WO2019242195A1 - 外表面设有混频吸收器的围护结构 - Google Patents

外表面设有混频吸收器的围护结构 Download PDF

Info

Publication number
WO2019242195A1
WO2019242195A1 PCT/CN2018/112892 CN2018112892W WO2019242195A1 WO 2019242195 A1 WO2019242195 A1 WO 2019242195A1 CN 2018112892 W CN2018112892 W CN 2018112892W WO 2019242195 A1 WO2019242195 A1 WO 2019242195A1
Authority
WO
WIPO (PCT)
Prior art keywords
deformable
tower
envelope structure
absorber
cavity
Prior art date
Application number
PCT/CN2018/112892
Other languages
English (en)
French (fr)
Inventor
马盛骏
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to US16/609,826 priority Critical patent/US11415108B2/en
Priority to AU2018414991A priority patent/AU2018414991B2/en
Priority to EP18911324.4A priority patent/EP3611371A4/en
Publication of WO2019242195A1 publication Critical patent/WO2019242195A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/18Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures movable or with movable sections, e.g. rotatable or telescopic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/912Mounting on supporting structures or systems on a stationary structure on a tower
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • F05B2260/964Preventing, counteracting or reducing vibration or noise by damping means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the invention relates to the technical field of enclosure structures, and in particular to an enclosure structure provided with a frequency absorber on an outer surface thereof.
  • Figure 1-1 is a schematic diagram of the composition of wind power equipment.
  • the foundation of the wind power equipment is the tower 10, which plays the role of bearing and protecting the whole machine.
  • the tower 10 may be a steel cylinder, or a combination of a steel cylinder and a concrete tower.
  • the tower 10 carries a nacelle 30, a generator, and an impeller 20 of wind power generation equipment.
  • the wind power generator set consisting of the impeller 20 and the generator completes the task of obtaining wind energy and converting it into electrical energy.
  • the converted electric energy is transmitted through the power transmission cable 40 or the power transmission mother pipe.
  • the power transmission cable 40 shown in the figure is led out from the nacelle 30 and is limited by the cable retaining ring on the top of the tower 10, and the cable retaining ring is fixed to the cable retaining ring.
  • the fixing plate 50 is then suspended along the inner wall of the tower 100 through the saddle surface bracket 60 to the converter cabinet 70.
  • a tower door 80 is also provided at the lower end of the tower 10.
  • the converted electrical energy is controlled by the switchgear of the wind turbine, and is transmitted to the converter (in the converter cabinet 70) that completes the task of converting electrical energy through the power transmission cable 40 or the power transmission bus pipe, and then passes through the converter After processing, the electricity required to be able to connect with the grid can be obtained. Therefore, the tower 10 of the wind power generation equipment can be said to be a tower of wind power generation, which mainly plays a supporting role in the wind power generation equipment.
  • the tower 10 bears the structural wind load generated by the nacelle 30, the impeller 20, and the generator, or the downwind and crosswind vibrations caused by it, that is, wind-induced structural vibration problems.
  • Figure 1-2 is a schematic diagram of the tower hoisting in sections.
  • the tower 10 is generally installed in sections. As shown in FIG. 2, as an example, the first tower section 11, the second tower section 12, the third tower section 13, and the fourth tower section 14 are in order from bottom to top. ⁇ Fifth tower section 15. During the installation of wind power equipment, the first tower section 11 is first installed on the foundation 90 of the tower 10, and then the other tower sections are hoisted section by section. After being connected to each other, the top of the tower 10 ( Figure 2) The fifth tower section 15) is connected to the yaw system of the nacelle 30, the nacelle 30 is docked with the generator, and the generator (or gearbox) is docked with the impeller 20.
  • a spreader is installed on the upper end of the first tower section 11.
  • the main crane is responsible for lifting the upper end of the first tower section 11.
  • a spreader is installed on the lower end of the first tower section 11.
  • the auxiliary crane is responsible for the lifting task. Both cranes are lifting at the same time.
  • the main crane raises the height of the upper end of the first tower section 11 and the auxiliary crane stops.
  • the first tower section 11 is hoisted to the vertical ground position, remove the auxiliary crane, and remove the spreader at the lower end of the first tower section 11;
  • the rest of the tower section is the same as the first tower section 11 hoisting process. After the upper section is finished, the nacelle is ready to be hoisted.
  • the above-mentioned docking and connection installation procedures are carried out under the condition that the local wind in the small area environment of the wind farm is unpredictable. Therefore, during the hoisting and installation process, gusts or continuous small winds of varying sizes are often encountered. As mentioned above, these gusts or continuous winds may induce vibration on the tower, damage the stability of the envelope structure, and endanger the personal and The safety of the equipment delays the installation period. For example, after the fourth tower section 14 is hoisted, the fourth tower section 14 is vibrated, which causes the fifth tower section 15 to be misaligned; even the fastened bolts may be broken by vibration, thereby endangering safety.
  • the tower of modern large-scale MW-class wind turbines can reach a height of 60 ⁇ 100m.
  • the top of tower 10 is equipped with main components such as main frame, sub-frame, hub and blades (ie, impeller 20).
  • main components such as main frame, sub-frame, hub and blades (ie, impeller 20).
  • impeller 20 When the wind turbine is running, in addition to the gravity generated by the top components and the dynamic load generated by the rotation of the wind wheel, the load on the tower 10 is also subject to the action of natural wind, including two forms of action, downwind and crosswind.
  • the impeller When the wind blows the impeller to rotate, the bending moment and force will be generated on the tower. This kind of bending moment and force caused by the downwind direction is the main reason for the failure of the tower 10.
  • the vortex generated when the wind passes around the tower 10 also causes lateral vibration that causes resonance damage to the tower 10.
  • the left and right sides of the wake When the wind blows through the tower 10, the left and right sides of the wake generate paired, alternately arranged and anti-symmetric vortices with opposite rotation directions, that is, Carmen vortices.
  • the vortex leaves the tower 10 at a certain frequency, causing the tower 10 to generate lateral vibration perpendicular to the wind direction, which is also called wind-induced lateral vibration, that is, vortex-induced vibration.
  • the vortex detachment frequency is close to the natural frequency of the tower, the tower 10 is liable to resonate and break.
  • the invention provides an envelope structure provided with a mixing absorber on the outer surface, the mixing absorber comprising a deformable body located on the outer surface of the envelope structure, the deformable body including a flexible body and / or An elastic body, the flexible body is a flexible cavity or a flexible solid body, the elastic body is an elastic cavity or an elastic solid body, and the deformable body can be deformed under the action of an incoming flow.
  • the frequency mixing absorber includes a plurality of deformable bodies, and the deformable bodies are arranged at intervals or connected to each other.
  • the frequency mixing absorber includes a plurality of annular bodies surrounding the envelope structure, and the annular bodies are formed by a ring-shaped deformable body or are formed by a plurality of independent deformable bodies connected together.
  • the annular body is an annular cavity or an annular solid body, and the annular cavity is circumferentially penetrated or separated circumferentially; a plurality of the annular bodies are connected or spaced apart in a height direction of the envelope structure; The annular bodies are connected or spaced apart in the height direction of the envelope structure; or,
  • the frequency-mixing absorber includes a plurality of the deformable bodies, and the plurality of deformable bodies form a grid-like cavity structure surrounding the outer surface of the envelope structure. Point locations are connected or disconnected; or,
  • the frequency-mixing absorber includes a plurality of strip-shaped bodies extending in a height direction, the strip-shaped bodies are formed by one deformable body or are formed by connecting a plurality of independent deformable bodies, and the bar-shaped bodies are bar-shaped cavities or A bar-shaped solid body, the bar-shaped cavities are penetrated along the height direction or separated in the height direction; a plurality of the bar-shaped bodies are connected or spaced apart in a circumferential direction of the envelope structure.
  • the frequency mixing absorber includes a plurality of the deformable bodies, and the deformable bodies are distributed at intervals in a height direction and a circumferential direction of the envelope structure.
  • the frequency mixing absorber includes multiple rows of the deformable body, and each row of the deformable body is arranged around the envelope structure.
  • the deformable bodies in the upper and lower adjacent rows are staggered.
  • the frequency mixing absorber is divided into at least two sections, and the height and / or thickness of the deformable body distributed in different sections are different.
  • a middle row of deformable bodies is provided between the two adjacent rows of the deformable bodies, and the volume of the middle row of the deformable bodies is smaller than that of the upper and lower adjacent deformable bodies.
  • the volume of the deformable body of the row, the deformable body of the middle row is directly facing between the two deformable bodies of the upper and lower adjacent rows, or directly facing one of the deformable bodies of the upper and lower adjacent rows.
  • the deformable body is in the shape of four diamonds with recessed sidewalls.
  • the frequency mixing absorber includes multiple rows of the deformable bodies, and each row of the deformable bodies is arranged around the envelope structure; between the deformable bodies of two adjacent rows, Multiple trip bumps.
  • the frequency mixing absorber includes a plurality of annular bodies surrounding the envelope structure, and the annular cavity is formed by one deformable body in a ring shape or is connected by a plurality of independent deformable bodies. Formed; the annular bodies adjacent to each other are spaced apart, and the annular cavity is arranged in a wave shape.
  • the frequency mixing absorber includes a base capable of surrounding the envelope structure, and all the deformable bodies distributed at intervals are provided on the base;
  • the base body is adhered to the outer surface of the envelope structure; or the base body is detachably docked to surround the envelope structure.
  • the drag reducer comprising an annular groove provided around the outer surface of the envelope structure in a circumferential direction, the section of the annular groove is arc-shaped, and upper and lower adjacent ones are adjacent A ridge-shaped annular rib is formed between the annular grooves, and the drag reducer includes the annular rib; the drag reducer is provided in at least a part of the height of the envelope structure.
  • the annular rib includes a rigid spine and an elastic cavity or a solid elastomer or a flexible cavity or a solid flexible body below the spine.
  • the elastic cavity or the flexible cavity is filled with a gas or a fluid or an elastic rubber.
  • the annular groove surrounds the envelope structure and is a continuous or partially discontinuous annular groove, and continuous or partially discontinuous annular ribs are formed between the upper and lower adjacent annular grooves.
  • the frequency mixing absorber includes a base capable of surrounding the envelope structure, the deformable body is provided on the outer side of the base body, and the drag reducer is provided on the outer side of the deformable body.
  • the drag reducer includes a base portion, the annular groove is formed on the base portion, and the base portion is attached to the outside of the mixing absorber; or, the lower portion of the spine of the annular rib is A deformable body, the drag reducer is the mixing absorber, and a deformable body of the drag reducer is a deformable version of the mixing absorber.
  • the envelope structure is a tower of a wind turbine, or a television tower, or a wind measurement tower, or a water building, or a land pillar pier, or a land pillar pillar; the incoming flow is the upwind direction Stream or water stream.
  • the envelope structure is a tower, and at least the upper part of the tower is provided with the frequency mixing absorber, and the upper part is more than 1/2 the height of the tower.
  • the change in pressure will be converted into a volume change of the deformable body.
  • the pulsating energy in the stream can be absorbed and stored by the deformable body, the pulsating energy can be disordered, and the pulsating energy can be transferred to the volume change.
  • the pulsating energy is consumed and submerged during the transfer of volume change to the downstream, or the pulsating pressure is diffused, transferred, consumed, absorbed, homogenized, diluted or eliminated in direction of momentum, instead of the fluid pressure directly striking the outer surface of the envelope structure Therefore, the setting of the deformable body can consume itself, drown the pulsating excitation (ie, turbulent energy), reduce forward resistance, suppress forward vibration, and protect the stability and safety of the envelope structure.
  • the pulsating excitation ie, turbulent energy
  • the set deformable body essentially mixes, absorbs, and uniformizes harmonic pulsating energy, pulsating momentum, and pulsating impulse generated by changes in the flow velocity of the incoming flow.
  • the fluid itself must absorb the upstream energy, and after the absorption, the remainder is transferred to the solid (envelope) surface in contact with it.
  • the energy of the incoming structure after being weakened is obtained on the surface of the envelope structure.
  • the pulsation frequency of the fluid in the incoming flow is quickly or slowly absorbed by the deformable body.
  • the amplitude and frequency of the overall pulsation are greatly weakened, so it is called mixing.
  • the frequency of fluid pulsation after mixing is greatly reduced.
  • Figure 1-1 is a schematic diagram of the composition of wind power equipment
  • Figure 1-2 is a schematic diagram of the tower hoisting in sections
  • FIG. 2 is a schematic structural diagram of a tower embodiment provided with a mixing absorber at an upper portion thereof;
  • FIG. 3 is a simplified diagram of a tower section provided with a mixer absorber section in FIG. 2;
  • Figure 3 shows the mixer absorbers located on both sides of the tower in a front view
  • FIG. 4 is a schematic diagram of a mixing absorber in FIG. 2; FIG.
  • FIG. 5 is a plan view of a tower provided with a mixing absorber
  • FIG. 6 is an expanded schematic view of a flexible cavity provided with a height direction penetration provided on the outer surface of the tower;
  • FIG. 7 is a schematic circumferential development view of a grid-shaped flexible cavity provided on the outer surface of the tower;
  • FIG. 8 is a schematic diagram of an annular flexible cavity spaced up and down
  • FIG. 9 is a schematic diagram of a wave-shaped flexible cavity provided on the outer surface of the tower.
  • FIG. 10 is a first structural schematic diagram of a frequency mixing absorber on the outer surface of a tower including a plurality of flexible cavities dispersedly arranged;
  • FIG. 11 is a schematic diagram illustrating a circumferential expansion of a mixing absorber in the figure.
  • FIG. 12 is a schematic diagram of a second structure of a mixing absorber on the outer surface of a tower including a plurality of flexible cavities dispersedly arranged;
  • FIG. 13 is a third structural schematic diagram of a mixing absorber on the outer surface of the tower including a plurality of flexible cavities dispersedly arranged;
  • FIG. 14 is a schematic diagram of a fourth structure of the mixing absorber on the outer surface of the tower including a plurality of flexible cavities dispersedly arranged;
  • FIG. 15 is a fifth schematic structural diagram of a mixing absorber on the outer surface of a tower including a plurality of flexible cavities dispersedly arranged;
  • FIG. 16 is a schematic structural diagram of the trip bump in FIG. 15; FIG.
  • 17 is a schematic diagram of a drag reducing absorber provided on the outer surface of the tower;
  • FIG. 18 is a schematic diagram showing the drag reduction absorber and the tower in FIG. 17 separately;
  • FIG. 19 is a schematic diagram of the drag reduction absorber in FIG. 17 after being circumferentially expanded
  • FIG. 20 is a partially enlarged schematic diagram of part A in FIG. 18; FIG.
  • FIG. 21 is a partially enlarged view showing the airflow direction position in FIG. 17.
  • FIG. 2 is a schematic structural diagram of a mixer 10 provided in the upper part of the tower 10 according to the present invention.
  • a specific envelope structure is shown, that is, a tower 10, and a nacelle 20 is provided on the top of the tower 10.
  • a generator and a prime mover are installed in the upwind direction of the nacelle 20, and the prime mover is a wind turbine.
  • the turbine includes an impeller 30 and the bottom of the tower 20 is mounted on a foundation 40.
  • a mixing absorber 60 is provided on the outer surface of the tower 10.
  • the frequency mixing absorber 60 includes a flexible cavity 601 located on the outer surface of the tower 10, and a flexible cavity 601 (shown in FIG. 3) is provided on at least a part of the height of the outer surface of the tower 10, and in FIG.
  • a mixing absorber 60 including a flexible cavity 601 is provided within a range of L height below the top of the barrel 10.
  • L is about 1/2 to 3/4 of the height of the tower. In the steep mountain environment, L is about 2/3 of the height of the tower.
  • the purpose of defining "flexibility” here is to ensure that when the upwind flows toward the flexible cavity 601, the flexible cavity 601 can be deformed under the action of wind and the volume can be changed.
  • the inside of the flexible cavity 601 can be a gas or a gas.
  • Other fluids, such as water and oil, are described below with the inside of the flexible cavity 601 as a gas. The principle of other fluids is the same.
  • FIG. 3 is a schematic diagram of the tower section provided with the mixer absorber 60 in FIG. 2.
  • the mixer absorber 60 on the outer surface of the section of the tower 10 is separated from the tower section to make it more convenient.
  • FIG. 3 the mixing absorbers 60 located on both sides of the tower 10 are shown from the perspective of the front view. It can be understood that the mixing absorber 60 in this embodiment is actually An annular structure surrounding the tower 10.
  • FIG. 4 is a schematic diagram of the frequency mixing absorber 60 in FIG. 2.
  • the frequency mixing absorber 60 includes a plurality of flexible cavities 601 in a ring shape surrounding the tower 10 and penetrating in the circumferential direction, and the plurality of flexible cavities 601 are connected in the height direction, which is equivalent to a larger
  • the annular cavity is divided into a plurality of smaller annular flexible cavities 601 by the annular partition. This helps to improve reliability and safety in transportation and operation. When one of the smaller annular flexible cavities 601 is punctured or fails, the other smaller annular flexible cavities 601 will not fail and still work normally.
  • the pulsation energy is consumed and submerged during the transfer of the volume change of the flexible volume to the downstream, instead of the wind directly striking the outer surface of the tower 10, so the setting of the flexible cavity 601 can consume and submerge the pulsation excitation (ie, turbulent energy) by itself Reduce the downwind resistance, suppress the downwind vibration, and protect the stability and safety of the tower 10 during the hoisting process or after the hoisting operation. That is, the provided flexible cavity 601 essentially mixes, absorbs, and uniformizes the harmonic pulsating energy, pulsating momentum, and pulsating impulse generated by changes in wind speed from the upwind direction.
  • the pulsation excitation ie, turbulent energy
  • Fluids themselves absorb the upstream energy in the process of transferring energy, and after the absorption, the rest is transferred to the solid (envelope) surface in contact with it. At this time, the energy of the upwind direction flow after the absorption and weakening is obtained on the surface of the envelope structure.
  • the frequency and frequency of the pulsation of the airflow in the upwind direction is greatly weakened after being absorbed by the flexible cavity. This is mixing, and the frequency of airflow pulsation after mixing is greatly reduced.
  • the inside of the flexible cavity 601 is liquid such as water or oil
  • the fluid space outside the compressed area in the cavity will receive the pulsation transmitted by the compressed surface.
