WO2019241980A1 - Method and apparatus for early detection of kicks - Google Patents

Method and apparatus for early detection of kicks Download PDF

Info

Publication number
WO2019241980A1
WO2019241980A1 PCT/CN2018/092308 CN2018092308W WO2019241980A1 WO 2019241980 A1 WO2019241980 A1 WO 2019241980A1 CN 2018092308 W CN2018092308 W CN 2018092308W WO 2019241980 A1 WO2019241980 A1 WO 2019241980A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
rate
vfr
drilling fluid
drilling
Prior art date
Application number
PCT/CN2018/092308
Other languages
French (fr)
Inventor
Gang Cheng
Yan MEI
Weihua Shang
Xin Qu
Xiaoyang WEI
Original Assignee
Hydril USA Distribution LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydril USA Distribution LLC filed Critical Hydril USA Distribution LLC
Priority to BR112020023947-0A priority Critical patent/BR112020023947A2/en
Priority to CN201880093597.5A priority patent/CN112543839A/en
Priority to KR1020207037301A priority patent/KR20210013721A/en
Priority to PCT/CN2018/092308 priority patent/WO2019241980A1/en
Priority to US16/972,919 priority patent/US20210246743A1/en
Priority to MX2020012617A priority patent/MX2020012617A/en
Publication of WO2019241980A1 publication Critical patent/WO2019241980A1/en
Priority to NO20201441A priority patent/NO20201441A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements

Definitions

  • Embodiments of the disclosure relate generally to methods and apparatus for early kick detection in a drilling system with a drilling fluid loop.
  • gas, oil or other well fluids at a high pressure may flow from the drilled formations into the wellbore created during the drilling process.
  • An unplanned influx from the formation into the wellbore is referred to in the industry as a “kick” and may occur at unpredictable moments. If the “kick” is not promptly controlled, the well and the equipment in the well will be damaged.
  • specific commercial meter such as Coriolis, EM or Doppler meters may be used for the flow-in and flow-out measurement in an uphole environment; or using the difference between flow-in and flow-out, which is obtained by collecting more information and constructing more complex models to calibrate as much as possible of the flow-out measured in a downhole environment, to detect the kick.
  • a method for early kick detection in a drilling system with a drilling fluid loop comprises collecting flow-in rate and flow-out rate of a drilling fluid; calibrating the flow-out rate to obtain a calibrated flow-out rate of the drilling fluid; determining a difference flow rate between the flow-in rate and the calibrated flow-out rate of the drilling fluid; and identifying the kicks based on the flow rate difference.
  • an apparatus for early kick detection in a drilling system with a drilling fluid loop comprises a first sensor, positioned in a onshore input flow section of the drilling fluid loop, for detecting flow-in rate of a drilling fluid; a second sensor, positioned in an undersea return flow section of the drilling fluid loop, for detecting flow-out rate of the drilling fluid; and a controller communicated with the first sensor and the second sensor.
  • the controller comprises a parameter collecting unit configured for collecting the flow-in rate and the flow-out rate of the drilling fluid; a calculating unit configured for calibrating the flow-out rate to obtain a calibrated flow-out rate of the drilling fluid and determining a flow rate difference between the flow-in rate and the calibrated flow-out rate of the drilling fluid; and a kick detection unit configured for identifying the kicks based on the flow rate difference.
  • FIG. 1 is a schematic diagram of an apparatus for early kick detection in a drilling system with a drilling fluid loop according to one embodiment
  • FIG. 2 is a flow diagram of a method for early detection of kicks in a drilling system with a drilling fluid loop according to one embodiment.
  • a “fluid” may be, but is not limited to, a gas, a liquid, an emulsion, a slurry, and/or a stream of solid particles that has flow characteristics similar to liquid flow.
  • Fluid pressure is a pressure generated by a fluid in a formation.
  • an apparatus for early detection of kicks in a drilling system with a drilling fluid loop according to one embodiment is shown.
  • the apparatus 1 is useable in an offshore drilling installation having a drilling fluid loop 11 into a well drilled below the seabed.
  • a fluid flow is pumped into the well from a platform on the water surface and flows towards the well via an input fluid path.
  • a return flow flows from the well towards the surface via a return path.
  • the platform on the water surface is a mud tank.
  • the apparatus 1 includes a first sensor10 configured to measure the flow-in rate of a drilling fluid pumped into the well.
  • the first sensor 10 positioned in a onshore input flow section 101 of the drilling fluid loop 11, may be a stroke counter connected to a fluid pump that provides the input flow into the input fluid path. Due to the uniformity of the density and other physical properties of the fluid input into the well, various known flow measuring methods may be employed.
  • the apparatus 1 further includes a second sensor 20 configured to measure the flow-out rate of the drilling fluid.
  • the second sensor 20, positioned in an undersea return flow section 102 of the drilling fluid loop 11, may be a flow measuring device of any existing type with no requirement for the accuracy of the measured flow rate.
  • the apparatus 1 further includes a controller 30 communicated with the first sensor 10 and the second sensor 20.
  • the controller 30 comprises a parameter collecting unit 31, a calculating unit 32 and a kick detection unit 33.
  • the parameter collecting unit 31 is configured for collecting the flow-in rate and the flow-out rate measured by the first sensor 10 and the second sensor 20 in real time.
  • the calculating unit 32 is configured for calibrating the flow-out rate and determining a flow rate difference between the flow-in rate and the calibrated flow-out rate of the drilling fluid.
  • the calculating unit 32 further includes a modeling element 321 and a calibrating element 322.
  • the modeling element 321 is configured for monitoring an evaluation of the flow-in rate and the flow-out rate over time, and obtaining a reference pattern based on the evaluation of the flow-in rate and the flow-out rate over time.
  • the calibrating element 322 is configured for determining the calibrated flow-out rate based on the reference pattern.
  • VFR out (t) K ⁇ VFR in (t-T 0 ) (1)
  • VFR in is the flow-in rate as measured
  • VFR out is the flow-out rate as measured
  • t is time
  • K is time-varying parameters which can be estimated via the following equation:
  • the calibrated flow-out rate may be obtained via the equation (4) .
  • the flow rate difference may be determined by the following equation (5) :
  • VFR in the flow-in rate (VFR in ) can be constant or variable. If the flow-in rate is constant, the above calibration process may be simplified via the following equation:
  • VFR out (t) K ⁇ VFR in
  • the kick detection unit 33 is configured for identifying the kicks based on the flow rate difference. Specifically, the flow-out rate always equals to the flow-in rate during normal operation (i.e., no kick event occurs) , and the flow rate difference is zero. If the flow-in rate continues to be greater than zero, the flow rate difference continues to increase, which indicates that a kick event has occurred or is imminent.
  • the controller 30 further includes a pre-processing unit (34) configured for pre-processing the flow-in rate (VFR in ) and the flow-out rate (VFR out ) of the drilling fluid to filter out fluctuations so as to increase the accuracy of the preceding calibration process.
  • a pre-processing unit (34) configured for pre-processing the flow-in rate (VFR in ) and the flow-out rate (VFR out ) of the drilling fluid to filter out fluctuations so as to increase the accuracy of the preceding calibration process.
  • the apparatus 1 also includes a third sensor 40 configured for collecting drilling parameters of drilling bit motion.
  • the drilling parameters include the area of the cross section of the drilling bit and the rate of the drilling bit motion.
  • the third sensor 40 is communicated with the Wellsite Information Transfer Specification System, and the controller 30 as well.
  • the variety of the flow-out rate caused by the drilling bit motion also needs to be taken into consideration.
  • the variety of the flow-out rate caused by the drilling bit motion may be obtained by the following equation:
  • S is the area of the cross section of the drilling bit
  • drillingbitvelocity is the rate of the drilling bit motion
  • flow-out rate caused by the drilling bit motion
  • the method 100 includes a step 110 of collecting flow-in rate and flow-out rate of a drilling fluid; a step 120 of calibrating the flow-out rate to obtain a calibrated flow-out rate of the drilling fluid; a step 130 of determining a flow rate difference between the flow-in rate and the calibrated flow-out rate of the drilling fluid; and a step 140 of identifying the kicks based on the flow rate difference.
  • the step 120 includes a step 121 of monitoring an evaluation of the flow-in rate and the flow-out rate over time; a step 122 of obtaining a reference pattern based on the evaluation of the flow-in rate and the flow-out rate over time; and a step 123 of determining the calibrated flow-out rate based on the reference pattern.
  • the reference pattern comprises at least one time-varying parameter for calibrating the flow-out rate.
  • the method 100 further includes a step 150 of pre-processing the flow-in rate and the flow-out rate of the drilling fluid to filter out fluctuations.
  • the100 further includes a step 161 of collecting a drilling parameter of drilling bit motion; and a step 162 of estimating a drilling flow-out rate based on the drilling parameter to calibrate the flow-out rate.
  • the apparatus and method as described above are provided for early kick detection.
  • An accurate estimation of a flow-out rate can be obtained without a high precision flowmeter and a complicated calibration process of the flow-out rate so as to achieve accurate and early detection of kick.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Measuring Volume Flow (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measuring Fluid Pressure (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

