WO2019240338A1 - Method for controlling operation of automatically cleanable heat exchanger - Google Patents

Method for controlling operation of automatically cleanable heat exchanger Download PDF

Info

Publication number
WO2019240338A1
WO2019240338A1 PCT/KR2018/013709 KR2018013709W WO2019240338A1 WO 2019240338 A1 WO2019240338 A1 WO 2019240338A1 KR 2018013709 W KR2018013709 W KR 2018013709W WO 2019240338 A1 WO2019240338 A1 WO 2019240338A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
water
pump
cleaning
valve
Prior art date
Application number
PCT/KR2018/013709
Other languages
French (fr)
Korean (ko)
Inventor
이재근
박민찬
이승욱
이재원
양지웅
Original Assignee
(주)에코에너지 기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에코에너지 기술연구소 filed Critical (주)에코에너지 기술연구소
Publication of WO2019240338A1 publication Critical patent/WO2019240338A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • F28G15/003Control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G1/00Non-rotary, e.g. reciprocated, appliances
    • F28G1/16Non-rotary, e.g. reciprocated, appliances using jets of fluid for removing debris
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details

Definitions

  • the present invention relates to an operation control method for an automatic cleaning heat exchanger, and more particularly, to reduce power consumption, prevent fouling through periodic cleaning, and improve operation efficiency of an automatic cleaning heat exchanger. It is about a method.
  • fouling is a phenomenon in which membranes are blocked by contaminants in influent during membrane filtration, and fouling is caused by various contaminants present in a fluid in a heat exchanger.
  • Korean Laid-Open Patent No. 0055324 ('Automatic cleaning device for heat exchanger'). This is a way to circulate a pair of brushes inside the heat exchanger to clean the inside of the pipe, which requires a device to move the brushes and the hassle of constantly changing brushes.
  • the present invention has been made to solve the problems of the prior art as described above, and its object is to automatically clean the heat exchanger without consuming additional power.
  • the present invention has another object to prevent the generation of fouling by periodic cleaning every time the heat pump is not running.
  • the cleaning nozzle is provided on one side of the heat exchanger and the heat exchanger is a heat exchange between the refrigerant and water, so that the heat exchanger can be cleaned
  • a heat pump including a line, a pump for supplying water to the heat exchanger and the cleaning nozzle line, and the heat exchanger, a heat pump for performing a refrigerant cycle, and a valve for controlling movement of water discharged from the pump,
  • the heat pump When the heat pump is in operation, the water discharged from the pump is moved to the heat exchanger to perform heat exchange by the heat exchanger.
  • the heat pump is inoperative, the water discharged from the pump is transferred to the washing nozzle line. It is moved and the heat exchanger is characterized in that the cleaning.
  • the cleaning nozzle line includes an inner cleaning nozzle line and the outer cleaning nozzle line, the valve, the first valve for moving the water discharged from the pump to the heat exchanger and the A second valve for moving the water discharged from the pump to the inner cleaning nozzle line, a third valve for moving the water discharged from the pump to the outer cleaning nozzle line, and at least one of the inner cleaning nozzle line or the outer cleaning nozzle line And a fourth valve for moving the water, which has passed through the outside, to the outside of the heat exchanger, and controls the valve according to the state of the heat pump.
  • the first temperature sensor for detecting the temperature of the water in the water inlet pipe in the heat exchanger and the water of the water discharge pipe in the heat exchanger Further comprising a second temperature sensor for sensing a temperature, characterized in that for setting the cleaning time of the heat exchanger, the difference between the temperature of the water detected by the first temperature sensor and the second temperature sensor, respectively.
  • the first pressure sensor for detecting the pressure of the water in the water inlet pipe in the heat exchanger and the water in the water discharge pipe in the heat exchanger Further comprising a second pressure sensor for detecting the pressure, characterized in that for setting the cleaning time of the heat exchanger, through the difference in the pressure of the water detected by the first pressure sensor and the second pressure sensor, respectively.
  • the heat exchanger according to an embodiment of the present invention further comprises a surface contamination tester for measuring the degree of contamination of the water, by measuring the degree of contamination of the water through the surface contamination tester, to set the cleaning time of the heat exchanger It is characterized by.
  • the operation control method of the self-cleaning heat exchanger of the present invention has the effect that it can automatically clean the heat exchanger without consuming additional power.
  • the operation control method of the self-cleaning heat exchanger according to the present invention has the effect of preventing the generation of fouling by periodic cleaning every time the heat pump is not running.
  • the operation control method of the self-cleaning heat exchanger according to the present invention has the effect of automatically cleaning the heat exchanger without additional labor.
  • the operation control method of the self-cleaning heat exchanger according to the present invention provides a condition-specific customized automatic cleaning, it is effective in predicting the fouling generation and cleaning cycle.
  • FIG. 1 is a view showing the shape of the self-cleaning heat exchanger according to an embodiment of the present invention.
  • FIG. 2 is a view showing a driving circuit of the self-cleaning heat exchanger according to an embodiment of the present invention.
  • FIG 3 is a view showing a circuit when driving the heat pump of the self-cleaning heat exchanger according to an embodiment of the present invention.
  • FIG. 4 is a view showing a circuit when the heat pump is not driven of the self-cleaning heat exchanger according to an embodiment of the present invention.
  • Figure 5 is a flow chart showing the operation logic of the self-cleaning heat exchanger according to an embodiment of the present invention.
  • FIG. 6 is a view showing a control flow of the self-cleaning heat exchanger according to an embodiment of the present invention.
  • FIG. 7 is a view showing a driving circuit including a temperature sensor of the self-cleaning heat exchanger according to an embodiment of the present invention.
  • FIG. 8 is a flow chart showing the temperature-based operating logic of the self-cleaning heat exchanger according to an embodiment of the present invention.
  • FIG. 9 is a view showing a driving circuit including a pressure sensor of the self-cleaning heat exchanger according to an embodiment of the present invention.
  • FIG. 10 is a flow chart showing a pressure-based operating logic of the self-cleaning heat exchanger according to an embodiment of the present invention.
  • FIG. 11 is a view showing a driving circuit including a surface contamination tester of the self-cleaning heat exchanger according to an embodiment of the present invention.
  • FIG. 12 is a flowchart showing the surface contamination inspection-based operation logic of the self-cleaning heat exchanger according to an embodiment of the present invention.
  • the present invention is provided on one side of the heat exchanger 100 and the heat exchanger 100 is a heat exchange between the refrigerant and water, so that the heat exchanger 100 can be cleaned Including a cleaning nozzle line 200, the heat exchanger 100 and the pump 300 for supplying water to the cleaning nozzle line 200 and the heat exchanger 100, the heat to allow the refrigerant cycle can be performed A pump (not shown) and the valve 500 for controlling the movement of the water discharged from the pump 300.
  • the cleaning nozzle line 200 includes an inner cleaning nozzle line 210 and an outer cleaning nozzle line 220.
  • the inner cleaning nozzle line 210 and the outer cleaning nozzle line 220 includes an inner nozzle 211 and an outer nozzle 221, respectively, and are provided in plural on one side of the heat exchanger.
  • the inner nozzle 211 and the outer nozzle 221 are arranged symmetrically about the heat exchanger 100, the injection angles of the inner nozzle 211 and the outer nozzle 221 and the Various arrangements are possible depending on the size of the heat exchanger 100.
  • the inner nozzle 211 and the outer nozzle 221 are arranged in a circular shape, but six pairs are installed at an interval of 60 ° so that the heat exchanger 100 can be uniformly cleaned.
  • the pump 300 preferably has an output capable of providing a hydraulic pressure required by the heat exchanger 100.
  • the state of the water discharged through the pump 300 is not good, the supply of water to the inner nozzle 211 and the outer nozzle 221 can be replaced with water.
  • it may be provided with a plurality of pumps that can replace the pump 300 as necessary.
  • the refrigerant supplier 400 supplies the refrigerant to the heat exchanger 100 through the refrigerant pipe 410 in the same manner as the apparatus for supplying the existing refrigerant as a basic component to the heat exchanger 100.
  • the valve 500 may include a first valve 510 for moving the water discharged from the pump 300 to the heat exchanger 100 and water discharged from the pump 300 to the inner cleaning nozzle line 210.
  • a fourth valve 540 for moving the water that has passed through at least one of the nozzle lines 220 to the outside of the heat exchanger 100. According to the state of the heat pump (not shown), the valve ( 500).
  • the operation schedule of the air conditioning system is set in multiple facilities such as underground stations. That is, when the air conditioning system is in the non-operation state because the non-operation time or the room temperature is below the operation temperature (cooling reference), the heat exchanger 100 is to be cleaned.
  • the present invention may further include a control unit 900 for controlling the valve 500.
  • an operation schedule of the heat pump (not shown) is input.
  • the controller 900 determines whether the heat pump (not shown) is in an operation period. If the control unit 900 determines that the heat pump (not shown) is the operation period, it is determined whether the indoor temperature is higher than the set operating temperature. (S3) The operation performed by the control unit 900 at the indoor temperature is set. If it is determined that the temperature is higher than the temperature, the first valve 510 is opened to allow the water discharged from the pump 300 to move to the heat exchanger 100. (S4) The control unit 900 sets the room temperature. When it is determined that the temperature is lower than the operating temperature, the first valve 510 is closed and the fourth valve 540 is opened to discharge all the water remaining in the heat exchanger 100. Input the cleaning time of 100) (S6).
  • step S6 for inputting a cleaning time.
  • step S7 simultaneously open both the second valve 520 and the third valve 530 to clean the heat exchanger 100 (S7) and the second valve 520 to open the third valve
  • An inner cleaning mode S8 for closing only 530 to clean only the inside of the heat exchanger 100, and closing the second valve 520, opening the third valve 530 to open the third heat exchanger 100.
  • One of the external cleaning modes S9 for cleaning the outside is selected to clean the heat exchanger 100.
  • the cleaning cycle time of the heat exchanger 100 is input.
  • control unit 900 terminates the cleaning on the basis of the input cleaning cycle time. (S10) When the controller 900 determines that the cleaning of the heat exchanger 100 is finished, the first valve 510 is opened and the fourth valve 540 is closed. )
  • the heat pump 100 may be always cleaned at a time when the heat pump (not shown) is not operated.
  • the cleaning time and the cleaning cycle of the heat exchanger 100 may be input according to a user's preference.
  • the heat exchanger 100 may be cleaned only at a desired time.
  • the outside and the inside of the heat exchanger 100 may be independently cleaned according to the required flow rate, and both the outside and the inside of the heat exchanger 100 may be washed. Accordingly, the user may set the cleaning time and the cleaning cycle according to the situation, and designate the desired cleaning position of the heat exchanger 100.
  • the heat exchanger 100 is periodically cleaned without removing the heat exchanger 100 to prevent the generation of fouling. Through this it is possible to maintain the performance of the heat exchanger (100).
  • the first temperature sensor 610 for detecting the temperature of the water in the water inlet pipe 110 in the heat exchanger 100 and the temperature of the water in the water discharge pipe 120 in the heat exchanger 100 are measured. It further comprises a second temperature sensor 620 for sensing.
  • the controller 900 sets the cleaning time of the heat exchanger 100 through the difference in the temperature of the water detected by the first temperature sensor 610 and the second temperature sensor 620, respectively.
  • an operation schedule of the heat pump (not shown) is input.
  • the controller 900 determines whether the heat pump (not shown) is in an operation period.
  • T3 If the control unit 900 determines that the heat pump (not shown) is the operating period, it is determined whether the room temperature is higher than the set operating temperature.
  • T4 The control unit 900 If it is determined that the room temperature is higher than the set operating temperature, the first valve 510 is opened to allow the water discharged from the pump 300 to move to the heat exchanger 100.
  • the controller 900 determines whether the temperature difference of the water is equal to or less than the allowable temperature difference. (T7) When the controller 900 determines that the temperature difference between the water is equal to or less than the allowable temperature difference, the control unit 900 ends. When the controller 900 determines that the temperature difference of the water is greater than or equal to the allowable temperature difference, the controller 900 closes the first valve 510 and opens the fourth valve 540 to enter the cleaning mode.
  • control unit 900 determines that the room temperature is lower than the set operating temperature, the first valve 510 is closed and the fourth valve 540 is opened to discharge all the water remaining in the heat exchanger 100. (T9) After that, the cleaning time of the heat exchanger 100 is input. (T10) Next, the process proceeds as follows.
  • the control unit 900 determines that the heat pump (not shown) is not in the operation period in step T3, the first valve 510 is closed and the fourth valve 540 is opened. Thereafter, the initial cleaning time is input. (T10) Next, the simultaneous cleaning mode T12 and the second cleaning method of cleaning the heat exchanger 100 by opening both the second valve 520 and the third valve 530. 2 the valve 520 is opened, the third valve 530 is closed to clean only the inside of the heat exchanger 100, and the inner cleaning mode T13, and the second valve 520 is closed, the third valve 530 is opened to select one of the outer cleaning modes T14 for cleaning only the outside of the heat exchanger 100 to clean the heat exchanger 100. When the controller 900 determines that the cleaning of the heat exchanger 100 is finished (T15), the first valve 510 is opened and the fourth valve 540 is closed (T16).
  • the heat transfer performance of the heat exchanger 100 is reduced during fouling generation.
  • the temperature difference between the water in the water inlet pipe 110 and the water discharge pipe 120 is increased.
  • the fouling degree of the heat exchanger 100 can be measured, and the precise cleaning driving of the heat exchanger 100 is possible. That is, the cleaning is automatically completed by stopping or repeating cleaning according to the degree of cleaning improvement on the basis of the initial cleaning time input.
  • the fouling phenomenon of the heat exchanger 100 may be predicted based on the stored data to predict the cleaning cycle, and the performance of the heat exchanger 100 may be easily maintained.
  • Table 1 below shows one embodiment according to the flowchart of FIG. 8.
  • the first pressure sensor 710 detecting the pressure of the water in the water inlet pipe 110 in the heat exchanger 100 and the water discharge pipe in the heat exchanger 100 are described. Further comprising a second pressure sensor 720 for detecting the pressure of the water in the 120, the heat exchanger through the difference in the pressure of the water respectively detected by the first pressure sensor 710 and the second pressure sensor 720, The washing time of 100 is set.
  • the heat exchanger 100 further includes a surface contamination tester 800 for measuring the degree of contamination of the water, by measuring the degree of contamination of the water through the surface contamination tester 800 Set the cleaning time of the heat exchanger (100). That is, it includes all types of sensors capable of measuring the fouling of the heat exchanger (100).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The present invention relates to a method for controlling the operation of an automatically cleanable heat exchanger and, more specifically, to a method for controlling the operation of an automatically cleanable heat exchanger, the method allowing, when a heat pump is operating, water discharged from a pump to move to a heat exchanger such that heat exchange is performed by means of the heat exchanger, and allowing, when the heat pump is not operating, the water discharged from the pump to move to a cleaning nozzle line such that the heat exchanger is cleaned.