  • Pressure change because the fluid has mass and has obvious flowability, it is easy to diffuse, transfer, consume, absorb, homogenize, dilute or eliminate the directionality of momentum. It can achieve the same effect as the gas-filled flexible cavity 601, that is, it can also eliminate or weaken the pressure difference between the windward side and the leeward side of the tower-like envelope structure, thereby suppressing downwind vibration.
  • the embodiment in which the flexible cavity 601 is provided on the outer surface of the tower 10 described in this embodiment is not only applicable to the process of hoisting the tower 10 or after hoisting, to improve the impact of wind conditions on the operation, but can also be applied to other Flow field situation.
  • it will face the erosion of seawater.
  • the pulsating energy of the current acting on the position of the upstream surface of the offshore construction will also be transferred to The two sides of the headwater surface and even the rear are similar in principle to the above embodiment.
  • Offshore constructions such as offshore lighthouses, lookouts, bridge piers of sea-crossing bridges, dams on the coast, dams, etc., and also wind turbine foundations for offshore wind turbines that extend below the sea level and plow into the mud on the sea floor.
  • envelope structure ie marine construction
  • other aquatic building envelope structures with underwater building parts in rivers and lakes, and at least underwater parts can be installed on the underwater parts
  • the principle of the frequency mixing absorber is the same as the above, and will not be described again.
  • the envelope structure can also be a land pillar pier or pillar.
  • a road or railway bridge between the Grand Canyon can be provided with a land pillar pier or a land pillar pillar.
  • Land-type bridge piers or pillars will be in the wind flow field and face vibration problems.
  • the above-mentioned mixing absorber can be set to achieve the purpose of drag reduction and vibration reduction.
  • FIG. 5 is a top view of the tower 10 provided with the frequency absorber 60.
  • the flexible cavity 601 When the flexible cavity 601 is designed in a ring shape, it is squeezed by wind at the windward position, and the gas in the flexible cavity 601 at this position (the inner gas direction of the flexible cavity 601 in FIG. 5 is shown by a dashed line) is downstream of the windward surface. Moving both sides to the rear, the 180-degree transfer of pulsating energy is achieved, which is equivalent to "rushing" the gas in the flexible cavity 601 on the windward side to the downstream and reaching the rear. At this time, the gas moving stroke in the flexible cavity 601 is longer.
  • the energy consumption of the upwind direction is more obvious; and because the gas can move to the rear, that is, the leeward side, the pressure on the leeward side increases, and part of the pressure on the windward side is transferred to the leeward side, thereby reducing the windward side and leeward side of the tower 10
  • the differential pressure and downwind vibration can be effectively suppressed.
  • the annular flexible cavity 601 may be horizontally arranged, or may have a certain inclination angle, which is not limited in this embodiment.
  • the flexible cavity 601 is set in a ring shape as the preferred embodiment, but from the principle of volume change to consume pulsating energy, as long as the flexible cavity 601 is provided on the outer surface of the tower 10, its volume can be affected by wind.
  • the downward change realizes the transfer of gas inside the flexible cavity 601 (homogenizes the pressure), and then transfers and consumes the pulsating energy from the upwind, so the flexible cavity 601 is not limited to a ring shape.
  • FIG. 6 is an expanded schematic view of a bar-shaped cavity provided with a height direction penetration provided on the outer surface of the tower 10, only showing the expanded part.
  • a strip-shaped cavity extending in the height direction is provided.
  • the strip-shaped cavity is formed by a flexible cavity 601 penetrating in a height direction or is formed by a plurality of independent flexible cavities 601 connected up and down, which can balance the upward and downward forces, and thus achieve The purpose of reducing downwind resistance. For example, when the pressure on the top of the tower 10 is greater, the wind resistance is greater. When the volume of the flexible cavity 601 changes due to wind, the pulsating energy at the top will be transferred to the lower side, and the upward pressure will be reduced.
  • the flexible cavity 601 penetrating vertically may have an orthogonal relationship with the upwind flow to consume the pulsating energy to the maximum extent, or the flexible cavity 601 has a certain inclination angle, which is also possible.
  • FIG. 7 is a schematic diagram of a circumferential expansion of a grid-shaped flexible cavity 601 provided on the outer surface of the tower 10, which is only a partial view.
  • the flexible cavities 601 are in a grid shape, that is, the flexible cavities 601 are criss-crossed.
  • FIG. 7 for the convenience of illustrating the flexible cavity 601, the flexible cavity 601 and the background portion are shown in black and white, where white represents the flexible cavity 601 portion.
  • the horizontal grid portion and the vertical grid portion of the flexible cavity 601 are in communication, and the longitudinal direction is the height direction and the lateral direction is the horizontal direction.
  • the upwind direction acts on the position of the windward side
  • the airflow at the corresponding position of the flexible cavity 601 can move in both vertical and horizontal directions, as shown by the arrow direction in FIG. 7, the moving direction is diversified, and it can be consumed.
  • the pulsating energy flowing in the wind direction reduces the downwind resistance and suppresses the downwind vibration.
  • the horizontal grid and the vertical grid may not be connected, that is, the positions of the intersection points of the crisscross may not be connected, and the range of airflow movement is limited to a certain extent.
  • the horizontal grid and the vertical grid may not be on the same plane.
  • a laterally-connected annular flexible cavity 601 is provided on the outer surface of the tower 10, and a longitudinally-penetrated elongated bar is provided on the outer surface of the annular flexible cavity 601.
  • the flexible cavity 601 is also possible.
  • annular flexible cavity 601 can be connected up and down as shown in FIG. 4, or the upper and lower annular flexible cavities 601 can be arranged at a certain distance, as shown in FIG. 8, and FIG. 8 is an annular flexible cavity.
  • 601 Schematic diagram of the upper and lower intervals.
  • annular cavity is not limited to the formation of one annular flexible cavity 601, for example, a plurality of flexible cavities 601 distributed along the circumferential direction may be formed next to each other; similarly, the longitudinally passing flexible cavity 601 may also be left and right They are connected to each other or spaced apart from the left and right, and the longitudinally penetrated cavity is not limited to one flexible cavity 601 being formed through, for example, a plurality of flexible cavities 601 distributed along the height direction may be formed next to each other.
  • FIG. 9 is a schematic diagram of a wave-shaped flexible cavity 601 provided on the outer surface of the tower 10, and a wave-shaped flexible cavity 601 is developed in a circumferential direction on the right side.
  • the frequency mixing absorber 60 includes a plurality of annular cavities surrounding the tower 10 formed by a flexible cavity 601.
  • the annular cavity may be a through flexible cavity 601, that is, the flexible cavity 601 itself is annular. It is provided, or the annular cavity is formed by a plurality of adjacent arc-shaped segments and independent flexible cavities 601 being connected, and in FIG. 9, a plurality of flexible cavities 601 are connected.
  • the upper and lower adjacent annular cavities are arranged at intervals, and the annular cavities are arranged in a wave shape.
  • a wavy annular groove 603 is formed between the upper and lower adjacent annular cavities (the annular cavities are relatively convex outward).
  • the interface structure of the wave structure can drive and induce the fluid vibration in the annular groove 603.
  • This basic vibration induces a higher level of resonance in the airflow boundary layer in the annular groove 603, which can stimulate the fluid flow to turn in advance.
  • Higher momentum in order to suppress the occurrence of backflow around the flow under the back pressure gradient, and then to suppress or prevent the outer layer of the boundary layer separation tower 10 from being separated, thereby further suppressing the lateral vortex-induced vibration. That is, when a wavy annular cavity is provided in this embodiment, lateral and downwind vibration suppression can be achieved at the same time.
  • a grid-shaped flexible cavity 601 a circular cavity (one flexible cavity 601 or a plurality of flexible cavities 601 are connected to each other), or a vertically through cavity (one flexible cavity 601) are exemplified. Or multiple flexible cavities 601 are connected together).
  • FIG. 10 is a schematic diagram of the first structure of the mixing absorber 60 on the outer surface of the tower 10 including a plurality of flexible cavities 601 dispersedly arranged.
  • FIG. 11 shows the mixing absorber in FIG. 10. Schematic diagram of 60's circumferential expansion.
  • the frequency mixing absorber 60 includes a plurality of flexible cavities 601, and the flexible cavities 601 are distributed at intervals in the height direction and the circumferential direction, that is, the plurality of flexible cavities 601 are scattered on the outer surface of the tower 10 Several protrusions are formed on the outer surface of the tower 10.
  • the principle of reducing downwind vibration is consistent with the above description. It transfers, absorbs, digests, and disperses the pulsating energy from the upwind through volume changes, reducing the downwind resistance.
  • the frequency mixing absorber 60 includes multiple rows of flexible cavities 601, and a plurality of flexible cavities 601 in each row are arranged around the tower 10.
  • the upper and lower adjacent rows of flexible cavities 601 may be staggered. After the staggered arrangement, when the air flow passes through the upper and lower adjacent two rows of flexible cavities 601, the position of the flexible cavities 601 is staggered, and the interference of the air flow is not consistent, thus breaking the upper and lower correlations and avoiding the air flow in the tower 10 The vortices on both sides of the surface fall off uniformly, and then the lateral vortex-induced vibration is suppressed.
  • each row includes a plurality of flexible cavities 601.
  • the airflow has repeatedly been "split and merged" by the flexible cavities 601, thereby cutting off the sides of the tower 10.
  • the formation of the boundary layer fundamentally suppresses the cause of lateral vortex-induced vibration.
  • FIG. 12 is a schematic diagram of the second structure of the mixing absorber 60 on the outer surface of the tower 10 including a plurality of flexible cavities 601 dispersedly arranged.
  • FIG. The third embodiment of the absorber 60 includes a plurality of flexible cavities 601 that are dispersedly arranged.
  • Figures 12 and 13 are similar to the structure in Figure 11 except that the single flexible cavity 601 in Figure 11 is a circular cross-section column.
  • the flexible cavity 601 in the embodiment of Figure 12 is a square cross-section column.
  • the flexibility in the embodiment of Figure 13 The cavity 601 is a rhombus-shaped columnar body.
  • the circle, square, and rhombus here are the shapes of the flexible cavity 601 projected on the outer surface of the tower 10. It can be known that the shape of the flexible cavity 601 is not specifically limited as long as it can be subjected to wind The volume change occurs so that the air flow inside the flexible cavity 601 can be transferred to consume the pulsating energy. It should be noted that when the airflow passes through the diamond-shaped flexible cavity 601, based on the shape characteristics of the side walls of the rhombus, the airflow is split more clearly, and the boundary layer is cut off more completely.
  • the plurality of flexible cavities 601 are arranged at intervals in the height and the circumferential direction of the tower 10 to be dispersed on the outer surface of the tower 10, and the sizes of the plurality of flexible cavities 601 can be changed. In the height direction, the plurality of flexible cavities 601 can be designed.
  • the mixer absorber 60 is divided into a plurality of sections, as shown in FIG. 11-13, showing three different sections, which are a first section, a second section, and a third section in order from top to bottom.
  • the flexible cavity 601 distributed in the first interval has a height of L1 and the thickness is h1; the flexible cavity 601 distributed in the second interval has a height of L2 and the thickness is h2; the flexible cavity distributed in the third interval
  • the body 601 has a height L3 and a thickness h3.
  • FIG. 14 is a schematic diagram of a fourth structure of the mixing absorber 60 on the outer surface of the tower 10 including a plurality of flexible cavities 601 that are dispersedly arranged.
  • the flexible cavities 601 are also diamond-shaped cylindrical In the height direction, a plurality of sections are also divided. The sizes of the flexible cavities 601 are different in different sections, and at least the sizes of the flexible cavities 601 in adjacent sections are different.
  • an intermediate row of flexible cavities 601 is provided between two adjacent rows of flexible cavities 601.
  • the volume of the flexible cavities 601 in the middle row is smaller than that of the upper and lower phases.
  • the volume of the adjacent flexible cavities 601 can be defined as a "small flexible cavity 601", and the volume is also smaller than the flexible cavities 601 in other sections.
  • the flexible cavity 601 in the middle row may be directly facing between the two flexible cavities 601 in the adjacent rows, or one flexible cavity 601 in the adjacent rows.
  • a large gap is normally left between the upper and lower rows.
  • a small flexible cavity 601 in the middle row is provided, which is conducive to the disturbance of the airflow at the position of the gap and the turbulence of the airflow.
  • an acceleration channel will be formed between the two, forming a "blowing" function, especially the diamond-shaped flexible cavity 601.
  • a typical zoom channel can be formed, which is more conducive to the formation of turbulence in the airflow and avoids the lateral vortex-induced vibration caused by the consistency of vortex shedding.
  • FIG. 15 is a schematic diagram of a fifth structure of the mixing absorber 60 on the outer surface of the tower 10 including a plurality of flexible cavities 601 dispersedly arranged.
  • the projection of the flexible cavity 601 on the outer surface of the tower 10 is diamond-shaped, but it is a concave diamond shape, that is, the flexible cavity 601 has four diamond-shaped cylindrical structures with concave sidewalls.
  • multiple rows of flexible cavities 601 are provided, and multiple rows of flexible cavities 601 in each row are distributed around the tower 10 in the circumferential direction.
  • the flexible cavity 601 is a cavity structure protruding relative to the outer surface of the tower 10, when the upwind flows around the tower 10, the airflow acts on the flexible cavity 601 to move the internal airflow.
  • the airflow from the upwind direction will be drawn by the concave side wall of the diamond-shaped flexible cavity 601, that is, part of the airflow will go up or down along the concave side wall. This can also consume part of the pulsating energy, and draw up and down The airflow will collide due to the opposite directions, further consuming pulsating energy.
  • the upper and lower adjacent flexible cavities 601 can be staggered, so that the airflow drawn up and down by the diamond-shaped flexible cavity 601 is more likely to form a vortex and increase the rotational momentum of the vortex.
  • FIG. 16 is a schematic structural diagram of the tripping protrusions 604 in FIG. 15.
  • An annular groove 603 is formed between the two adjacent rows of flexible cavities 601.
  • the trip protrusion 604 can stimulate the air to form a radial surface pulsation along the tower 10. And it is pulsating periodically.
  • the pulsating driving force can promote the transition of the boundary layer in advance (transition of the laminar flow state to the turbulent flow state boundary layer), form turbulence, and have a higher momentum to suppress the occurrence of recirculation around the flow under the pressure gradient, and further suppress Or it can prevent the boundary layer from separating the surface of the tower 10 and suppress the lateral vortex-induced vibration caused by detachment around the flow.
  • the cross-section of the tripping protrusion 604 is semi-circular, and the arcuate surface of the tripping protrusion 604 faces outward.
  • the resistance to the airflow can be reduced, and the formed pulsation has a certain momentum.
  • a number of lateral ridges are provided on the outer surface of the tripping protrusion 604, so that the entire tripping protrusion 604 forms a protruding trip line 604a structure.
  • the tripping protrusion 604 Similar to the "speed bump" on a highway, the tripping protrusion 604 The increased friction on the outer surface increases the adhesion of the boundary layer and prevents the boundary layer from being driven by the overall wind direction, which is conducive to the formation of radial pulsations. The effect is more pronounced under conditions of large wind speeds.
  • the density of the circumferential arrangement of the flexible cavities 601 gradually increases from top to bottom.
  • the size of the tower 10 will gradually increase from top to bottom, so the density of the arrangement in the circumferential direction is increased to ensure that there are enough flexible cavities 601 to be able to correspond to the upwind from different directions.
  • the mixing absorber 60 includes, in addition to the flexible cavity 601,
  • the base body 602 (for example, the black part in FIG. 7 may be the base body 602) that can surround the envelope structure, and all the flexible cavities 601 distributed at intervals are provided on the base body 602. In this way, it is convenient to set all the flexible cavities 601 to the outer surface of the tower 10.
  • the frequency mixing absorber 60 may be a plastic product provided with a flexible cavity 601.
  • a lightweight plastic product may be used, which may be transparent or non-transparent, such as PE + PA film, that is, a composite material formed of PE and PA.
  • PE + PA film a composite material formed of PE and PA.
  • the advantages of convenient processing and low cost are conducive to reducing the cost of the entire tower 10.
  • the material is a plastic film
  • the embodiment shown in Figs. 11-15 is adopted, that is, when the frequency absorber 60 includes a plurality of dispersedly arranged columnar structure flexible cavities 601, it is convenient for molding and convenient for transportation, and will not Occupies more space volume of transportation vehicles.
  • forming into a ring-shaped flexible cavity 601, a vertical flexible cavity 601, or a grid-like structure as shown in Figs. 4, 6, and 7 is also more convenient in terms of forming and transportation.
  • the base body 602 When the base body 602 is provided, the base body 602 can be adhered to the outer surface of the tower 10 (when the frequency absorber 60 is a complete annular flexible cavity 601, the base body 602 is actually the inside of the flexible cavity 601), for example, by Double-sided tape. Alternatively, the base body 602 is looped around the tower 10 to form a ring-shaped base body 602. When the base body 602 is not in use, the docking can be undone and the mixing absorber 60 can be removed, so that the entire mixing absorber 60 can be reused and the cost is further reduced.
  • the upper part of the tower 10 is provided with the frequency mixing absorber 60, and the upper part here refers to the position of the tower-type envelope structure above the height of 1/2.
  • the upper part of the vibration is more obvious, and a better effect can be achieved by setting the mixing absorber 60 to suppress the upper part of the vibration.
  • the frequency mixing absorber 60 includes a flexible cavity 601, and its working principle is to use the deformable characteristics of the flexible cavity 601 to transfer and consume the energy of the flow.
  • the mixing absorber 60 is not limited to including the flexible cavity 601, and may also be other deformable bodies that can be deformed, such as an elastic cavity.
  • the elastic cavity also has a rebound function. Function, which is convenient for repeated use, and the effect is better than the embodiment of the flexible cavity 601.
  • the above-mentioned elastic cavity and flexible cavity 601 can be filled with gas or liquid to achieve better deformation.
  • the elastic cavity and the flexible cavity 601 have superior deformability and are better embodiments.
  • energy transfer, vibration reduction and drag reduction can be better achieved, while the elastic solid body and the flexible solid body It also has a good effect on a relatively slow flow field (for example, water flow, for specific marine buildings mentioned in the article, other water buildings, etc.), for example, it can surround multiple elastic rubber bodies on the outer surface of the envelope structure.
  • the embodiments of the present invention are described by taking the flexible cavity 601 as an example.
  • the elastic cavity, the elastic solid body, or the flexible solid body mentioned here can replace the flexible cavity 601, especially the elastic cavity.
  • Both the body and the flexible cavity 601 have a cavity, but the elastic cavity also has a rebound function.