A method for early kick detection in a drilling system with a drilling fluid loop, comprising: collecting flow-in rate and flow-out rate of a drilling fluid; calibrating the flow-out rate to obtain a calibrated flow-out rate of the drilling fluid; determining a flow rate difference between the flow-in rate and the calibrated flow-out rate of the drilling fluid; and identifying the kicks based on the flow rate difference. An apparatus (1) for early kick detection in a drilling system with a drilling fluid loop is also disclosed.

Description

METHOD AND APPARATUS FOR EARLY DETECTION OF KICKS BACKGROUND
Embodiments of the disclosure relate generally to methods and apparatus for early kick detection in a drilling system with a drilling fluid loop.
During drilling operations, gas, oil or other well fluids at a high pressure may flow from the drilled formations into the wellbore created during the drilling process. An unplanned influx from the formation into the wellbore is referred to in the industry as a “kick” and may occur at unpredictable moments. If the “kick” is not promptly controlled, the well and the equipment in the well will be damaged. Currently, specific commercial meter, such as Coriolis, EM or Doppler meters may be used for the flow-in and flow-out measurement in an uphole environment; or using the difference between flow-in and flow-out, which is obtained by collecting more information and constructing more complex models to calibrate as much as possible of the flow-out measured in a downhole environment, to detect the kick.
Therefore, it would be desirable if a method and an apparatus could be provided for early kick detection at least with simple configuration, high reliability and efficiency.
BRIEF DESCRIPTION
In accordance with one embodiment disclosed herein, a method for early kick detection in a drilling system with a drilling fluid loop is provided. The method comprises collecting flow-in rate and flow-out rate of a drilling fluid; calibrating the flow-out rate to obtain a calibrated flow-out rate of the drilling fluid; determining a difference flow rate between the flow-in rate and the calibrated flow-out rate of the drilling fluid; and identifying the kicks based on the flow rate difference.
In accordance with another embodiment disclosed herein, an apparatus for early kick detection in a drilling system with a drilling fluid loop is provided. The  apparatus comprises a first sensor, positioned in a onshore input flow section of the drilling fluid loop, for detecting flow-in rate of a drilling fluid; a second sensor, positioned in an undersea return flow section of the drilling fluid loop, for detecting flow-out rate of the drilling fluid; and a controller communicated with the first sensor and the second sensor. The controller comprises a parameter collecting unit configured for collecting the flow-in rate and the flow-out rate of the drilling fluid; a calculating unit configured for calibrating the flow-out rate to obtain a calibrated flow-out rate of the drilling fluid and determining a flow rate difference between the flow-in rate and the calibrated flow-out rate of the drilling fluid; and a kick detection unit configured for identifying the kicks based on the flow rate difference.
DRAWINGS
These and other features and aspects of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
FIG. 1 is a schematic diagram of an apparatus for early kick detection in a drilling system with a drilling fluid loop according to one embodiment; and
FIG. 2 is a flow diagram of a method for early detection of kicks in a drilling system with a drilling fluid loop according to one embodiment.
DETAILED DESCRIPTION
Unless defined otherwise, technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this disclosure belongs. The terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items. The use of “including, ” “comprising” or “having” and variations thereof herein are meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
A “fluid” may be, but is not limited to, a gas, a liquid, an emulsion, a slurry, and/or a stream of solid particles that has flow characteristics similar to liquid flow. “Fluid pressure” is a pressure generated by a fluid in a formation.
Referring to FIG. 1, an apparatus for early detection of kicks in a drilling system with a drilling fluid loop according to one embodiment is shown. In this illustrated embodiment, the apparatus 1 is useable in an offshore drilling installation having a drilling fluid loop 11 into a well drilled below the seabed. A fluid flow is pumped into the well from a platform on the water surface and flows towards the well via an input fluid path. A return flow flows from the well towards the surface via a return path. In one embodiment, as shown in FIG. 1, the platform on the water surface is a mud tank.
In this illustrated embodiment, the apparatus 1 includes a first sensor10 configured to measure the flow-in rate of a drilling fluid pumped into the well. The first sensor 10, positioned in a onshore input flow section 101 of the drilling fluid loop 11, may be a stroke counter connected to a fluid pump that provides the input flow into the input fluid path. Due to the uniformity of the density and other physical properties of the fluid input into the well, various known flow measuring methods may be employed.
The apparatus 1 further includes a second sensor 20 configured to measure the flow-out rate of the drilling fluid. The second sensor 20, positioned in an undersea return flow section 102 of the drilling fluid loop 11, may be a flow measuring device of any existing type with no requirement for the accuracy of the measured flow rate.
The apparatus 1 further includes a controller 30 communicated with the first sensor 10 and the second sensor 20. The controller 30 comprises a parameter collecting unit 31, a calculating unit 32 and a kick detection unit 33.