Description

자동 세정형 열교환기의 운전제어 방법Operation control method of automatic cleaning heat exchanger
본 발명은 자동 세정형 열교환기의 운전제어 방법에 관한 것으로, 더욱 상세하게는 동력 소모를 줄이고, 주기적 세정을 통해 파울링 생성을 방지하며, 열교환기의 효율을 높이는 자동 세정형 열교환기의 운전제어 방법에 관한 것이다.The present invention relates to an operation control method for an automatic cleaning heat exchanger, and more particularly, to reduce power consumption, prevent fouling through periodic cleaning, and improve operation efficiency of an automatic cleaning heat exchanger. It is about a method.
일반적으로 파울링 현상은 막여과에서 유입수 속의 오염물질에 의해 막이 막히는 현상으로, 열교환기에서는 유체에 존재하는 각종 오염물에 의해 파울링 현상이 발생하여 효율이 떨어지는 문제점이 있다.In general, fouling is a phenomenon in which membranes are blocked by contaminants in influent during membrane filtration, and fouling is caused by various contaminants present in a fluid in a heat exchanger.
이를 해결하기 위하여 종래의 기술을 살펴보면 첫째로, 세정액을 순환시는 방법이 있지만, 이는 세정액 처리 과정에서 환경문제를 발생시킨다. 둘째로, 초음파를 이용하여 세정하는 방법이 있지만, 이는 설비비가 비싸며, 적용 가능한 열교환기 구조가 제한적이다. 마지막으로 열교환기를 분해하여 브러쉬로 사람이 직접 세척하는 방법이 있지만, 이 역시 노동력을 필요로 하는 문제점이 있고, 사람의 접근이 곤란한 경우에는 열교환기를 세정하는데 어려움이 있다. Looking at the prior art to solve this problem, first, there is a method of circulating the cleaning liquid, but this causes an environmental problem in the cleaning liquid treatment process. Secondly, there is a method of cleaning using ultrasonic waves, but this is expensive and limited in the heat exchanger structure applicable. Finally, there is a method of disassembling the heat exchanger and washing the person directly with a brush, but this also requires a labor force, and in the case of difficulty in accessing the person, there is a difficulty in cleaning the heat exchanger.
상기 기술한 문제점을 제외하여 열교환기를 세척하는 관련 기술로는, 예를 들면 한국공개특허 제0055324호(‘열교환기의 자동 세정 장치’)가 있다. 이는 브러쉬 한 쌍을 열교환기 내부에서 순환시켜 배관 내부를 세척하는 방법인데, 이는 브러쉬를 이동시키는 장치가 필요하며, 브러쉬를 계속해서 교체해야하는 번거로움이 있다.As a related art for cleaning a heat exchanger except for the above-described problems, there is, for example, Korean Laid-Open Patent No. 0055324 ('Automatic cleaning device for heat exchanger'). This is a way to circulate a pair of brushes inside the heat exchanger to clean the inside of the pipe, which requires a device to move the brushes and the hassle of constantly changing brushes.
따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 추가적인 동력의 소모 없이 열교환기를 자동으로 세정하는데 그 목적이 있다.Accordingly, the present invention has been made to solve the problems of the prior art as described above, and its object is to automatically clean the heat exchanger without consuming additional power.
또한, 본 발명은 히트펌프가 미가동시 마다 주기적인 세정으로 파울링 생성을 방지하는데 또 다른 목적이 있다.In addition, the present invention has another object to prevent the generation of fouling by periodic cleaning every time the heat pump is not running.
또한, 본 발명은 별도의 노동력 없이 열교환기를 자동으로 세정하는데 그 목적이 있다.It is also an object of the present invention to automatically clean the heat exchanger without additional labor.
또한, 본 발명은 조건별 맟춤 자동 세정을 제공하며, 파울링 생성 및 세정 주기를 예측하는데 그 목적이 있다.It is also an object of the present invention to provide a conditional customized automatic cleaning and to predict fouling generation and cleaning cycle.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제로 제한되지 않으며, 여기에 언급되지 않은 본 발명이 해결하려는 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the above-mentioned problem, another problem to be solved by the present invention not mentioned herein is to those skilled in the art from the following description. It will be clearly understood.
본 발명의 바람직한 일 실시예에 따른 자동 세정형 열교환기의 운전제어 방법에 있어서, 냉매와 물과의 열교환이 이루어지는 열교환기와 상기 열교환기의 일측에 구비되어, 상기 열교환기가 세정될 수 있도록 하는 세정노즐라인과 상기 열교환기 및 상기 세정노즐라인에 물을 공급하는 펌프와 상기 열교환기를 포함하여, 냉매 사이클이 수행될 수 있도록 하는 히트펌프와 상기 펌프에서 토출된 물의 이동을 제어하는 밸브를 포함하며, 상기 히트펌프가 작동 상태일 경우, 상기 펌프에서 토출된 물이 상기 열교환기로 이동되어 상기 열교환기에 의해 열교환이 수행되고, 상기 히트펌프가 미작동 상태일 경우, 상기 펌프에서 토출된 물이 세정노즐라인으로 이동되어 상기 열교환기가 세정되는 것을 특징으로 한다.In the operation control method of the self-cleaning heat exchanger according to an embodiment of the present invention, the cleaning nozzle is provided on one side of the heat exchanger and the heat exchanger is a heat exchange between the refrigerant and water, so that the heat exchanger can be cleaned A heat pump including a line, a pump for supplying water to the heat exchanger and the cleaning nozzle line, and the heat exchanger, a heat pump for performing a refrigerant cycle, and a valve for controlling movement of water discharged from the pump, When the heat pump is in operation, the water discharged from the pump is moved to the heat exchanger to perform heat exchange by the heat exchanger. When the heat pump is inoperative, the water discharged from the pump is transferred to the washing nozzle line. It is moved and the heat exchanger is characterized in that the cleaning.
또한, 본 발명의 바람직한 일 실시예에 따른 상기 세정노즐라인은 내측세정노즐라인 및 외측세정노즐라인을 포함하며, 상기 밸브는, 상기 펌프에서 토출된 물을 상기 열교환기로 이동시키는 제 1 밸브와 상기 펌프에서 토출된 물을 상기 내측세정노즐라인으로 이동시키는 제 2 밸브와 상기 펌프에서 토출된 물을 상기 외측세정노즐라인으로 이동시키는 제 3 밸브 및 상기 내측세정노즐라인 혹은 외측세정노즐라인 중 적어도 하나를 통과하여 나온 물을 상기 열교환기 외부로 이동시키는 제 4 밸브를 포함하며, 상기 히트펌프의 상태에 따라, 상기 밸브를 제어하는 것을 특징으로 한다.In addition, the cleaning nozzle line according to an embodiment of the present invention includes an inner cleaning nozzle line and the outer cleaning nozzle line, the valve, the first valve for moving the water discharged from the pump to the heat exchanger and the A second valve for moving the water discharged from the pump to the inner cleaning nozzle line, a third valve for moving the water discharged from the pump to the outer cleaning nozzle line, and at least one of the inner cleaning nozzle line or the outer cleaning nozzle line And a fourth valve for moving the water, which has passed through the outside, to the outside of the heat exchanger, and controls the valve according to the state of the heat pump.
또한, 본 발명의 바람직한 일 실시예에 따른 자동 세정형 열교환기의 운전제어 방법에 있어서, 상기 열교환기에서 물 유입관내의 물의 온도를 감지하는 제1온도센서 및 상기 열교환기에서 물 토출관 내의 물의 온도를 감지하는 제2온도센서를 더 포함하며, 상기 제1온도센서와 제2온도센서가 각각 감지한 물의 온도의 차이를 통해, 상기 열교환기의 세정시간을 설정하는 것을 특징으로 한다.In addition, in the operation control method of the self-cleaning heat exchanger according to an embodiment of the present invention, the first temperature sensor for detecting the temperature of the water in the water inlet pipe in the heat exchanger and the water of the water discharge pipe in the heat exchanger Further comprising a second temperature sensor for sensing a temperature, characterized in that for setting the cleaning time of the heat exchanger, the difference between the temperature of the water detected by the first temperature sensor and the second temperature sensor, respectively.
