WO2019243117A1 - Système propulsif arrière pour aéronef - Google Patents

Système propulsif arrière pour aéronef Download PDF

Info

Publication number
WO2019243117A1
WO2019243117A1 PCT/EP2019/065269 EP2019065269W WO2019243117A1 WO 2019243117 A1 WO2019243117 A1 WO 2019243117A1 EP 2019065269 W EP2019065269 W EP 2019065269W WO 2019243117 A1 WO2019243117 A1 WO 2019243117A1
Authority
WO
WIPO (PCT)
Prior art keywords
propulsion system
rear propulsion
mobile
air stream
aircraft
Prior art date
Application number
PCT/EP2019/065269
Other languages
English (en)
Inventor
William Henri Joseph RIERA
Panagiotis GIANNAKAKIS
Original Assignee
Safran
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran filed Critical Safran
Publication of WO2019243117A1 publication Critical patent/WO2019243117A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/16Aircraft characterised by the type or position of power plants of jet type
    • B64D27/20Aircraft characterised by the type or position of power plants of jet type within, or attached to, fuselages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • B64C21/01Boundary layer ingestion [BLI] propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D29/00Power-plant nacelles, fairings, or cowlings
    • B64D29/04Power-plant nacelles, fairings, or cowlings associated with fuselages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/52Nozzles specially constructed for positioning adjacent to another nozzle or to a fixed member, e.g. fairing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/16Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like specially adapted for mounting power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • B64D2033/0226Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes comprising boundary layer control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/73Shape asymmetric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to an aircraft and more particularly, a rear propulsion system intended to be mounted to a rear point of an aircraft in order to ingest a boundary layer of the aircraft.
  • an aircraft extends longitudinally along an axis and has lateral wings on which propulsion engines are mounted.
  • a rear propulsion system to mount a rear tip of an aircraft in order to ingest an air flow from the boundary layer of the aircraft.
  • the boundary layer is formed on the surface of the fuselage.
  • the maximum speed of the air flow is 99% of the free speed. As a result, the boundary layer air flow moves more slowly than the free air flow.
  • the rear propulsion system when a rear propulsion system is configured to ingest the air flow of the boundary layer, the rear propulsion system generates an air flow with a lower exhaust speed than the propulsion engines placed under the wings of the aircraft and configured to absorb the flow of free air, which increases the efficiency of the rear propulsion system.
  • an aircraft 1 comprises a fuselage 10 extending longitudinally from rear to front along a longitudinal axis X.
  • the fuselage 10 comprises, at its rear end, a rear point 1 1 on which is mounted peripherally a rear propulsion system 2 configured to ingest the boundary layer circulating on the fuselage 10 from front to back.
  • the fuselage 10 comprises an upper fin 12 positioned in front of the rear propulsion system 2.
  • the rear propulsion system 2 comprises an inner peripheral casing 21 fixed to the rear tip 1 1 and an outer peripheral casing 22, so as to delimit an air stream V between the casing inner peripheral 21 and the outer peripheral casing 22.
  • the rear propulsion system 2 further comprises a plurality of faired mobile blowers 3 of identical dimensions distributed peripherally in the annular air stream V in order to accelerate the air flow from the boundary layer.
  • the size of the lower part of the rear propulsion system 2 is problematic when the aircraft 1 takes off. Indeed, if the lower part extends significantly projecting downward, it would be likely to come into contact with the take-off runway of the aircraft 1 during take-off. Also, as a function of a predetermined take-off angle a, a guard height H relative to the ground S is defined below which no part of the aircraft 1 should extend.
  • the purpose of the invention is therefore to remedy these drawbacks by proposing a new rear propulsion system which respects the guard height while having a significant propulsive efficiency.
  • the invention relates to a rear propulsion system for aircraft configured to ingest a boundary layer of said aircraft, the rear propulsion system extending longitudinally along an axis X, the rear propulsion system comprising an inner peripheral casing, an outer peripheral casing , an air stream delimited between the inner peripheral casing and the outer peripheral casing and a plurality of mobile faired blowers mounted in the air stream.
  • the air stream has a lower part having a radial dimension R1 and an upper part having a radial dimension R2 greater than the radial dimension R1, the lower part comprising at least one faired mobile blower having a diameter D1, the upper part comprising at least one faired mobile fan having a diameter D2 greater than the diameter D1.
  • peripheral element is meant that the element defines a closed surface.
  • the peripheral vein is substantially annular.
  • faired mobile fan is meant a fan wheel mounted in a casing.
  • the air stream does not have a constant thickness but a reduced thickness at the bottom in order to take account of the ground clearance.
  • the diameter of the mobile blowers is adapted in order to maximize the thrust while taking into account the thickness of the air stream.
  • the thrust provided by the rear propulsion system is optimal.
  • the lower part of the air stream comprises at least one lower air ejector without a mobile blower.
  • a lower air ejector makes it possible to conduct air in a narrow portion of the air stream in order to be accelerated downstream by the air flows accelerated by the other shrouded mobile blowers located adjacent to the '' lower air ejector.
  • the peripheral boundary layer can pass through the air stream.
  • Such a lower air ejector makes it possible to reduce the drag, to standardize the flow downstream (uniformity of the speed gradient) and to reduce the jet noise.
  • Such a lower air ejector is advantageous compared to mobile blowers of small diameter, the mass of which is large with regard to low efficiency. In addition, it reduces the risk of ingestion of debris or birds during takeoff and, consequently, the risk of failure.
  • the fairing mobile blower from the lower part located adjacent to the lower air ejector has a higher power than the fairing mobile blower from the upper part.
  • the faired mobile blower from the lower part makes it possible to participate in the acceleration downstream of the air flow having passed through the lower air ejector.
  • the shrouded mobile blower compensates for the acceleration defect of the air ejector to provide a substantially homogeneous peripheral thrust.
  • the lower air ejector extends over an angular range b1 of between 60 and 120 °.
  • an angular range advantageously makes it possible to take account of the guard height without excessively affecting the thrust.
