrix of the robot manipulator 1
  • T tot ' a vector made up of further forces and moments acting on the robot manipulator 1, in particular comprising drive torques (or drive forces in the case of linear motors moved in translation), and external forces and moments which arise in particular from contacts of the robot manipulator 1 with an external object come.
  • W The force winder W, where W [] and W [6] are components of the vector of forces and moments detected by the first sensor 11. In Kraftwinder W the forces recorded are listed in the first three components and the moments recorded in the other three components. W [6] as a moment about the axis of the rotary
  • the degree of freedom of the robot member GL 4 does not contribute to the redundant measurement in the case of FIG. 1 and therefore only forms the last entry of [t ⁇ ... , t k-2 , t ui +
  • J EE ⁇ A Jacobian matrix for mapping the force winder W detected on the robot link GL N a to the bearings 7 L k , in particular to a respective bearing torque / bearing force;
  • J P ⁇ A Jacobian matrix for mapping the force winder W PßXt desired at point P onto the bearings 7 L K , in particular onto a respective bearing torque / bearing force;
  • Equation (2) thus specifies the dynamic model of the robot manipulator 1.
  • a first setpoint force and / or a first setpoint torque for displacing the robot members GL n and a second setpoint force and / or a second setpoint torque for exerting on an external object are determined by the end effector 5 ,
  • a dynamic model of the robot manipulator 1 By means of a dynamic model of the robot manipulator 1 and on the basis of the respective bearing torque / bearing force, the force winder W, and the user force and / or the user torque: determining S4 a first target force and / or a first target torque for shifting the robot members GL n and a second target force and / or a second setpoint torque for exerting on an external object by the end effector 5 by means of a computing unit 17 connected to the bearing sensors 9 and to the first sensor 11 and to the second sensor 15, the dynamic model based on the respective bearing position at least gravitational and inertial forces includes, and

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Manipulator (AREA)

Abstract

L'invention concerne un manipulateur de robot (1), comprenant des membres de robot, les membres de robot GLn étant mobiles les uns vis-à-vis des autres par paires au moyen d'un palier (7) pouvant être commandé par actionneur, des capteurs de palier (9) destinés à détecter une position de palier et un couple de palier/une force de palier, un premier capteur (11), qui est agencé distalement sur l'un des membres de robot et qui est conçu pour détecter un torseur d'action (W), un boîtier de commande (13), qui est agencé derrière le premier capteur (11) sur un membre de robot dans la direction proximale, un second capteur (15), qui est agencé sur le boîtier de commande (13) et qui sert à détecter une force d'utilisateur appliquée au boîtier de commande (13) et/ou un couple d'utilisateur, ainsi qu'une unité de calcul (17), qui est conçue pour déterminer, au moyen d'un modèle dynamique du manipulateur de robot (1) et sur la base du couple de palier/de la force de palier respectifs, du torseur d'action (W) et de la force d'utilisateur et/ou du couple d'utilisateur, une première force théorique et/ou un premier couple théorique, destinés à déplacer les membres de robot GLn, et une seconde force théorique et/ou un second couple théorique, destinés à être exercés sur un objet externe par l'intermédiaire de l'effecteur d'extrémité (5), le modèle dynamique comprenant au moins des forces de pesanteur et des forces d'inertie sur la base de la position de palier respective, et enfin une unité d'enregistrement (19), destinée à enregistrer la première et/ou la seconde force théorique et/ou le premier et/ou le second couple théorique.
PCT/EP2019/066141 2018-06-19 2019-06-19 Procédé d'apprentissage manuel pour un manipulateur de robot à l'aide d'une prescription de force/couple WO2019243394A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/054,991 US11648660B2 (en) 2018-06-19 2019-06-19 Manual teaching process in a robot manipulator with force/torque specification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018114644.2 2018-06-19
DE102018114644.2A DE102018114644B3 (de) 2018-06-19 2018-06-19 Manueller Anlernvorgang an einem Robotermanipulator mit Kraft-/Momentenvorgabe

Publications (1)