또한, 본 발명의 바람직한 일 실시예에 따른 자동 세정형 열교환기의 운전제어 방법에 있어서, 상기 열교환기에서 물 유입관내의 물의 압력을 감지하는 제1압력센서 및 상기 열교환기에서 물 토출관내의 물의 압력을 감지하는 제2압력센서를 더 포함하며, 상기 제1압력센서와 제2압력센서가 각각 감지한 물의 압력의 차이를 통해, 상기 열교환기의 세정시간을 설정하는 것을 특징으로 한다.In addition, in the operation control method of the self-cleaning heat exchanger according to an embodiment of the present invention, the first pressure sensor for detecting the pressure of the water in the water inlet pipe in the heat exchanger and the water in the water discharge pipe in the heat exchanger Further comprising a second pressure sensor for detecting the pressure, characterized in that for setting the cleaning time of the heat exchanger, through the difference in the pressure of the water detected by the first pressure sensor and the second pressure sensor, respectively.
또한, 본 발명의 바람직한 일 실시예에 따른 상기 열교환기는 물의 오염정도를 측정하는 표면오염검사기를 더 포함하며, 상기 표면오염검사기를 통해 물의 오염정도를 측정하여, 상기 열교환기의 세정시간을 설정하는 것을 특징으로 한다.In addition, the heat exchanger according to an embodiment of the present invention further comprises a surface contamination tester for measuring the degree of contamination of the water, by measuring the degree of contamination of the water through the surface contamination tester, to set the cleaning time of the heat exchanger It is characterized by.
상기 과제의 해결 수단에 의해, 본 발명의 자동 세정형 열교환기의 운전제어 방법은, 추가적인 동력의 소모 없이 열교환기를 자동으로 세정할 수 있는 효과가 있다.By the means for solving the above problems, the operation control method of the self-cleaning heat exchanger of the present invention has the effect that it can automatically clean the heat exchanger without consuming additional power.
또한, 본 발명에 따른 자동 세정형 열교환기의 운전제어 방법은, 히트펌프가 미가동시 마다 주기적인 세정으로 파울링 생성을 방지하는데 그 효과가 있다.In addition, the operation control method of the self-cleaning heat exchanger according to the present invention has the effect of preventing the generation of fouling by periodic cleaning every time the heat pump is not running.
또한, 본 발명에 따른 자동 세정형 열교환기의 운전제어 방법은, 별도의 노동력 없이 열교환기를 자동으로 세정하는데 그 효과가 있다.In addition, the operation control method of the self-cleaning heat exchanger according to the present invention has the effect of automatically cleaning the heat exchanger without additional labor.
또한, 본 발명에 따른 자동 세정형 열교환기의 운전제어 방법은, 조건별 맟춤 자동 세정을 제공하며, 파울링 생성 및 세정 주기를 예측하는데 그 효과가 있다.In addition, the operation control method of the self-cleaning heat exchanger according to the present invention provides a condition-specific customized automatic cleaning, it is effective in predicting the fouling generation and cleaning cycle.
도 1은 본 발명의 일 실시예에 따른 자동 세정형 열교환기의 형상을 나타낸 도면이다.1 is a view showing the shape of the self-cleaning heat exchanger according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 자동 세정형 열교환기의 구동 회로를 나타낸 도면이다.2 is a view showing a driving circuit of the self-cleaning heat exchanger according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 자동 세정형 열교환기의 히트펌프 구동 시의 회로를 나타낸 도면이다.3 is a view showing a circuit when driving the heat pump of the self-cleaning heat exchanger according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 자동 세정형 열교환기의 히트펌프 미구동시의 회로를 나타낸 도면이다.4 is a view showing a circuit when the heat pump is not driven of the self-cleaning heat exchanger according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 자동 세정형 열교환기의 운전 로직을 나타낸 순서도이다.Figure 5 is a flow chart showing the operation logic of the self-cleaning heat exchanger according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 자동 세정형 열교환기의 제어 흐름을 나타낸 도면이다.6 is a view showing a control flow of the self-cleaning heat exchanger according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 자동 세정형 열교환기의 온도센서를 포함한 구동 회로를 나타낸 도면이다.7 is a view showing a driving circuit including a temperature sensor of the self-cleaning heat exchanger according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 자동 세정형 열교환기의 온도기반 운전 로직을 나타낸 순서도이다.8 is a flow chart showing the temperature-based operating logic of the self-cleaning heat exchanger according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 자동 세정형 열교환기의 압력센서를 포함한 구동 회로를 나타낸 도면이다.9 is a view showing a driving circuit including a pressure sensor of the self-cleaning heat exchanger according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 자동 세정형 열교환기의 압력기반 운전로직을 나타낸 순서도이다.10 is a flow chart showing a pressure-based operating logic of the self-cleaning heat exchanger according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 자동 세정형 열교환기의 표면오염검사기를 포함한 구동 회로를 나타낸 도면이다.11 is a view showing a driving circuit including a surface contamination tester of the self-cleaning heat exchanger according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 자동 세정형 열교환기의 표면오염검사기반 운전 로직을 나타낸 순서도이다.12 is a flowchart showing the surface contamination inspection-based operation logic of the self-cleaning heat exchanger according to an embodiment of the present invention.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명에 대해 구체적으로 설명하기로 한다.Terms used herein will be briefly described and the present invention will be described in detail.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.The terms used in the present invention have been selected as widely used general terms as possible in consideration of the functions in the present invention, but this may vary according to the intention or precedent of the person skilled in the art, the emergence of new technologies and the like. Therefore, the terms used in the present invention should be defined based on the meanings of the terms and the contents throughout the present invention, rather than the names of the simple terms.
명세서 전체에서 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.When a part of the specification is said to "include" any component, this means that it may further include other components, except to exclude other components unless otherwise stated.
아래에서는 첨부한 도면을 참고하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
본 발명에 대한 해결하고자 하는 과제, 과제의 해결 수단, 발명의 효과를 포함한 구체적인 사항들은 다음에 기재할 실시 예 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다.Specific matters including the problem to be solved, the means for solving the problem, and the effects of the present invention are included in the following embodiments and the drawings. Advantages and features of the present invention, and methods for achieving them will be apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings.