The parameter collecting unit 31 is configured for collecting the flow-in rate and the flow-out rate measured by the first sensor 10 and the second sensor 20 in real time.
The calculating unit 32 is configured for calibrating the flow-out rate and determining a flow rate difference between the flow-in rate and the calibrated flow-out rate of the drilling fluid. The calculating unit 32 further includes a modeling element 321 and a calibrating element 322. The modeling element 321 is configured for monitoring an evaluation of the flow-in rate and the flow-out rate over time, and obtaining a reference pattern based on the evaluation of the flow-in rate and the flow-out rate over time. The calibrating element 322 is configured for determining the calibrated flow-out rate based on the reference pattern. For illustration purpose, a linear function of the trend of the flow-in rate and the flow-out rate as measured over time is now assumed as flows (It is understood that the trends of the flow-in rate and the flow-out rate over time may be a higher-order function or a non-linear function) :
VFR out (t) =K·VFR in (t-T 0)          (1)
wherein VFR in is the flow-in rate as measured, VFR out is the flow-out rate as measured, t is time, K and T 0 is time-varying parameters which can be estimated via the following equation:
min {sum (VFR out (t) -K·VFR in (t-T 0) |) }        (2)
In normal operation (i.e., no kick event occurs) , the flow-out rate equals to the flow-in rate and should be understood as a calibrated flow-out rate
Figure PCTCN2018092308-appb-000001
then the following equation can be obtained:
Figure PCTCN2018092308-appb-000002
By replacing the equation (3) into the equation (1) , the following equation can be obtained:
Figure PCTCN2018092308-appb-000003
Then, the calibrated flow-out rate may be obtained via the equation (4) .
After the calibrated flow rate is obtained, the flow rate difference may be determined by the following equation (5) :
Wherein the flow-in rate (VFR in) can be constant or variable. If the flow-in rate is constant, the above calibration process may be simplified via the following equation:
T 0=0
VFR out (t) =K·VFR in
The kick detection unit 33 is configured for identifying the kicks based on the flow rate difference. Specifically, the flow-out rate always equals to the flow-in rate during normal operation (i.e., no kick event occurs) , and the flow rate difference is zero. If the flow-in rate continues to be greater than zero, the flow rate difference continues to increase, which indicates that a kick event has occurred or is imminent.
The controller 30 further includes a pre-processing unit (34) configured for pre-processing the flow-in rate (VFR in) and the flow-out rate (VFR out) of the drilling fluid to filter out fluctuations so as to increase the accuracy of the preceding calibration process.
In some embodiments, the apparatus 1 also includes a third sensor 40 configured for collecting drilling parameters of drilling bit motion. The drilling parameters include the area of the cross section of the drilling bit and the rate of the drilling bit motion. The third sensor 40 is communicated with the Wellsite Information Transfer Specification System, and the controller 30 as well. In the preceding calibration process, the variety of the flow-out rate caused by the drilling bit motion also needs to be taken into consideration. The variety of the flow-out rate caused by the drilling bit motion may be obtained by the following equation:
Figure PCTCN2018092308-appb-000004
Wherein S is the area of the cross section of the drilling bit, drillingbitvelocity is the rate of the drilling bit motion, and
Figure PCTCN2018092308-appb-000005
is the flow-out rate caused by the drilling bit motion.
Referring to FIG. 2, a flow diagram of a method for early detection of kicks in a drilling system with a drilling fluid loop according to one embodiment is illustrated. The method 100 includes a step 110 of collecting flow-in rate and flow-out rate of a drilling fluid; a step 120 of calibrating the flow-out rate to obtain a calibrated flow-out rate of the drilling fluid; a step 130 of determining a flow rate difference between the flow-in rate and the calibrated flow-out rate of the drilling fluid; and a step 140 of identifying the kicks based on the flow rate difference.
In one embodiment, the step 120 includes a step 121 of monitoring an evaluation of the flow-in rate and the flow-out rate over time; a step 122 of obtaining a reference pattern based on the evaluation of the flow-in rate and the flow-out rate over time; and a step 123 of determining the calibrated flow-out rate based on the reference pattern. The reference pattern comprises at least one time-varying parameter for calibrating the flow-out rate.
In one embodiment, the method 100 further includes a step 150 of pre-processing the flow-in rate and the flow-out rate of the drilling fluid to filter out fluctuations.
In one embodiment, the100 further includes a step 161 of collecting a drilling parameter of drilling bit motion; and a step 162 of estimating a drilling flow-out rate based on the drilling parameter to calibrate the flow-out rate.
The apparatus and method as described above are provided for early kick detection. An accurate estimation of a flow-out rate can be obtained without a high  precision flowmeter and a complicated calibration process of the flow-out rate so as to achieve accurate and early detection of kick.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. Furthermore, the skilled artisan will recognize the interchangeability of various features from different embodiments. Similarly, the various method steps and features described, as well as other known equivalents for each such methods and feature, can be mixed and matched by one of ordinary skill in this art to construct additional assemblies and techniques in accordance with principles of this disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims (10)