  • the air stream comprises at least one lateral part having a radial dimension R3 greater than the radial dimension R1, the lateral part comprising at least one faired mobile blower having a diameter D3 greater than the diameter D1.
  • the mobile blower fairing can advantageously have large dimensions since it does not have to comply with ground clearance constraints.
  • the upper part of the air stream comprises at least one upper air ejector devoid of a mobile blower.
  • an upper air ejector makes it possible to conduct air in a narrow portion of the air stream in order to be accelerated downstream by the air flows accelerated by the other keeled mobile blowers located adjacent to the '' upper air ejector.
  • the peripheral boundary layer can pass through the air stream.
  • Such an upper air ejector makes it possible to reduce the drag, to standardize the flow downstream (uniformity of the speed gradient) and to reduce the jet noise.
  • the fairing mobile blower of the upper part located adjacent to the upper air ejector, has a higher power than the fairing mobile blower of the side part.
  • the fairing mobile blower of the upper part makes it possible to participate in the acceleration downstream of the air flow having passed through the upper air ejector.
  • the shrouded mobile blower compensates for the acceleration defect of the air ejector to provide a substantially homogeneous peripheral thrust.
  • the upper air ejector extends over an angular range between 30 and 60 °.
  • Such an angular range advantageously makes it possible to take account of the disturbances of the boundary layer by an upper drift without excessively affecting the thrust.
  • the lower portion of the air stream has two keeled movable blowers.
  • Such a lower part provides a symmetrical thrust despite a small radial thickness in the lower part.
  • the upper part of the air stream has two or three ducted mobile blowers.
  • the invention also relates to an aircraft extending longitudinally along an X axis and comprising a rear tip on which a boundary layer circulates and at least one rear propulsion system, as presented above, mounted on the periphery of the rear tip and configured for ingest the boundary layer of said aircraft.
  • the aircraft comprises at least one upper fin positioned in front of the rear propulsion system, the rear propulsion system comprises at least one upper air ejector, devoid of a mobile fan, which is aligned with the upper drift along the axis X.
  • the upper air ejector is advantageous because it makes it possible to avoid an ineffective thrust due to the presence of the boundary layer in the alignment of the upper fin.
  • FIG. 1 is a schematic representation of an aircraft with a rear propulsion system according to the prior art
  • FIG. 2 is a diagrammatic perspective representation of an aircraft with a rear propulsion system according to the prior art comprising several faired mobile blowers,
  • FIG. 3 is a diagrammatic representation in cross section of the rear propulsion system of FIG. 2,
  • FIG. 4 is a schematic representation of an aircraft with a rear propulsion system according to the invention.
  • FIG. 5 is a diagrammatic representation in cross section of a rear propulsion system according to a first embodiment of the invention
  • FIG. 6 is a schematic representation in section W-W of the air duct of the rear propulsion system of FIG. 5,
  • FIG. 7 is a schematic representation in cross section of a rear propulsion system according to a second embodiment of the invention.
  • Figure 8 is a schematic cross-sectional representation of the air flow at a rear tip of an aircraft seen by the rear propulsion system.
  • an aircraft 1 comprising a fuselage 10 extending longitudinally from rear to front along a longitudinal axis X.
  • the fuselage 10 comprises, at its rear end, a rear tip 1 1 on which is peripherally mounted a rear propulsion system 4 according to the invention.
  • the rear propulsion system 4 is configured to ingest a boundary layer circulating from front to rear on the fuselage 10 and, in particular, on the rear tip 1 1.
  • the fuselage 10 comprises an upper fin 12 positioned in front of the system rear wheel drive 4.
  • the size of the lower part of the rear propulsion system 4 is problematic during takeoff of the aircraft 1. In fact, if the lower part extends significantly projecting downwards, this would be likely to come into contact with the take-off runway of aircraft 1 during take-off. Also, as a function of a predetermined take-off angle a, a height of clearance H relative to the ground S is defined below which no part of the aircraft should extend.
  • the rear propulsion system 4 comprises an inner peripheral casing 41, an outer peripheral casing 42, an air stream V delimited between the inner peripheral casing 41 and the outer peripheral casing 42 and a plurality of mobile blowers fairings 51, 52, 53 mounted in the air stream V.
  • the inner peripheral casing 41 has a substantially circular section adapted to be mounted on the rear tip 1 1 of the aircraft 1 so as to extend in the continuity of the fuselage 10 in order to capture the air flow from the boundary layer.
  • the inner peripheral casing 41 is integrated into the rear tip 1 1 of the aircraft 1.
  • the air stream V is peripheral and comprises a lower part V1, an upper part V2 and two lateral parts V3.
  • the air stream V has a radial dimension defined in the transverse plane, that is to say, a thickness. Unlike the prior art, this radial dimension is not constant at the periphery so as to take account of the guard height H.
  • the lower part V1 of the air stream V s' extends over an angular range Q1 between 120 ° and 140 °
  • the upper part V2 of the air stream V extends over an angular range Q2 between 120 ° and 140 °
  • each lateral part V3 of the air stream air V extends over an angular range Q3 of between 40 ° and 60 °.
  • the lower part V1, the upper part V2 and each lateral part V3 of the air stream V have respectively radial thicknesses R1, R2, R3.
  • the radial thicknesses R2, R3 are greater than the radial thickness R1 of the lower part V1 of the air stream V in order to reduce the vertical dimension of the rear propulsion system 4.
  • the radial thickness minimum R1 is at least 15% less than the maximum radial thickness R2.
  • the outer peripheral casing 42 has a substantially flattened lower portion in order to take account of the guard height H.
  • each lateral part V3 of the air stream V have radial thicknesses R2, R3.
  • each lateral part V3 is integrated into an overall upper part V2 whose angular range is between 120 ° and 140 °.
  • the rear propulsion system 4 comprises a plurality of fairing mobile blowers 51, 52, 53 mounted in the air stream V.
  • a fairing mobile blower comprises in known manner a wheel comprising blades which is mounted movable in rotation around an axis parallel to the X axis and housed in a casing, preferably cylindrical.
  • a faired mobile blower guides and accelerates an air flow.
  • the casings of the faired mobile blowers 51, 52, 53 are connected together.
  • the housing is fixed.
  • the rear propulsion system 4 has a vertical axis symmetry so as to provide a balanced and symmetrical thrust.
  • the lower part V1 comprises two fairing mobile blowers 51 having a diameter D1
  • the upper part V2 comprises three fairing mobile blowers 52 having a diameter D2
  • each lateral part V3 has a fairing mobile fan 53 having a diameter D3.