이하, 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.
도 1 내지 도 2를 참조하면, 본 발명은 냉매와 물과의 열교환이 이루어지는 열교환기(100)와 상기 열교환기(100)의 일측에 구비되어, 상기 열교환기(100)가 세정될 수 있도록 하는 세정노즐라인(200)과 상기 열교환기(100) 및 상기 세정노즐라인(200)에 물을 공급하는 펌프(300)와 상기 열교환기(100)를 포함하여, 냉매 사이클이 수행될 수 있도록 하는 히트펌프(도면 미도시)와 상기 펌프(300)에서 토출된 물의 이동을 제어하는 밸브(500)를 포함한다.1 to 2, the present invention is provided on one side of the heat exchanger 100 and the heat exchanger 100 is a heat exchange between the refrigerant and water, so that the heat exchanger 100 can be cleaned Including a cleaning nozzle line 200, the heat exchanger 100 and the pump 300 for supplying water to the cleaning nozzle line 200 and the heat exchanger 100, the heat to allow the refrigerant cycle can be performed A pump (not shown) and the valve 500 for controlling the movement of the water discharged from the pump 300.
상기 히트펌프(도면 미도시)가 작동 상태일 경우, 상기 펌프(300)에서 토출된 물이 상기 열교환기(100)로 이동되어 상기 열교환기(100)에 의해 열교환이 수행되고, 상기 히트펌프(도면 미도시)가 미작동 상태일 경우, 상기 펌프(300)에서 토출된 물이 세정노즐라인(200)으로 이동되어 상기 열교환기(100)가 세정된다.When the heat pump (not shown) is in an operating state, water discharged from the pump 300 is moved to the heat exchanger 100 to perform heat exchange by the heat exchanger 100, and the heat pump ( If not shown), the water discharged from the pump 300 is moved to the cleaning nozzle line 200 to clean the heat exchanger 100.
상기 세정노즐라인(200)은 내측세정노즐라인(210)과 외측세정노즐라인(220)을 포함한다. 상기 내측세정노즐라인(210)과 외측세정노즐라인(220)은 각각 내측노즐(211)과 외측노즐(221)을 포함하고, 상기 열교환기의 일측에 다수개로 구비된다. 도 1에서, 상기 내측노즐(211)과 외측노즐(221)은 상기 열교환기(100)를 중심으로 좌우대칭으로 배열되어 있지만, 상기 내측노즐(211)과 외측노즐(221)의 분사각과 상기 열교환기(100)의 크기에 따라서 다양한 배열이 가능하다. 일례로, 상기 내측노즐(211)과 외측노즐(221)을 원형으로 배열하되 60°의 배치 간격으로 여섯 쌍을 설치하여, 상기 열교환기(100)가 균일하게 세정될 수 있도록 한다.The cleaning nozzle line 200 includes an inner cleaning nozzle line 210 and an outer cleaning nozzle line 220. The inner cleaning nozzle line 210 and the outer cleaning nozzle line 220 includes an inner nozzle 211 and an outer nozzle 221, respectively, and are provided in plural on one side of the heat exchanger. In FIG. 1, although the inner nozzle 211 and the outer nozzle 221 are arranged symmetrically about the heat exchanger 100, the injection angles of the inner nozzle 211 and the outer nozzle 221 and the Various arrangements are possible depending on the size of the heat exchanger 100. For example, the inner nozzle 211 and the outer nozzle 221 are arranged in a circular shape, but six pairs are installed at an interval of 60 ° so that the heat exchanger 100 can be uniformly cleaned.
상기 펌프(300)는, 상기 열교환기(100)가 필요로 하는 수압을 제공할 수 있는 출력을 가지는 것이 바람직하다. 상기 펌프(300)를 통해 토출된 물의 상태가 양호하지 않을 경우, 상기 내측노즐(211)과 외측노즐(221)로의 물의 공급은 상수도로 대체할 수 있다. 또한, 필요에 따라 상기 펌프(300)를 대체할 수 있는 다수개의 펌프를 구비할 수 있다.The pump 300 preferably has an output capable of providing a hydraulic pressure required by the heat exchanger 100. When the state of the water discharged through the pump 300 is not good, the supply of water to the inner nozzle 211 and the outer nozzle 221 can be replaced with water. In addition, it may be provided with a plurality of pumps that can replace the pump 300 as necessary.
상기 냉매공급기(400)는, 상기 열교환기(100)에 기본적인 부품으로 기존의 냉매를 공급하는 장치와 동일하게 냉매 배관(410)을 통해 상기 열교환기(100)에 냉매를 공급한다.The refrigerant supplier 400 supplies the refrigerant to the heat exchanger 100 through the refrigerant pipe 410 in the same manner as the apparatus for supplying the existing refrigerant as a basic component to the heat exchanger 100.
상기 밸브(500)는, 상기 펌프(300)에서 토출된 물을 상기 열교환기(100)로 이동시키는 제 1 밸브(510)와 상기 펌프(300)에서 토출된 물을 상기 내측세정노즐라인(210)으로 이동시키는 제 2 밸브(520)와 상기 펌프(300)에서 토출된 물을 상기 외측세정노즐라인(220)으로 이동시키는 제 3 밸브(530)와 상기 내측세정노즐라인(210) 혹은 외측세정노즐라인(220) 중 적어도 하나를 통과하여 나온 물을 상기 열교환기(100) 외부로 이동시키는 제 4 밸브(540)를 포함하며, 상기 히트펌프(도면 미도시)의 상태에 따라, 상기 밸브(500)를 제어한다.The valve 500 may include a first valve 510 for moving the water discharged from the pump 300 to the heat exchanger 100 and water discharged from the pump 300 to the inner cleaning nozzle line 210. The third valve 530 and the inner washing nozzle line 210 or the outer washing to move the second valve 520 and the water discharged from the pump 300 to the outer cleaning nozzle line 220 And a fourth valve 540 for moving the water that has passed through at least one of the nozzle lines 220 to the outside of the heat exchanger 100. According to the state of the heat pump (not shown), the valve ( 500).
일례로, 지하역사와 같은 다중시설에는 공조시스템의 운전 스케줄이 정해져 있다. 즉, 상기 공조시스템이 미운전 시간 또는 실내온도가 운전온도 이하(냉방기준)가 되어 미운전 상태가 되었을 때, 상기 열교환기(100)를 세정하도록 하는 것이다.For example, the operation schedule of the air conditioning system is set in multiple facilities such as underground stations. That is, when the air conditioning system is in the non-operation state because the non-operation time or the room temperature is below the operation temperature (cooling reference), the heat exchanger 100 is to be cleaned.
도 3을 참조하면, 상기 히트펌프(도면 미도시)가 구동되고 있을 경우, 상기 펌프(300)에서 토출된 물이 상기 열교환기(100)로 이동한다. 즉, 상기 제 1 밸브(510)를 열고, 상기 제 2 밸브(520)와 제 3 밸브(530)와 제 4 밸브(540)를 모두 닫고 있는 상태인 것이다. 도 4를 참조하면, 상기 히트펌프(도면 미도시)가 구동되고 있지 않을 경우, 상기 펌프(300)에서 토출된 물이 상기 세정노즐라인(200)으로 이동한다. 즉, 상기 제 1 밸브(510)를 닫고, 상기 제 2 밸브(520)와 제 3 밸브(530)와 제 4 밸브(540)를 모두 열고 있는 상태인 것이다.Referring to FIG. 3, when the heat pump (not shown) is driven, water discharged from the pump 300 moves to the heat exchanger 100. That is, the first valve 510 is opened, and the second valve 520, the third valve 530, and the fourth valve 540 are all closed. Referring to FIG. 4, when the heat pump (not shown) is not driven, water discharged from the pump 300 moves to the cleaning nozzle line 200. That is, the first valve 510 is closed and both the second valve 520, the third valve 530, and the fourth valve 540 are opened.
다음으로, 도 5를 참조하여 본 발명의 기본적인 실시예를 상세히 설명한다. 먼저, 본 발명은 상기 밸브(500)를 제어하는 제어부(900)를 더 포함할 수 있다.Next, the basic embodiment of the present invention will be described in detail with reference to FIG. First, the present invention may further include a control unit 900 for controlling the valve 500.