  1. A method for early kick detection in a drilling system with a drilling fluid loop, comprising:
    collecting flow-in rate (VFR in) and flow-out rate (VFR out) of a drilling fluid;
    calibrating the flow-out rate (VFR out) to obtain a calibrated flow-out rate
    Figure PCTCN2018092308-appb-100001
    of the drilling fluid;
    determining a flow rate difference (Δflow) between the flow-in rate (VFR in) and the calibrated flow-out rate
    Figure PCTCN2018092308-appb-100002
    of the drilling fluid; and
    identifying the kicks based on the flow rate difference (Δflow) .
  2. The method of claim 1, wherein calibrating the flow-out rate (VFR out) to obtain the calibrated flow-out rate
    Figure PCTCN2018092308-appb-100003
    of the drilling fluid comprises:
    monitoring an evaluation of the flow-in rate (VFR in) and the flow-out rate (VFR out) over time;
    obtaining a reference pattern based on the evaluation of the flow-in rate (VFR in) and the flow-out rate (VFR out) over time; and
    determining the calibrated flow-out rate
    Figure PCTCN2018092308-appb-100004
    based on the reference pattern.
  3. The method of claim 2, wherein the reference pattern comprises at least one time-varying parameter (K, T 0) for calibrating the flow-out rate.
  4. The method of claim 1, further comprising:
    pre-processing the flow-in rate (VFR in) and the flow-out rate (VFR out) of the drilling fluid to filter out fluctuations.
  5. The method of claim 1, further comprising:
    collecting a drilling parameter (S, drillingbitvelocity) of drilling bit motion; and
    estimating a drilling flow-out rate
    Figure PCTCN2018092308-appb-100005
    based on the drilling parameter (S, drillingbitvelocity) to calibrate the flow-out rate (VFR out) .
  6. An apparatus for early kick detection in a drilling system with a drilling fluid loop, comprising:
    a first sensor, positioned in a onshore input flow section of the drilling fluid loop, for detecting flow-in rate (VFR in) of a drilling fluid;
    a second sensor, positioned in an undersea return flow section of the drilling fluid loop, for detecting flow-out rate (VFR out) of the drilling fluid; and
    a controller communicated with the first sensor and the second sensor and comprising:
    a parameter collecting unit configured for collecting the flow-in rate (VFR in) and the flow-out rate (VFR out) of the drilling fluid;
    a calculating unit configured for calibrating the flow-out rate (VFR out) to obtain a calibrated flow-out rate
    Figure PCTCN2018092308-appb-100006
    of the drilling fluid and determining a flow rate difference (Δflow) between the flow-in rate (VFR in) and the calibrated flow-out rate
    Figure PCTCN2018092308-appb-100007
    of the drilling fluid; and
    a kick detection unit configured for identifying the kicks based on the flow rate difference (Δflow) .
  7. The apparatus of claim 6, wherein the calculating unit comprises:
    a modeling element for monitoring an evaluation of the flow-in rate (VFR in) and the flow-out rate (VFR out) over time, obtaining a reference pattern based on the evaluation of the flow-in rate (VFR in) and the flow-out rate (VFR out) over time; and
    a calibrating element for determining the calibrated flow-out rate
    Figure PCTCN2018092308-appb-100008
    based on the reference pattern.
  8. The apparatus of claim 7, wherein the reference pattern comprises at least one time-varying parameter (K, T 0) for calibrating the flow-out rate.
  9. The apparatus of claim 6, further comprises:
    a pre-processing unit configured for pre-processing the flow-in rate (VFR in) and the flow-out rate (VFR out) of the drilling fluid to filter out fluctuations.
  10. The apparatus of claim 6, wherein the parameter collecting unit is further configured for collecting a drilling parameter (S, drillingbitvelocity) of drilling bit motion from a third sensor; and the calculating unit is further configured for estimating a drilling flow-out rate
    Figure PCTCN2018092308-appb-100009
    based on the drilling parameter (S, drillingbitvelocity) to calibrate the flow-out rate (VFR out) .
PCT/CN2018/092308 2018-06-22 2018-06-22 Method and apparatus for early detection of kicks WO2019241980A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112020023947-0A BR112020023947A2 (en) 2018-06-22 2018-06-22 method and apparatus for early detection of kicks
CN201880093597.5A CN112543839A (en) 2018-06-22 2018-06-22 Method and apparatus for early detection of kick
KR1020207037301A KR20210013721A (en) 2018-06-22 2018-06-22 Method and apparatus for early detection of kick
PCT/CN2018/092308 WO2019241980A1 (en) 2018-06-22 2018-06-22 Method and apparatus for early detection of kicks
US16/972,919 US20210246743A1 (en) 2018-06-22 2018-06-22 Method and apparatus for early detection of kicks
MX2020012617A MX2020012617A (en) 2018-06-22 2018-06-22 Method and apparatus for early detection of kicks.
NO20201441A NO20201441A1 (en) 2018-06-22 2020-12-30 Method and apparatus for early detection of kicks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092308 WO2019241980A1 (en) 2018-06-22 2018-06-22 Method and apparatus for early detection of kicks