  • the elastic cavity, the elastic solid body or the flexible solid body can be arranged in a ring, a vertical bar, or at intervals.
  • the elastic cavity can be vertically or circumferentially penetrated or partially interrupted, etc., and is implemented with the flexible cavity 601.
  • the examples are the same and will not be repeated in the following.
  • the elastic cavity, the flexible cavity 601, and the elastic solid body or the flexible solid body are not limited to being used as the mixing absorber 60, and can be mixedly applied.
  • the upper portion of the mixing absorber 60 includes an elastic cavity and the lower portion includes a flexible cavity.
  • the cavity 601 chooses one which is easy to realize in technology and convenient for processing.
  • the annular solid body and the strip solid body mentioned in the above embodiments will form a circular solid body and a strip solid body, that is, a circular body and a strip.
  • the shape can be solid or cavity, which is not repeated here. It can be understood that when the annular body is a cavity, a fluid is provided inside, and when the fluid is penetrated in the height direction or the circumferential direction, the fluid can flow to a greater extent to consume energy. Of course, the fluid is divided in the height direction or the circumferential direction (divided by multiple Deformable bodies are formed next to each other). When the toroid is a solid body, it will not penetrate, as long as it is connected, energy consumption and transfer can be realized.
  • FIG. 17 is a schematic diagram of a drag reducing absorber provided on the outer surface of the tower 10.
  • FIG. 18 is a schematic diagram of the drag reducing absorber and the tower 10 shown separately in FIG. The drag reducers on both sides of the tower 10 are viewed from the main perspective. It can be understood that the drag reducer 50 in this embodiment absorbs in a ring shape;
  • FIG. 19 is a schematic diagram of the drag reducer in FIG. 17 after being circumferentially expanded. , Only shown locally.
  • the drag reducing absorber in this embodiment includes a frequency mixing absorber 60 and a drag reducing device 50.
  • the principle of the frequency mixing absorber 60 has been described by way of example in the above embodiments.
  • the drag reducer 50 includes an annular groove 501 located on the outer surface of the tower 10. As shown in FIG. 17, the absorption drag reducer includes a drag reducer 50 located on the outside and a mixing absorber 60 located on the inside. It is closer to the outer surface of the tower 10 than the drag reducer 50. Specifically, the drag reducer 50 includes a base that surrounds the tower 10, an annular groove 501 is provided on the outside of the base, and the above-mentioned mixing absorber 60 is provided on the inside of the base. The mixing absorber 60 may be in the various embodiments described above. The structure of the mixing absorber 60.
  • the groove wall of the annular groove 501 of the drag reducer 50 includes an upper groove wall 501 a located above and a lower groove wall 501 b located below, and the upper groove wall 501 a and the lower groove wall 501 b are inclined to each other in an arc shape so as to flow to the annular groove 501.
  • the airflow inside can collide with each other to reduce the downwind resistance.
  • FIG. 20 is a partially enlarged schematic diagram of part A in FIG. 18.
  • the annular groove 501 is an annular groove that surrounds the outer surface of the tower 10 in the circumferential direction.
  • the center line X of the annular groove 501 (horizontal center line X shown in FIG. 20) is defined as the upper groove wall 501 a and the lower line is defined as the lower groove wall 501 b.
  • the upper groove wall 501a and the lower groove wall 501b are actually inclined with respect to each other, that is, from left to right, the upper groove wall 501a is curved downward, and the lower groove wall 501b is curved upward.
  • FIG. 17 please continue to understand FIG. 17 and refer to FIG. 21.
  • FIG. 17 also shows the airflow direction in the annular groove 501.
  • FIG. 21 is a part of the airflow direction position shown in FIG. Zoom in.
  • the black arrows in Figures 17 and 21 indicate the airflow direction.
  • the airflow entering the annular groove 501 at the windward side makes the above-mentioned collision, and when the airflow moves along the annular groove 501 to both sides of the windward side, the flow in the annular groove 501 straightens the upwind flow.
  • the pulsating flow in the vertical groove is artificially made in a local groove in the vertical height direction.
  • the pulsation is a pulsating driving force, which limits the flow of the air flow in the horizontally defined annular groove 501, thereby reducing, transforming (following The second law of thermodynamics, the order energy is transformed into disorder energy), prevents the rate of pressure reduction during the downstream flow of the airflow.
  • the tower 10 also generates vortex-induced vibration, which is caused by the same vortex shedding on both sides when the wind is flowing around the tower 10, and in this solution, since the annular groove 501 is provided, correspondingly The vortex shedding consistency above and below the annular groove 501 is broken, thereby suppressing vortex-induced vibration.
  • the annular groove 501 is annular
  • annular ribs 502 are formed between adjacent annular grooves.
  • the drag reducer 50 further includes the annular rib 502, and the annular rib 502 is a ridge structure.
  • the annular rib 502 which has a ridge 502b, it can divide the airflow sharply into the upper and lower annular grooves 501, and divide it into upper and lower airflows, which can prevent the upwind from flowing around the surface of the tower 10 annularly.
  • the development of vortices in the grooves on both sides of the rib 502 suppresses the occurrence of the turbulent boundary layer burst process and weakens the exchange of gas flow along the normal direction.
  • the groove bottom exchange of the annular groove 501 is the largest, focusing on the groove bottom exchange.
  • the position higher than the spine 502b of the ring-shaped rib 502 outside is weaker, so the resistance is also reduced.
  • ridge-shaped annular ribs 502 may be formed between the upper and lower adjacent annular grooves 501.
  • the ridges are ridges, and the outer edges of the annular ribs 502 are The sharp annular line shape, that is, the annular rib 502 has a spine 502b, and the longitudinal section of the annular rib 502 is similar to a triangle.
  • the two side walls of the annular rib 502 are the lower groove wall 501b of the upper groove and the upper side wall of the lower annular groove 501, respectively.
  • the longitudinal section of the annular rib 502 is not a straight triangle.
  • the upper and lower sides are concave.
  • the tip of the ridge-shaped annular rib 502 is beneficial to "split" the airflow instead of directly hitting it when the airflow blows toward the outer surface of the tower 10.
  • the airflow enters the annular groove 501 above and below the annular rib 502 in time, so as to participate in the change of direction and collision in time, reduce the resistance, and achieve the purpose of reducing the resistance.
  • the ridge 502b of the annular rib 502 is a rigid ridge, has a certain hardness, is not easily deformed by an external force, and can maintain the shape of the ridge 502b.
  • the annular rib 502 is an elastic cavity 502a under the spine 502b, and may also be a solid elastomer or a flexible cavity or a solid flexible body.
  • the spine 502b and the elastic cavity 502a (or a solid elastomer or a flexible cavity or Solid flexible body) can be connected or formed in one piece.
  • the ridge 502b has a certain deformation capacity under the action of the current, which can be deformed, so that the flow energy is transferred to both sides in the future and consumed, which helps to eliminate the pressure difference between the windward and leeward sides of the envelope structure, or Reduce the pressure differential, thereby eliminating or reducing the downwind resistance of the envelope structure.
  • the depth and height of the annular groove 501 are marked.
  • the section of the tower 10 provided with the drag reducer 50 is divided into three sections from top to bottom, and the depth of the annular groove 501 in the upper section is h1. , Height L1, the depth h2, the height L2 of the annular groove 501 in the middle section, the depth h3, and the height L3 of the annular groove 501 in the lower section.
  • the ratio of h1 / L1 is between 0.3 and 0.6 to ensure that the air flow can be in the annular groove 501 without increasing the resistance. Smooth drainage and collision, so as to reduce the resistance.
  • the larger the radius corresponding to the arc of the annular groove 501 the better the drag reduction effect.
  • the groove depth of the annular groove 501 may be gradually deepened, and / or the groove width (height in FIG. 17) of the annular groove 501 may be gradually increased. It can be seen that the deeper the groove, the more energy is lost when the airflow collides with each other, and the width of the groove is gradually increased. The greater the airflow involved in the collision, the greater the energy loss. Accordingly, the resistance in the downwind direction is reduced more.
  • the downwind vibration of the upper part of the tower 10 is more obvious, so from bottom to top, the groove depth is designed to gradually deepen and / or the groove width is gradually increased to meet the downwind vibration suppression requirements of the tower 10.
  • the groove depth of the annular groove 501 is greater than 2 mm, and the groove depth is too shallow, which is not conducive to guiding the airflow into the groove and forming opposite collisions of the airflow.
  • the thickness of the boundary layer of the airflow is 1-2mm, and the groove depth here is greater than 2mm, in order to meet the requirements of the collision of the airflow.
  • the groove depth of the annular groove 501 does not exceed 5 mm, so as not to increase the resistance excessively.
  • the height of the tower 10 can be referred to. The higher the height of the tower 10, the higher the height of the tower where the groove depth is. At this time, the wind speed is relatively large, and the value of the groove depth is relatively large.
  • the annular groove 501 is provided around the outer periphery of the tower 10 to form an annular groove.
  • the groove is not limited to a continuous annular shape.
  • the grooves of several arc-shaped sections are spaced along the circumference of the tower 10 to form a partially discontinuous annular groove.
  • the distance between the gaps can be designed to be relatively small, so that when the upwind flows in any direction, Both can be blown into the groove. In this way, when the upwind flows around the flow tower 10 in the same direction, the airflow will also generate opposite collisions in the annular groove 501 to reduce the resistance in the downwind direction.
  • the annular groove 501 has a continuous ring shape, which is a better embodiment.
  • the frequency mixing absorber 60 and the drag reducer 50 are set together (can be formed integrally or separately).
  • part of the airflow directly enters the annular groove 501, and part of it is annular.
  • the rib 502 splits into the annular groove 501, and is guided in the annular groove 501 of the drag reducer 50 to collide with each other to reduce resistance; and the pulsating energy of the airflow at the windward side is further mixed by the frequency absorber 60 Absorption, so as to achieve the purpose of drag reduction, mixing, and absorption.
  • the drag reducer 50 and the frequency mixing absorber 60 are not limited to being arranged together.
  • the frequency mixing absorber 60 includes a plurality of annular cavities arranged at intervals in the height direction
  • the adjacent cavities can be The above-mentioned drag reducer 50 is provided, and the drag reducer 50 may also be a part of the outer surface of the tower 10.
  • a mixing absorber 60 is provided within a certain height range
  • a drag reducer 50 is provided within a certain height range.
  • the mixing absorber 60 and the drag reducer 50 are arranged together to form the drag reducing mix absorber 60, and surround the tower 10 at least within a certain height range, which is a more preferred embodiment, so that the resistance in the downwind direction It is minimized, and it is easier to implement.
  • the annular groove 501 of the drag reducer 50 is formed at the base. Between the groove wall of the annular groove 501 and the base, there may be an elastic cavity 502a, that is, a cavity located below the spine 502b.
  • the cavity 502a or the flexible cavity) is filled with a gas, liquid, or elastic rubber-like substance so that the drag reducer 50 is formed with a skeleton to ensure that the annular groove 501 and the ridge 502b of the annular rib 502 will not be easily deformed, and the above-mentioned drag reducing function is completed.
  • the air flow is divided up and down.
  • the cavity between the groove wall of the annular groove 501 and the base is filled with gas or liquid or elastic rubber
  • the cavity itself at this time is equivalent to a flexible or elastic cavity, and further has the ability to deform to eliminate the envelope structure
  • the pressure difference between the windward side and the leeward side, or reduce the pressure difference, thereby eliminating or reducing the downwind resistance of the envelope structure, that is, it also has the function of a mixing absorber, that is, the drag reducer 50 and the mixing absorber 60 are integrated. It is shaped and shares a base near the outer surface of the tower 10.
  • the flexible cavity 601 of the frequency mixing absorber 60 can be set to have good deformation ability, and when the cavity below the spine 502b in the drag reducer 50 has the frequency mixing absorption function, it is also necessary to maintain a certain skeleton stiffness, so separate When the mixing absorber 60 is provided, its deformation ability is good, and the volume of the flexible cavity 601 is not excessively limited.
  • this case is specifically concerned that the wind turbines are in the air flow during the installation and long-term operation. From the time of tower 10 hoisting, resonance and airmen vortex street destruction phenomenon after coupling with the air flow may occur; restrain the tower 10 This structure may cause various damage phenomena caused by pressure pulsation and resonance after coupling with air flow.
  • this solution constructs a surface of a new type of bearing envelope structure, and changes the original upwind air flow around the tower 10 outside the tower 10 outside the tower 10 hoisted and installed in the wind farm construction to form a boundary layer around the tower 10 Change the flow field of the airflow around the tower 10, including the safety of later operation, wind energy absorption and conversion, and form a natural force fluid-solid coupling air flow flow field control structure around the surface of the tower 10, which causes the surface of the tower 10 Changes in and around the flow field weaken the pressure pulsation of the windward side of the tower 10, prevent the occurrence of vortex streets on both sides of the leeward side, prevent the vortex-induced response of the tower 10, amplify the vortex-induced response, and suppress the tower 10 from being induced to vibrate . Accordingly, it is possible to protect the connecting bolts of the tower 10 and the connecting bolts of the foundation. Reduce the fatigue damage of the structure by reducing the vibration amplitude.
  • the outer surface structure of the tower 10 formed in this solution is provided with a frequency absorber 60, which can reduce the resistance in the windward direction.
  • the pressure difference between the leeward surface and the leeward surface reduces the pitch of the tower in the windward direction caused by the pressure difference acting on the windward and leeward sides of the tower, reduces the reaction force of the tower's windward to the upwind, and reduces the
  • the frequency of the change of the reaction force of the upwind facing the oncoming flow of the upwind reduces the pressure pulsation of the airflow at the position where the blades pass in front of the windward surface of the tower, thereby improving the pulsating pressure on the blades that occurs when the blade passes in front of the tower
  • the reduction reduces the pulsation of the bending moment from the force acting on the blade to the joint of the pitch bearing bolt at the root of the blade, and reduces the pulsation of the bending moment and the fatigue damage caused by the load.
  • the outer boundary layer of the tower 10 may be damaged.
  • This surface structure may cause damage to the surface boundary layer of the tower 10 and the upper and lower sections of the flow field nearby;
  • the innovation of this scheme can ensure or strive for the reliable hoisting of the nacelle when the wind speed is less than 8m / s; the hoisting of the tower 10 when the wind speed is less than 10m / s.
  • the hoisting of the tower 10 and the large parts of the engine room under the existing technology will be restricted in construction. Therefore, the implementation of this solution can solve or improve the damage and hidden dangers to the basic connections of the tower 10 caused by the wind-induced shaking of the tower 10 itself of the wind turbine generating unit's load-bearing structure during the hoisting process; reducing the construction cost and facilitating wind power generation
  • the unit was connected to the grid for power generation as early as possible. And, as mentioned earlier, the same applies to other flow fields, such as offshore construction.
  • the research process found that when the tower 10 absorbs energy from the same vortex as its own frequency, the structure vibration structure of the upper part of the tower 10 will change, and the changed structure of the tower 10's envelope will affect the airflow, so that The energy concentrated on the fundamental frequency of the structure of the tower 10 is increasing, which stimulates the lateral vortex-induced resonance of the structure of the tower 10.
  • the upwind incoming flow has a certain turbulence intensity, the incoming flow already has energy of various frequency components, and these energy dispersibility is large and pulsating.
  • the incoming flow already carries vortices of various energy.
  • the integration of the structure of the outer surface of the tower 10 on the upwind incoming flow occurs based on the vortex in the incoming flow. Therefore, on the basis of the chaotic incoming flow, the future flow is reconstructed and consumed in the boundary layer by means of the mixing absorber 60, and becomes a vortex different from the fundamental frequency of the vibration of the tower 10.
  • the tower 10 When the tower 10 is provided with a mixing absorber 60 or a drag reducer 50 at the same time, it is equivalent to a partial passage.
  • the upwind flow around the tower 10 as a whole is divided into a multi-layer surface structure in the height direction. This breaks the overall correlation between the wind direction and the airflow along the outer surface of the tower 10 of the envelope structure. On the whole, the airflow that promotes the upwind direction closely adheres to the outer surface of the tower 10, hinders the separation of the boundary layer and the Karman vortex phenomenon, and hinders the formation of vortexes on the two sides behind the upper tower 10.
  • a drag reducer 50 such as that shown in FIG.
  • Correlation is an important feature of pulsating wind. Here, it is related to pulsating wind speeds at two points in space (Z 1 , Z 2 ) or pulsating pressure at two points at different heights on the surface of the tower 10.
  • the correlation coefficient ⁇ is defined as
  • covariance is the time average of the product of pulsating wind speeds at two altitudes.
  • Each wind speed value on the right side of the equation is subtracted from the respective average u (And Z U (Z 1 , t) is the U wind speed at the time t and the height Z 1 , U (Z 2 , t) is the wind speed at the time t and the height Z 2 , that is, the wind speed at different height positions at the same time .
  • u (t) is the downwind turbulence component, that is, the pulsating wind speed component in the direction of average wind speed.
  • the numerator indicates that the tower 10 has different wind speeds at two different heights, and the covariance of the pulsating wind speeds.
  • Covariance is the time average of the product of pulsating wind speeds at two altitudes.
  • the overall strength of the turbulence can be measured by the standard deviation of the wind speed or the root mean square. Subtract the average component from the wind speed, and then use the deviation to quantify the remaining part. The deviation is squared and averaged, and the final squared is obtained. Physical quantity, get standard deviation. According to the definition of correlation coefficient, the covariance of wind speeds at different heights is divided by the standard deviation to obtain the correlation coefficient between two wind speeds at different heights. The smaller the correlation, the better. Consistency affects the accumulation and growth of vortex-induced resonance energy, that is, prevents the growth of vortex-induced resonance, and even causes vortex-induced resonance to disappear.
  • Mean square value of total pulsating wind on the surface of the tower 10 structure y i and y j are two points in the vertical height direction of the surface of the tower 10, and ⁇ (y i -y j ) is the correlation coefficient of the pulsating wind in the paragraph between y i and y j .
  • the tower 10 which may be a tower of an onshore tower or an offshore wind turbine
  • the above embodiments may be applicable to similar envelope structures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Architecture (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)