처음으로, 상기 히트펌프(도면 미도시)의 운전 스케줄을 입력한다.(S1) 다음으로, 상기 제어부(900)는 상기 히트펌프(도면 미도시)가 운전기간인지 아닌지를 판단한다.(S2) 상기 제어부(900)가 상기 히트펌프(도면 미도시)가 운전기간인 것으로 판단하면, 실내온도가 설정한 운전온도보다 높은지를 판단한다.(S3) 상기 제어부(900)가 실내온도가 설정한 운전온도보다 높다고 판단하면, 상기 제 1 밸브(510)를 열어 상기 펌프(300)에서 토출된 물이 상기 열교환기(100)로 이동되도록 한다.(S4) 상기 제어부(900)가 실내온도가 설정한 운전온도보다 낮다고 판단하면, 상기 제 1 밸브(510)를 닫고, 상기 제 4 밸브(540)를 열어 상기 열교환기(100)에 남아 있는 물을 모두 배출한다.(S5) 이후, 상기 열교환기(100)의 세정시간을 입력한다.(S6)First, an operation schedule of the heat pump (not shown) is input. (S1) Next, the controller 900 determines whether the heat pump (not shown) is in an operation period. If the control unit 900 determines that the heat pump (not shown) is the operation period, it is determined whether the indoor temperature is higher than the set operating temperature. (S3) The operation performed by the control unit 900 at the indoor temperature is set. If it is determined that the temperature is higher than the temperature, the first valve 510 is opened to allow the water discharged from the pump 300 to move to the heat exchanger 100. (S4) The control unit 900 sets the room temperature. When it is determined that the temperature is lower than the operating temperature, the first valve 510 is closed and the fourth valve 540 is opened to discharge all the water remaining in the heat exchanger 100. Input the cleaning time of 100) (S6).
S2단계에서 상기 제어부(900)가 상기 상기 히트펌프(도면 미도시)가 운전기간이 아니라고 판단한 경우에는, 세정시간을 입력하는 상기 S6단계로 진행하게 된다. 다음으로, 상기 제 2 밸브(520)와 제 3 밸브(530)를 모두 열어 상기 열교환기(100)를 세정하는 동시 세정 모드(S7)와 상기 제 2 밸브(520)를 열고, 상기 제 3 밸브(530)를 닫아 상기 열교환기(100)의 내부만 세정하는 내측 세정 모드(S8)와, 상기 제 2 밸브(520)는 닫고, 상기 제 3 밸브(530)를 열어 상기 열교환기(100)의 외부만 세정하는 외측 세정 모드(S9) 중 하나를 선택하여, 상기 열교환기(100)를 세정한다. 상기 열교환기(100)의 세정이 종료되면(S10), 상기 열교환기(100)의 세정 주기 시간을 입력한다.(S11) 이후, 상기 제어부(900)는 입력된 세정 주기 시간을 토대로 세정이 종료되었는지를 판단한다.(S10) 상기 제어부(900)가 상기 열교환기(100)의 세정이 종료되었다고 판단하면, 상기 제 1 밸브(510)를 열고, 상기 제 4 밸브(540)를 닫는다.(S12)If the control unit 900 determines that the heat pump (not shown) is not an operation period in step S2, the control unit 900 proceeds to step S6 for inputting a cleaning time. Next, simultaneously open both the second valve 520 and the third valve 530 to clean the heat exchanger 100 (S7) and the second valve 520 to open the third valve An inner cleaning mode S8 for closing only 530 to clean only the inside of the heat exchanger 100, and closing the second valve 520, opening the third valve 530 to open the third heat exchanger 100. One of the external cleaning modes S9 for cleaning the outside is selected to clean the heat exchanger 100. When the cleaning of the heat exchanger 100 is finished (S10), the cleaning cycle time of the heat exchanger 100 is input. (S11) After that, the control unit 900 terminates the cleaning on the basis of the input cleaning cycle time. (S10) When the controller 900 determines that the cleaning of the heat exchanger 100 is finished, the first valve 510 is opened and the fourth valve 540 is closed. )
이를 통하여, 상기 히트펌프(도면 미도시)가 운전되지 않는 시간에 항시 상기 열교환기(100)를 세정할 수 있으며, 사용자의 기호에 따라 상기 열교환기(100)의 세정시간과 세정 주기를 입력하여 원하는 시간에만 상기 열교환기(100)를 세정할 수 있도록 할 수 있다. 또한, 필요한 유량에 맞춰 상기 열교환기(100)의 외측, 내측을 독립적으로 세정할 수 있으며, 동시에 열교환기(100)의 외측과 내측을 모두 세척할 수 있다. 따라서, 사용자가 상황에 따라 세정시간과 세정 주기를 설정하며, 원하는 상기 열교환기(100)의 세정 위치를 지정할 수 있다.Through this, the heat pump 100 may be always cleaned at a time when the heat pump (not shown) is not operated. The cleaning time and the cleaning cycle of the heat exchanger 100 may be input according to a user's preference. The heat exchanger 100 may be cleaned only at a desired time. In addition, the outside and the inside of the heat exchanger 100 may be independently cleaned according to the required flow rate, and both the outside and the inside of the heat exchanger 100 may be washed. Accordingly, the user may set the cleaning time and the cleaning cycle according to the situation, and designate the desired cleaning position of the heat exchanger 100.
결과적으로, 상기 열교환기(100)를 분리하지 않고, 주기적으로 상기 열교환기(100)를 세정하여 파울링의 생성을 방지한다. 이를 통해 상기 열교환기(100)의 성능을 유지할 수 있는 것이다.As a result, the heat exchanger 100 is periodically cleaned without removing the heat exchanger 100 to prevent the generation of fouling. Through this it is possible to maintain the performance of the heat exchanger (100).
다음으로 상술할 내용은 상기 열교환기(100)의 파울링 정도를 측정하여, 상기 열교환기(100)의 세정을 정밀하게 하는 방법에 관한 것이다. Next will be described in detail the method for precisely cleaning the heat exchanger 100 by measuring the fouling degree of the heat exchanger (100).
도 7을 참조하면, 상기 열교환기(100)에서 물 유입관(110)내의 물의 온도를 감지하는 제1온도센서(610)와 상기 열교환기(100)에서 물 토출관(120) 내의 물의 온도를 감지하는 제2온도센서(620)를 더 포함한다.Referring to FIG. 7, the first temperature sensor 610 for detecting the temperature of the water in the water inlet pipe 110 in the heat exchanger 100 and the temperature of the water in the water discharge pipe 120 in the heat exchanger 100 are measured. It further comprises a second temperature sensor 620 for sensing.
상기 제어부(900)는 상기 제1온도센서(610)와 제2온도센서(620)가 각각 감지한 물의 온도의 차이를 통해, 상기 열교환기(100)의 세정시간을 설정하는 것이다. 도 8을 참조하면, 처음으로, 상기 히트펌프(도면 미도시)의 운전 스케줄을 입력한다.(T2) 다음으로, 상기 제어부(900)는 상기 히트펌프(도면 미도시)가 운전기간인지 아닌지를 판단한다.(T3) 상기 제어부(900)가 상기 히트펌프(도면 미도시)가 운전기간인 것으로 판단하면, 실내온도가 설정한 운전온도보다 높은지를 판단한다.(T4) 상기 제어부(900)가 실내온도가 설정한 운전온도보다 높다고 판단하면, 상기 제 1 밸브(510)를 열어 상기 펌프(300)에서 토출된 물이 상기 열교환기(100)로 이동되도록 한다.(T5) 이후, 상기 히트펌프(도면 미도시)가 운전하는 시간 동안, 상기 제1온도센서(610)와 제2온도센서(620)를 통해 상기 물 유입관(110)과 물 토출관(120)의 물의 온도차를 계산하여 저장한다.(T6) 이후, 상기 제어부(900)는 상기 물의 온도차가 허용 온도차 이하인지를 판단한다.(T7) 상기 제어부(900)가 상기 물의 온도차가 허용 온도차 이하로 판단하면, 종료된다. 상기 제어부(900)가 상기 물의 온도차가 허용 온도차 이상으로 판단되면, 상기 제 1 밸브(510)를 닫고, 상기 제 4 밸브(540)를 열어 세정모드로 진입한다.The controller 900 sets the cleaning time of the heat exchanger 100 through the difference in the temperature of the water detected by the first temperature sensor 610 and the second temperature sensor 620, respectively. Referring to FIG. 8, first, an operation schedule of the heat pump (not shown) is input. (T2) Next, the controller 900 determines whether the heat pump (not shown) is in an operation period. (T3) If the control unit 900 determines that the heat pump (not shown) is the operating period, it is determined whether the room temperature is higher than the set operating temperature. (T4) The control unit 900 If it is determined that the room temperature is higher than the set operating temperature, the first valve 510 is opened to allow the water discharged from the pump 300 to move to the heat exchanger 100. (T5) After that, the heat pump During the driving time (not shown), the temperature difference between the water inlet pipe 110 and the water discharge pipe 120 is calculated and stored through the first temperature sensor 610 and the second temperature sensor 620. In operation T6, the controller 900 determines whether the temperature difference of the water is equal to or less than the allowable temperature difference. (T7) When the controller 900 determines that the temperature difference between the water is equal to or less than the allowable temperature difference, the control unit 900 ends. When the controller 900 determines that the temperature difference of the water is greater than or equal to the allowable temperature difference, the controller 900 closes the first valve 510 and opens the fourth valve 540 to enter the cleaning mode.