Publication Number Publication Date
WO2019243394A1 true WO2019243394A1 (fr) 2019-12-26

Family

ID=66999835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/066141 WO2019243394A1 (fr) 2018-06-19 2019-06-19 Procédé d'apprentissage manuel pour un manipulateur de robot à l'aide d'une prescription de force/couple

Country Status (3)

Country Link
US (1) US11648660B2 (fr)
DE (1) DE102018114644B3 (fr)
WO (1) WO2019243394A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020094879A1 (fr) * 2018-11-08 2020-05-14 Franka Emika Gmbh Robot et procédé de détermination d'un espace de mouvement au moyen d'un robot

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019131400B4 (de) * 2019-11-21 2022-03-10 Franka Emika Gmbh Kraftmessung und Krafterzeugung in redundanten Robotermanipulatoren
DE102020006839A1 (de) 2020-11-06 2022-05-12 Franka Emika Gmbh System und Verfahren zum manuellen Anlernen elnes Robotermanipulators
DE102021108417B3 (de) * 2021-04-01 2022-03-24 Franka Emika Gmbh Ermitteln eines externen Kraftwinders an einem Robotermanipulator
CN113601516A (zh) * 2021-08-16 2021-11-05 安徽元古纪智能科技有限公司 一种无传感器的机器人拖动示教方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108348A2 (fr) * 1982-10-30 1984-05-16 DEUTSCHE FORSCHUNGSANSTALT FÜR LUFT- UND RAUMFAHRT e.V. Procédé pour programmer les mouvements et, si nécessaire, les forces de traitement ou moments d'un robot ou manipulateur, et dispositif pour sa mise en oeuvre
EP2905111A2 (fr) * 2014-02-06 2015-08-12 KUKA Laboratories GmbH Procédé de programmation d'un robot industriel et robot industriel correspondant
US20170100841A1 (en) * 2015-10-07 2017-04-13 Seiko Epson Corporation Robot System, Robot, and Robot Control Apparatus
EP3162516A2 (fr) * 2015-10-27 2017-05-03 Canon Kabushiki Kaisha Mécanisme d'entraînement, procédé de mesure d'un appareil robotique, procédé de commande d'appareil robotique et procédé de fabrication de composant
DE102017003000A1 (de) * 2016-03-30 2017-10-05 Fanuc Corporation Mit Menschen kooperierendes Robotersystem
US20180056504A1 (en) * 2016-08-25 2018-03-01 Industrial Technology Research Institute Teaching apparatus for manipulator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2194434B1 (fr) 2008-12-05 2012-05-30 COMAU SpA système robotique
JP5637883B2 (ja) 2011-02-01 2014-12-10 ファナック株式会社 力センサの出力に基づいてロボットのダイレクトティーチをおこなうロボット教示装置
DE102013019869B4 (de) 2013-11-28 2022-01-13 Abb Schweiz Ag Roboterarm mit Eingabemodul
DE102015117213B4 (de) 2015-10-08 2020-10-29 Kastanienbaum GmbH Roboterarm
DE102016222675C5 (de) 2016-11-17 2022-03-31 Kuka Deutschland Gmbh Roboterbedienhandgerät, zugehörige Kopplungsvorrichtung, Roboter und Verfahren
CN106647282B (zh) * 2017-01-19 2020-01-03 北京工业大学 一种考虑末端运动误差的六自由度机器人轨迹规划方法
US20180272526A1 (en) * 2017-03-21 2018-09-27 Seiko Epson Corporation Control device, teaching device, and robot system
JP6953778B2 (ja) * 2017-04-28 2021-10-27 オムロン株式会社 協調ロボット、コントローラ、および方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108348A2 (fr) * 1982-10-30 1984-05-16 DEUTSCHE FORSCHUNGSANSTALT FÜR LUFT- UND RAUMFAHRT e.V. Procédé pour programmer les mouvements et, si nécessaire, les forces de traitement ou moments d'un robot ou manipulateur, et dispositif pour sa mise en oeuvre
EP2905111A2 (fr) * 2014-02-06 2015-08-12 KUKA Laboratories GmbH Procédé de programmation d'un robot industriel et robot industriel correspondant
US20170100841A1 (en) * 2015-10-07 2017-04-13 Seiko Epson Corporation Robot System, Robot, and Robot Control Apparatus
EP3162516A2 (fr) * 2015-10-27 2017-05-03 Canon Kabushiki Kaisha Mécanisme d'entraînement, procédé de mesure d'un appareil robotique, procédé de commande d'appareil robotique et procédé de fabrication de composant
DE102017003000A1 (de) * 2016-03-30 2017-10-05 Fanuc Corporation Mit Menschen kooperierendes Robotersystem
US20180056504A1 (en) * 2016-08-25 2018-03-01 Industrial Technology Research Institute Teaching apparatus for manipulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020094879A1 (fr) * 2018-11-08 2020-05-14 Franka Emika Gmbh Robot et procédé de détermination d'un espace de mouvement au moyen d'un robot