Abstract

一种外表面设有混频吸收器的围护结构,混频吸收器包括位于围护结构的外表面的可形变体,可形变体包括柔性体和/或弹性体,柔性体为柔性腔体或柔性实心体,弹性体为弹性腔体或弹性实心体;可形变体能够在来流作用下发生形变。当来流的方向为自左向右时,作用在迎流面的可形变体上,即压力的变化将转化为可形变体的体积变化。如此,可将来流中的脉动能量借助可形变体的形变进行吸收、储存、实现脉动能量无序化,将脉动能量转移到体积变化上。脉动能量在可形变体体积的体积变化向下游转移过程被消耗、淹没,而不是直接正向作用在围护结构外表面,故而可形变体的设置可自行消耗、淹没脉动激励、降低顺向阻力,抑制振动。

Description

外表面设有混频吸收器的围护结构
本申请要求于2018年06月21日提交中国专利局、申请号为201810646400.8、发明名称为“外表面设有混频吸收器的围护结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及围护结构技术领域,具体涉及一种外表面设有混频吸收器的围护结构。
背景技术
请参考图1-1,图1-1为风力发电装备构成示意图。
风力发电装备的基础为塔筒10,对整机起承载、围护作用。作为示例,以一个圆形截面塔筒10为例,塔筒10可以是钢筒,也可以是钢筒与混凝土塔筒的组合。塔筒10承载着风力发电装备的机舱30、发电机、叶轮20。由叶轮20与发电机组成的风力发电机组完成获取风能并转化成电能的任务。转化成的电能经电力传输电缆40或电力输送母管传输,图中所示的电力传输电缆40从机舱30引出后由塔筒10顶部的电缆挡圈限位,电缆挡圈固定于电缆挡圈固定板50,然后经马鞍面支架60后沿塔筒100的内壁垂下至变流柜70处。塔筒10的下端还设有塔架门80。
转化获得的电能经过风力发电机组的开关柜控制,借助电力传输电缆40或电力输送母管导线输运至完成电力电能变换任务的变流器(在变流柜70内),再经过变流器处理后可获得能与电网对接规则要求的电能。因此,风力发电装备的塔筒10可以说是是风力发电的塔杆,在风力发电机组装备 中主要起支撑作用。
同时,塔筒10承载由机舱30、叶轮20、发电机产生的结构风荷载或由此引发的顺风向振动和横风向振动,即:风致结构振动问题。
请参考图1-2,图1-2为塔筒分段吊装的示意图。
塔筒10目前一般分段安装,如图2所示,作为举例,从下至上依次为第一塔筒段11、第二塔筒段12、第三塔筒段13、第四塔筒段14、第五塔筒段15。风力发电装备的安装过程中,首先将第一塔筒段11安装于塔筒10的地基基础90上,然后其他塔筒段被逐段吊装,在相互连接之后,塔筒10顶部(图2中的第五塔筒段15)与机舱30的偏航系统连接,机舱30与发电机对接,发电机(或齿轮箱)再与叶轮20对接。
具体吊装过程如下:
吊装塔筒10前,先清洁与第一塔筒段11连接的地基基础90的基础环,把多根螺栓(如120根)螺纹处抹油后放在基础环内圈处,同时将风力发电装备的控制柜吊入到基础环内;
对第一塔筒段11的上端安装吊具,此处由主吊承担对第一塔筒段11上端的吊起,也同时对第一塔筒段11的下端安装吊具,此处由塔筒辅吊承担吊起任务,两吊车同时起吊,当第一塔筒段11的高度大于第一塔筒段11最大直径后,主吊提升第一塔筒段11上端的高度,辅吊停下,当第一塔筒段11吊到垂直地面位置后把辅吊移开,卸掉第一塔筒段11下端的吊具;
将第一塔筒段11的法兰面连接好后,把螺栓从下往上穿,带好螺母后用电动扳手拧紧,至少对螺母实施拧紧3遍工序(等到整台风力发电装备 吊装工序完成后,再用力矩扳手对塔筒连接螺母实施拧紧到要求的力矩值);
其余的塔筒段与第一塔筒段11吊装过程相同,把最上段的塔筒段吊装完毕后,准备吊装机舱。
以上这些对接、连接的安装工序都在对风电场小地域环境局部风不可预测的情况下开展施工。因此,在吊装安装过程中,常会遇到大小变化不定的阵风或持续的小风,而如上所述,这些阵风或持续风有可能对塔筒诱发振动,破坏围护结构稳定、危及现场人身和设备的安全,推迟安装工期。例如,吊装第四塔筒段14后,第四塔筒段14存在振动,导致第五塔筒段15无法对准;甚至,紧固的螺栓可能会在震动作用下断裂,从而危及安全。
目前,风电行业吊装过程工程安全要求明确规定:风速大于6m/s时禁止叶片组吊装;风速大于8m/s时严禁机舱吊装;风速大于10m/s时严禁塔筒吊装。可见,现场吊装进度、安装工期明显受到局部区域风况的限制。对于高海拔、高山地域风电场的建设而言,工期更是容易受到影响。
现代大型MW级风力发电机组的塔筒高度可达60~100m,塔筒10顶部装有主机架、副机架、轮毂和叶片(即叶轮20)等主要部件。风力发电机组运行时,塔筒10受到的载荷除了顶部零部件产生的重力和风轮旋转产生的动载荷外,还要受到自然风的作用,包括顺风向和横风向两种作用形式。风吹动叶轮旋转时会对塔筒产生弯矩和力,这种由顺风向产生的弯矩和力是塔筒10发生破坏的主要原因。风绕过塔筒10时产生的涡流还会引起使塔筒10发生共振破坏的横向振动。
风吹过塔筒10时,尾流左右两侧产生成对的、交替排列的及旋转方向 相反的反对称漩涡,即卡门漩涡。漩涡以一定频率脱离塔筒10,使塔筒10发生垂直于风向的横向振动,也称风诱发的横向振动,即涡激振动。当漩涡的脱离频率接近塔筒固有频率时,塔筒10容易发生共振而破坏。
有鉴于此,如何改善风力发电装备安装受到区域风况限制的情况,是本领域技术人员亟待解决的技术问题。
发明内容
本发明提供一种外表面设有混频吸收器的围护结构,所述混频吸收器包括位于所述围护结构的外表面的可形变体,所述可形变体包括柔性体和/或弹性体,所述柔性体为柔性腔体或柔性实心体,所述弹性体为弹性腔体或弹性实心体;所述可形变体能够在来流作用下发生形变。
可选地,所述混频吸收器包括多个可形变体,所述可形变体之间间隔设置,或相接设置。
可选地,所述混频吸收器包括多个环绕所述围护结构的环形体,所述环形体由一个呈环形的可形变体形成或由多个独立的可形变体相接形成,所述环形体为环形腔体或环形实心体,所述环形腔体周向贯通或周向分隔;多个所述环形体在所述围护结构的高度方向上相接或间隔分布;多个所述环形体在所述围护结构的高度方向上相接或间隔分布;或,
所述混频吸收器包括多个所述可形变体,且多个所述可形变体形成环绕所述围护结构外表面的网格状腔体结构,所述网格状腔体结构的结点位置连通或不连通;或,
所述混频吸收器包括多个沿高度方向延伸的条形体,所述条形体由一个可形变体形成或由多个独立的可形变体相接形成,所述条形体为条形腔 体或条形实心体,所述条形腔体沿高度方向贯通或沿高度方向分隔;多个所述条形体在所述围护结构的周向上相接或间隔分布。
可选地,所述混频吸收器包括多个所述可形变体,所述可形变体在所述围护结构的高度方向上、周向上均间隔分布。
可选地,所述混频吸收器包括多排的所述可形变体,各排所述可形变体环绕所述围护结构布置。
可选地,上、下相邻两排的所述可形变体错开布置。
可选地,沿高度方向,所述混频吸收器划分有至少两个区间,不同区间中分布的所述可形变体的高度和/或厚度不同。
可选地,所述混频吸收器同一区间中,上下相邻的两排所述可形变体之间设有中间排的可形变体,所述中间排的可形变体的体积小于上下相邻排的所述可形变体体积,所述中间排的可形变体正对于上下相邻排的两个所述可形变体之间,或正对上下相邻排的一个所述可形变体。
可选地,所述可形变体呈四条侧壁均内凹的菱形。
可选地,所述混频吸收器包括多排的所述可形变体,各排所述可形变体环绕所述围护结构布置;相邻两排的所述可形变体之间,设有多个绊流凸起。
可选地,所述混频吸收器包括多个环绕所述围护结构的环形体,所述环形腔体由一个呈环形的所述可形变体形成或由多个独立的可形变体相接形成;上、下相邻的所述环形体间隔分布,且所述环形腔体呈波浪形设置。
可选地,所述混频吸收器包括能够环绕所述围护结构的基体,间隔分布的所有所述可形变体设于所述基体;
所述基体粘附于所述围护结构的外表面;或所述基体以可拆解地方式对接而环绕所述围护结构。
可选地,还包括减阻器,所述减阻器包括沿周向环绕所述围护结构外表面设置的环形凹槽,所述环形凹槽的断面为弧形,上、下相邻的所述环形凹槽之间形成脊状的环形肋,所述减阻器包括所述环形肋;所述围护结构至少部分高度范围内设有所述减阻器。
可选地,所述环形肋包括刚性的脊背和在所述脊背下方的弹性腔体或实心弹性体或柔性腔体或实心柔性体。
可选地,所述弹性腔体或所述柔性腔体内填充有气体或流体或弹性橡胶。
可选地,所述环形凹槽环绕所述围护结构,为连续或局部间断的环形槽,上下相邻所述环形凹槽之间形成连续或局部间断的环形肋。
可选地,所述混频吸收器包括能够环绕所述围护结构的基体,所述基体的外侧设有所述可形变体,且所述减阻器设于所述可形变体的外侧。
可选地,所述减阻器包括基部,所述环形凹槽形成于所述基部,所述基部贴附于所述混频吸收器的外侧;或,所述环形肋的所述脊背下方为可形变体,所述减阻器为所述混频吸收器,所述减阻器的可形变体为所述混频吸收器的可形变体。
可选地,所述围护结构为风力发电机组的塔筒,或电视塔,或测风塔,或水上建筑、或陆地柱式桥墩、或陆地柱式支柱;所述来流为上风向来流或水流。
可选地,所述围护结构为塔筒,至少所述塔筒的上部设有所述混频吸 收器,所述上部为所述塔筒1/2高度以上。
当来流作用在迎流面的可形变体上,压力的变化将转化为可形变体的体积变化。如此,可将来流中的脉动能量借助可形变体进行吸收、储存、实现脉动能量无序化,将脉动能量转移到体积变化上。脉动能量在体积变化向下游转移过程被消耗、淹没,或者把脉动压力扩散、转移、消耗、吸收、均一化、淡化或消除动量方向性,而不是流体压力直接正向撞击在围护结构外表面,故而可形变体的设置可自行消耗、淹没脉动激励(即湍流能量)、降低顺向阻力,抑制顺向振动,保护围护结构的稳定性和安全性。
即,设置的可形变体本质上是对来流的流速变化产生的谐波脉动能量、脉动动量、脉动冲量进行混频、吸收、均一化。流体在传递能量过程中自身要对上游能量进行吸收,吸收之后剩余的才传递到与之接触的固体(围护结构)表面。这时围护结构表面得到的是被吸收削弱之后的来流能量,来流中流体脉动频率快或慢经可形变体吸收后整体脉动的幅度和频率大大地被削弱,因此称之为混频,混频后的流体脉动频率大幅度降低。
附图说明
图1-1为风力发电装备构成示意图;
图1-2为塔筒分段吊装的示意图;
图2为本发明所提供塔筒实施例中,其上部设有混频吸收器的结构示意图;
图3为图2中设有混频吸收器段落的塔筒段简图;
图3中以主视的视角示出位于塔筒两侧的混频吸收器;
图4为图2中混频吸收器的示意图;
图5为设有混频吸收器的塔筒的俯视图;
图6为在塔筒外表面设置高度方向贯通的柔性腔体的展开示意图;
图7为在塔筒外表面设置网格状柔性腔体的周向展开示意图;
图8为一种环形柔性腔体上、下间隔布置的示意图;
图9为在塔筒外表面设置波浪形的柔性腔体的示意图;
图10为塔筒外表面的混频吸收器包括分散布置的多个柔性腔体的第一种结构示意图;
图11示出图中混频吸收器的周向展开示意图;
图12为塔筒外表面的混频吸收器包括分散布置的多个柔性腔体的第二种结构示意图;
图13为塔筒外表面的混频吸收器包括分散布置的多个柔性腔体的第三种结构示意图;
图14为塔筒外表面的混频吸收器包括分散布置的多个柔性腔体的第四种结构示意图;
图15为塔筒外表面的混频吸收器包括分散布置的多个柔性腔体的第五种结构示意图;
图16为图15中绊流凸起的结构示意图;
图17为在塔筒外表面设置减阻吸收器的示意图;
图18为图17中减阻吸收器与塔筒分开示出的示意图;
图19为图17中减阻吸收器周向展开后的示意图;
图20为图18中A部位的局部放大示意图;
图21为图17中示出气流走向位置的局部放大图。
图1-1~1-2中附图标记说明如下:
10塔筒、11第一塔筒段、12第二塔筒段、13第三塔筒段、14第四塔筒段、15第五塔筒段、20风轮机、30机舱、40电力传输电缆、50电缆挡圈固定板、60马鞍面支架、70变流柜、80塔架门、90地基基础。
图2-21中附图标记说明如下:
10塔筒、20机舱、30叶轮、40地基基础、50减阻器、60混频吸收器、601柔性腔体、602基体、603环形槽、604绊流凸起、604a凸起绊线、501环形凹槽、501a上槽壁、501b下槽壁、502环形肋、502a弹性腔、502b脊背;
X中心线。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
请参考图2,图2为本发明所提供塔筒10实施例中,其上部设有混频吸收器60的结构示意图。
该实施例中示出一种具体的围护结构,即塔筒10,塔筒10的顶部设有机舱20,机舱20的上风向安装有发电机和原动机,该原动机是风轮机,风轮机包括叶轮30,塔筒20底部安装于地基基础40。塔筒10的外表面设有混频吸收器60。混频吸收器60包括位于塔筒10外表面的柔性腔体601,且塔筒10的外表面上至少部分高度范围内设有柔性腔体601(示于图3), 图2中,在塔筒10顶端以下L高度区间范围内设有包括柔性腔体601的混频吸收器60。L大约是塔筒高度的1/2至3/4左右,在高山陡峭环境L大约是塔筒高度的2/3左右。
这里限定“柔性”的目的在于保证当上风向来流吹向该柔性腔体601时,柔性腔体601在风力作用下可以发生形变,体积发生变化,柔性腔体601内部可以是气体,也可以是其他流体,比如水、油,以下以柔性腔体601内部为气体进行说明,其他流体原理相同。
请参考图3,图3为图2中设有混频吸收器60的塔筒段简图,另外,将塔筒10该段外表面的混频吸收器60与塔筒段分开示意,以便更清晰地了解混频吸收器60的结构,图3中以主视的视角示出位于塔筒10两侧的混频吸收器60,可以理解,该实施例中的混频吸收器60实际上是环绕塔筒10的环状结构。如图4所示,图4为图2中混频吸收器60的示意图。
该实施例中,混频吸收器60包括多个环绕塔筒10呈环形,并周向贯通的柔性腔体601,且多个柔性腔体601在高度方向上相接,相当于一个较大的环形腔体被环形隔部分割成多个较小的环形柔性腔体601。这样有利于提高在运输和运行中的可靠性和安全性。当一个较小的环形柔性腔体601被扎破时或故障时,其他的较小的环形柔性腔体601不会失效,仍然可以正常工作。
当上风向来流的风向为自左向右时,风力作用在迎风面的柔性腔体601上,会遵守理想气体状态方程式:PV=mRT,即压力的变化将转化为柔性腔体601的体积变化(这就是构造“柔性”腔体并借助腔体的缘由)。如此,可将上风向来流中的脉动能量借助柔性腔体601内部的气体进行吸收、 储存、实现脉动能量无序化,将脉动能量转移到容积变化上。脉动能量在柔性体积的容积变化向下游转移过程被消耗、淹没,而不是风力直接正向撞击在塔筒10外表面,故而柔性腔体601的设置可自行消耗、淹没脉动激励(即湍流能量)、降低顺风向阻力,抑制顺风向振动,保护塔筒10吊装过程中或吊装后的作业过程中的稳定性和安全性。即,设置的柔性腔体601本质上是对上风向来流的风速变化产生的谐波脉动能量、脉动动量、脉动冲量进行混频、吸收、均一化。流体(气体和液体)在传递能量过程中自身要对上游能量进行吸收,吸收之后剩余的才传递到与之接触的固体(围护结构)表面。这时围护结构表面得到的是被吸收削弱之后的上风向来流能量,上风向来流中气流脉动频率快或慢经柔性腔体吸收后整体脉动的幅度和频率大大地被削弱,因此称之为混频,混频后的气流脉动频率大幅度降低。
需要说明的是,若柔性腔体601内为水、油等液体,当柔性腔体601外表面局部受压变化时,腔体内的受压区域以外的流体空间会接受受压表面传递过来的脉动压力变化,由于流体具有质量,具有明显的易流动性,很容易把脉动压力扩散、转移、消耗、吸收、均一化、淡化或消除动量方向性。与上述内部为气体的柔性腔体601可以达到一致的作用,即同样可以消除或消弱塔筒类围护结构迎风面和背风面的压力差,从而抑制顺风向振动。
可以理解本实施例所述在塔筒10外表面设置柔性腔体601的实施例,不仅仅适用于塔筒10吊装过程中或吊装后,以改善风况对作业的影响,还可以适用于其他流场的情况。比如,对于海工建筑,会面临海水的冲刷,在海工建筑位于水下的部分的外表面设置柔性腔体601时,水流作用于海工建筑迎流面的位置的脉动能量,也会转移到迎流面的两侧乃至后方,原理 同上述实施例。海工建筑诸如海上灯塔、瞭望所、跨海大桥的桥墩、海岸边的拦坝、堤坝等,再比如海上风力发电机组在海平面以下延伸扎入海底淤泥的风机基础等。除了建筑于海上的围护结构(即海工建筑),其他江水、湖水中具有水下建筑部分的水上建筑类围护结构,水上建筑至少具有水下部分,均可在其水下部分安装上述的混频吸收器,原理与上述一致,不再赘述。