상기 제어부(900)가 실내온도가 설정한 운전온도보다 낮다고 판단하면, 상기 제 1 밸브(510)를 닫고, 상기 제 4 밸브(540)를 열어 상기 열교환기(100)에 남아 있는 물을 모두 배출한다.(T9) 이후, 상기 열교환기(100)의 세정시간을 입력한다.(T10) 다음으로는 하기되는 바와 같이 진행된다.If the control unit 900 determines that the room temperature is lower than the set operating temperature, the first valve 510 is closed and the fourth valve 540 is opened to discharge all the water remaining in the heat exchanger 100. (T9) After that, the cleaning time of the heat exchanger 100 is input. (T10) Next, the process proceeds as follows.
상기 T3단계에서 상기 제어부(900)가 상기 히트펌프(도면 미도시)가 운전기간이 아니라고 판단한 경우에는, 상기 제 1 밸브(510)를 닫고, 상기 제 4 밸브(540)를 연다.(T8) 이후, 초기 세정시간을 입력한다.(T10) 다음으로, 상기 제 2 밸브(520)와 제 3 밸브(530)를 모두 열어 상기 열교환기(100)를 세정하는 동시 세정 모드(T12)와 상기 제 2 밸브(520)를 열고, 상기 제 3 밸브(530)를 닫아 상기 열교환기(100)의 내부만 세정하는 내측 세정 모드(T13)와, 상기 제 2 밸브(520)는 닫고, 상기 제 3 밸브(530)를 열어 상기 열교환기(100)의 외부만 세정하는 외측 세정 모드(T14) 중 하나를 선택하여, 상기 열교환기(100)를 세정한다. 상기 제어부(900)가 상기 열교환기(100)의 세정이 종료되었다고 판단하면(T15), 상기 제 1 밸브(510)를 열고, 상기 제 4 밸브(540)를 닫는다.(T16)If the control unit 900 determines that the heat pump (not shown) is not in the operation period in step T3, the first valve 510 is closed and the fourth valve 540 is opened. Thereafter, the initial cleaning time is input. (T10) Next, the simultaneous cleaning mode T12 and the second cleaning method of cleaning the heat exchanger 100 by opening both the second valve 520 and the third valve 530. 2 the valve 520 is opened, the third valve 530 is closed to clean only the inside of the heat exchanger 100, and the inner cleaning mode T13, and the second valve 520 is closed, the third valve 530 is opened to select one of the outer cleaning modes T14 for cleaning only the outside of the heat exchanger 100 to clean the heat exchanger 100. When the controller 900 determines that the cleaning of the heat exchanger 100 is finished (T15), the first valve 510 is opened and the fourth valve 540 is closed (T16).
간단히 정리하면, 파울링 생성 시 상기 열교환기(100)의 열전달 성능이 하락한다. 이로 인해, 상기 물 유입관(110)과 물 토출관(120)의 물의 온도차가 커지게 된다. 이를 이용하여 상기 열교환기(100)의 파울링 정도를 측정할 수 있고, 상기 열교환기(100)의 정밀한 세정 구동이 가능한 것이다. 즉, 초기 세정시간 입력을 기준으로 세정개선 정도에 따라 세정을 중단 또는 반복하여 자동적으로 세정을 완료하는 것이다. 또한, 저장된 데이터를 통하여 상기 열교환기(100)의 파울링 현상을 예측할 수 있어 세정 주기를 예측할 수 있고, 상기 열교환기(100)의 성능을 용이하게 유지할 수 있다.In brief, the heat transfer performance of the heat exchanger 100 is reduced during fouling generation. As a result, the temperature difference between the water in the water inlet pipe 110 and the water discharge pipe 120 is increased. By using this, the fouling degree of the heat exchanger 100 can be measured, and the precise cleaning driving of the heat exchanger 100 is possible. That is, the cleaning is automatically completed by stopping or repeating cleaning according to the degree of cleaning improvement on the basis of the initial cleaning time input. In addition, the fouling phenomenon of the heat exchanger 100 may be predicted based on the stored data to predict the cleaning cycle, and the performance of the heat exchanger 100 may be easily maintained.
하기되는 표 1은 도 8의 순서도에 따른 일실시예를 나타낸 것이다.Table 1 below shows one embodiment according to the flowchart of FIG. 8.
단계step 초기 입출구물온도차(℃)Initial entrance and exit temperature difference (℃) 입출구물온도차(℃)Inlet and outlet temperature difference (℃) 물온도차비교(℃)Water temperature difference comparison (℃) 허용온도차(℃)Allowable temperature difference (℃) 세정시간(min.)Cleaning time (min.) 추가세정시간(min.)Additional cleaning time (min.) 총 세정시간(min.)Total cleaning time (min.) 비교compare
AA BB A-BA-B CC (A-B)>C의경우 추가Add for (A-B)> C
1One 1010 55 55 1One 55 1One 66
22 1010 66 44 1One 66 1One 77
33 1010 77 33 1One 77 1One 88
44 1010 7.87.8 2.22.2 1One 88 1One 99
55 1010 8.58.5 1.51.5 1One 99 1One 1010
66 1010 9.19.1 0.90.9 1One 00 00 00 세정 종료Cleaning
다음으로, 도 9와 도 10을 참조하면, 상기 열교환기(100)에서 물 유입관(110)내의 물의 압력을 감지하는 제1압력센서(710)와 상기 열교환기(100)에서 물 토출관(120)내의 물의 압력을 감지하는 제2압력센서(720)를 더 포함하며, 상기 제1압력센서(710)와 제2압력센서(720)가 각각 감지한 물의 압력의 차이를 통해, 상기 열교환기(100)의 세정시간을 설정한다. 또한, 도 11과 도 12를 참조하면, 상기 열교환기(100)는 물의 오염정도를 측정하는 표면오염검사기(800)를 더 포함하며, 상기 표면오염검사기(800)를 통해 물의 오염정도를 측정하여, 상기 열교환기(100)의 세정시간을 설정한다. 즉, 상기 열교환기(100)의 파울링을 측정할 수 있는 모든 형태의 센서를 포함하는 것이다.Next, referring to FIGS. 9 and 10, the first pressure sensor 710 detecting the pressure of the water in the water inlet pipe 110 in the heat exchanger 100 and the water discharge pipe in the heat exchanger 100 are described. Further comprising a second pressure sensor 720 for detecting the pressure of the water in the 120, the heat exchanger through the difference in the pressure of the water respectively detected by the first pressure sensor 710 and the second pressure sensor 720, The washing time of 100 is set. In addition, referring to Figures 11 and 12, the heat exchanger 100 further includes a surface contamination tester 800 for measuring the degree of contamination of the water, by measuring the degree of contamination of the water through the surface contamination tester 800 Set the cleaning time of the heat exchanger (100). That is, it includes all types of sensors capable of measuring the fouling of the heat exchanger (100).
이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술 분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.As such, it will be understood by those skilled in the art that the above-described technical configuration may be implemented in other specific forms without changing the technical spirit or essential features of the present invention.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the above-described embodiments are to be understood as illustrative and not restrictive in all respects, and the scope of the present invention is indicated by the following claims rather than the detailed description, and the meaning and scope of the claims and their All changes or modifications derived from an equivalent concept should be construed as being included in the scope of the present invention.