Also Published As

Publication number Publication date
DE102018114644B3 (de) 2019-09-19
US20210213603A1 (en) 2021-07-15
US11648660B2 (en) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2019243394A1 (fr) Procédé d'apprentissage manuel pour un manipulateur de robot à l'aide d'une prescription de force/couple
DE102015004484B4 (de) Robotersteuerung und Robotersystem zum Bewegen eines Roboters in Erwiderung einer Kraft
DE102015004475B4 (de) Robotersteuervorrichtung zum Steuern eines Roboters, der gemäß einer aufgebrachten Kraft bewegt wird
DE112013003209B4 (de) Robotersteuerungsvorrichtung und Robotersteuerungsverfahren
DE102015004481B4 (de) Robotersteuervorrichtung zum Steuern eines gemäß einer ausgeübten Kraft bewegten Roboters
DE102015004483B4 (de) Robotersteuerung und Robotersystem zum Bewegen eines Roboters als Reaktion auf eine Kraft
DE102007060682B4 (de) Verfahren und Vorrichtung zur modellbasierten Regelung eines Manipulators
DE102019101595B3 (de) Verfahren zum Ermitteln einer Gewichtskraft und eines Schwerpunktes einer Robotermanipulatorlast
DE202008014481U1 (de) Tragbares Roboterkontrollgerät zum Kontrollieren einer Bewegung eines Roboters
DE202019102430U1 (de) Ermittlung eines externen Kraftwinders durch Drehmomentsensoren eines Robotermanipulators
DE102018102995A1 (de) Redundanter unterbetätigter roboter mit multimodus-steuerungsrahmen
DE102018133349A1 (de) Verfahren und Vorrichtung zur Momentschätzung
WO2020157186A1 (fr) Processus d'apprentissage pour un système robotique composé de deux manipulateurs robotiques
DE102019101072B3 (de) Unterstützen eines manuellen Führens eines Robotermanipulators
DE102018114445B4 (de) Vorrichtung und Verfahren zur Einschätzung einer Position des Schwerpunkts eines Roboters
DE102020210240A1 (de) Robotersteuerung
WO2017029170A1 (fr) Bras de robot et poignet de robot
DE102019134665B3 (de) Kalibrieren eines virtuellen Kraftsensors eines Robotermanipulators
WO2019224288A1 (fr) Détection de collisions fonction de la direction pour un manipulateur de robot
DE102019134666B4 (de) Kalibrieren eines virtuellen Kraftsensors eines Robotermanipulators
DE102019118260B3 (de) Taktile Rückmeldung eines Endeffektors eines Robotermanipulators über verschiedene Orientierungsbereiche
DE102019128591B4 (de) Gestensteuerung für einen Robotermanipulator
DE102019118263B3 (de) Ausgeben einer Güteinformation über eine Krafterfassung am Robotermanipulator
DE102019131400B4 (de) Kraftmessung und Krafterzeugung in redundanten Robotermanipulatoren
DE102019111168B3 (de) Vom Messbereich eines Drehmomentsensors eines Robotermanipulators abhängig erzeugbare Kraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19732341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19732341

Country of ref document: EP

Kind code of ref document: A1