除了水上建筑,围护结构还可以是陆地柱式桥墩或支柱,比如,大峡谷之间的公路或铁路用桥梁会设置陆地柱式桥墩或陆地柱式支柱。陆地式桥墩或支柱,会处于风流场中,面临振动问题,同样可以设置上述的混频吸收器达到减阻减振目的。
请参考图5,图5为设有混频吸收器60的塔筒10的俯视图。
当将柔性腔体601设计为环形时,在迎风面位置受到风力挤压,该位置处柔性腔体601内的气体(图5中柔性腔体601内部气体走向以虚线示出)向迎风面下游的两侧移动至后方,即实现脉动能量180度转移,相当于将迎风面的柔性腔体601内气体“赶”至下游到达后方,此时,柔性腔体601内的气体移动行程较长,上风向来流的能量消耗更为明显;并且,由于气体可移动至后方,即背风面,则背风面压力增加,将迎风面一部分压力转移到背风面,从而降低塔筒10迎风面和背风面的压差,顺风向振动能够得到有效抑制。环形的柔性腔体601可以水平设置,也可以有一定的倾角,本实施例不做限制。
可以理解,这里将柔性腔体601进行环形设置为较佳实施例,但从体积变化以消耗脉动能量的原理来看,只要在塔筒10外表面设置柔性腔体 601,其体积能够在风力作用下变化实现柔性腔体601内部气体的转移(将压力均一化),继而转移、消耗上风向来流的脉动能量即可,故柔性腔体601并不限于环形。
可继续参考图6,图6为在塔筒10外表面设置高度方向贯通的条形腔体的展开示意图,只是示出展开的局部。
由于高度差异,上风向来流的风速、气流密度等,在高度方向上并不一致,所以,同一时刻的上风向来流作用于塔筒10外表面的压力上下也并不一致。设置沿高度方向延伸的条形腔体,条形腔体由一个高度方向贯通的柔性腔体601形成或由多个独立的柔性腔体601上下相接形成,可以均衡上下受力,从而也达到降低顺风向阻力的目的。比如,塔筒10顶端所受压力更大,风阻也就更大,而柔性腔体601在受到风力而体积变化时,顶端的脉动能量会转移到下方,则上风压力会减小,在转移的过程中,能量也得到损耗,从而减小整个高度方向上的顺风向阻力,抑制顺风向振动,即也是将压力均一化。上下贯通的柔性腔体601,可以与上风向来流是正交关系,以最大程度地消耗脉动能量,或者柔性腔体601有一定倾斜角度,也是可以的。
再请看图7,图7为在塔筒10外表面设置网格状柔性腔体601的周向展开示意图,也只是示出局部。
该实施例中,柔性腔体601呈网格状,即柔性腔体601纵横交错。图7中,为便于示意出柔性腔体601,将柔性腔体601和背景部分以黑白区分示出,其中白色表示柔性腔体601部分。柔性腔体601的横向网格部分和纵向网格部分相连通,纵向即高度方向,横向即水平方向。这样当上风向来流 作用于迎风面的位置后,柔性腔体601在对应位置处的气流可以沿纵横两个方向移动,如图7中箭头方向所示,移动方向多样化,也可以消耗上风向来流的脉动能量,降低顺风向阻力,抑制顺风向振动。
可以理解,柔性腔体601纵横交错设置时,横向网格和纵向网格也可以不连通,即纵横交错的交点位置可以不相通,此时气流移动范围受到一定限制。或者,横向网格和纵向网格也可以不在同一平面,比如,在塔筒10外表面设置横向贯通的环形柔性腔体601,在环形柔性腔体601的外表面再设置纵向贯通的长条形柔性腔体601,也都是可以的。
这里的环形柔性腔体601可以如图4所示上、下相接,也可以是上、下环形柔性腔体601间隔一定距离设置,如图8所示,图8为一种环形柔性腔体601上、下间隔布置的示意图。另外,环形的腔体也不限于一个环形柔性腔体601形成,例如可以是多个沿周向分布的柔性腔体601相接形成;同样,纵向贯通的柔性腔体601也可以是左、右相接或者左、右相间隔设置,纵向贯通的腔体也不限于一个柔性腔体601贯通形成,例如可以是多个沿高度方向分布的柔性腔体601相接形成。
请继续参考图9,图9为在塔筒10外表面设置波浪形的柔性腔体601的示意图,在右侧示出波浪形柔性腔体601周向展开示意图。
该实施例中,混频吸收器60包括多个由柔性腔体601形成的环绕塔筒10的环形腔体,环形腔体可以是一个贯通的柔性腔体601,即柔性腔体601本身是环形设置,或,环形腔体由多个相邻的呈弧形段且独立的柔性腔体601相接形成,图9中即为多个柔性腔体601相接形成。
另外,上、下相邻的环形腔体间隔布置,且环形腔体呈波浪形设置。 这样,上、下相邻的环形腔体之间会形成波浪形的环形槽603(环形腔体相对地向外凸出)。波浪结构的界面结构可以驱使并诱发环形槽603内的流体振动,这种基本的振动在环形槽603内的气流边界层内诱导出更高层次的谐振动,可以激发流体流动提前转捩,具备更高动量,以抑制逆压梯度下绕流脱体的回流现象发生,继而抑制或阻止边界层分离塔筒10外表面,从而进一步地抑制横向的涡激振动。即该实施例中设置波浪形的环形腔体时,可同时实现横向、顺风向振动的抑制。
以上实施例中,例举了网格状的柔性腔体601、环形腔体(一个柔性腔体601或多个柔性腔体601相接形成)或竖向贯通的腔体(一个柔性腔体601或多个柔性腔体601相接形成)。
请继续查看图10、11,图10为塔筒10外表面的混频吸收器60包括分散布置的多个柔性腔体601的第一种结构示意图;图11示出图10中混频吸收器60的周向展开示意图。
本实施例中,混频吸收器60包括多个柔性腔体601,且柔性腔体601在高度方向上、周向上均间隔分布,即多个柔性腔体601散落布置在塔筒10的外表面,在塔筒10外表面形成若干凸起。这种布置方式以降低顺风向振动的原理与上述描述一致,通过体积变化转移、吸收、消化、分散上风向来流的脉动能量,减小顺风向阻力。
如图11所示,混频吸收器60包括多排布置的柔性腔体601,每一排的多个柔性腔体601环绕塔筒10设置。上、下相邻的两排的柔性腔体601可错开布置。错开布置后,气流经过上、下相邻两排柔性腔体601时,由于柔性腔体601设置位置顺序错开,气流被干扰的情况并不一致,从而打 破上下相关性,避免气流在塔筒10迎风面的两侧漩涡脱落一致,继而抑制横向的涡激振动。而且,每一排包括多个柔性腔体601,气流在向迎风面两侧以及后方移动的过程中,多次经历被柔性腔体601“劈开再汇合”,从而切断塔筒10两侧的边界层形成,从根本上抑制横向涡激振动的成因。
请继续参考图12-13,图12为塔筒10外表面的混频吸收器60包括分散布置的多个柔性腔体601的第二种结构示意图;图13为塔筒10外表面的混频吸收器60包括分散布置的多个柔性腔体601的第三种结构示意图。
图12、13与图11结构类似,只是图11中单个的柔性腔体601为圆形截面柱状体,图12实施例中的柔性腔体601为方形截面柱状体,图13实施例中的柔性腔体601为菱形截面柱状体,这里的圆形、方形、菱形为柔性腔体601投影到塔筒10外表面的形状,可知,柔性腔体601的形状具体不作限制,只要能够在风力作用下发生体积变化,使得柔性腔体601内部的气流转移以消耗脉动能量即可。需要说明的是,当气流经过菱形的柔性腔体601时,基于菱形的侧壁形状特征,气流被劈开的更为明显,边界层切断相对更加彻底。
进一步,多个柔性腔体601在塔筒10高度、周向上均间隔布置,以分散于塔筒10外表面时,多个柔性腔体601的大小可作变化设计,在高度方向上,可将混频吸收器60划分为多个区间,如图11-13所示,示出三个不同区间,由上至下依次为第一区间、第二区间、第三区间。其中,分布于第一区间的柔性腔体601,其高度为L1,厚度为h1;分布于第二区间的柔性腔体601,其高度为L2,厚度为h2;分布于第三区间的柔性腔体601,其高度为L3,厚度为h3。这样,不同高度区间的柔性腔体601大小并不 一致,这样进一步打破上下相关性、关联性、一致性,抑制横向的涡激振动。
请进一步参考图14,图14为塔筒10外表面的混频吸收器60包括分散布置的多个柔性腔体601的第四种结构示意图,该实施例中,柔性腔体601也为菱形柱状,在高度方向上也划分多个区间,不同区间内柔性腔体601的大小设置不同,至少相邻区间的柔性腔体601大小不同。
但图14实施例中,混频吸收器60同一区间中,上下相邻的两排柔性腔体601之间设有中间排的柔性腔体601,中间排的柔性腔体601的体积小于上下相邻排的柔性腔体601体积,可定义为“小柔性腔体601”,体积也小于其他各区间的柔性腔体601。而且中间排的柔性腔体601可正对于上下相邻排的两个所述柔性腔体601之间,或正对上下相邻排的一个柔性腔体601。
如图14所示,正常上下两排之间会留有较大的间隙,此时设置一中间排的小柔性腔体601,有利于该间隙位置处气流的扰动,有利于气流的湍流化。当中间排的柔性腔体601正对上下相邻排的柔性腔体601时,会在二者之间形成一加速通道,形成“吹气”功能,尤其是菱形的柔性腔体601,此时可形成典型的缩放通道,如此更加有利于气流形成湍流,避免漩涡脱落一致性而导致的横向涡激振动。
请继续参考图15,图15为塔筒10外表面的混频吸收器60包括分散布置的多个柔性腔体601的第五种结构示意图。该实施例中,柔性腔体601在塔筒10外表面的投影呈菱形,只是为内凹的菱形,即柔性腔体601呈四条侧壁均内凹的菱形柱状结构。同样,该实施例中也是设有多排柔性腔体 601,各排的多个柔性腔体601沿塔筒10周向环绕分布。
如图15所示,由于柔性腔体601是相对塔筒10外表面凸出的腔体结构,当上风向来流绕流塔筒10时,气流除了作用于柔性腔体601使其内部气流移动之外,上风向来流的气流还会被菱形柔性腔体601内凹的侧壁引流,即部分气流会沿内凹的侧壁向上或向下,这样也可以消耗一部分脉动能量,而且上下引流的气流会由于方向相向而发生碰撞,进一步消耗脉动能量。除了能够降低顺风向阻力,减小顺风向振动,相应地,由于碰撞会产生气流漩涡,从而增强围护结构外表面从局部到整体漩涡的旋转动量,增强边界层的粘滞力,以阻止、抑制漩涡在塔筒10两侧、或背风面过早脱落,从而达到抑制涡激振动的目的。呈内凹的菱形,利用其内凹的弧形侧壁更易于引流出一定动量的漩涡。当然,菱形侧壁为直边也是可以的。
优选地,可使上、下相邻的柔性腔体601错开布置,这样菱形柔性腔体601上下引流的气流更易于形成漩涡,增加漩涡的旋转动量。
此外,相邻两环排的柔性腔体601之间,可设有多个绊流凸起604,如图16所示,图16为图15中绊流凸起604的结构示意图。
上下相邻的两环排柔性腔体601之间形成环形槽603,当上风向来流绕流至环形槽603时,绊流凸起604可以激发气流沿塔筒10形成径向的表面脉动,并且是周期性激发脉动。该脉动驱动力可以促使边界层提前转捩(层流流态向紊流流态边界层的转变),形成湍流,具备更高动量抑制逆压梯度下绕流脱体的回流现象发生,进一步抑制或阻止边界层分离塔筒10表面,抑制绕流脱体引起的横向的涡激振动。
进一步地,绊流凸起604的横截面呈半圆形,绊流凸起604的弧形表 面朝向外侧,当气流经过时,可以减小对气流的阻力,保证形成的脉动具有一定的动量。而且,还在绊流凸起604的外表面设有若干横向凸棱,使得整个绊流凸起604形成凸起绊线604a结构,类似于公路上的“减速带”,则绊流凸起604外表面摩擦力增加,增加边界层的粘附力,避免边界层被整体上风向来流带动,有利于径向脉动的形成,在风速较大的工况下,作用更为明显。
针对上述周向、高度方向上均间隔布置多个柔性腔体601的实施例,自上向下,柔性腔体601的周向布置密度逐渐增加。塔筒10尺寸自上向下会逐渐变大,所以周向上布置密度增加,以保证有足够的柔性腔体601,能够对应于不同方向的上风向来流。
针对上述间隔布置(包括周向间隔布置、高度方向间隔布置、或者周向和高度方向均间隔布置)多个柔性腔体601的所有实施例,混频吸收器60除了柔性腔体601,还包括能够环绕围护结构的基体602(比如图7中黑色部分可以是基体602),间隔分布的所有柔性腔体601设于基体602。这样,便于将所有的柔性腔体601设置到塔筒10的外表面。比如,混频吸收器60可以是设有柔性腔体601的塑料制品,可采用轻质的塑料制品,透明或非透明均可,比如PE+PA薄膜,即PE和PA形成的复合材料,具有加工便利、成本低廉的优势,有利于降低整体塔筒10造价。而且当材质为塑料薄膜时,采用图11-15中所示的实施例,即混频吸收器60包括多个分散布置的柱状结构柔性腔体601时,利于成型,且便于运输,不会过多占用运输车辆的空间体积。当然,成型为图4、6、7中的环形柔性腔体601、竖向柔性腔体601或网格状结构,从成型、运输角度而言也较为便利。
另外,分散布置多个柔性腔体601时,形成的塔筒10外表面结构,当上风向来流绕时,经过柔性腔体601的位置,会对气流实施干扰形成向上、向下的攻角,相当于改变局部气动外形(在每个柔性腔体601的位置进行一次局部气动外形的改变),并使上风向来流具有一定的紊流强度,抑制振动发生,保护塔筒10吊装的稳定性和安全性要求。
需要说明的是,从体积变化、转移气流的角度来说,整个混频吸收器60为环绕罩住塔筒10的环形柔性腔体601也是可行的方案,且气流移动更为灵活,从便于加工、运输和避免破损的角度而言,则上述分散布置的方案更具有优势。
设置基体602时,可以将基体602粘附于塔筒10的外表面(当混频吸收器60为完整的环形柔性腔体601时,基体602实际上就是柔性腔体601的内侧),例如通过双面胶粘贴。或者将基体602环绕塔筒10后对接形成环形基体602,不需要使用时可以解除对接,卸下混频吸收器60,这样整个混频吸收器60还可以重复利用,进一步降低成本。
以上实施例中,至少在塔筒10的上部设有混频吸收器60,上部在这里指的是塔筒类围护结构1/2高度以上的位置。上部的振动较为明显,设置混频吸收器60抑制上部的振动即可起到较好的效果。当然,在塔筒10整体设置混频吸收器60也是可以的。
需要强调的是,上述实施例中,混频吸收器60包括柔性腔体601,其工作原理是利用柔性腔体601可形变的特点,以转移、消耗来流的能量,在此基础上,显然,混频吸收器60并不限于包括柔性腔体601,也可以是其他能够形变的可形变体,例如弹性腔体,弹性腔体除了具备柔性腔体601 的形变功能之外,还具备回弹功能,这样便于反复利用,效果还优于柔性腔体601的实施例。另外,上述设置弹性腔体和柔性腔体601,其内部还可充有气体或液体等,以实现较好的形变,可以理解,也可以是弹性实心体或柔性实心体,也具备形变功能,当然,弹性腔体和柔性腔体601具有优越的形变能力而较佳的实施例,对于各种来流情况均可以较好地实现能量转移、减振减阻,而弹性实心体和柔性实心体对于流速相对较慢的流场也具有较好的效果(例如水流,针对文中提到的具体的海工建筑,其他水上建筑等),比如可以在围护结构外表面环绕多个弹性橡胶体。
为描述简洁,本文实施例均以柔性腔体601为例进行说明,这里提到的弹性腔体、弹性实心体或柔性实心体可以替代本文所有实施例中的柔性腔体601,尤其是弹性腔体与柔性腔体601均是具有空腔,只是弹性腔体还具有回弹功能。弹性腔体、弹性实心体或柔性实心体,均可以环形设置、竖向条形设置、间隔设置,弹性腔体可竖向、周向全程贯通或局部间断,等等,与柔性腔体601实施例一致,下文不再重复论述。而且,弹性腔体、柔性腔体601以及弹性实心体或柔性实心体也不限于一种作为混频吸收器60,可以混合应用,比如混频吸收器60的上部包括弹性腔体,下部包括柔性腔体601,当然,选取一种在工艺上容易实现,便于加工。
上述实施例中提到的环形腔体、条形腔体,当可形变体选用为柔性实心体或弹性实心体时,则相应地会形成环形实心体和条形实心体,即环形体和条形体可以是实心也可以是腔体,此处不再赘述。可以理解,环形体是腔体时,内部设置流体,则沿高度方向或周向贯通时,流体可更大范围地流动,以消耗能量,当然,沿高度方向或周向被分割(由多个可形变体 相接形成)也可以。当环形体是实心体时,不会贯通,只要相接,即可实现能量的消耗、转移。
请参考图17、18,图17为在塔筒10外表面设置减阻吸收器的示意图;为便于理解,图18为图17中减阻吸收器与塔筒10分开示出的示意图,示出塔筒10两侧的减阻吸收器是以主视为视角,可以理解,该实施例中的减阻器50吸收为环形;图19为图17中减阻吸收器周向展开后的示意图,只示出局部。