Publications (1)

Publication Number Publication Date
WO2019241980A1 true WO2019241980A1 (en) 2019-12-26

Family

ID=68983169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092308 WO2019241980A1 (en) 2018-06-22 2018-06-22 Method and apparatus for early detection of kicks

Country Status (7)

Country Link
US (1) US20210246743A1 (en)
KR (1) KR20210013721A (en)
CN (1) CN112543839A (en)
BR (1) BR112020023947A2 (en)
MX (1) MX2020012617A (en)
NO (1) NO20201441A1 (en)
WO (1) WO2019241980A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6257354B1 (en) * 1998-11-20 2001-07-10 Baker Hughes Incorporated Drilling fluid flow monitoring system
US20060016592A1 (en) * 2004-07-21 2006-01-26 Schlumberger Technology Corporation Kick warning system using high frequency fluid mode in a borehole
CN204532178U (en) * 2015-03-16 2015-08-05 中国石油天然气股份有限公司 Intelligent drilling fluid quantity judging device and intelligent overflow and lost circulation early warning system
CN205154146U (en) * 2015-11-12 2016-04-13 中石化石油工程技术服务有限公司 Well kick lost circulation monitoring devices
CN205638300U (en) * 2016-05-04 2016-10-12 中国石油天然气集团公司 Well drilling working condition monitoring system
WO2017112532A1 (en) * 2015-12-25 2017-06-29 General Electric Company Kick detection system and method for drilling well and associated well drilling system
CN207261003U (en) * 2017-09-25 2018-04-20 中国石油集团长城钻探工程有限公司录井公司 A kind of drilling well outlet flow measurement device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610161A (en) * 1985-07-05 1986-09-09 Exxon Production Research Co. Method and apparatus for determining fluid circulation conditions in well drilling operations
US4754641A (en) * 1987-02-10 1988-07-05 Schlumberger Technology Corporation Method and apparatus for measurement of fluid flow in a drilling rig return line
US5063776A (en) * 1989-12-14 1991-11-12 Anadrill, Inc. Method and system for measurement of fluid flow in a drilling rig return line
GB2478119A (en) * 2010-02-24 2011-08-31 Managed Pressure Operations Llc A drilling system having a riser closure mounted above a telescopic joint
AU2011282638B2 (en) * 2010-07-30 2015-07-16 Shell Internationale Research Maatschappij B.V. Monitoring of drilling operations with flow and density measurement
US9033048B2 (en) * 2011-12-28 2015-05-19 Hydril Usa Manufacturing Llc Apparatuses and methods for determining wellbore influx condition using qualitative indications
US9163497B2 (en) * 2013-10-22 2015-10-20 Sas Institute Inc. Fluid flow back prediction
CN105952436B (en) * 2016-04-27 2019-08-20 西南石油大学 A method of early stage well kick overflow real-time monitoring is carried out based on instantaneous flow

