WO2019242762A1 - 随机接入方法、终端、基站、存储介质、电子装置 - Google Patents

随机接入方法、终端、基站、存储介质、电子装置 Download PDF

Info

Publication number
WO2019242762A1
WO2019242762A1 PCT/CN2019/092375 CN2019092375W WO2019242762A1 WO 2019242762 A1 WO2019242762 A1 WO 2019242762A1 CN 2019092375 W CN2019092375 W CN 2019092375W WO 2019242762 A1 WO2019242762 A1 WO 2019242762A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
bwp
message
carrier
lbt
Prior art date
Application number
PCT/CN2019/092375
Other languages
English (en)
French (fr)
Inventor
张丽
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/254,569 priority Critical patent/US11477823B2/en
Priority to EP19823537.6A priority patent/EP3813456A4/en
Publication of WO2019242762A1 publication Critical patent/WO2019242762A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present application relates to the field of communications, and in particular, to a random access method, terminal, base station, storage medium, and electronic device.
  • FIG. 1 is a schematic diagram of a random access process in the related technology of the present application. 1234 correspond to msg1 to msg4, respectively. Because LBT is performed before each message is sent, the entire RACH process needs to perform LBT 4 times, which increases the random access delay.
  • LBT Listen Before Talk
  • Embodiments of the present invention provide a random access method, a terminal, a base station, a storage medium, and an electronic device.
  • a random access method which includes: in a random access process, selecting a first resource among a plurality of wireless resources, and sending the first message to a base station using the first resource,
  • the wireless resource includes at least one of the following: a bandwidth part BWP, a carrier resource; and receiving a second message sent by the base station, wherein the second message carries indication information of the second resource.
  • a random access method including: during a terminal UE random access process, receiving a first message sent by the UE; generating a second message; selecting among a plurality of wireless resources A third resource that uses the third resource to send the second message to the UE, wherein the wireless resource includes at least one of the following: a bandwidth part BWP, a carrier resource, and the second message carries a second resource Instructions.
  • a terminal including: a sending module, configured to select a first resource among a plurality of wireless resources during a random access process, and use the first resource to send a first resource to a base station.
  • a message wherein the wireless resource includes at least one of: a bandwidth part BWP, a carrier resource; and a receiving module for receiving a second message sent by the base station, wherein the second message carries an indication of the second resource information.
  • a base station including: a receiving module configured to receive a first message sent by the UE during a random access process of a terminal UE; and a generating module configured to generate a second message
  • a sending module configured to select a third resource from among multiple wireless resources, and use the third resource to send the second message to the UE, wherein the wireless resource includes at least one of the following: a bandwidth portion BWP, Carrier resource, the second message carries indication information of the second resource.
  • a storage medium is further provided.
  • the storage medium stores a computer program, and the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • an electronic device which includes a memory and a processor.
  • the memory stores a computer program
  • the processor is configured to run the computer program to execute any one of the foregoing. Steps in a method embodiment.
  • FIG. 1 is a schematic diagram of a random access process in the related technology of the present application
  • FIG. 3 is a flowchart of another random access method according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a terminal according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a base station according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a MAC RAR format in the related art of the present application.
  • FIG. 7 is a schematic diagram of a MAC / ARP format of one carrier / BWP in the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the MAC RAR format of two carriers / BWP in the embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a MAC RAR format of three carriers / BWP in the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the MAC RAR format of 4 carriers / BWP in the embodiment of the present invention.
  • the network architecture running in the embodiment of the present application includes a terminal and a base station, where the terminal interacts with the base station.
  • FIG. 2 is a flowchart of a random access method according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 In the random access process, a first resource is selected from a plurality of wireless resources and a first message is sent to the base station using the first resource, wherein the wireless resource includes at least one of the following: a bandwidth part BWP, and a carrier resource .
  • Step S204 Receive a second message sent by the base station, where the second message carries indication information of the second resource.
  • the execution subject of the above steps may be a terminal, such as a mobile phone, but is not limited thereto.
  • selecting the first resource among the multiple wireless resources includes at least one of the following: selecting the first BWP among multiple bandwidth parts (BWP); including the following two cases: Case 1: Selecting a BWP , Execute LBT, send a message, case 2: select multiple BWPs, perform LBT on multiple BWPs, and LBT successfully sends data; select the first carrier among multiple carrier resources.
  • BWP bandwidth parts
  • selecting the first BWP among the multiple bandwidth part BWPs includes: selecting the first BWP among the multiple bandwidth part BWPs by at least one of the following: BWP selection threshold, BWP load, listen first and then speak LBT count value, where The LBT count value is used to describe an LBT success rate or an LBT failure rate.
  • selecting the first carrier among the multiple carrier resources includes: selecting the first carrier among the multiple carrier resources by at least one of the following: a carrier selection threshold, a carrier load, an LBT success rate, and an LBT failure rate.
  • using the first resource to send the first message to the base station includes sending the preamble to the base station using the first resource.
  • the second message sent by the receiving base station includes one of the following: receiving a media access control random access response MAC RAR sent by the base station; receiving a timing advance TA sent by the base station, a temporary cell wireless network temporary identifier Temporary C-RNTI And competition resolutions.
  • the second message carries a resource location of the second resource and a resource identifier of the second resource.
  • the method further includes: sending a third message to the base station using the second resource.
  • the method further includes: sending Msg3 according to the LBT result, and once the LBT is successful, repeatedly sending Msg3 multiple times; wherein the maximum number of repetitions of Msg3 is carried in the second message and can be included in RMSI Random Mobile Identity) or MAC RAR or Msg3 retransmission uplink scheduling grant (UL grant).
  • the maximum number of retransmissions is configured through a system message, or carried through a retransmission UL grant of Msg3 or a UL grant in MAC RAR.
  • FIG. 3 is a flowchart of another random access method according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • Step S302 During a random access process of the terminal UE, a first message sent by the UE is received.
  • step S304 a second message is generated.
  • a third resource is selected from the plurality of wireless resources and a second message is sent to the UE using the third resource, wherein the wireless resource includes at least one of the following: a bandwidth part BWP, a carrier resource, and the second message carries Indication information of the second resource.
  • the second resource may be used to send a third message (such as msg3).
  • a third message such as msg3
  • selecting the second resource among multiple wireless resources includes at least one of the following: selecting a second BWP among multiple bandwidth partial BWPs; and selecting a second carrier among multiple carrier resources.
  • selecting the second BWP among the multiple bandwidth part BWPs includes: selecting the second BWP among the multiple bandwidth part BWPs by at least one of the following: BWP selection threshold, BWP load, and listening to the LBT count value first.
  • selecting the second carrier among the multiple carrier resources includes: selecting the second carrier among the multiple carrier resources by at least one of the following: carrier selection threshold, carrier load, LBT success rate, and LBT failure rate.
  • the method before generating the second message, further includes one of the following: selecting the second resource among multiple wireless resources, where the second message carries the indication information of the second resource; at this time, the base station selects and instructs To the UE; indicate to the UE that the second resource is the resource used to send the first message; at this time, the base station directly indicates that if the resource used when sending Msg1 is directly inherited, the same resource may be the same UL BWP, but for Msg1 and Msg3 may have different resource locations and resource numbers; the second resource is used by the UE to send a third message.
  • the method further includes: configuring the maximum number of repetitions of Msg3 by one of the following: a system message, MAC RAR, and a retransmission authorization of Msg3, wherein the maximum number of repetitions is used to instruct the UE to perform Msg3 The maximum number of repetitions.
  • a device for random access such as a terminal and a base station.
  • This device is used to implement the foregoing embodiments and preferred implementation manners.
  • the term "module” may implement a combination of software and / or hardware for a predetermined function.
  • FIG. 4 is a structural block diagram of a terminal according to an embodiment of the present invention.
  • the apparatus includes: a sending module 40, configured to select a first resource among a plurality of wireless resources during a random access process, and use a first resource.
  • a resource sends a first message to a base station, wherein the wireless resource includes at least one of: a bandwidth part BWP, a carrier resource; and a receiving module 42 for receiving a second message sent by the base station, where the second message carries the second message Indication of the resource.
  • the second resource is used to send a third message.
  • FIG. 5 is a structural block diagram of a base station according to an embodiment of the present invention.
  • the apparatus includes: a receiving module 50 configured to receive a first message sent by the UE during a random access process of the terminal UE; and a generating module 52 Is configured to generate a second message; and a sending module 54 is configured to select a third resource among multiple wireless resources and send the second message to the UE using the third resource, wherein the wireless resource includes at least one of the following: a bandwidth portion BWP, carrier resource, and the second message carries indication information of the second resource.
  • a receiving module 50 configured to receive a first message sent by the UE during a random access process of the terminal UE
  • a generating module 52 Is configured to generate a second message
  • a sending module 54 is configured to select a third resource among multiple wireless resources and send the second message to the UE using the third resource, wherein the wireless resource includes at least one of the following: a bandwidth portion BWP, carrier resource, and the second message carries
  • the second resource is used by the UE to send a third message.
  • each of the above modules can be implemented by software or hardware.
  • it can be implemented by the following methods, but is not limited to the above: the above modules are all located in the same processor; The forms are located in different processors.
  • This embodiment provides a method and device for signal transmission, which can reduce random access delay, access the network faster or synchronize, and enhance the steps in the random access process, such as increasing the number of repetitions or transmission opportunities. Wait.
  • multiple transmission opportunities can be provided, from time domain, frequency domain, etc.
  • the frequency domain can use multiple carriers or multiple BWPs, that is, multiple preambles are sent on different carriers or BWPs.
  • the base station is configured with multiple carriers or multiple BWPs, there is a problem of selecting carriers or BWPs.
  • multi-carrier you can choose by carrier selection threshold, carrier load or LBT failure success rate.
  • Multiple BWPs can also be selected by setting BWP selection thresholds, BWP load, or LBT success and failure statistics.
  • Msg2, Msg3, and Msg4 a similar scheme can also be used to select the carrier and BWP.
  • the base station For multiple transmission opportunity attempts of Msg3, the base station needs to provide resources of multiple carriers or multiple BWPs in order to make a selection. Then if the base station indicates the resources of multiple carriers or multiple BWPs through the MAC RAR, the MAC RAR format defined by the current NR needs to be modified. At present, it can be considered to support a MAC or RAR format indicating up to 4 carriers or BWP. Depending on the number of indications, the format of the corresponding MAC RAR is also different.
  • LBT may fail. If LBT fails, the bottom layer reports MAC and LBT failure. After the MAC is received, if the RAR window has not been opened, then the RACH process can be initiated again at this time, and the subsequent processes of the RAR window need not be opened again.
  • the MAC When the preamble transmission fails, the MAC receives LBT failure, and PREMBLE_TRANSMISSION_COUNTER and PREMBLE_POWER_RAMPING_COUNTER are not increased. Add another counter, LBT_Failure_Counter. For the case of LBT failure, the counter LBT_Failure_Counter needs to be incremented by one. At the same time, the base station needs to configure the LBT failure threshold for the UE. When either the PREMBLE_TRANSMISSION_COUNTER or LBT_Failure_Counter reaches the threshold, the MAC needs to report to the high-level random access problem so that the high-level can perform the next operation.
  • the base station can configure Msg3 transmission opportunities or repetition times through system messages or MAC RAR or Msg3 retransmission authorization.
  • the MAC instructs the underlying transmission. If LBT fails, the MAC continues to instruct the underlying until the maximum transmission opportunity or repetition times is reached.
  • Embodiment 1 multiple BWP selection in one cell, select one BWP, 4-step RACH
  • the BWP selection is performed before each message is sent.
  • the main scenario of this implementation mode is the selection of multiple BWPs in a cell, taking the 4-step RACH process as an example.
  • Step 1 The UE selects a BWP according to a threshold, a channel occupancy rate, or an LBT failure success rate, for example, selects a channel occupancy rate, and selects a lightly loaded BWP.