  • the keeled mobile blowers 51, 52, 53 are adjacent so as to maximize the acceleration of the air flow of the boundary layer.
  • the faired mobile blowers 52 of the upper part V2 of the air stream V have a diameter D2 greater than the diameter D1 of the faired mobile blowers 51 of the lower part V1 of the air stream V.
  • the diameter D1, D2 of the faired mobile blowers 51, 52 is adapted to the radial thickness of the part of the air stream V in which the faired mobile blowers 51, 52 are housed.
  • the air flow of the boundary layer is optimally used to improve the thrust while taking account of the guard height H.
  • the upper part V2 and each lateral part V3 of the air stream V have keeled mobile blowers 52, 53 having the same diameter D2, D3 since the radial thicknesses R2, R3 are identical.
  • each faired mobile fan 51, 52, 53 occupies the entire radial dimension of the part of the air stream V in which it is mounted so as to maximize the thrust.
  • the diameters D1, D2, D3 are substantially equal to the radial thicknesses R1, R2, R3 respectively as illustrated in FIG. 5.
  • the lower part V1 of the air stream V comprises a lower air ejector 61 devoid of a mobile blower.
  • the lower air ejector 61 is in the form of a portion of the lower part V1 of the air stream V which is empty in order to conduct an air flow without accelerating it.
  • Such an air ejector is known to a person skilled in the art under the designation of "jet horn".
  • the lower air ejector 61 is placed in the portion of the lower part V1 of the air stream V which is the narrowest, that is to say, centered on the vertical axis as illustrated in FIG. 5.
  • the lower air ejector 61 extends over an angular range b1 of between 60 ° and 120 ° as illustrated in FIG. 7.
  • the faired mobile blowers 51 are not not adjacent in the lower part V1 of the air stream V but angularly spaced apart.
  • the lower air ejector 61 extends over the entire radial thickness R1 of the lower part V1 of the air stream V in order to maximize the air circulation of the boundary layer.
  • Such a lower air ejector 61 is advantageous since it has a limited mass while allowing peripheral circulation of the flow of air from the boundary layer in the air stream V. The thrust is balanced.
  • the propelling power of each faired mobile fan 51, 52, 53 can be adapted in order to more or less accelerate the ingested boundary layer.
  • the propulsive power can be adapted in different ways, for example, by adapting the speed of rotation of the fan, by modifying the inclination of the blades of the fan, etc.
  • the keeled mobile blowers 51 have a propelling power greater than the propulsive power of the keeled mobile blowers 52, 53 so as to compensate for the absence of acceleration by the lower air ejector 61.
  • FIG. 6 there is shown a sectional view WW of the rear propulsion system 4 of FIG. 5.
  • the keeled mobile blowers 52, 53 of the upper part V2 and lateral parts V3 of the air stream V are rotated to provide a reference thrust (symbolized by the symbol "+” in FIG. 6).
  • the faired mobile blowers 51 of the lower part V1 of the air stream V are rotated to provide a thrust (symbolized by the symbol "++” in FIG. 6) which is greater than the reference thrust.
  • Such an over-thrust is advantageous because it makes it possible to accelerate the air flow having passed through the lower air ejector 61 without providing thrust (symbolized by the symbol "-" in FIG. 6).
  • the peripheral thrust is substantially homogeneous while keeled mobile blowers are not present throughout the periphery of the air stream V.
  • FIG. 7 A second embodiment of a rear propulsion system 4 is shown schematically in Figure 7.
  • the description of the first embodiment of Figure 5 will not be repeated.
  • Elements of identical or analogous function have the same numerical references. Only the structural and functional differences of the second embodiment of Figure 7 will be presented in detail.
  • the upper part V2 of the air stream V comprises an upper air ejector 62 devoid of a mobile blower.
  • the upper air ejector 62 is in the form of a portion of the air stream which is empty in order to conduct an air flow without accelerating it.
  • the upper air ejector 62 is placed in the portion of the upper part V2 of the air stream V which is centered on the vertical axis as illustrated in FIG. 7.
  • Such an upper air ejector 62 is particularly advantageous when the aircraft 1 comprises an upper fin 12 projecting vertically from an upper end of the fuselage 10 as illustrated in FIG. 4. Indeed, the upper air ejector 62 is aligned with the upper fin 12 along the axis X and is positioned behind the latter. This is particularly advantageous since the boundary layer is not of constant thickness at the center of the upper part V2 of the air stream V, which degrades the propulsive efficiency of a faired mobile blower 52 placed at this point. place.
  • the air flows seen by the rear propulsion system 4 are shown schematically in a plane transverse to the axis X.
  • a boundary layer F1 extends at the periphery of the rear tip 1 1.
  • the boundary layer F1 is surrounded by a flow of free air F2 having a higher speed.
  • the boundary layer F1 is stretched vertically upwards due to the presence of the upper drift 12.
  • an acceleration of the boundary layer F1 in the deformation zone Z is not not efficient.
  • the upper air ejector 62 extends over an angular range b2 of between 30 ° and 60 ° as illustrated in FIG. 7.
  • the faired mobile blowers 52 are not adjacent in the upper part V2 of the air stream V but angularly spaced.
  • the upper air ejector 62 extends over the entire radial thickness R2 of the upper part V2 of the air stream V in order to maximize the air circulation of the boundary layer.
  • the propulsive power of the faired mobile blowers 52 of the upper part V2 is increased compared to the faired mobile blowers 53 of the side parts V3 so as to compensate for the lack of acceleration by the upper air ejector 62 .
  • the rear propulsion system 4 makes it possible to respect the guard height H while providing effective propulsive power.
  • the boundary layer F1 is ingested optimally as a function of its thickness at each angular position.
  • the mobile blowers are ingeniously positioned to provide effective thrust without penalizing the mass of the rear propulsion system 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Un système propulsif arrière (4) pour aéronef configuré pour ingérer une couche limite dudit aéronef, le système propulsif arrière (4) s'étendant longitudinalement selon un axe X, le système propulsif arrière (4) comportant un carter périphérique intérieur (41), un carter périphérique extérieur (42), une veine d'air (V) délimitée entre le carter périphérique intérieur (41) et le carter périphérique extérieur (42) et une pluralité de soufflantes mobiles carénées (51, 52, 53) montées dans la veine d'air (V), la veine d'air (V) comportant une partie inférieure (V1) ayant une dimension radiale R1 et une partie supérieure (V2) ayant une dimension radiale R2 supérieure à la dimension radiale R1, la partie inférieure (V1) comportant au moins une soufflante mobile carénée (51) ayant un diamètre D1, la partie supérieure (V2) comportant au moins une soufflante mobile carénée (52) ayant un diamètre D2 supérieur au diamètre D1.