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6257354B1 (en) * 1998-11-20 2001-07-10 Baker Hughes Incorporated Drilling fluid flow monitoring system
US20060016592A1 (en) * 2004-07-21 2006-01-26 Schlumberger Technology Corporation Kick warning system using high frequency fluid mode in a borehole
CN204532178U (en) * 2015-03-16 2015-08-05 中国石油天然气股份有限公司 Intelligent drilling fluid quantity judging device and intelligent overflow and lost circulation early warning system
CN205154146U (en) * 2015-11-12 2016-04-13 中石化石油工程技术服务有限公司 Well kick lost circulation monitoring devices
WO2017112532A1 (en) * 2015-12-25 2017-06-29 General Electric Company Kick detection system and method for drilling well and associated well drilling system
CN205638300U (en) * 2016-05-04 2016-10-12 中国石油天然气集团公司 Well drilling working condition monitoring system
CN207261003U (en) * 2017-09-25 2018-04-20 中国石油集团长城钻探工程有限公司录井公司 A kind of drilling well outlet flow measurement device

Also Published As

Publication number Publication date
BR112020023947A2 (en) 2021-02-23
US20210246743A1 (en) 2021-08-12
KR20210013721A (en) 2021-02-05
CN112543839A (en) 2021-03-23
MX2020012617A (en) 2021-01-29
NO20201441A1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
US10208548B2 (en) Method for detecting gain or loss of drilling fluid in a drilling installation associated calculation system and associated drilling installation
US20210340869A1 (en) Method and system for determining the flow rates of multiphase and/or multi-component fluid produced from an oil and gas well
CA2999786C (en) Detection of influx and loss of circulation
DK201670271A1 (en) Multiphase Fluid Analysis
US10822895B2 (en) Mud return flow monitoring
US20190316942A1 (en) Methodologies and apparatus for the recognition of production tests stability
CA2714652A1 (en) Downhole washout detection system and method
NO20201135A1 (en) Improved flow measurement
US20130298663A1 (en) Flow measurement
US11105670B2 (en) Method for estimating a flow out of a fluid pump, associated calculation system and associated drilling installation
NO20220430A1 (en) Prospective kick loss detection for off-shore drilling
Carlsen et al. Utilizing instrumented stand pipe for monitoring drilling fluid dynamics for improving automated drilling operations
US10550652B2 (en) Ballooning diagnostics
WO2019241980A1 (en) Method and apparatus for early detection of kicks
CN110630243B (en) Method for determining fracturing fracture parameters based on fracturing well production data
WO2018058511A1 (en) Sensor drift handling in virtual flow metering
Chhantyal Sensor data fusion based modelling of drilling fluid return flow through open channels
CN114352271A (en) Method for prejudging well kick and well leakage
US12123303B2 (en) Method and system for determining the flow rates of multiphase and/or multi-component fluid produced from an oil and gas well
RU2013126565A (en) METHOD FOR MONITORING THE TIGHTNESS OF AN EXPRESSIVE WELL
RU2768341C1 (en) Well production rate prediction method taking into account anisotropy of permeability of carbonate rocks
Lambie et al. An Active Return Flowline Sensor for Onshore Drilling Rigs
from Local Flow Measurement Optimization Using Surface Measurements and Downhole Sound Speed Measurements from Local or Distributed Acoustic Sensors
GB2531882A (en) Methodologies and apparatus for the recognition of production tests stability
Rodd Determination of Oil-well Capacities from Liquid-level Data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923058

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020023947

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207037301

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112020023947

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201124

122 Ep: pct application non-entry in european phase

Ref document number: 18923058

Country of ref document: EP

Kind code of ref document: A1