Claims (5)

  1. 냉매와 물과의 열교환이 이루어지는 열교환기;A heat exchanger for performing heat exchange between the refrigerant and water;
    상기 열교환기의 일측에 구비되어, 상기 열교환기가 세정될 수 있도록 하는 세정노즐라인;A cleaning nozzle line provided at one side of the heat exchanger to allow the heat exchanger to be cleaned;
    상기 열교환기 및 상기 세정노즐라인에 물을 공급하는 펌프;A pump for supplying water to the heat exchanger and the cleaning nozzle line;
    상기 열교환기를 포함하여, 냉매 사이클이 수행될 수 있도록 하는 히트펌프; 및A heat pump including the heat exchanger to perform a refrigerant cycle; And
    상기 펌프에서 토출된 물의 이동을 제어하는 밸브;를 포함하며,And a valve controlling a movement of water discharged from the pump.
    상기 히트펌프가 작동 상태일 경우, 상기 펌프에서 토출된 물이 상기 열교환기로 이동되어 상기 열교환기에 의해 열교환이 수행되고,When the heat pump is operating, the water discharged from the pump is moved to the heat exchanger to perform heat exchange by the heat exchanger,
    상기 히트펌프가 미작동 상태일 경우, 상기 펌프에서 토출된 물이 세정노즐라인으로 이동되어 상기 열교환기가 세정되는 것을 특징으로 하는 자동 세정형 열교환기의 운전제어 방법.And when the heat pump is in an inoperative state, water discharged from the pump is moved to a cleaning nozzle line to clean the heat exchanger.
  2. 제 1항에 있어서,The method of claim 1,
    상기 세정노즐라인은 내측세정노즐라인; 및 외측세정노즐라인;을 포함하며,The cleaning nozzle line is an inner cleaning nozzle line; And an outer cleaning nozzle line;
    상기 밸브는,The valve,
    상기 펌프에서 토출된 물을 상기 열교환기로 이동시키는 제 1 밸브;A first valve for moving the water discharged from the pump to the heat exchanger;
    상기 펌프에서 토출된 물을 상기 내측세정노즐라인으로 이동시키는 제 2 밸브;A second valve for moving the water discharged from the pump to the inner cleaning nozzle line;
    상기 펌프에서 토출된 물을 상기 외측세정노즐라인으로 이동시키는 제 3 밸브; 및A third valve for moving the water discharged from the pump to the outer cleaning nozzle line; And
    상기 내측세정노즐라인 혹은 외측세정노즐라인 중 적어도 하나를 통과하여 나온 물을 상기 열교환기 외부로 이동시키는 제 4 밸브;를 포함하며,And a fourth valve for moving water from at least one of the inner cleaning nozzle line and the outer cleaning nozzle line to the outside of the heat exchanger.
    상기 히트펌프의 상태에 따라, 상기 밸브를 제어하는 것을 특징으로 하는 자동 세정형 열교환기의 운전제어 방법.And operating the valve according to the state of the heat pump.
  3. 제 2항에 있어서,The method of claim 2,
    상기 열교환기에서 물 유입관;내의 물의 온도를 감지하는 제1온도센서; 및A water inlet pipe in the heat exchanger; a first temperature sensor for sensing a temperature of water in the water; And
    상기 열교환기에서 물 토출관;내의 물의 온도를 감지하는 제2온도센서;를 더 포함하며,And a second temperature sensor configured to detect a temperature of water in the water discharge tube in the heat exchanger.
    상기 제1온도센서와 제2온도센서가 각각 감지한 물의 온도의 차이를 통해, 상기 열교환기의 세정시간을 설정하는 것을 특징으로 하는 자동 세정형 열교환기의 운전제어 방법.And a cleaning time of the heat exchanger is set based on a difference in temperature of the water sensed by the first temperature sensor and the second temperature sensor, respectively.
  4. 제 2항에 있어서,The method of claim 2,
    상기 열교환기에서 물 유입관;내의 물의 압력을 감지하는 제1압력센서; 및A water inlet pipe in the heat exchanger; a first pressure sensor for detecting a pressure of water in the water; And
    상기 열교환기에서 물 토출관;내의 물의 압력을 감지하는 제2압력센서;를 더 포함하며,And a second pressure sensor configured to detect a pressure of water in the water discharge tube in the heat exchanger.
    상기 제1압력센서와 제2압력센서가 각각 감지한 물의 압력의 차이를 통해, 상기 열교환기의 세정시간을 설정하는 것을 특징으로 하는 자동 세정형 열교환기의 운전제어 방법.And a cleaning time of the heat exchanger is set based on a difference in water pressure detected by the first pressure sensor and the second pressure sensor, respectively.
  5. 제 2항에 있어서,The method of claim 2,
    상기 열교환기는 물의 오염정도를 측정하는 표면오염검사기;를 더 포함하며, 상기 표면오염검사기를 통해 물의 오염정도를 측정하여, 상기 열교환기의 세정시간을 설정하는 것을 특징으로 하는 자동 세정형 열교환기의 운전제어 방법.The heat exchanger further comprises a surface contamination tester for measuring the degree of contamination of the water. Operation control method.
PCT/KR2018/013709 2018-06-14 2018-11-12 Method for controlling operation of automatically cleanable heat exchanger WO2019240338A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180068411A KR102055582B1 (en) 2018-06-14 2018-06-14 Method of controlling operation of Automatic cleaning type heat exchanger
KR10-2018-0068411 2018-06-14

Publications (1)

Publication Number Publication Date
WO2019240338A1 true WO2019240338A1 (en) 2019-12-19

Family

ID=68843467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013709 WO2019240338A1 (en) 2018-06-14 2018-11-12 Method for controlling operation of automatically cleanable heat exchanger

Country Status (2)

Country Link
KR (1) KR102055582B1 (en)
WO (1) WO2019240338A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112683101A (en) * 2020-12-04 2021-04-20 浙江理工大学 LABVIEW-based non-uniform heat exchanger automatic cleaning system and method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300388A (en) * 1997-04-24 1998-11-13 Hitachi Ltd Raw-sewage unused heat utilizing system
KR101151630B1 (en) * 2011-10-07 2012-06-08 주식회사 신우종합에너지 Evaporating apparatus of heat pump for recycling waste heat
KR20130051634A (en) * 2011-11-10 2013-05-21 주식회사 이엠이 Heat pump for a waste water heat source having automatic cleaning devices
JP2016176641A (en) * 2015-03-19 2016-10-06 三菱日立パワーシステムズ株式会社 Thin tube cleaning device and method for heat exchanger
KR20170127655A (en) * 2016-05-12 2017-11-22 주식회사 혜경 Auto cleaning system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131081B2 (en) * 2008-08-05 2013-01-30 富士電機株式会社 Heat exchanger scale removal method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300388A (en) * 1997-04-24 1998-11-13 Hitachi Ltd Raw-sewage unused heat utilizing system
KR101151630B1 (en) * 2011-10-07 2012-06-08 주식회사 신우종합에너지 Evaporating apparatus of heat pump for recycling waste heat
KR20130051634A (en) * 2011-11-10 2013-05-21 주식회사 이엠이 Heat pump for a waste water heat source having automatic cleaning devices
JP2016176641A (en) * 2015-03-19 2016-10-06 三菱日立パワーシステムズ株式会社 Thin tube cleaning device and method for heat exchanger
KR20170127655A (en) * 2016-05-12 2017-11-22 주식회사 혜경 Auto cleaning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112683101A (en) * 2020-12-04 2021-04-20 浙江理工大学 LABVIEW-based non-uniform heat exchanger automatic cleaning system and method thereof
CN112683101B (en) * 2020-12-04 2024-04-12 浙江理工大学 Non-uniform heat exchanger automatic cleaning system and method based on LABVIEW

Also Published As

Publication number Publication date
KR102055582B1 (en) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2019240338A1 (en) Method for controlling operation of automatically cleanable heat exchanger
WO2011122747A1 (en) Water storage and discharge apparatus
KR20020005414A (en) Substrate processing system and substrate processing method
WO2016186273A1 (en) Window-type air ventilating and cleaning apparatus
WO2014027715A1 (en) Multicage-type apparatus for filtering ballast water for automatically controlling simultaneous reverse cleaning and method for same
WO2015102247A1 (en) Server room cooling device, filter module for introducing outer air, and data center air-conditioning system comprising same
KR20120117144A (en) Ventilation system
CN207146793U (en) Conditioner
CN110043982A (en) Dynamic self-adapting pressure-difference fluctuation control system and method
KR102179173B1 (en) Step-by-step air shower method
CN106824006B (en) A kind of more reagent sequence feeding devices preventing cross contamination
WO2017188526A1 (en) Steam convection oven
CN110081519A (en) Aeration device, air conditioner indoor unit and aeration device control method
WO2016088914A1 (en) Method for controlling clothing treatment apparatus
WO2015160062A1 (en) Electronic valve having multi-circulation structure and indoor temperature adjustment system comprising same
KR102602746B1 (en) Smart air conditioning apparatus
CN114034097B (en) Multifunctional laboratory
CN208400820U (en) Cleaning device
CN214551493U (en) Pressure balancing device for industrial water treatment equipment
WO2016208868A1 (en) Heating and hot-water supply device applied to district and central heating and control method therefor
WO2014146400A1 (en) Washing machine control method, and washing machine
CN215844728U (en) Automatic barrel washing device capable of adjusting temperature of circulating water
KR100589652B1 (en) Outdoor Air Supply Control Apparatus For Ventilation System And Method Thereof
CN109812940A (en) A kind of control method of fresh air ventilating system antifreeze function
KR100616034B1 (en) Apparatus for dealing with susbstrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922930

Country of ref document: EP

Kind code of ref document: A1