Description

SYSTÈME PROPULSIF ARRIÈRE POUR AÉRONEF
DOMAINE TECHNIQUE GENERAL ET ART ANTERIEUR
La présente invention concerne un aéronef et plus particulièrement, un système propulsif arrière destiné à être monté à une pointe arrière d’un aéronef afin d’ingérer une couche limite de l’aéronef.
De manière connue un aéronef s’étend longitudinalement selon un axe et comporte des ailes latérales sur lesquelles sont montés des moteurs de propulsion. Afin d’augmenter l'efficacité de propulsion d'un aéronef, il est connu de monter un système propulsif arrière à une pointe arrière d’un aéronef afin d’ingérer un flux d’air de la couche limite de l’aéronef. Pour rappel, la couche limite est formée à la surface du fuselage. Dans une couche limite, la vitesse maximale du flux d’air est égale à 99% de la vitesse libre. Par conséquent, le flux d’air de la couche limite se déplace plus lentement que le flux d’air libre. Ainsi, lorsqu’un système propulsif arrière est configuré pour ingérer le flux d'air de la couche limite, le système propulsif arrière génère un flux d’air avec une vitesse d’échappement plus faible que les moteurs de propulsion placés sous les ailes de l’aéronef et configurés pour absorber le flux d’air libre, ce qui augmente l’efficacité du système propulsif arrière.
De plus, un système propulsif arrière augmente l’encombrement radial de la pointe arrière de l’aéronef, ce qui présente un inconvénient. Comme illustré aux figures 1 et 2, un aéronef 1 comporte un fuselage 10 s’étendant longitudinalement d’arrière en avant selon un axe longitudinal X. Le fuselage 10 comporte, à son extrémité arrière, une pointe arrière 1 1 sur laquelle est monté de manière périphérique un système propulsif arrière 2 configuré pour ingérer la couche limite circulant sur le fuselage 10 d’avant en arrière. De manière connue, le fuselage 10 comporte une dérive supérieure 12 positionnée en avant du système propulsif arrière 2.
De manière connue, en référence aux figures 2 et 3, le système propulsif arrière 2 comporte un carter périphérique intérieur 21 fixé à la pointe arrière 1 1 et un carter périphérique extérieur 22, de manière à délimiter une veine d’air V entre le carter périphérique intérieur 21 et le carter périphérique extérieur 22. Le système propulsif arrière 2 comporte en outre une pluralité de soufflantes mobiles carénées 3 de dimensions identiques réparties de manière périphérique dans la veine d’air annulaire V afin d’accélérer le flux d’air de la couche limite. En pratique, l’encombrement de la partie inférieure du système propulsif arrière 2 est problématique lors du décollage de l’aéronef 1 . En effet, si la partie inférieure s’étend de manière importante en saillie vers le bas, celle-ci serait susceptible d’entrer en contact avec la piste de décollage de l’aéronef 1 lors du décollage. Aussi, en fonction d’un angle de décollage prédéterminé a, il est défini une hauteur de garde H par rapport au sol S au-dessous de laquelle aucune partie de l’aéronef 1 ne doit s’étendre.
Afin de répondre à la contrainte de la hauteur de garde H, une solution immédiate serait de diminuer l’épaisseur radiale de la veine d’air V du système propulsif arrière 2 et de prévoir un grand nombre de soufflantes 3 de dimensions réduites. Néanmoins, une telle modification impacte de manière négative l’efficacité propulsive du système propulsif arrière 2 et ne peut pas être retenue.
L’invention a donc pour but de remédier à ces inconvénients en proposant un nouveau système propulsif arrière respectant la hauteur de garde tout en ayant une efficacité propulsive importante.
De manière incidente, on connaît par la demande de brevet EP1331386A2 un système propulsif arrière qui comporte une veine d’air qui n’est pas périphérique mais qui comporte uniquement une partie supérieure.
PRESENTATION GENERALE DE L’INVENTION
A cet effet, l’invention concerne un système propulsif arrière pour aéronef configuré pour ingérer une couche limite dudit aéronef, le système propulsif arrière s’étendant longitudinalement selon un axe X, le système propulsif arrière comportant un carter périphérique intérieur, un carter périphérique extérieur, une veine d’air délimitée entre le carter périphérique intérieur et le carter périphérique extérieur et une pluralité de soufflantes mobiles carénées montées dans la veine d’air.
L’invention est remarquable en ce que la veine d’air comporte une partie inférieure ayant une dimension radiale R1 et une partie supérieure ayant une dimension radiale R2 supérieure à la dimension radiale R1 , la partie inférieure comportant au moins une soufflante mobile carénée ayant un diamètre D1 , la partie supérieure comportant au moins une soufflante mobile carénée ayant un diamètre D2 supérieur au diamètre D1 . Par élément périphérique, on entend que l’élément définit une surface fermée. Dans cet exemple, la veine périphérique est sensiblement annulaire. Par soufflante mobile carénée, on entend une roue de soufflante montée dans un carter.
Grâce à l’invention, la veine d’air ne possède pas une épaisseur constante mais une épaisseur réduite en partie inférieure afin de tenir compte de la garde au sol. De manière avantageuse, le diamètre des soufflantes mobiles est adapté afin de permettre de maximiser la poussée tout en tenant compte de l’épaisseur de la veine d’air. Ainsi, la poussée fournie par le système propulsif arrière est optimale.
De manière préférée, la partie inférieure de la veine d’air comporte au moins un éjecteur d’air inférieur dépourvu de soufflante mobile. Un tel éjecteur d’air inférieur permet de conduire de l’air dans une portion étroite de la veine d’air afin d’être accéléré en aval par les flux d’air accélérés par les autres soufflantes mobiles carénées situées de manière adjacente à l’éjecteur d’air inférieur. Ainsi, la couche limite périphérique peut traverser la veine d’air. Un tel éjecteur d’air inférieur permet de réduire la traînée, d’uniformiser l’écoulement en aval (uniformisation du gradient de vitesse) et de réduire le bruit de jet. Un tel éjecteur d’air inférieur est avantageux par comparaison à des soufflantes mobiles de faible diamètre dont la masse est importante au regard d’un rendement faible. En outre, cela réduit le risque d’ingestion de débris ou d’oiseaux lors du décollage et, par voie de conséquence, le risque de panne.
De manière préférée, la soufflante mobile carénée de la partie inférieure située de manière adjacente à l’éjecteur d’air inférieur possède une puissance supérieure à la soufflante mobile carénée de la partie supérieure. Ainsi, la soufflante mobile carénée de la partie inférieure permet de participer à l’accélération en aval du flux d’air ayant traversé l’éjecteur d’air inférieur. La soufflante mobile carénée permet de compenser le défaut d’accélération de l’éjecteur d’air pour fournir une poussée périphérique sensiblement homogène.
De préférence, l’éjecteur d’air inférieur s’étend sur une plage angulaire b1 comprise entre 60 et 120°. Une telle plage angulaire permet avantageusement de tenir compte de la hauteur de garde sans affecter de manière trop importante la poussée.
Selon un aspect préféré, la veine d’air comporte au moins une partie latérale ayant une dimension radiale R3 supérieure à la dimension radiale R1 , la partie latérale comportant au moins une soufflante mobile carénée ayant un diamètre D3 supérieur au diamètre D1 . La soufflante mobile carénée peut avantageusement avoir des dimensions élevées étant donné qu’elle ne doit pas respecter de contrainte de garde au sol.
De préférence, la partie supérieure de la veine d’air comporte au moins un éjecteur d’air supérieur dépourvu de soufflante mobile. Un tel éjecteur d’air supérieur permet de conduire de l’air dans une portion étroite de la veine d’air afin d’être accéléré en aval par les flux d’air accélérés par les autres soufflantes mobiles carénées situées de manière adjacente à l’éjecteur d’air supérieur. Ainsi, la couche limite périphérique peut traverser la veine d’air. Un tel éjecteur d’air supérieur permet de réduire la trainée, d’uniformiser l’écoulement en aval (uniformisation du gradient de vitesse) et de réduire le bruit de jet.