  • the preamble and Physical Random Access Channel (PRACH) resources are selected according to the RACH common configuration information of the BWP.
  • PRACH Physical Random Access Channel
  • the reference signal received power (Reference Signaling Power, RSRP) exceeds a certain threshold, and may be selected as a candidate BWP. If there are multiple BWPs that meet the conditions, you can consider other factors or choose one randomly.
  • the UE side performs energy or signal detection, and if a certain threshold is exceeded, the channel is considered to be occupied. Count the channel occupancy over a period of time. If the channel occupancy reaches a certain threshold, the load is considered heavy. If there are multiple BWPs that meet the conditions, you can consider other factors or choose one randomly.
  • the failure success rate of LBT can count the results over a period of time. For example, in 200ms, the total number of LBTs, the number of LBT successes, and the number of LBT failures, and then the LBT success failure rate is calculated.
  • the base station can be configured with a selection threshold. If the statistical success rate of LBT is greater than this threshold, it can be selected. If there are multiple BWPs larger than the threshold, other factors can be considered or one can be selected randomly.
  • Step 2 After receiving the Msg1 from the BWP, the base station allocates the resources used by Msg3 and generates a MAC RAR message. Then, the base station chooses to send a downlink BWP of the MAC RAR.
  • the downlink BWP can be selected by threshold, channel occupancy rate, or LBT failure success rate.
  • the base station performs energy or signal detection, and if a certain threshold is exceeded, the channel is considered to be occupied. Count the channel occupancy over a period of time. If the channel occupancy reaches a certain threshold, the load is considered heavy.
  • the base station side counts LBT results over a period of time, for example, within 200 ms, the number of LBT executions, the number of LBT successes and failures, and calculates the LBT failure success rate.
  • the LBT success rate reaches a certain threshold, it can be selected as the downlink BWP for sending MAC RAR. If multiple BWPs are selected, other factors can be considered or one is selected at random.
  • the base station allocates the resources used by Msg3.
  • the resources used by Msg3 can be allocated on the BWP used by Msg1, or a BWP can be selected based on the uplink measurement result, and the resources used by Msg3 can be allocated on the selected BWP.
  • the resources used by Msg3 are allocated on multiple BWPs. After the selection is completed, it is placed in the MAC RAR message.
  • multiple opportunities can be given, that is, if the LBT fails, the next LBT is performed until the LBT succeeds or a certain chance of trying is reached, and the MAC RAR is sent only once.
  • the UE receives the MAC RAR, analyzes it, and performs preamble matching. If the Msg2 reception is successful, the UE generates a corresponding Msg3. The UE then selects the BWP used by Msg3 according to the instructions in the MAC RAR. If there is only one BWP, the UE may send Msg3 at the BWP; if multiple BWPs are indicated, the UE may select the BWP according to the channel occupancy rate or the LBT failure success rate, and then send Msg3 on the selected BWP.
  • the base station may configure multiple transmission attempts or multiple repetitions. If the base station is configured with multiple attempts, the UE needs to send according to the LBT result, and Msg3 is sent only once. If the base station configures multiple repetition times, the UE sends according to the LBT result. The number of times that Msg3 is sent is related to the execution result of LBT. Msg3 can be repeatedly sent multiple times.
  • Step 4 The base station receives Msg3 on the indicated one or more BWPs. After receiving Msg3 successfully, it generates Msg4. Then select the BWP for downlink transmission based on the channel occupancy rate or LBT failure success rate. After the BWP selection is completed, the base station sends Msg4 on the selected BWP.
  • Step 5 After the UE receives Msg4, if the competition decision is successful, it needs to select a suitable BWP to send the Msg4 feedback.
  • the BWP can be selected based on the measurement result, the channel occupancy rate, or the LBT failure success rate.
  • Embodiment 2 selection of multiple BWPs in one cell, selecting one BWP, 2-step RACH
  • the BWP selection is performed before each message is sent.
  • This embodiment takes a 2-step RACH process as an example.
  • Step 1 The UE selects a BWP according to a threshold, a channel occupancy rate, or the number of times that LBT fails successfully. For example, the UE selects a BWP based on a channel occupancy rate and selects a lightly loaded BWP. After selection, the preamble and PRACH resources are selected according to the RACH common configuration information of the BWP. After the selection is completed, an instruction is given to the bottom layer, and the bottom layer sends Msg1 (corresponding to the preamble and Msg3 in the 4-step RACH process) to the base station according to the MAC instruction.
  • Msg1 corresponding to the preamble and Msg3 in the 4-step RACH process
  • the RSRP of the downlink measurement result if it exceeds a certain threshold, it can be selected as a candidate BWP. If there are multiple BWPs that meet the conditions, you can consider other factors or choose one randomly.
  • the channel occupancy rate includes a situation in which the node and other nodes occupy the channel. For example, according to the received Signal Strength Indication (RSSI) measurement, compared with a threshold value, if a certain threshold is exceeded, the channel is considered to be occupied. Count the channel occupancy over a period of time. If the channel occupancy reaches a certain threshold, the load is considered heavy.
  • RSSI Signal Strength Indication
  • Step 2 After receiving the Msg1 from the BWP, the base station generates a corresponding Msg2, including TA, Temporary C-RNTI, and competition resolution (corresponding to Msg2 and Msg4 in the 4-step RACH process). Then the base station chooses to send the downlink BWP of Msg2, which can be selected by the channel occupancy rate or the number of successful LBT failures.
  • the base station performs energy or signal detection, and if a certain threshold is exceeded, the channel is considered to be occupied. Count the channel occupancy over a period of time. If the channel occupancy reaches a certain threshold, the load is considered heavy.
  • the base station side counts LBT results over a period of time, for example, within 200 ms, the number of LBT executions, the number of LBT successes and failures, and calculates the LBT failure success rate.
  • the LBT success rate reaches a certain threshold, it can be selected as the downlink BWP for sending MAC RAR. If multiple BWPs are selected, other factors can be considered or one is selected at random.
  • Step 3 After the UE receives Msg2, if the competition decision is successful, it needs to select a suitable uplink BWP to send the feedback of Msg2.
  • the carrier or BWP can be selected according to the threshold, the channel occupancy rate or the number of LBT failure successes.
  • Embodiment 3 multi-carrier and multi-BWP selection, each process involves the choice of carrier and BWP, but each message is sent only on the BWP of the selected carrier, 4-step RACH)
  • carrier selection may be performed before each message is sent in the random access process.
  • a 4-step RACH process is used as an example.
  • Step 1 The UE selects a carrier and a BWP according to a measurement result of each uplink carrier or statistics of a channel occupancy rate or an LBT failure success rate. That is, the carrier selection process involves the selection of BWP, which can be completed together. After the carrier and BWP selection on the corresponding carrier are completed, the UE selects preamble and PRACH resources according to the common RACH configuration of the BWP on the carrier. When the preamble transmission time arrives, the selected carrier, BWP and preamble are indicated to the bottom layer, and the bottom layer sends the preamble to the base station according to the MAC instruction.
  • Step 2 After receiving the preamble, the base station first selects the carrier and BWP used by Msg3, and allocates resources on the BWP of the selected carrier to generate a MAC RAR message. Then, the base station chooses to send the downlink carrier and BWP of Msg2. At this time, the base station may select based on the measurement result, the channel occupancy rate, or the LBT failure success rate.
  • Solution 1 The base station may allocate Msg3 resources on the BWP of the carrier received by the preamble.
  • the base station may select one or more carriers according to the measurement results of the uplink carrier and the BWP, each carrier selects only one BWP, and allocates the resources used by Msg3 on the BWP of the selected carrier;
  • the base station may select a carrier according to the measurement results of the uplink carrier and the BWP, may select multiple BWPs on the corresponding carrier, and allocate resources used by Msg3 on the corresponding multiple BWPs of the selected carrier;
  • the base station may select multiple carriers for the uplink carrier and the BWP, select multiple BWPs for each carrier, and allocate resources used by Msg3 on the multiple BWPs of the selected carrier.
  • Step 3 After the UE receives the MAC RAR, if the parsing is successful and the preamble matches, then the Msg2 is successfully received.
  • the UE sends Msg3 according to the resource indication of the MAC RAR. If the base station indicates a BWP of a carrier, the UE may send Msg3 on the corresponding resource. If the base station indicates multiple BWPs of one carrier or one or more BWPs of multiple carriers, the UE may perform carrier and BWP selection according to measurement results, channel occupancy rate, and LBT failure success rate. When the selection is completed, the UE sends Msg3 on the BWP of the corresponding carrier.
  • Step 4 After receiving the Msg3, the base station generates a corresponding Msg4. Before sending Msg4, the base station needs to select the downlink carrier and BWP, which can be selected based on the measurement result, channel occupancy rate, or LBT failure success rate. After the selection is completed, the base station sends Msg4 on the BWP of the selected carrier.
  • Step 5 After the UE receives Msg4, if the competition decision is successful, the uplink carrier and BWP need to be selected.
  • the carrier and BWP for sending Msg3 may be used, and the feedback of Msg4 may be sent according to the channel occupancy rate or LBT failure success rate.
  • Embodiment 4 (MAC RAR indicates resource locations used by Msg3 of multiple carriers or multiple BWPs)
  • Embodiment 1 when a base station selects multiple carriers or BWPs to allocate resources used by Msg3, it is necessary to indicate resources of multiple carriers or BWPs. In addition to indicating the resource location, it is also necessary to indicate the selected carrier or BWP.
  • FIG. 6 is a schematic diagram of the MAC RAR format in the related technology of the present application.
  • the bits occupied by UL grants are 25 bits. If up to 4 carriers or BWPs can be indicated, then 2 bits are required to indicate, that is, each carrier or BWP's UL grant needs 27 bits to indicate. Since the existing UL grant may be 1, 2, 3, or 4, the MAC RAR message is variable, and the MAC RAR format in these 4 cases needs to be designed separately.
  • FIG. 7 is a schematic diagram of the MAC RAR format of one carrier / BWP in the embodiment of the present invention.
  • the ID in FIG. 7 is the ID of the carrier / BWP to which the Msg3 resource is allocated.
  • FIG. 8 is a schematic diagram of the MAC RAR format of two carriers / BWP in the embodiment of the present invention.
  • TAC Time Advance Command
  • ID is the carrier / BWP ID assigned for Msg3 transmission.
  • FIG. 9 is a schematic diagram of the MAC RAR format of three carriers / BWP in the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the MAC RAR format of 4 carriers / BWP in the embodiment of the present invention.
  • the MAC RAR format designed above based on the selected carrier / BWP is just an example and is not limited to this format.
  • Embodiment 5 (LBT fails, the UE reports, the RAR window is not opened, and the next RACH process is initiated)
  • the UE-side MAC After selecting the PRACH resource and the preamble code, the UE-side MAC is sent to the bottom layer when the preamble transmission time is approaching. Since LBT needs to be performed, the MAC needs to allow a certain time for the bottom layer. When the LBT fails, the bottom layer needs to instruct the LBT failure to the MAC. After the MAC is received, the RAR window may not be opened. For the case where it is not opened, the MAC can initiate the next random access process. That is, after receiving the LBT failure, the MAC can consider that the random access has failed and execute the following process:
  • the MAC After receiving the LBT failure, the MAC considers that the random access has failed, and increases the number of preamble transmissions by one to determine whether the number of preamble transmissions has reached the maximum number of retransmissions. If the maximum number of retransmissions is reached, a random access problem is indicated to the upper layer; if the maximum number of retransmissions is not reached, a random backoff time is selected and the next random access process is performed.
  • the PREMBLE_POWER_RAMPING_COUNTER is not incremented when the random access procedure is initiated next time.
  • Embodiment 6 (preamble is not transmitted due to LBT failure, a counter is introduced)
  • the bottom layer needs to give the upper layer an LBT failure instruction.
  • the preamble power ramping does not increase, that is, PREMBLE_POWER_RAMPING_COUNTER does not increase.
  • the number of preamble transmissions ie PREAMBLE_TRANSMISSION_COUNTER, does not increase.
  • the LBT failure counter that is, when the bottom layer reports LBT failure once, the MAC counts once.
  • the LBT failure counter reaches a certain threshold or the PREMBLE_TRANSMISSION_COUNTER is greater than preambleTxMax, the MAC reports the high-level random access problem.
  • the threshold of LBT failure counter can be defined in RACH-ConfigCommon or RACH-ConfigGeneric. For example, it can be defined according to the following structure:
  • the LBTFailureMax defined here does not limit the value in the example.
  • Embodiment 7 Msg3 transmission or retransmission failure, because of LBT, report LBT failure power does not climb
  • the bottom layer can report the MAC LBT failure.
  • the MAC receives LBT failures and reaches the maximum number of retransmissions of Msg3, it indicates that the current cell is heavily loaded or the channel conditions are not good. At this time, the power is not climbing, and the number of preamble transmissions may be increased or not increased. If the LBT failure counter is defined, in this case, the LBT failure counter is incremented by one.
  • Embodiment 8 (Msg3 retransmission performs multiple repetitions)
  • repetition times K and repetition RV can be increased.
  • This retransmission times and repetition RV can be indicated in a system message or a retransmission authorization indication in Msg3.
  • the fields defined in the Msg3 retransmission Physical Downlink Control Channel (PDCCH) message can be as shown in Table 1:
  • Embodiment 9 (multiple opportunities and one transmission)
  • the base station may indicate the transmission opportunity in a system message or MAC RAR or Msg3 retransmission authorization.