本实施例中的减阻吸收器,包含混频吸收器60和减阻器50,混频吸收器60的原理上述各实施例已进行示例说明。
减阻器50包括位于塔筒10外表面的环形凹槽501,如图17所示,吸收减阻器包括位于外侧的减阻器50和位于内侧的混频吸收器60,混频吸收器60相较于减阻器50更靠近塔筒10外表面。具体地,减阻器50包括环绕塔筒10的基部,基部的外侧设有环形凹槽501,基部的内侧设有上述混频吸收器60,混频吸收器60可以是上述各种实施例中的混频吸收器60结构。
减阻器50的环形凹槽501的槽壁包括位于上方的上槽壁501a和位于下方的下槽壁501b,上槽壁501a和下槽壁501b相互弧形倾斜,以使流向环形凹槽501内的气流能够相向碰撞,以减小顺风向阻力。
请继续参考20,图20为图18中A部位的局部放大示意图。
本方案中,环形凹槽501为沿周向环绕塔筒10外表面的环形槽。这里将环形凹槽501分割理解,环形凹槽501的中心线X(图20中所示的水平中心线X)环形凹槽501以上定义为上槽壁501a,中心线以下定义为下槽 壁501b。此时,上槽壁501a和下槽壁501b实际上相互倾斜,即自左向右,上槽壁501a弧形向下,下槽壁501b弧形向上。如此设置的目的,请继续结合图17,并参考图21理解。
图17中还示出气流在环形凹槽501内的走向,为使视图简洁,仅示出迎风面处一个环形凹槽501内的气流走向;图21为图17中示出气流走向位置的局部放大图。图17、21中黑色箭头表示气流走向。
从图17可看出,当气流进入环形凹槽501内后,由于弧形槽壁的设置,气流在迎风面的环形凹槽501内,位于槽壁中心线上方的气流会改变风向,风向沿弧形上槽壁501a向下,槽壁中心线下方的气流也改变方向,风向沿弧形下槽壁501b向上,即气流作圆弧运动,这样,在弧形槽壁的中部,上、下气流会相向而产生碰撞,而导致掺混合,也就对上方向来流的动量方向作无序化引导,对上风向来流有方向的压力脉动(峰值)作调向处理,即作调整方向的处理,顺着圆弧作垂直方向的相向处理,降低压力脉动量,从而降低顺风向阻力,降低振幅,保护塔筒10吊装的稳定性和安全性要求。
请看图19,迎风面处进入环形凹槽501内的气流作上述的相向碰撞,而气流沿环形凹槽501向迎风面两侧移动时,环形凹槽501内流动理顺上风向来流中的脉动流,人为制造了竖直高度方向的局部槽内的脉动,该脉动是一种脉动驱动力,在水平限定的环形凹槽501内限定了气流的流动,由此可降低、转化(遵循热力学第二定律,有序能转化为无序能),阻止了气流在下游流动过程压力降低的速率,当环形凹槽501为环形时,相应地就降低塔筒10在迎风面和背风面的压差,降低压差形成的前后阻力,降低顺风向阻力,降低振幅,保护塔筒10类围护结构吊装的稳定性和安全性。
如背景技术所述,塔筒10还会产生涡激振动,其成因在于上风向来流绕流塔筒10时两侧漩涡脱落一致,而本方案中,由于设有环形凹槽501,相应地环形凹槽501上下的漩涡脱落一致性会被打破,从而抑制涡激振动。以图17、20为例,环形凹槽501为环形,相邻的环形凹槽之间形成环形肋502,减阻器50还包括该环形肋502,环形肋502是脊状结构。由于环形肋502的存在,其具有脊背502b,可峰利地把气流切断分到上下两个环形凹槽501内,分成上层气流和下层气流,可抑制上风向来流绕流塔筒10表面环形肋502两侧凹槽内漩涡的发展,从而抑制了湍流边界层猝发过程的发生,减弱了气流动量沿着法向的交换,环形凹槽501的槽底交换最大,集中在槽底交换,向外高于环形肋502脊背502b的位置,交换较弱,因而也减小了阻力。
如图18、19所示,上、下相邻的环形凹槽501之间形成脊状的环形肋502(连续或局部间断皆可),脊状即屋脊状,该环形肋502的外边缘呈尖锐的环形线状,即环形肋502具有脊背502b,环形肋502的纵向剖面类似于三角形。当然,环形肋502的两侧侧壁即分别为上方凹槽的下槽壁501b和下方环形凹槽501的上侧壁,基于凹槽的弧形设置,环形肋502的纵向剖面并非直边三角形,上、下两条侧边内凹。
由于环形肋502的外缘脊背502b呈尖端设置,如图21所示,气流吹向塔筒10外表面时,脊状的环形肋502的尖端有利于将气流“劈开”,而不是直接撞击在环形肋502上,使得气流及时进入环形肋502上、下方的环形凹槽501,从而及时参与变向和碰撞,减小阻力,使得减阻的目的得以实现。
这里,环形肋502的脊背502b为刚性脊,具有一定硬度,在外力作用下不易变形,能够保持脊背502b的形状。环形肋502在其脊背502b下方,是弹性腔体502a,也可以是实心弹性体或柔性腔体或实心柔性体,脊背502b和其下方的弹性腔体502a(或实心弹性体或柔性腔体或实心柔性体)可以连接,或者一体成型。则脊背502b下方具有一定的变形能力,在来流作用下,可变形,从而将来流能量向两侧进行转移、消耗,有助于消除围护结构迎风面和背风面之间的压差、或者降低压差,进而消除或降低围护结构顺风向阻力。
而且,当上风向来流绕流塔筒10,经过表面环形肋502和环形凹槽501时,使得绕流气流的空气动力系数C变小,可以降低涡激共振振幅A,从而达到降低振幅,保护承载围护结构吊装的稳定性和安全性。
如图17所示,对环形凹槽501的深度和高度作了标注,设置减阻器50的塔筒10段落自上向下分为三个区间段,上部区间段的环形凹槽501深度h1、高度L1,中部区间段的环形凹槽501深度h2、高度L2,下部区间段的环形凹槽501深度h3、高度L3。在进行减阻器50设置时,对环形凹槽501的深度和高度作出限制,h1/L1的比值处于0.3-0.6之间,以保证气流能够在不增加阻力地情况下在环形凹槽501内顺利地引流并碰撞,从而达到减小阻力的目的。另外,环形凹槽501弧度所对应的半径越大,减阻效果越好。
具体地,由下至上,环形凹槽501的槽深可逐渐加深,和/或环形凹槽501的槽宽(图17中的高度)逐渐增加。可知,槽深越深,气流相向碰撞的能量损耗更多,槽宽逐渐增加,参与碰撞的气流量越大,能量损耗也更 多,相应地,顺风向阻力也就降低地更多。而塔筒10上部的顺风向振动更为明显,所以由下至上,设计为槽深逐渐加深,和/或槽宽逐渐增加,顺应塔筒10的顺风向振动抑制需求。
本方案中,环形凹槽501的槽深大于2mm,槽深过浅,不利于将气流引导至凹槽内部,并形成气流的相向碰撞。一般而言,气流的边界层厚度在1-2mm,这里的槽深大于2mm,以满足气流的相向碰撞需求。优选地,环形凹槽501的槽深不超过5mm,以免过多地增加阻力。这里,设计槽深时,可以参考塔筒10的高度。塔筒10的高度越高,同时槽深所在的塔筒高度也高,这里风速较大,槽深数值相对选用较大值。
需要说明的是,上述实施例中,环形凹槽501环绕塔筒10外周设置形成环形的凹槽,但可以理解,基于上述减小顺风向振动的原理说明,凹槽并不限于连续的环形。比如,若干弧形段的凹槽沿塔筒10周向间隔分布,以形成局部间断的环形凹槽,当然,间隔的距离可设计地相对较小,以使上风向来流为任意方向时,均可以吹弧形入凹槽内。这样,当上风向来流绕流塔筒10时,气流同样会在环形凹槽501内产生相向碰撞,以减小顺风向阻力。当然,环形凹槽501呈连续的环状,为更佳的实施例。
这里将混频吸收器60和减阻器50设置在一起(可以是一体或分体形成),当上风向来流绕流塔筒10时,部分气流直接进入环形凹槽501内,部分被环形肋502劈开而进入环形凹槽501内,在减阻器50的环形凹槽501中被引导为相向碰撞而减少阻力;而且气流在迎风面处的脉动能量,还进一步被混频吸收器60所吸收,从而达到减阻、混频、吸收的目的。
可以理解,减阻器50和混频吸收器60并不限于设置在一起,比如, 混频吸收器60包括若干高度方向上间隔布置的环形腔体时,在相邻的环形腔体之间可以设置上述减阻器50,减阻器50还可以是塔筒10外表面的一部分。或者说分段设置,一定高度范围内设置混频吸收器60,一定高度范围内设置减阻器50。当然,图19中将混频吸收器60和减阻器50设置在一起形成减阻混频吸收器60,并环绕塔筒10至少一定高度范围内,为较为优选的实施例,使得顺风向阻力最大化地得以降低,而且工艺上也更易于实现。
如图20所示,减阻器50的环形凹槽501形成于基部,环形凹槽501的槽壁与基部之间可以是弹性空腔502a,即位于脊背502b下方的腔体,腔体(弹性腔体502a或柔性腔体)填充气体、液体或弹性橡胶类物质,以使减阻器50形成有骨架,保证环形凹槽501、环形肋502的脊背502b不会轻易变形,完成上述减阻功能的气流上下层分流。当环形凹槽501的槽壁与基部之间的腔体内填充有气体或液体或弹性橡胶时,此时的腔体本身相当于柔性或弹性腔体,进一步具有变形的能力,可消除围护结构迎风面和背风面之间的压差、或者降低压差,进而消除或降低围护结构顺风向阻力,即同时具备了混频吸收器的功能,即减阻器50和混频吸收器60一体成型,且共用一层靠近塔筒10外表面的基部。
当然,混频吸收器60的柔性腔体601可以设置为具有较好的变形能力,而减阻器50中脊背502b下方腔体具备混频吸收功能时,还需要保持一定的骨架刚度,所以单独设设置混频吸收器60时,其变形能力好,柔性腔体601体积也不受过多限制。
综上,本案专门关注的是风力发电机组在安装和长期运行过程处于空 气流中,从塔筒10吊装开始,就有可能发生与空气流耦合后的共振、卡门涡街破坏现象;抑制塔筒10这种结构可能发生与空气流耦合后的压力脉动、共振造成的各种破坏现象。因此,本方案构建一种新型承载围护结构的表面,在风电场建设吊装、安装的塔筒10外部改变塔筒10周围原有的上风向空气流面对塔筒10绕流形成的边界层,改变气流绕流塔筒10的流场,包括后期运行过程的安全、风能吸收和转化,在塔筒10表面周围形成自然力流固耦合空气流流场控制结构,该结构造成对塔筒10表面及其附近流场的改变,削弱塔筒10迎风面压力脉动、阻止后方背风面两侧涡街现象的发生、阻止塔筒10涡激响应、涡激响应的放大、抑制塔筒10被诱发振动。相应地,可以保护塔筒10连接螺栓,保护地基基础连接螺栓。降低振动幅度对结构的疲劳破坏。
更为重要的是,吸收压力脉动造成相应的叶片在塔筒10前方经过时顺着风向的弯矩出现脉动性降低,经过叶轮传递到叶根造成对变桨轴承的脉动性荷载疲劳破坏。这些疲劳性隐患一直在风电领域长期存在。本方案形成的塔筒10外表面结构,设有混频吸收器60,可以减小顺风向阻力,在设置贯通的环形腔体(柔性腔体601为贯通的环形)时,直接减小迎风面和背风面的压差,减小了由于压差作用于塔筒迎风面和背风面导致的塔筒顺风向的俯仰幅度,降低了塔筒迎风面对上风向来流的反作用力,以及降低了迎风面对上风向来流的反作用力的变化频率,使得塔筒迎风面前方叶片经过的位置气流的压力脉动降低,从而改善叶片在塔筒10前方经过时出现的作用在叶片上的脉动压力得到降低,降低了叶片上作用力到叶片根部变桨轴承螺栓连接处的弯矩脉动,减少变桨轴承处所受弯矩的脉动性及其 载荷造成的疲劳破坏。
而且,设置混频吸收器60或减阻器50时,可破坏塔筒10外壁边界层,该表面结构造成对塔筒10表面边界层及其附近流场上下段的破坏;改变塔筒10周围原有的上风向来流面对塔筒10绕流形成的气动外形;破坏塔筒10高度方向脉动风力的相关性,阻止塔筒10下风向、后方、背风面两侧壁涡街现象的发生、阻止塔筒10涡激响应、涡激响应的放大、抑制塔筒10被诱发振动的技术效果。从而降低振幅,保护承载围护结构吊装的稳定性和安全性。
在中国南方云、贵、川高海拔地域建设风电场,需要环绕高山修路,同时高山上吊装周期通常会长一些,风的不确定性随时会影响吊装施工,吊装费用较高。为了节省时间,缩短因为风的不确定性造成建设周期的拖延、风电机组并网发电推迟造成的浪费,本方案可解决吊装过程塔筒10结构本身的晃动所带来的对塔筒10基础连接件的破坏和隐患。另一方面,也适宜用在海上风电机组,即现场吊装进度、安装工期明显受到局部区域风况的限制的工况。本方案的创新可确保或争取在风速小于8m/s时对机舱的可靠吊装;风速小于10m/s时对塔筒10的吊装。以上两个速度之下,塔筒10、机舱大部件吊装在现有技术下施工会受到限制。故本方案的实施可解决或改善吊装过程风力发电机组承载结构的塔筒10本身受风诱发的晃动所带来的对塔筒10基础连接件的破坏和隐患;降低建设成本,有利于风力发电机组及早并网发电。而且,如前所述,对于其他流场同样适用,例如海工建筑。
研究过程发现,当塔筒10从与自身频率相同的漩涡中吸取能量时, 塔筒10上部的结构振动形态会发生变化,发生了变化的塔筒10围护结构又会对气流产生作用,使集中在塔筒10结构基频上的能量越来越大,从而激发了塔筒10结构的横向涡激共振。而当上风向来流具有一定的紊流强度时,来流中已经具有各种频率成分的能量,这些能量分散性较大,具有脉动性,来流中已携带各种能量的漩涡,气流经过塔筒10外表面时,塔筒10外表面结构对上风向来流的整合作用是发生在来流中已经有漩涡基础上的。因此,在杂乱无章的来流基础上再借助混频吸收器60将来流在边界层改造、消耗,成为与塔筒10振动基频不相同的漩涡。
当塔筒10局部设置混频吸收器60,或者还同时设置减阻器50时,相当于局部段落,上风向来流绕流塔筒10整体上被分成高度方向多层表面结构情形,这也就打破了整体上风向气流沿着围护结构塔筒10外表面上下的相关性。整体上,促使上风向来流的气流紧贴塔筒10外表面,阻碍了发生边界层分离和卡门涡街现象,阻碍上部塔筒10后方两侧漩涡的形成。当在塔筒10上部设置例如图18所示的减阻器50时,形成局部的凸凹面,下部绕流气流速度低,没有凸凹面帮助,本质上,彻底打乱了原先上部旋涡脱落和下部旋涡脱落频率会出现一致性的情形,以削弱、降低或阻止塔筒10外表面边界层绕流脱体时涡激共振响应,抑制横向的涡激振动,阻止塔筒10上部涡激诱发的振动。
相关性是脉动风的重要特征,在这里,它与空间两点(Z 1、Z 2)的脉动风速或塔筒10表面不同高度的两点的脉动压力有关。
相关系数ρ定义为
Figure PCTCN2018112892-appb-000001
在两个不同高度处(Z 1、Z 2),脉动风速的协方差定义如下:
Figure PCTCN2018112892-appb-000002
因此,协方差是两个高度处脉动风速乘积的时间平均。等式右侧的每个风速值都减去了各自的平均值u
Figure PCTCN2018112892-appb-000003
(和Z
Figure PCTCN2018112892-appb-000004
U(Z 1,t)为在t时刻、高度Z 1处的U风速值,U(Z 2,t)为在t时刻、高度Z 2处的风速值,即同一时刻不同高度位置处的风速。
在数学上,标准差的公式可写成:
Figure PCTCN2018112892-appb-000005
式中U(t)——平均风速方向上的风速分量,其等于
Figure PCTCN2018112892-appb-000006
u(t)为顺风向湍流分量,即平均风速方向上的脉动风速分量。
分子表示塔筒10在两个不同高度处有不同的风速,脉动风速的协方差。
协方差是两个高度处脉动风速乘积的时间平均。
湍流的总体强度可以用风速标准差或者均方根来衡量,从风速中减去平均分量,然后用偏差来量化剩余部分,对偏差平方后在做平均,最后开方,得出一个具有风速单位的物理量,获得标准差。由相关系数定义式,不同高度处风速的协方差除以标准差得到不同高度两处风速之间的相关性系数,相关性越小越好,阻碍旋涡形成后不同高度处漩涡的频率,打破频率一致性对涡激共振能量的聚集和增长,即:阻止涡激共振的增长,甚至 致使涡激共振消失。
塔筒10结构表面上的总脉动风力均方值
Figure PCTCN2018112892-appb-000007
y i、y j是塔筒10的表面竖直高度方向的两点,ρ(y i-y j)为y i、y j之间段落的脉动风力的相关系数。
上述所有实施例均以塔筒10(可以是陆上塔筒或者海上风电机组的塔筒)为例进行说明,而且,对于类似的围护结构上述实施例均可适用。例如,电视塔、测风塔,另外还有前述提到的其他海工建筑,水上建筑等。在该类围护结构的外表面设置上述的混频吸收器、减阻器都是可行的方案,原理相同,不再赘述。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (20)