De manière préférée, la soufflante mobile carénée de la partie supérieure, située de manière adjacente à l’éjecteur d’air supérieur, possède une puissance supérieure à la soufflante mobile carénée de la partie latérale. Ainsi, la soufflante mobile carénée de la partie supérieure permet de participer à l’accélération en aval du flux d’air ayant traversé l’éjecteur d’air supérieur. La soufflante mobile carénée permet de compenser le défaut d’accélération de l’éjecteur d’air pour fournir une poussée périphérique sensiblement homogène.
De manière préférée, l’éjecteur d’air supérieur s’étend sur une plage angulaire comprise entre 30 et 60°. Une telle plage angulaire permet avantageusement de tenir compte des perturbations de la couche limite par une dérive supérieure sans affecter de manière trop importante la poussée.
Selon un aspect, la partie inférieure de la veine d’air comporte deux soufflantes mobiles carénées. Une telle partie inférieure assure une poussée symétrique malgré une épaisseur radiale faible dans la partie inférieure.
Selon un autre aspect, la partie supérieure de la veine d’air comporte deux ou trois soufflantes mobiles carénées.
L’invention concerne également un aéronef s’étendant longitudinalement selon un axe X et comportant une pointe arrière sur laquelle circule une couche limite et au moins un système propulsif arrière, tel que présenté précédemment, monté à la périphérie de la pointe arrière et configuré pour ingérer la couche limite dudit aéronef.
Un tel aéronef permet d’exploiter de manière efficace sa couche limite. De préférence, l’aéronef comprend au moins une dérive supérieure positionnée en avant du système propulsif arrière, le système propulsif arrière comporte au moins un éjecteur d’air supérieur, dépourvu de soufflante mobile, qui est aligné avec la dérive supérieure selon l’axe X. Un tel éjecteur d’air supérieur est avantageux car il permet d’éviter une poussée inefficace du fait de la présence de la couche limite dans l’alignement de la dérive supérieure.
PRESENTATION DES FIGURES
L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple, et se référant aux dessins annexés sur lesquels :
la figure 1 est une représentation schématique d’un aéronef avec un système propulsif arrière selon l’art antérieur,
la figure 2 est une représentation schématique en perspective d’un aéronef avec un système propulsif arrière selon l’art antérieur comprenant plusieurs soufflantes mobiles carénées,
la figure 3 est une représentation schématique en coupe transversale du système propulsif arrière de la figure 2,
la figure 4 est une représentation schématique d’un aéronef avec un système propulsif arrière selon l’invention,
la figure 5 est une représentation schématique en coupe transversale d’un système propulsif arrière selon une première forme de réalisation de l’invention,
la figure 6 est une représentation schématique en coupe W-W de la veine d’air du système propulsif arrière de la figure 5,
la figure 7 est une représentation schématique en coupe transversale d’un système propulsif arrière selon une deuxième forme de réalisation de l’invention et
la figure 8 est une représentation schématique en coupe transversale de l’écoulement d’air au niveau d’une pointe arrière d’un aéronef vu par le système propulsif arrière.
Il faut noter que les figures exposent l’invention de manière détaillée pour mettre en oeuvre l’invention, lesdites figures pouvant bien entendu servir à mieux définir l’invention le cas échéant.
DESCRIPTION D’UN OU PLUSIEURS MODES DE REALISATION ET DE MISE EN OEUVRE En référence à la figure 4, il est représenté un aéronef 1 comportant un fuselage 10 s’étendant longitudinalement d’arrière en avant selon un axe longitudinal X. Le fuselage 10 comporte, à son extrémité arrière, une pointe arrière 1 1 sur laquelle est monté de manière périphérique un système propulsif arrière 4 selon l’invention. Le système propulsif arrière 4 est configuré pour ingérer une couche limite circulant d’avant en arrière sur le fuselage 10 et, notamment, sur la pointe arrière 1 1. De manière connue, le fuselage 10 comporte une dérive supérieure 12 positionnée en avant du système propulsif arrière 4.
Comme présenté précédemment, l’encombrement de la partie inférieure du système propulsif arrière 4 est problématique lors du décollage de l’aéronef 1. En effet, si la partie inférieure s’étend de manière importante en saillie vers le bas, celle-ci serait susceptible d’entrer en contact avec la piste de décollage de l’aéronef 1 lors du décollage. Aussi, en fonction d’un angle de décollage prédéterminé a, il est défini une hauteur de garde H par rapport au sol S au-dessous de laquelle aucune partie de l’aéronef ne doit s’étendre.
Comme illustré à la figure 5, le système propulsif arrière 4 comporte un carter périphérique intérieur 41 , un carter périphérique extérieur 42, une veine d’air V délimitée entre le carter périphérique intérieur 41 et le carter périphérique extérieur 42 et une pluralité de soufflantes mobiles carénées 51 , 52, 53 montées dans la veine d’air V.
Dans cet exemple, le carter périphérique intérieur 41 possède une section sensiblement circulaire adaptée pour être monté sur la pointe arrière 1 1 de l’aéronef 1 de manière à s’étendre dans la continuité du fuselage 10 afin de capter le flux d’air de la couche limite. De manière préférée, le carter périphérique intérieur 41 est intégré à la pointe arrière 1 1 de l’aéronef 1.
Comme illustré à la figure 5, la veine d’air V est périphérique et comporte une partie inférieure V1 , une partie supérieure V2 et deux parties latérales V3. La veine d’air V possède une dimension radiale définie dans le plan transversal, c’est-à-dire, une épaisseur. Contrairement à l’art antérieur, cette dimension radiale n’est pas constante à la périphérie de manière à tenir compte de la hauteur de garde H. En référence à la figure 5, la partie inférieure V1 de la veine d’air V s’étend sur une plage angulaire Q1 comprise entre 120° et 140°, la partie supérieure V2 de la veine d’air V s’étend sur une plage angulaire Q2 comprise entre 120° et 140° et chaque partie latérale V3 de la veine d’air V s’étend sur une plage angulaire Q3 comprise entre 40° et 60°. La partie inférieure V1 , la partie supérieure V2 et chaque partie latérale V3 de la veine d’air V possèdent respectivement des épaisseurs radiales R1 , R2, R3. Dans cet exemple, les épaisseurs radiales R2, R3 sont supérieures à l’épaisseur radiale R1 de la partie inférieure V1 de la veine d’air V afin de réduire la dimension verticale du système propulsif arrière 4. De manière préférée, l’épaisseur radiale minimale R1 est inférieure d’au moins 15% à l’épaisseur radiale maximale R2. Autrement dit, comme illustré à la figure 5, le carter périphérique extérieur 42 possède une portion inférieure sensiblement aplatie afin de tenir compte de la hauteur de garde H.
Dans cet exemple, la partie supérieure V2 et chaque partie latérale V3 de la veine d’air V possèdent des épaisseurs radiales R2, R3. Autrement dit, dans cette forme de réalisation, il pourrait être considéré que chaque partie latérale V3 est intégrée à une partie supérieure globale V2 dont la plage angulaire est comprise entre 120° et 140°.
Selon l’invention, le système propulsif arrière 4 comporte une pluralité de soufflantes mobiles carénées 51 , 52, 53 montées dans la veine d’air V. Une soufflante mobile carénée comporte de manière connue une roue comportant des aubes qui est montée mobile en rotation autour d’un axe parallèle à l’axe X et logée dans un carter, de préférence, cylindrique. Une telle soufflante mobile carénée permet de guider un flux d’air et de l’accélérer. De manière préférée, les carters des soufflantes mobiles carénées 51 , 52, 53 sont reliés ensemble. Le carter est fixe.
De manière préférée, le système propulsif arrière 4 possède une symétrie d’axe vertical de manière à fournir une poussée équilibrée et symétrique. Dans cette première forme de réalisation, en référence à la figure 5, la partie inférieure V1 comporte deux soufflantes mobiles carénées 51 ayant un diamètre D1 , la partie supérieure V2 comporte trois soufflantes mobiles carénées 52 ayant un diamètre D2 et chaque partie latérale V3 comporte une soufflante mobile carénée 53 ayant un diamètre D3. Les soufflantes mobiles carénées 51 , 52, 53 sont adjacentes de manière à maximiser l’accélération du flux d’air de la couche limite.
En référence à la figure 5, les soufflantes mobiles carénées 52 de la partie supérieure V2 de la veine d’air V possèdent un diamètre D2 supérieur au diamètre D1 des soufflantes mobiles carénées 51 de la partie inférieure V1 de la veine d’air V. Autrement dit, le diamètre D1 , D2 des soufflantes mobiles carénées 51 , 52 est adapté à l’épaisseur radiale de la partie de la veine d’air V dans laquelle les soufflantes mobiles carénées 51 , 52 sont logées. Autrement dit, le flux d’air de la couche limite est utilisé de manière optimale pour améliorer la poussée tout en tenant compte de la hauteur de garde H. Dans cet exemple, la partie supérieure V2 et chaque partie latérale V3 de la veine d’air V possèdent des soufflantes mobiles carénées 52, 53 ayant un même diamètre D2, D3 étant donné que les épaisseurs radiales R2, R3 sont identiques.
De manière préférée, chaque soufflante mobile carénée 51 , 52, 53 occupe toute la dimension radiale de la partie de la veine d’air V dans laquelle elle est montée de manière à maximiser la poussée. Autrement dit, les diamètres D1 , D2, D3 sont sensiblement égaux aux épaisseurs radiales R1 , R2, R3 respectivement comme illustré à la figure 5.
De manière préférée, toujours en référence à la figure 5, la partie inférieure V1 de la veine d’air V comporte un éjecteur d’air inférieur 61 dépourvu de soufflante mobile. Dans cet exemple, l’éjecteur d’air inférieur 61 se présente sous la forme d’une portion de la partie inférieure V1 de la veine d’air V qui est vide afin de conduire un flux d’air sans l’accélérer. Un tel éjecteur d’air est connu de l’homme du métier sous la désignation de « trompe à jet ».
De manière avantageuse, l’éjecteur d’air inférieur 61 est placé dans la portion de la partie inférieure V1 de la veine d’air V qui est la plus étroite, c’est-à-dire, centrée sur l’axe vertical comme illustré à la figure 5. Dans cet exemple, l’éjecteur d’air inférieur 61 s’étend sur une plage angulaire b1 comprise entre 60° et 120° comme illustré à la figure 7. Autrement dit, les soufflantes mobiles carénées 51 ne sont pas adjacentes dans la partie inférieure V1 de la veine d’air V mais écartées angulairement. De manière préférée, l’éjecteur d’air inférieur 61 s’étend sur toute l’épaisseur radiale R1 de la partie inférieure V1 de la veine d’air V afin de maximiser la circulation d’air de la couche limite.
Un tel éjecteur d’air inférieur 61 est avantageux étant donné qu’il possède une masse limitée tout en permettant une circulation périphérique du flux d’air de la couche limite dans la veine d’air V. La poussée est équilibrée.
De manière avantageuse, la puissance propulsive de chaque soufflante mobile carénée 51 , 52, 53 peut être adaptée afin d’accélérer plus ou moins la couche limite ingérée. La puissance propulsive peut être adaptée de différentes manières, par exemple, en adaptant la vitesse de rotation de la soufflante, en modifiant l’inclinaison des aubes de la soufflante, etc. Dans cette forme de réalisation, les soufflantes mobiles carénées 51 possèdent une puissance propulsive supérieure à la puissance propulsive des soufflantes mobiles carénées 52, 53 de manière à permettre de compenser l’absence d’accélération par l’éjecteur d’air inférieur 61. En référence à la figure 6, il est représenté une vue en coupe W-W du système propulsif arrière 4 de la figure 5. Lorsque la couche limite est ingérée par le système propulsif arrière 2, les soufflantes mobiles carénées 52, 53 de la partie supérieure V2 et des parties latérales V3 de la veine d’air V sont entraînées en rotation pour fournir une poussée de référence (symbolisée par le symbole « + » sur la figure 6). Les soufflantes mobiles carénées 51 de la partie inférieure V1 de la veine d’air V sont entraînées en rotation pour fournir une poussée (symbolisée par le symbole « ++ » sur la figure 6) qui est supérieure à la poussée de référence. Une telle sur-poussée est avantageuse car elle permet d’accélérer le flux d’air ayant traversé l’éjecteur d’air inférieur 61 sans fournir de poussée (symbolisée par le symbole « - » sur la figure 6). Ainsi, comme illustré à la figure 6, en arrière du système propulsif arrière 4, la poussée périphérique est sensiblement homogène alors que des soufflantes mobiles carénées ne sont pas présentes dans toute la périphérie de la veine d’air V.
Une deuxième forme de réalisation d’un système propulsif arrière 4 est représentée de manière schématique à la figure 7. Par souci de clarté et de concision, la description de la première forme de réalisation de la figure 5 ne sera pas reprise. Les éléments de fonction identique ou analogue possèdent les mêmes références numériques. Seules les différences structurelles et fonctionnelles de la deuxième forme de réalisation de la figure 7 vont être présentées de manière détaillée.
Dans cette deuxième forme de réalisation, en référence à la figure 7, la partie supérieure V2 de la veine d’air V comporte un éjecteur d’air supérieur 62 dépourvu de soufflante mobile. Dans cet exemple, l’éjecteur d’air supérieur 62 se présente sous la forme d’une portion de la veine d’air qui est vide afin de conduire un flux d’air sans l’accélérer. De manière avantageuse, l’éjecteur d’air supérieur 62 est placé dans la portion de la partie supérieure V2 de la veine d’air V qui est centrée sur l’axe vertical comme illustré à la figure 7.
Un tel éjecteur d’air supérieur 62 est particulièrement avantageux lorsque l’aéronef 1 comprend une dérive supérieure 12 s’étendant en saillie verticale depuis une extrémité supérieure du fuselage 10 comme illustré à la figure 4. En effet, l’éjecteur d’air supérieur 62 est aligné avec la dérive supérieure 12 selon l’axe X et est positionné en arrière de cette dernière. Cela est particulièrement avantageux étant donné que la couche limite n’est pas d’épaisseur constante au centre de la partie supérieure V2 de la veine d’air V, ce qui dégrade l’efficacité propulsive d’une soufflante mobile carénée 52 placée à cet endroit.
En référence à la figure 8, il est représenté de manière schématique les flux d’air vus par le système propulsif arrière 4 dans un plan transversal à l’axe X. Une couche limite F1 s’étend à la périphérie de la pointe arrière 1 1. La couche limite F1 est entourée par un flux d’air libre F2 ayant une vitesse supérieure. Dans une zone de déformation centrale supérieure Z, la couche limite F1 est étirée verticalement vers le haut du fait de la présence de la dérive supérieure 12. Comme indiqué précédemment, une accélération de la couche limite F1 dans la zone de déformation Z n’est pas efficace. Aussi, il est avantageux d’utiliser un éjecteur d’air supérieur 62 de conception simple et peu onéreuse en lieu et place d’une ou plusieurs soufflantes carénées 52 dont le rendement serait faible.
Dans cet exemple, l’éjecteur d’air supérieur 62 s’étend sur une plage angulaire b2 comprise entre 30° et 60° comme illustré à la figure 7. Autrement dit, les soufflantes mobiles carénées 52 ne sont pas adjacentes dans la partie supérieure V2 de la veine d’air V mais écartées angulairement. De manière préférée, l’éjecteur d’air supérieur 62 s’étend sur toute l’épaisseur radiale R2 de la partie supérieure V2 de la veine d’air V afin de maximiser la circulation d’air de la couche limite.
De manière analogue à précédemment, la puissance propulsive des soufflantes mobiles carénées 52 de la partie supérieure V2 est augmentée par comparaison aux soufflantes mobiles carénées 53 des parties latérales V3 de manière à compenser le défaut d’accélération par l’éjecteur d’air supérieur 62.
Grâce à l’invention, le système propulsif arrière 4 permet de respecter la hauteur de garde H tout en fournissant une puissance propulsive efficace. La couche limite F1 est ingérée de manière optimale en fonction de son épaisseur à chaque position angulaire. Les soufflantes mobiles sont positionnées de manière ingénieuse pour fournir une poussée efficace sans pénaliser la masse du système propulsif arrière 4.