  • the UE receives it, it performs LBT on the transmission opportunity indicated by the base station. If the LBT is successful, then Msg3 transmission will be performed. Here, it will be transmitted only once, and the authorized UE will not use it, so it can be released for other nodes to use. Here, the behavior of the UE needs to be constrained.
  • the underlying LBT is successful, it instructs LBT success to the MAC. After the MAC is received, the MAC no longer instructs the data to the underlying layer at the next moment or transmission opportunity, so that the underlying layer will not transmit. At this time, the MAC still needs to buffer the Msg3 data packet, so that in the case of failure, the next retransmission is performed.
  • an information element can be added to the RACH-ConfigCommon in the system information block 1 (System Information Blocks 1, SIB1), such as Msg3TransOpportunity.
  • SIB1 System Information Blocks 1, SIB1
  • MACRAR is used to indicate retransmission opportunities, it can be defined as shown in Table 2:
  • Embodiment 10 multiple BWP selection of a cell, selecting one or more to perform LBT, but the message is finally sent on one BWP, 4-step RACH)
  • the BWP selection is performed before each message is sent.
  • the main scenario of this implementation mode is the selection of multiple BWPs in a cell, taking the 4-step RACH process as an example.
  • Step 1 The UE selects a BWP according to a threshold, a channel occupancy rate, or an LBT failure success rate, for example, selects a channel occupancy rate, and selects a lightly loaded BWP. There may be one or more BWPs that meet the conditions, and the preamble and PRACH resources are selected according to the RACH common configuration information of the one or more BWPs that meet the conditions.
  • the UE indicates the selection result to the bottom layer, and the bottom layer may perform LBT on one or more BWPs. If the LBT of multiple BWPs succeeds, the bottom layer selects one of the BWPs with successful LBTs to send Msg1.
  • the UE side performs energy or signal detection, and if a certain threshold is exceeded, the channel is considered to be occupied. Count the channel occupancy over a period of time. If the channel occupancy reaches a certain threshold, the load is considered heavy.
  • the failure success rate of LBT can count the results over a period of time. For example, in 200ms, the total number of LBTs, the number of LBT successes, and the number of LBT failures, and then the LBT success failure rate is calculated.
  • the base station can be configured with a selection threshold, which is selected based on the threshold value and the statistical success rate of LBT failures.
  • Step 2 After receiving the Msg1 from the BWP, the base station allocates the resources used by Msg3 and generates a MAC RAR message. Then, the base station chooses to send a downlink BWP of the MAC RAR.
  • the base station allocates the resources used by Msg3, and can allocate the resources used by Msg3 on the UL BWP used by Msg1, or select a UL BWP based on the uplink measurement results, and allocate the resources used by Msg3 on the selected UL BWP, or The base station selects multiple UL BWPs, and allocates resources used by Msg3 on multiple UL BWPs. After the selection is completed, it is placed in the MAC RAR message.
  • the base station performs energy or signal detection, and if a certain threshold is exceeded, the channel is considered to be occupied. Count the channel occupancy over a period of time. If the channel occupancy reaches a certain threshold, the load is considered heavy.
  • the base station side counts LBT results over a period of time, for example, within 200 ms, the number of LBT executions, the number of LBT successes and failures, and calculates the LBT failure success rate.
  • the base station may select one or more downlink BWPs according to certain conditions, perform LBT on the one or more BWPs, and if the LBT is successful, send Msg2.
  • Msg2 is sent only once.
  • the UE receives Msg2, performs analysis, and performs preamble matching. If the Msg2 reception is successful, the UE generates a corresponding Msg3. The UE then selects the BWP used by Msg3 according to the instructions in Msg2. If there is only one BWP, then the UE can send Msg3 in the BWP; if multiple BWPs are indicated, the UE can perform LBT on multiple BWPs, and if there are BWPs with successful LBT, then select one BWP to send Msg3.
  • the failure success rate for LBT is the same as that described in step 1.
  • multiple sending opportunities or multiple repetitions can be configured. If the base station is configured with multiple transmission opportunities, the UE executes LBT, and the LBT is successful. Msg3 can be transmitted and transmitted only once, and the number of LBT executions does not exceed the configured maximum attempt opportunity, as in Embodiment 9. If the base station is configured with multiple repetition times and the UE performs LBT, which one is successful, it sends Msg3, and then repeatedly sends Msg3 according to whether the configured number of times is reached, as in Embodiment 8.
  • Step 4 The base station receives Msg3 on the indicated one or more BWPs. After receiving Msg3 successfully, it generates Msg4. Then select the BWP for downlink transmission based on the channel occupancy rate or LBT failure success rate. After the BWP selection is completed, the UE sends Msg4 on the selected BWP.
  • the base station selects one or more BWPs according to the channel occupancy rate or the LBT failure success rate, and performs LBT in one or more BWPs. If the LBT of multiple downlink BWPs succeeds, the base station selects only one BWP to send Msg4.
  • Step 5 After the UE receives Msg4, if the competition decision is successful, it needs to select a suitable BWP to send the Msg4 feedback.
  • the BWP can be selected based on the measurement result, the channel occupancy rate, or the LBT failure success rate.
  • the UE may select one or more uplink BWPs and perform LBT on one or more BWPs. If the LBT of multiple BWPs is successful, then only one BWP with successful LBT is selected to send feedback.
  • Embodiment 11 Selection of multiple BWPs in a cell, selecting one or more BWPs to perform LBT, 2-step RACH)
  • the BWP selection is performed before each message is sent.
  • This embodiment takes a 2-step RACH process as an example.
  • Step 1 The UE selects a BWP according to a threshold, a channel occupancy rate, or an LBT failure success rate, for example, selects a channel occupancy rate, and selects a lightly loaded BWP. There may be one or more BWPs that meet the conditions, and the preamble and PRACH resources are selected according to the RACH common configuration information of the one or more BWPs that meet the conditions.
  • the MAC indicates the preamble and PRACH resources selected on one or more BWPs to the bottom layer.
  • the bottom layer executes LBT according to the instructions.
  • the RSRP of the downlink measurement result if it exceeds a certain threshold, it can be selected as a candidate BWP.
  • the UE side performs energy or signal detection, and if a certain threshold is exceeded, the channel is considered to be occupied. Count the channel occupancy over a period of time. If the channel occupancy reaches a certain threshold, the load is considered heavy.
  • the failure success rate of LBT can count the results over a period of time. For example, in 200ms, the total number of LBTs, the number of LBT successes, and the number of LBT failures, and then the LBT success failure rate is calculated.
  • Step 2 After receiving the Msg1 from the BWP, the base station generates a corresponding Msg2, including TA, Temporary C-RNTI, and competition resolution (corresponding to Msg2 and Msg4 in the 4-step RACH process). Then the base station chooses to send the downlink BWP of Msg2, which can be selected by channel occupancy rate or LBT failure success rate.
  • the base station performs energy or signal detection, and if a certain threshold is exceeded, the channel is considered to be occupied. Count the channel occupancy over a period of time. If the channel occupancy reaches a certain threshold, the load is considered heavy.
  • the base station side counts LBT results over a period of time, for example, within 200 ms, the number of LBT executions, the number of LBT successes and failures, and calculates the LBT failure success rate.
  • the base station may select one or more downlink BWPs according to certain conditions, and perform LBT on the one or more BWPs. If there are multiple LBT successful BWPs, choose one to send Msg2.
  • step 3 after the UE receives Msg2, if the preamble matches and the competition resolution is successful, it needs to select a suitable uplink BWP to send the Msg2 feedback.
  • the carrier or BWP can be selected according to the measurement result, the channel occupancy rate, or the number of LBT failure successes.
  • the UE may select one or more uplink BWPs and perform LBT on one or more BWPs. If the LBT of multiple BWPs is successful, then only one BWP with successful LBT is selected to send feedback.
  • Embodiment 11 Selection of multiple BWPs in a cell, selecting one or more BWPs to perform LBT, 2-step RACH)
  • RAR window is defined as a maximum of 10ms.
  • preamble transmission and MAC RAR transmission are both required to perform LBT, a 10ms RAR window may not be sufficient.
  • RA-RNTI Random Access-Radio Network Tempory Identity
  • the ra-rnti associated with the prach that sends the random access preamble is calculated as follows (The RA-RNTI associated with the PRACH in which the Random Access Preamble is transmitted, is calculated):
  • RA-RNTI 1 + s_id + 14 ⁇ t_id + 14 ⁇ 80 ⁇ f_id + 14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id
  • s_id is the index of the first OFDM symbol that specifies PRACH Occasion (0 ⁇ s_id ⁇ 14), and t_id is the index of the first slot of the designated PRACH transmission opportunity (PRACH Occasion) in the system frame (0 ⁇ t_id ⁇ 80 ), F_id is the index of the designated prachoccasion in the frequency domain (0 ⁇ f_id ⁇ 8), ul_carrier_id is the uplink carrier used for Msg1 transmission (0 is a Non-Supplementary Uplink (NUL) carrier, and 1 is a supplementary uplink ( Supplementary Uplink (SUL) carrier) (where_s_id is the index of the first OFDM symbol of the PRACH (0 ⁇ s_id ⁇ 14), t_id is the index of the first slot of the first slot slot of the system frame (0 ⁇ t_id ⁇ 80), f_id is the index of PRACH in the frequency domain (0 ⁇ f_id ⁇ 8), and ul_car
  • the value range of t_id is 0 ⁇ t_id ⁇ X * 8. For example, if the RAR window is expanded to 15ms, then the value range of t_id is 0 ⁇ t_id ⁇ 120; if the RAR window is expanded to 20ms, then the value range of t_id is 0 ⁇ t_id ⁇ 160.
  • Embodiment 12 (collection setting of BWP)
  • Msg2 and Msg4 need to select BWP during the random access process, but since the base station cannot distinguish which UE the message of the random access process comes from, the base station cannot select the BWP according to the configuration of each UE . If some BWPs are selected according to the channel conditions or LBT failure success rate, the BWPs that actually transmit data are not necessarily the downlink BWPs configured by the UE, which will result in unsuccessful message reception.
  • the base station can select the downlink BWP in the corresponding group.
  • the base station has 8 UL BWPs (UL BWP1 to UL BWP8) and 8 DL BWPs (DL BWP1 to DL BWP8).
  • UL, BWP1 ... UL, and BWP8 respectively Corresponds to DL, BWP1 ... DL, BWP8.
  • the UL BWP1 to UL BWP4 and DL BWP1 to DL BWP4 are grouped into a group, namely group A, UL BWP5 to UL BWP8, and DL BWP5 to DL BWP8 are grouped into a group, group B.
  • the UE selects UL BWP1 to send the preamble.
  • the base station receives the preamble from the UL BWP1, it generates a MAC RAR.
  • the base station selects DL BWP according to the channel occupation rate or LBT failure success rate in the group A where UL BWP1 is located, and performs LBT on the selected DL BWP. If LBT succeeds, it sends Msg2.
  • the base station For Msg4, if the base station cannot distinguish Msg3 from which UE after analyzing Msg3, then it can also determine the group it belongs to according to the UL BWP sent by Msg3.
  • the base station selects DL and BWP according to the channel occupation or LBT failure success rate in the group where the base station is located, and performs LBT on the selected BWP.
  • the LBT successfully sends Msg4.
  • Embodiment 13 (PDCCH adds multiple BWP indexes)
  • multiple BWPs may be indicated on the PDCCH order.
  • Each BWP information can adopt this structure: BWP index, preamble index, SSB index, and PRACH MASCK index.
  • the preamble index is common to multiple BWPs.
  • Each BWP contains parameters such as BWP index, SSB index, and PRACH MASK index.
  • Solution 3 The preamble index, SSB index, and PRACH and MASK index are common to multiple BWPs, and only include multiple BWP indexes.
  • Embodiment 14 (PDCCH order indicates multiple SSB indices)
  • Solution 1 The PRACH and MASK indexes are common, and for each information structure, the preamble index and SSB index are included.
  • Solution 2 The preamble index and PRACH and MASK indexes are common, indicating multiple SSB indexes.
  • the access or synchronization delay of the UE can be reduced.
  • An embodiment of the present application further provides a storage medium.
  • the storage medium stores a computer program, and the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • the foregoing storage medium may be configured to store a computer program for performing the following steps:
  • a first resource is selected from a plurality of wireless resources and a first message is sent to the base station using the first resource, where the wireless resource includes at least one of the following: a bandwidth part BWP, a carrier resource;
  • the foregoing storage medium may include, but is not limited to, a U disk, a read-only memory (ROM), a random access memory (Random Access Memory, RAM), A variety of media that can store computer programs, such as removable hard disks, magnetic disks, or optical disks.
  • ROM read-only memory
  • RAM Random Access Memory
  • An embodiment of the present application further provides an electronic device including a memory and a processor.
  • the memory stores a computer program
  • the processor is configured to run the computer program to perform the steps in any one of the foregoing method embodiments.
  • the electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the processor, and the input-output device is connected to the processor.
  • the foregoing processor may be configured to execute the following steps by a computer program:
  • a first resource is selected from a plurality of wireless resources and a first message is sent to the base station using the first resource, where the wireless resource includes at least one of the following: a bandwidth part BWP, a carrier resource;
  • modules or steps of the present application may be implemented by a general-purpose computing device, and they may be concentrated on a single computing device or distributed on a network composed of multiple computing devices.
  • they may be implemented with program code executable by a computing device, so that they may be stored in a storage device and executed by the computing device, and in some cases, may be in a different order than here
  • the steps shown or described are performed, or they are separately made into individual integrated circuit modules, or multiple modules or steps in them are made into a single integrated circuit module for implementation.
  • this application is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种随机接入方法、终端、基站、存储介质、电子装置,其中,该方法包括:在随机接入过程中,在多个无线资源中选择第一资源,其中,无线资源包括以下至少之一:带宽部分BWP,载波资源,使用所述第一资源向基站发送第一消息;接收所述基站发送的第二消息,其中,所述第二消息携带第二资源的指示信息。