  1. 外表面设有混频吸收器的围护结构,其特征在于,所述混频吸收器(60)包括位于所述围护结构的外表面的可形变体,所述可形变体包括柔性体和/或弹性体,所述柔性体为柔性腔体(601)或柔性实心体,所述弹性体为弹性腔体或弹性实心体;所述可形变体能够在来流作用下发生形变。
  2. 如权利要求1所述的外表面设有混频吸收器的围护结构,其特征在于,所述混频吸收器(60)包括多个可形变体,所述可形变体之间间隔设置,或相接设置。
  3. 如权利要求2所述的外表面设有混频吸收器的围护结构,其特征在于,所述混频吸收器(60)包括多个环绕所述围护结构的环形体,所述环形体由一个呈环形的可形变体形成或由多个独立的可形变体相接形成,所述环形体为环形腔体或环形实心体,所述环形腔体周向贯通或周向分隔;多个所述环形体在所述围护结构的高度方向上相接或间隔分布;或,
    所述混频吸收器(60)包括多个所述可形变体,且多个所述可形变体形成环绕所述围护结构外表面的网格状腔体结构,所述网格状腔体结构的结点位置连通或不连通;或,
    所述混频吸收器(60)包括多个沿高度方向延伸的条形体,所述条形体由一个可形变体形成或由多个独立的可形变体相接形成,所述条形体为条形腔体或条形实心体,所述条形腔体沿高度方向贯通或沿高度方向分隔;多个所述条形体在所述围护结构的周向上相接或间隔分布。
  4. 如权利要求2所述的外表面设有混频吸收器的围护结构,其特征在于,所述混频吸收器(60)包括多个所述可形变体,所述可形变体在所述 围护结构的高度方向上、周向上均间隔分布。
  5. 如权利要求4所述的外表面设有混频吸收器的围护结构,其特征在于,所述混频吸收器(60)包括多排的所述可形变体,各排所述可形变体环绕所述围护结构布置。
  6. 如权利要求5所述的外表面设有混频吸收器的围护结构,其特征在于,上、下相邻两排的所述可形变体错开布置。
  7. 如权利要求5所述的外表面设有混频吸收器的围护结构,其特征在于,沿高度方向,所述混频吸收器(60)划分有至少两个区间,不同区间中分布的所述可形变体的高度和/或厚度不同。
  8. 如权利要求7所述的外表面设有混频吸收器的围护结构,其特征在于,所述混频吸收器(60)同一区间中,上下相邻的两排所述可形变体之间设有中间排的可形变体,所述中间排的可形变体的体积小于上下相邻排的所述可形变体体积,所述中间排的可形变体正对于上下相邻排的两个所述可形变体之间,或正对上下相邻排的一个所述可形变体。
  9. 如权利要求4所述的外表面设有混频吸收器的围护结构,其特征在于,所述可形变体呈四条侧壁均内凹的菱形。
  10. 如权利要求9所述的外表面设有混频吸收器的围护结构,其特征在于,所述混频吸收器(60)包括多排的所述可形变体,各排所述可形变体环绕所述围护结构布置;相邻两排的所述可形变体之间,设有多个绊流凸起。
  11. 如权利要求2所述的外表面设有混频吸收器的围护结构,其特征在于,所述混频吸收器(60)包括多个环绕所述围护结构的环形体,所述 环形体由一个呈环形的所述可形变体形成或由多个独立的可形变体相接形成;上、下相邻的所述环形腔体间隔分布,且所述环形腔体呈波浪形设置。
  12. 如权利要求2所述的外表面设有混频吸收器的围护结构,其特征在于,所述混频吸收器(60)包括能够环绕所述围护结构的基体(602),间隔分布的所有所述可形变体设于所述基体(602);
    所述基体(602)粘附于所述围护结构的外表面;或所述基体(602)以可拆解地方式对接而环绕所述围护结构。
  13. 如权利要求1-11任一项所述的外表面设有混频吸收器的围护结构,其特征在于,还包括减阻器(50),所述减阻器(50)包括沿周向环绕所述围护结构外表面设置的环形凹槽(501),所述环形凹槽(501)的断面为弧形,上、下相邻的所述环形凹槽(501)之间形成脊状的环形肋(502),所述减阻器(50)包括所述环形肋(502);所述围护结构至少部分高度范围内设有所述减阻器(50)。
  14. 如权利要求13所述的外表面设有混频吸收器的围护结构,其特征在于,所述环形肋(502)包括刚性的脊背(502b)和在所述脊背(502b)下方的弹性腔体(502a)或实心弹性体或柔性腔体或实心柔性体。
  15. 如权利要求14所述的外表面设有混频吸收器的围护结构,其特征在于,所述弹性腔体(502a)或所述柔性腔体内填充有气体或流体或弹性橡胶。
  16. 如权利要求13所述的外表面设有混频吸收器的围护结构,其特征在于,所述环形凹槽(501)环绕所述围护结构,为连续或局部间断的环形槽,上下相邻所述环形凹槽之间形成连续或局部间断的环形肋(502)。
  17. 如权利要求13所述的外表面设有混频吸收器的围护结构,其特征在于,所述混频吸收器(60)包括能够环绕所述围护结构的基体(602),所述基体(602)的外侧设有所述可形变体,且所述减阻器(50)设于所述可形变体的外侧。
  18. 如权利要求17所述的外表面设有混频吸收器的围护结构,其特征在于,所述减阻器(50)包括基部,所述环形凹槽(501)形成于所述基部,所述基部贴附于所述混频吸收器(60)的外侧;或,所述环形肋(502)的所述脊背(502b)下方为可形变体,所述减阻器(50)为所述混频吸收器(60),所述减阻器(50)的可形变体为所述混频吸收器(60)的可形变体。
  19. 如权利要求1-11任一项所述的外表面设有混频吸收器的围护结构,其特征在于,所述围护结构为风力发电机组的塔筒(10),或电视塔,或测风塔,或水上建筑、或陆地柱式桥墩、或陆地柱式支柱;所述来流为上风向来流或水流。
  20. 如权利要求19所述的外表面设有混频吸收器的围护结构,其特征在于,所述围护结构为塔筒(10),至少所述塔筒(10)的上部设有所述混频吸收器(60),所述上部为所述塔筒1/2高度以上。
PCT/CN2018/112892 2018-06-21 2018-10-31 外表面设有混频吸收器的围护结构 WO2019242195A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/609,826 US11415108B2 (en) 2018-06-21 2018-10-31 Enclosure with frequency mixing and absorbing device on outer surface
AU2018414991A AU2018414991B2 (en) 2018-06-21 2018-10-31 Enclosure with frequency mixing and absorbing device on outer surface
EP18911324.4A EP3611371A4 (en) 2018-06-21 2018-10-31 HOUSING WITH FREQUENCY MIXING AND ABSORPTION DEVICE ON AN EXTERNAL SURFACE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810646400.8 2018-06-21
CN201810646400.8A CN108799010B (zh) 2018-06-21 2018-06-21 外表面设有混频吸收器的围护结构