Claims

REVENDICATIONS
1. Système propulsif arrière (4) pour aéronef (1 ) configuré pour ingérer une couche limite (F1 ) dudit aéronef (1 ), le système propulsif arrière (4) s’étendant longitudinalement selon un axe X, le système propulsif arrière (4) comportant un carter périphérique intérieur (41 ), un carter périphérique extérieur (42), une veine d’air périphérique (V) délimitée entre le carter périphérique intérieur (41 ) et le carter périphérique extérieur (42) et une pluralité de soufflantes mobiles carénées (51 , 52, 53) montées dans la veine d’air (V), la veine d’air périphérique (V) comporte une partie inférieure (V1 ), une partie supérieure (V2) et deux parties latérales (V3), système propulsif arrière (4) caractérisé par le fait que la partie inférieure (V1 ) ayant une dimension radiale R1 et la partie supérieure (V2) ayant une dimension radiale R2 supérieure à la dimension radiale R1 , la partie inférieure (V1 ) comporte au moins une soufflante mobile carénée (51 ) ayant un diamètre D1 et la partie supérieure (V2) comporte au moins une soufflante mobile carénée (52) ayant un diamètre D2 supérieur au diamètre D1.
2. Système propulsif arrière (4) selon la revendication 1 , dans lequel la partie inférieure (V1 ) de la veine d’air (V) comporte au moins un éjecteur d’air inférieur (61 ) dépourvu de soufflante mobile.
3. Système propulsif arrière (4) selon la revendication 2, dans lequel l’éjecteur d’air inférieur
(61 ) s’étend sur une plage angulaire b1 comprise entre 60° et 120°.
4. Système propulsif arrière (4) selon l’une des revendications 2 à 3, dans lequel, la veine d’air (V) comporte au moins une partie latérale (V3) ayant une dimension radiale R3 supérieure à la dimension radiale R1 , la partie latérale (V3) comportant au moins une soufflante mobile carénée (53) ayant un diamètre D3 supérieur au diamètre D1.
5. Système propulsif arrière (4) selon l’une des revendications 1 à 4, dans lequel la partie supérieure (V2) de la veine d’air (V) comporte au moins un éjecteur d’air supérieur (62) dépourvu de soufflante mobile.
6. Système propulsif arrière (4) selon la revendication 5, dans lequel l’éjecteur d’air supérieur
(62) s’étend sur une plage angulaire (b2) comprise entre 30° et 60°.
7. Système propulsif arrière (4) selon l’une des revendications 1 à 6, dans lequel la partie inférieure (V1 ) de la veine d’air (V) comporte deux soufflantes mobiles carénées (51 ).
8. Système propulsif arrière (4) selon l’une des revendications 1 à 7, dans lequel la partie supérieure (V2) de la veine d’air (V) comporte deux ou trois soufflantes mobiles carénées (52).
9. Aéronef (1 ) s’étendant longitudinalement selon un axe X et comportant une pointe arrière (1 1 ) sur laquelle circule une couche limite (F1 ) et au moins un système propulsif arrière (4), selon l’une des revendications 1 à 8, monté à la périphérie de la pointe arrière (1 1 ) et configuré pour ingérer la couche limite (F1 ) dudit aéronef (1 ).
10. Aéronef (1 ) selon la revendication précédente comprenant au moins une dérive supérieure (12) positionnée en avant du système propulsif arrière (4), le système propulsif arrière (4) comporte au moins un éjecteur d’air supérieur (62), dépourvu de soufflante mobile, qui est aligné avec la dérive supérieure (12) selon l’axe X.
PCT/EP2019/065269 2018-06-21 2019-06-12 Système propulsif arrière pour aéronef WO2019243117A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1855501 2018-06-21
FR1855501A FR3082828B1 (fr) 2018-06-21 2018-06-21 Systeme propulsif arriere pour aeronef

Publications (1)

Publication Number Publication Date
WO2019243117A1 true WO2019243117A1 (fr) 2019-12-26

Family

ID=63145089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/065269 WO2019243117A1 (fr) 2018-06-21 2019-06-12 Système propulsif arrière pour aéronef

Country Status (2)

Country Link
FR (1) FR3082828B1 (fr)
WO (1) WO2019243117A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4086167A1 (fr) * 2021-05-04 2022-11-09 General Electric Company Aéronef avec des ventilateurs distribués pour une ingestion de la couche limite

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1331386A2 (fr) 2002-01-16 2003-07-30 National Aerospace Laboratory of Japan Multi-turboréacteur avec moteur noyau séparé
US20090200416A1 (en) * 2008-02-08 2009-08-13 Yee-Chun Lee Boundary layer propulsion airship with related system and method
US20090229243A1 (en) * 2008-02-28 2009-09-17 Volker Guemmer Aircraft propulsion unit in multi-fan design
DE102008024463A1 (de) * 2008-05-21 2009-12-03 Bauhaus Luftfahrt E.V. Flugzeugantriebssystem
DE102011008768A1 (de) * 2011-01-18 2012-07-19 Christian Seefluth Nebenstrom-Strahltriebwerk im Gegenstrommodus
EP2905429A1 (fr) * 2014-02-07 2015-08-12 United Technologies Corporation Moteur à turbine à gaz avec soufflantes réparties
US20160076444A1 (en) * 2014-09-17 2016-03-17 Airbus Operations S.L. Multi-fan engine with an enhanced power transmission
GB2542184A (en) * 2015-09-11 2017-03-15 Rolls Royce Plc Aircraft comprising a boundary layer ingesting propulsor
FR3054526A1 (fr) * 2016-07-26 2018-02-02 Safran Aircraft Engines Aeronef comportant un turboreacteur integre au fuselage arriere comportant un carenage permettant l'ejection de pales
US20180057182A1 (en) * 2015-09-21 2018-03-01 General Electric Company Aft engine nacelle shape for an aircraft

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1331386A2 (fr) 2002-01-16 2003-07-30 National Aerospace Laboratory of Japan Multi-turboréacteur avec moteur noyau séparé
US20090200416A1 (en) * 2008-02-08 2009-08-13 Yee-Chun Lee Boundary layer propulsion airship with related system and method
US20090229243A1 (en) * 2008-02-28 2009-09-17 Volker Guemmer Aircraft propulsion unit in multi-fan design
DE102008024463A1 (de) * 2008-05-21 2009-12-03 Bauhaus Luftfahrt E.V. Flugzeugantriebssystem
DE102011008768A1 (de) * 2011-01-18 2012-07-19 Christian Seefluth Nebenstrom-Strahltriebwerk im Gegenstrommodus
EP2905429A1 (fr) * 2014-02-07 2015-08-12 United Technologies Corporation Moteur à turbine à gaz avec soufflantes réparties
US20160076444A1 (en) * 2014-09-17 2016-03-17 Airbus Operations S.L. Multi-fan engine with an enhanced power transmission
GB2542184A (en) * 2015-09-11 2017-03-15 Rolls Royce Plc Aircraft comprising a boundary layer ingesting propulsor
US20180057182A1 (en) * 2015-09-21 2018-03-01 General Electric Company Aft engine nacelle shape for an aircraft
FR3054526A1 (fr) * 2016-07-26 2018-02-02 Safran Aircraft Engines Aeronef comportant un turboreacteur integre au fuselage arriere comportant un carenage permettant l'ejection de pales

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4086167A1 (fr) * 2021-05-04 2022-11-09 General Electric Company Aéronef avec des ventilateurs distribués pour une ingestion de la couche limite

Also Published As

Publication number Publication date
FR3082828A1 (fr) 2019-12-27
FR3082828B1 (fr) 2021-09-10

Similar Documents

Publication Publication Date Title
CA2743009C (fr) Entree d'air d'un moteur d'avion a helices propulsives non carenees
FR3052743A1 (fr) Ensemble pour aeronef comprenant des moteurs a propulsion par ingestion de la couche limite
FR3050721A1 (fr) Ensemble moteur pour aeronef comprenant un bord d'attaque de mat integre a une rangee annulaire d'aubes directrices de sortie non carenees
WO2012107650A1 (fr) Avion à système propulsif arrière
EP2456665B1 (fr) Dispositif de retenue d'aube pour helice de turbomachine.
CA2610278A1 (fr) Aube en fleche de turbomachine
FR2888211A1 (fr) Dispositif et procede de pilotage en lacets pour tuyere a section de sortie rectangulaire
EP3325792B1 (fr) Ensemble propulsif pour aéronef comportant un inverseur de poussée
CA2716244A1 (fr) Aube avec plateforme 3d comportant un bulbe interaubes
EP3325771B1 (fr) Aeronef comportant deux soufflantes contrarotatives a l'arriere d'un fuselage avec calage des aubes de la soufflante aval
FR2929334A1 (fr) Dispositif de reduction du bruit genere par reacteur d'aeronef a conduits de fluide coudes
FR2680830A1 (fr) Procede pour ameliorer les caracteristiques de performances d'une nacelle de moteur a turbine d'avion et nacelle ainsi qu'entree de nacelle obtenues a l'aide de ce procede.
WO2019243119A1 (fr) Système propulsif arrière pour aéronef
CA2608944A1 (fr) Ensemble moteur pour aeronef
FR3021706A1 (fr) Turbopropulseur d'aeronef comportant deux helices coaxiales.
WO2019243117A1 (fr) Système propulsif arrière pour aéronef
EP3956224A1 (fr) Turboreacteur comprenant une nacelle avec une entrée d'air pour favoriser une phase d'inversion de poussee
EP3365226B1 (fr) Aeronef a voilure fixe et a stabilite statique accrue
FR2951502A1 (fr) Architecture de turbomachine ameliorant l'admission d'air
FR3079211A1 (fr) Ensemble propulsif d'aeronef comportant deux moteurs adjacents, dont les tuyeres de sorties presentent une portion droite a proximite d'un plan median de l'ensemble propulsif
EP4045397B1 (fr) Ensemble pour turbomachine
FR2680831A1 (fr) Procede pour etablir le profil de l'entree de la nacelle d'un moteur a turbine a gaz d'avion et entree de nacelle ainsi que nacelle obtenues a l'aide de ce procede.
EP3540205A1 (fr) Groupe propulseur d'aéronef dont la nacelle est liée par un pivot à l'arbre d'entraînement de sa soufflante
FR2971553A1 (fr) Procede pour reduire la signature acoustique d'un reacteur de propulsion et reacteur a signature acoustique reduite
FR2994460A1 (fr) Cone d'ejection pour turbomachine comportant des moyens d'aspiration de couche limite d'un flux d'air

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19729042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19729042

Country of ref document: EP

Kind code of ref document: A1