Description

随机接入方法、终端、基站、存储介质、电子装置
本申请要求在2018年06月21日提交中国专利局、申请号为201810645967.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,具体而言,涉及一种随机接入方法、终端、基站、存储介质、电子装置。
背景技术
在非授权载波,每个节点使用资源之前,都需要执行LBT(Listen Before Talk),来探测信道是处于空闲还是繁忙状态。如果信道是繁忙状态,为了不对其他节点造成强干扰,不进行传输。如果信道是空闲状态,则可以进行相应的传输。对于随机接入过程,在每条消息发送之前都需要执行LBT。以4-step的随机接入信道(Random Access Channel,RACH)过程为例,见图1,图1是本申请相关技术中随机接入过程的示意图,①②③④分别对应msg1至msg4。由于每条消息发送之前都要执行LBT,因此,整个RACH过程需要做4次的LBT,这样增加了随机接入时延。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本发明实施例提供了一种随机接入方法、终端、基站、存储介质、电子装置。
根据本申请的一个实施例,提供了一种随机接入方法,包括:在随机接入过程中,在多个无线资源中选择第一资源,使用所述第一资源向基站发送第一消息,其中,所述无线资源包括以下至少之一:带宽部分BWP,载波资源;接收所述基站发送的第二消息,其中,所述第二消息携带第二资源的指示信息。
根据本申请的一个实施例,提供了一种随机接入方法,包括:在终端UE随机接入过程中,接收所述UE发送的第一消息;生成第二消息;在多个无线资源中选择第三资源,使用所述第三资源向所述UE发送所述第二消息,其中,所述无线资源包括以下至少之一:带宽部分BWP,载波资源,所述第二消息携带第二资源的指示信息。
根据本申请的另一个实施例,提供了一种终端,包括:发送模块,用于在 随机接入过程中,在多个无线资源中选择第一资源,使用所述第一资源向基站发送第一消息,其中,所述无线资源包括以下至少之一:带宽部分BWP,载波资源;接收模块,用于接收所述基站发送的第二消息,其中,所述第二消息携带第二资源的指示信息。
根据本申请的另一个实施例,提供了一种基站,包括:接收模块,用于在终端UE随机接入过程中,接收所述UE发送的第一消息;生成模块,用于生成第二消息;发送模块,用于在多个无线资源中选择第三资源,使用所述第三资源向所述UE发送所述第二消息,其中,所述无线资源包括以下至少之一:带宽部分BWP,载波资源,所述第二消息携带第二资源的指示信息。
根据本申请的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
通过本申请,通过在多个资源中选择用于向基站发送第一消息的资源,不同的资源对应不同的传输机会,可以减少随机接入过程中的接入时延或同步时延,解决了相关技术中随机接入时延过长的技术问题,缩短了终端的接入时间。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请相关技术中随机接入过程的示意图;
图2是根据本发明实施例的一种随机接入方法的流程图;
图3是根据本发明实施例的另一种随机接入方法的流程图;
图4是根据本发明实施例的终端的结构框图;
图5是根据本发明实施例的基站的结构框图;
图6是本申请相关技术中的MAC RAR格式示意图;
图7是本发明实施例中1个载波/BWP的MAC RAR格式示意图;
图8是本发明实施例中2个载波/BWP的MAC RAR格式示意图;
图9是本发明实施例中3个载波/BWP的MAC RAR格式示意图;
图10是本发明实施例中4个载波/BWP的MAC RAR格式示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例运行的网络架构包括:终端和基站,其中,终端与基站进行交互。
在本实施例中提供了一种随机接入方法,图2是根据本发明实施例的一种随机接入方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,在随机接入过程中,在多个无线资源中选择第一资源,使用第一资源向基站发送第一消息,其中,所述无线资源包括以下至少之一:带宽部分BWP,载波资源。
步骤S204,接收基站发送的第二消息,其中,第二消息携带第二资源的指示信息。
通过上述步骤,通过在多个资源中选择用于向基站发送第一消息的资源,不同的资源对应不同的传输机会,可以减少随机接入过程中的接入时延或同步时延,解决了相关技术中随机接入时延过长的技术问题,缩短了终端的接入时间。
可选地,上述步骤的执行主体可以为终端,如手机等,但不限于此。
可选地,在多个无线资源中选择第一资源包括以下至少之一:在多个带宽部分(Band Width Part,BWP)中选择第一BWP;包括以下两种情况:情况1:选择一个BWP,执行LBT,发送消息,情况2:选择多个BWP,在多个BWP上执行LBT,LBT成功的发送数据;在多个载波资源中选择第一载波。
可选地,在多个带宽部分BWP中选择第一BWP包括:通过以下至少之一在多个带宽部分BWP中选择第一BWP:BWP选择门限,BWP负荷,先听后说LBT计数值,其中,所述LBT计数值用于描述LBT成功率或LBT失败率。
可选地,在多个载波资源中选择第一载波包括:通过以下至少之一在多个 载波资源中选择第一载波:载波选择门限,载波负荷,LBT成功率,LBT失败率。
可选地,使用第一资源向基站发送第一消息包括:使用第一资源向基站发送前导preamble。
可选地,接收基站发送的第二消息包括以下之一:接收基站发送的媒体接入控制随机接入响应MAC RAR;接收基站发送的时间提前量TA、临时小区无线网络临时标识Temporary C-RNTI和竞争决议。
可选地,第二消息携带第二资源的资源位置,以及第二资源的资源标识。
可选地,在接收基站发送的第二消息之后,方法还包括:使用第二资源向基站发送第三消息。
可选地,在第三消息为Msg3时,方法还包括:根据LBT结果发送Msg3,一旦LBT成功,重复多次发送Msg3;其中,Msg3的最大重复次数携带在第二消息中,可以在RMSI(随机移动身份标识)或者MAC RAR或者Msg3的重传上行调度授权(UL grant)中。
可选地,最大重传次数通过系统消息进行配置,或通过Msg3的重传UL grant或MAC RAR中的UL grant进行携带。
在本实施例中提供了另一种随机接入方法,图3是根据本发明实施例的另一种随机接入方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,在终端UE随机接入过程中,接收UE发送的第一消息。
步骤S304,生成第二消息。
步骤S306,在多个无线资源中选择第三资源,使用第三资源向UE发送第二消息,其中,所述无线资源包括以下至少之一:带宽部分BWP,载波资源,所述第二消息携带第二资源的指示信息。
可选的,所述第二资源可用于发送第三消息(如msg3)。
可选的,在多个无线资源中选择第二资源包括以下至少之一:在多个带宽部分BWP中选择第二BWP;在多个载波资源中选择第二载波。
可选的,在多个带宽部分BWP中选择第二BWP包括:通过以下至少之一在多个带宽部分BWP中选择第二BWP:BWP选择门限,BWP负荷,先听后说LBT计数值。
可选的,在多个载波资源中选择第二载波包括:通过以下至少之一在多个载波资源中选择第二载波:载波选择门限,载波负荷,LBT成功率,LBT失败率。
可选的,在生成第二消息之前,方法还包括以下之一:在多个无线资源中选择第二资源,其中,第二消息携带第二资源的指示信息;此时由基站来选择并指示给UE;向UE指示第二资源为发送第一消息所使用的资源;此时,由基站直接指示,如直接沿用发送Msg1时所使用的资源,相同的资源可以是同一个UL BWP,但对于Msg1和Msg3,其资源位置和资源个数可能是不同的;其中,第二资源用于UE发送第三消息。
可选的,在第三消息为Msg3时,方法还包括:通过以下之一配置Msg3的最大重复次数:系统消息,MAC RAR,Msg3的重传授权,其中,最大重复次数用于指示UE进行Msg3重复的最大次数。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read-Only Memory,ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
实施例2
在本实施例中还提供了一种随机接入的装置,如终端,基站,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本发明实施例的终端的结构框图,如图4所示,该装置包括:发送模块40,用于在随机接入过程中,在多个无线资源中选择第一资源,使用第一资源向基站发送第一消息,其中,所述无线资源包括以下至少之一:带宽部分BWP,载波资源;接收模块42,用于接收基站发送的第二消息,其中,第二消息携带第二资源的指示信息。可选的,第二资源用于发送第三消息。
图5是根据本发明实施例的基站的结构框图,如图5所示,该装置包括:接收模块50,用于在终端UE随机接入过程中,接收UE发送的第一消息;生成模块52,用于生成第二消息;发送模块54,用于在多个无线资源中选择第三资源,使用第三资源向UE发送第二消息,其中,所述无线资源包括以下至少之一:带宽部分BWP,载波资源,第二消息携带第二资源的指示信息。
可选的,第二资源用于UE发送第三消息。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施例提供了一种信号发送的方法和装置,可以减少随机接入时延,更快的接入网络或同步,对于随机接入过程中的步骤进行增强,比如,增加重复次数或传输机会等。
对于preamble传输,可以提供多个传输的机会,从时域、频域等。频域可以使用多载波或多BWP,即在不同的载波或BWP上发送多个preamble。如果基站配置多个载波或多个BWP,就存在载波或BWP的选择问题。对于多载波可以通过载波选择门限、载波的负荷或LBT失败成功率等选择。对于多BWP也可以通过设置BWP的选择门限、BWP的负荷或LBT的成功失败统计等来选择。同样,对于Msg2、Msg3和Msg4也可以采用类似的方案,进行载波和BWP的选择。
对于Msg3的多次传输机会尝试,需要基站提供多个载波或多个BWP的资源才能进行选择。那么如果基站通过MAC RAR指示多个载波或多个BWP的资源,当前NR定义的MAC RAR格式就需要修改。目前可以考虑支持最多4个载波或BWP的指示的MAC RAR格式。指示的个数不同,相应的MAC RAR的格式也不同。
当发送preamble时,LBT可能失败,如果LBT failure,底层上报MAC LBT failure。当MAC收到后,如果RAR window还没开启,那么此时可再次发起RACH过程,不需要再开启RAR window后续的过程。
当preamble发送失败,MAC收到LBT failure,PREAMBLE_TRANSMISSION_COUNTER和PREAMBLE_POWER_RAMPING_COUNTER都不增加。增加另外一个计数器,即LBT_Failure_Counter。对于LBT failure的情况,计数器LBT_Failure_Counter需要加1。同时,基站需要给UE配置LBT失败的门限值,当PREAMBLE_TRANSMISSION_COUNTER或LBT_Failure_Counter其中一个达到门限值,MAC都需要上报给高层random access problem,以便高层进行下一步的操作。
为了增加Msg3的传输可靠性,可以通过系统消息或者Msg3的重传授权配置Msg3的重复次数。
为了增加Msg3传输机会或多次重复,基站可以通过系统消息或者MAC RAR或者Msg3的重传授权配置Msg3的传输机会或重复次数。UE收到后,MAC指示底层传输,如果LBT failure,那么MAC继续指示底层,直至达到最大传输机会或重复次数。
本实施例还包括以下实施方式:
实施方式1(一个小区的多个BWP选择,选择一个BWP,4-step RACH)
为了增加随机接入成功率,在每条消息发送之前进行BWP的选择。该实施方式主要场景是一个小区的多个BWP的选择问题,以4-step的RACH过程为例。
步骤1,UE根据门限、信道占用率或LBT失败成功率等来选择BWP,比如以信道占用率来选择,选择负荷比较轻的BWP。选择之后,根据该BWP的RACH公共配置信息选择preamble和物理随机接入信道(Physical Random Access Channel,PRACH)资源。选择完成之后,指示给底层,由底层根据MAC指示发送preamble给基站。
进一步的,比如根据下行测量结果参考信号接收功率(Reference Signal Receiving Power,RSRP),超过一定门限值,可选择作为候选BWP。如果存在多个满足条件的BWP,可以再考虑其他因素或随机选择一个。
进一步的,UE侧进行能量或信号探测,超过一定门限认为信道被占用。统计一段时间内的信道占用率,如果信道占用率达到一定的门限,则认为负荷比较重。如果存在多个满足条件的BWP,可以再考虑其他因素或随机选择一个。
进一步的,LBT失败成功率可以统计一段时间内的结果。比如在200ms内,LBT总次数,LBT成功的次数,LBT失败的次数,进而计算LBT成功失败率。基站可配置一个选择门限,如果统计的LBT成功率大于该门限,则可以选择;如果存在多个大于门限的BWP,可以再考虑其他的因素或随机选择一个。
步骤2,基站收到来自该BWP的Msg1后,分配Msg3所使用的资源,生成MAC RAR消息。然后,基站选择发送MAC RAR的下行BWP。对于下行BWP可以通过门限、信道占用率或LBT失败成功率等来选择。
进一步的,基站侧进行能量或信号探测,超过一定门限认为信道被占用。统计一段时间内的信道占用率,如果信道占用率达到一定的门限,则认为负荷比较重。
进一步的,基站侧统计一段时间内的LBT结果,比如200ms内,LBT执行次数,LBT成功失败次数,计算LBT的失败成功率。当LBT成功率达到一定的门限值,可选择作为发送MAC RAR的下行BWP,如果多个BWP被选择,可以再考虑其他因素或随机选择一个。
进一步的,基站分配Msg3所使用的资源,可以在Msg1所使用的BWP上分配Msg3使用的资源,或者根据上行测量结果来选择一个BWP,在选择的BWP上分配Msg3使用的资源,或者基站选择多个BWP,在多个BWP上均分配Msg3所使用的资源。选择完成后,放在MAC RAR消息中。
进一步的,对于MAC RAR的发送,可以给予多次机会,即如果LBT失败,再执行下次LBT,直至LBT成功或达到一定的尝试机会,MAC RAR只发送一次。
步骤3,UE收到MAC RAR,进行解析,并且进行preamble匹配。如果Msg2接收成功,那么UE生成对应的Msg3。UE再根据MAC RAR中指示选择Msg3所使用的BWP。如果仅一个BWP,那么UE在该BWP发送Msg3即可;如果指示多个BWP,那么UE可以根据信道占用率或LBT失败成功率来选择BWP,然后在选择的BWP上发送Msg3。
进一步,对于根据信道占用率和LBT失败成功率进行BWP的选择与步骤1中的描述相同。
进一步,对于Msg3的授权,基站可配置多次尝试发送机会或多次重复次数。如果基站配置了多次尝试机会,那么UE需要根据LBT的结果来发送,Msg3只发送一次。如果基站配置多次重复次数,UE根据LBT结果来发送,发送Msg3的次数与LBT的执行结果有关系,Msg3可重复发送多次。
步骤4,基站在指示的一个或多个BWP上接收Msg3,Msg3接收成功后,生成Msg4。然后根据信道占用率或LBT失败成功率来选择下行发送的BWP。在BWP选择完成后,基站在选择的BWP上发送Msg4。
进一步的,信道占用率和LBT失败成功率的描述与步骤2中相同。
步骤5,UE收到Msg4后,如果竞争决议成功,那么需要选择合适的BWP来发送Msg4的反馈。
进一步,可以根据测量结果,信道占用率或LBT失败成功率来选择BWP。
实施方式2(一个小区的多个BWP的选择,选择一个BWP,2-step RACH)
为了增加随机接入成功率,在每条消息发送之前进行BWP的选择。该实施方式以2-step的RACH过程为例。
步骤1,UE根据门限、信道占用率或LBT失败成功的次数等来选择BWP,比如以信道占用率来选择,选择负荷比较轻的BWP。选择之后,根据该BWP的RACH公共配置信息选择preamble和PRACH资源。选择完成之后,指示给 底层,由底层根据MAC指示发送Msg1(对应4-step RACH过程中的preamble和Msg3)给基站。
进一步的,比如根据下行测量结果RSRP,超过一定门限值,可选择作为候选BWP。如果存在多个满足条件的BWP,可以再考虑其他因素或随机选择一个。
进一步的,信道占用率包含本节点和其他节点占用信道的情况。比如通过接收的信号强度指示(Received Signal Strength Indication,RSSI)测量,与门限值比较,超过一定的门限,则认为信道被占用。统计一段时间内的信道占用率,如果信道占用率达到一定的门限,则认为负荷比较重。
步骤2,基站收到来自该BWP的Msg1后,生成相应的Msg2,包含TA、Temporary C-RNTI和竞争决议等(对应4-step RACH过程中Msg2和Msg4)。然后基站选择发送Msg2的下行BWP,可以通过信道占用率或LBT失败成功次数等来选择。
进一步的,基站侧进行能量或信号探测,超过一定门限认为信道被占用。统计一段时间内的信道占用率,如果信道占用率达到一定的门限,则认为负荷比较重。
进一步的,基站侧统计一段时间内的LBT结果,比如200ms内,LBT执行次数,LBT成功失败次数,计算LBT的失败成功率。当LBT成功率达到一定的门限值,可选择作为发送MAC RAR的下行BWP,如果多个BWP被选择,可以再考虑其他因素或随机选择一个。
步骤3,UE收到Msg2后,如果竞争决议成功,那么需要选择合适的上行BWP来发送Msg2的反馈。
进一步的,可以根据门限,信道占用率或LBT失败成功次数来选择载波或BWP。
实施方式3(多载波和多BWP的选择,每个过程都涉及载波和BWP的选择问题,但每条消息仅在选择的载波的BWP上发送,4-step RACH)
如果UE配置多个上行载波和下行载波,那么为了增加随机接入成功率,在随机接入过程每条消息发送之前,可以进行载波的选择,以4-step的RACH过程为例。
步骤1,UE根据每个上行载波的测量结果或者信道占用率或者LBT失败成功率的统计来进行载波和BWP的选择。也即载波选择过程涉及BWP的选择,可以一起选择完成。当载波和对应载波上的BWP选择完成后,UE根据该载波 上的BWP的RACH公共配置进行preamble和PRACH资源的选择。当preamble传输时刻到来时,将选择的载波、BWP和preamble指示给底层,底层根据MAC指示将preamble发送给基站。
步骤2,基站收到preamble后,首先,进行Msg3所使用载波、BWP的选择,并且在选择的载波的BWP上分配资源,生成MAC RAR消息。然后,基站选择发送Msg2的下行载波和BWP,此时可以根据测量结果、信道占用率或者LBT失败成功率来进行选择。
进一步,对于Msg3所使用载波和BWP的选择,有几种方案:
方案1,基站可以在preamble接收到的载波的BWP上来进行Msg3资源的分配;
方案2,基站可以根据上行载波和BWP的测量结果来选择一个或多个载波,每个载波只选择一个BWP,并且在选择的载波的BWP上分配Msg3所使用的资源;
方案3,基站可以根据上行载波和BWP的测量结果来选择一个载波,在对应的载波上可以选择多个BWP,并且在选择的载波的对应的多个BWP上来分配Msg3所使用的资源;
方案4,基站可以上行载波和BWP选择多个载波,每个载波选择多个BWP,并且在选择的载波的多个BWP来分配Msg3所使用的资源。
步骤3,UE收到MAC RAR后,如果解析成功,并且preamble匹配,那么Msg2接收成功。UE根据MAC RAR的资源指示来发送Msg3。如果基站指示了一个载波的一个BWP,那么UE在相应的资源上发送Msg3即可。如果基站指示了一个载波的多个BWP或者多个载波的一个或多个BWP,UE可以根据测量结果、信道占用率、LBT失败成功率来进行载波和BWP的选择。当选择完成后,UE在对应的载波的BWP上发送Msg3。
步骤4,基站收到Msg3后,生成对应的Msg4。在发送Msg4之前,基站需要进行下行载波和BWP的选择,可以根据测量结果、信道占用率或LBT失败成功率来进行选择。选择完成后,基站在选择的载波的BWP上发送Msg4。
步骤5,UE收到Msg4后,如果竞争决议成功,需要进行上行载波和BWP的选择,可以使用发送Msg3的载波和BWP,也可以根据信道占用率或LBT失败成功率来发送Msg4的反馈。
实施方式4(MAC RAR指示多个载波或多个BWP的Msg3所使用资源位 置)
根据实施方式1,当基站选择多个载波或BWP来分配Msg3所使用的资源时,需要指示多个载波或BWP的资源。除了指示资源位置,还需要指示选择的载波或BWP。
目前NR定义的UL grant的内容如图6所示,图6是本申请相关技术中的MAC RAR格式示意图。
表格里UL grant所占比特(bit)共25bits。如果按照最多可指示4个载波或BWP,那么需要2bit来指示,也即每个载波或BWP的UL grant都需要27bits来指示。由于存在的UL grant可能为1,2,3或4,那么MAC RAR消息是可变的,这里需要分别设计这4种情况下的MAC RAR格式。
当选择1个载波或BWP时,MAC RAR格式如图7所示,图7是本发明实施例中1个载波/BWP的MAC RAR格式示意图。图7中ID为分配Msg3资源的载波/BWP的ID。
当选择2个载波或BWP时,MAC RAR格式如图8所示,图8是本发明实施例中2个载波/BWP的MAC RAR格式示意图。其中,TAC为Time Advance Command,ID为分配用于Msg3传输的载波/BWP ID。
当选择3个载波或BWP时,MAC RAR格式如图9所示,图9是本发明实施例中3个载波/BWP的MAC RAR格式示意图。
当选择4个载波或BWP时,MAC RAR格式如图10所示,图10是本发明实施例中4个载波/BWP的MAC RAR格式示意图。
以上根据选择的载波/BWP来设计的MAC RAR格式,只是示例,并不限于该种格式。
实施方式5(LBT失败,UE上报,RAR窗没有开启,发起下一次RACH过程)
UE侧MAC在选择好PRACH资源和preamble码后,在preamble发送时刻快到来时,发给底层,由于需要执行LBT,所以MAC需要给底层留出一定的时间。当LBT失败,底层需要指示LBT failure给MAC,MAC收到后,RAR window可能还没有开启,对于没有开启的这种情况,MAC可以发起下一次的随机接入过程。即MAC收到LBT failure后,可认为此次随机接入失败,执行下面的过程:
MAC收到LBT failure后,认为随机接入失败,preamble传输次数加1,判 断preamble传输次数是否达到最大重传次数。如果达到最大重传次数,则指示随机接入问题给上层;如果没有达到最大重传次数,选择一个随机的回退时间(backoff time),执行下一次的随机接入过程。
而且,该情况下,在下次发起随机接入过程时,PREAMBLE_POWER_RAMPING_COUNTER不加1。
实施方式6(preamble由于LBT failure而未传输,引入一个计数器)
当preamble指示给底层,但底层由于LBT failure而导致preamble没有传输,这种情况下,底层需要给高层一个LBT failure的指示。当MAC收到LBT failure的指示后,preamble power ramping不增加,即PREAMBLE_POWER_RAMPING_COUNTER不增加。同时,对于preamble传输次数,即PREAMBLE_TRANSMISSION_COUNTER也不增加。
如果LBT一直失败,那么可能会导致该RACH过程一直处于死锁状态。并且对于专用preamble,基站没有办法回收再利用。这里引入另外一个计数器,LBT failure计数器,也就是当底层上报一次LBT failure,MAC计数一次。当LBT failure counter达到一定的门限或者PREAMBLE_TRANSMISSION_COUNTER大于preambleTxMax时,MAC上报高层random access problem。
LBT failure counter的门限可以定义在RACH-ConfigCommon或RACH-ConfigGeneric。比如,可以按照下面的结构进行定义:
Figure PCTCN2019092375-appb-000001
Figure PCTCN2019092375-appb-000002
这里定义的LBTFailureMax并不限定例子中的值。
实施方式7(Msg3传输或重传失败,由于LBT,则上报LBT failure功率不爬坡)
当UE收到MAC RAR或者Msg3的重传授权后,可能由于LBT failure而无法发送,该情况下,底层可以上报MAC LBT failure。当MAC收到LBT failure次数达到Msg3的最大重传次数,则表示目前小区负荷较重或信道条件不好。此时,功率不进行爬坡,preamble传输次数可以增加或者不增加。如果定义LBT failure counter,该情况下,LBT failure counter加1。
实施方式8(Msg3重传进行多次repetition)
为了增加Msg3的传输可靠性,可以增加重复次数repetition K和repetition RV,这个重传次数和重复RV可以在系统消息指示或者在Msg3的重传授权指示。
如果在Msg3的重传授权指示,那么Msg3的重传物理下行控制信道(Physical Downlink Control Channel,PDCCH)消息定义的字段可以按如表1所示:
表1
Figure PCTCN2019092375-appb-000003
Figure PCTCN2019092375-appb-000004
实施方式9(多次机会一次传输)
为了增加Msg3的传输机会,基站可以在系统消息或MAC RAR或者Msg3的重传授权指示传输机会。当UE收到后,在基站指示的传输机会上,进行LBT。如果LBT成功,那么将进行Msg3的传输,这里只传输一次,后面的授权UE不使用,这样可以释放出来给其他的节点使用。这里需要约束UE的行为,当底层LBT成功时,指示LBT success给MAC,MAC收到后,在下一个时刻或者传输机会时,MAC不再指示数据给底层,这样底层就不会进行传输。此时,MAC还是需要缓存Msg3的数据包,以便失败情况下,进行下一次的重传。
除了指示传输机会,还需要指示所使用RV。当通过系统消息指示时,可以在系统信息块1(System Information Blocks 1,SIB1)中的RACH-ConfigCommon中增加一个信息元素(Information Elements,IE),比如为Msg3TransOpportunity。可以使用如下定义:
Figure PCTCN2019092375-appb-000005
如果通过MAC RAR来指示重传机会,可以采用如表2定义:
表2
Figure PCTCN2019092375-appb-000006
Figure PCTCN2019092375-appb-000007
如果在Msg3的重传授权增加该字段,可以采用如表3定义:
表3
Figure PCTCN2019092375-appb-000008
实施方式10(一个小区的多个BWP选择,选择一个或多个执行LBT,但消息最终在一个BWP上发送,4-step RACH)
为了增加随机接入成功率,在每条消息发送之前进行BWP的选择。该实施方式主要场景是一个小区的多个BWP的选择问题,以4-step的RACH过程为例。
步骤1,UE根据门限、信道占用率或LBT失败成功率等来选择BWP,比如以信道占用率来选择,选择负荷比较轻的BWP。满足条件的BWP可能有一个或多个,根据满足条件的一个或多个BWP的RACH公共配置信息选择preamble和PRACH资源。UE将选择结果指示给底层,底层可在一个或多个BWP执行LBT。如果有多个BWP的LBT成功,那么底层选择其中一个LBT成功的BWP来发送Msg1。
进一步的,比如根据下行测量结果RSRP,超过一定门限值,可选择作为候选BWP。进一步的,UE侧进行能量或信号探测,超过一定门限认为信道被占用。统计一段时间内的信道占用率,如果信道占用率达到一定的门限,则认为 负荷比较重。
进一步的,LBT失败成功率可以统计一段时间内的结果。比如在200ms内,LBT总次数,LBT成功的次数,LBT失败的次数,进而计算LBT成功失败率。基站可配置一个选择门限,根据门限值和统计的LBT失败成功率来进行选择。
步骤2,基站收到来自该BWP的Msg1后,分配Msg3所使用的资源,生成MAC RAR消息。然后,基站选择发送MAC RAR的下行BWP。
进一步的,基站分配Msg3所使用的资源,可以在Msg1所使用的UL BWP上分配Msg3使用的资源,或者根据上行测量结果来选择一个UL BWP,在选择的UL BWP上分配Msg3使用的资源,或者基站选择多个UL BWP,在多个UL BWP上均分配Msg3所使用的资源。选择完成后,放在MAC RAR消息中。
进一步的,基站侧进行能量或信号探测,超过一定门限认为信道被占用。统计一段时间内的信道占用率,如果信道占用率达到一定的门限,则认为负荷比较重。
进一步的,基站侧统计一段时间内的LBT结果,比如200ms内,LBT执行次数,LBT成功失败次数,计算LBT的失败成功率。
进一步的,对于下行BWP的选择,基站可以根据某些条件选择一个或者多个下行BWP,在一个或者多个BWP上执行LBT,LBT成功的,发送Msg2。当然对于每个BWP上,也可以尝试多次LBT,直至LBT成功,但不能超过最大尝试次数,Msg2只发送一次。
步骤3,UE收到Msg2,进行解析,并且进行preamble匹配。如果Msg2接收成功,那么UE生成对应的Msg3。UE再根据Msg2中指示选择Msg3所使用的BWP。如果仅一个BWP,那么UE在该BWP发送Msg3即可;如果指示多个BWP,那么UE可以在多个BWP上进行LBT,如果有LBT成功的BWP,那么选择一个BWP发送Msg3。
进一步,对于LBT失败成功率与步骤1中的描述相同。
进一步的,对于每个BWP上的Msg3的grant,可配置多次发送机会或多次重复次数。如果基站配置了多次发送机会,UE执行LBT,LBT成功,可发送Msg3,只发送一次,LBT执行次数不超过配置的最大尝试机会,如实施方式9。如果基站配置了多次重复次数,UE执行LBT,哪次成功,就发送Msg3,再根据配置次数是否达到,来进行Msg3的重复发送,如实施方式8。
步骤4,基站在指示的一个或多个BWP上接收Msg3,Msg3接收成功后,生成Msg4。然后根据信道占用率或LBT失败成功率来选择下行发送的BWP。在BWP选择完成后,UE在选择的BWP上发送Msg4。
进一步的,信道占用率和LBT失败成功率的描述与步骤2中相同。
进一步的,基站根据信道占用率或LBT失败成功率选择一个或多个BWP,在一个或多个BWP执行LBT。如果有多个下行BWP的LBT成功,基站只选择一个BWP发送Msg4。
步骤5,UE收到Msg4后,如果竞争决议成功,那么需要选择合适的BWP来发送Msg4的反馈。
进一步,可以根据测量结果,信道占用率或LBT失败成功率来选择BWP。UE可能选择一个或多个上行BWP,在一个或多个BWP上执行LBT。如果多个BWP的LBT成功,那么只选择一个LBT成功的BWP来发送反馈。
实施方式11(一个小区的多个BWP的选择,选择一个或多个BWP执行LBT,2-step RACH)
为了增加随机接入成功率,在每条消息发送之前进行BWP的选择。该实施方式以2-step的RACH过程为例。
步骤1,UE根据门限、信道占用率或LBT失败成功率等来选择BWP,比如以信道占用率来选择,选择负荷比较轻的BWP。满足条件的BWP可能有一个或多个,根据满足条件的一个或多个BWP的RACH公共配置信息选择preamble和PRACH资源。MAC将在一个或多个BWP上选择的preamble和PRACH资源指示给底层。底层根据指示来执行LBT,如果多个BWP的LBT成功,那么选择一个LBT成功的BWP来发送Msg1(对应4-step RACH过程中的preamble和Msg3),选择的还未执行LBT的BWP,放弃执行LBT。
进一步的,比如根据下行测量结果RSRP,超过一定门限值,可选择作为候选BWP。
进一步的,UE侧进行能量或信号探测,超过一定门限认为信道被占用。统计一段时间内的信道占用率,如果信道占用率达到一定的门限,则认为负荷比较重。
进一步的,LBT失败成功率可以统计一段时间内的结果。比如在200ms内,LBT总次数,LBT成功的次数,LBT失败的次数,进而计算LBT成功失败率。
步骤2,基站收到来自该BWP的Msg1后,生成相应的Msg2,包含TA、Temporary C-RNTI和竞争决议等(对应4-step RACH过程中Msg2和Msg4)。然后基站选择发送Msg2的下行BWP,可以通过信道占用率或LBT失败成功率等来选择。
进一步的,基站侧进行能量或信号探测,超过一定门限认为信道被占用。统计一段时间内的信道占用率,如果信道占用率达到一定的门限,则认为负荷比较重。
进一步的,基站侧统计一段时间内的LBT结果,比如200ms内,LBT执行次数,LBT成功失败次数,计算LBT的失败成功率。
进一步的,对于下行BWP的选择,基站可以根据某些条件选择一个或者多个下行BWP,在一个或者多个BWP上执行LBT。如果有多个LBT成功的BWP,选择一个发送Msg2。
步骤3,UE收到Msg2后,如果preamble匹配,并且竞争决议成功,那么需要选择合适的上行BWP来发送Msg2的反馈。
进一步,可以根据测量结果,信道占用率或LBT失败成功次数来选择载波或BWP。UE可能选择一个或多个上行BWP,在一个或多个BWP上执行LBT。如果多个BWP的LBT成功,那么只选择一个LBT成功的BWP来发送反馈。
实施方式11(一个小区的多个BWP的选择,选择一个或多个BWP执行LBT,2-step RACH)
在NR,RAR window定义为最大为10ms。在非授权载波,由于对于preamble的传输和MAC RAR的传输都需要执行LBT,所以10ms的RAR window可能不够。为了增加RAR的接收机会,可以考虑扩大随机接入响应窗。
目前NR定义随机接入无线网络临时标识(Radom Access-Radio Network Tempory Identity,RA-RNTI)的计算公式如下:
与发送随机接入前导码的prach相关的ra-rnti计算如下(The RA-RNTI associated with the PRACH in which the Random Access Preamble is transmitted,is computed as):
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id
其中,s_id是指定PRACH occasion的第一个OFDM符号的索引(0≤s_id<14),t_id是系统帧中指定PRACH传输机会(PRACH occasion)的第一个时隙的索引(0≤t_id<80),f_id是频率域中指定prach occasion的索引(0≤f_id<8),ul_carrier_id是用于Msg1传输的上行载波(0为非增补上行(Non-Supplementary Uplink,NUL)载波,1为增补上行(Supplementary Uplink,SUL)载波)(where s_id is the index of the first OFDM symbol of the specified PRACH(0≤s_id<14),t_id is the index of the first slot of the specified PRACH in a system  frame(0≤t_id<80),f_id is the index of the specified PRACH in the frequency domain(0≤f_id<8),and ul_carrier_id is the UL carrier used for Msg1 transmission(0 for NUL carrier,and 1 for SUL carrier).)。
如果RAR window扩展为X ms,那么t_id的取值范围为0≤t_id<X*8。举例来说,如果RAR window扩展为15ms,那么t_id的取值范围为0≤t_id<120;如果RAR window扩展为20ms,那么t_id的取值范围为0≤t_id<160。
实施方式12(BWP的集合设置)
在上面的实施方式中,随机接入过程中Msg2和Msg4需要进行BWP的选择,但由于基站无法区分随机接入过程的消息来自哪个UE,因此基站无法根据每个UE的配置来进行BWP的选择。如果根据信道情况或者LBT失败成功率选择一些BWP,但实际传输数据的BWP不一定是UE被配置的下行BWP,这样会导致消息接收不成功。
这里考虑一种解决方案,对BWP进行分组,一旦基站在某个上行BWP收到preamble或Msg3,那么就可以在相应的组里的下行BWP进行选择。举例来说,比如基站有8个UL BWP(UL BWP1~UL BWP8)和8个DL BWP(DL BWP1~DL BWP8),上下行BWP之间有一定的对应关系,UL BWP1...UL BWP8分别对应DL BWP1...DL BWP8。将UL BWP1~UL BWP4以及DL BWP1~DL BWP4分为一组,即为group A,UL BWP5~UL BWP8以及DL BWP5~DL BWP8分为一组,即为group B。比如UE选择了UL BWP1来发送preamble,当基站收到来自该UL BWP1的preamble后,生成MAC RAR。基站在UL BWP1所在的group A根据信道占用率或LBT失败成功率来选DL BWP,并在选择的DL BWP上执行LBT,LBT成功的,来发送Msg2。
对于Msg4,如果基站解析出Msg3后,无法区分来自哪个UE的Msg3,那么也可以根据Msg3的发送UL BWP来判定所在的group。基站在所在group根据信道占用或LBT失败成功率来选择DL BWP,并在选择的BWP上执行LBT,LBT成功的发送Msg4。
在对UE进行BWP的配置时,如果要配置某个组里的BWP给UE,那么需要把该组里所有BWP上涉及随机接入过程的参数配置给UE,否则一旦选择了某个BWP,但相关配置没有,则也无法发送或接收。如果有些BWP不进行数据传输,那么相关数据传输的配置可以不需要。
实施方式13(PDCCH order添加多个BWP index)
对于PDCCH order触发的随机接入过程,为了增加preamble的发送机会,那么可以在PDCCH order指示多个BWP。
目前,NR协议标准结论仅包含preamble index、SSB index和PRACH MASK index。如果添加多个BWP信息,可以采用如下方案:
方案1:每个BWP信息可以采用这种结构:BWP index、preamble index、SSB index和PRACH MASCK index。
方案2:preamble index对于多个BWP是公共的,每个BWP包含参数有BWP index、SSB index和PRACH MASK index。
方案3:preamble index、SSB index和PRACH MASK index对于多个BWP是公共的,仅包含多个BWP index即可。
实施方式14(PDCCH order指示多个SSB index)
为了增加preamble的发送机会,可以指示多个资源位置,可以采用下面的方案:
方案1:PRACH MASK index是公共的,对于每个信息结构都包含preamble index、SSB index。
方案2:preamble index和PRACH MASK index是公共的,指示多个SSB index。
通过上述实施方式中的增强方案,可以减少UE的接入或同步时延。
实施例4
本申请的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S1,在随机接入过程中,在多个无线资源中选择第一资源,使用第一资源向基站发送第一消息,其中,所述无线资源包括以下至少之一:带宽部分BWP,载波资源;
S2,接收基站发送的第二消息,其中,第二消息携带第二资源的指示信息。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程 序的介质。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S1,在随机接入过程中,在多个无线资源中选择第一资源,使用第一资源向基站发送第一消息,其中,所述无线资源包括以下至少之一:带宽部分BWP,载波资源;
S2,接收基站发送的第二消息,其中,第二消息携带第二资源的指示信息。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种随机接入方法,包括:
    在随机接入过程中,在多个无线资源中选择第一资源,使用所述第一资源向基站发送第一消息,其中,所述无线资源包括以下至少之一:带宽部分BWP,载波资源;
    接收所述基站发送的第二消息,其中,所述第二消息携带第二资源的指示信息。
  2. 根据权利要求1所述的方法,其中,在多个无线资源中选择第一资源包括以下至少之一:
    在多个BWP中选择第一BWP;
    在多个载波资源中选择第一载波。
  3. 根据权利要求2所述的方法,其中,在多个带宽部分BWP中选择第一BWP包括:
    通过以下至少之一在多个带宽部分BWP中选择第一BWP:BWP选择门限,BWP负荷,先听后说LBT计数值,其中,所述LBT计数值用于描述LBT成功率或LBT失败率。
  4. 根据权利要求2所述的方法,其中,在多个载波资源中选择第一载波包括:
    通过以下至少之一在多个载波资源中选择第一载波:载波选择门限,载波负荷,LBT成功率,LBT失败率。
  5. 根据权利要求1所述的方法,其中,使用所述第一资源向基站发送第一消息包括:
    使用所述第一资源向基站发送前导preamble。
  6. 根据权利要求1所述的方法,其中,接收所述基站发送的第二消息包括以下之一:
    接收所述基站发送的媒体接入控制随机接入响应MAC RAR;
    接收所述基站发送的时间提前量TA、临时小区无线网络临时标识Temporary C-RNTI和竞争决议。
  7. 根据权利要求1所述的方法,其中,所述第二消息携带所述第二资源的资源位置,以及所述第二资源的资源标识。
  8. 根据权利要求1所述的方法,在接收所述基站发送的第二消息之后,还包括:
    使用所述第二资源向所述基站发送第三消息。
  9. 根据权利要求8所述的方法,其中,在所述第三消息为Msg3的情况下,使用所述第二资源向所述基站发送第三消息包括:
    根据在所述第二资源上执行LBT的结果发送所述Msg3,在LBT成功的情况下,重复发送所述Msg3;
    其中,所述Msg3的最大重复次数携带在所述第二消息中。
  10. 根据权利要求9所述的方法,其中,所述最大重复次数通过以下至少之一进行配置或携带:系统消息,Msg3的重传授权,MAC RAR。
  11. 一种随机接入方法,包括:
    在终端UE随机接入过程中,接收所述UE发送的第一消息;
    生成第二消息;
    在多个无线资源中选择第一资源,使用所述第一资源向所述UE发送所述第二消息,其中,所述无线资源包括以下至少之一:带宽部分BWP,载波资源,所述第二消息携带第二资源的指示信息。
  12. 根据权利要求11所述的方法,其中,在多个无线资源中选择第一资源包括以下至少之一:
    在多个带宽部分BWP中选择第一BWP;
    在多个载波资源中选择第一载波。
  13. 根据权利要求12所述的方法,其中,在多个带宽部分BWP中选择第一BWP包括:
    通过以下至少之一在多个带宽部分BWP中选择第一BWP:BWP选择门限,BWP负荷,先听后说LBT计数值,其中,所述LBT计数值用于描述LBT成功率或LBT失败率。
  14. 根据权利要求12所述的方法,其中,在多个载波资源中选择第一载波包括:
    通过以下至少之一在多个载波资源中选择第一载波:载波选择门限,载波负荷,LBT成功率,LBT失败率。
  15. 根据权利要求11所述的方法,在生成第二消息之前,还包括以下之一:
    在多个无线资源中选择第二资源,其中,所述第二消息携带所述第二资源的指示信息;
    向所述UE指示所述第二资源与发送所述第一消息所使用的资源相同,其中,相同的资源是同一个上行UL BWP中资源位置和资源个数中的至少之一相同或不同的资源;
    其中,所述第二资源用于所述UE发送第三消息。
  16. 根据权利要求11所述的方法,其中,所述第二资源用于所述UE发送第三消息;在所述第三消息为Msg3的情况下,所述方法还包括:
    通过以下之一配置所述Msg3的最大重复次数:系统消息,媒体接入控制随机接入响应MAC RAR,Msg3的重传授权,其中,所述最大重复次数用于指示所述UE进行重复发送Msg3的最大次数。
  17. 一种终端,包括:
    发送模块,设置为在随机接入过程中,在多个无线资源中选择第一资源,使用所述第一资源向基站发送第一消息,其中,所述无线资源包括以下至少之一:带宽部分BWP,载波资源;
    接收模块,设置为接收所述基站发送的第二消息,其中,所述第二消息携带第二资源的指示信息。
  18. 一种基站,包括:
    接收模块,设置为在终端UE随机接入过程中,接收所述UE发送的第一消息;
    生成模块,设置为生成第二消息;
    发送模块,设置为在多个无线资源中选择第一资源,使用所述第一资源向所述UE发送所述第二消息,其中,所述无线资源包括以下至少之一:带宽部分BWP,载波资源,所述第二消息携带第二资源的指示信息。
  19. 一种存储介质,存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至16任一项中所述的方法。
  20. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至16任一项中所述的方法。
PCT/CN2019/092375 2018-06-21 2019-06-21 随机接入方法、终端、基站、存储介质、电子装置 WO2019242762A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/254,569 US11477823B2 (en) 2018-06-21 2019-06-21 Random access method, user equipment, base station, storage medium, and electronic device
EP19823537.6A EP3813456A4 (en) 2018-06-21 2019-06-21 RANDOM ACCESS METHOD, TERMINAL, BASE STATION, STORAGE MEDIA, AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810645967.3 2018-06-21
CN201810645967.3A CN110636613B (zh) 2018-06-21 2018-06-21 随机接入方法、终端、基站、存储介质、电子装置

Publications (1)

Publication Number Publication Date
WO2019242762A1 true WO2019242762A1 (zh) 2019-12-26

Family

ID=68966361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092375 WO2019242762A1 (zh) 2018-06-21 2019-06-21 随机接入方法、终端、基站、存储介质、电子装置

Country Status (4)

Country Link
US (1) US11477823B2 (zh)
EP (1) EP3813456A4 (zh)
CN (1) CN110636613B (zh)
WO (1) WO2019242762A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11252760B2 (en) * 2018-06-13 2022-02-15 Samsung Electronics Co., Ltd. Method and wireless communication system for handling timer operation
WO2020003469A1 (ja) * 2018-06-28 2020-01-02 株式会社Nttドコモ ユーザ端末
US20210274567A1 (en) * 2018-06-28 2021-09-02 Ntt Docomo, Inc. User terminal
CN110769517B (zh) * 2018-07-26 2022-02-01 维沃移动通信有限公司 一种随机接入方法及相关设备
CN110856267B (zh) * 2018-08-20 2021-10-01 华为技术有限公司 一种通信方法及设备
EP3857782A1 (en) * 2018-09-25 2021-08-04 Telefonaktiebolaget LM Ericsson (publ) Selecting a bandwidth part (bwp)
US11882461B2 (en) * 2019-07-08 2024-01-23 Qualcomm Incorporated Bidirectional listen-before-talk operation
US11917689B2 (en) * 2020-07-07 2024-02-27 Qualcomm Incorporated Redundancy version (RV) determination for message repetition
WO2022040895A1 (en) * 2020-08-25 2022-03-03 Zte Corporation Method and apparatus related to radio network temporary identifier
EP4262318A4 (en) * 2021-01-15 2024-01-03 Guangdong Oppo Mobile Telecommunications Corp Ltd TRANSMISSION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN117499944A (zh) * 2022-07-22 2024-02-02 大唐移动通信设备有限公司 一种信息处理方法、装置及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102150466A (zh) * 2008-09-12 2011-08-10 高通股份有限公司 多载波操作中的物理随机接入信道(prach)传输
US20150245307A1 (en) * 2014-02-21 2015-08-27 Qualcomm Incorporated Ul out-of-synchronization for a secondary cell carrying pucch
CN107371273A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 随机接入方法、装置及用户设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612162B (zh) * 2008-01-07 2015-09-09 三星电子株式会社 传输随机接入前导信号的设备和方法
KR101568139B1 (ko) * 2010-01-11 2015-11-12 삼성전자주식회사 이동 통신 시스템 및 그 이동 통신 시스템에서 rach 액세스 방법
KR101383487B1 (ko) * 2010-02-12 2014-04-08 후지쯔 가부시끼가이샤 무선 통신 장치, 무선 통신 시스템 및 무선 통신 방법
BR112012020135B1 (pt) * 2010-02-12 2021-04-13 Gemalto Sa Método e sistema de acesso à rede para comunicações do tipo máquina
JP6170244B2 (ja) * 2013-09-24 2017-07-26 エルジー エレクトロニクス インコーポレイティド 二重接続の並列ランダムアクセス手順のためのmac層とphy層との間の通信
US10382238B2 (en) * 2015-07-05 2019-08-13 Ofinno, Llc Uplink signal transmission in a wireless device
RU2671051C1 (ru) * 2015-08-06 2018-10-29 Телефонактиеболагет Лм Эрикссон (Пабл) Процедура harq для восходящего канала для работы мтс
CN106993335B (zh) * 2016-01-21 2022-03-01 中兴通讯股份有限公司 前导码发送、接收方法、装置、用户设备及基站
EP3411976B1 (en) * 2016-02-05 2021-06-23 Telefonaktiebolaget LM Ericsson (PUBL) Methods for determining the number of repetitions of pucch for mtc ues
US10045346B1 (en) * 2016-08-02 2018-08-07 Sprint Spectrum L.P. Assigning a low-GDV carrier to a high-speed UE
US11057926B2 (en) * 2017-02-04 2021-07-06 Qualcomm Incorporated Physical uplink shared channel coverage enhancements
US10834759B2 (en) * 2017-03-20 2020-11-10 Motorola Mobility Llc Feedback for a system information request
CN109982431B (zh) * 2017-12-28 2023-04-21 华硕电脑股份有限公司 选择用于随机接入程序的带宽部分的方法和设备
US10873976B2 (en) * 2018-05-21 2020-12-22 Comcast Cable Communications, Llc Random access procedures using multiple active bandwidth parts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102150466A (zh) * 2008-09-12 2011-08-10 高通股份有限公司 多载波操作中的物理随机接入信道(prach)传输
US20150245307A1 (en) * 2014-02-21 2015-08-27 Qualcomm Incorporated Ul out-of-synchronization for a secondary cell carrying pucch
CN107371273A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 随机接入方法、装置及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3813456A4 *

Also Published As

Publication number Publication date
EP3813456A1 (en) 2021-04-28
EP3813456A4 (en) 2022-04-20
US11477823B2 (en) 2022-10-18
CN110636613A (zh) 2019-12-31
US20210274550A1 (en) 2021-09-02
CN110636613B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2019242762A1 (zh) 随机接入方法、终端、基站、存储介质、电子装置
US11711851B2 (en) Two-step random access procedure in next generation wireless networks
US10972989B2 (en) Method, user equipment and base station for transmitting uplink signals
WO2017194018A1 (zh) 随机接入方法、装置及用户设备、存储介质
US11064538B2 (en) Methods and apparatuses for performing random access procedures
US9295084B2 (en) Method and apparatus for performing contention based random access
US11153913B2 (en) Random access procedure in next generation wireless networks
US20210105096A1 (en) Methods and apparatuses for handling retransmission on configured uplink grant resources
WO2021155853A1 (en) Wireless communication method and user equipment for handling random access operations
US11381300B2 (en) Method and apparatus for performing random access procedure for beam failure recovery
WO2017008508A1 (zh) 基于非授权载波执行随机接入的方法及装置
WO2021143763A1 (en) Method of random access procedure and related device
JP2013509750A (ja) アクセス処理方法及びユーザー設備
US20220264638A1 (en) Systems and methods of enhanced random access procedure
US11937310B2 (en) Handling timing conflicts involving random access procedure messages
CN110933718A (zh) Prach资源的确定方法及装置、存储介质、终端
RU2789818C1 (ru) Системы и способы расширенной процедуры случайного доступа
US11974322B2 (en) Method and device for sending information, and method and device for receiving information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019823537

Country of ref document: EP

Effective date: 20210121