Publications (1)

Publication Number Publication Date
WO2019242195A1 true WO2019242195A1 (zh) 2019-12-26

Family

ID=64084474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112892 WO2019242195A1 (zh) 2018-06-21 2018-10-31 外表面设有混频吸收器的围护结构

Country Status (5)

Country Link
US (1) US11415108B2 (zh)
EP (1) EP3611371A4 (zh)
CN (1) CN108799010B (zh)
AU (1) AU2018414991B2 (zh)
WO (1) WO2019242195A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113204821A (zh) * 2021-05-06 2021-08-03 重庆科技学院 串列双圆柱尾流驰振非定常气动力数学模型建立方法
CN113753187A (zh) * 2021-09-26 2021-12-07 中国华能集团清洁能源技术研究院有限公司 漂浮式风电机组

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108843516B (zh) * 2018-06-21 2019-07-02 北京金风科创风电设备有限公司 外表面设有减阻器的围护结构
CN113463782B (zh) * 2020-03-30 2022-07-12 江苏金风科技有限公司 扰流块及涡激振动抑制装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010002845U1 (de) * 2010-02-22 2010-07-15 Windnovation Engineering Solutions Gmbh Windkraftanlage mit reduziertem Turmschatteneffekt
CN102352947A (zh) * 2011-09-09 2012-02-15 河北工程大学 一种抑制海洋输油管道涡激振动的方法
CN102979490A (zh) * 2012-11-27 2013-03-20 西南石油大学 海洋环境下立管泡柱涡振抑制装置
CN107461302A (zh) * 2017-09-11 2017-12-12 北京金风科创风电设备有限公司 外表面具有抑制涡激振动功能的围护结构
CN108843516A (zh) * 2018-06-21 2018-11-20 北京金风科创风电设备有限公司 外表面设有减阻器的围护结构

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1191589A (en) * 1967-08-23 1970-05-13 Rohde And Schwarz Means for Preventing Wind-Induced Oscillations of Cylindrical Towers, Masts and the Like.
NL7501866A (nl) * 1975-02-18 1976-08-20 Tno Cilindervormig lichaam voorzien van middelen om trillingen als gevolg van dwarse aanstroming door een fluidum tegen te gaan.
US4736701A (en) * 1985-06-04 1988-04-12 Nippon Kokan Kabushiki Kaisha Dynamic vibration absorber
US6347911B1 (en) * 1996-06-11 2002-02-19 Slickbar Products Corp. Vortex shedding strake wraps for submerged pilings and pipes
US5988568A (en) 1997-09-22 1999-11-23 Drews; Hilbert F. P. Surface modification apparatus and method for decreasing the drag or retarding forces created by fluids flowing across a moving surface
GB2378493B (en) 1998-03-07 2003-04-09 Crp Group Ltd Protection of underwater elongate members
DK1203155T3 (da) 1999-06-16 2005-04-11 Neg Micon As Dæmpning af oscillationer i vindmöller
GB2362938A (en) * 2000-06-01 2001-12-05 Imperial College Reduction of vortex shedding and drag
US6896447B1 (en) * 2000-11-14 2005-05-24 Weldon Taquino Vortex induced vibration suppression device and method
JP2003176774A (ja) * 2001-12-10 2003-06-27 Kyowa Engineering Consultants Co Ltd 風力発電装置
NL1021347C2 (nl) * 2002-08-28 2004-03-02 Lankhorst Special Mouldings B Suppressie-element voor wervelvibraties, bouwpakket, suppressiestelsel, inrichting voor het winnen van delfstoffen en een matrijs.
DE10301080A1 (de) * 2002-10-22 2004-05-13 Siemens Ag Windkraftanlage
GB0321404D0 (en) * 2003-09-12 2003-10-15 Crp Group Ltd Vacuum formed cladding
JP2007002773A (ja) * 2005-06-24 2007-01-11 Fuji Heavy Ind Ltd 水平軸風車
US7845299B2 (en) * 2007-03-30 2010-12-07 Viv Suppression, Inc. Compliant banding system
ES2374233B8 (es) * 2010-08-02 2013-02-27 Deutecno S.L. Aerogenerador resonante por vorticidad.
NL2005866C2 (nl) * 2010-12-16 2012-06-19 Lankhorst Mouldings B V Omhullingselement voor een pijpleiding, alsmede matrijs voor vervaardiging daarvan.
US8123484B2 (en) * 2011-02-04 2012-02-28 Vestas Wind Systems A/S Torsional dynamic damper for a wind turbine and method of using same
US8511245B2 (en) * 2011-05-16 2013-08-20 VIV Solutions LLC Helical strake systems
US8770894B1 (en) * 2011-12-27 2014-07-08 VIV Solutions LLC Helical strakes with molded in stand-offs
GB201205059D0 (en) * 2012-03-22 2012-05-09 Trelleborg Offshore U K Ltd Cladding
US20130259684A1 (en) 2012-03-28 2013-10-03 General Electric Company Systems and methods for attenuating noise in a wind turbine
CN103452747B (zh) * 2012-05-31 2015-11-18 北京能高自动化技术股份有限公司 基于阻尼装置的风机塔架降载方法
US8944722B1 (en) * 2012-10-10 2015-02-03 VIV Solutions, LLC Spring systems for vortex suppression devices
DK2851490T3 (en) * 2013-09-20 2017-05-22 Siemens Ag Transport of a tower of a wind turbine
US20150361958A1 (en) * 2014-06-16 2015-12-17 Eric James Wilmer Wood Method for reducing noise, vibrations, and pressure pulsations associated with aerodynamic interactions between wind turbine blade wakes and the wind turbine tower
DK3029313T3 (en) * 2014-12-04 2018-05-07 Siemens Ag Strake for a windmill tower
CN109952431B (zh) * 2016-11-07 2021-08-31 西门子歌美飒可再生能源公司 漩涡脱落布置结构
CN107620680B (zh) * 2017-09-11 2018-10-23 北京金风科创风电设备有限公司 抑制围护结构振动的流线体、设备、吊装塔筒的方法
CN207229307U (zh) * 2017-09-11 2018-04-13 北京金风科创风电设备有限公司 具有凸凹外表面以抑制涡激振动的围护结构
CN107387334B (zh) * 2017-09-11 2019-04-26 北京金风科创风电设备有限公司 抑制围护结构振动的浮动体设备
CN107461304B (zh) 2017-09-11 2019-05-03 北京金风科创风电设备有限公司 抑制围护结构振动的环绕体、设备、吊装塔筒的方法
CN107740752B (zh) * 2017-11-21 2019-02-22 北京金风科创风电设备有限公司 抑制围护结构振动的环绕体设备和方法
CN108869192B (zh) * 2018-06-21 2019-06-07 北京金风科创风电设备有限公司 围护结构以及设于围护结构外表面的气动外形调整器
WO2020000714A1 (zh) * 2018-06-28 2020-01-02 北京金风科创风电设备有限公司 阻尼器以及具有该阻尼器的承载围护结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010002845U1 (de) * 2010-02-22 2010-07-15 Windnovation Engineering Solutions Gmbh Windkraftanlage mit reduziertem Turmschatteneffekt
CN102352947A (zh) * 2011-09-09 2012-02-15 河北工程大学 一种抑制海洋输油管道涡激振动的方法
CN102979490A (zh) * 2012-11-27 2013-03-20 西南石油大学 海洋环境下立管泡柱涡振抑制装置
CN107461302A (zh) * 2017-09-11 2017-12-12 北京金风科创风电设备有限公司 外表面具有抑制涡激振动功能的围护结构
CN108843516A (zh) * 2018-06-21 2018-11-20 北京金风科创风电设备有限公司 外表面设有减阻器的围护结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611371A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113204821A (zh) * 2021-05-06 2021-08-03 重庆科技学院 串列双圆柱尾流驰振非定常气动力数学模型建立方法
CN113753187A (zh) * 2021-09-26 2021-12-07 中国华能集团清洁能源技术研究院有限公司 漂浮式风电机组
CN113753187B (zh) * 2021-09-26 2022-08-19 中国华能集团清洁能源技术研究院有限公司 漂浮式风电机组

Also Published As

Publication number Publication date
US11415108B2 (en) 2022-08-16
EP3611371A1 (en) 2020-02-19
AU2018414991A1 (en) 2020-01-16
CN108799010B (zh) 2020-10-09
CN108799010A (zh) 2018-11-13
EP3611371A4 (en) 2020-07-15
AU2018414991B2 (en) 2020-10-01
US20210355915A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2019242179A1 (zh) 围护结构以及设于围护结构外表面的气动外形调整器
WO2019242195A1 (zh) 外表面设有混频吸收器的围护结构
US11268275B2 (en) Floating body device for suppressing vibration of tower
WO2019047537A1 (zh) 外表面具有抑制涡激振动功能的围护结构
CN103953059B (zh) 牵索锚固式海上风机基础
EP3480456B1 (en) Streamlined body assembly and method for using the sreamlined apparatus assembly for suppressing vibrations of an enclosure for hoisting a tower
CN108843516B (zh) 外表面设有减阻器的围护结构
CN204252153U (zh) 牵索锚固式海上风机基础
EP3853473B1 (en) Wind turbine having a circular and a conical tower structure with passive flow control means and use of such a wind turbine
CN115094857B (zh) 一种具有围护结构的海上平台支撑柱及设计方法
CN210769152U (zh) 塔架的筒节、塔架及风力发电机组
CN114086809B (zh) 一种基于结构化多孔表面主动吸气的钝体风致振动控制装置
Tsitaka et al. Open channel flow over a pair of rectangular cylinders at incidence
Agelinchaab et al. Open channel flow over pairs of rectangular and streamlined cylinders at incidence

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018911324

Country of ref document: EP

Effective date: 20191001

ENP Entry into the national phase

Ref document number: 2018414991

Country of ref document: AU

Date of ref document: 20181031

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE